
.\pril 1983 Report No. WAN-CS-83-964

Proving Precedence Properties:
The Temporal Way

bY

Department of Computer Science

Stanford Uriivcrsity
Stanford, CA 94305

4

.

PROWING F’RECEDENCE PROF=ERTIES:

THE TEMPORAL WAY

ZOI-TAR MANNA
Computer Science Department
Stanford University
Stanford, CA
and
Applied Mathematics Department
The Wcizmnnn Institute of Science
Rehovot, Israel

AMIR PNUEI,T
Applied Mathematics Department
The Weizrnann Institute of science
Rehovot, Israel

Abstract:

The paper explores the three important classes of temporal properties of concurrent programs:
invariance, livcncss and prcccdencc. It presents the first methodological approach to the precedence
properties, while providing a review of the invariance and liveness properties. The approach is
based on the unless operator LL, which is a weak version of the until operator U. For each class of
properties, wc present a single complete proof principle. Finally, we show that the properties of

each class are decidable over finite state programs.

1. INTRODUCTION

In studying temporal properties of programs, i.e., properLies that go beyond partial correctness,
an obvious hierarchy of such properties can be developed. One way of classifying the diKerent sets
in this hierarchy is by the syntax of the temporal formulas expressing them.

The first set in this hierarchy is the class of invariance propert ies (safety in the terminology
of [Ll]). Tllese are the properties that can be expressed in terms of a formula of the form:

A formula of the first form, stnLed for a program P, says that every computation of r’ continuously
satislics 7j. In the case of the s e c o n d form, the formula says tha t , whcnovcr p is true, + is im-
mc:diately realized and will hold continuously throughout the rest of the computation. l’roperties

This re:;carch was supported in part by t,he National Science I?oundat;ion under grants MCS79-
0 9 4 9 5 a n d MCS80-OG930, by l>AlZL’A under Contxact N00039-82-C-0250, by the Uni ted S ta tes
Air Force Oflicc of Scientific Rose:krch under Grant AI~OSR-81-0014, and by the Basic Itcscarch
Foundation of the lsraeli Acadcrny of Sciences.

Part of t,his paper appears irl the 1’roccctliny;s of the I OLh Colloquium on Automata, T,:mguagcs _
and Program i rli rI (1’. l~arcclon3, S p a i n (Jtily 19%).

falling into this class include partial correctness, clean behavior (error freedom), mutual zxclusion,
and deadlock absence.

~ -*

The second set in the hierarchy of properties is the class of Ziveness propcrtics (eventual i t ies
in the terminology of [MPt]). Tt -rcse are properties that are expressible by temporal formulas of
the form:

In both forms these formulas guarantee the occurrence of some event $, in the first case uncondi-
tionally and in the second case conditionally on an earlier occurrence of the event ‘p. Among the
properties falling into this class are: total correctness, termination, accessibility, lack of individual
starvation, and responsiveness.

While most of the researchers in the field tend to agree that these two classes are lhe first
two rungs in a natural hierarchy, there is less of a consensus about what should be the next step
in the hierarchy. In previous work we have proposed that the next class to be studied is that
of precedence properties. In a broad sense, precedence properties are all the properties that are
expressible using the until operator U. To remind the reader, the expression pU1~, read “p until q ” ,
means that eventually q must happen and between now and then p must continuously hold.

A more mathematical formulation of this definition is given by:

Let a = so,sr,s2, . . . be a sequence of states, then pUq is true for B if there exists a j 2 0
such that:

q is true for the sequence si, sj+l, sj+2, . . .

(if q is a state property then q holds at si), and for every i, 0 5 i < j:

p i s t rue fo r the sequcncc s;, S;+r, S;+2, . . l

(if p is a state property then p holds at pi). Here, a state property is a property that depends only
on the state and not on the full sequence. Note that in the special case that j = 0, then q is true
on 0 and no requirements for p arc implied.

A derived operator is the precede operator P that can be defined by:

Ppq E --((-p)Uq). .

The meaning of this operator is that “p precede q ” , i.c., if q ever happens it cannot happen unless
p occurs tirst (strictly before (7). In contrast to pUq which requires that q cvcntually happens, pPq
is automatically satislicd if q ncvcr happens.

We often use nested until expressions of the form

PA (P2U (PA l l * (Pk&+..)),

wherem, l ,Pkd are state properties, i.e., formulas dependent, only on the state anti containing
no temporal operators. 13y carefu l examinat ion of t h e scrnantic dclinition of the until operator

2

w e arrive at the interpretation that, stated at to, this expression means that there exist instants

h, “‘j k,t

to < t1 5 t2 < . . . 5 tk,

such that:

pl ho lds in every t, to 5 t < tl

pz h o l d s i n e v e r y t, tl 5 t < ts

p!, holds in e v e r y i, i!k-1 5 t < tk, a n d

(I holds in tk.

Thus, this expression predicts a period of continuous pl followed by a period of continuous ~2,
and so on, until a period of continuous pk, followed by an occurrence of q. Note that any of these
periods may be empty by having t; = ii+1 for an empty (; + l)st period.

Since we arc interested only in nested until expressions where the nesting is in the second
argument, we can omit the parentheses and represent the cxprcssion above by:

Plb2b3.. . pkuq.

The class of precedence properties that we consider are therefore formulas of one of the forms:

p 3 (qPr) - a precedk f o r m u l a

p > (p~upzu . . . pkuq) - an Until formula.

Several inlcresting properties fall into the broad class of precedence properties.

Example:

Let us consider a program G (granter) serving as an allocator of a single resource between
several processes (requesters) RI, . . . , Rk competing for the resource. Let each I?; communica te
with G by means of two boolean variables: ri and 9;. The variable ri is set to true by the requester
Ri to signal a request for the resource. Once Ri has the resource it signals its release by setting
ri to false. The allocator G signals Ri that the resource is granted to him by setting 9; to true.

1 Having obtaiucd a release signal from Ri, which is indicated by r; = false, some time later, it will
reappropriatc the rcsourcc by setting gi to false.

Scvcral obvious and important propcrtics of this system belong to the invariance and livcness
classes. For instance, the property

q ((cLlgi) L I),
ensuring that the resource is granted to at most one requester at a time, is an invariant property.
In summing boolean variables we treat true as 1 and false as 0. Similarly, the important property

3

which cnsurcs responsiveness, is a livencss property. It guarantees that every request ri will
cvenCually be granted by setting gi to t r u e .

Let us, however, consider some precedence properties which arc relevant to the specification
of such a system.

(a) Absence of Unsolicited Response.

An important but often overlooked desired feature is that the resource will not be granted to
a party who has not requested it. (A similar property in the context of a communication network is
that every message received must have been sent by somebody.) This is expressible by the temporal
formula

-9; 1 (rip&)*

The formula states that if presently 9; is false, i.e., 12; does not presently have the resource, then
before the resource will be granted to Ri the next time, Ri must signal a request by setting ri to
true.

(b) Strict (FlFO) .Responsiveness.

Somet imes the weak commitment of eventually responding to a request is not suffrcicnt. At
the other extreme wc may insist that responses arc ordered in a sequence parallclling the order of
arrival of Lhc corresponding requests. Thus if requester Ri succeeded in placing his request before

. requester E$ the grant to Ri should precede the grant to Rj. A straightforward translation of this
sentence yields the following intuitive but slightly imprecise expression:

A more precise cxprcssion which a l so better conforms to the general form of the class of
properties we discuss in this paper is:

(ri A "rj A "sj) ' (-gjugi).

It states that if W C ever find ourselves in a si tuation where ri is presently on, and Tj and gi are
both off, then W C arc guaranteed to eventually get a gi, and until that moment, no grant will be
made to Rj. N o t e that, ri A -Tj implies that 1li’s r eques t p receded Rj’s request, which has not
materialized yet. WC implicitly rely here on the assumption that once a request has been made it
is not-withdrawn until the request has been honored.

This assumption can also be made explicit as part of the specification, using another precedence
exprcssio n:

Ti 3 g;P("ri).

Note that while all the earlier properties are requirements from the granter, and should bc viewed
as the “post-condition” part of the specification, this requirement is the responsibility of the re-
qucstcrs. It can be viewed as par t o f the “prc -condi t ion” of the spec i f i ca t ion . Wi thout th i s
assrlrnption, we could no t hope t,o implcmcnt the granlcr in any rcasonablc way, s ince i t would
have to respond to very short and intcimittcnt rcqucsts.

4

(c) Bounded Over taking.

The requirement of FIFO responsiveness may sometimes be too restrictive and difficult to
implement. Any program for the allocator that scans the requests in a certain poll ing order,

Tl, ..‘9 rk and then back to rl may respond to requests in, say, the order of their detection by the
program. This order rnay bc different, from the arrival order. A more realistic requirement would
allow deviations from the I;‘lFO discipline, provided they are boundctl. For example l -bounded
overtaking would say that for every i and j such that ri preceded Tj, we may allow f/3’ to precede
gi at rnost once. k’lJ’0 responsiveness may then be regarded as O-bounded overtaking. In order
to express k-bounded overtaking we have to use nested until expressions.

The l-overtaking property can be cxprcssed by a nested until expression:

This expression predicts a period in which Rj does not have the resource, followed by a continuous
period in which Rj has got the resource, followed by a period in which Rj does not have the
rcsourcc, followed by a grant of tho resource to Ri. Since any of these periods may be empty,

the formula actually states that in the w o r s t case, Ilj may gain the resource at most once before
Ri.

Proofs of invariance properties for concurrent programs, have been extensively discussed in
the l i t e ra tu re (e.g., [O G] , [K],[Ll], [MP2]). riewer suggestions have been made for approaches to
proving livencss properties (e.g., [Of,], [MP2], [MP3]).

In this work W C address the problem of verifying properties of the precedence class. Our main
conclusion is that the verification of precedence properties does not call for radically new ideas and
can actually be viewed as a gcncralization of the approaches suggest4 for invariance and liveness
properties. In fact, precede formulas are in many respects generalization of invariance properties,
whereas until formulas can be established by a generalization of the proof principles for livencss
properties.

To provide a proper framework, W C first introduce an abstract operational model of concurrent
programs. We then outline a proof systern based on temporal logic; the system has been shown
i n [MP5] t o b c relatively complete for proving all properties of concurrent programs. We then
discuss some derived proof principles that are tailored directly for the verification of precedence
properties. The utility of these principles is dcrnonstrated by proving several examples.

.

2 . A COMPUTATIONAL MODEL

We start by defining an abstract computational model; the ternporal logic properties will b e
stated and proven for computations over this model.

The abstract model consists of the following elements:

L S - A set, of computation states. This is a possibly infinite set. Every clcmcnt 8 E S rcprcscnts
the full configuration of the computing syslcrn; for concrete programs each slalc includes
the values of all the program variables as well as Lho program pointers for all the proccsscs.

5

._

0 -- The initiality predicate. We will only consider computations originating in a state so such
that t9(so) holds.

T ----- A finite set of transitions. With each transition r E T we associate a partial function
fT : S --+ 2’, w h e r e IT(s) y’ IdIC s all the possible outcomes of the transition T on the state
s E S. A t rans i t ion r E T is said to be .enabled on a state s if f7(s) # 4; o therwise i t i s
called d i s ab l ed o n S. A state s such that no transit ion T E T is cnablcd on it is called
terminal. a

J - The justice family. This is a (possibly empty) family of sets of transitions J = {Tf, . . . , TkJ}.
Each set in J, TiJ c T, is called a justice set and a justice requirement defined below is
to be applid to the set TiJ.

3 - The fairness family. This i s a (poss ib ly empty) fami ly of se t s o f t rans i t ions 3 =

11
7F

1) l �☺ TtF}. Each set in 3, T3F c T, is called a fairness set and a fairness requirement

is to be applied to T3F.

An initialized computation of such a system is a sequence of states with labclled transitions:

71 72 73
0: so - 31 - 32 -. . . where T; E T,

which satisfies the following requirements:

0 Mazimulity. The sequence 0 is maximal, i.e., ei ther i t is infinite or the last state sk is
terminal.

e Initiality. The first state SO satis’fies the initiality predicate, i.e., O(Q) = t r u e .

l State- to-State trurzsition.
Tifl

For each step si’- s;+l in CT we have that S;+I E f7i+l(~i)a

l Justice. For each TJ E J we impose a justice requirement:

a 0 is finite, or

l o is infinite and contains an infinite number of states on which no transition in
TJ is enabled, or

l an infinite number of a-steps are labcllcd by transitions in TJ.

This corresponds to the notion that if for all states from a certain point on, some transition
in T J (not necessarily always the same) is always enabled, then some transition of TJ
will be taken infinitely many times.

l Fuirness. For each TF E 3 WC impose a fairness r equ i r ement :

0 0 ‘is finite, or

l o is infinite and from a certain point on no transition of TF is enabled, or

l some transition of TF is taken infinitely many times.

T h i s corrcspotlds to the n o t i o n that if some transitions from TF arc enabled inf in i te ly
many times then some transitions from YFF a r c activated inlinitely many times.

6

.

An admissible computation is any sutfix of an initialized computation.

When considering a concrete computational system, we have to identify the five e lements
described above with more concrete objects. Since our example is based on a shared-variables
computational model, we proceed with such identification for the shared-variables system. Such a
system has the form:

wherey= (yr, . . . , yn) are the program (shared) variables, 3: = (~1, . . . , ~1) are the input vari-
ables, and PI, . . . , P, are the concurrent processes of the program. Each Pi is represented by a
transit ion graph with nodes (locations) Li = (!!h, . . . , af) and directed edges Z3i = {ef
The locations !h are the e n t r y locations of Pi, respectively. Each edge e E -ti:i is label

) l *�Y Cf}.

led by an

instruction:
G(g) ---) [B := k (g)]

e

whose meaning is that when c,(v) is true, execution may proceed from & to Fe whi le assigning
the values h,(g) to the variables g. Special cases are the semaphore instructions request(y) and
reZenue(?j), equivalent to (y > 0) -+ [y := y - I] and t r u e ---+ [y := y + I] , r espec t ive ly . We re fe r
the reader to [MPl] for a more detailed discussion of these models.

A program state for this system has the form:

.

w h e r e e a c h ei E Li denotes the current location of the execution in the process Pi, and each
qj E ,!I is the current value of the program variable yj. (The variables g are assumed to range
over some domain II.) Thus we identify the set of all states S as the set of all (m + n)-tuples
(Ll ⌧ l � x L, x III”).

The initiality predicate is given by:

tqe’, . . . , em; y) :

ensuring that all the processes
are properly initialized.

The set of transitions T i
‘define

m

[A(ti = a;)] A (jj = g(z))

i=l

are at their initial locations and the values of the program variables

s i d e n t i f i e d w i t h t h e s e t o f a l l e d g e s Uy’Jr&i. F o r T = e E & w e

-1(e 7 .**t ema, 6) E s7(& - l l , trn; 7)

if and only if

t?i = c,, e;’ = e”,, 3 = Cj for every j # i , cc(q) = true a n d s = he(q).

The justice family is given by:

J =I v‘1, . . . , Em>;

7

that is, we require that justice be applied to each process individually. This irnplics that in any
infinile computation, each process that has not terminated yet will eventually be scheduled.

The fairness family is given by:

3 = { { e } 1 e is labelled by a request(y) i n s t r u c t i o n } .

Thus, each semaphore transition is to be individually treated fairly. This implies that a request(y)
instruction which is waiting while y turns positive infinitely many times must eventually be per-
formed.

In considering computations of a program as models for temporal formulas that express prop-
erties of the program, we define the model 6 corresponding to a sequence 0,

71 7 2 7 3
0: s()----+s1----+s2----%..,

I as follows: If CJ is infinite then the corresponding model is

3: so, 31, 3 2 , ****

Tn the case that 0 is finite and its last state is the terminal state sk, we take 5 to be

5: 80, 81, . . . , Sk, Sk, . . . ,

s that is, the last state repeats forever.

3. T H E P R O O F S Y S T E M

‘L’he proof system consists of three parts.

l Part A, called the general part, formalizes the pure temporal logic properties of sequences
in gcncral. It is cornplctcly independent of the particular program analyzed.

l Part 13, called the d o m a i n - d e p e n d e n t part, formalizes the properties of the domain over
which the program operates, such as integers, reals, strings, lists, trees, etc.

l Part C is the program-dependent part . It provides a formalization of the properties that
result from restricting our attention to the computational sequences of the particular
program being analyzed.

W e refer the reader to [MP4], [ML’s] for a discussion of parts A and 13. Here we only repeat
part C which we further develop in order to prove precedence properties.

The program-dependent part consists of four axiom schemes corresponding to the four re-
quirements imposed on admissible computations. In the following, a state formula is a formula
containing no temporal operators and hence interpretable on a single state.

I,et cp and $ be two state formulas. We say that a transition T leads from ‘p to $ if for every
two states a and a’ the following is true:

Note that this formula is classical, i.e., contains no temporal operators and should bc czyressible
and provable in the first-order theory over the domain. u

For example, in the case of the shared-variables computation model a transit ion 7 w o u l d
correspond to an edge e in some process P;:

c(g) --+ [g := Q)]

e

so that the condition above is expressible as

‘p(l’, ifi, .‘., em; g) A c(g) * q(al, . ..) 3, em; h(y)).

Given a subset of transit ions T’ c 5!‘, we say that T’ l eads f rom ‘p to $J if every transition
r E 7” leads from ‘p to $J. If the full set ‘1’ leads from ‘p to ?,!J, WC also say that the program P leads
fro?il p to ?If.

The state formula Terminal , characterizes the tcrminsl states:

T e r m i n a l (s) = /j (j;(s) = 4).
T.ET

Also, for a subset T’ of transitions, the state formula Enabled characterizes the enabled transitions
in T’:

F:nabled(T’)(s) = V [jT(s) # 41.
TET’

Both formulas arc expressible by a quantifier-free first-order formula.

Following are the inference rules of the program part:

(INIT) For an arbitrary temporal formula w

t- 0 3 clw

I- q w

This rule states that if w is an invariant for all initialized computations it is also an invariant
for all admissible computations. This is because every admissible computation is a suffix of an
initialized computation, and a property of the form Cl w is hereditary -from a scqucnce to all of its
d-iies.

- 1
(TRNS) I,ct p and $ be two state formulas

I- &cry r E 7’ l eads f rom cp to II)

t- (p A T e r m i n a l) > $J

The first premise cnsurcs that as long as at 1casL one Lransition is enabled, then if the current
state satisfies ‘p, the next sL;lLc m u s t s a t i s f y $. T h e sccontl p r e m i s e h a n d l e s t h e case tha t a l l

9

transitions are disabled, i.e., that of a terminal state. In a computation this means that no further
action is possible and the next state is identical to the present. Hence this premise also ensures
that in such a case the next state will satisfy $.

(JUST) Let cp and $ be two state formulas, and TJ E J a justice set

t- Every r E T leads from cp to ‘p V $

i- E v e r y r E TJ leads-from ‘p to $

I- ☯p A q lEnahZed(TJ)] > pU$

To justify this rule, consider a computation CT such that ‘p A Cl Ena61ed(TJ) holds for CT but
pU$ does not hold. By the first premise, once ‘p holds it can only stop holding when $ happens.
Hence (pU$ may fail to hold only if $ never happens and ‘p is true forever. Since we assumed that
TJ is continuously enabled on 0, some transition in TJ must eventually be activated, and this in
a state satisfying ‘p. Hence, by the second premise, once this transition is activated, it achieves 9,
contrary to our assumption.

A similar rule applies to fairness:

(FAIR) Let cp and $ be two state formulas, and TF E 3 a fairness set

t- E v e r y T E T leads from cp to ~3 V s$

I- E v e r y 7 E TF leads from cp to +

I- ip A C l OEnabZed(TF)] 3 pU$

The justification is similar to that of the JUST rule.

In the following discussion we will consider computations only under the assumption of justice.
This amounts to considering an empty fairness family 3 = 4. In the shared-variables computation
system this means that we consider programs without semaphores. The reintroduction of fairness
to the following analysis can be done in a straightforward manner.

I n [MP5] t h e set of the rules above has been shown to be relatively complete. By this we
mean that an arbitrary property which is valid for a given program, can be proved using these
rules, provided the pure logic and domain dependent parts are strong enough to prove all valid
properties. This result implies that the program dependent part is adequate for establishing all
the .properties that are true for admissible computations. However, while .giving full generality,
these rules do not provide spcciIic guidance for proving propertics of the three important classes
that we have discus&: invariance, livcness aud precedence.

We will proceed to develop derived rules, one for each class. These rules, while being derivable
in the general system, have the advantage of being complete for their classes. By this we mean,
that every valid property in the class can be proved using a single application of the proposed rule
as the only temporal step. All the premises to the rule are first-order over the domain. Thus, for
anyone who is interested only in proving properties of these classes, the respective rules arc the
only temporal proof rules he may ever need, dispensing for example with the general tcrnporal
logic part.

10

W C will illustrate these rules on a single example -- an algorithm for mutual exclusion (Fig.
0) -- taken from [I%]. The program consists of two concurrent proccsscs, PI and F’2 that cornpete
on the access to Lheir critical regions, presented by & and rn3 rcspcctively. Entry into the critical
regions is expected to bc cxclusivc, i.e., a t no t ime can PI be at & while at the sarnc time P2 is
at mz. The p r o c e s s e s communicate by means of the s h a r e d - v a r i a b l e s ?~1,1~2, t. I’rocess P; sets ye;

(i= 1,2) to 7’ whenever he is interested in entering his critical region. ITe then proceeds to set
t to i. Following, he reaches a waiting stats (45 or ~732, respectively). There he waits until either-
v; = J’ (here 2 is the cornpcting process, i.e., 7 = 2 and 2 = 1) o r t = 2. In the first cast he in fe rs
that the competitor is not currently interested. In the second case hc infers that I’; is interested

but has arrived to his waiting state after I’; did, since P; was the last to set t to 2. In any of these
cases I’; enters his critical region. Once he finishes his business there hc exits while setting y; to
I;‘, indicating loss of interest in further entries for the present.

This description is of course intuitive and informal. The following discussions will provide
more formal proofs of the correctness of the algorilhm.

4. INVARIANCE PROPERTIES

A single rule which is complete for this class is:

(INV) - Invariance Rule

Let ‘p and $ be slate properties

A . l- 0z-p

R. I- Every T E T l e a d s f r o m ‘p to cp

c . I- cp3$

)- w

A slightly more elaborate rule can similarly be used to establish properLies of the forrn ‘p 1 04.

Since the rule is derivable from the INIT and TRNS rules above, it is certainly sound.

To argue that it is complete for properties of the form Cl+, let $J bc a state property such
that q lq!~ is true for all computations. Define the predicate:

71 72 Tk
Act(s) = {There exists an init ialized computation segment SO -+ 81 --+. . . --+ Sk = 3).

T h u s , AM(S) is true for a state s ill’ thcrc cxisLs a n i n i t i a l i z e d compulation h a v i n g s as one o f
its states. WC have dclincd AM(S) in words rather than by a formula; howcvcr, if Lhc underlying
domain is rich enough to contain, say, the intcgcrs, Lhcn this predicate is expressible by a first-order
formula over the domain.

We now apply the INV rule with ‘p = Act. Cert,ainly 0 3 Act, since every stale so satisfying
0 p a r t i c i p a t e s i n a compuLation: so -+ 81 -+ It is also easy to set that if s is accessible
a n d s’ E fT(s) then s’ is also accessible. T h i s cstablishcs premise IX l’rcmise C says tha t every
acccssiblc st,:tLc satisiics $, but this follows from our assumption that Cl $J is true on all admissible _
compulalions. Conscqucntly the INV rillc is always applicable.

11

Note that for this prograrn

8: atto A utmo A [(yl, 1~2, t) = (F , I;‘, l)].

T a k e cp = $ = (t = 1) v (t = 2). It is easy to verify that 0 3 cp since 0 implies t = 1.
Similarly by inspecting every transition we see that all of them maintain cp.

I1 : k ml = h.3)

The proposition !1..3 is defined as utC1~at&Vut~3, i.e., it holds whenever I31 is somewhere
in {[I, &, .f!3}. Potentially falsifying transitions are:

e, -+ cl: sett ing both y1 and !1..3 to T .

e3 --+ 1,: se t t ing bo th yr and e1..3 to F.

All other transitions do not rnodify either y1 or 11..3.

I2 : l- q (Y2 = 7%..3)*

This property is symmetric to 11.

I3 : F q {[t2 A “m2] 3 (t = l)}.

Note that initially 43 (i .e . , at&) is false so that the implication is true. Potentially
falsifying transitions are:

1, -+ 45: sets t to 1.
ml -+ m2: makes -m2 false.
m2 --+ mg whi le 12: b y 11, y1 = T so this transition is possible only when t = 1.

All other transitions trivially maintain the invariant.

14 .. I- q {[m2 A da] 3 (t = 2)).

Can be shown in a similar way.

We may now obtain the invariant ensuring mutual exclusion:

15 : l- q-t3 v “rn3).

It is certainly true initially. The potentially falsifying transitions of this invariant are:

‘12 --+ t3 while m3: but then ~2 = T (by 12) and t = 1 (by 13), so that this transition
is impossible. .

m2 --+ m3 while !3: imposs ib le , because ?jr = T (by 11) and t = 2 (by 14).

Thus mutual exclusion has been formally proved.

._

Let us consider some invariance properties for the mutual exclusiion program (Fig.f)$rescnted
above. lo : I- q ((t = 1) v (t = 2))

!- I

5. LIVENESS PROPERTIES

We start by developing a proof rule which is more convcnicnt to apply than the JUST rule.

12

(J-EVNT) - - The ,Just lcvcntuality llulc

Let cp and $ bc two state formulas and TJ a justice set

A. l- E v e r y r E Y’ leads from cp to cp V q!~

n. I- Every r i TJ l eads f rom ‘p to $J

C. l- p > ($ V Entdled(T “,)

t- P ’ CPU@

A similar rule exists for fairness. The rule can easily bc derived from the JUST rule since by premise
C every computation having in it a cp which is not followed by a $, will have TJ con t inuous ly
enabled. This by the JUST rule implies cpU$.

Let us apply the EVNT rule to our sample mutual exclusion program (Fig. 0). Take for
example,

P = p1: at& A atm2 A (t = 2) A (7~1 = T) A (~2 = T)

1c) = po: at&j

Clear ly the only transitions enabled on a state satisfying ‘pl are & -+ !3 and rn2 --+ 7712. C o n s e -
quent ly every lransit ion leads from ‘pl to cp1 V $. Taking TJ to be PI, i.e., all transitions within
PI, we have premises A and 13 obviously satisfied. Also (~1 implies that & --+ t3 and hence PI is
enabled. Thus W C obtain I- cp1 > ((p.IUy30). From this we can certainly obtain

t- (Pl> No

since pUq implies 0 q.

Next, let us take

v3 = $4 : at& A atml A (~1 = T) A (~2 = T)

+ = Pl v PO*

We now take TJ to be I$. Certainly, the only transit ions possibly enabled under cp2 are & -+ &2,
t2 ---+ l?s a n d ml -+ m2. The Iirst t r ans i t ion prcservcs 992. The second transit ion lcads from ‘p2 to
cpo. The third transit ion which is guaranLect1 to be enabled under ~32, leads f rom ‘p2 to ~1. T h u s
every transilion leads frorrl ‘p2 t o ‘pt V cpo. W C conc lude t - ~2 2 O(cpl V ~0). lcrom this W C m a y
conc lude by tempora l reasoning and Lhc previously csLablishcd t- ‘p1 ZI 0 cpo that

l- P2 3 ocpo-

W C m a y p r o c e e d a n d define addi t iona l ‘pi, j = 3, . . . , 6 , s u c h t h a t f o r e a c h j , I- ‘pi >
O(Vkcjpk) w h i c h cvcnLually leads t o I- ‘pi > 0 cpo. This proof strategy of constructing a finite
chain of’ assertions, each cvcntually leading to an assertion of lower index can bc summarized by:

13

(CJIAIN) 1 The Ch ain Rcasoni ng Proof Principle

IJet PO, Pl, * l l 9 Pr be a sequence of state formulas.

A. l- E v e r y r E T l e a d s f r o m p; to Vpj,
jji

I{. For every i > 0 there exists a justice set TJ = TiJ such that

l- E v e r y T E TiJ l e a d s f r o m p; to V pj
j<i

C. For every i > 0 and liJ as above:

I- p; > [(V pj) V Embled(
j<i

l- (\jPi) 3 OPO
i = o

The scheme of a proof according to the CHAIN principle is best presented in a form of a
diagram. In this diagram we have a node for each cp;. For each transition r leading from a state
satisfying cp; to a state satisfying pj with j # i (and hence by A, j < ;) we draw an edge from pi

’ to pi. This edge is labelled by the appropriate justice set to which the transition belongs. Edges
belonging to the justice set which is known by premise C to bc enabled in pi are drawn as double
edges. For example, Fig. 1 contains a proof diagram for proving t- ate1 > 0 at!, for the mutua l
exclusion program. F3y the CHAIN rule W C actually proved l- (V;G_opi) > 0 at&, but since $06 is
at!, this establishes the desired result. The diagram representation of the CHAIN rule resembles

’ closely the proof lattice advocated in [OL] for proving livcness propert ies .

In the application of the CHAIN rule we may freely U S C any previously derived invariances of
Lhc program. Thus, if l- 0 I is any previously derived invariance, we may use pi A I instead of pi
to establish any of Lhe premises. This amounts to considering the sequence cpo A I, . . . , p,. A I
instead of the original sequence of assertions. Thus in the diagram (Fig. 1) W C did not have an
assertion corresponding to (es, m3) since by the previously established invariances such a situation
is impossible, in particular no transition could lead from I A ‘p4 to (13, ms). Similarly no transition
from (&, ml) to & has been drawn in view of 13.

The chain reasoning principle assur~~cd a finite number of links in the chain. It is quite adequate
for Finite state programs, i .e . , programs whcrc the variables range over finite domains. Jlowcver,
once we consider programs over infinite domains, such as Lhe intcgcrs, it is no longer sufficient
to consider only Iinitcly many assertions. In fact, sets of assertions of quite high cardinality arc
needed. The obvious generalization to infinite sets of assertions is to consider a single state assertion
(P((Y, s), paramcLrizcd by a parameter Q taken from a well-found4 ordered set (A, 4). Obvious ly ,
an important feature of our chain of assertions is that program transitions led from pi to pj with
j < i. This property can also bc sLated for an arbitrary well-founded ordering. Thus a natural
gcncraliza.Lion of Lhc chain reasoning rule is the following:

14

*.

I

(WELL) - The Wcli I-f’ouilded Livcncss Principle 1;
Let (A, +) bc a well-founded ordered set.

L e t ~(a) = cp(~, s) bc a parametrized state formula, and $ a state
formula.

Let h : A --+ J be a helpfulness function identifying for each (Y E A
the helpful justice set h(a) E J.

A . F Every t rans i t ion r E T l e a d s f r o m

(P(4 to -Jb v %((P I 4 A P(P))

B. t- Every transit ion T E h(a) l eads f rom

cp(4 to ti v V((P -i 4 A P(P))

c* I- P(4 3 [@ v W((P 4 a) A p(p)) V lkdded(h(a))]

In order to obtain a complete rule for livcncss properties we have to treat the parametrized
assertion y3(1y, s) as an auxiliary assertion:

D. I- Up, i.e., p is an invariant

1% l- (q A p) 3 (hcp(a))

)-qx w

(LIVE) - A Complete Principle for Liveness

Let p, Q be state formulas and (P(N), $ a parametrized asscr tion pair

as in WELL.

Assume premises A, B, C as in WELL, and

W C refer the reader to [LPS] for a complctencss proof of the L I V E principle. Completeness

here means tha t g iven two s tate propert ies (I and $ such that q > 0 4 is a valid statement over
all the computations of the program p, it is always possible to find state predicates p, (P(LY, s)

with Q! E A and (A, -0, 11 as in WICLL that satisfy premises A to l3. Note that premise D requires
preliminary derivation of the invariance of p which can be done using the INV rule.

6. P R E C E D E N C E P R O P E R T I E S

As a key operator in expressing and establishing prccedencc properties W C ta!tc the weak until
operator, U, to which we will refer here as the unless operator.

The unless operator rnay be defined in terms of the standard until operator as:

P&2 f q P v (PW

Thus, in contrast to pLlc/ it does not rcquirc that tl eventually happen. But in the cast that (I never
happens p is rcquirod to hold forever.

15

Even though it is introduced here as a derived operator, it can be adopted as the basic operator
for establishing prcccdencc properties. This is because both the until and precede operators can be
expressed in terms of the unless operator:

Ph = (PW A %I

P p q = (“(1) L((P A -d
*

We can also express the nested until operator by considering the nested unless operator. Let

&, ?Ll, * * l 7 $1, $0 be a sequence of formulas then

$r QLl u *. * $1 %!Jo = $r W/L1 q l * * ($1 U$o))***)

holds on a sequence 0 = so, 31, . . . i f there exists a sequence of indices 0 = i, 5 i,-1 5 . . . 5
il 5 io < ~3 such tha t for every C > 0 and j, it 5 j < it-r, $1 h o l d s o n

,(i) = sj, sj+l, l l l

and if io < w then $0 holds on 0 tie). Note that some of the it may be equal to one another, and
also to w in which case some of the $e hold in empty periods.

An alternative description is that $r U . . . $1 U $0 holds on c iff either (T satisfies +,.U . . .
$~U$o or for some j, 0 < j 5 r, 0 satisfies $J,U . . . $j+l U 0 $j. In the case j = r, 0 sa t i s f ies

bL

Then we can express the nested until by an extension of the previous formula for a simple
until:

~ruh-lu.. . ti&~o - ($r &h-l u . . .$I fi$o) A o$o*

Let us justify this equivalence. The, direction in which the nested until implies the nested
unless and the eventual ocurrence of $0 is obvious. Let us therefore consider the other direction.

Assume that $r LI . . . $1 U$o and 0 $0 both hold on a sequence 0. By the interpretation of
nested unless there exists a partition:

0 = i, < iy-1 5 . . . 5 il 5 io 5 w

such. that $1 holds between it and it-1 for k! > 0 and $0 holds at io if it is finite. Since $0 m u s t
o c c u r s o m e w h e r e i n 0 l e t j be the min imal index such tha t $0 ho lds on g(j). If j = i. < w,
then the sarnc parLition justifies tirl.L . . . $1 U$o on 0. OLhcrwisc there exists some C such that
it 5 j < it--l. In this case the partition up Lo it and then j justifies ?JrU . . . tUo f rom which

w * * l WW-1 * * * $hu+o

follows by letting $e-1, . . . , +r hold over empty periods.

Thus, expressively at least, the unless operator seems to be an appropriately basic operator.
13uL we claim that the choice of the unless operator is appropriate on proof theoretic grounds as well.
13~ inspecting the cxprcssion of until formulas in terms of unless formulas WC l ind a resemblance

16

to the r&Lion between the concepts of total and partial correctness. Total correctness, which is a

liveness property, can be expressed as the conjunction of partial correctness, which is an invariance
properly, and terminaLion, which is another l ivencss property but simpler than the original. In
quite the same way W C can express the until properly as a conjunction of an unless property, which
we regard as extended invariance property and the simpler livencss property 0 $0.

In practice, if W C want a single proof principle that will cover properties of the following three
su bclasscs

then the unless operator is a good choice.

In order to establish (a) we establish separately

I- (P 3 PW and)- CP~OQ,

which are implied by (a). The first will be established by using the unless proof principle. The
second is a liveness property and can be established by the WEIJL rule or its cxtcnsions.

Similarly in order to establish (b) ti is sufflcicnt to establish ‘p 1 (p LL+) w h e r e @ is -q and i
i s p A -q.

We could not have used the until operator in a similar role, i.e., reducing proofs of proper ties

of the subclasses (b) and (c) to these of (a). This is for example because if cp > (p LIq) is a valid
statement, then certainly so is ‘p > (Cl p V (puq)), but it d ocs not imply that either ‘p 1 Cl p or
cp > (pUq) are valid statements. Proving precede statements would cause similar problems.

The fact that the weak form of the unti l operator is more basic than its strong form seems
to have been intuitively sensed in [Lz] w here a while operator is introduced which is equivalent to

Pfi”(I*

Consequently, we will proceed by developing proof principles for the unless operator i(. W e
begin by formulating a core rule:

(C O R E - u) - c ore Rule for Unless Properties

Let pr, (~~-1, . . . ,cpo be st,ate formulas

A . F o r cvcry i > 0 ,

t- Every 7 E T leads from cp; to V (Dj
j<_i

Let 0 be a computrtLion whose first state so satislics (~3’ for some 0 5 j < r. Assume first that

j > 0. Dcfinc i, = i,-1 = . . . = ij + 0. I3y prcmisc A, s1 m u s t s a t i s f y s o m e ~4 for e 5 j. If

17

! = j W C proceed until we find an Sk that satisfies ‘pl for !! < j. If we never find such :.>state w e
m a y t a k e ii-1 = . . . = io = w. O t h e r w i s e w e t a k e ii-.1 = . , . = it = k a n d proctj’cd-similarly
beyond Sk unless e = 0. This construction shows that if so satisfies pj for some j then CT satisfies
prL1 . . . L1~0. The case j = 0 is even simpler.

W C can make a complete rule out of the CORE-U rule by strengthening the preconditions and
weakening the post conditions.

(UNLS) -- Complete Rule for Unless Properties

IAt Pr, ***9 P O , $r, “‘) $0, p, q be s t a te fo rmulas such
tha t :

A. For every i > 0,

I- E v e r y r E T leads from cp; A p to V pj
j<i

13. t- Up

c* t- ((2 A P) 1 (\j Pi)
i=o

D. For every i , 0 5 i 5 T

t- (Pi A P) 3 $cli

Let us consider the application of this rule to the analysis of the mutual exe
We take (the (pi’s refer to the assertions in Kg. 1):

lusion algorithm.

60 = $0 : at&

61 = P1..3 : e2 A [m0,1 V (m2 A (t = 2)))

62 = P4 : &Am3

(P3 = P5 : i&- A m2 A (t = 1)

$9 = $3 = -m3, $2 = m3

P - the conjunction of all the invariants 10 A . . . A 15

The diagram certainly establishes that, cp;, i > 0, leads to V@je

j<i

I t i s a l so easy to show tha t (q A p) 3 (i ~5;) a n d t h a t ~5; > 7(/i for i = 0,
i=l

may conclude:

. . .) 3. Thus W C

18

This est,ablishcs the property of l-bounded overtaking from C2. This means that once li is at

&, Pz may be at mg at most once before PI gets to his critical section at &.

An alternative derivation of the same result could have been achieved by taking the ‘p’s in the
rule to bc identical to the ‘p’s in the diagram. This leads to:

We may now use the collapsing theorem for the unless operator:

to obtain:

which is equivalent to the above after we replace each of the pi’s by the weaker $;.

Having obtained l-bounded overtaking from the point that PI is at !2 we may inquire whether
the same holds from the point that Pi is at !I. As the analysis shows in Fig. 2 the best we can
hope for is 2-bounded overtaking. The diagram in Fig. 2 establishes

from which ‘t-bounded overtaking is easily established.

7. COMPLETENESS OF THE UNLS RULE

Next we will show that the UNLS rule presented above is complete for establishing nested
unless properties.

Proof:

Let q, &, $0 be state propert ies such that the statcmcnt q > ($+ LI &-1 . . . $11 U$o) is
valid on all admissible computations. We will show that there exist state properties p, cpr, . . . , cpo,
which arc first-order expressible over the integers, such that all the premises of the UNLS rule are
satisfied.

As p we choose

p(s) z Act(s) E {Tilcrc exists an initialized cornpulaLion containing s}.

Clearly p is an invariant of all admissible computations so that premise B is satisfied.

Let 3 be a linite segment of a computation, i.e., a finite sequence

71 7 2 Tk
2 = So - 51 * . . . -Sk

s u c h that si+ 1 E JT(si) for each i = 0, . . . , k - 1.

19

WC Say that a Satisfies a b!mpOrd formula w if 6’s infinite extension 80, 51, . . . , Sk, Sk, Sk, . . .
satisfies w.

Let 0 be a computation satisfying & U . . . $1 U+o. It can be verified that any finite prefix of
0 is a computation segment that also satisfies & U . . . $1 U$u.

Let us define now cpi for i = 0, 1, . . . , r by p;(s) = true i f f

(a) Every computation segment originating at s satislies $; fitii-1 . . . $1 U$,O

(6) The index i is the srnallest index for which (a) holds.

Let us show that the sequence of ~3;‘s defined in this way satisfies premises A, C and D of the
UNLS rule.

Consider first premise A. Let s be a state satisfying cp;, for i > 0. Let s’ be a state such that
s’ E $7(s). Consider any computation segment originating in s’:

2:
71 72 rk

8’ - sl - . . . + Sk.

We can obtain from it a computation segment:

7 71 72 Tk
5: s--b--%~--+ . . . ---Sk.

Ry our assumption about s, (3: must satisfy $i U . . . Ll&. It can be shown that due to i > 0,
and the minimality of i this implies that a”l must also satisfy $iU . . . LL+o. Thus we have identified
at least one index, i, such that clause (a) is satisfied for i and s’. Let j > 0 now be the minirnal
index satisfying (a) for s’. Then (b) is also satisfied and we have that s’ satisfies pj for j 5 i. This
establishes premise A.

Next, consider premise C. Let s be a state satisfying q and p. It is therefore an accessible state
sa t i s fy ing (I. By the assumpt ion tha t q I (?jr U . . . L1$0) is a valid statement for all admissible
computations, every computation originating in s saisfies tir U . . . U $0. Consequent ly every
computation segment originating in s Si~tisfieS +I, U . . . U $0. Thus, clause (a) of the delini tion of
(p; is satisfied for i = r. Let j be the minimal index satisfying clause (a). Then pi(s) holds and
j 5 T.

To show premise D, let s be a state saisfying pi. Consider first i = 0. The zero version of
?j; u .‘. . L1$o is $0 by itself. Since every finite computation segment originating in s must saisfy
$0 which is a state property, it follows that s satislies $0. Consider nex t , i > 0. S i n c e i w a s
the minimal index satisfying clause (u), there must exist a COJJJpUti%l,iOJl scgmcnL 0 originating in
s which sa t i s f ies $i U . . . LI$o but not @i--l U . . . U $0. Consequently the initial section of (7
satisfying $; must be non-empty and therefore s must satisfy $i. Thus, we have (pi > $;.

We claimed that the cp;‘s defined above are first-order expressible over the integers. This is due
to the fact that clause (u) refers only to finite computation segments. This is a direct consequence
of the fact Lhat we deal with the unless operator . No similar first-order definition is possible for
the until operator.

ml

20

8. DIRECT PROOFS OF UNTIL PROPERTIES

In spite of our recommendation of splitting a proof of until property into a proof of a similar
unless property, followed by a liveness proof of 0 $J, there are many CBSCS in which an until property
can be directly obtained by a small modification of the liveness proof. As we have seen both the
CHAIN rule and the UNLS rule call for a sequence of assertions, such that the computation always
l e a d f r o m pi to pj wi th j 5 i. The CHAIN rule stipulates in addition a strict dccrcase under
certain conditions. It is often the case that the same chain of assertions used in the CHAIN rule
can be used to establish a nested until. In fact, in much the same way that we have justified the
CHAIN rule we can with the same premises obtain a stronger result:

Taking 0 < pl < p2 < . . . < p, = T be a pa r t i t ion o f the index range [O...r] into s
contiguous segments, we may formulate the following chain principle for until properties:

(U-CIIATN) -- The Ch ain Rule for Until Properties

Let PO, Pl, ‘“7 pr be a sequence o f s t a te fo rmulas , and 0 < pl < p2 <
. . . < Ps = r a parti t ion of [l...r].

A . l- EveryrETlcadsfrom~;to(V~j) f o r i=l,...,r.
j<i

B. for every i > 0 there exists a justice set TJ = TiJ such that:

t- E v e r y T E TiJ leads from pi to (V pj)
j<i

C. for i > 0 and ‘riJ as above:

b pi I [(V pj) v En~bled(TiJ)]
j<i

l- ((I pi) > [(0
i=O j=p.-l+l

$Jj) U (‘vl Pj) U ** l (v pi) ’ PO]
j=P,-2+1 jz 1

The conclusion states that starting at a state that satisfies one of the (pi’s, i = 0, . . . , T, w e
Pa

are guaranteed to have a period in which (V pj) continuously hold, followed by a period in

j=p,--l+l
+ P a - 1 .

w h i c h (V (pi) continously h o l d s , e t c . , until finally cpo is realized. Any of these periods may

j=ps-2+l

be empty.

To justify the soundness of this conclusion we Iirst prove it for the most relined part i t ion
possible, namely:

(1* Pii >Pi ’ (PrUPr-1Upr - 2 u l * l p☺lp()).

i = o .

This is proved in a way similar Lo the justilication of the corresponding l ivcncss principle. We show

21

by induction on n, n = 0, 1, . . . , T, that

t- (\j.i, 3 (PnUPn -1u l l l PlUPO)*

i = o

For n = 0 we have I- cpe 3 cpn from which follows trivially

Assume that the statement (*) above has been proved for a certain n and consider its proof
for n + 1 .

Cons ider the EVNT rule with cp = (prr+r, $ = (c cp;). A s s own in the proof of the livenessh
i = l

case all ‘the premises of the EVNT rule are satisfied. Consequently we may conclude:

I- Pn+l 2 (Pn+lU(QPi)*

i=l

By the induction hypothesis and the monotonicity of the U operator this yields

I- Pn+1 2 (Pn+lUP?IU * * l PlU’pO)*

Due to t- v ZJ (uUV), the induction hypothesis can also be written as

n

I- (V P i) 3 (Pn+luPnu - l l (plUPO)*

i = O

Taking the disjunction of the last two statements gives

n+l

I- <v 4 1 (Cpn+luPnu - - - PlUPO),

i=O

which is the required statement (*) for n + I.

Consider now a coarser partition:

0 < p1 < pa < . . l < p, = r.

1 into the same cell, using theBy consccutivcly merging any. two contiguous assertions that fal
collapsing rule:

l- (Pi+lu(PiuP)) 3 ((Pi+1 v Pi)uP),

we obtain the coarser conclusion:

r / PS Pa-1

I- (VP;) ’ V Pj) u(V cpj> u l �

i = O

((

j=p.-t+l j=p#-2+1

c;;iPj) uPO)* ☺

j=l

22

In our mutual exclusion program, by rcfcrence to Fig. 1 it is easy to U S C the U-CIIAIN rule
and obtain:

from which the l-bounded overtaking from & is obtained by the monotonicity of the until operator
(i.e., replacing formulas by weaker formulas).

A natural extension of the IJ-CHAIN rule to programs that require infinite chains of assertions
uses again well-founded ordered sets.

Let (A, 4) be a well-founded ordered set. We require however that the ordering is total (or
linear). That is , for every two distinct clcments, QI~,CLQ E A either or < CQ or cyz 4 CY~.

(U-WELL) - Well-Founded Until Rule

Let (A, 4) be a well-founded totally ordered set.

L e t (P(~x) = cp(a, s) b e a parametrized state formula.

Let h : A -+ J be a helpfulness function identifying for each QL E A the helpful
justice set h(a) E J.

Let ai1 i cy2 i . . . 4 o, be a finite sequence of elements of A.

A . F Every t rans i t ion T E T l e a d s f r o m

P(Q) to $ v 3((P 5 4 A P(P))

B. F Every transition T E h(a) l eads f rom

944 to ?I) v W((P -(4 A PM)

c* t- CPM 3 M v V((P 4 a) A p(p)) V Enablcd(h (a))]
-____

I- 3a((a I 0,) A P(Q)) 1

[W((%-1 4 P 5 4 A P(P))U

3/3((~2 4 p -i as-l) A (P(P)) u . . .

%((P i al) A P(P)) u $1

Ry a combination of the completeness of the WELL rule for liveness propertics and the UNLS
rule for unless properties we can extend the above rule to a complete rule for until propert ies .

0. DECISION PROCEDURES FOR FINITE STATE PROGRAMS

The question of whether a given program has a certain property expressed by a temporal for-
mula, is in general highly undecidable. However, for a very important restricted class of programs,
this question is decidable, namely for linitc state programs. Finite state programs are prograrns
whose variables range each over a finite domain. These programs gcncratc only finitely many
different states and a joint, finite t ransit ion diagram over these states can bc constructed such
that any computation is a maximal path in this Iinitc directed graph. The literature abounds in.
many special decision procetlurcs for testing for deadlock situations, starvation, etc. o n progra rns

23

represented by finite transition diagrams. All these arc special cases of the general result whi.ch
states that testing a temporal formula over a finite state program is decidable. The ger;kral deci-
sion procedure for testing a temporal forrnula cp on a Iinite state program P consists in checking
the implication Wp > cp for general validity. In this implication Wp is a formula characterizing
all admissible computations of 1’. If P is finite state then both Wp and ‘p may be represen ted
as propositional temporal formulas. Consequently W C test a propositional temporal formula for
general validity. As shown in [PSI, ti can be done in time exponential in the size of P and ‘p. This
exponential time complexity has been a source of criticism of linear ternporal logic in [CES].

In this section we show that when the temporal property cp to be tested, falls into one of the
property classes discussed here, then there exists an eflicient decision procedure polynomial in the
size of P and ‘p for testing ‘p on P.

Let P be a program consisting of m processes PI, . . . , P,. Let each process Pi be presented
as transit ion diagram with set of nodes Lie The prograrn variables yr, . . . , yn assume va lues
over Imite domains Dr, . . . , D, respctively. Then the state set S of the program P is the set of
all possible tuples (er, . . . , C,; 71, . . . , ~1~) with !i E Lip i = 1, . . . , m, and qj E Dj for j =
1, . . . , n. Consequently

P;
We construct for P a joint transit ion diagram Tp with S as nodes, and an edge s---M for

every pair of states s, s’ and a transition r in Pi which leads from s to s’.

In order to generate only accessible states we start from all states satisfying 0 and include in
Tp only states which are derivable from states which are already included in 7’~. Fig. 3 shows the
d iagram Tp for the mutual exclusion algorithm. States in this diagram have the form (ei, mj, t).

’ We have not included the values of yr, y2 since in all accessible states they arc uniquely determined
by the location values !i and mj. The initial state in this diagram is so.

We proceed to describe three algorithms which, for properties in each of the three classes, will
determine whether a fmite state program p has this property. The algorithms will be linear in the
s ize of 7’~. Let us denote N = ITpI.

10. TESTING INVARlANCES

Let the formula to be tested be of the form (1 3 q ‘p. We can check whether all paths in Tp,
and hence all admissible computations of P, satisfy q > Cl cp by the following procedure:

PI: Locate in Tp all states which satisfy Q. For each such state s construct the transit ion
d iagram Tp(s) which includes exactly all the states accessible from s. Check that each
s’ E Tp(s) satisfies ‘p.

If all these steps succeeded then Q > Cl ‘p is valid for P. W C can organize the procedure so
that i t takes no more than m - N steps w h e r e N = ITp and m is the number of processes andI
h e n c e the maximal degree of Tp. T h i s i s bccausc if s2 E Tp(sr) sa t i s f i es (I then Y>(Q) c Tp(s1)
and no separate check is needed for s2 if we have already checkctl Tp(sr).

24

Consequently we have to access each state at most once, and then may have to explore each
of its edges.

For checking invariances W C rnay actually suggest a simpler procedure: mark in Tp each state
which is accessible from a q-state (a state saisfying 9) . Then check that all the marked states
satisfy cp. However the complexity of the two procedures is identical and the PI procedure above
conforms better with the procedures presented below for the other classes.

We may for example apply PI to test for the invariance of IO to Ts derived for the mutual
exclusion. All these properties have the form Cl ‘p so we may take q = true and consider Tp(s) for
all accessible states. However since every accessible state s E Y’p(so) = I/‘p, it is sufficient to check
that all states in 7’~ satisfy cp.

Indeed we can easily check for example that there are no states in which L’2, -m2 and t # 1
are all true. In other words every state in which both & and -77~ are true, i.e., 56, sra, also has
t- 1 in it. This establishes Is. Similarly, there is no accessible state in which both & and mg
hold, establishing 15.

It is easy to prove:

Lemma:

A formula (I 3 q ‘p is valid for P ifF the procedure PI applied to ‘7’~ succeeds.

11. TESTING LIVENESS

Let the formula to be tested be of the form q > 0 p. Let s E Tp be an accessible state. Let
7r = s*, . . . , Sk be a finite path in Tp. We say that K is a non-cp path if none of sr, . . . , Sk--l satisfy
cp. Note that Sk is allowd to satisfy ‘p. We define Tp(s,cp) to bc the dircctcd graph containing all
s t a t es in Tp which a re accessible f r o m s by non-cp pa ths . The g r a p h 7’p(s, ‘p) can be eIliciently
constructed as follows:

(a) Put s in Tp(s,p)

(b) For every s’ E Z’p(s, ‘p) which does not satisfy ‘p, add all the successors of s’ to

TP(% 4.

Let us decompose Tp(s, ‘p) into maximal strongly connected components. It is known that
-when we consider edges between the components, it is always possible to order the components in
a topological sorting order Ki, . . . , K,, such that if there is an edge from a node in r(; to a node
in Ki t h e n ncccssarily i 5 j . Components such tha t there are no ctlgcs lead ing out o f them are
called terminal co rnponcnts.

We suggest the following test for checking that all just computations in Tp(s, ‘p) satisfy 0 ‘p:

p-Liveness Test:

Decompose Tp(s, ‘p) into
ponents: Kr , . . . , K,.

a topologically sorted list of maximal strongly connected com-

For each i = 1, . . . , T check:

25

(a) If I(; is terminal then it consists of a single node satisfying ‘p.

(b) If K; is nonterminal, then there must exist a j, j = 1, . . . ,v&, such that every
state s E I(; has a Pi transition leading out of Kd.

Lemma:

All just computations in Tp(s, ‘p) realize 0 ‘p iff the cp-livcncss test succeeds.

Proof:

Assume that the test succeeds. Let 0 be any maximal computation in Tp(8, cp). By the ordering
of the K1, K,, from a certain point on, the computation must be fully contained in a single
component, Ke say. If Ke is terminal then Ihe computation terminates once i t has entered Kc,
and the’last state satisfies ‘p by () b(z a ove. If Ke is not terminal then being contained in E(e and
by (b) it must be infinite, since no state in Ke is terminal. Furthermore, no Pj transition is ever
taken once the computation has entered Ke, ot,herwisc it would have left Ke. Consequent ly the
computation is unjust, with respect to Pj. Thus a11 just computation must cvcntually realize ‘p.

Assume that the test fails. Then either there is a terminal component I(; not satisfying ‘p, or
there exists a nontcrminal component K; not satisfying condition (6). In the first case we construct
a computation u leading from 0 to I(;, and then either stopping if the state s E K; is terminal or

. looping within K; in a loop that spans all of K;. Since states within K; do not satisfy cp (actually
none of them does) this can be shown to be a just computation not realizing ~3. In the s econd
case; we construct again a computation CT reaching K; and continuing in a loop spanning all the
transitions within K;. By violation of condition (b) every process Pj that has not ternlinated yet
has a F’j transit ion internal to I(;. Thus by traversing all transitions in K;, we generate a just

. computation which does not realize ‘p.

Note that the construction of Tp, its decomposition into strongly connected componeuts and
applying the liveness test are all linear in the size of Tp.

In order to check that q 1 0 cp is valid for 1’ W C could in principle take each s E Tp w h i c h
satisfies q, construct ?‘p(s, ‘p) and apply the cp-livencss test to it . But we can actually be more
efficient as follows:

ht sl, . . . , Sk bc all the q-states in Tp. Cons t ruc t Tp(si, cpl) and check it for cpl-liveness,
where

Nexl, construct Tp(s2, ‘pz) and check it for (pz-livcncss, where

p&s) = p(s) v s E T&l,‘Pl)

Thus in cons t ruc t ing Tp(sz, ‘pz) we may s top the ana lys i s once the computa t ion en te rs
Tp(sl, cpl), since we already know that, all computations there realize cp.

Iti general we construct Tp(si, cp;) and check it for p;-liveness for i = 1, . . . , Ic where:

(pi(S) = $9(S) V [S E U 7j>(Sj,pj)].

j<i ’

In this way we essentially consider each state at most once and the whole procedure bcco!r-es linear
in ITPI- II

.q. --

Let us apply this procedure for checking validity of atlr 2 0 at& on the mutual exclusion
program. We will check the following q-states:

s17 : (Cl, m3,2), 512 : (4, mo, 21, 513 : (LWJ),

51 : (e,,mo, 1), 33 : (L ml, I), s16 : (h, m2,2)*

In Fig. 4 we present Tp(s17, atl3). In decomposing the graph W C find that every component
consists of exactly one node and a possible sorting order for them is:

s17, s12, ~13, 316, 316, S19, s.1, 35, 56, Q, ‘9.

The terminal components are s:, a n d sg and they both satisfy a t !3. For every o ther com-
ponent we easily identify a helpful process leading out of the component. Thus PI is helpful for

t 517, 512, 513, sl6, S4, s6} a n d p2 iS h e l p f u l f o r (518, 319, S(3).

Note that this diagram also took care of 512, ~13, 316. The next q-state not yet analyzed is
~1. We cons t ruc t fo r i t Tp(s1, ~2) whcrc cpz(s) = at& V s E Tp(s17, C3).

The corresponding diagram in Fig. 5 shows that all computations starting at s1 or s3 eventually
m u s t enter ‘&(srT, at a,). Consequently we conclude that ate1 3 0 at& is valid for the program
P .

12. TESTING UNLESS PROPERTIES

Let the formula to be tested be

Let s E Tp be an accessible q-state. Construct Tp(s, cpu) as before. We propose the following
-test for checking that all computations in Tp(s, cpo) satisfy w : (Pi Ll;p,-1 . , . pl Ucpo.

w-Precedence Test:

Decompose Tp(s, cpo) into a topologically sorted list of maximal strongly connected com-
ponents: Kl, . . . , K,.. Proceeding from K, down to KI, we try to assign each component
K; a rank pi = p(Ki) as follows:

Let p; be the smallest k 2 0 such that all states in Ki satisfy pk and that any component
Kj, directly connected to Ki, i 2 j, has a lower or equal rank, i.e., k 2 pi.

If we fail to rank some component f<; then the test is said to fail, otherwise we say that
it has succeeded.

27

Lemma A:

If the w-precedence test succeeds, then all computations in Tp(s, cpo) satisfy w.

Proof:

Assume that the test succecdcd. Let cp be any computation in Tp(s, cpu). Such a computation
must progress through a finite chain of components i(dl, Ki,, . . . , KiL, with il < i2 < . . . < it-
Thus i t succssively sa t i s f i es (P~(K~,), (P~(K~,), . . . P~(K~,) wi th p(Ki,) L p(Ki,) 2 . l . L p(Kil).

Obviously it satisfies w.

Let I(; be any component. We say that we failed to assign I(; the rank j if either pi > j or
we failed to rank Ki altogether. ,

Lemma B:

If we failed to assign Ii’; the rank j then for every s E Ki the re ex i s t s a computa t ion CT =
s--3, . . . (beginning in s) that does not satisfy

Proof: .

We will prove the lemma by double induction, first on j = 0, 1, . . . and then for each j on
i=r,r-1 9 “‘9 1.

Consider first j = 0. Let s E Ki be any state in Ki. If s satisfies cpe then Ki cons i s t s o f s
alone and has no successors. Correspondingly we could have delined p(Ki) = 0. Since we failed
t0 a s s ign 0 t0 Ki, s does not satisfy cpe. Consequently any computation beginning in s falsilies
wo = cpo. This establishes the lemma for j = 0 and Kl, . . . , K,.

Consider now a j > 0 and assume by induction that the lemma has been proved for j - I and
Ki and also for j and each of Ki+r , . . . , Kr. Let s E Kie

. There could be two distinct reasons why we failed to assign the rank j to I(;.

l There exists some state s1 E -I(; which does not satisfy pi. By the induction hypothesis
there ex i s t s a computa t ion 0’ = s’, s2, . . . which dots not satisfy u)j 1. WC c l a i m t h a t
0’ also does not satisfy ?Dj. For 0’ to satisfy ?uj there must be a (possibly em ply) prclix of
0’ continuously satisfying pj followed by a suflix which satisfies wj- 1. Since s1 falsilies
pjf the prefix must be empty and the whole of 0’ must satisfy wj-1 which con t rad ic t s
the dclinition of 0’.

It only remains to obtain a similar computation starting from s, the arbitrarily spccilied
state in Ki. If by chance s = s1 then 0 will do. Otherwise, since s and s1 belong to the
same strongly connected component there must exist a path s = sr, . . . , s, = s1 within
E(; connecting S to S ‘. Cons ide r the computa t ion 0 = s, . . . , s’, s2, . . . , i.e., the path

28

. .

f rom s to s1 followed by u’. Since no state in Ki satisfies ~0, Q can satisfy wj only if O’
does. Thus o falsifies wj.

l The second case where we fail to assign j to Ki is that there exists a Kc directly connected
to Ki, i < e, such that pe > j or more generally we failed to assign j to Ke. Thus the re
exists si E Ki and se E Kl such that

pk
s; d se for some Pk.

I3y strong connectedness there exists a (possibly empty) path connecting s to si : s,
. . . , si. By the induction hypothesis since e > i and we failed to assign j to Ke the re

exists a computation al : se, s2, . . . which falsifies wj. Consider now the computation

U : Sj s l m 9 Sij Se, S2j a l l

The computa t ion 0 consists first of the path from s to s; within I(;, then the edge f rom
si to se and then follows at. Since the whole segrncnt s, . . . , sl does not contain a state
satisfying ~0, o can satisfy wj only if art does, which is impossible. Thus u falsifies wj as
required.

4

Let now Ki be a component that was not ranked altogether. By the last lemma there exists
2 3a computa t ion 0 = s, s , s , . . . wi th s E Ki such that o falsifies

WV = pru . ..(plU’p().

We can pre f ix (T by a path leading from SO to s and ob ta in a computa t ion 00 = SO, . . . , s, . . .
which fails t,o satisfy w,. We may combine Lemmas A and B to obtain:

Corollary:

Given Tp(so, cpo), all so-initialized computations

w=rp,LI...plUp()

iff the *u-precedence test succeeded.

in T&O, PO) satisfy

Proof:

In order to test the general implication q > w on the entire Tp diagram we proceed as follows:

Let Sl, 52, . . . , sk be all the q-states in Tp. C o n s t r u c t Tp(s1, cpo) and test (pI U . . . (01 LI cpo
on i t . Construct Tp(s2, $2) where $9(s) = cpo(s) v s E rl’p(s1, ~0).

Test cpr U . . . ‘p1 LI(po on Il’p(s2, $2). ln ranking the componcnls we add the following rule:

,
If Ki is a terminal component consisting of the single node s E Tp(sl, cpo), give Ki the rank

that s (or the component containing s) has received in !Z’p(sl, cpo).

In general we construct Tp(si, 4;) where

$i(s) = cPO(s) v is E U TP(sj, $j)] ($1 = CpO).

j<i ’

29

We then test (pr L1 . . . U cpo on ?‘p(si, $i) ranking any component consisting of s E I*.:(:?i, $j) for
some j < i according to the rank it received earlier.

Consequently the testing procedure is again linear in the size of Tp. To be precise, of com-
plexity r l m . ITpI. ,

To illustrate the procedure let us test the validity of the following unless property:

This property again expresses a certain kind of 2-bounded overtaking. However the reference point
is when PI is at C0. It states that from the time PI decides to leave to, P2 may enter m3 at most
twice before PI enters ea. Furthermore, actual 2-overtaking can take place only if PI on exiting
to finds,Pz in ms at precisely the same moment. If on exiting Co, P1 lind P2 anywhere else then
at most l-overtaking can take place. In contrast with other unless properties considered before in
this paper, this property is not an until property. The corresponding until property does not hold
since when P1 is at 10 it is quite acceptable that it never gets out to achieve &.

We define

q = $25 : ate(-)

p4 = (~2 : u t m 3

p3 = ~1: - utm3

p() = ate3

.

Accessible q-states in Tp are:

515 : (Lo, m3,2), SlO : (f-o?o, 21, 511 : (fo, ml, q,

314 : (lo,m2,2), so : (!o,mo, I), s2 : (Co,mlJ)*

In Fig. 6 we have Tp(s15, cpo). Its component decomposition gives the following topologically
sorted list of components:

K1 = (s15, SlO, 311, s14}, {517}, {s12}, {s13}, {s16}, {s18}, {s19}, @4}, {s5}, {SC}, {SS}, (39).

Going backwards we assign lhe following ranks:

pi = 0 f o r i E {5,9}

pi = 1 f o r i E {8,6,4}

Pi = 2 for i = 19

pi = 3 f o r i E {18,16,13,12}

pi = 4 for i = 17

30

PWl 1 = 5

This shows that the desired unless property actually holds for the q-states ~15, ~10, ~11,314.

N e x t let us cons ide r TP (so, [pa(s) v s E 2’ p 815, PO)]). It is given in Fig. 7. All the terminal(
nodes belong to the previous diagram and their ranks have been listed. We may proceed to rank
the unranked states in Tp(sg,&). e

W C define

Pi = 3 f o r i E {1,3},

a n d

Pi = 5 f o r i E {0,2}.

Thus, all q-states have been successfully ranked, and the unless property:

has been established. We obviously cannot do better since the computation:

515 + s17 -+ 512 + 513 -+ 816 4 518 4 sl9 --$ ‘4 --+ s5

demonstrates 2-overtaking.

Acknowledgement:

W C would like to thank Yoni Malachi, Ben Moszkowski, and Frank Yellin for careful and
critical reading of the manuscript.

13. R E F E R E N C E S

[CES] Clarke, E.M., E.A. Emerson, and AI’. Sistla, “Automatic Verification of Finite State

Concurrent Systems using Temporal Logic Specifications: A Practical Approach,” Proc.
of the IEEE Conf. on Foundations of Computer Science, Chicago (1982).

1 [K] K e l l e r , R . M . , “Formal verification of parallel programs,” CACM, Vol. 19, No. 7 (July
1976), pp. 371-384.

] Lamport, I , . , “Proving the Correctness of Multiproccss Programs,” IIXl!X Trans. Soft.
Ihg. W-3, 2 (Mar. L977), pp. 125-143.

] J,amport, L . , “ ‘Sometime’ is Sometimes “Not Never’: On the Temporal Ilogic of Pro-
grams,” 7th Annual ACM Symposium on Principles of Programming Languages (.t980),
pp. 174-185.

[LPS] Lehmann, D. , A . Pnue l i , and .J. S t a v i , “Jmpartiaiity, justice and fairness: the ethics

of concurrent termination,” in Automata Languages and Programming, Lccturc Notes in
Computer Science 115, Springer Verlag (1981), pp. 264--277.’

31

[MI’11 Manna, Z. and A. Pnueli, “Verilication of Concurrent Prorams: The Temporal l’rame-
work,” in The Correctness Problem in Computer Science (R.S. J1oycr and J S. Moore,
eds.), International Lecture Series in Computer Science, Academic Press, London (1982),
pp. 215-273.

[MP2] M a n n a , Z. and A. Pnueli, “Verihcation o f Concur ren t P rograms : Tempora l P roof
Pr inc ip le s , ” Proc. of the Workshop on Logic of Programs (D. Kozen, cd.), Yorktown-
Heights, N.Y. (1981). Springer-Verlag Lecture Notes in Computer Science 131, pp. 200-
252.

[Ml?31 Manna, 2;. and A. Pnucli, “Verilication of Concurrent Programs: Proving Eventualities
by Well-Founded Ranking,” TOPLAS (1983, to appear).

[MP4] M a n n a , 2. and A. Pnue l i , “Verification of Concurrent Programs: a Temporal Proof
System,” Proc. 4th School on Advanced Programming, Amsterdam, Holland (June 1982).

[MP5] M a n n a , Z. a n d A . P n u e l i , “How to Cook a Temporal Proof System for Your Pet
Language,” in the Proc. of the Symposium on Principles of Programming Languages,
Austin, Texas (Jan. 1983).

[OL] Owicki, S. and L. Lamport, “Proving Liveness Properties of Concurrent Programs,”
ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3 (July 1982),
pp. 455-495.

[OG] Owicki, S. and D. Gries, “An Axiomatic Proof technique for Parallel Programs,” Acta
Informatica, Vol. 6, No. 4 (1976), pp. 319--340.

[Pe] Peterson, G.L., “Myths about the Mutual Exclusion Problem,” Information Processing
Letters, Vol. 12, No. 3 (June 1981), pp. 115-116.

[PSI Pnucli, and A., Sherman R., “Semantic Tableau for Temporal Logic,” Technical Report,
CSSl-21, The Weizmann Institute (Sept. 81).

32

yp=T

yl:=F t 1:=

Y2A (t=l)?

Figure~O

y2 F:= t 2:r

03 -Yp(t=l)?

YlA (t= 2) ?

-P2 -

P2

“4:
-P l2'm3

*

P2

cp : L-A 12’mo 7
Pl

4

P2

cpp -
9

> !2$ml
* .

P2

'pp‘2’Qpt= 2)
, .

p1
/.

90: ’
I3 (

Fig. 1, Proof Diagram for

33

cP5: 1 ,,,.;t=l J

p2
\J

cpp e2,m2' t = 2
c

5

Fig. 2. Proof Diagram for 2-bounded overtaking from tl

34

Fig. 3. Joint Transition Diagram for the Mutud Exclusion Program,

35

Fig. 4. Tp(S17& I31

Fig. 5. T ('
P w2)

36

*1

Fig. 6. Tp(S~59~o)

37

p6 =1 696 = 3

Fig. 7. Tp(SO’Q

38

