Verification of Concurrent Programs: A Temporal Proof System

by

Zohar Manna and Amir Pnueli

VERIFICATION OF CONCURRENT PROGRAMS: A TEMPORAL PROOF SYSTEM

by
ZOIIAR MANNA
Computer Science Department
Stan ford University
Stan ford, CA
and
Applied Mathematics Department The Wcizmann Institute of Science Rehovot, Israel
AMIR PNUELI
Applied Mathematics Department The Weizmann Inslitute of science Rehovo t, Israel

Abstract

A proof system based on temporal logic is presented for proving properties of concurrent programs based on the shared-variables computation model. The system consists of thrco parts: the general uninterpreted part, the domain dependent part and the program dependent part. In the geaeral part we give a compleie proof system for first-order temporal logic with detailed proofs of useful theorems. This logic enables reasoning about general time sequences. The domain dependent part characterizes the special properties of the domain over which the program operates. The program dependent part introduces program axioms which restrict the time sequences considered to be execution sequences of a given program.

The utility of the full system is demonstrated by proving invariance, liveness and precedence properties of several concurren t programs. Derived proof principles for these classes of properties, are obtained and lead to a compact representation of proofs.

This paper appears in the Proceedings of the 4 -th School of Advanced Programming, Amsterdam, :Ifolland (June 1982).

This research was supported in part by the National Science Foundation under grants MCS7909495 and M(SS80-06930, by DARPA under Contract N00039-82-C.-0250, by the United States Air Force Office of Scientific Research under Grant AFOSR-8 1-00 14, and by the Basic Research Foundation of the Israeli Academy of Sciences.

A. INTRODUCTION

In this work wC present a proof system based on temporal logic for proving the properties of concurrent programs. We refer the reader to [MP1] f'or a more detailed discussion of the computational model of concurrent programs, and the advantages offered by the language of temporal logic in formulating properties of concurrent programs.

1. THE TEMPORAL LANGUAGE: SYNTAX AND SEMANTICS

We first describe the temporal language wC are going to use. This language contains special constructs that are suitable for reasoning about programs.

The language uses a set of basic symbols consisting of individual variables and constants, propositions, and function and predicate symbols. The set is partitioned into two subsets: global and local symbols. Intuitively speaking, the global symbols denote entities that do not change duriag a program execution. The local symbols, on the other hand, may change their meanings and values in different states throughout the exccution. For our purpose, the only local symbols that interest us arc local individual variables and propositions. Wc will have global symbols of all types.

Wc USC the usual set of boolean connectives: A, V, \supset, \equiv, and \sim together with the equality predicate $=$ and the first-order quantifiers \forall and 3. These operators arc referred to as the classical operators. The quantifiers \forall and 3 arc applied only to global individual variables.

The modal operators used arc: $\square, 0,0$, and \mathcal{U}, which arc called respectively the always, sometime, next and until operators. The first three operators arc unary while the \mathcal{U} operator is binary. We use the next operator, 0, in two different ways -- as a temporal operator applied to formulas and as a temporal operator applied to terms.

A model (1, α, σ) for our language consists of a (global) interpretation I, a (global) assignment α and a sequence of states σ.

- The interpretation I specifies a noncmpty domain D and assigns concrete elements, functions and predicates to the (global) individual constants, function and predicate symbols.
- The assignment α assigns a value over the appropriate domain to each of the global individual variables.
- The sequence $\sigma=s_{0}, s_{1}$, . . is an infinite sequence of states. Each state s_{i} assigns values to the local individual variables and propositions.

For a sequence

$$
\sigma=s_{0}, s_{1}, \ldots
$$

wc denote by

$$
\sigma^{(i)}=s_{i}, s_{i+1}, \ldots
$$

the i-truncated suffix of σ.
Given a temporal formula w, wc present below an inductive definition of the truth value of w in a model $\left(I, \alpha\right.$, a). The value of a subformula or term τ under (I, α, a) is denoted by $\left.\tau\right|_{\boldsymbol{\sigma}} ^{\boldsymbol{\alpha}}$, with I being implicitly understood.

Consider first the evaluation of terrns:

- For a local individual variable or local proposition y :

$$
\left.y\right|_{\sigma} ^{\alpha}=s_{0}[y]
$$

i.e., the value assigned to y in s_{0}, the first state of σ.

- For a global individual variable u:

$$
\left.u\right|_{\sigma} ^{\alpha}=\alpha[u]
$$

i.c., the value assigned to u by α.

- For an individual constant the evaluation is given by I :

$$
\left.c\right|_{\sigma} ^{\alpha}=l[c]
$$

- For a k-ary function f :

$$
\left.f\left(t_{1}, \ldots, t_{k}\right)\right|_{\sigma} ^{\alpha}=I[f]\left(\left.t_{1}\right|_{\sigma} ^{\alpha}, \ldots,\left.t_{k}\right|_{\sigma} ^{\alpha}\right)
$$

i.e., the value is given by the application of the interpreted function $I[f]$ to the values of t_{1}, \ldots, t_{k} evaluated in the $\operatorname{model}(I, \alpha, \sigma)$.

- For a term t :

$$
\left.(O t)\right|_{\sigma} ^{\alpha}=\left.t\right|_{\sigma^{(1)}} ^{\alpha}
$$

i.e., the value of $0 t$ in $\sigma=s_{0}, s_{1}$, . . is given by the value of t in the $1-$ truncated suffix $\sigma^{(1)}=s_{1}, s_{2}, \ldots$

Consider now the evaluation of formulas:

- For a k-ary predicate p (including equality):

$$
\left.p\left(t_{1}, \ldots, t_{k}\right)\right|_{\sigma} ^{\alpha}=l[p]\left(\left.t_{1}\right|_{\sigma} ^{\alpha}, \ldots,\left.t_{k}\right|_{\sigma} ^{\alpha}\right)
$$

Mere again, WC first evaluate the arguments in the rnodel and then test $I[p]$ on them.

- For a disjunction:
$\left.\left(w_{1} \vee w_{2}\right)\right|_{\sigma} ^{\alpha}=$ true if and only if $\left.w_{1}\right|_{\sigma} ^{\alpha}=$ true or $\left.w_{2}\right|_{\sigma} ^{\alpha}=$ true.
And similarly for the other binary boolean conneclives \mathbf{V}, \supset, and \equiv.
- For a negation:

$$
\left.(\sim w)\right|_{\sigma} ^{\alpha}=\text { true if and only if }\left.W\right|_{\sigma} ^{\alpha}=\text { false }
$$

- For a next-time application:

$$
\left.(O w)\right|_{\sigma} ^{\alpha}=\left.w\right|_{\sigma^{(1)}} ^{\alpha}
$$

Thus $0 w$ rncans: w will be true in the next instant - read "next w".

- For an all- times application:
$\left.(\square w)\right|_{\sigma} ^{\alpha}=$ true if and only if for every $k \geq 0,\left.w\right|_{\boldsymbol{\sigma}^{(k)}} ^{\alpha}=$ true,
i.e., w is true for all suffix sequences of σ. Thus $\square \quad \mathrm{w}$ means: w is true for all future instants (including the present) -- read "always w " or "henceforth w".
- For a sornc- time application:
$\left.(\diamond w)\right|_{\boldsymbol{\sigma}} ^{\alpha}=$ true if and only if there exists a $k \geq 0$

$$
\text { such that }\left.w\right|_{\sigma^{(k)}} ^{\alpha}=\text { true }
$$

i.e., w is true on at least onc suffix of σ. Thus 0 w means: w will bc true for some future instant (possibly the present) -- read "somctime w " or "eventually $w^{\prime \prime}$.

- For an until application:

$$
\begin{array}{r}
\left.w_{1} \mathbb{U} w_{2}\right|_{\sigma} ^{\alpha}=\text { true if and only if for sornc } k \geq 0,\left.w_{2}\right|_{\sigma} ^{\alpha}(k)=\text { true and } \\
\\
\text { for all } \mathrm{i}, 0 \leq i<k,\left.w_{1}\right|_{\sigma^{(i)}} ^{\alpha}=\text { true } .
\end{array}
$$

Thus $w_{1} U w_{2}$ rncans: there is a future instant in which w_{2} holds, and such that until that instant w_{1} continuously holds -- read " w_{1} until w_{2} " ([KAM], [GPSS]).

- For a universal quantification:
$\left.(\forall u . w)\right|_{\sigma} ^{\alpha}=$ true if und only if for every $d \in D,\left.w\right|_{\sigma} ^{\alpha_{\sigma}^{\prime}}=$ true,
where $\alpha^{\prime}=\alpha \circ[u \leftarrow d]$ is the assignment, obtained from α by assigning d to u.
- For an existential quantification:
$\left.(\exists u . w)\right|_{\sigma} ^{\alpha}=$ true if and only if for some $d \in D,\left.w\right|_{\sigma} ^{\alpha^{\prime}}=$ true, where $\alpha^{\prime}=\alpha \circ[u \leftarrow d]$.

Following are some examples of temporal expressions and their intuitive interpretations:
$u \supset \diamond v \quad$ If u is presently true, v will eventually become true,

$\square \square$ At some future instant w will become permanently true.
. $\diamond(w$ A $0 \sim w) \quad$ There will be a future instant such that w is true at that instant and false at the next.

Every future instant is followed by a later one in which w is true,
thus w is true infinitely often.

If u ever becomes true, then v is true at that instant and ever after.$\square u \vee(u \mathscr{U} v) \quad$ Either u holds continuously or it holds until an occurrence of v.
This is the weak form of the until operator that states that u will hold continuously until the first occurrence of v if v ever happens or indelini tely otherwise.
o v $3((\sim v) U u)$ I f v ever happens, its first occurrence is preceded by (or coincides with) u.

If w is true under the model $(I, \alpha$, a), wC say that $(\mathrm{I}, \alpha$, a) satisfies w or that (C, a, a) is a (satisfying) model for w. We denote this by

$$
(I, \alpha, \text { a) } \vDash \mathrm{w}
$$

A formula w is satisfiable if there exists a satisfying model for it.
A formula w is valid if it is true in every model; in this case wc write

$$
\mathcal{F} w .
$$

Somctirnns we are interested in a restricted class of models C. A formula w which is true for every model in C is said lo bc C-valid, denoted by

$$
\mathbf{c l}=w
$$

Example:
The formula $\diamond\left(w_{1}\right.$ A $\left.w_{2}\right) \supset\left(0 w_{1}\right.$ A $\left.0 w_{2}\right)$ is valid, i.e.,

$$
\vDash \diamond\left(\begin{array}{lll}
w_{1} & \mathbf{A} & w_{2}
\end{array}\right) \supset\left(\begin{array}{lll}
\mathbf{0} & w_{1} & \mathbf{A}
\end{array} w_{2}\right)
$$

It says that if there exists an instant in which both w_{1} and w_{2} are true then there exists an instant in which w_{1} is true and there exists an instant in which w_{2} is true.

Reversing the implication does not yicld a valid formula, i.e.,

$$
\mathrm{t} \#\left(\diamond w_{1} \mathrm{~A} A w_{2}\right) \supset \diamond\left(w_{1} \quad \mathbf{A} \quad w_{2}\right)
$$

For, consider an interpretation consisting of a sequence of states:

$$
\sigma: s_{0}, s_{1}, \ldots
$$

such that w_{1} is true on all odd numbered states and false elsewhere, and w_{2} is true on all the even numbered states and false on the odd ones. Then certainly both $0 w_{1}$ and $0 w_{2}$ are true on σ, hence $0 w_{1} \mathbf{A} 0 w_{2}$ is true. On the other hand, there is no state on which both w_{1} and w_{2} are true sirnultancously. Hence $\diamond\left(w_{1} \mathbf{A} w_{2}\right)$ is false. Consequently the implication is false under the interpretation σ.

2. THE PROOF SYSTEM

Having defined valid formulas, we nalurally look for a deductive system in which validity can be proved. In such a system we take some of the valid formulas as axioms and provide a set of sound inference rules by which we hope to be able to prove the other valid formulas as thcorcms. A forrnula w is a theorem of the system either if it is an axiom of the system or has a proof in which it is derived from the axioms using the inference rulcs of the system. We denote the fact that, w is a theorem is provable wilhin the system by $\vdash \mathrm{w}$.

Our interest in the temporal logic formalism is mainly motivated by the applicability of this logic to proving properties of concurrent programs. Therefore, apart from developing the general basic logical proper-tics of the operators and their interrelations, we will mostly be interested in properlies that are valid over computations of a given concurrent program P. Thus, the notion of validity our system will try to capture is that of a formula being true for all possible computations of the given program, and not necessarily over an arbitrary model. This corresponds to the concept of $\mathrm{A}(P)$-validity where $\mathrm{A}(\mathrm{P})$ is the class of all models corresponding to computations of P .

We structure our proof system into three main layers dependent on the universal validity of the theorems that can be derived in each layer. In the first layer, called the general part, we deal with the general temporal propertics of discrete linear sequences (arbitrary models). Theorems proved in that part arc valid for all sequences over arbitrary domains. They universnlly hold for arbitrary computations of all programs over such domains, as well as for sequences which cannot cven be derived as the computations of a program. In the next layer the domain part, we restrict our altention to a particular domain D and provide tools for proving validity over models all of which are interpreted over D. The third, most restrictive layer is the program part. Here we restrict our attention to a particular program P and develop tools for proving validity only over models whose sequences are legal computations of P.

In a forthcoming paper, the program dependent part is proved to be complete relative to the - general temporal theory over the data domain. We also show that its dependence on the particular : computation model studied is modular, by presenting a similar system for proving properties of CSP programs.

B. GENERAL PART

We start the general part by describing first the axiomatic system for propositional temporal logic in which we do not, admit predicates or quantification.

3. THE PROPOSITIONAL TEMPORAL SYSTEM (\square, \diamond, \circ AND u)

The proof system for the propositional part, consists of the following axioms:

AXIOMS:

$$
\begin{aligned}
& \text { A 1. } \stackrel{\sim}{ } \sim w \equiv \square \sim w \\
& \text { A 2. I- } \square\left(w_{1} \supset w_{2}\right) \supset\left(\square w_{1} \supset \square w_{2}\right) \\
& \text { A3. } \vdash \square w \supset w \\
& \text { A4. } I-\quad 0 \sim w \equiv \sim 0 w \\
& \text { A5. } \vdash O\left(w_{1} \supset w_{2}\right) \supset\left(O w_{1} \supset O w_{2}\right) \\
& \text { A6.ト■ lw } \supset \text { Ow } \\
& \text { A } 7 \text {. } \square \square \text { Ј } \square \square w
\end{aligned}
$$

$$
\begin{aligned}
& \text { A9. } \vdash\left(w_{1} \cup w_{2}\right) \equiv\left[w_{2} \mathbf{v} \quad\left(w_{1} \mathbf{A} \quad \bigcirc\left(w_{1} \cup w_{2}\right)\right)\right] \\
& \text { A10. } \vdash\left(w_{1} \bigcup w_{2}\right) \supset \diamond w_{2} \text {. }
\end{aligned}
$$

Axiom Al defines 0 as the dual of Cl ; it slates that at all times w is false if and only if it is not the case that sometimes w holds. Λ xiom A2 states that if universally w_{1} implies w_{2} then if at all times w_{1} is true then so is w_{2}. Axiom A3 establishes the present as part of the future by stating that if w is true at all future instants it must be true at the present. Axiom A4 establishes 0 as self-dual. Consequently it implies that the next instant exists and is unique, and restricts our models Lo linear sequences (no branching). Axiom $\Lambda 5$ is the analogue of A2 for the 0 operator. Axiom A6 states that the next instant is one of the future states. Axiorn A7 states that if w holds in all future instants it also holds in all instants which lic in the future of the next instant. Axiom A8 is the "computational induction" axiom; it states that if a property is inherited over one step.transitions, it is invariant, over any suffix sequence whose first state satisfies w. Axiom 19 characteri\%es the until operator by distributing its effect into what is implied for the present and what is implied for the next, instant. Λ xiom $\Lambda 10$ simply staties that " w_{1} until w_{2} " implies that w_{2} will eventually happen.

INFERENCE RULES:

```
R1. Propositional Tautology - PT
    If u}\mathrm{ is an instance of a propositional tautology then }\vdash
R2. Modus Ponens - MP
    If I- u J v and t- u then I- v
R3.
    \squareInsertion -- पl
    If I- u then 卜 - u
```

All these rules are sound. The soundness of R1 and R2 is obvious. Note that in R1 we also include temporal inslances of tautologies; wC may substitute an arbitrary temporal formula for a proposition letter in obtaining an instance. For exarnple, the forrnula $\square w \supset \square w$ is a temporal instance of the tautology $\mathrm{p} \supset \mathrm{p}$. To justify R 3 , we recall that validity of w means that w is true in all models, hence $\mathrm{Cl} w$ is also valid.

DERIVED RULES AND THEOREMS:

Before giving some theorems that can bc proved in this system, we develop several useful derived rules:

Propositional Reasoning -- PR

$$
\begin{aligned}
& t-\left(u_{1} A u_{2} \mathrm{~A} \ldots \text { A } u_{n}\right) 3 \mathrm{v} \\
& \mathrm{t}-u_{1}, \vdash u_{2}, \ldots, \text { and } \vdash u_{n} \\
& \mathrm{I}-\mathrm{V}
\end{aligned}
$$

The notation above is used Lo describe inference rules. IL has the general form

$$
\frac{\vdash \varphi_{1}, \vdash \varphi_{2}, \ldots, \vdash \varphi_{m}}{\vdash \psi}
$$

and means that if we have already proved $\varphi_{1}, \ldots, \varphi_{m}$ (the assumptions or premises of the rule), . wc are allowed by this rule to infer ψ (the conclusion or consequent of the rule).

Proof:

The rule PR follows from the propositional tautology (Rule RI)

$$
\text { 1- }\left[\left(u_{1} \mathbf{A} u_{2} \mathbf{A} \ldots A u_{n}\right) \supset v\right] \supset\left[u_{1} \supset\left(u_{2} \supset\left(\ldots\left(u_{n} \supset v\right) \ldots\right)\right)\right]
$$

by applying MI' (Rule R2) $n+1$ times.

Whenever we apply this derived rule without explicitly indicating the premise

$$
\vdash\left(\begin{array}{llll}
u_{1} & \mathrm{~A} & u_{2} & \mathrm{~A}
\end{array} \ldots \mathrm{~A} u_{n}\right) \supset \mathrm{v},
$$

it means that the premise is an instance of a propositional tautology．
O Insertion－ 01

$$
\frac{t-U}{\text { tou }}
$$

Proof：

1．t－u
given
2．トロ
by 01
3．$\vdash \mathrm{ou}$
by A6 and MP

The first theorem that we derive in the system is：

T1．トw つ $\diamond w$

Proof：

1．$\vdash(\square \sim w) \supset-w \quad$ by A3
2． $\mathbf{t - w} \supset(\sim \square \sim w)$
by PR

3．t－w 〕 ow
by $\mathbf{A l}$ and PR

The theorem implies（by MP）the derived rule
\diamond Insertion－ 01

$$
\frac{\vdash u}{\vdash o u}
$$

T2．トOw כ Ow
Proof：
1．$卜(\square \sim w) 3$（ $\mathrm{O}-\mathrm{w}$ ）

$$
2 . \quad \vdash(\sim O \sim w) \supset(\sim \square \sim w)
$$

The following threc rules (and a similar rule for the until operator presented later) show that all the temporal operators are monotonic in the sense that an argument may be replaced by a weaker statement yielding a weaker expression.

Rules

(a) $\frac{\mathrm{t}-\mathrm{u} \supset \mathrm{V}}{\vdash \square u 3 \square v}$
(b) $\frac{\vdash u \equiv v}{\vdash \square u \equiv \square v}$

Proof of (a):

4. $\vdash \square u \supset \square v$
by 2,3 and MP

Rule (b) then follows by propositional reasoning by using the tautology

$$
[(U \supset \text { v }) \text { A }(v \supset u)] \equiv(u \equiv v)
$$

00 Rules
(a) $\frac{t-u \quad v}{\text { トо и } \supset \text { ov }}$
(b) $\frac{\vdash u \equiv v}{\vdash \diamond u \equiv \mathrm{o}^{\circ} \mathrm{v}}$

Proof of (a):

1. $\mathbf{t}-\mathbf{u}$ コ v given
2. t- - v 3 - u by PR
3. $\vdash \square \sim v \supset \mathbf{C I}-\mathbf{u}$ by ICI
4. $\vdash \sim \diamond v \supset \sim \diamond u \quad$ by Al and PR
5. $\vdash \diamond u \supset 0$ v
by PR

Rule (b) then follows by propositional reasoning.

```
0 0 Rules
```

（a）$\frac{\vdash u \supset v}{\vdash \text { ou } 3 \text { ov }}$
（b）$\frac{t-u \equiv v}{\vdash o u \equiv o v}$

Proof of（a）：
1．$\vdash u \supset v$
given
2．t－$O(u \supset v)$
by 01
3．$\vdash \mathrm{O} u \supset \circ \mathrm{v}$
by A5 and MP

Rule（b）follows by propositional reasoning．」

$$
\begin{aligned}
& \text { Computational Induction Rule - CI }
\end{aligned}
$$

Proof：

1． $\mathrm{t}-\mathrm{u} \supset \mathrm{O} u$ given
2． 1 口令 \supset ○ u ）by $\square I$
3．$\vdash \square(u \supset \bigcirc u) \supset(u \supset \square u) \quad$ by $\Lambda 8$
4．$\vdash u \supset \square u$
by 2,3 and MP

Derived Computational Induction Rule－－DCI

$$
\frac{\vdash u \supset(v \wedge \bigcirc u)}{\vdash u \supset \square v}
$$

Proof：
1．$\vdash u \supset(v \wedge \bigcirc u)$
given
2．$\vdash u \supset \mathrm{O} u$
by PR
3．$\vdash u \supset \square u$
by CI
4． $\mathrm{t}-\mathrm{u} \supset \mathrm{v}$
by 1 and PR
5． $\mathrm{t}-\mathrm{C} \mathrm{u} \square v$
by $\square \square$

The following two theorems show that the Cl and 0 operators are both idempotent:

T3. ロ・

Proof:

1. $\vdash \square \square w \supset \square w$ by A3
2. $\vdash \square w \supset \bigcirc \square w$ by A7
3. $\vdash \square w \supset \square \square w$ by CI
 by 1,3 and $P R$

T4. $\mathbf{I}-\mathbf{o} \mathbf{w} \equiv \mathbf{o} \mathbf{o}$

Proof:

1. $\vdash \sim \diamond w \equiv \square \sim w$
by Al
2. $\vdash \square \sim w \equiv \mathbf{0} \mathbf{0}-\mathbf{w}$ by T3
.. $\vdash \square \sim{ }^{\circ} \equiv$. by 1 and $\mathrm{El}[$
3. I-EI-ow $\equiv \sim \diamond \diamond w$
by Al
4. $\vdash \sim \diamond w \equiv \sim \diamond \diamond w$ by 1, 2, 3, 4 and PR
5. $\vdash \diamond w \equiv \diamond \diamond w$
by PR

Because of these last two theorems we can collapse any string of consecutive identical modalities such as $\square \ldots \square$ lor $0 \ldots 0$ into a single modality of the same type.

The following theorem establishes that \square is the dual of 0 . Nolc that $\Lambda 1$ states that 0 is the dual of Cl , i.e., $0 \mathrm{w} \equiv \sim \square \sim w$.

T5. $卜(\mathrm{O}-\mathrm{w}) \equiv(\sim \square w)$
Proof:

$$
\text { 1. } \vdash(\sim \sim w) \equiv w
$$

2．$\vdash(\square \sim \sim w) \equiv \square$ •
by $]$
Cl
3．$\vdash(\sim \diamond \sim w) \equiv \square$ •
by Al and PR
4． $4 \oplus(\diamond \sim w) \equiv(\sim \square+(0)$ by PR

Proof：
1． $\mathrm{t}-\left(w_{1} \supset w_{2}\right) \equiv\left(\sim w_{2} \supset \sim w_{1}\right)$ by PT
2．\square 嗌 $\left.\dagger \supset w_{2}\right) \equiv \square\left(\sim w_{2} \supset \sim w_{1}\right)$ by ICl
3．$\left.-\square \cap \sim w_{2} \supset \sim w_{1}\right) \supset\left(\square \sim w_{2} \supset \square \sim w_{1}\right)$
by $\mathbf{A 2}$
4．$\vdash\left(\square \sim w_{2} \supset \quad \square \sim w_{1}\right) \equiv\left(\sim \diamond w_{2} \supset \sim \diamond w_{1}\right)$ by Al and PR
5．$\vdash\left(\sim \diamond w_{2} \sim \sim \diamond w_{1}\right) \equiv\left(\diamond w_{1} \quad \supset \diamond w_{2}\right)$ by PT
6．ト口角哩 $\left.\supset w_{2}\right) \supset\left(\diamond w_{1} \supset \diamond w_{2}\right)$

The following theorems show the interaction between the temporal and the boolean operators．

T7．I－ \square $\left(\mathrm{wl} \mathrm{A} w_{2}\right) \equiv\left(\square w_{1 \mathrm{~A}} \square w_{2}\right)$

Proof：

	$\vdash\left(w_{1} \wedge w_{2}\right) \supset w_{1}$	by PT
2.		by ICI
3	$\vdash\left(w_{1} \wedge w_{2}\right) \supset w_{2}$	by PT
4.		by ${ }^{\text {a }}$ IEJ
5.	$\vdash \square\left(\mathrm{wlA} w_{2}\right) \supset\left(\square w_{1} \mathrm{~A} \square \mathrm{w} 2\right)$	by 2， 4 and PR
6.	$\vdash w_{1} \supset\left(\begin{array}{lll}w_{2} & \supset w_{1} \mathrm{~A} & w_{2}\end{array}\right)$	by PT
7.	リロ	by $\square \square$
d	$\vdash \square\left(w_{2} \supset\left(w_{1} \mathrm{~A} w_{2}\right)\right) \supset\left(\square w_{2} \supset \square\left(w_{1} \mathrm{~A} w_{2}\right)\right)$	by A2
	$\vdash \square w_{1} \supset\left(\square w_{2} \supset \square\left(\mathrm{wl}\right.\right.$ A $\left.w_{2}\right)$ ）	by 7， 8 and PR
10.	$\vdash\left(\square w_{1} \mathrm{~A} \square w_{2}\right) \supset \square \quad\left(\mathrm{wl} \mathrm{A} w_{2}\right)$	by PR

T8．$\vdash \diamond\left(w_{1} \vee w_{2}\right) \equiv\left(\diamond w_{1} \vee \diamond w_{2}\right)$
Proof：

$$
\begin{aligned}
& \text { 1. } \vdash \square \sim\left(w_{1} \vee w_{2}\right) \equiv \square \quad\left(-\mathrm{wl} \mathrm{~A} \sim w_{2}\right) \quad \text { by PT and } \mathrm{Cl} \square \\
& \text { 2. } \vdash \square\left(\sim w_{1} \mathrm{~A} \sim w_{2}\right) \equiv\left(\square \sim w_{1} \text { A } \square \sim w_{2}\right) \quad \text { by T7 } \\
& \text { 3. } \vdash\left(\square \sim w_{1} A \square \sim w_{2}\right) \equiv \sim\left(\sim \square \sim w_{1} \vee \sim \square \sim w_{2}\right) \quad \text { by PR } \\
& \text { 4. } \vdash \square \sim\left(w_{1} \vee w_{2}\right) \equiv \sim\left(\sim \square \sim w_{1} \nsim \sim \square \sim w_{2}\right) \quad \text { by } 1,2,3 \text { and PR } \\
& \text { 5. } \vdash \sim \diamond\left(w_{1} . \quad w_{2}\right) \equiv \sim\left(\diamond w_{1} \vee \quad \diamond w_{2}\right) \\
& \text { by } \Lambda 1 \text { and } P R \\
& \text { 6. t- } \diamond\left(w_{1} \vee w_{2}\right) \equiv\left(0 w_{1} \vee \diamond w_{2}\right) \quad \text { by PR }
\end{aligned}
$$

Note that because of the universal character of Cl it can be distributed over A（Theorem T7）， while 0 ，which is of existential character can be distributed over V（Theorem T8）．Next，wc show that interchanging a temporal operator with a boolean operator of the opposite character yields implication in one direction only；the implication is not necessarily true in the other direction．

T9．（ $\left.\square w_{1} \star \square \mathrm{~W}\right) \supset \square\left(\mathrm{W} \mid v w_{2}\right)$

Proof：

$$
\begin{aligned}
& \text { 1. } \left.\vdash \square w_{1} \supset \square \text { 色回 } w_{2}\right)
\end{aligned}
$$

T10． $\mathrm{t}-\diamond\left(w_{1} \mathrm{~A} \quad w_{2}\right) \supset\left(\diamond w_{1} \mathrm{~A} \diamond w_{2}\right)$
Proof：
$\left.\begin{array}{lll}\text { 1．} & \mathrm{t}-\diamond\left(w_{1} \mathrm{~A}\right. & \left.w_{2}\right) 3 \diamond w_{1} \\ \text { 2．} & \vdash \diamond\left(w_{1} \mathrm{~A}\right. & \left.w_{2}\right) \supset \diamond w_{2} \\ \text { 3．} & \vdash \diamond\left(w_{1} \mathrm{~A}\right. & \left.w_{2}\right) \supset\left(\diamond w_{1} \mathrm{~A}\right.\end{array} w_{2}\right) \quad$ by PT and 00

T11．$卜\left(\begin{array}{lll}\square & w_{1} \mathrm{~A} & 0 \\ w_{2}\end{array}\right) \supset \diamond\left(w_{1} \mathrm{~A} \quad w_{2}\right)$
Proof：
1．I－$w_{1} \supset\left(w_{2} \supset\left(w_{1} \wedge w_{2}\right)\right) \quad$ by PT
2．$\vdash \square w_{1} \supset \square\left(w_{2} \supset\left(w_{1} \mathrm{~A} w_{2}\right)\right) \quad$ by $\square \square$
3．ト $\square \quad\left(\mathrm{w} 2 \supset\left(w_{1} \mathrm{~A} w_{2}\right)\right) \supset\left(\diamond w_{2} \supset \diamond\left(w_{1} \mathrm{~A} w_{2}\right)\right) \quad$ by T6
4．$\vdash \square w_{1} \supset\left(\diamond w_{2} \supset \diamond\left(w_{1} \mathrm{~A} w_{2}\right)\right) \quad$ by 2,3 and PR
5．$\vdash\left(\square w_{1} \mathrm{~A} \quad \diamond w_{2}\right) \supset \diamond\left(w_{1} \mathrm{~A} \quad w_{2}\right)$ by PR

Next we consider the commutativity properties of the next operator 0 ．In view of $\mathbf{\Lambda 4}, 0$ is self－dual and can be considered Lo be of both existential and universal character．Indeed it cornmutes with cvery other boolean or temporal operator as well as with quantifiers．
$' 1$＇12．$卜 \mathrm{O}\left(w_{1} \mathrm{~A} w_{2}\right) \equiv\left(\mathrm{O} w_{1}\right.$ А $\left.0 w_{2}\right)$
Proof：

1．$\vdash w_{1} 3\left(w_{2} \supset\left(w_{1} \mathrm{~A} w_{2}\right)\right)$	by PT
2． $\mathrm{t}-\mathrm{O} w_{1} \supset \mathrm{O}\left(w_{2} \supset\left(w_{1} \mathrm{~A} w_{2}\right)\right)$	b y 00
3．$\vdash\left(O\left(w_{2} \supset\left(w_{1} A w_{2}\right)\right) \supset\left(0 w_{2} \supset \mathrm{O}\left(w_{1} A w_{2}\right)\right)\right.$	by A5
4．$\vdash \mathrm{O} w_{1} \mathrm{~A}\left(\mathrm{O} w_{2} \supset \mathrm{O}\left(w_{1} \mathrm{~A} w_{2}\right)\right)$	by 2,3 and PR
5．$\vdash\left(\bigcirc w_{1} \mathrm{~A} O w_{2}\right) \supset \bigcirc\left(w_{1} \mathrm{~A} w_{2}\right)$	by PR
6．$\vdash\left(w_{1} \wedge w_{2}\right) \supset w_{1}$	by PT
7．$\vdash O\left(w_{1} \mathrm{~A} w_{2}\right) \supset O w_{1}$	b y 00
8．$\vdash\left(w_{1} \wedge w_{2}\right) \supset w_{2}$	by PT
9．$\vdash \mathrm{O}\left(w_{1} \mathrm{~A} w_{2}\right) \supset \mathrm{O} w_{2}$	b y 00
10．$\vdash O\left(w_{1} A w_{2}\right) \supset\left(O w_{1} A \bigcirc w_{2}\right)$	by 7， 9 and PR
11．$\vdash \mathrm{O}\left(w_{1} \mathrm{~A} \quad w_{2}\right) \equiv\left(\mathrm{O} w_{1} \mathrm{~A} \quad \mathrm{O} w_{2}\right)$	5， 10 and PR

T13． $\mathrm{t}-\mathrm{O}\left(w_{1} \mathrm{v} w_{2}\right) \equiv\left(\mathrm{O} w_{1}\right.$ v $\left.\mathrm{O} w_{2}\right)$

Proof：
1．$\vdash \mathrm{O}\left(\sim w_{1} \mathrm{~A} \sim w_{2}\right) \equiv\left[\left(\mathrm{O} \sim w_{1}\right)\right.$ A $\left.\left(\mathrm{O} \sim w_{2}\right)\right]$
by T 12
2．$\vdash \mathrm{O}\left(\sim w_{1} \mathrm{~A} \sim w_{2}\right) \equiv\left[\left(\sim \mathrm{O} w_{1}\right) \mathrm{A}\left(\sim 0 w_{2}\right)\right]$
by A4 and PR
3．$\vdash \bigcirc \sim \sim\left(w_{1} \vee w_{2}\right) \equiv\left[\left(\sim O w_{1}\right) A\left(\sim O w_{2}\right)\right]$ by 00 and PR

4．$\vdash \sim \mathrm{O}\left(w_{1} \vee w_{2}\right) \equiv \sim\left(\mathrm{O} w_{1} \vee \mathrm{O} w_{2}\right)$
by A4 and PR
5．$\vdash \mathrm{O}\left(w_{1} \vee w_{2}\right) \equiv\left(O w_{1} \vee O w_{2}\right)$
by PR

T14．t－ $\mathrm{O}\left(w_{1} \supset w_{2}\right) \equiv\left(\begin{array}{cc}0 & \left.w_{1} \supset \bigcirc w_{2}\right)\end{array}\right.$
Proof：
1．$\vdash \mathrm{O}\left(\sim w_{1} \vee w_{2}\right) \equiv\left(0 \sim w_{1}\right) \vee\left(O w_{2}\right)$
2． $\mathrm{I}-\mathrm{O}\left(\sim w_{1}\right.$ v $\left.w_{2}\right) \equiv\left(\sim \mathrm{O} w_{1}\right)$ v $\quad\left(\mathrm{O} w_{2}\right)$
by A4 and PR
3． $\mathrm{I}-\mathrm{O}\left(w_{1} \supset w_{2}\right) \equiv\left(O w_{1} \supset \bigcirc w_{2}\right)$
by 00 and PR

T15．$+\mathrm{O}\left(w_{1} \equiv w_{2}\right) \equiv\left(O w_{1} \equiv 0 w_{2}\right)$
Proof：

$$
\begin{aligned}
& \text { by 7’14 and PR } \\
& \text { 2. } 1 \mathrm{O}\left[\left(w_{1} \supset w_{2}\right) \mathrm{A}\left(w_{2} \supset w_{1}\right)\right] \equiv\left[\left(\mathrm{O} w_{1} \supset \mathrm{O} w_{2}\right) \mathrm{A}\left(\mathrm{O} w_{2} \supset \underset{\text { by T12 and }}{\mathrm{O}} w_{1}\right)\right] \text { PR } \\
& \text { 3. } \vdash O\left(w_{1} \equiv w_{2}\right) \equiv\left(O w_{1} \equiv O w_{2}\right)
\end{aligned}
$$

The previous theorems show that the next operator， 0 ，commutes with cach of the boolean operators．The following two theorems establish commutation of 0 with Lhe temporal operators Cl and 0.

T16．ト○ロ $w \equiv \square$ ow
Proof：
1．I－ow $コ$（w ว $\mathrm{O} w)$ by P＇T
 by $\square \square$
ト口冒 $\quad \supset \mathrm{O} w) \supset \mathrm{O} \square(w) \mathrm{O} w)$

by A7
4．出by A8 and O 0
5．$\quad 4 \oplus(w) \square$（1） $\mathrm{O}(\mathrm{O} w \supset \mathrm{O} \square w)$
6．$\vdash \square \bigcirc w \supset(O w \supset \bigcirc \square w)$ by $2,3,4,5$ and PR
by A5
by A3
by 6,7 and PR
by A7 and 00
by CI
by A3 and 00
by $\square \square$
by 10,12 and $P R$
by 8,13 and PR

T17．ト○ $\diamond w \equiv \diamond \bigcirc w$

Proof：

1．ト○ロ～w 三 $00-\mathrm{w}$
by T16
2． $\mathrm{I}--0$ ow $\equiv \sim \diamond$ Ow
by Al，A4，$\square \mathrm{Cl}, 00$ and PR
3．I－oow \equiv oow
by PR

T18．$\vdash \square \diamond \square w \equiv \diamond \square w$
Proof：

	by A3
2． t －－w w ouw	by A7
，3．$\vdash \diamond \square w \supset \diamond \bigcirc \square w$	b y 00
4．$\vdash \diamond \bigcirc \square w 3 \bigcirc \diamond \square w$	and PR

6．$\vdash \diamond \square w \supset \square \diamond \square w$
7．$\vdash \square \diamond \square w \equiv \diamond \square w$

T19．ト $\diamond \square \diamond w \equiv \square \quad$ Ow

Proof：By duality from T18．

These last two theorems together with T3 and T4（ $\square \mathrm{Cl} w \equiv \square \quad$ l？und $\diamond \diamond w \equiv$ Ow，respec－ tively）give us a normal prefix form for a string of the form

$$
m_{1} m_{2} \ldots m_{k}(w)
$$

where each m_{i} is either El or 0 ．We use first T 2 and T 3 to collapse any substring of the form Cl ＂ and \diamond^{n} to a single \square or 0 ．What remains must be a string of alternating \square and 0 ．If it contains more than one operator then it is equivalent by T18 and T19 to a string with just two operators－－ the last two．Consequently any string such as the above must be equivalent to one of the following four possibilities：
$\square \bullet \bullet \bullet w, \square$ 10w or $\quad \diamond \square w$ ．

In the more general case that the string also contains some occurrences of the next－time operator 0，we may use the commutation of 0 with both Cl and 0 to obtain Lhc four normal forms：

$$
\mathrm{O}^{k} \square w, \bigcirc^{k} \diamond w, \mathrm{O}^{k} \square \diamond w \mathrm{a} \quad \mathrm{n} \quad \mathrm{~d} \quad \mathrm{O}^{k} \diamond \square w
$$

for some $k \geq 0$ ．

T20．t－

```
                lw \equiv(w A ○ロw)
```

－Proof：
1．$\vdash \square w 3 \mathrm{w}$ by A3
2．$\quad t-\bullet \mathrm{W} \supset 00 \mathrm{~W}$ by A7
3．ト u）$\supset(\mathrm{w} A \bigcirc \square w)$by 1,2 and PR
4．t－oclw $\supset \bigcirc(w A \bigcirc \square w)$ by 00
5．$\vdash(w \mathrm{~A} \quad \bigcirc \square w) \supset \bigcirc(w \mathrm{~A} \quad \bigcirc \square w)$ by PR
6．$\vdash(\mathrm{w} A \circ \square w) \supset \square(\mathrm{wA} \circ \square w)$
by CI
7．$\square(w A O \square w) \square \square$ w
by $\mathrm{P}^{\prime} \mathrm{I}$ and $\square \mathrm{Cl}$
8．$\vdash(w A \bigcirc \square w) \supset \square \mathrm{w}$
by 6,7 and PR
9．$\vdash \square w \equiv\left(\begin{array}{ll}w & \text { A } \bigcirc \square w) ~\end{array}\right.$
by 3,8 and PR

T21．$卜 \mathrm{Ow} \equiv(\mathrm{w}$ v $\mathrm{O} \diamond w)$
Proof：
1．$\vdash \square \sim w \equiv(\sim w$ A $○ \square \sim w)$
by T20
2．$\vdash \sim \diamond w \equiv \sim(w \vee-00-\mathrm{W})$
3．ト～Oロ～w 300 w
4．$\quad \mid-\diamond w \equiv(w \vee \bigcirc \diamond w)$
by $\Lambda 1$ and $P R$
by A4，Al， 00 and PR
by 2,3 and PR

Theorerns T20 and T21 give a fixpoint characterization of the \square and 0 operators respectively． They each give an equation using only boolean operators，the formula w and the operator 0 ．The solutions to these equations are $\mathrm{Cl} w$ and $0 w$ respectively．This shows that in some sense 0 is the most basic operator since the other operators may be defined by means of fixpoint equations using 0 ．Axiorn A9 similarly characterizes the U operator by a Gxpoint equation．

7＇22．$\vdash(w A \diamond \sim w) \supset \diamond(w A \bigcirc \sim w)$ ．

This is the dual of the＂computational induction＂axiom $\Lambda 8$ ．It states that if w is true now and is false sometirne in the future，then there exists some instant such that w is true at that instant and false at the next．

Proof：

$$
\begin{aligned}
& \text { 2. } \forall \sim(w) \square \bullet \supset \sim \square(w \supset O w) \\
& \text { by PR } \\
& \text { 3. } \vdash(w A \sim \square w) \supset \diamond \sim(w \supset O w) \quad \text { by T5 and PR } \\
& \text { 4. } \mathrm{t}-\diamond \sim(w \supset \mathrm{O} w) \equiv \diamond(w \mathrm{~A} \sim \mathrm{O} w) \quad \text { by } \mathrm{P} \mathrm{~T} \text { and } 00 \\
& \text { 5. } \vdash(\mathrm{w} \mathrm{~A} \sim \square w) \supset \diamond(w \mathrm{~A} \sim \mathrm{O} w) \quad \text { by 3, } 4 \text { and } \mathrm{PR} \\
& \text { 6. I- }(w \mathrm{~A} \diamond \sim w) \supset \diamond(w \mathrm{~A} \bigcirc \sim w)
\end{aligned}
$$

The following derived rules correspond to proof rules exi sting in most axiomatic verification systems：

Consequence Rules

$\square \mathrm{Q}$ rule	\diamond ¢ 7011	OQ rule
1．$u_{1} 3 u_{2}$	$\vdash u_{1} \supset u_{2}$	1．$u_{1} 3 u_{2}$
$\vdash u_{2}$ כ 相	$\vdash u_{2} \supset \diamond v_{1}$	t．$u_{2} \supset \mathbf{O} v_{1}$
t．$v_{1} \supset v_{2}$	$\vdash v_{1} 3 v_{2}$	$\vdash v_{1} 3 v_{2}$
t．$u_{1} \supset \square v_{2}$	$\vdash u_{1} \supset \diamond v_{2}$	1．$u_{1} \supset \bigcirc v_{2}$

Proof of $\diamond Q$ ：
1．$\vdash u_{1} \supset u_{2}$
given
2．$\vdash u_{2} 30 v_{1}$ given
3 t－$v_{1} \supset v_{2}$ given

4．$\vdash \diamond v_{1} \supset \diamond v_{2} \quad$ by 3 and $0 \quad 0$
5．$\vdash u_{1} \supset \diamond v_{2} \quad$ by $t, 2,4$ and PR

The $\square \mathrm{Q}$ and OQ rules are proved similarly by the $\square \mathrm{Cl}$－rule and 0 O－rule，respectively．

Concatenation Rules	
	\diamond C rule
$\begin{array}{ll} \vdash u & \supset \square v \\ \vdash v & \supset \square \end{array}$	$\begin{aligned} & \vdash u \supset \square \psi \\ & \bullet \bullet \bullet \supset \diamond w \end{aligned}$
＊u ロ	\vdash 吅

Proof of UC：
1．\vdash u $3 \square v$ given
2．$\vdash v \supset \square w \quad$ gi vcn
3．$\vdash \square v 3 \square \square w$ by 2 and $\square \mathrm{Cl}$

4．$\vdash \square v \supset \square$ • by T3 and PR
5．$\vdash u \supset \square w \quad$ by 1,4 and PR

The OC rule is proved similarly by the 0 O－rule．Note that the corresponding OC rule docs not hold．

```
Right Until Introduction -- RUI
1-w כ \(\diamond v\)
I- w כ [v v ( \(u\) A O \(w\) ) \(]\)
    \(\vdash \mathrm{w} \supset(u \Downarrow v)\)
```

Proof：
1． $\mathrm{t}-\mathrm{w} 3 \diamond v$ given
2．ト w כ［v v（u A 0 w）］given
3．I－［v v（u A O（uひvv））］כ $(u \| v)$ by A9 and PR
4．$\vdash \sim(u U v) \supset[\sim v$ A $\quad(\sim u \vee \quad 0 \quad \sim(u \bigcup v v))] \quad$ by A4 and PR
5．ト［w A $\sim(u\lfloor v)] \supset[\sim v$ A O w A O $\sim(u \bigcup v)]$ by 2， 4 and PR
6．$\left.卜\left[\begin{array}{llll}w & \wedge \sim(u \Downarrow v)\end{array} \supset\left[\begin{array}{lll}\sim v & \mathrm{~A} & \mathrm{O}(w \mathrm{~A} \\ \sim\end{array}\right)(u \Downarrow v)\right)\right]$ by T12 and PR
7．t－$[w \mathrm{~A} \sim(u \sharp v)] \supset \square \sim v \quad$ by DCI， taking u to be $\mathrm{w} \mathrm{A} \sim(u\lfloor v)$ and v to be $\sim v$

8．$\vdash[\mathrm{w} A \sim(u \cup v)] \supset \sim \square \sim v \quad$ by $1, \mathrm{~T} 5$ and PR
9．$\vdash w \supset(u\lfloor v)$ by 7,8 and PR

The RUI rule，together with axioms $\Lambda 9$ and A10，can bc viewed as a characterization of the $u U v$ construct as a maximal solution of the two implications：
（＊）$\left\{\begin{array}{l}x \supset[v \vee(u A O x)] \\ x \supset \diamond v\end{array}\right.$
The ordering by which maximality is defined is the ordering induced by defining false \sqsubset true．
Axioms A9 and A1 0 imply that

$$
\begin{aligned}
& (u \Downarrow v) \supset[v \vee(u A O \quad u \cup v)] \\
& (u \Downarrow v) \supset 0 \text { v }
\end{aligned}
$$

Thus they show $\mathrm{x}=u \bigcup v$ to be a solution of the implications（ t ）．The rule RUI states that any other solution $\mathrm{x}=\mathrm{w}$ must satisfy $w \supset(u \bigcup \mid v)$ which implies that whenever w is true so is $u \Downarrow v$ ． Interpreted in our ordering this is representable as $w \sqsubseteq(u \| v)$ ．Thus $\mathrm{x}=u \| v$ is the maximal solution to（＊）．

An intuitive explanation as to why $u \dot{u} v$ is indeed the maximal solution of $(*)$ can be given as follows：

Let w be any proposition satisfying (t) everywhere in a sequence $\sigma=s_{0}, s_{1}$, ... Wc note that (*) may have many solutions. In particular $x=$ false is a trivial solution. However an obvious property of every solution w is that if w is true in some state s_{i}, this state must satisfy u and the next state s_{i+1} must also satisfy w unless s_{i} satisfies v . Thus once w is truc it can stop being true only in a v-state. In view of the second implication such a v-state is guaranteed. Consequently whenever w is true in a state, $u \| v$ must also be true in that state.

Left Until Introduction - L LUI

$$
\frac{\vdash[v \vee(u A O w)] \supset \mathrm{w}}{\mathrm{I}-(u \| v) \supset \mathrm{w}}
$$

Proof:

1. $\vdash[\mathrm{v} \mathrm{v}(\mathrm{u}$ A $\mathrm{O} w)]$ Ј w	given	
2. \vdash uuv $כ$ [v v (u A $O(u \backslash v)$)	by A9 and PR	
	by $1, \mathrm{~A} 4$ and PR	
4. $\vdash[u \\| v \mathrm{~A} \sim w] \supset[\sim v \mathrm{~A} u \mathrm{~A} O(u \mu v) \mathrm{A} o-w]$	by 2, 3 and PR	
5. $\vdash[[u \backslash v \mathrm{~A} \sim w] \supset[\mathrm{O}(u \\| v)$ ' A o-w $]$	by PR	
6. $\vdash[u \downarrow v \mathrm{~A} \sim w] \supset \mathrm{O}(u \cup v \mathrm{~A} \sim w)$	by T12 and PR	
7. $\mathrm{I}-[u\lfloor v \mathrm{~A} \sim w] \supset \square(u \bigcup v \mathrm{~A} \sim w)$	by CI	
8. $\vdash[u\lfloor v \mathrm{~A} \sim w] \supset \sim v$	by 3 and PR	
9. $-\square($ uuv $\mathrm{A} \sim w) \supset \square \sim v$	by $\square \square$	
10. $\vdash[u \downarrow v A \sim w] \supset \sim \Delta v$	by $7,9, \mathrm{Al}$ and PR	
11. $\vdash[u \backslash v \wedge \sim w] \supset \diamond v$	by 110 and PR	
12. $\vdash u \\| v \supset \mathrm{w}$	by 10,11 and PR	

The LUI rule, together with axiorn $\Lambda 9$, can be vicwed as a characterization of the $u \mathcal{U} v$ construct as the minimal solution of lhe implication:

$$
(* *)[\vee \vee(u \quad A \quad O x)] \supset x
$$

Axiom A9 implies that $\mathrm{x}=u \| v$ is a solution of $(* *)$. The LUI rule states that any other solution of $(* *), \mathrm{x}=\mathrm{w}$, is implied by $u \ v$. This means that whenever $u U v$ is true so is w, which is interpretable in our ordering as $u\lfloor v \sqsubseteq \mathrm{w}$. Thus $u \| v$ is the minimal of all possible solutions.

Note that $(* *)$ posscsscs many solutions. [n particular $\mathrm{x}=$ true is a trivial solution. However, the minimal solution is unique and is given by $u \| v$.

UU Rules
$\vdash u_{1} \supset u_{2}$
$\vdash u_{1} \equiv u_{2}$
（a）$\frac{\vdash v_{1} \supset v_{2}}{t-u_{1} U v_{1} \supset u_{2} U v_{2}}$
（b）$\vdash v_{1} \equiv v_{2}$
$\vdash u_{1} U v_{1} \equiv u_{2} U v_{2}$

Proof of（a）：
1．$\vdash u_{1} \supset u_{2}$ given
2．$\vdash v_{1} \supset v_{2}$ given
3．$\vdash\left[v_{2}\right.$ v $\left.\left(u_{2} \mathrm{~A} \quad \mathrm{O}\left(u_{2} \chi v_{2}\right)\right)\right] 3 \quad u_{2} \downarrow v_{2} \quad$ by A9
4．$\vdash\left[v_{1}\right.$ v $\left.\left(u_{1} \mathrm{~A} O\left(u_{2} \mathcal{U} v_{2}\right)\right)\right] \supset u_{2} \mathcal{U} v_{2} \quad$ by $1,2,3$ and PR
5．$\vdash u_{1} ひ v_{1} \supset u_{2} ひ v_{2}$ by LUI

The proof of part（b）follows from（a）by propositional reasoning and the symmetric application of（a）． \pm

This rule together with the $\square, 00$ and 00 rules show that all the temporal operators are monotonic in all their arguments．

T23．$\stackrel{\vdash}{ }(\sim w) U w \equiv \mathrm{O} w$
Proof：
1．$\vdash(\sim w) \cup \mathfrak{U} w \supset \mathbf{w}$ by A10
2．$\vdash \diamond w \supset[w$ v $O \diamond w]$ by T21 and PR
3．$\vdash \mathrm{ow} \supset\left[\begin{array}{lll}\mathrm{w} & \mathrm{v} & (\sim w \mathrm{~A} \\ \mathrm{O} & \mathrm{O} & \diamond w)\end{array}\right]$ by PR
4．$\vdash \diamond w \supset$ ow by PT
5．ト o w ว $(\sim w)$ Uw by 3， 4 and RUI
6．$\vdash(\sim w) \mathbb{U} w \equiv \mathrm{OW}$

T24．1 $\left(\square w_{1} \AA \diamond w_{2}\right) \supset\left(w_{1} \cup w_{2}\right)$
Proof：
1．$\vdash\left[\begin{array}{lll}\square w_{1} & \mathbf{A} & \diamond w_{2}\end{array}\right] \supset \diamond w_{2}$
by PR

> 2. $\vdash\left[\square w_{1} \mathrm{~A} \diamond w_{2}\right] \supset\left[\left(w_{1} \mathrm{~A} \bigcirc \square w_{1}\right) \wedge\left(w_{2} \vee \bigcirc \diamond w_{2}\right)\right]$ by PR, T20 and T21
> 3. $\vdash\left(\square w_{1} \mathrm{~A} \diamond w_{2}\right) \supset\left[w_{2} \vee\left(w_{1} \mathrm{~A} \bigcirc \square w_{1} \mathrm{~A} \bigcirc \diamond w_{2}\right)\right] \quad$ by PR
> 4. $\left.\vdash\left(\square w_{1} A \diamond w_{2}\right) \supset\left[w_{2} \vee\left(w_{1} \wedge \bigcirc\left(\square w_{1} \wedge \diamond w_{2}\right)\right)\right]\right] \quad$ by T12 and PR
> 5. I- $\left[\square w_{1} \mathbf{A} \diamond w_{2}\right] \supset w_{1} \cup w_{2} \quad$ by 1,4 and RUI, taking w to be $\mathrm{Cl} w_{1} \mathrm{~A} 0 w_{2}$, u to be w_{1}, and v to be w_{2}

T25. t- $\left(w_{1} \mathcal{U} w_{2}\right) \mathbb{U} w_{2} \equiv w_{1} \mathbb{U} w_{2}$

Proof:

$$
\begin{array}{lll}
\text { 1. } & \text { I - }\left(w_{1} \cup w_{2}\right) \cup w_{2} \supset\left[\begin{array}{ll}
w_{2} \vee w_{1} \cup w_{2}
\end{array}\right] & \text { by A9 and PR } \\
\text { 2. } & \text { I- } w_{2} \supset w_{1} \cup w_{2} & \text { by A9 and PR } \\
\text { 3. } & \vdash\left(w_{1} \cup w_{2}\right) \cup w_{2} \supset w_{1} \cup w_{2} & \text { by } 1,2 \text { and PR } \\
\text { 4. } & \vdash w_{1} \cup w_{2} \supset \diamond w_{2} & \text { by A10 } \\
\text { 5. } & \vdash w_{1} \cup w_{2} \supset\left[w_{2} \vee\left(w_{1} A \quad O\left(w_{1} \cup w_{2}\right)\right)\right] & \text { by A9 and PR } \\
\text { 6. } & \vdash w_{1} \cup w_{2} \supset\left[w _ { 2 } \vee \left(w_{1} \cup w_{2} A\right.\right. & \left.\left.O\left(w_{1} \cup w_{2}\right)\right)\right] \\
\text { 7. } & \vdash w_{1} \cup w_{2} \supset\left(w_{1} \cup w_{2}\right) \cup w_{2} & \text { by } 4,6 \text { and RUI } \\
\text { 8. } & \vdash\left(w_{1} \cup w_{2}\right) \cup w_{2} \equiv w_{1} \cup w_{2} & \text { by } 3,7 \text { and PR }
\end{array}
$$

T26.I- $w_{1} U w_{2} \equiv w_{1} U\left(w_{1} U w_{2}\right)$

Proof:

1. I- $w_{2} \supset w_{1} \cup w_{2} \quad$ by A9 and PR
2. I- $w_{1} \mathcal{U} w_{2} \mathbf{3} \quad w_{1} \mathcal{U}\left(w_{1} \mathcal{U} w_{2}\right) \quad$ by UU

及. $\quad I-w_{1} \mathcal{U}\left(w_{1} U w_{2}\right) \supset\left[w_{1} \mathcal{U} w_{2} \vee\left[w_{1} \mathrm{~A} O\left(w_{1} \mathbb{U}\left(w_{1} \mathbb{U} w_{2}\right)\right)\right]\right] \quad$ by A9 and PR
4. I- $w_{1} U\left(w_{1} \cup w_{2}\right) \mathbf{3}\left\{w_{2} \vee\left[w_{1} \wedge O\left(w_{1} \cup w_{2}\right)\right] \vee\left[w_{1} \wedge O\left(w_{1} U\left(w_{1} U w_{2}\right)\right)\right]\right\}$ by $\Lambda 9$ and $P R$
5. $\vdash w_{1} \mathcal{U}\left(w_{1} \mathcal{U} w_{2}\right) \mathbf{3}\left\{w_{2} \vee\left\{w_{1}\right.\right.$ A $\left.O\left(w_{1}\left\lfloor w_{2} \vee w_{1} \mathcal{U}\left(w_{1} \mathcal{U} w_{2}\right)\right)\right]\right\}$ by 'T13 and PR
6. $\vdash\left[w_{1} \mathcal{U} w_{2} \mathbf{v} w_{1} \mathcal{U}\left(w_{1} \mathcal{U} w_{2}\right)\right] \supset w_{1} \mathcal{U}\left(w_{1} \mathcal{U} w_{2}\right)$
by 2 and PR

7．$\vdash w_{1} \cup\left(w_{1} \cup w_{2}\right) \supset\left\{w_{2} \vee\left[w_{1} \mathrm{~A} O\left(w_{1} \cup\left(w_{1} U w_{2}\right)\right)\right]\right\}$
by 6 with 00 ， 5 ，and PR
8．$\vdash w_{1} \mathcal{U}\left(w_{1} \cup w_{2}\right) \supset \diamond\left(w_{1} U w_{2}\right) \quad$ by A10
9．$\vdash w_{1} \downarrow w_{2} \supset \diamond w_{2} \quad$ by Al0
10． $\mathrm{I}-\diamond\left(w_{1} U w_{2}\right) \supset 0 \diamond w_{2}$
by 00
11．$\vdash w_{1} \mathcal{U}\left(w_{1} \mathcal{U} w_{2}\right) \supset \diamond w_{2}$
by 8,10 ， 44 and PR
12．$\vdash w_{1} U\left(w_{1} U w_{2}\right)$ з $w_{1} U w_{2}$
by 11,7 and RUI， taking w to be $w_{1} \cup\left(w_{1} \cup w_{2}\right), \mathrm{u}$ to be w_{1} ，and v to be w_{2}

15．$\vdash w_{1} U w_{2} \equiv w_{1} U\left(w_{1} \cup w_{2}\right)$
by 2， 12 and PR

$$
\begin{aligned}
& \text { U Insertion -- UI } \\
& \qquad \begin{array}{ll}
\text { (a) } \frac{\mathrm{t}-\mathrm{v}}{\vdash \mathrm{LU} \mathrm{v}} & \text { (b) } \frac{1-\mathrm{u}, \vdash \diamond v}{\mathrm{t}-\mathrm{uuv}} \\
\text { for an arbitrary } u &
\end{array}
\end{aligned}
$$

Proof：

（a）	1.	t－v	given
	2.	t－v 3 uuv	by A 9 and PR
	3.	\vdash uuv	by 1,2 and PR
（b）	1.	1－u	given
－	2	$\vdash \diamond v$	given
	3.	$\vdash \square$	by 1 and \square I
	4.	$\vdash(\square u \mathrm{~A} \diamond v) \supset u 山 v$	by T24
	5.	$\vdash \mathrm{u} \mathrm{V}^{\text {v }}$	3， 4 and PR

$$
\begin{aligned}
& \text { U Concatenation -- UC } \\
& \begin{array}{l}
\text { ト } \begin{array}{lll}
v_{1} & 3 & u \| v_{2} \\
\text { I- } & v_{2} & 3 \\
\text { I } & u \| v_{3} \\
\hline \text { I- } v_{1} \supset u \| v_{3}
\end{array}
\end{array}
\end{aligned}
$$

Proof:

1. $\vdash v_{1} 3{ }^{\text {a }}$	given	
2. $\vdash v_{2} \supset u \\| v_{3}$	given	
3. $\mathrm{t}-u \bigcup v_{2} \supset u \\|\left(u \cup v_{3}\right)$	by UU	
4. $\vdash v_{1} 3{ }^{\text {a }}$, $u \cup\left(u \bigcup v_{3}\right)$	by 1, 3 and PR	
5. $\vdash v_{1} \supset u \bigcup v_{3}$	by T26 and PR ${ }_{4}$	

T27.। - [$\left.\square w_{1} \mathrm{~A} \quad w_{2} U w_{3}\right] \supset\left(w_{1} \mathrm{~A} \quad w_{2}\right) ~ U\left(w_{1} \wedge w_{3}\right)$
Proof:

1. $\vdash w_{2} \bigcup w_{3} \supset \diamond w_{3} \quad$ by A10
2. $\vdash\left[\begin{array}{lll}\square w_{1} \mathrm{~A} & w_{2} \\ Z\end{array} w_{3}\right] \supset\left(\square w_{1} \mathrm{~A} \quad \diamond w_{3}\right) \quad$ by PR
3. $\vdash\left[\begin{array}{lll}\square w_{1} \mathrm{~A} & w_{2} \\ U & w_{3}\end{array}\right] \supset \diamond\left(w_{1} \mathrm{~A} \quad w_{3}\right) \quad$ by T11 and PR
$4 . \vdash w_{2} U w_{3} \supset\left[w_{3} \vee \quad\left(w_{2} \mathrm{~A} \quad \mathrm{O}\left(w_{2} \mathcal{U} w_{3}\right)\right)\right] \quad$ by $\Lambda 9$ and PR
4. $\vdash\left[\begin{array}{lll}\square w_{1} \mathrm{~A} & w_{2} \\ U & w_{3}\end{array}\right] \supset\left[\left(\square w_{1} \mathrm{~A} \quad w_{3}\right) \vee\left(\begin{array}{lll}\square w_{1} \mathrm{~A} & w_{2} \mathrm{~A} & \left.\mathrm{O}\left(w_{2} U w_{3}\right)\right)\end{array}\right] \quad\right.$ by PR
5. $\vdash\left(\square w_{1} \mathrm{~A} w_{3}\right) \supset\left(w_{1} \mathrm{~A} w_{3}\right) \quad$ by A 3 and PR
6. \quad - $\left[\square w_{1}\right.$ A w_{2} A $\left.O\left(w_{2} \downarrow w_{3}\right)\right] \supset\left[w_{1}\right.$ A w_{2} A O \square wl A $\left.O\left(w_{2} \downarrow w_{3}\right)\right]$
by T20 and PR
7. $\quad \mathrm{t}-\left[\square w_{1} \mathrm{~A} \quad w_{2} \mathrm{~A} \quad \mathrm{O}\left(w_{2} ひ w_{3}\right)\right] \supset\left[\left(\begin{array}{ll}w_{1} \mathrm{~A} & w_{2}\end{array}\right) \mathrm{A} \quad \mathrm{O}\left(\square w_{1} \mathrm{~A} \quad w_{2} ひ w_{3}\right)\right]$
by T12 and PR
8. $\vdash\left[\square w_{1} \mathrm{~A} \quad w_{2} U w_{3}\right] \supset\left\{\left(\begin{array}{ll}w_{1} \mathrm{~A} & w_{3}\end{array}\right) \vee\left[\left(\begin{array}{ll}w_{1} \mathrm{~A} & w_{2}\end{array}\right) \mathrm{A} \quad \mathrm{O}\left(\square w_{1} \mathrm{~A} w_{2} U w_{3}\right)\right]\right\}$ by $5,6,8$ and PR
9. $\mathrm{t}-\left[\square w_{1} \mathrm{~A} \quad w_{2} U w_{3}\right] \supset\left(\begin{array}{ll}w_{1} \mathrm{~A} & w_{2}\end{array}\right) \mathbb{U}\left(w_{1} \mathrm{~A} \quad w_{3}\right)$ by 3, 9 and RUI

The next theorem displays the commutation relation between the 0 and the \mathbb{U} operators.

T28.I- $\left(O w_{1}\right) U\left(O w_{2}\right) \equiv O\left(w_{1} U w_{2}\right)$

Proof:

1. I- $w_{1} \downarrow w_{2} \equiv\left[w_{2} \vee \quad\left(w_{1} \mathrm{~A} \quad \mathrm{O}\left(w_{1} \cup w_{2}\right)\right)\right]$
by $\Lambda 9$

Having classified \square as a universal operator， 0 as an existential operator and 0 as being both universal and existential，we observe that U is universal with respect to its first argument and existential with respect to its second argument．This yields the commutation properties listed in T29 and T30．

T29．ト $\left(w_{1} \mathrm{~A} w_{2}\right) \cup w_{3} \equiv\left[\begin{array}{lll}w_{1} & U & w_{3} \mathrm{~A} w_{2} U w_{3}\end{array}\right]$

Proof：

1．$\vdash\left(w_{1} \wedge w_{2}\right) \supset w_{1}$ by PT
2．$\vdash\left(w_{1} \mathrm{~A} w_{2}\right) \bigcup w_{3} \supset w_{1} \bigcup w_{3}$ by UU
3．$\vdash\left(w_{1} \mathrm{~A} w_{2}\right) \cup w_{3} \supset w_{2} ひ w_{3}$ similarly
4．$\vdash\left(w_{1} \mathrm{~A} w_{2}\right) \cup w_{3} \supset\left[w_{1} \cup w_{3} \mathrm{~A} w_{2} ひ w_{3}\right]$ by 2,3 and PR
5．$\vdash w_{1} ひ w_{3} \supset \diamond w_{3}$ by 110
6．$\quad \mathrm{I}-\left[w_{1} \cup w_{3} \mathrm{~A} \quad w_{2} \mathbb{U} w_{3}\right] \supset \diamond w_{3}$ by PR
7．$\vdash w_{1} \cup w_{3} \supset\left\{w_{3} \vee\left[w_{1} \wedge O\left(w_{1} \cup w_{3}\right)\right]\right\}$ by A9 and 1 ＇11
8．$\vdash w_{2} \mathrm{U} w_{3} \supset\left\{w_{3} \vee \quad\left[w_{2} \mathrm{~A} \quad \mathrm{O}\left(w_{2} \mathrm{U} w_{3}\right)\right]\right\}$ by A9 and PR
9． $\mathrm{I}-\left[w_{1} \cup w_{3} \mathrm{~A} \quad w_{2} \cup w_{3}\right] \supset\left\{w_{3} \vee\left[\left(w_{1} \mathrm{~A} \quad w_{2}\right) \mathrm{A} \quad \mathrm{O}\left(w_{1} \cup w_{3} \mathrm{~A} \quad w_{2} \cup w_{3}\right)\right]\right\}$
by 7，8，T12 and PR10．$\vdash\left[\begin{array}{lll}w_{1} & U & w_{3} \mathrm{~A} \\ w_{2} & U \\ w_{3}\end{array}\right] \supset\left(\begin{array}{ll}w_{1} \mathrm{~A} & w_{2}\end{array}\right) \cup w_{3}$by 6,9 and RUI，taking w to be $\left(w_{1} \cup w_{3}\right) \mathrm{A}\left(w_{2} \cup w_{3}\right)$ ， u to bc $w_{1} \mathrm{~A} w_{2}$ ，and v to be w_{3}

T30. t- $w_{1} U\left(w_{2} \vee w_{3}\right) \equiv\left[w_{1} U w_{2}\right.$ v $\left.w_{1} U w_{3}\right]$

Proof:

9. $\vdash\left[w_{1} \mathcal{U}\left(w_{2} \vee w_{3}\right) \mathrm{A} \sim\left(w_{1} \cup w_{2}\right) \mathrm{A} \sim\left(w_{1} \mathcal{U} w_{3}\right)\right]$ כ

$$
\left[\sim w_{2} \text { А } \sim w_{3} \text { А } w_{1} \text { А } O\left(w_{1} U\left(w_{2} \vee w_{3}\right)\right) \text { А } \bigcirc \sim\left(w_{1} \cup w_{2}\right) \text { А } \bigcirc \sim\left(w_{1} \cup w_{3}\right)\right]
$$ by 5, 7, 8 and PR

10. $\vdash\left[w_{1} \cup \mathcal{U}\left(w_{2} \vee w_{3}\right) \mathrm{A} \quad \sim\left(w_{1} \cup w_{2}\right) \mathrm{A} \quad \sim\left(w_{1} \cup w_{3}\right)\right] \supset$

$$
\left.\left\{\sim\left(w_{2} \vee w_{3}\right) \mathrm{A} O\left[w_{1} \cup\left(w_{2} \vee w_{3}\right) \mathrm{A} \sim\left(w_{1} \cup w_{2}\right) \mathrm{A} \sim\left(w_{1} \cup w_{3}\right)\right]\right\}\right\}_{\text {by T12 }} \text { and PR }
$$

ft. $\mathrm{t}-\left[w_{1} \mathcal{U}\left(w_{2} \vee w_{3}\right) \mathrm{A} \sim\left(w_{1} 廿 w_{2}\right) \mathrm{A} \sim\left(w_{1} 廿 w_{3}\right)\right] \supset \square \sim\left(w_{2} \vee w_{3}\right) \quad$ by DCI
12. $\vdash w_{1} U\left(w_{2} \mathbf{v} \times \mathbf{3}\right) \supset \diamond\left(w_{2} \mathbf{v} w_{3}\right) \quad$ by A10
13. $\vdash w_{1} \bigcup\left(w_{2} \vee w_{3}\right) \supset \sim\left[\sim\left(w_{1} \cup w_{2}\right) \mathrm{A} \sim\left(w_{1} \Downarrow w_{3}\right)\right] \quad$ by 11,12 , Al and PR
14. $\mathbf{1}-w_{1} \bigcup\left(w_{2}\right.$ v $\left.w_{3}\right) \supset\left\lceil w_{1} \bigcup w_{2}\right.$ v $\left.w_{1} \bigcup w_{3}\right] \quad$ by PR
15. $\vdash w_{1} U\left(w_{2} \vee w_{3}\right) \equiv\left[\begin{array}{lll}w_{1} & U w_{2} \vee & w_{1} U w_{3}\end{array}\right] \quad$ by 4,14 and PR

T31. $\vdash\left[\diamond w_{1} \vee \diamond w_{2}\right] \supset\left[\left(\sim w_{1}\right) \cup w_{2} \vee\left(\sim w_{2}\right) \cup w_{1}\right]$
Proof:

$$
\text { 1. } \vdash\left[\diamond w_{1} \vee \diamond w_{2}\right] \supset \diamond\left(w_{1} \vee w_{2}\right)
$$

2. $\vdash \diamond\left(w_{1} \vee w_{2}\right) \supset\left(\sim\left(w_{1} \vee w_{2}\right)\right) \bigcup\left(w_{1} \vee w_{2}\right) \quad$ by T 23 and PR
3. $\mathrm{t}-\diamond\left(w_{1} \vee w_{2}\right) \supset\left(\sim w_{1} \mathrm{~A} \sim w_{2}\right) \cup\left(w_{1} \vee w_{2}\right) \quad$ by UU and PR
4. $\vdash \diamond\left(w_{1} \vee w_{2}\right) 3\left[\left(\sim w_{1} \mathrm{~A} \sim w_{2}\right) \bigcup w_{1} \vee\left(\sim w_{1} \mathrm{~A} \sim w_{2}\right) \cup w_{2}\right] \quad$ by T30 and PR
5. $\vdash\left(\sim w_{1} \mathrm{~A} \sim w_{2}\right) \cup w_{1} \supset\left(\sim w_{2}\right) \bigcup w_{1}$ by $\mathbb{U U}$ and $P R$
6. $\vdash\left(\sim w_{1} \mathrm{~A} \sim w_{2}\right)$ U $w_{2} \supset\left(\sim w_{1}\right)$ U $w_{2} \quad$ by UU and PR
7. $\vdash \diamond\left(w_{1} \vee w_{2}\right) \supset\left[\left(\sim w_{1}\right) \cup w_{2} \vee\left(\sim w_{2}\right) \cup w_{1}\right] \quad$ by $4,5,6$ and PR
8. $\vdash\left(\diamond w_{1} \vee 0 \quad w_{2}\right) \supset\left[\left(\sim w_{1}\right) \bigcup w_{2}\right.$ v $\left.\quad\left(\sim w_{2}\right) \cup w_{1}\right]$
by 1,7 and PR

The following two theorems display the one way implication resulting frorn the interchange of the U with a boolean operator of the opposite character.
'1’32. t- $w_{1} \cup\left(w_{2} \wedge w_{3}\right) \supset\left[w_{1} \cup w_{2}\right.$ A $\left.w_{1} \cup w_{3}\right]$

Proof:

1. $\vdash\left(w_{2} \mathrm{~A} w_{3}\right) \supset w_{2}$ by PT
2. $\vdash w_{1} \cup\left(w_{2} \wedge w_{3}\right) \supset w_{1} \cup w_{2}$ by $U U$ and $P R$
3. $\vdash w_{1} \mathcal{U}\left(w_{2} \mathrm{~A} w_{3}\right) \supset w_{1} \cup w_{3}$ similarly
4. $\vdash w_{1} \cup\left(w_{2} \mathrm{~A} \quad w_{3}\right) \supset\left[\begin{array}{ll}w_{1} U & w_{2} \mathrm{~A} \\ w_{1}\end{array} \mathrm{U}_{3}\right]$ by 2,3 and PR_{4}
$\mathrm{T} 33 . \vdash\left[w_{1} ひ w_{3} \vee \quad w_{2} \cup w_{3}\right] \supset\left(w_{1} \vee \quad w_{2}\right) ひ w_{3}$

Proof:

$$
\begin{aligned}
& \text { 1. } \vdash w_{1} \supset\left(w_{1} \vee w_{2}\right) \quad \text { by IT } \\
& \text { 2. } \vdash w_{1} \cup w_{3} \supset\left(w_{1} \vee w_{2}\right) U_{3} \\
& \text { by UU } \\
& \text { 3. } 1-w_{2} \supset\left(w_{1} \vee w_{2}\right) \text { by PT } \\
& \text { 4. } \vdash w_{2} \cup w_{3} \supset\left(w_{1} \vee w_{2}\right) \cup_{3} \\
& \text { by UU } \\
& \text { 5. } \vdash\left[w_{1} \mathbb{U} w_{3} \vee w_{2} U w_{3}\right] \supset\left(w_{1} \vee w_{2}\right) U w_{3}
\end{aligned}
$$

T34. $+\left(w_{1} \supset w_{2}\right) \cup w_{3} \supset\left[w_{1} \cup w_{3} \supset w_{2} U w_{3}\right]$

Proof:

1. $\vdash\left(w_{1} \supset w_{2}\right) \cup w_{3} \supset \diamond w_{3}$
by $\Lambda 10$
2. $\vdash\left[\left(w_{1} \supset w_{2}\right)\right.$ U w_{3} A $\left.w_{1} U w_{3}\right] \supset$
$\left\{w_{3} \vee\left[\left(w_{1} \supset w_{2}\right) \wedge O\left(\left(w_{1} \supset w_{2}\right) \cup w_{3}\right) \wedge w_{1} \wedge O\left(w_{1} \cup w_{3}\right)\right]\right\}$
by A9 and PR
3. $\vdash\left[\left(w_{1} \supset w_{2}\right) U w_{3}\right.$ A $\left.w_{1} U w_{3}\right] \supset$ $\left\{w_{3} \vee\left[w_{2} \wedge \mathrm{O}\left(\left(w_{1} \supset w_{2}\right) \cup w_{3}\right) \wedge O\left(w_{1} U w_{3}\right)\right]\right\} \quad$ by $P R$
4. $\vdash\left[\left(w_{1} \supset w_{2}\right) U w_{3}\right.$ A $\left.w_{1} \cup w_{3}\right] \supset$
$\left\{w_{3} \vee\left[w_{2} \wedge \mathrm{O}\left(\left(w_{1} \supset w_{2}\right) \cup w_{3} \wedge w_{1} \cup w_{3}\right)\right]\right\} \quad$ by T12 and PR
5. $\vdash\left[\left(w_{1} \supset w_{2}\right) \cup w_{3}\right.$ A $\left.w_{1} U w_{3}\right] \supset w_{2} U w_{3} \quad$ by 1,4 and RUI, taking w to ho $\left(\left(w_{1} \supset w_{2}\right) \cup w_{3}\right) \wedge\left(w_{1} \cup w_{3}\right)$, u to be w_{2}, and v to be w_{3}
6. $\vdash\left(w_{1} \supset w_{2}\right) \cup w_{3} \supset\left[w_{1} \cup w_{3} \supset w_{2} \cup w_{3}\right]$
by PR

T35. $\vdash\left[w_{1} \cup w_{2}\right.$ A $\left.\left(\sim w_{2}\right) \bigcup w_{3}\right] \supset w_{1} \cup w_{3}$

Proof:

1. $\vdash\left(\sim w_{2}\right) U w_{3} 3$ 0 $\quad w_{3} \quad$ by $\Lambda 10$
2. $\vdash\left[w_{1} \cup w_{2} \mathrm{~A}\left(\sim w_{2}\right) \cup w_{3}\right] \supset \diamond w_{3} \quad$ by PR
3. $\vdash w_{1} U w_{2} 3\left\{w_{2} \vee\left[w_{1} \mathrm{~A} \quad \mathrm{O}\left(w_{1} U w_{2}\right)\right]\right\} \quad$ by A9 and PR
4. $\vdash\left(\sim w_{2}\right) U w_{3} \supset\left\{w_{3} \vee\left[\sim w_{2} A \quad O\left(\left(\sim w_{2}\right) U w_{3}\right)\right]\right\} \quad$ by $\Lambda 9$ and PR
5. $\vdash\left[w_{1} \cup w_{2} \mathrm{~A}\left(\sim w_{2}\right) \cup w_{3}\right] \supset$
$\left\{w_{3} \vee\left\{w_{1} \wedge \sim w_{2}\right.\right.$ A $O\left(w_{1} \cup w_{2}\right)$ A $\left.\left.O\left(\left(\sim w_{2}\right) \cup w_{3}\right)\right]\right\} \quad$ by 3,4 and PR
6. $\vdash\left[w_{1} U w_{2} \mathrm{~A}\left(\sim w_{2}\right) \cup w_{3}\right] \supset$
$\left\{w_{3} \vee\left[w_{1} \wedge O\left(w_{1} \bigcup w_{2} \wedge\left(\sim w_{2}\right) \bigcup w_{3}\right)\right]\right\} \quad$ by T12 and PR
7. $\vdash\left[w_{1} U w_{2}\right.$ A $\left.\left(\sim w_{2}\right) U w_{3}\right] \supset w_{1} U w_{3}$

T36. ト $w_{1} U\left(w_{2} A w_{3}\right) \supset\left(w_{1} U w_{2}\right) U w_{3}$
Proof:

$$
\text { 1. } \vdash w_{1} U\left(w_{2} \mathrm{~A} w_{3}\right) \supset \diamond\left(w_{2} \quad \mathrm{~A} w_{3}\right)
$$

2. $\vdash\left(w_{2} \wedge w_{3}\right) \supset w_{3} \quad$ by PT
3. $\vdash \diamond\left(\begin{array}{lll}w_{2} & \mathrm{~A} & w_{3}\end{array}\right) \supset \diamond w_{3} \quad$ b y 00
4. I- $w_{1} \cup\left(w_{2} \mathrm{~A} w_{3}\right) \supset \diamond w_{3} \quad$ by 1,3 and PR
5. t- $w_{1} \mathcal{U}\left(w_{2} \wedge w_{3}\right) \supset\left\{\left(w_{2} \wedge w_{3}\right) \vee\left[w_{1} \wedge \bigcirc\left(w_{1} \mathcal{U}\left(w_{2} \wedge w_{3}\right)\right)\right]\right\} \quad$ by A9 and PR
6. $\vdash\left(\begin{array}{lll}w_{2} & \mathrm{~A} & w_{3}\end{array}\right) \supset w_{2} \quad$ by PT
7. $\vdash w_{1} \mathcal{U}\left(w_{2} \wedge w_{3}\right) \supset w_{1} \cup w_{2}$ by $U U$
8. $\vdash w_{1} \mathcal{U}\left(w_{2} \mathrm{~A} w_{3}\right) \supset\left\{w_{3} \vee\left[w_{1} \mathcal{U} w_{2} \mathrm{~A} \bigcirc\left(w_{1} \mathcal{U}\left(w_{2} \wedge w_{3}\right)\right)\right]\right\}$ by 5, 7 and PR
9. $\vdash w_{1} \mathcal{U}\left(w_{2}\right.$ А $\left.w_{3}\right)$ 3 $\left(w_{1} \mathcal{U} w_{2}\right) \mathcal{U} w_{3}$
by 4,8 and RUI

The following two theorems are referred to as "collapsing" theorems, since they may be used to derive a consequence of smaller nesting depth from a nested until expression.

т $37 . \vdash\left(w_{1} \mathcal{U} w_{2}\right) \mathbb{U} w_{3} \supset\left(w_{1} \vee w_{2}\right) \cup w_{3}$
Proof:

1. $\vdash w_{1} \mathrm{U} w_{2} \supset\left[w_{2} \vee \quad\left(w_{1} \mathrm{~A} \quad \mathrm{O}\left(w_{1} \cup w_{2}\right)\right)\right] \quad$ by A9 and PR
2. $\vdash w_{1} \cup w_{2} \supset\left(w_{1} \mathrm{v} w_{2}\right) \quad$ by PR
3. $\vdash\left(w_{1} \mathcal{U} w_{2}\right) \cup \cup w_{3} \supset\left(w_{1} \vee w_{2}\right) \mathbb{U} w_{3} \quad$ by UU
${ }^{\top} \mathrm{T} 38 . \vdash w_{1} \mathcal{U}\left(w_{2} \mathcal{U} w_{3}\right) \supset\left(w_{1} \vee w_{2}\right) \cup w_{3}$

Proof:

1. $卜 w_{1} \Downarrow\left(w_{2} U w_{3}\right) 3 \diamond\left(w_{2} U w_{3}\right) \quad$ by A10
2. $\left.\vdash w_{2}\right\} w_{3} \supset 0 \quad w_{3} \quad$ by A10
3. $\vdash w_{1} \mathcal{U}\left(w_{2} U w_{3}\right) \supset 0 w_{3}$ by 1,2 and $\diamond \mathrm{C}$
4. $\mathrm{t}-w_{1} \mathcal{U}\left(w_{2} \mathcal{U} w_{3}\right) \supset\left\{w_{2} \mathcal{U} w_{3} \vee\left[w_{1}\right.\right.$ A $\left.\left.O\left(w_{1} \mathcal{U}\left(w_{2} U w_{3}\right)\right)\right]\right\} \quad$ by A9 and PR
5. $\vdash w_{1} U\left(w_{2} \cup w_{3}\right) \supset\left\{w_{3} \vee\left[w_{2} \mathrm{~A} \quad \mathrm{O}\left(w_{2} U w_{3}\right)\right] \vee\left[w_{1} \mathrm{~A} \quad \mathrm{O}\left(w_{1} \mathcal{U}\left(w_{2} U w_{3}\right)\right)\right]\right\}$
by $\Lambda 9$ and PR
6. $\vdash w_{2} \mathcal{U} w_{3} \supset w_{1} \mathcal{U}\left(w_{2} U w_{3}\right)$
by A9 and PR
7. I - [$\left.w_{2} \mathrm{~A} O\left(w_{2} U w_{3}\right)\right]$ з $\left[\left(w_{1} \vee w_{2}\right)\right.$ a $\left.O\left(w_{1} U\left(w_{2} U w_{3}\right)\right)\right]$ by 00 and PR

8． $\mathrm{t}-\left[w_{1} \mathrm{~A} \quad \mathrm{O}\left(w_{1} \mathrm{U}\left(w_{2} \mathcal{U} w_{3}\right)\right)\right] \supset\left[\left(w_{1} \vee w_{2}\right) \wedge \mathrm{O}\left(w_{1} \mathcal{U}\left(w_{2} \mathcal{U} w_{3}\right)\right)\right] \quad$ by PR
9．I－$w_{1} U\left(w_{2} U w_{3}\right) \supset \underline{w}_{3} \vee\left[\left(w_{1} \vee w_{2}\right)\right.$ A $\left.\left.O\left(w_{1} U\left(w_{2} U w_{3}\right)\right)\right]\right\}$
by 5，7， 8 and PR
10． $\mathrm{t}-w_{1} \mathcal{U}\left(w_{2} \cup w_{3}\right) \supset\left(w_{1} \vee w_{2}\right) \cup w_{3}$
by 3,9 ，and RUI

A very useful derived operator is the unless operator u \mathfrak{U} v being defined by

$$
u \mathfrak{L l} v \equiv[\square u \quad \vee \quad(u \Downarrow v)] .
$$

The unless operator does not insist on the fact that v actually happens but it requires that u holds until such an occurrence．If v never happens u must hold forever．This operator is related to the binary＂as long as＂operator $p \square q$ ，reading＂q as long as p ，＂introduced by Lamport in［L2］． The meaning of this construct is that q holds continuously as long as p is continuously maintained． We may express $p \square q$ by：

$$
p \square q \equiv q \mathfrak{U}(\sim p)
$$

Following is a rule for establishing the unless operator．

$$
\begin{aligned}
\text { Unless Introduction } & -\mathfrak{U I} \\
& \frac{\vdash u \supset \mathrm{O}(u \vee v)}{\vdash u \supset(u \mathfrak{U} v)}
\end{aligned}
$$

Proof：

1．$\vdash \mathrm{u} \supset \mathrm{O}(u \vee v)$
given
2．$\vdash u \supset[\bigcirc u \vee \bigcirc v]$ by T13

3．$\vdash \sim(u U v) \supset\{\sim v \mathrm{~A} \quad[\sim u \vee O \sim(u \bigcup v)]\}$ by $\Lambda 9$ ，Т＇4 and PR
4．I－ $0 \sim(u \downarrow v) \supset \mathrm{o}-\mathrm{v}$ by 00 and PR
 by 3 and PR

6．$卜\left[\begin{array}{l}u \\ A\end{array}(u U v)\right] \supset[u$ A $O \sim(u U v) A \sim O v]$
7．$\vdash\left[\begin{array}{lll}u & \mathrm{~A} & \sim(u U v)\end{array}\right] \supset\left[\begin{array}{lll}u \mathrm{~A} & \mathrm{O} u \mathrm{~A} & \bigcirc \sim(u U v)\end{array}\right]$
8．$卜\left[\begin{array}{lll}u \mathrm{~A} & \sim(u ひ v)\end{array}\right] \supset\left[\begin{array}{lll}u \mathrm{~A} & \mathrm{O}(u \mathrm{~A} & \sim(u ひ v)\end{array}\right]$ ， 6 nd by T7 and PR

9．$\vdash[$（ $A \sim(u \cup v)] \supset \square u$
by DCI
L0．I－u $\supset(\square \mathrm{u} v(u\lfloor v))$ by PR

This concludes the description of the propositional section of general temporal logic．The axiomatic system presented for this section of the logic is known to be complete，and the validity problem decidable（［I＇S］）．Consequently，there exists a procedure that tests each formula in PTL （Iropositional Temporal Logic）for validity，and constructs a proof in the presented system if the statement is valid．The procedure given in $[\mathrm{PS}]$ takes exponential time in the size of the tested formula．

4．QUANTIFIERS

Since we intend to use terms and predicates in our reasoning we have to extend our system to admit individual variables，terms and quantification．Let us consider additional axioms involving quantifiers and their interaction with the temporal operators．

AXIOMS：

$$
\text { A11.ト-32.w } 三 \forall x . \sim w
$$

А12．ト $(\forall x . w(x)) \supset \mathbf{w}(\mathrm{t})$
where t is any term globally free for x in w
$\Lambda 13 . \vdash(\mathrm{Vx} . \bigcirc w) \supset(\bigcirc \forall x . w)$

In these axioms，x is any global individual variable．Axioms A1 1 and A $\mathbf{1 2}$ are the usual predicate calculus axioms：AI 1 defines 3 as the dual of V and A 12 is the instantiation axiom． Axiom A13 is the Barcan formula for the 0 operator；it states that since both operators \forall and 0 have universal characteristics they commute．We use the substitution notation $w(x)$ replaced by $w(t)$ to denote the substitution of the term t for all free occurrences of x in w ．

A－term t is said to be globally free for x in w if substitution of t for all free occurrences of x in w：（a）does not create new bound occurrences of（global）variables，and（b）does not，create new occurrences of local variables in the scope of a temporal operator．A trivial case：if t is x itself，then t is free for x ．Condition（a）is the one stipulated in classical predicate logic．Condition （b）is special to modal and temporal logics with quantification．Condition（b）is essential for $\Lambda 12$ ， because without it we could derive the formula

$$
(\forall x . \diamond(x<y)) \supset \diamond(y<y)
$$

which is not valid for a local variable y ．
An additional rule of inference is：

INFERENCE RULE:

R4. \forall Insertion $--\forall I$
$\frac{\vdash u \supset v}{\vdash \mathrm{f} \supset \forall x . v}$
where x is not free in u.

DERIVED RULES AND THEOREMS:

From R4 we can obtain the derived rule
Instantiation Rule -- INST

$$
\vdash w(x)
$$

$$
\text { I- } w(t)
$$

where t is any term globally free for x in w.

Proof:

$$
\begin{array}{llr}
\text { 1. } & \vdash w(x) & \text { gi ven } \\
\text { 2. } & t-\forall x \cdot w(x) & \text { by } \forall \mathrm{I} \text { (taking } u \text { to be true) } \\
\text { 3. } & \mathrm{I}-(\forall x \cdot w(x)) \supset w(t) & \text { by } \mathrm{A} 12 \\
\text { 4. } & \vdash w(t) & \text { by } 2,3 \text { and MI' }
\end{array}
$$

The following are the duals of A 12 and R 4 for the existential quantifier 3 :

T39. $\vdash w(t) \supset \exists x . w(x)$ where t is any term globally free for x in w.

Proof:

$$
\begin{array}{lrl}
\text { 1. } & \mathrm{t}-(\mathrm{vx} \cdot \sim w(x)) \supset \sim w(t) & \text { by A12 } \\
\text { 2. } & \vdash(\sim \exists x . w(x)) \supset \sim w(t) & \text { by } \Lambda 11 \text { and PlR } \\
\text { 3. } & \mathrm{t}-\mathrm{w}(\mathrm{t}) \supset \exists x . w(x) & \text { by I'R }
\end{array}
$$

Note again that we need here the additional condition (b) ensuring that Lhe substitution of t for x in w does not, create new occurrences of local variables in the scope of a modal operator.

```
3 Insertion - - II
```

$$
\frac{l-u \supset v}{t-3 x . u \supset v}
$$

where x is not free in v

Proof：
1．$\vdash u \supset v$
given
2．ト $\sim v \supset \sim u$
by PR
3．$\vdash \sim v \supset \forall x . \sim u$
by $\forall I$
4．$\vdash \sim v \supset \sim \exists x . u$
by $\Lambda 11$ and PR
5．$\vdash \exists x . u \supset v$
$\forall \forall$ Rutes
（b）
（a）$\frac{\vdash u \supset}{\vdash \forall x . u} \frac{v}{\supset \forall x . v}$ $\vdash u \equiv v$
$\vdash \forall x . u \equiv \forall x . v$

Proof of（a）：

1．$\vdash \forall x . u \supset u$
by A12
2． $1-\mathrm{u}$ Э v
given
3． $\mathrm{I}-\forall x . u \supset \mathrm{v}$
by PR
4．I－$\forall x . u \supset \forall x . v \quad$ by VI，since $\forall x: u$ contains no frec occurrences of x．
Rule（b）then follows by propositional reasoning．
（a）$\frac{t-u 3 v}{\vdash \exists x \cdot u \supset 3 x \cdot v}$
（b）$\frac{\vdash u \equiv v}{\vdash 3 x \cdot u \equiv \exists x \cdot v}$

Proof of（a）：

1． $1-\mathrm{u}$ Ј v given
2．\quad t－$(\sim v) \supset(\sim u)$ by PR

3．\quad t－$(\forall x . \sim v) \supset(\forall x . \sim \mathbf{u})$
by $\forall \forall$
4．$\vdash(4 \mathrm{x} .2)) \supset(\sim \exists x . u)$
by A 11 and PR

Rule (b) then follows by propositional reasoning.

From the axiom Al,

$$
\vdash \sim \diamond w \equiv o-w,
$$

we can clearly deduce the formula

$$
\vdash \sim(w \vee \quad \square \sim w) \equiv \sim(w \vee \quad \sim \diamond w)
$$

by propositional reasoning (PR). However, we cannot deduce by PR the formula
$\square \square \sim w \equiv \mathrm{c} 1-\mathrm{o} \mathrm{w}$
or

$$
\forall x . \square \sim w \equiv \forall x . \sim \text { o w }
$$

Here, the replacement of $\square \sim w$ by $\sim 0 \mathrm{w}$ is under the scope of the operator \square and the quantifier $\forall x$, respectively, and thus cannot be justified by propositional reasoning alone. For this reason we need the following equivalence rule.

Equivalence Rule ---- ER

Let w^{\prime} be the result of replacing an occurrence of a subformula v_{1} in w by v_{2}. Then

$$
\frac{\vdash v_{1} \equiv v_{2}}{t-\mathbf{w} \equiv w^{\prime}}
$$

Proof:

By induction on the structure of w.

Case: w is v_{1}. Then w^{\prime} is v_{2} and $\mathrm{t}-v_{1} \equiv v_{2}$ implies $\vdash \mathrm{w} \equiv \mathrm{w}$.

Cuse: w is of Lhe form $\sim \boldsymbol{u}$. Wc assume that $\mathrm{t}-\boldsymbol{v}_{1} \equiv \boldsymbol{v}_{2}$ implies $\vdash \mathrm{u} \equiv \mathrm{u}$. Then by propositional reasoning $\vdash \sim \boldsymbol{u} \equiv \sim \boldsymbol{u}^{\prime}$, i.e., $\mathrm{I}-\mathrm{w} \equiv \mathrm{w}$.

Case: w is of the form $u_{1} \vee u_{2}$. Wc assume that if I- $v_{1} \equiv v_{2}$, then $\mathrm{t}-u_{1} \equiv u_{1}^{\prime}$ and $\mathrm{t}-u_{2} \equiv u_{2}^{\prime}$ Then by propositional reasoning $\vdash\left(u_{1} \vee u_{2}\right) \equiv\left(u_{1}^{\prime} \vee u_{2}^{\prime}\right)$, i.e., $\vdash \mathrm{w} \equiv \mathrm{w}$.

The cases where w is of forms $u_{1} \wedge u_{2}, u_{1} \supset u_{2}$, etc. are similar.

Case: w is of the form \square lu. We assume that if $\mathrm{I}-v_{1} \equiv v_{2}$, lhen $\vdash \mathrm{u} \equiv \mathrm{u}$. By the \square Cl-rule, $\vdash \square u \equiv \square u^{\prime}$, i.c., $t-w \equiv w^{\prime}$.

The cases in which w is of forms $0 \mathrm{u}, 0 \mathrm{u}$, and $u_{1} \cup u_{2}$ are treated similarly, using the $0 \diamond$ rule, the 00 -rule, and the UU-rule, respcctivcly.

Case: w is of the form $\forall x$.u. We assume that if $\mathrm{t}-v_{1} \equiv v_{2}$, then $\mathrm{t}-\mathrm{u} \equiv \mathrm{u}$ '. Then by the $\forall \forall$-rule, $\mathrm{t}-\forall x . u \equiv \forall x . u^{\prime}$, i.e., $\vdash \mathrm{w} \equiv \mathrm{w}^{\prime}$.

The case where w is of form $\exists x . u$ is proved similarly by the $\exists \exists$-rule.」

Deduction Rule -- DED

```
\(w_{1} \vdash w_{2}\)
\(\vdash\left(\square w_{1}\right) \supset w_{2}\)
```

where the $\forall I$ rule (Rule R4) is never applied to a free variable of w_{1} in the derivation of $w_{1} \vdash w_{2}$.

That is, if under the assumption w_{1} wc can derive $\vdash w_{2}$, where rule $R \mathbb{1} 4$ is never applied to a free variable of w_{1}, then there exists a proof establishing $\vdash\left(\mathrm{Cl} w_{1}\right) \supset w_{2}$. Wc clearly must also be careful in using any theorem or derived rule such as the $\forall \forall$ or ER rule Lhat was established using the VI rule.

The additional \square operator in the conclusion is obviously necessary since in general $w_{1} \mathrm{I}-w_{2}$ does not imply $\mathrm{t}-w_{1} \supset w_{2}$. For example, obviously $\mathrm{w} \vdash \mathrm{Cl} \mathrm{w}$ is true (an immediate application of rule R3: $\mathrm{t}-\mathrm{w}$ by assumption and therefore $\vdash \square \mathrm{w}$ by $\square \mathrm{I}$); but w $\supset \square \mathrm{w}$ is not, a theorem.

Proof:

The proof of the temporal Deduction Rule follows the same arguments used in the proof of the classical deduction Lhcorcm of Predicate Calculus. By the given $w_{1} \vdash w_{2}$, there exists a proof of the form:

$$
\begin{aligned}
& \vdash u_{1} \\
& \vdash u_{2}
\end{aligned}
$$

$$
\vdash u_{m}
$$

such that $u_{1}=w_{1}$ is the hypothesis on which the proof relics, and $u_{m}=w_{2}$ is the conscyucnce of Lhe proof. Wc replace each line $\vdash u_{i}$ in the proof of $w_{1} \vdash w_{2}$ by the line I- lzol $\supset \mathrm{u}$;, and show that Lhis transformation preserves soundness. That is
given show

$\vdash u_{1}$	$\vdash\left(\square w_{1}\right) \supset u_{1}$
$\vdash \vdash u_{2}$	$\vdash\left(\square w_{1}\right) \supset u_{2}$
\cdot	\cdot
\cdot	\cdot
\cdot	\cdot

where each u_{i} is either the assumption w_{1}, an axiom, or derived from previous u_{j} 's by some rule of inference.

The proof is by a complete induction on i. We assume that for all $\mathbf{k}<i, \vdash\left(\square w_{1}\right) \supset u_{k}$, and prove that I- $\left(\square w_{1}\right) \supset \boldsymbol{u}_{\boldsymbol{i}}$.

Case: u_{i} is an axiom.

1. $\vdash u_{i}$
axiom
2. $\vdash\left(\square w_{1}\right) \supset u_{i}$
by PR

Note that \vdash w' implies $\vdash \mathrm{w} \supset \mathrm{w}$ ' for any w , by propositional reasoning.

Case: u_{i} is w_{1}.

1. $\vdash\left(\square w_{1}\right) \supset w_{1}$
by A3

Case: $u_{\boldsymbol{i}}$ is obtained by rule R1, i.e., $u_{\boldsymbol{i}}$ is an instance of a tautology.

1. $\vdash u_{i}$
by PT
2. $\vdash\left(\square w_{1}\right) \supset u_{i}$
by PR

Case: u_{i} is obtained by rule R2 (using previous $\vdash u_{k}$ and $\vdash u_{k} 3 u_{i}$).

```
1. \(\vdash\left(\square w_{1}\right) \supset u_{k} \quad\) induction hypothesis
2. \(\vdash\left(\square w_{1}\right) \supset\left(u_{k} \supset u_{i}\right) \quad\) induction hypothesis
3. \(\vdash\left(\square w_{\mathbf{l}}\right) \supset u_{\boldsymbol{i}}\) by 1,2 and PR
induction hypothesis induction hypothesis
```

Case: u_{i} is obtained by rule R 3 (using previous $\vdash u_{k}$), i.e., u_{i} is $\square u_{k}$.

1. $\vdash\left(\square w_{1}\right) \supset u_{k}$ induction hypothesis
2. $\mathrm{t}-\left(\square \square w_{1}\right) \supset \square u_{k}$

3. $\vdash\left(\square w_{1}\right) \supset \square \notin$
by $]$ ICI by T3 and PR by 2,3 and PR

Case: u_{i} is obtained by rule R 4 (using previous $\vdash u \supset v$, i.e. u_{k}, Lo get $\vdash \mathrm{u} \supset \forall x . v$, i.e. u_{i}, where x is not (ree in \mathbf{u}).

By our deduction rule assumption, we know that x is also not free in $\boldsymbol{w}_{\boldsymbol{1}}$.

1. $\vdash\left(\square w_{1}\right) \supset(u \supset v)$
2. $\vdash\left(\left(\square w_{1}\right) \mathbf{A} \mathbf{u}\right) \sqsupset \mathbf{v}$
3. I- $\left(\left(\square w_{1}\right) \mathbf{A} \mathbf{u}\right) \supset \forall x . v$
by R4
(since x is not frec in u or w_{1})
4. $\vdash\left(\square w_{1}\right) \supset(u \supset \forall x . v)$
by PR

A different approach to coping with the application of the Cl insertion rule (rule R 3) is Lo forbid it altogether. We then get the following restricted deduction rule:

Restricted Deduction Rule -- RDED

$$
\frac{w_{1} \vdash w_{2}}{\text { I- } w_{1} \supset w_{2}}
$$

where $\square I$ (rule R3) is never applied and VI (rule R4) is never applied to a free variable of w_{1} in the derivation of $w_{1} \vdash w_{2}$.

Here, we are not allowed to use rule $\square \mathrm{I}$ or any theorem or derived rule in whose proof $\square I$ was used.

The proof' of [RDEI) follows exactly that of DED except that Lhe case in which rule R3 is applied does not arise.

QUANTIFIER THEOREMS:

T40. I- $(4 x . w) \equiv(3 x . \sim w)$

Proof:

1. $1 \cdot(\sim \sim w) \equiv \mathrm{w}$
2. $\quad \mathrm{t}-(\forall x . \sim \sim w) \equiv \forall x . w$
3. $\vdash(\sim \exists x . \sim \boldsymbol{\sim}) \equiv$ vx.w by Al 1 and PR
4. $\quad \mathbf{t}-\sim \forall x . w \equiv \mathbf{3 x} . \sim w$

T41.ト $\forall x .\left(w_{1} \mathrm{~A} \quad w_{2}\right) \equiv\left(\forall x . w_{1} \mathrm{~A} \quad \forall x . w_{2}\right)$

Proof:

	t. $\forall x . w_{1} 3 w_{1}$	by A12
2.	$\vdash \forall x . w_{2} \quad 3 \quad w_{2}$	by Al2
3.	1-($\left(\forall x . w_{1} \mathrm{~A} \quad \forall x . w_{2}\right) \supset\binom{w_{1} \mathrm{~A}}{w_{2}}$	by 1,2 and PR
4.	$\vdash\left(\forall x . w_{1} \mathrm{~A} \quad \forall x . w_{2}\right) \supset \forall x .\left(w_{1} \mathrm{~A} \quad w_{2}\right)$	by $\forall I$
5.	$\vdash\left(w_{1} \wedge w_{2}\right) \supset w_{1}$	by PT
6.	$\mathrm{t}-\forall x .\left(\begin{array}{lll}w_{1} & \mathrm{~A} & w_{2}\end{array}\right) \supset \forall x . w_{1}$	by $\forall \forall$
7.	$\vdash\left(w_{1}\right.$ A $\left.w_{2}\right) \supset w_{2}$	by PT
8.	$\vdash \forall x .\left(\begin{array}{lll}w_{1} & \mathrm{~A} & w_{2}\end{array}\right) \supset \forall x . w_{2}$	by $\forall \checkmark$
9.	$\vdash \forall x .\left(w_{1} \mathrm{~A} \quad w_{2}\right) \supset\left(\forall x . w_{1} \mathrm{~A} \quad \forall x . w_{2}\right)$	by 6,8 and PR
	$\vdash \forall x .\left(w_{1} \mathrm{~A} \quad w_{2}\right) \equiv\left(\forall x . w_{1} \mathrm{~A} \quad \forall x . w_{2}\right)$	4, 9 and PR 】

т $42 . \vdash \exists x \cdot\left(w_{1} \vee w_{2}\right) \equiv\left(\exists x \cdot w_{1} \vee \exists x \cdot w_{2}\right)$

Proof:

1. $\vdash \forall x \cdot\left(\sim w_{1} \mathrm{~A} \quad \sim w_{2}\right) \equiv\left(\forall x . \sim w_{1} \mathrm{~A} \quad \forall x . \sim w_{2}\right)$
2. I-vx. $\sim\left(w_{1} \vee w_{2}\right) \equiv\left(\forall x . \sim w_{1} \mathrm{~A} \quad \forall x . \sim w_{2}\right)$
3. $\vdash \sim \exists x .\left(w_{1} \vee \quad w_{2}\right) \equiv\left(\sim \exists x . w_{1} \mathrm{~A} \quad \sim \exists x . w_{2}\right)$
by Al I and PR
4. $1-\exists x .\left(w_{1} \vee w_{2}\right) \equiv\left(\exists x . w_{1} \vee \exists x \cdot w_{2}\right)$
by T41
by ER
by PR

T43. $\vdash \forall x \cdot\left(w_{1} \vee w_{2}\right) \equiv\left[w_{1} \vee \forall x . w_{2}\right]$ where x is not free in w_{1}.

Proof:

$$
\begin{array}{lrl}
\text { 1. } \mathrm{t}-\forall x .\left(\begin{array}{lll}
w_{1} & \vee & w_{2}
\end{array}\right) \supset\left[\begin{array}{lll}
w_{1} & \vee & w_{2}
\end{array}\right] & \text { by Al2 } \\
\text { 2. } \vdash\left[\begin{array}{lll}
\forall x . & \left(\begin{array}{lll}
w_{1} & \vee & w_{2}
\end{array}\right) \mathrm{A} \sim w_{1}
\end{array}\right] 3 w_{2} & \text { by PR }
\end{array}
$$

$3 . \vdash\left[\forall x \cdot\left(w_{1} \vee \quad w_{2}\right) \mathrm{A} \quad \sim w_{1}\right] \supset \forall x . w_{2}$	by $\forall \mathrm{I}$, since x is not free in $\forall x .\left(w_{1} \vee w_{2}\right) \mathrm{A} \sim w_{1}$
4. $\vdash \forall x .\left(w_{1} \vee \quad w_{2}\right) \supset\left[w_{1} \vee \quad \forall x . w_{2}\right]$	by PR
5. $\vdash w_{1} \supset\left[\begin{array}{lll}w_{1} & \vee & w_{2}\end{array}\right]$	by P'T
6. $\vdash \forall x . w_{2} \supset w_{2}$	by A12
7. ।- $\forall x . w_{2} \supset\left[\begin{array}{lll}w_{1} & \vee & w_{2}\end{array}\right]$	by PR
8. $\mathrm{t}-\left[\begin{array}{llll}w_{1} & \vee & \forall x . w_{2}\end{array}\right] \supset\left[\begin{array}{lll}w_{1} & \vee & w_{2}\end{array}\right]$	by 5, 7 and PR
$9 . \mathrm{t}-\left[w_{1} \vee \forall x . w_{2}\right] \supset \forall x \cdot\left(w_{1} \vee w_{2}\right)$	since x is not free in $w_{1} \vee \forall x . w_{2}$
10. $\mathrm{t}-\forall x .\left(w_{1} \mathrm{v} w_{2}\right) \equiv\left[\begin{array}{l}w_{1} \mathrm{v}\end{array} \forall x . w_{2}\right]$	by 4,9 and PR

T44. $卜 \exists x .\left(w_{1} \mathrm{~A} w_{2}\right) \equiv\left[w_{1} \mathrm{~A} \exists x . w_{2}\right]$ where x is not free in w_{1}
Proof: By duality on the previous theorem.

The following two theorems show that the 0 operator also commutes with the quantifiers.

T45. t- (vx. 0 w) $\equiv(0 \forall x . w)$

Proof:

$$
\left.\begin{array}{lc}
\text { 1. } \vdash(\forall x . \bigcirc w) \supset(\mathbf{O} \forall x . w) & \text { by } \Lambda 13 \\
\text { 2. } \vdash v \times . w \supset \mathrm{w} & \text { by } \Lambda 12 \\
\text { 3. } \vdash(\bigcirc \forall x . w) \supset \circ \mathrm{w} & \text { by } 00 \\
\text { 4. } \vdash(0 \forall x . w) \supset(\forall x .0 w
\end{array}\right) \quad \text { by VI }
$$

1'46.下 $(3 x . O w) \equiv(0 \exists x . w)$

Proof:

$$
\text { 1. } \vdash(\forall x . \mathbf{0} \sim w) \equiv(\mathbf{0} \mathbf{v x} . \sim \mathbf{w})
$$

2．$\vdash(\forall x . \sim 0 \mathrm{w}) \equiv(0-3 \mathrm{x} . \mathrm{w})$
3．$\quad \mathrm{t}-(-3 \mathrm{x} . \mathrm{O} w) \equiv(\sim 03 \mathrm{x} . \mathrm{w})$
4．$\quad \mathrm{I}-(3 \mathrm{x} . \mathrm{O} w) \equiv(\mathrm{O} \exists x . w)$

The following two theorems show that each temporal operator commutes with the quantifier that has similar character（universal，or existential）．

T47．ト $(\mathrm{Vx} . \square w) \equiv(\square \forall x . w)$

Proof：

1．$\vdash \square w \supset\left[\begin{array}{ll}w & \text { A } 口 \boldsymbol{~} \square\end{array}\right]$ by T20 and PR
2．$\vdash(\forall x . \square w) \supset \forall x .(w A \bigcirc \square w)$ by VV
3．$\vdash(\forall x . \square w) \supset[(\forall x . w)$ A $(\forall x . \bigcirc \square w)]$ by T＇41 and PR
4．$\vdash(\forall x . \square w) \supset((\forall x . w) A(O \forall x . \square$ w）］by T45 and PR
5．t－$(\forall x . \square$ w）$\supset(\square \forall x . w) \quad$ by DCI，taking u to be $\mathrm{Vx} . \mathrm{Cl} \mathrm{w}$ and v lo be $\forall x . w$

6． $\mathrm{t}-(\forall x . w)$ Ј w by A12
7．$\vdash(\square \forall x . w) 3 \square w \quad$ by $\square \square$
8．$\vdash(\square \forall x . w) \supset(\mathrm{Vx} . \mathrm{Cl} w) \quad$ by VI
9．$\vdash(\forall x . \mathbf{E t ~ w}) \equiv(\square \forall x . w) \quad$ by 5,8 and PR

T48．ト（3x．Ow $) \equiv(\diamond \exists x . w)$

Proof：

1．I－$(\forall x . \square \sim w) \equiv(\square \mathrm{vx} . \sim \mathrm{w})$
by T 47
2． $\mathrm{t}-(\forall x . \sim 0 \quad w) \equiv(\square-3 \mathrm{x} . \mathrm{w})$
3． $\mathrm{t}-(\sim \exists x . \diamond w) \equiv(\sim \diamond \exists x . w)$
by Al，A 11 and ERR（twice）

4．$\vdash(3 \mathrm{x} . \diamond w) \equiv(\diamond \exists x . w)$
by A1，A1 1 and PR
by PR

Theorem T47 implies the commutativily of V with CI：Both have a universal character，with one quantifying over individuals and the other quantifying over states．Similarly，theorem T48
implies the commutativity of $\mathbf{3}$ with 0 . The first two theorems (T45 and 1‘46) imply the commutativity of V and $\mathbf{3}$ with 0 .

The next two theorems arc consistent with the interpretation that the \mathbb{U} operator is universal with respect to its first argument and existential with respect to the second.

T49. $\vdash \forall x \cdot\left(w_{1} \cup w_{2}\right) \equiv\left(\forall x \cdot w_{1}\right) \cup w_{2}$ where x is not free in w_{2}
Proof:

$$
\begin{aligned}
& \text { 1. } \vdash w_{1} U w_{2} \supset\left[w_{2} \vee \quad\left(w_{1} \mathrm{~A} \quad \mathrm{O}\left(w_{1} \bigcup_{w_{2}}\right)\right)\right] \quad \text { by A9 and PR } \\
& \text { 2. } \vdash \forall x \cdot\left(w_{1} \cup w_{2}\right) \supset \forall x \cdot\left[w_{2} \vee\left(w_{1} \mathrm{~A} O\left(w_{1} \cup w_{2}\right)\right)\right] \quad \text { by } \forall \forall \\
& \text { 3. } \vdash \forall x \cdot\left(w_{1} U w_{2}\right) \supset\left[w_{2} \vee \forall x .\left(w_{1} \mathrm{~A} O\left(w_{1} \cup w_{2}\right)\right)\right] \quad \text { by VI and PR, } \\
& \text { since } \mathrm{x} \text { is not frce in } w_{2} \\
& \text { 4. t- } \forall x \cdot\left(w_{1} \mathbb{U}_{2} w_{2}\right) \supset\left[w_{2} \vee\left(\forall x \cdot w_{1} \text { A } \forall x . \mathrm{O}\left(w_{1} \mathbb{U} w_{2}\right)\right)\right] \quad \text { by } T 41 \text { and } \mathrm{PR} \\
& \text { 5. } \mathrm{t}-\forall x .\left(w_{1} \cup w_{2}\right) \supset\left[w_{2} \vee\left(\forall x . w_{1} \text { A } \mathbf{O} \quad \forall x .\left(w_{1} \cup w_{2}\right)\right)\right] \quad \text { by T45 and PR } \\
& \text { 6. t- } \forall x .\left(w_{1} U w_{2}\right) \supset \diamond w_{2} \quad \text { by } \Lambda 12, \mathrm{~A} 10 \text { and } \mathrm{PR} \\
& \text { 7. } \vdash \forall x \cdot\left(w_{1} \cup w_{2}\right) \supset\left(\forall x \cdot w_{1}\right) \bigcup w_{2} \quad \text { by } 5,6 \text { and RUI, } \\
& \text { taking } \mathrm{w} \text { to be } \forall x .\left(w_{1} \mathrm{U} w_{2}\right), \mathrm{u} \text { to be } \forall x \cdot w_{1} \text {, and } \mathrm{v} \text { to be } w_{2} \\
& \text { 8. } \vdash\left(\forall x . w_{1}\right) 3 w_{1} \quad \text { by A12 } \\
& \text { 9. } \vdash\left(\forall x . w_{1}\right) \cup w_{2} \supset w_{1} \mathcal{U} w_{2} \quad \text { by UU } \\
& \text { 10. } \vdash\left(\forall x \cdot w_{1}\right) \cup w_{2} \supset \forall x .\left(w_{1} \downarrow w_{2}\right) \quad \text { by } \forall I \text {, } \\
& \text { since } \mathrm{x} \text { is not free in } w_{2} \\
& \text { 11. } \vdash \forall x \cdot\left(w_{1} \mathcal{U} w_{2}\right) \equiv\left(\forall x \cdot w_{1}\right) \mathbb{U} w_{2} \\
& \text { by } 7,10 \text { and } \mathrm{P} R
\end{aligned}
$$

T50..トヨx. $\left(w_{1} \mathcal{U} w_{2}\right) \equiv w_{1} \mathcal{U}\left(\exists x \cdot w_{2}\right)$ where x is not free in w_{1}
Proof:

1. $\vdash w_{1} \mathrm{U} w_{2} \supset \diamond w_{2} \quad$ by A 10
2. t- $\exists x .\left(w_{1} \Downarrow w_{2}\right) \supset\left(\exists x . \diamond w_{2}\right) \quad$ by 33
3. t- $\exists x .\left(w_{1} \cup w_{2}\right) \supset\left(\diamond \exists x . w_{2}\right) \quad$ by T48 and PR

4 . $\vdash w_{1} \cup w_{2} \supset\left[w_{2} \vee\left(w_{1} \mathrm{~A} \quad \mathrm{O}\left(w_{1} \cup w_{2}\right)\right)\right] \quad$ by $\mathbf{A 9}$ and PR
5. $\vdash \exists x .\left(w_{1} \mathcal{U} w_{2}\right) \supset\left[\left(\exists x . w_{2}\right) \vee \exists x .\left(w_{1} A O\left(w_{1} \mathcal{U} w_{2}\right)\right)\right] \quad$ by T42, 33 and PR

6．$\quad t-\exists x \cdot\left(w_{1} \cup w_{2}\right) \supset\left[\left(\exists x \cdot w_{2}\right) \vee\left(w_{1} A \quad \exists x \cdot O\left(w_{1} \cup w_{2}\right)\right)\right]$

7．$\vdash \exists x \cdot\left(w_{1} \cup w_{2}\right) \supset\left(\left(3 x . w_{2}\right) \vee\left[w_{1} \wedge \bigcirc \exists x \cdot\left(w_{1} \cup w_{2}\right)\right]\right\}$
8． $\mathrm{t}-\exists x \cdot\left(w_{1} \cup w_{2}\right) \supset w_{1} \cup\left(\exists x . w_{2}\right)$
$9 . \vdash\left[w_{2} \vee\left(w_{1} \mathrm{~A} \quad \bigcirc\left(w_{1} \cup w_{2}\right)\right)\right] \supset w_{1} \cup w_{2}$ by $\Lambda 9$ and $P R$
$10 . \mathrm{t}-\exists x \cdot\left[w_{2} \vee\left(w_{1} \mathrm{~A} \quad \bigcirc\left(w_{1} \mathcal{U} w_{2}\right)\right)\right] 3 \quad \exists x \cdot\left(w_{1} \cup w_{2}\right)$ by 33

11．$\quad \mathbf{t}-\left[\left(\exists x . w_{2}\right) \vee \exists x \cdot\left(w_{1}\right.\right.$ А $\left.\left.\bigcirc\left(w_{1} \cup w_{2}\right)\right)\right] \supset \exists x \cdot\left(w_{1} \cup w_{2}\right)$ by T42 and PR

12．$\vdash\left[\left(\exists x . w_{2}\right) \vee\left(w_{1} \mathrm{~A} 3 x . \bigcirc\left(w_{1} \mathcal{U} w_{2}\right)\right)\right] \supset \exists x \cdot\left(w_{1} \cup w_{2}\right)$ since 2 is not frec in w_{1}

13．$\quad \mathrm{t}-\left[\left(\exists x . w_{2}\right) \vee\left(w_{1}\right.\right.$ А $\left.\left.\bigcirc \exists x \cdot\left(w_{1} \cup w_{2}\right)\right)\right] \supset \exists x \cdot\left(w_{1} \cup w_{2}\right) \quad$ by T46 and PR
14．I－$w_{1} \mathcal{U}\left(\exists x . w_{2}\right) \supset \exists x .\left(w_{1} \cup w_{2}\right)$ by LUI， taking u to be w_{1} ，v to be $\exists x . w_{2}$ and w to be $\exists x .\left(w_{1} \cup w_{2}\right)$

15．$\vdash \exists x .\left(w_{1} \cup w_{2}\right) \equiv w_{1} \mathcal{U}\left(\exists x \cdot w_{2}\right)$
by 8,14 and PR

While operators of similar character，i．e．，both universal or both existential，commute to yield equivalent formulas，operators of＇opposite character usually admit implication in one direction only．Thus we have：

T51．トヨ$w \supset$3x．w

T52．t－$\diamond \forall x . w \supset \vee x . \diamond w$

T53（a）．トヨx．$\left(w_{1} \mathcal{U} w_{2}\right) \supset\left(\exists x . w_{1}\right) \cup w_{2}$ where x is not free in w_{2}
$(\mathrm{b}) \cdot \vdash w_{1} \mathcal{U}\left(\forall x \cdot w_{2}\right) \supset \forall x .\left(w_{1} \mathbb{U} w_{2}\right) \quad$ where x is not free in w_{1}

Theorems of similar character are：
$\top 54(a) . \vdash \exists x .(u \mathcal{U} v) \supset(\exists x . u) \mathcal{U}(\exists x . v)$
$(\mathrm{b}) \cdot \vdash(\forall x . u) \bigcup(\forall x . v) \supset \forall x .(u \cup v)$

THE NEXT OPERATOR APPLIED TO TERMS：

The use of the next operator 0 applied Lo terms is governed by the axioms：

```
A14. \(\vdash 0 f\left(t_{1}, \ldots, t_{n}\right)=\int\left(O t_{1}, \ldots, 0 t_{n}\right)\)
```

 for any function \(f\) and terms \(t_{1}, \ldots, t_{n}\)
 A15. $\quad \mathrm{t}-\mathrm{O} p\left(t_{1}, \ldots, t_{n}\right) \equiv p\left(\mathrm{O} t_{1}, \ldots, \bigcirc t_{n}\right)$ for any predicate \mathbf{p} and terms t_{1}, \ldots, t_{n}

These axioms are consistent with the evaluation rules that we gave which stated that in order to evaluate an expression $0 \mathcal{E}\left(t_{1}, \ldots, \mathrm{t}\right.$), we can evaluate $\&\left(\mathrm{O} t_{1}, \ldots, 0 t_{n}\right)$ whether \mathcal{E} is a function or a predicate.

5. EQUALITY

Equality is handled by the following axioms:

AXIOMS:

A16. Reflexivity of Equality

$$
\mathbf{I}-\mathbf{t}=\mathbf{t} \text { for any term } t
$$

A17. Substitutivity of Equality

$$
\vdash\left(t_{1}=t_{2}\right) \supset\left[w\left(t_{1}, t_{1}\right) \equiv w\left(t_{1}, t_{2}\right)\right]
$$

where t_{2} is any term globally free for t_{1} in w and where w does not contain temporal operators
^18. $\vdash \mathrm{O}\left(t_{1}=t_{2}\right) \equiv\left(\mathrm{O} t_{1}=O t_{2}\right)$

We use $w\left(t_{1}, t_{2}\right)$ to indicate that t_{2} replaces some of the occurrences of t_{1} in w.

- The axiom A18 is a special case of A15 when the predicate p is the equality predicate.

Recall that a term t_{2} is said to be globally free for t_{1} in w if substitution of t_{2} for all frce occurrences of t_{1} in w: (a) does not create new bound occurrences of (global) variables, (i.e., t_{2} is free for t_{1} in w), and (b) docs not create new occurrences of local variables in the scope of a modal operator.

Note that the classical axiom for substitulivity of equality A 17

$$
\vdash\left(t_{1}=t_{2}\right) \supset\left[w\left(t_{1}, t_{1}\right) \equiv w\left(t_{1}, t_{2}\right)\right]
$$

(where t_{2} is free for t_{1} in w) is not correct if w contains temporal operators. We could take $w\left(t_{1}, t_{2}\right)$ abd] 0 旁 $40=t_{2}$) and deduce from Al7

$$
\vdash\left(t_{1}=t_{2}\right) \supset\left[\square\left(t_{1}=t_{1}\right) \mathbf{3} \quad \square\left(t_{1}=t_{2}\right)\right],
$$

i.e.,
which is not a valid statement (since $t_{1}=t_{2}$ may contain local variables).

T55. Commutativity of Equality

$$
\vdash\left(t_{1}=t_{2}\right) 3 \quad\left(t_{2}=t_{1}\right)
$$

Proof:

1. $\vdash\left(t_{1}=t_{2}\right) \supset\left[\left(t_{1}=t_{1}\right) \equiv\left(t_{2}=t_{1}\right)\right] \quad$ by Al7
2. $\vdash t_{1}=t_{1} \quad$ by A16
3. $\vdash\left(t_{1}=t_{2}\right) \supset\left(t_{2}=t_{1}\right)$
by 1,2 and PR

T56. Transitivity of Equality

$$
\vdash\left[\left(t_{1}=t_{2}\right) A\left(t_{2}=t_{3}\right)\right] \supset\left(t_{1}=t_{3}\right)
$$

Proof:

1. $\vdash\left(t_{1}=t_{2}\right) \supset\left[\left(t_{1}=t_{3}\right) \equiv\left(t_{2}=t_{3}\right)\right]$
by $\Lambda 17$
2. $\vdash\left[\left(t_{1}=t_{2}\right) \mathbf{A}\left(t_{2}=t_{3}\right)\right] \supset\left(t_{1}=t_{3}\right)$ by PR

T'57. Term Equality
甾g(1) 1 冒 $\left.=t_{2}\right) \supset\left[\tau\left(t_{1}, t_{1}\right)=\tau\left(t_{1}, t_{2}\right)\right]$ for any term τ
(b) $\vdash\left(t_{1}=t_{2}\right) \supset\left[\tau\left(t_{1}, t_{1}\right)=\tau\left(t_{1}, t_{2}\right)\right]$ provided τ does not contain the next operator.

Proof of (a):
By induction on the structure of τ.

Case: $\tau\left(t_{1}, t_{1}\right)=t_{1}$ and $\tau\left(t_{1}, t_{2}\right)=t_{1}$. Then

1. $\vdash t_{1}=t_{1}$
by A16
2. $\vdash \square\left(t_{1}=t_{2}\right) \mathbf{3}\left[\tau\left(t_{1}, t_{1}\right)=\tau\left(t_{1}, t_{2}\right)\right]$ by PR and defiaition of $\tau\left(t_{1}, t_{1}\right)$ and $\tau\left(t_{1}, t_{2}\right)$

Case：$\tau\left(t_{1}, t_{1}\right)=t_{1}$ and $\tau\left(t_{1}, t_{2}\right)=t_{2}$ ．Then

2．$\vdash \square\left(\mathbf{t} \mathbf{1}=t_{2}\right) \supset\left[\tau\left(t_{1}, t_{1}\right)=\tau\left(t_{1}, t_{2}\right)\right]$
by the definition of $\tau\left(t_{1}, t_{1}\right)$ and $\tau\left(t_{1}, t_{2}\right)$

Case：$\tau\left(t_{1}, t_{1}\right)=f\left(\tau_{1}\left(t_{1}, t_{1}\right), \ldots, \tau_{k}\left(t_{1}, t_{1}\right)\right)$ and $\tau\left(t_{1}, t_{2}\right)=f\left(\tau_{1}\left(t_{1}, t_{2}\right), \ldots, \tau_{k}\left(t_{1}, t_{2}\right)\right)$ ．Then
1．\quad I－$\square\left(t_{1}=t_{2}\right) \supset\left[\tau_{i}\left(t_{1}, t_{1}\right)=\tau_{i}\left(t_{1}, t_{2}\right)\right]$ ，for $i=1, \ldots, k$
by the induction assumption．
2．$\vdash \bigwedge_{i=1}^{k}\left[\tau_{i}\left(t_{1}, t_{1}\right)=\tau_{i}\left(t_{1}, t_{2}\right)\right] \supset$

$$
\left[f\left(\tau_{1}\left(t_{1}, t_{1}\right), \ldots, \tau_{k}\left(t_{1}, t_{1}\right)\right)=f\left(\tau_{1}\left(t_{1}, t_{2}\right), \ldots, \tau_{k}\left(t_{1}, t_{2}\right)\right)\right]
$$ by repeated application of A17 and using T56 for transitivity of equality．

A typical step in this repeated application is：

$$
\begin{aligned}
& \vdash\left[\tau_{i}\left(t_{1}, t_{1}\right)=\tau_{i}\left(t_{1}, t_{2}\right)\right] \supset \\
& \qquad \begin{array}{l}
{\left[f\left(\tau_{1}\left(t_{1}, t_{2}\right), \ldots, \tau_{i-1}\left(t_{1}, t_{2}\right), \tau_{i}\left(t_{1}, t_{1}\right), \ldots, \tau_{k}\left(t_{1}, t_{1}\right)\right)=\right.} \\
\left.\quad f\left(\tau_{1}\left(t_{1}, t_{2}\right), \ldots, \tau_{i-1}\left(t_{1}, t_{2}\right), \tau_{i}\left(t_{1}, t_{2}\right), \tau_{i+1}\left(t_{1}, t_{1}\right), \ldots, \tau_{k}\left(t_{1}, t_{1}\right)\right)\right]
\end{array}
\end{aligned}
$$

justified by A17 and the fact that $\tau_{i}\left(t_{1}, t_{2}\right)$ is free for $\tau_{i}\left(t_{1}, t_{1}\right)$ in $f(\ldots)$ since f does not contain any temporal operators．

3．$\quad \vdash \quad \square \quad\left(\mathbf{t} \mathbf{1}=t_{2}\right) \supset\left[\tau\left(t_{1}, t_{1}\right)=\tau\left(t_{1}, t_{2}\right)\right]$
by $1, \mathbf{2}, \mathrm{PR}$ anti the definition of $\tau\left(t_{1}, t_{1}\right)$ and $\tau\left(t_{1}, t_{2}\right)$.

Case：$\tau\left(t_{1}, t_{1}\right)=\bigcirc \tau^{\prime}\left(t_{1}, t_{1}\right)$ and，$\tau\left(t_{1}, t_{2}\right)=\mathbf{0} \tau^{\prime}\left(t_{1}, t_{2}\right)$ ．Then
1．$\vdash \square\left(t_{1}=t_{2}\right) \supset\left[\tau^{\prime}\left(t_{1}, t_{1}\right)=\tau^{\prime}\left(t_{1}, t_{2}\right)\right] \quad$ by the induction hypothesis

3．I－ $\mathrm{O}\left[\tau^{\prime}\left(t_{1}, t_{1}\right)=\tau^{\prime}\left(t_{1}, t_{2}\right)\right] \supset\left[O \tau^{\prime}\left(t_{1}, t_{1}\right)=\mathbf{0} \tau^{\prime}\left(t_{1}, t_{2}\right)\right] \quad$ by A1 8 and PR
4．$\vdash \square\left(t_{1}=t_{2}\right) 30 \square\left(t_{1}=t_{2}\right)$
by A7
5．卜兌配 $\left.t_{2}\right) \supset\left(O \tau^{\prime}\left(t_{1}, t_{1}\right)\right.$ 日 $\left.\square \tau^{\prime}\left(t_{1}, t_{2}\right)\right)$
by 4，2， 3 and PR
6．卜］军 - 日 $\left.t_{2}\right) \supset\left[\tau\left(t_{1}, t_{1}\right)\right.$ 日 $\left.\tau\left(t_{1}, t_{2}\right)\right]$ by the definition of $\tau\left(t_{1}, t_{1}\right), \tau\left(t_{1}, t_{2}\right)$ ．
Proof of（b）：
1． $\mathrm{I}-\left(t_{1}=t_{2}\right) \supset\left[\left(\tau\left(t_{1}\right)=\tau\left(t_{2}\right)\right) \equiv\left(\tau\left(t_{2}\right)=\tau\left(t_{2}\right)\right)\right] \quad$ by Al7（no 0 in $\left.\tau\right)$
2． $\mathbf{I}-\tau\left(t_{2}\right)=\tau\left(t_{2}\right)$ by A16
3. $\vdash\left(t_{1}=t_{2}\right) \supset\left(\tau\left(t_{1}\right)=\tau\left(t_{2}\right)\right)$
by 1,2 and PR

The following theorem generalizes $\mathbf{A l 7}$ to arbitrary formulas.

T58. Substitutivity of Equality

$$
\vdash \square\left(t_{1}=t_{2}\right) \supset\left[w\left(t_{1}, t_{1}\right) \equiv w\left(t_{1}, t_{2}\right)\right] \quad \text { where } t_{2} \text { is free for } t_{1} \text { in } w .
$$

Proof:

By induction on the structure of w.

Case: w contains no temporal operators. Then

1. $\vdash\left(t_{1}=t_{2}\right) \supset\left[w\left(t_{1}, t_{1}\right) \equiv w\left(t_{1}, t_{2}\right)\right] \quad$ by A17
2. $\vdash \square\left(t_{1}=t_{2}\right) \supset\left(t_{1}=t_{2}\right) \quad$ by A3
3. $\vdash \square\left(t_{1}=t_{2}\right) \supset\left[w\left(t_{1}, t_{1}\right) \equiv w\left(t_{1}, t_{2}\right)\right] \quad$ by MP

Case: $w\left(t_{1}, t_{2}\right)$ is of the form $\tau_{1}\left(t_{1}, t_{2}\right)=\tau_{2}\left(t_{1}, t_{2}\right)$. Then

1. $\vdash \square\left(t_{1}=t_{2}\right) \supset\left[\tau_{1}\left(t_{1}, t_{1}\right)=\tau_{1}\left(t_{1}, t_{2}\right)\right]$
by T'57
2. $\left.\vdash \square{ }_{(11}=t_{2}\right) \supset\left[\tau_{2}\left(t_{1}, t_{1}\right)=\tau_{2}\left(t_{1}, t_{2}\right)\right]$ by T57
3. \quad I - $\left[\tau_{1}\left(t_{1}, t_{1}\right)=\tau_{1}\left(t_{1}, t_{2}\right)\right] \supset\left[\left(\tau_{1}\left(t_{1}, t_{1}\right)=\tau_{2}\left(t_{1}, t_{1}\right)\right) \equiv\left(\tau_{1}\left(t_{1}, t_{2}\right)=\tau_{2}\left(t_{1}, t_{1}\right)\right)\right]$ by AL7 of the form $\left(0_{1}=O_{2}\right) \supset\left[\left(0_{1}=\tau_{2}\left(t_{1}, t_{1}\right)\right) \equiv\left(0_{2}=\tau_{2}\left(t_{1}, t_{1}\right)\right)\right]$ with $0_{1}=\tau_{1}\left(t_{1}, t_{1}\right)$ and $0_{2}=\tau_{1}\left(t_{1}, t_{2}\right)$
4. $\vdash \square\left(t_{1}=t_{2}\right) \supset\left[\left(\tau_{1}\left(t_{1}, t_{1}\right)=\tau_{2}\left(t_{1}, t_{1}\right)\right) \equiv\left(\tau_{1}\left(t_{1}, t_{2}\right)=\tau_{2}\left(t_{1}, t_{1}\right)\right)\right]$ by 1,3 and PR
5. $\vdash \square\left(t_{1}=t_{2}\right) \supset\left[\left(\tau_{1}\left(t_{1}, t_{2}\right)=\tau_{2}\left(t_{1}, t_{1}\right)\right) \equiv\left(\tau_{1}\left(t_{1}, t_{2}\right)=\tau_{2}\left(t_{1}, t_{2}\right)\right)\right]$ similarly by A17, using 2
6. $\vdash \square\left(t_{1}=t_{2}\right) \supset\left[\left(\tau_{1}\left(t_{1}, t_{1}\right)=\tau_{2}\left(t_{1}, t_{1}\right)\right) \equiv\left(\tau_{1}\left(t_{1}, t_{2}\right)=\tau_{2}\left(t_{1}, t_{2}\right)\right)\right]$ by 4,5 and PR
7. $\vdash \square\left(t_{1}=t_{2}\right) \supset\left[w\left(t_{1}, t_{1}\right) \equiv w\left(t_{1}, t_{2}\right)\right] \quad$ by the definition of $w\left(t_{1}, t_{2}\right)$

Case: w is of the form $\mathrm{Cl} u$. Then

1. $\vdash \square\left(t_{1}=t_{2}\right) \supset\left[u\left(t_{1}, t_{1}\right) \equiv u\left(t_{1}, t_{2}\right)\right]$
induction hypothesis
2. $\vdash \square\left(t_{1}=t_{2}\right)$
assumption

3．I－$u\left(t_{1}, t_{1}\right) \equiv u\left(t_{1}, t_{2}\right)$
by MP

by

5．$\square \square\left(t_{1}=t_{2}\right) \mathbf{3}\left[\square u\left(t_{1}, t_{1}\right) \equiv \square \mathbf{u}\left(\mathbf{t}, t_{2}\right)\right]$
by DED

by T3 and PR

The cases in which w is of the form $0 \mathrm{u}, 0 \mathrm{u}, \forall x . u$ and $\exists x . u$ are treated similarly，using the 0 O－rule，the 0 O－rule，the W－rule and the $\exists \exists$－rule，respectively．

Case：w is of the form $u \mathcal{U} v$ ．
1．$\square\left(\mathbf{m}\left(\mathbf{1}=t_{2}\right) \supset\left[u\left(t_{1}, t_{1}\right) \equiv u\left(t_{1}, t_{2}\right)\right] \quad\right.$ induction hypothesis
2．\square（ $\left.\mathfrak{t} 1=t_{2}\right) \supset\left[v\left(t_{1}, t_{1}\right) \equiv v\left(t_{1}, t_{2}\right)\right] \quad$ induction hypothesis

assumption
4． $\mathbf{I}-u\left(t_{1}, t_{1}\right) \equiv u\left(t_{1}, t_{2}\right) \quad$ by 1,3 and MP
5．$\vdash v\left(t_{1}, t_{1}\right) \equiv v\left(t_{1}, t_{2}\right)$ by 2,3 and MP

6．$\vdash\left(u\left(t_{1}, t_{1}\right) \cup v\left(t_{1}, t_{1}\right)\right) \equiv\left(u\left(t_{1}, t_{2}\right) \cup \cup v\left(t_{1}, t_{2}\right)\right)$
by 4,5 and ER

7．$\square \square\left(\mathbf{t}=t_{2}\right) \supset\left[\left(u\left(t_{1}, t_{1}\right) U v\left(t_{1}, t_{1}\right)\right) \equiv\left(u\left(t_{1}, t_{2}\right) U v\left(t_{1}, t_{2}\right)\right)\right] \quad$ by DED
8．卜口思田 $\left.t_{2}\right) \supset\left[\left(u\left(t_{1}, t_{1}\right) U v\left(t_{1}, t_{1}\right)\right) \equiv\left(u\left(t_{1}, t_{2}\right) U v\left(t_{1}, t_{2}\right)\right)\right]$ by T3 and PR

6．FRAME AXIOMS AND RULES

In this section we consider the consequences of the partition of the set of all variables into local and global variables．By the semantic definition，global variables are given their value by the global－assignment a，and these values do not vary from slate to state．Consequently，for a global variable u it must be universally true that $u=0$ ，i．e．，the value of u al any state is identical to its value in the next state（see $\Lambda 19$ below）．The following axioms arc called frame axioms in reference to the＂frame axiom＂in Hoare＇s deductive system for program verilication（［ILL］）．

Recall that we split the set of our symbols into two subsets：global and local symbols．The logical consequence of this convention is the following frame axiom：

119．Frame Axiom

$\vdash x=\bigcirc x \quad$ for every global variable x

Wc can therefore prove by induction on the structure of the term t and the formula w the following frame theorems：

T59．For a term t and formula w
（a）$\vdash t=O t$
where t is global，i．e．，does not contain local symbols
（b）$\vdash w \equiv \square w$ where w is global，i．e．，does not contain local symbols．
（c） $\mathfrak{-} w\left(\mathrm{O} y_{1}, \bigcirc \quad ., \mathrm{O} y_{n}\right) \equiv \mathrm{O} w\left(y_{1}, \bigcirc \quad \ldots, \mathrm{Y} ? \mathrm{a}\right)$
where y_{1}, \ldots, y_{n} are all the local variables in w ．

We present several frame theorems that facilitate moving global formulas in and out of the scope of temporal operators．

T60．ト $\square \quad\left(\mathrm{Wlv} w_{2}\right) \equiv\left(w_{1} \mathrm{v} \square \quad\right.$ w2 $)$
where w_{1} is global，i．e．，contains no local symbols．
Proof：

1．$\vdash \sim w_{1} \supset \square \sim w_{1}$	by T59b
2．$H\left[\square\left(w_{1} \mathbf{v} w_{2}\right)\right.$ 莦 $\left.\square \sim w_{1}\right]$ 盽 $\square\left(\left(\mathrm{Wlv} w_{2}\right) \mathbf{A} \sim w_{1}\right)$	by T 7 and PR
3．I－$\left[\left(w_{1} \mathbf{v} w_{2}\right) \mathbf{A} \sim w_{1}\right] \supset w_{2}$	by PT
4．$\vdash\left[\square\left(w_{1} \vee w_{2}\right) \mathrm{A} \quad \square \sim w_{1}\right] \supset \square w_{2}$	by 2，3，\square and I＇R
5．$\vdash\left[\square\left(w_{1} \vee \quad w_{2}\right) \mathrm{A} \quad \sim w_{1}\right] \supset \square w_{2}$	by 1， 4 and PR
	by PR
7．$\vdash w_{1} \supset \square 0 ¢ 0$	by T59b
8．$\vdash\left(w_{1}\right.$	by PR
明	by T9
	by 8,9 and PR
	by 6， 10 and PR 】

T61．$\vdash \diamond\left(w_{1} \mathrm{~A} \quad w_{2}\right) \equiv\left(\begin{array}{lll}w_{1} \mathrm{~A} & 0 & w_{2}\end{array}\right)$ where w_{1} is global．
Proof：The proof follows from T60 by duality．

A derived frame rule that we will be using is

Frame Rule - FR

$$
\frac{\vdash u \supset \diamond v}{1-(w \mathbf{A} \mathbf{u}) \supset \diamond\left(\begin{array}{l}
w \mathbf{A}
\end{array}\right)}
$$

where w is global

Proof:

1. $\vdash u \supset \diamond v$
given
2. $\vdash\left(\begin{array}{lll}w & \mathbf{A} & \mathbf{u}) \\ & \left(\begin{array}{l}\mathbf{w}\end{array} \mathbf{A} \diamond v\right.\end{array}\right)$
by PR
$3 \cdot \vdash(w \wedge \diamond v) \supset \diamond(w \wedge v)$
by T61 and PR
3. $\vdash(\mathrm{w} A u) \supset \diamond(w \mathrm{~A} v)$
by 2,3 and PR

C．DOMAIN PART

The next part of the system contains domain axioms that specify the necessary properties of the domain of intcrcsl．Thus，to reason about programs manipulating natural numbers，we need the set of Peano Axioms，and to reason about trees we need a set of axioms giving the basic properties of trees and the basic operations defined on them．

7．INDUCTION AXIOMS AND RULES

An essential axiom schema for many domains is the induction axiom schema．This（and all other schemas）should be formula14 to admit temporal instances as subformulas．Thus the induction principle for natural numbers can be stated as follows：

A20．Induction Axiom

$\vdash\{R(0) \mathrm{A} \forall n[R(n) \supset R(n+1)]\} \supset R(k)$
for any statement R ．

One instance of this axiom，which will be used later，is obtained by taking $R(n)$ to bc $\square 1(Q(n)$ つ $\diamond \psi):$

T62．Induction Theorem：

$$
\begin{aligned}
& \vdash\{\square(Q(0) \supset \diamond \psi) \wedge \forall n[\square(Q(n) \supset \diamond \psi) \supset] \text { 䬦湽当 } 1) \supset \diamond \psi)]\} \\
& \quad \supset \square(Q(k) \supset \diamond \psi) .
\end{aligned}
$$

Using this induction theorem we can derive the following uscful induction rule：

$$
\begin{aligned}
\diamond \text { Induction } & \text { Rule }-\diamond \mathrm{IND} \\
& \vdash Q(0) \supset \diamond \psi \\
& \vdash Q(n+1) \supset[\diamond \psi \vee \diamond Q(n)] \\
& \vdash Q(\mathrm{k}) \supset 0 \psi
\end{aligned}
$$

\diamond IND is useful for proving convergence of a loop：show that $\mathrm{Q}(0)$ guarantees 0ψ and that for each n ，either $Q(n+1)$ implies $Q(n)$ across the loop or it already establishes 0ψ and no further execution is ncccssary．Then for any $k, Q(k)$ ensures that 0ψ is established．

Proof：

3. t- $Q(n+1) \supset(0 \psi \vee 0 Q(n))$
given
4. $\vdash \square(Q(n) \supset \diamond \psi) \supset(\diamond Q(n) \supset \diamond \psi)$
by T6, 'T4 and PR
 by 3,4 and PR

by PR
7. $\vdash \square l O(Q(n) \supset \diamond \psi) \supset \square(Q(n+l) \supset \diamond \psi)$

A $\because \backsim \square \square(Q(n) \supset \diamond \psi) \square \square l(Q(n+l) \supset \diamond \psi)$
$4 \vdash \forall n[\square(Q(n) \supset 0 \psi) \supset \square(Q(n+1) \supset 0 \psi)]$
$10 . \vdash \square(Q(k) \supset \diamond \psi)$
by 2,9 and T62
11. $\vdash Q(k) \supset \diamond \psi$
by A3 and MP

While induction over the natural numbers is usually sufficient in order to prove properties of sequential programs, we need induction over more general orderings in order to reason about concurrent prograrns ([LPS]). Thus we have to formulate a more general induction principle over arbitrary well-founded orderings.

Let (A, \prec) be a partially ordered set. We call the ordering $\prec \mathbf{a}$ well-founded ordering if there exists no infinitely decreasing sequence of elements in A:

$$
\alpha_{1} \succ \alpha_{2} \succ \alpha_{3} \succ \ldots
$$

For each well-founded ordering (A, \prec), the following is a valid induction rule:

$$
\begin{aligned}
& \text { R5. Well-Founded Induction Rule - WIND } \\
& \qquad \frac{\vdash \forall \beta[(\beta \prec \alpha) \supset w(\beta)] \supset w(\alpha)}{\vdash w(\alpha)}
\end{aligned}
$$

- This rule should hold for an arbitrary temporal formula $w(a)$ dependent on a global variable $\alpha \in \mathrm{A}$, and we adopt it as a primitive inference rule.

To justify the rule semantically we may argue as follows:
Assume that the premise Lo the rule is true but the conclusion is not. Then there must exist a model M and an α_{1} such that $w\left(\alpha_{1}\right)$ is false under M. By the promise there must exist some α_{2} such Lhat $\alpha_{2} \prec \alpha_{1}$ and $w\left(\alpha_{2}\right)$ is lalse under M. Arguing in a similar way wc obtain an inlinitely decreasing sequence:

$$
\alpha_{1} \succ \alpha_{2} \succ \alpha_{3} \succ \ldots
$$

such that for each $i, w\left(\alpha_{i}\right)$ is false under M. This of course contradicts the well foundcdncss of (A, \prec).

Note that the induction axiom and rules can be derived from WIND by taking (A, ఒ) Lo be $(N,<)$.

In order to use the WIND rule, one has to establish that the ordering \prec is indeed a well-founded ordering. Several specific orderings are known to be well-founded (such as lexicographic ordering over tuples of integers, multisets, etc.), and may be freely used. I lowever the general statement that an ordering ' \prec ' is well-founded is a second order statement which may require second order reasoning for its establishment.

By substitution of a special form of a temporal formula we can obtain the following induction principle for 0 formulas:

Well-Founded 0 Induction Rule .- OWIND

$$
\frac{\vdash w(\alpha) \supset \diamond(\psi \vee \exists \beta[(\beta \prec \alpha) \wedge w(\beta)])}{\vdash w(\alpha) \supset 0 \psi}
$$

WC show that \diamond WIND follows from WIND.

Proof:

1. $\vdash w(\alpha) \supset \diamond(\psi \vee \exists \beta[(\beta \prec \alpha) \wedge w(\beta)])$
given
2. $\vdash w(\alpha) \supset(\diamond \psi \vee \diamond \exists \beta[(\beta \prec \alpha) \wedge w(\beta)])$
3. $\vdash \square(\exists \beta[(\beta \prec \alpha) \wedge w(\beta)] \supset \diamond \psi) \supset$
$(\diamond \exists \beta[(\beta \prec \alpha) \wedge w(\beta)] \supset \diamond \psi) \quad$ by T6, T4 and PR

4. $\vdash \square(\exists \beta[(\beta \prec \alpha) \wedge w(\beta)] \supset \diamond \psi) \supset(w(\alpha) \supset \diamond \psi) \quad$ by PR
5. $\vdash(\exists \beta[(\beta \prec$ a) A $w(\beta)] \supset \diamond \psi) \equiv(\sim \exists \beta[(\beta \prec \alpha)$ A $w(\beta)] \vee \diamond \psi)$ by PT
6. $\vdash(\sim \exists \beta[(\beta \prec \alpha) \mathrm{A} w(\beta)] \vee \diamond \psi) \equiv(\forall \beta[\sim(\beta \prec \alpha) \vee \sim w(\beta)] \vee \diamond \psi)$
by $\Lambda 11, \mathrm{ER}$ and PR
7. $\quad I-(\forall \beta[\sim(\beta \prec \alpha) \vee \sim w(\beta)]$ V $0 \psi) \equiv \forall \beta[(\beta \prec \alpha) \supset(w(\beta) \supset \diamond \psi)]$
by T43, PR and ER, since 0ψ does not depend on β
8. $\vdash(\exists \beta[(\beta \prec \alpha) \wedge w(\beta)] \supset \diamond \psi) \equiv \forall \beta[(\beta \prec \alpha) \supset(w(\beta) \supset \diamond \psi)]$
by $6,7,8$ and PR
9. $\vdash \square \forall \beta[(\beta \prec \alpha) \supset(w(\beta) \supset \diamond \psi)] \supset(w(\alpha) \supset \diamond \psi) \quad$ by 9,5 and ER
10. $\quad \mathrm{t}-\square \quad \mathrm{lVp}[(/ \mathrm{I} \prec \alpha) \supset(w(\beta) \supset \diamond \psi)] \supset \square \quad(\mathrm{w}(\mathrm{a}) \supset \diamond \psi)$ by T3, $\square \square$ and PR

11. I- $\forall \beta[(\beta \prec \alpha) \supset \square(w(\beta) \supset \diamond \psi)] \supset \square(\mathrm{w}(\mathrm{cy}) \supset \diamond \psi)$
by T60, ER and PR, since ($\beta \prec a$) is global
 by WIND, taking $w(a)$ to be $\square(w(\alpha) \supset O \psi)$
12. $\vdash \mathrm{w}(\mathrm{a}) 3 \diamond \psi$ by A3 and PR

D. PROGRAM PART

Our proof system must be augmented by additional axioms that reflect the structure of the program under consideration. The additional axioms constrain the state sequences to be exactly the set of execution sequences of the program under study. This relieves us from the need to include program text explicitly in the system; all the necessary information is captured by the additional axioms.

8. PROGRAMS AND COMPUTATIONS

In our model a concurrent program consists of m parallel processes:

$$
P: \quad \bar{y}:=g(\bar{x}) ;\left[P_{1}\|\ldots\| P_{m}\right] .
$$

Each process P_{i} is represented as a transition graph with locations (nodes) $\mathcal{L}_{i}=\left\{\ell_{0}^{i}, \ldots, \ell_{t}^{i}\right\}$. The edges in the graph are labelled by guarded commands of the form $c(\bar{y}) \rightarrow[\bar{y}:=f(\bar{y})]$ whose meaning is that if $c(\bar{y})$ is true the edge may bc traversed while replacing \bar{y} by $f(\bar{y})$.

Let $\ell, \ell_{1}, \ell_{2}, \ldots, \ell_{k} \in L_{i}$ be locations in process P_{i} :

The variables $\bar{y}=\left(y_{1}, \ldots, y_{n}\right)$ are shared by all processes. We define $E_{\ell}(\bar{y})=c_{1}(\bar{y}) \vee \ldots \vee$ $c_{k}(\bar{y})$ to be the exit condition at node ℓ. We do not require' that the conditions c_{i} be either exclusive or ex haustive.

The advantage of the transition graph representation is that programs arc represented in a uniform way and that we have only to deal with one type of instruction. Wc show first that programs represented in a linear text form can easily be translated into graph form.

Assume that a linear text program allows the following types of instructions:
Assignment:

$$
\bar{\gamma}:=f(\bar{y})
$$

Conditional Branch: if $p(\bar{y})$ then go to ℓ_{1} else go to ℓ_{2}

Halt:
 halt

Waiting loop: loop until $p(\bar{y})$
loop while $p(\bar{y})$
and the semaphore instructions

Request:	request (\mathbf{y})
Release:	release (y)

A linear text program for each of the processes has the following form:
$\ell_{0}: I_{0}$
$\ell_{1}: I_{1}$

$$
\ell_{t}: \text { halt or go to } \ell_{j}
$$

where $\ell_{0}, \ell_{1}, \ldots, \ell_{t}$ are labels and I_{0}, I_{1}, \ldots are instructions from the list above.
The graph representation of such a program for process P_{i} will be a labelled graph with $\mathcal{L}_{i}=\left\{\ell_{0}, \ldots, \ell_{t}\right\}$ as the set of nodes. For each instruction I at label $\ell \in \mathcal{L}_{i}$ we construct edges as follows:

- for the instruction
$\ell: \bar{y}:=f(\bar{y})$
$\ell^{\prime}:$
construct

- for the instruction
$\ell:$ if $p(\bar{y})$ then go to ℓ^{\prime} else go to $\ell^{\prime \prime}$
$\ell^{\prime}:$
construct

- for the instruction
$\ell:$ if $p(\bar{y})$ then go to ℓ^{\prime}
$\ell^{\prime \prime}$:
construct

- for the instruction
$\ell:$ if $p(\bar{y})$ then $\bar{y}:=f(\bar{y})$
ℓ^{\prime} :
construct

- for the instruction
ℓ : loop until $p(\bar{y})$
ℓ^{\prime} :
construct

. $>$ for the instruction
ℓ : loop while $\mathrm{p}(\mathrm{y})$
ℓ^{\prime} :
construct

- for the instruction
$\ell:$ request(y)
ℓ^{\prime} :
construct

- for the instruction
ℓ : release(y)
$\ell^{\prime}:$
construct

For halt at label ℓ we construct no edges out of ℓ.
The actual translation into graph form need not be carried out explicitly. Rather, the general axiomatic description of transition diagrams can be easily translated to axioms for each of the types of instructions in the linear text form.

A state of the prograrn P is a tuple of the form $s=\langle\bar{\ell} ; \bar{\eta}\rangle$ with $\bar{\ell} \in \mathcal{L}_{1} \mathbf{x} \ldots \mathbf{x} \mathcal{L}_{m}$ and $\bar{\eta} \in D^{n}$, where \mathbf{D} is the domain over which the program variables y_{1}, \ldots, y_{n} range. The vector $\bar{\ell}=\left(\mathrm{a}^{\prime}, \ldots, \ell^{m}\right)$ is the set of current locations which are next to be executed in each of the processes. The vector $\bar{\eta}$ is the set of current values assumed by the prograrn variables \bar{y} at state s.

Let $s=\left\langle\ell^{1}, \ldots, \ell^{i}, \ldots, \ell^{m} ; \bar{\eta}\right\rangle$ be a state. We say that process P_{i} is enabled on s if $E_{\ell^{i}}(\bar{\eta})=$ true. This implies that if we let P_{i} run at this point, there is at least one condition c_{j} among the edges departing from ℓ^{i} that is true. Otherwise, wC say that P_{i} is disabled on s. An example of a disabled process is the case where ℓ^{i} labels an instruction request (y) and $\mathrm{y}=0$. Another example is that of ℓ^{i} labeling a halt statement. A state is defined to be terminal if no P_{i} is enabled on it.

Given a program P wc define the notion of a computation step of P.
Let $s=\left\langle\ell^{1}, \ldots, \ell^{m} ; \bar{\eta}\right\rangle$ and $\tilde{s}=\left\langle\tilde{\ell^{1}}, \ldots, \tilde{\ell}, \tilde{\tilde{\eta}}\right\rangle$ be two states of P. Let τ be a transition in P_{i} of the form:

such that $c(\bar{\eta})=$ true, $\tilde{\bar{\eta}}=f(\bar{\eta})$, and for every $j \neq i, \tilde{\ell_{j}}=\ell^{j}$. Then we say that \tilde{s} can be obtained from s by a Pi-step (a single computation step), and write

$$
s \xrightarrow{P_{i}} \tilde{s} .
$$

An initialized admissible computation of a program P for an input $\bar{x}=\bar{\xi}$ is a labelled maximal - sequence of states of P :

$$
\sigma: s_{0} \xrightarrow{P_{i_{1}}} s_{1} \xrightarrow{P_{i_{2}}} s_{2} \xrightarrow{P_{i_{3}}} s_{3} \longrightarrow \ldots
$$

which satisfies the following three conditions. (The sequence σ is considered maximal if it cannot be extended, i.e., it is either infinite or ends with a state s_{k} which is terminal.)

A. Initialization:

The first state s_{0} has the form:

$$
s_{0}=\left\langle\bar{\ell}_{0} ; g(\bar{\xi})\right\rangle
$$

where $\bar{\ell}_{0}=\left(\ell_{0}^{1}, \ldots, \ell_{0}^{m}\right)$ is the vector of initial locations. The values $g(\bar{\xi})$ are the initial values assigned to the \bar{y} variables for the input ξ.

B. State to State Sequencing:

Every step in the computation $s \xrightarrow{P_{i}} \tilde{s}$, is justified by a Pi-step.

C. Fairness:

Every P_{i} which is enabled on infinitely many states in σ rnust be activated infinitely many times in σ, i.e., there must be an infinite number of P_{i}-steps in σ.

We define an admissible computation of P for input $\bar{\xi}$ to be either an initialized admissible computation or a suffix of an initialized admissible computation.

Thus the class of admissible computations is closed under the operation of taking the suffix. This is needed in order to ensure soundness of the inference rule $\square \mathrm{I}$ (123). Wc denote the class of all $\bar{\xi}$-admissible computations of a program P by $\mathcal{A}(P, \bar{\xi})$.

An adrnissible computation is said to be convergent if it is finite:

$$
\sigma: s_{0} \xrightarrow{P_{i_{1}}} s_{1} \longrightarrow \ldots \xrightarrow{P_{i_{f}}} s_{f} .
$$

If the terminal state s_{f} in a convergent computation is of the form $s_{f}=\left\langle\ell_{t}^{1}, \ldots, \ell_{t}^{m} ; \bar{\eta}\right\rangle$, where each ℓ_{t}^{i} labels a halt instruction, we say that the computation has terminated. Otherwise, we say that the computation has blocked or is deadlocked.

In order to describe properties of states we introduce a vector of locution variables $\bar{\pi}=\left(\pi_{1}, \ldots, \pi_{m}\right)$. Each π_{i} ranges over \mathcal{L}_{i}, and assumes the location value ℓ^{i} in a state

$$
s=\left\langle\ell^{1}, \ldots, \ell^{i}, \ldots, \ell^{m} ; \bar{\eta}\right\rangle
$$

Thus we may describe a state $s=\langle\bar{\ell} ; \bar{\eta}\rangle$ by saying that in this state $\bar{\pi}=\bar{\ell}$ and $\bar{y}=\bar{\eta}$.
^ state formula $Q=Q(\bar{\pi} ; \bar{y})$ is any formula which contains no temporal operators. It is built up of terms and predicates over the location and program variables ($\overline{\bar{\pi}} ; \overline{\mathrm{y}}$) and may also refer to global variables.

We frequently abbreviate the statement $\pi_{i}=\ell$ to $a t \boldsymbol{\ell}$. Since the \mathcal{L}_{i} 's are disjoint, there is no dilliculty in identifying the particular π_{i} which assumes the value ℓ.

Let us consider a program P over a domain \mathbf{D} with fixed interpretation I for all the predicate, function and individual constant symbols. A model M is said to be admissible for P if it has the form:

$$
\mathrm{M}=(\mathbf{I}, \alpha, \hat{\sigma})
$$

where α and $\hat{\sigma}$ satisfy the following condition:
There exists an $\alpha[\bar{x}]$-admissible comnutation $\sigma \in \mathcal{A}(P, \alpha[\bar{x}])$ such that either

$$
\begin{aligned}
& \sigma \text { is infinite: } \sigma=s_{0} \xrightarrow{P_{i_{1}}} s_{1} \xrightarrow{P_{i_{2}}} \mathbf{s} 2 \longrightarrow s_{3} \ldots \\
& \text { and } \\
& \hat{\sigma}=\text { so, } s_{1}, 52, \ldots
\end{aligned}
$$

or

$$
\sigma \text { is finite: } \sigma=s_{0} \xrightarrow{P_{i_{1}}} s_{1} \xrightarrow{P_{i_{2}}} s_{2} \longrightarrow \ldots \xrightarrow{P_{i_{f}}} s_{f}
$$

and then

$$
\hat{\boldsymbol{\sigma}}=s_{0}, s_{1}, 52, \ldots, s_{f}, s_{f}, \ldots{ }^{\prime}
$$

Thus we force $\hat{\sigma}$ to be always infinite by indefinitely repeating the last state of $\boldsymbol{\sigma}$ if it is finite. This corresponds to our intuition that while the computation may have terminated, time still marches on, but no furl her change in the program will ever occur.

Let us denote the class of all admissible models for a program P by $\mathrm{C}(\mathrm{P})$. Note that this class, differently from $\mathrm{A}(P, \bar{\xi})$, contains computations corresponding to different inputs.

Wc define the stale formula stating that a process P_{i} is enabled as follows:

$$
\operatorname{Enabled}\left(I_{i} ; \bar{\pi} ; \bar{y}\right)=\bigwedge_{\ell \in L_{i}}\left[\left(\pi_{i}=\ell\right) \supset E_{\ell}(\bar{y})\right] .
$$

For the complete program P we defined

$$
\operatorname{Enabled}(P ; \bar{\pi} ; \bar{y})=\bigvee_{i=1}^{m} \operatorname{Enablcd}\left(P_{i} ; \bar{\pi} ; \bar{y}\right)
$$

Thus a state $s=\langle\bar{\ell} ; \vec{\eta}\rangle$ is terrninal iff

$$
\operatorname{Enabled}(P ; \bar{\ell} ; \bar{\eta})=\text { false }
$$

and we may define
Terminal $(\bar{\pi} ; \bar{y}) \equiv \sim \operatorname{Enablcd}(P ; \bar{\pi} ; \bar{y})$.

Let the following be a transition τ in process P_{i} :

We define the transformation associated with the transition τ by:

$$
r_{\tau}(\bar{\pi} ; \bar{y}) .\left(\bar{\pi}\left[\ell^{\prime} / \pi_{i}\right] ; f(\bar{y})\right) .
$$

The transformation is obtained by replacing the current value ℓ of π_{i} by ℓ^{\prime} and the values of \bar{y} by $\mathrm{f}(\mathrm{Y})^{*}$

Let $\varphi(\bar{\pi} ; \bar{y})$ and $\psi(\bar{\pi} ; \bar{y})$ be two state formulas. WC say:

- The transition τ leads from φ to ψ if the following implication is valid:

$$
[\varphi(\bar{\pi} ; \bar{y}) \mathrm{A} \text { at } \ell \mathrm{A} c(\bar{y})] \supset \psi\left(r_{\tau}(\bar{\pi} ; \bar{y})\right)
$$

- The process P_{i} feuds from φ to ψ if every transition τ in P_{i} leads from φ to ψ.
- The program \mathbf{P} feuds from φ to ψ if every P_{i} leads from φ to ψ.

We are ready now to give a temporal axiornatization for the notion of computation under the program \mathbf{P}.

9. AXIOMS AND RULES FOR CONCURRENT PROGRAMS

The first axiom states that the location variable π_{i} may only assume values in \mathcal{L}_{i}.

```
A21. Location Axiom -. LOC
    \vdash
```

This is an abbreviation for:

$$
\vdash\left(\pi_{i}=\ell_{0}^{i}\right) \vee\left(\pi_{i}=\ell_{1}^{i}\right) \vee \ldots \vee\left(\pi_{i}=\ell_{t}^{i}\right)
$$

Since all the locations are disjoint, it also follows from the equality axioms that π_{i} may be equal to at most one ℓ_{j}^{i} at a time.

For each of the three requirements defining an admissible computation we have a corresponding inference rule scheme:

R6. Initialization -- INITT
For an arbitrary temporal formula w :

$$
\frac{\vdash\left[a t \bar{\ell}_{0} \mathrm{~A} \bar{y}=\mathrm{y}(\mathrm{z})\right] \supset \square \mathrm{w}}{\vdash \mathrm{clw}}
$$

For let us assume that the premise to this rule holds. This implies that $\mathrm{Cl} w$ is true for all initialized computations. By the semantic definition of \square, this implies that w is true for every suffix of an initialized computation, i.e., for every admissible computation. Thus, w is $\mathrm{C}(\mathrm{P})$-valid, and by generalization ($\square \mathrm{I}$) so is $\square \quad$ lzu.

R7. Transition -- TRNS

Let $\varphi(\bar{\pi} ; \bar{y})$ and $\psi(\bar{\pi} ; \bar{y})$ be two state formulas.
$\vdash P$ leads from φ to ψ
$\vdash[\varphi(\bar{\pi} ; \bar{y}) \wedge \operatorname{Terminal}(\bar{\pi} ; \bar{y})] \supset \psi(\bar{\pi} ; \bar{y})$
$\vdash \varphi \supset \bigcirc \psi$

Indeed let s be a state in the sequence $\hat{\sigma}$ corresponding to an admissible computation σ, and let s^{\prime} be its successor in $\hat{\sigma}$. Assume that $\varphi(: s)$ is true. There are two cases to bc considered. In the first case, s^{\prime} is derived from s by a Pi-step for some $i=1, \ldots, m$. But then, by the first premise, P_{i} leads from φ to ψ and therefore ψ must be true for s^{\prime}. In the other case, s is terminal and $s^{\prime}=s$ the repetition of the terminal state of a finite computation. But then s is terminal and satisfies the antecedent of the second premise, leading to $\psi(s)=\psi\left(s^{\prime}\right)=t r u e$. Hence, in both cases $\psi\left(s^{\prime}\right)$ must hold and the conclusion of the rule follows.

Note that the first premise lo this rule requires establishing rnany conditions involving the individual transitions of each of the proccsscs. However, by examining the definitions of "leading from φ to ψ " WC see that they are all expressible as classical statements involving no temporal operators. Therefore this premise should bc provable from the domain axioms plus the usual predicate calculus proof system. The second premise is also classical, and ensures the consequence after the sequence has reached a terminal state.

R8. Fairness .- FAIR

Let $\varphi(\bar{\pi} ; \bar{y})$ and $\psi(\bar{\pi} ; \bar{y})$ be two state formulas and P_{k} be one of the processes.
A. I- P leads from φ to $\varphi \vee \psi$
B. t- P_{k} leads frorn φ to ψ
$\vdash\left[\varphi\right.$ A $\left.\square \diamond \operatorname{Enabled}\left(P_{k}\right)\right] \supset \varphi \mathbb{U} \psi$

To give a semantic justification of this rule, consider a computation such that φ is true initially. By A, φ will hold until ψ is realized, if ever. By B , once P_{k} will bc activated in a state satisfying φ it will achieve ψ in one step. Consider now a sequence σ such that φ A $\square 0$ Enabled $\left(P_{k}\right)$ is true on σ. This means that φ is initially true and P_{k} is enabled infinitely many times in σ. By fairness, P_{k} will eventually be activated, which, if ψ has not been realized before, will achieve ψ in one step.

Since $(\varphi U \psi) \supset 0 \psi$, wC often use the FAIR rule in order to derive the consequence

$$
\left[\varphi \text { A } \square 0 \quad \operatorname{Enabled}\left(P_{k}\right)\right] \supset 0 \quad \psi
$$

There arc several derived rules that can bc obtained from the above axiomatization,

```
Invariance Rule - INV
    \vdashP leads from \varphi to \varphi
```

Proof：
1．I－P leads from φ to φ
given
2．$\vdash[\varphi \wedge$ Terminal $] \supset \varphi$ by PT
3．$\vdash \varphi \supset \bigcirc \varphi$ by TRNS

4．$\vdash \varphi \supset \square \varphi$

Initialized Invariance Rule－－IINV

Let φ be a state formula
－－$\quad \mathbf{t}-\left[a t \bar{\ell}_{0} A \bar{y}=\mathbf{g}(Z)\right] \supset \varphi$
$\vdash P$ leads from φ to φ
上马同

Proof：
1．$\vdash\left[\right.$ at $\left.\bar{\ell}_{0} \mathbf{A} \bar{y}=\mathbf{g}(\mathrm{F})\right] \supset \varphi \quad$ given
2．t－P leads from φ to φ given
3．\vdash •吅同 by 2 and INV
4．$\vdash\left[\right.$ at $\left.\ell_{0} A \bar{y}=\mathbf{g}(Z)\right] \supset \square \quad$ lp by 1,3 and $P R$
5．$\vdash \square \varphi$

The IINV rule is the rule most often used in order to establish invariance properties of programs．
Unless Establishment Rule－－ $\mathfrak{L} E R$
Let φ be a state formula
$\frac{\vdash P \text { leads from } \varphi \text { to } \varphi \vee \psi}{\vdash \varphi \supset(\varphi \mathfrak{U} \psi)}$

Proof：
1．I－P leads from φ to φ v ψ
2. $\vdash \varphi \supset(\varphi \vee \psi)$ by PT
3. $\vdash[\varphi \wedge$ Terminal $] \supset(\varphi \vee \psi)$
by PR
4. $\vdash \varphi \supset O(\varphi \vee \psi)$
by 1,3 and TRNS
5. $\vdash \varphi \supset(\varphi \mathfrak{U} \psi)$
by $\mathfrak{L I}$

The following rule is a consequence of the FAIR rule.

Eventuality Rule ---- EVNT

Let $\varphi(\bar{\pi} ; \bar{y})$ and $\psi(\bar{\pi} ; \bar{y})$ be two state formulas and P_{k} one of the processes.
A. I- \mathbf{P} leads from φ to $\varphi \vee \psi$
13. $1 P_{k}$ leads from φ to ψ
C. $\vdash \varphi \supset \diamond\left(\psi \mathbf{v} \quad\right.$ Enabled $\left.\left(I_{k}\right)\right)$
$\vdash \varphi \supset \varphi U \psi$

Proof:

1. I- P leads from φ to $\varphi \vee \psi$ given
2. t- P_{k} leads from φ to ψ given
3. $\mathbf{t}-\varphi \supset \mathbf{0}\left(\psi \mathbf{v} \operatorname{Enabled}\left(P_{k}\right)\right)$ given
4. $\mathrm{t}-\left[\begin{array}{lll}\varphi & \left.\mathrm{A} \square \mathrm{Obhubled}\left(P_{k}\right)\right] \supset \varphi \| \psi \quad \text { by } 1,2 \text { and FAIR }\end{array}\right.$
5. $\vdash \varphi \supset(\square \varphi \vee \varphi 《 \psi)$
by 1 and CINV
6. । - $[\varphi$ A $\square \sim \psi] \supset \diamond \operatorname{Enabled}\left(P_{k}\right)$
7. $\square(\mathrm{pA} \square \sim \psi) \supset \mathrm{ClOEnabled}\left(P_{k}\right)$
8. $\vdash[\square \varphi$ A $\square \sim \psi] \supset \square \diamond \operatorname{Enabled}\left(P_{k}\right)$
9. $\quad \mathrm{I}-\left[\square \varphi \mathrm{A} \sim \mathrm{Cl} \diamond \operatorname{Enabled}\left(P_{k}\right)\right] \supset \diamond \psi$
10. $\vdash \square \varphi \supset \diamond \psi$
11. $\vdash \square \varphi \supset \varphi U \psi$
12. $\vdash \varphi \supset \varphi$ U ψ
by $3, \mathrm{~T} 8, ~ \Lambda 1$ and PR
by
by T3, T7 and PR
by $\Lambda 1$ and $P R$
by $4,9, \mathrm{~A} 3, ~ \Lambda 10$ and PR by $10, \mathrm{~T} 24$ and PR by 5,11 and PR

In contrast with earlier rules, premise C of EVN T is not purely classical since it contains the temporal operator 0 . Since C has a form similar to the conclusion of the EVN'T rule, it is Lo be expected lhat its derivation will require once more the application of the EVNT rule. This seems
to imply circular reasoning. However, note that at each nested application of the EVN'T rule, another I_{k} is taken out of consideration. This is because in trying to establish 0 Lnabled $\left(P_{k}\right)$ we need not consider any P_{k}-steps at all, since when they are possible, P_{k} is already enabled.

A useful special case of C that frequently suffices for the application of the EVNT rule is:

$C^{\prime}: \vdash \varphi 3 \quad\left[\psi \vee \quad \operatorname{Enabled}\left(P_{k}\right)\right]$.

Note that the EVN'T rule can also be used to establish properties of the form

$$
\varphi \supset \diamond \psi
$$

since $\varphi U \psi \supset \diamond \psi$.
The EVNT rule is the one most often used in order to establish both eventuality (livencss) properties and precedence properties.

E. EXAMPLES

In this section we present several examples of proofs of properties of programs using the proof system described above.

10. EXAMPLE 1: DISTRIBUTED GCD

Let us consider the following example of a program computing the greatest common divisor of two positive integers in a distributed manner.

$$
\begin{array}{ll}
\qquad & \left(y_{1}, y_{2}\right):=\left(x_{1}, x_{2}\right) \\
\ell_{0}: \text { if } y_{1}>y_{2} \text { then } y_{1}:=y_{1}-y_{2} & m_{0}: \text { if } y_{1}<y_{2} \text { then } y_{2}:=y_{2}-y_{1} \\
\ell_{1}: \text { if } y_{1} \neq y_{2} \text { then go to } \ell_{0} & m_{1}: \text { if } y_{1} \neq y_{2} \text { then go to } m_{0} \\
\ell_{2}: \text { halt } & m_{2}: \text { halt } \\
& -P_{1}- \\
& -P_{2}-
\end{array}
$$

We wish to prove total correctness for this program, i.e.,

Theorem:

$$
\vdash\left[a t\left(\ell_{0}, m_{0}\right) \wedge\left(y_{1}, y_{2}\right)=\quad\left(x_{1}, x_{2}\right)\right] \supset \diamond\left[a t\left(\ell_{2}, m_{2}\right) \wedge y_{1}=\quad \operatorname{gcd}\left(x_{1}, x_{2}\right)\right]
$$

We will split lhe proof into two parts, proving separately invariance and termination.

Lemma A:

$$
\vdash \square\left[g c d\left(y_{1}, y_{2}\right)=\operatorname{gcd}\left(x_{1}, x_{2}\right)\right]
$$

Proof of Lemma A:

Let us denote $\operatorname{gcd}\left(y_{1}, y_{2}\right)=\operatorname{gcd}\left(x_{1}, x_{2}\right)$ by $\tilde{\varphi}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$.
It is easy to check that every transition in P leads from $\tilde{\varphi}$ to $\tilde{\varphi}$. Nlso

$$
\vdash\left[\left(y_{1}, y_{2}\right)=\left(x_{1}, x_{2}\right)\right] \supset \tilde{\varphi}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)
$$

Thus we have the two premises to the IINV rule, which yields the desired result.

Lemma B:

$$
\begin{aligned}
&\left.\vdash\left[a t \ell_{0,1} \wedge a t m_{0,1} \wedge\left(y_{1}, y_{2}\right)>0 \text { A }\left(y_{1}+y_{2}\right) \leq \mathrm{n}+1\right) \text { A } y_{1} \neq y_{2}\right] \\
& \supset \diamond\left[\text { at } \ell_{0,1} \wedge \text { at } m_{0,1} \text { A }\left(y_{1}, y_{2}\right)>\mathbf{0} \text { A }\left(y_{1}+y_{2} \leq n\right)\right]
\end{aligned}
$$

Here we use at $\ell_{0,1}$ as an abbreviation for at $\ell_{0} \vee$ at ℓ_{1}, at $m_{0,1} \mathrm{for}$ at $m_{0} \vee$ at m_{1} a nd $\left(y_{1}, y_{2}\right)>0$ for $\left(y_{1}>0\right) \wedge\left(y_{2}>0\right)$.

Proof of Lemma B:

Let us define

$$
\varphi\left(y_{1}, y_{2}, n\right): \quad \text { at } \ell_{0,1} \wedge \text { at } m_{0,1} \wedge\left(y_{1}, y_{2}\right)>0 \mathrm{~A} \quad\left(y_{1}+\quad y_{2} \leq n\right)
$$

Thus we have to prove:

$$
\vdash\left[\varphi\left(y_{1}, y_{2}, n+1\right) \wedge\left(y_{1} \neq y_{2}\right)\right] \supset \diamond \varphi\left(y_{1}, y_{2}, n\right)
$$

We will split the proof into two cases:

$$
\text { B1. } \vdash\left[\varphi\left(y_{1}, y_{2}, n+1\right) \wedge\left(y_{1}>y_{2}\right)\right] \supset \diamond \varphi\left(y_{1}, y_{2}, n\right)
$$

B2. $\vdash\left[\varphi\left(y_{1}, y_{2}, n+1\right) \wedge\left(y_{1}<y_{2}\right)\right] \supset \diamond \varphi\left(y_{1}, y_{2}, n\right)$
The lemma obviously follows from these two statements.
To prove B1 we first observe that by PR:

1. $\vdash \varphi\left(y_{1}, y_{2}, n+1\right) \supset\left(\right.$ at $\left.\ell_{0} \vee a t \ell_{1}\right)$

Consider therefore first the case that P_{1} is at ℓ_{0}. We take

$$
\begin{array}{ll}
\varphi^{\prime}: & \varphi\left(y_{1}, y_{2}, n+1\right) \wedge\left(y_{1}>y_{2}\right) \wedge a t \ell_{0} \\
\psi^{\prime}: & \varphi\left(y_{1}, y_{2}, n\right)
\end{array}
$$

We claim that φ^{\prime} and ψ^{\prime} satisfy the premises of EVNT with $P_{k}=P_{1}$.
To see this, consider requirement A of EVNT that states that every transition in P leads from φ^{\prime} to φ^{\prime} v ψ^{\prime}.

Consider transitions in P_{2}. The only relevant ones are $m_{0} \rightarrow m_{1}$ and transitions leading out of m_{1}. The transition $\mathrm{mu} \rightarrow m_{1}$ under $y_{1}>y_{2}$ leaves φ^{\prime} invariant. Again, under $y_{1}>y_{2}$ the only transition out of m_{1} gocs to m_{0} leaving φ^{\prime} invariant.

The only transition enabled in P_{1} is $\ell_{0} \rightarrow \ell_{1}$ which replaces $\left(y_{1}, y_{2}\right)$ by $\left(y_{1}-y_{2}, y_{2}\right)$. If $y_{1}+y_{2} \leq n+1$ and $y_{1}>0, y_{2}>0$ then certainly $\left(y_{1}-y_{2}\right)+y_{2} \leq \mathrm{n}$ and $\left(y_{1}-y_{2}\right)>0, y_{2}>0$. Thus $\ell_{0} \rightarrow \ell_{1}$ leads from φ^{\prime} to ψ^{\prime}. This also establishes requirement B with $P_{k}=P_{1}$.

Since $E_{\ell_{0}}=$ true, condition C is trivially fulfilled. Consequently wc conclude by the EVNT rule that $\vdash \varphi^{\prime} \supset 0 \psi^{\prime}$, i.e.,

$$
\text { 2. } \vdash\left[\varphi\left(y_{1}, y_{2}, n+1\right) \wedge\left(y_{1}>y_{2}\right) \wedge \text { at } \ell_{0}\right] \supset \diamond \varphi\left(y_{1}, y_{2}, n\right) \text {. }
$$

Consider next the case where P_{1} is at ℓ_{1}. By taking

$$
\begin{aligned}
& \varphi^{\prime \prime}: \varphi\left(y_{1}, y_{2}, n+1\right) \wedge\left(y_{1}>y_{2}\right) \mathrm{A} \text { at } \ell_{1} \\
& \psi^{\prime \prime}=\varphi^{\prime}: \varphi\left(y_{1}, y_{2}, n+1\right) A\left(y_{1}>y_{2}\right) \mathrm{A} \text { at } \ell_{0} .
\end{aligned}
$$

Wc can show that the premises of the EVNT rule are satisfied with respecl to $\varphi^{\prime \prime}, \psi^{\prime \prime}$. Consequently wc have $\vdash \varphi^{\prime \prime} \supset 0 \psi^{\prime \prime}$, i.e.,

$$
\begin{array}{llr}
\text { 3. } & \vdash\left[\varphi\left(y_{1}, y_{2}, n+1\right) \wedge\left(y_{1}>y_{2}\right) \wedge \text { at } \ell_{1}\right] \supset \\
& -\diamond\left[\varphi\left(y_{1}, y_{2}, n+1\right) \wedge\left(y_{1}>y_{2}\right) \wedge \text { at } \ell_{0}\right] & \\
\text { 4. } & \vdash\left[\varphi\left(y_{1}, y_{2}, n+1\right) \wedge\left(y_{1}>y_{2}\right) \wedge \text { at } \ell_{1}\right] \supset \diamond \varphi\left(y_{1}, y_{2}, n\right) & \text { by } 2,3 \text { and OC } \\
\text { 5. } & \vdash\left[\varphi\left(y_{1}, y_{2}, n+1\right) \wedge\left(y_{1}>y_{2}\right)\right] \supset \diamond \varphi\left(y_{1}, y_{2}, n\right) & \text { by } 1,2,4 \text { and PR }
\end{array}
$$

This establishes B1.
By a symmetric argument wc can establish B2. By propositional reasoning B1 and 132 lead to Lemma B.

Proof of theorem:

We will now procced with the proof of the main theorem.

$$
\begin{aligned}
& \text { 6. } \vdash\left[\varphi\left(y_{1}, y_{2}, n+1\right) \wedge\left(y_{1} \neq y_{2}\right)\right] \supset \diamond \varphi\left(y_{1}, y_{2}, n\right) \\
& \text { Lemma B } \\
& \text { 7. } \vdash \varphi\left(y_{1}, y_{2}, n+1\right) \supset\left[\left(y_{1}=y_{2}\right) \vee \diamond \varphi\left(y_{1}, y_{2}, n\right)\right] \\
& \text { by PR } \\
& \text { 8. } \vdash \varphi\left(y_{1}, y_{2}, n+\right. \\
& \text { 1) } \supset\left[\diamond \left(y_{1}=\right.\right. \\
& \left.\left.y_{2}\right) \vee \diamond \varphi\left(y_{1}, y_{2}, n\right)\right] \\
& \text { by T1 and PR } \\
& \text { 9. } \vdash \sim \varphi\left(y_{1}, y_{2}, 0\right) \\
& \text { 10. } \vdash \varphi\left(y_{1}, y_{2}, 0\right) \supset \diamond\left(y_{1}=y_{2}\right) \\
& \text { 11. } \vdash \varphi\left(y_{1}, y_{2}, n\right) \supset \diamond\left(y_{1}=y_{2}\right) \\
& \text { by } 8,10 \text { and OIND } \\
& \text { 12. } \vdash \exists n \cdot \varphi\left(y_{1}, y_{2}, n\right) \supset \diamond\left(y_{1}=y_{2}\right) \\
& \text { by } \exists \mathrm{I} \\
& \text { 13. } \vdash\left[a t\left(\ell_{0}, m_{0}\right) \wedge\left(y_{1}, Y 2\right)=\left(x_{1}, x_{2}\right)>0\right] 3 \exists n \cdot \varphi\left(y_{1}, y_{2}, n\right)
\end{aligned}
$$

By considering the different locations of P_{1} and P_{2} under the assumption that $y_{1}=y_{2}$ it is easy (though long if carried out in full detail) to establish

$$
\text { 14. } \vdash\left(y_{1}=y_{2}\right) \supset \diamond\left[\operatorname{at}\left(\ell_{2}, m_{2}\right) \mathrm{A} \quad\left(y_{1}=y_{2}\right)\right]
$$

By combining 12, 13 and 14 using OC we obtain:

$$
\text { 15. } \vdash\left[a t\left(\ell_{0}, m_{0}\right) \wedge\left(y_{1}, y_{2}\right)=\left(x_{1}, x_{2}\right)>0\right] \supset \diamond\left[a t\left(\ell_{2}, m_{2}\right) \text { А } \quad\left(y_{1}=\quad y_{2}\right)\right]
$$

Togelher with lemma \mathbf{A} and T10 this gives

$$
\text { 16. } \vdash\left[\operatorname{at}\left(\ell_{0}, m_{0}\right) \wedge\left(y_{1}, y_{2}\right)=\left(x_{1}, x_{2}\right)>0\right] \supset \diamond\left[\begin{array}{l}
\left.\operatorname{at}\left(\ell_{2}, m_{2}\right) \wedge y_{1}=\operatorname{gcd}\left(x_{1}, x_{2}\right)\right] \\
\text { since }\left(y_{1}=y_{2}\right) \supset \mathbf{Y} \mathbf{I}=\operatorname{gcd}\left(y_{1}, y_{2}\right)
\end{array}\right.
$$

Note that theorem T10 enables us to infer frorn a previously established invariant I- $\mathrm{Cl} \tilde{\varphi}$ and an implication $\vdash w_{1} \supset \diamond w_{2}$ the implication $\vdash w_{1} 3 \diamond\left(w_{2} \wedge \tilde{\varphi}\right)$.

II. EXAMPLE 2: SEMAPHORES

- For our next example we will present a very simple program with semaphores:

$$
\begin{array}{ccc}
& \mathrm{Y}:-=1 & \\
\ell_{0}: \text { request }(y) & & m_{0}: \operatorname{request}(y) \\
\ell_{1}: \text { release }(y) & & m_{1}: \operatorname{release}(y) \\
\ell_{2}: \text { go to } \ell_{0} & & m_{2}: \text { go to } m_{0} \\
& -P_{1}- & \\
& & -P_{2}-
\end{array}
$$

This example models a solution to the mutual exclusion problem using semaphores.
There are two properties that we wish to prove for this program. The first is that of mutual exclusion, namely:

Lemma A:

$$
\vdash[]\left[\left(\sim a t \ell_{1}\right) \vee\left(\sim a t m_{1}\right)\right]
$$

Proof: .
Take

$$
\varphi\left(\pi_{1}, \pi_{2} ; y\right): \quad\left(a t \ell_{1}+a t m_{1}+y=1\right) \wedge(y \geq 0)
$$

In expressions such as the above wc interpret propositions as having the numerical value 1 when true and 0 otherwise.

We can easily show that φ is preserved under every transition. For example, consider the transition $\ell_{0} \rightarrow \ell_{1}$. When it is enabled, wc have $y>0$, and the transition assigns to the variable y the value $\mathrm{y}-1$ which is nonnegative. Considering the value of the sum

$$
a t \ell_{1}+a t m_{1}+\mathrm{y}
$$

at ℓ_{1} changes from 0 to 1 on this transition but y is decremented by 1 . Consequently the value of the sum remains invariant.

Initially, at $\ell_{1}+$ atm $_{1}+\mathrm{y}=0+0+1=1$ and $\mathrm{y}=1 \geq 0$.
Hence φ satisfics the two premises of the IINV rule, from which wc conclude

$$
\left.I_{1}: \quad \mathrm{t}-\square\left[a t \ell_{1}+a t m_{1}+\mathrm{y}=1\right) \mathrm{A}(\mathrm{y} \geq \mathrm{o})\right] .
$$

This implies
which is equivalent to Lemma A.

The second property is that of accessibility. It states that each process will eventually be admitted to its critical section. This is established by:

Lemma B:

$$
\vdash \text { at } \ell_{0} \supset \diamond \text { at } \ell_{1}
$$

and

$$
\vdash \operatorname{atm}_{0} \supset \mathbf{0} \mathrm{~atm}_{1}
$$

Proof:

Let us define

$$
\begin{aligned}
& \varphi_{1}: \text { at } \ell_{0} \wedge a t m_{1} \mathrm{~A} \mathrm{y}=0 \\
& \psi_{1}: y>0
\end{aligned}
$$

We show that φ_{1} and ψ_{1} satisfy the conditions of the EVNT rule with $\mathbf{k}=\mathbf{2}$.
In fact the only enabled transition is $m_{1} \rightarrow m_{2}$ which does lead from φ_{1} to ψ_{1}. While at m_{1}, P_{2} is always enabled. Thus we conclude:

$$
\text { 1. } \vdash\left[\text { at } \ell_{0} \mathrm{~A} \operatorname{atm}_{1} \mathrm{~A} \text { y }=0\right] \supset \diamond(y>0) \quad \text { by EVNT' with } \mathbf{k}=2
$$

2. $\mathrm{I}-\left[\right.$ at $\ell_{0} \mathrm{~A}$ atm $\left.\mathrm{a}_{1}\right] \supset \diamond(y>0)$
3. $\vdash\left[\right.$ at $\ell_{0} \wedge$ at $\left.m_{2,3}\right] \supset(y>0)$
4. \vdash at $\ell_{0} \supset \diamond(y>0)$
by I_{1} above, 1 and PR
also by I_{1} and $P R$
by T1, 2, 3, LOC and PR

Take now

$$
\begin{aligned}
& \varphi_{2}: \text { at } \ell_{0} \\
& \psi_{2}: \text { at } \ell_{1}
\end{aligned}
$$

We check premises A to C in the EVNT rule with respect to the pair $\left\{\varphi_{2}, \psi_{2}\right\}$ taking $\mathbf{k}=1$. Clearly P always leads from φ_{2} to $\varphi_{2} \vee \psi_{2}$. The process P_{1} always leads (when enabled) from φ_{2} to ψ_{2}. Condition C is guaranteed by 4 above. We therefore conclude

$$
\text { 5. } \vdash \text { at } \ell_{0} \supset 0 \text { at } \ell_{1} .
$$

By a completely symmetric argument we can show that:

```
\vdashatm0}\supset0\mathrm{ atm. .
```


12. EXAMPLE 3: MUTUAL EXCLUSION

As a third example wc consider a program that solves the mutual exclusion problem without semaphores:

$$
\left(y_{1}, y_{2}, t\right):=(\text { false }, \text { false }, 1)
$$

ℓ_{0} : Noncritical Section	m_{0} : Noncritical Section
$\ell_{1}: y_{1}:=$ true	$m_{1}: y_{2}:==$ true
$\ell_{2}: t:=1$	$m_{2}: t:=2$
$\begin{aligned} & \ell_{3}: \text { if } y_{2}=\text { false then go to } \ell_{5} \\ & . \ell_{4}: \text { if } t=1 \text { then go to } \ell_{3} \end{aligned}$	m_{3} : if $y_{1}=$ false then go to m_{5} m_{4} : if $t=2$ then go to m_{3}
ℓ_{5} : Critical Section $\ell_{6}: \ell_{y} \cap=$ false	m_{5} : Critical Scction $1 m_{6}: y_{2}:=\text { false }$
$\ell_{7: 80} \cup \ell_{0}$	$m_{7}:$ go to m_{0}
$-P_{1}-$	$-P_{2}-$

For convenience wc will abbreviate formulas at ℓ_{i} to ℓ_{i}.

The principle of operation of this program is that cach process P_{i} has a variable y ;, $i=1,2$, which expresses the process's wish to enter its critical section. The variable y_{i} is set to true at ℓ_{1} and m_{1} and reset to false at ℓ_{6} and m_{6}, respectively. In addition, each process leaves a signature in the common variable t. The process P_{1} sets it to 1 at ℓ_{2} and P_{2} sets it to 2 at m_{2}. A process P_{i} may enter its critical section only if either $y_{j}=f a l s e$ (meaning that the other process is not interested) or if $t=\mathrm{j}$, for $\mathrm{j} \neq i$. The latter case corresponds to both processes being interested in entering the critical section but P_{j} being the last to pass through the signing instructions at $\left(\ell_{2}, m_{2}\right)$.

To formally prove that this program is correct we first prove several invariance properties.

Lemma A:

$$
\vdash y_{1} \equiv \ell_{2 . .6}
$$

Here $\ell_{2 . .6}$ stands for at $\ell_{2 . .6}$. Thus the lemma states that

$$
y_{1}=\text { true if and only if } \pi_{1} \in\left\{\ell_{2}, \ell_{3}, \ell_{4}, \ell_{5}, \ell_{6}\right\}
$$

Proof:

To prove the Lemrna we take

$$
\varphi_{1}:\left(y_{1} \equiv \ell_{2 . .6}\right)
$$

and show that it is invariant under every transition, i.e., every transition leads from φ_{1} to φ_{1}.
The only transitions that can affect the truth of φ_{1} arc $\ell_{1} \rightarrow \ell_{2}$ and $\ell_{6} \rightarrow \ell_{7}$.
In $\ell_{1} \rightarrow \ell_{2}$ both y_{1} and at $\ell_{2 . .6}$ become simultaneously true. Similarly in $\ell_{6} \rightarrow \ell_{7}$ both y_{1} and at $\ell_{2 . .6}$ become simultaneously false. Thus

1. $\vdash\left(y_{1} \equiv \ell_{2 . .6}\right) \supset \bigcirc\left(y_{1} \equiv \ell_{2 . .6}\right)$
by TRNS
2. $\vdash\left\{a t\left(\ell_{0}, m_{0}\right) \wedge\left[\left(y_{1}, y_{2}, t\right)=(\right.\right.$ false, false, 1$\left.\left.)\right]\right\} \supset\left(y_{1} \equiv \ell_{2 . .6}\right)$
3. $\vdash \square\left(\mathrm{yt} \equiv \ell_{2 . .6}\right)$
by 1, 2 and TINV

Lemma B:

$$
\vdash y_{2} \equiv m_{2 . .6}
$$

The lemma is proved by a symmetric argument.

Lemma C:

$$
\vdash(\mathrm{t}=1) \vee(t=2)
$$

This lemma states that the only possible values of the variable t are $\mathbf{1}$ or 2 .

Proof:

The Lemma is clearly provable by the IINV principle. Obviously, it is true initially since $t=1$. The only transitions that modify the value of t set it either to 1 or to 2 . Thus P always leads to a state satisfying $(t=1) \vee(t=2)$.

Lemma D:

$$
\vdash \ell_{5,6} \supset\left[\left(\sim y_{2}\right) \vee(t=2) \vee m_{2}\right]
$$

Proof:

Let φ_{2} stand for $\ell_{5,6} \supset\left[\left(\sim y_{2}\right) \vee(t=2) \vee m_{2}\right]$.
It is clearly true initially since $\vdash \ell_{0} \supset \sim \ell_{5,6}$. To show that every transition leads from φ_{2} to φ_{2}, consider the only transitions that may falsify φ_{2}, i.e., that may possibly lead from φ_{2} to $\sim \varphi_{2}$. Potentially they arc:

- $\ell_{3} \rightarrow \ell_{5}$. This transition is possible only under $\sim y_{2}$ which makes $\left(\sim y_{2}\right) \vee(\mathbf{t}=2) \vee m_{2}$
true.
- $\ell_{4} \rightarrow \ell_{5}$. This is possible only when $t \neq 1$ which by Lemma C makes $\left(\sim y_{2}\right) \vee(\mathbf{t}=2) \vee m_{2}$
again true.
The other transitions we should consider are transitions of P_{2} while P_{1} is already at $\ell_{5,6}$. The only ones to be considered arc those which affect any of the variables in $\sim y_{2} \vee(t=2) \vee m_{2}$.
- $m_{1} \rightarrow m_{2}$. Causes m_{2} to become true.
- $m_{2} \rightarrow m_{3}$. Causes t to be set to 2 .
- $m_{6} \rightarrow m_{7}$. Sets y_{2} to false, making $\sim y_{2}$ true.

The lemma follows by the IINV principle.

Lemma E:

$$
\cdot \vdash m_{5,6} \supset\left[\left(\sim y_{1}\right) \vee(\mathrm{t}=1) \mathrm{v} \ell_{2}\right]
$$

The lemma is proved by a completely symmetric argument.

Theorem:

$$
\vdash\left(\sim \ell_{5,6}\right) \vee\left(\sim m_{5,6}\right)
$$

This theorem proves the mutual exclusion of the processes.

Proof:

$$
\begin{aligned}
& \text { 1. } \vdash\left(\ell_{5,6} \wedge m_{5,6}\right) \supset\left[\left(\left(\sim y_{2}\right) \vee(t=2) \vee m_{2}\right) \wedge\left(\left(\sim y_{1}\right) \vee(t=1) \vee \ell_{2}\right)\right] \\
& \text { by lemmas } \mathrm{C}, \mathrm{D} \text { and PR } \\
& \text { 2. } \vdash\left(\ell_{5,6} \wedge m_{5,6}\right) \supset\left[y_{1} \wedge y_{2} \wedge \sim \ell_{2} A \sim m_{2}\right] \quad \text { by lemmas A, B, LOC and PR } \\
& \text { 3. } \vdash\left(\ell_{5,6} \mathrm{~A} m_{5,6}\right) \supset[(\mathrm{t}=1) \mathrm{A}(t=2)] \quad \text { by } 1,2 \text { and } \mathrm{PR} \\
& \text { 4. } \vdash \sim\left(\ell_{5,6} \wedge m_{5,6}\right) \\
& \text { 5. } \vdash\left(\sim \ell_{5,6}\right) \vee\left(\sim m_{5,6}\right) \\
& \text { by the equality axiorns and PR, } \\
& \text { using the domain fact that } 1 \neq 2 \\
& \text { by PR }
\end{aligned}
$$

Next we will prove accessibility. We will only prove:

Theorem:

$$
\vdash a t \ell_{1} \supset \diamond a t \ell_{5}
$$

The result for P_{2} is completely symmetric.

Proof:

The proof will proceed by a sequence of statements most of which are proved by the EVN'T rule in the version whose conclusion is $\varphi \supset 0 \psi$. Simple passages justified by propositional temporal reasoning will not be fully presented and their omission is denoted by mentioning P PR in the justification clause.

1. $\vdash\left(\ell_{4} \mathrm{~A} m_{3,4} \mathrm{~A} t=2\right) \supset 0 \ell_{5}$
2. $\vdash\left(\ell_{3}\right.$ A $m_{3,4}$ A $\left.t=2\right) \supset \diamond\left(\ell_{4} \mathrm{~A} m_{3,4} \mathrm{~A} t=2\right)$
3. $\vdash\left(\ell_{3} \mathrm{~A} m_{3,4} \mathrm{~A} t=2\right) \supset 0 \ell_{5}$
4. $\vdash\left(\ell_{3,4} A m_{3,1} \not \subset t=2\right) \supset 0 \ell_{5}$
5. $\vdash\left(\ell_{3,4}\right.$ A $\left.m_{2}\right) \supset \diamond\left[\ell_{5} \vee\left(\ell_{3,4}\right.\right.$ A $m_{3,4}$ A $\left.\left.t=2\right)\right]$
by E'VN'T with $k=1$, using lemma A
by EVNT with $k=2$, using lemmas A, B by 2,1 and $O C$ by 1,3 and $P R$
by EVNT with $k=2$
6. $\vdash\left(\ell_{3,4} \wedge m_{2}\right) \supset \diamond \ell_{5}$
by 4,5 and PTR
7. $\vdash\left(\ell_{3,4} \wedge m_{1}\right) \supset \diamond\left[\ell_{5} \vee\left(\ell_{3,4} \wedge m_{2}\right)\right]$ by EVNT with $\mathbf{k}=\mathbf{2}$
8. $\vdash\left(\ell_{3,4} \wedge m_{1}\right) \supset \diamond \ell_{5}$
by 7, 6 and PTR
9. $\vdash\left(\ell_{3} \wedge m_{0}\right) \supset \diamond\left[\ell_{5} \vee\left(\ell_{3,4} \wedge m_{1}\right)\right]$ by EVNT with $\mathbf{k}=1$
10. $\mathrm{t}-\left(\ell_{3} \mathrm{~A} m_{0}\right) \supset O \ell_{5}$
by 9,8 and PTR
11. $\vdash\left(\ell_{4} \wedge m_{0}\right) \supset \diamond\left[\ell_{5} \vee\left(\ell_{3,4} \wedge m_{1}\right) \vee\left(\ell_{3} \wedge m_{0}\right)\right]$
by EVNT with $\mathbf{k}=1$
12. I- $\left(\ell_{4} A m_{0}\right) \supset O \ell_{5}$ by $11,8,10$ and PTR
13. $\vdash\left(\ell_{3,4} \wedge m_{0}\right) \supset \diamond \ell_{5}$ by 10,12 and PR
14. \quad I $\quad-\quad\left(\ell_{3,4} \wedge m_{7}\right) \supset \diamond\left[\ell_{5} \vee\left(\ell_{3,4} \wedge m_{0}\right)\right]$ by EVNT with $\mathbf{k}=\mathbf{2}$
15. $\vdash\left(\ell_{3,4} \wedge m_{7}\right) \supset \diamond \ell_{5}$
by 14,13 and PTR
16. $\vdash\left(\ell_{3,4} \wedge m_{6}\right) \supset \diamond\left(\ell_{3,4} \wedge m_{7}\right) \quad$ by EVNT with $\mathbf{k}=2$ and lemma E
17. $\vdash\left(\ell_{3,4} \wedge m_{6}\right) \supset \diamond \ell_{5}$
by 16, 15 and P T R
18. $\vdash\left(\ell_{3,4} \wedge m_{5}\right) \supset \diamond\left(\ell_{3,4} \wedge m_{6}\right)$
by EVNT with $\mathbf{k}=2$ and lemma E
19. $\vdash\left(\ell_{3,4} \wedge m_{5}\right) \supset \diamond \ell_{5}$
by 18, 17 and PTR
20. $\vdash\left(\ell_{3,4} A m_{4} A t=1\right) \supset \diamond\left(\ell_{3,4} A m_{5}\right)$ by EVNT with $\mathbf{k}=2$ and lemma A
21. $\vdash\left(\ell_{3,4}\right.$ A $\left.m_{4} A t=1\right) \supset 0 \ell_{5}$
by 20,19 and PTR
22. $\vdash\left(\ell_{3,4}\right.$ A $\left.m_{3} A t=1\right) \supset \diamond\left(\ell_{3,4} A m_{4} A t=1\right)$ by EVNT with $\mathbf{k}=2$ and lemma Λ
23. I- $\left(\ell_{3,4}\right.$ A $\left.m_{3} A t=1\right) \supset 0 \ell_{5}$ by 22, 21 and P'TR
24. $\vdash\left(\ell_{3,4} A m_{3,4} A t=1\right) \supset 0 \ell_{5}$
by 21,23 and PR
25. $\vdash\left(\ell_{3,4} \wedge m_{3,4}\right) \supset \diamond \ell_{5}$
by 4, 24, lemma C and PR
We may summarize now as follows:
26. $\vdash \ell_{3,4} \supset\left[\ell_{3,4} \wedge\left(m_{0} \vee m_{1} \vee m_{2} \vee m_{3} \vee m_{4} \vee m_{5} \vee m_{6} \vee m_{7}\right)\right]$ by LOC
27. I- $\ell_{3,4} \supset 0 \ell_{5}$ by $26,13,8,6,25,19,17,15$ and $\mathrm{P}^{\prime} \mathrm{TR}$
28. $\vdash \ell_{2} \supset \diamond \ell_{3,4}$
29. I- $\ell_{2} \supset 0 \ell_{5}$
30. I- $\ell_{1} \supset \diamond \ell_{2}$
31. $\vdash \ell_{1} \supset 0 \ell_{5}$
by EVNT with $\mathrm{k}=1$
by 27,28 and OC by EVNT with $k=1$ by 29,30 and $\diamond C$

F. COMPACT PROOF PRINCIPLES

In the preceding sections we introduced a comprehensive proof system for proving arbitrary temporal properties of concurrent programs. However, as demonstrated in the last examples a fully formal proof tends to be rather lengthy and sometimes tedious to follow. Consequently we will next discuss shorter and more compact representations of proofs and corresponding compact proof principles. All Lhcsc principles can be derived in the basic proof system presented above. Consequently, a proof according Lo these principles can always be mechanically expanded into a more detailed proof using just the basic axioms. We will discuss the three main classes of properties one may wish to prove about programs, namely: invariance, liveness and precedence properties.

13. THE INVARIANCE PRINCIPLE

The IINV principle does not significantly simplify formal proofs. Most of the needed work in applying the IINV principle is in establishing the premise that the program P leads from φ to φ. Several heuristics or meta-rules can be suggested in order to reduce the number of transitions that have to be checked, which in the worst case is proportional to the size of the program. For example:
a) Only transitions that modify variables on which φ depends should be checked.
b) Assume that φ has the form $\varphi=\varphi_{1} \vee \varphi_{2}$ (similarly for implication), and that some variables y_{1}, \ldots, y_{m} appear only in φ_{1}. Then, in checking transitions that only modify Lhcsc variables, it is sufficient to check transitions that may falsify φ_{1} and one may assume in checking them Lhat $\varphi_{2}=$ false.
c) Assume that an invariance χ has already been established beforc. Let

$$
[\varphi \wedge \chi] \supset(\sim a t \ell)
$$

for some location ℓ. Then no transitions of the form $\ell \rightarrow \ell^{\prime}$ need ever be considered in showing that P leads from φ to ψ.

A simple generalization of the IINV rule is given by:

Generalized Invariance Rule -- GINV
A. $\vdash \varphi \supset \psi$
B. I- [at\& A $\bar{y}=\mathrm{g}(\mathrm{C})] \supset \varphi$ C. I- P leads from φ to φ $\qquad \square \psi$

Certainly premises B and C establish $\vdash \square \varphi$ according to IINV, from which by premise A and the $\square \square$ rule, $\mathrm{t}-\square \psi$ follows.

The advantage of the GINV principle is that no additional temporal reasoning is required and the rule can be proved complete by itself. By this we mean that, given a program P, any state property ψ which is invariant for all executions of P can bc proven invariant by a single application of the GTNV rule and no additional temporal reasoning.

Theorem:

The GINV rule is complete for proving invariance properties.

Proof:

Let $\psi=\psi(\bar{x} ; \bar{\pi} ; \bar{y})$ be a state property, possibly dependent on the input variables \bar{x}. We define a state $s=\langle\bar{\ell} ; \bar{\eta}\rangle$ to be $\bar{\xi}$-accessible in P if there exists a segment of some computation initialized with $\bar{x}=\bar{\xi}$ that reaches s, i.e.,

$$
\left\langle\bar{\ell}_{0} ; g(\bar{\xi})\right\rangle \rightarrow \ldots \rightarrow\langle\bar{\ell} ; \bar{\eta}\rangle
$$

Define the predicate $\varphi=\varphi(\bar{x} ; \bar{\pi} ; \bar{y})$ by:

$$
\varphi(\xi ; \bar{\ell} ; \bar{\eta})=\text { true } \Leftrightarrow\langle\bar{\ell} ; \bar{\eta}\rangle \text { is T-accessible. }
$$

Thus, φ characterizes all the states that are \bar{x}-accessible. We will show that the predicate φ so defined satisfies, together with ψ, all the prcrniscs required by the rule GJNV.

Consider premise A. Since ψ is invariantly true in all computations of P it must be true for every accessible state $\langle\bar{\ell} ; \bar{\eta}\rangle$. Consequently

$$
\varphi(\bar{\xi} ; \bar{\ell} ; \bar{\eta}) \supset \psi(\xi ; \ell ; \bar{\eta})
$$

when generalized to arbitrary $\bar{\xi}, \bar{\ell}$ and $\bar{\eta}$ Lhis implies

$$
\vDash \varphi \supset \psi
$$

Since we assume that the underlying domain theory is adequate for proving all classically sound formulas this implies

$$
\vdash \varphi \supset \psi
$$

Consider now premise B. Since every initial state is by definition accessible we certainly have

$$
\vDash \varphi\left(\bar{x} ; \bar{\ell}_{0} ; \mathrm{g}(\mathrm{z})\right)
$$

Again by completeness of our domain part with respect to classical formulas, this leads Lo

$$
\vdash\left[a t \bar{\ell}_{0} \mathrm{~A} \quad y=g(\bar{x})\right] \supset \varphi(\bar{x} ; \bar{\pi} ; \bar{y})
$$

Finally, consider premise C. Clearly every transition in P leads from an z-accessible state to another \bar{x}-accessible stale. Consequently

$$
\vDash P \text { leads from } \varphi \text { to } \varphi
$$

From this premise C follows by completeness of the domain part.

In the preceding theorem we have only shown the existence of an appropriate state predicate φ. Wc have not discussed the question of the exact formal language in which such a predicate can be expressed. However, assuming that our domain contains the integers or some isomorphic structure, and using a first-order language, it is not difficult to show that the statement:
"There exists a finite computation of P leading from $\left\langle\bar{\ell}_{0} ; g(\bar{\xi})\right\rangle$ to $\langle\bar{\ell} ; \bar{\eta}\rangle$ "
can be Gödel-encoded into a first-order statement over the integers.

14. LIVENESS PRINCIPLES

As a typical example of a detailed proof of liveness properties wc may recxaminc the proof of accessibility for the mutual exclusion program (Example 3). The structure of such a proof proceeds through a chain of events characterized by state assertions. Let the eventuality to be proved bc $\varphi \supset \diamond \psi$ where both φ and ψ arc state properties. We may regard $\psi=\varphi_{0}$ as being Lhe last assertion in the chain. Then we identify an assertion φ_{1} such that by a single application of the EVNT principle we can prove

$$
\vdash \varphi_{1} \supset \diamond \psi
$$

In the example considered we have

$$
\begin{aligned}
& \psi: \ell_{5} \\
& \varphi_{1}: \ell_{4} \mathbf{A} m_{3,4} \text { A }(\mathbf{t}=\mathbf{2}) .
\end{aligned}
$$

Next, we identify an assertion φ_{2} such that by a single application of the EVNT principle we can prove

$$
\vdash \varphi_{2} \supset \diamond\left(\varphi_{1} \vee \psi\right) .
$$

In the general step, wc identify an assertion φ_{i} such that by a single application of the EVNT principle wc can prove

$$
\vdash \varphi_{i} \supset \diamond\left(\bigvee_{j<i} \varphi_{j}\right)
$$

Finally wc have to prove $\varphi \supset\left(\bigvee_{i=0}^{r} \varphi_{i}\right)$ where $\ldots \varphi_{1}, \ldots, \varphi_{r}$ is the chain of assertions cotistructed. Wc may summarize this proof pattern by Lhc following proof principle:

The huin Reasoning Proof Principle -.- CHAIN

Let $\varphi_{0}, \varphi_{1}, \ldots, \varphi_{r}$ be a sequence of state properties satisfying the following rcqui rements:
A. $\vdash P$ leads from φ_{i} Lo $\bigvee_{j \leq i} \varphi_{j}$ for $i=1, \ldots, r$.
B. For every $i>0$ there exists a $k=k_{i}$ such that:

$$
\vdash P_{k} \text { leads from } \varphi_{i} \text { to } \bigvee_{j<i} \varphi_{j}
$$

C. For $i>0$ and $\mathbf{k}=k_{i}$ as above:

$$
\frac{\vdash \varphi_{i} \supset 0\left[\left(\bigvee_{j<i} \varphi_{j}\right) \vee \operatorname{Enabled}\left(P_{k}\right)\right]}{\vdash\left(\bigvee_{i=0}^{r} \varphi_{i}\right) \supset\left(\bigvee_{i=1}^{r} \varphi_{i}\right) U \varphi_{0}}
$$

Proof:

To justify this principle we will prove by induction on $n, n=0,1, \ldots, r$, that

$$
\vdash\left(\bigvee_{i=0}^{n} \varphi_{i}\right) \supset\left(\bigvee_{i=1}^{n} \varphi_{i}\right) U \varphi_{0}
$$

For $\mathrm{n}=0$ we have $\vdash \varphi_{0} \supset \varphi_{0}$ from which trivially follows by axiom $\Lambda 9$

$$
\vdash \varphi_{0} \supset\left(\text { false } \cup \varphi_{0}\right) .
$$

Note that wc interpret an empty disjunction as false.
We assume that the statement above has been proved for certain \mathbf{n} and we attempt to prove it for $\mathbf{n}+1$.

Consider the EVNT rule with $\varphi=\varphi_{n+1}, \psi=\left(\bigvee_{\mathrm{i}=\mathrm{o}}^{n} \varphi_{i}\right)$. By premise Λ of CHAIN we obtain that P leads from $\varphi_{n+1}=\varphi$ to

$$
\left(\bigvee_{j \leq n+1} \varphi_{j}\right)=\left(\varphi_{n+1} \vee\left(\bigvee_{j \leq n} \varphi_{j}\right)\right)=(\varphi \vee \psi)
$$

This provides premise Λ of EVNT. Let $\mathbf{k}=k_{n+1}$. Then by premise B of CHAIN, P_{k} leads from $\varphi_{n+1}=\varphi$ to ($\left.\bigvee \varphi_{j}\right)=\psi$.Similarly, premise C of CHALN yiclds that $j<n+1$

1. $\vdash \varphi \supset \diamond\left(\dot{\psi} \vee \operatorname{Enabled}\left(P_{k}\right)\right)$.

By the EVNT rule it follows that
2. $\vdash \varphi \supset \varphi \mathbb{\psi}$
or
3. $\vdash \varphi_{n+1} \supset \varphi_{n+1} \mathcal{U}\left(\bigvee_{i=0}^{n} \varphi_{i}\right)$.

By the induction hypothesis and the UU rule this yields

$$
\text { 4. } \vdash \varphi_{n+1} \supset \varphi_{n+1} \cup\left(\left(\bigvee_{i=1}^{n} \varphi_{i}\right) U \varphi_{0}\right)
$$

Again by the induction hypothesis using part of $A 9, w_{2} \supset w_{1} \mathcal{U} w_{2}$, wc can obtain

$$
\text { 5. } \vdash\left(\bigvee_{i=0}^{n} \varphi_{i}\right) \supset \varphi_{n+1} \mathcal{U}\left(\left(\bigvee_{i=1}^{n} \varphi_{i}\right) U \varphi_{0}\right)
$$

Combining this with 4 above yiclds

$$
6 . \vdash\left(\bigvee_{i=0}^{n+1} \varphi_{i}\right) \supset \varphi_{n+1} U\left(\left(\bigvee_{i=1}^{n} \varphi_{i}\right) U \varphi_{0}\right)
$$

By T38, $p \mathbb{U}(q \cup \cup r) \supset(p \vee q) \cup \mathbb{U}$, wC can reduce the nesting depth of the U operator to get:

$$
7 . \vdash\left(\bigvee_{i=0}^{n+1} \text { Pi) } \supset\left(\left(\bigvee_{i=1}^{n+1} \varphi_{i}\right) \cup \varphi_{0}\right)\right.
$$

as needed.
Taking $\mathbf{n}=\boldsymbol{r}$ concludes the proof of the principle.

In presenting a proof according to the chain-reasoning principle it is usually sufficient to identify $\varphi_{0}, \varphi_{1}, \ldots, \varphi_{r}$ and for each i to point out the "helpful" process $P_{k}=P_{k_{i}}$. It can be left to the reader to verify that premises A to C arc satisfied for each $i=1,2, \ldots, r$.

We prefer to present such proofs in the form of a diagram. Consider a diagram consisting of nodes that correspond Lo the assertions $\varphi_{0}, \varphi_{1}, \ldots, \varphi_{r}$. Por cach transition affected by some process P_{j}, that leads frorn a state s satisfying φ_{i} Lo a slate s^{\prime} satisfying $\varphi_{\ell}, \ell<i$, wc draw an edge from the node φ_{i} to the node φ_{ℓ} and label it by P_{j}, the name of the responsible process. All edges corresponding to the helpful process $\Gamma_{k}=\Gamma_{k_{i}}$ are drawn as double arrows. We do not explicitly draw edges corresponding to transitions frorn φ_{i} back to itself. However it is assumed that such edges may exist for all but the helpful process for φ_{i}.

As an example wc present a diagram form of the proof of accessibility for the Mutual Exclusion program. Tt is given in Fig. 1. in constructing such a proof wC rnay freely use any invariants previously derived.

Fig. 1. Proof Diagram for the Mutual Exclusion Program

In this program, and typically in all non-terminating programs that have no semaphore instructions, wC do not have to check premise C of the CHAIN or IEVNT rule. This is because in non-terminating programs without semaphores every process is continuously enabled and therefore condition C is automatically satisfied.

In contrast let us consider the proof of accessibility for example $2-$ a program with semaphores. Here we want to prove $\ell_{0} \supset \diamond \ell_{1}$. The main diagram here is very simple:

It denote; a single application of the EVNT rule with $\varphi:$ at ℓ_{0} and $\psi:$ at ℓ_{1} with $P_{k}=P_{1}$ being the helpful process.

However, in order to justify premise C, which is not trivial in this case, we have to prove

$$
\vdash \ell_{0} \supset \diamond\left(\ell_{1} \cup y>0\right) .
$$

For this we have to consider P_{2} 's position. If P_{2} is at m_{0} or m_{2} then $y=1$ by the invariant I_{1} proved above, The only other case is when Γ_{2} is at m_{1} where by a single application of the EVNT rule it will eventually move to m_{2} producing a positive value of y. This may be represented by a secondary diagram:

The diagram representation of a proof according to the CHAIN principle is very similar to the proof lattices introduced ial [OL] as a concise presentation of a proof of a liveness property. A superficial difference is that they choose to represent as edges the consequences of the EVNT rule, while in our representation edges stand for the premises of the EVNT rule which arc also the premises Lo the CIMIN rule. To illustrate this difference, consider the following trivial program:

$$
\begin{array}{ll}
\ell_{0}: y:=y & m_{0}: \text { go to } m_{0} \\
\ell_{1}: & \\
& -P_{1}- \\
& -P_{2}-
\end{array}
$$

The liveness properly to bc proved is $\ell_{0} \supset 0 \mathcal{L}_{1}$. Bclow are diagram representations of the CHAIN principle and a proof lattice according to [OL].

CT LAIN Diagram

Proof Lattice

As wc see, the CIIMIN diagram contains a self-edge, labelled by P_{2} (this time drawn explicitly) and a helpful edge labelled by I_{1}. The process I_{1} is guaranteed to get us to ℓ_{1}. As a consequence
of this, by the EVNT rule, $\ell_{0} \supset 0 \ell_{1}$. This conclusion is represented in the proof lattice by a single edge from ℓ_{0} to ℓ_{1}. Thus, the different choices of representation lead to the following minor syntactical differences between CIJAIN diagrams and proof lattices:
(a) I'roof lattices are acyclic, whereas CIIAIN diagrams are only weakly acyclic, i.e., may contain self-loops.
(b) In CIIAIN diagrams, edges arc labelled by the processes responsible for the transition. Special identification is provided for edges traversed by the helpful process. In proof lattices, we no longer care about the identities of the processes since progress along the lattice has already been established.

However these differences are minor and a simple procedure for translation between CIIAIN diagrams and proof lattices exists. The important part in both is the identification of the intermediate assertions that are represented as nodes. In constructing a proof, this is usually the creative and most demanding process. Both graph presentations provide a natural and intuitive rcprcscntation of these assertions and the precedence relations between them.

The chain-reasoning principle assumed a finite number of links in the chain. It is quite adequate for finite-state programs, i.e., programs whose variables range over finite domains. However, once wC consider programs over the integers it is no longer sufficient Lo consider only finitely many assertions. In fact, sets of--assertions of quite high cardinality are needed. The obvious generalization of a finite set of assertions $\left\{\varphi_{i} \mid i=0, \ldots, r\right\}$ is to consider a single assertion $\varphi(\alpha)$, parametrized by a parameter α taken from a well-founded ordered set (A, \prec). Obviously, the most important property of our chain of assertion is that program transitions eventually lead from φ_{i} to. φ_{j} with $j<i$. This property can also be stated for an arbitrary well-founded ordering. Thus a natural generalization of the chain reasoning rule is the following:

The Well Founded Liveness Principle - WELL

Let (\mathbf{A}, \prec) be a well-founded set. Let $\varphi(\alpha)=\varphi(\alpha ; \bar{x} ; \bar{\pi} ; \bar{y})$ be a parametrized state formula.
Let $h: \mathrm{A} \rightarrow[1 \ldots k]$ be a helpfulness function identifying for each $\alpha \in \mathrm{A}$ the helpful process $P_{h(\alpha)}$ for states in $\varphi(\alpha)$.

$$
\begin{aligned}
& \text { A. } \vdash P \text { lends’ from } \varphi(\alpha) \text { to } \psi \vee(\exists \beta \preceq \mathrm{a} \cdot \varphi(\beta)) \\
& \text { B. } \vdash P_{h(\alpha)} \text { leads from } \varphi(\alpha) \text { to } \psi \vee(\exists \beta \prec \alpha \cdot \varphi(\beta)) \\
& \frac{\text { c. } \vdash \mathrm{p}(\mathrm{a}) \supset \diamond\left[\psi \vee(\exists \beta \prec \alpha \cdot \varphi(\beta)) \vee \operatorname{Enabled}\left(P_{h(\alpha)}\right)\right]}{\vdash(\exists \alpha \cdot \varphi(\alpha)) \supset(\exists \alpha \cdot \varphi(\alpha)) \cup \psi}
\end{aligned}
$$

A justification of this rule can again be conducted, based on induction. Now, however, induction over arbitrary well-founded sets is required.

15. EXAMPLE 4: BINOMIAL COEFFICIENT

As an example for the application of the WELL principle, we consider the following program that computes the binomial coefficient $\binom{n}{k}$ for inputs $0 \leq k \leq \mathrm{n}$.

$$
\left(y_{1}, y_{2}, y_{3}, y_{4}\right):=(n, 0,1,1)
$$

$$
\begin{aligned}
& \ell_{7} \text { : if } y_{1}=(\mathbf{n}-\mathrm{k}) \text { then go to } \ell_{1} \\
& \ell_{6}: \operatorname{request}\left(y_{4}\right) \\
& \ell_{5}: t_{1}:=y_{3} \cdot y_{1} \quad m_{9}: \text { loop until } y_{1}+y_{2} \leq \mathbf{n} \\
& \ell_{4}: y_{3}:=t_{1} \\
& \ell_{3}: \text { release }\left(y_{4}\right) \\
& \begin{array}{l}
\ell_{2}: y_{1} \\
\ell_{8}:{ }_{90}
\end{array} \overbrace{\ell_{7}}^{y_{1}--1} \\
& \ell_{1} \text { : halt } \\
& -P_{1}- \\
& m_{3} \text { : if } y_{2}=\mathbf{k} \text { then go to } m_{1} \\
& m_{2}: y_{2}:=y_{2}+1 \\
& m_{8}: \operatorname{request}\left(y_{4}\right) \\
& \boldsymbol{W}_{7} \overline{: t_{2}}:=y_{3} / y_{2} 工 \\
& m_{6}: \mathrm{y} 3:=t_{2} \\
& m_{5}: \text { release }\left(y_{4}\right) \\
& m_{1} \text { : go to } m_{3} \\
& m_{1} \text { : halt } \\
& -P_{2} \text { - }
\end{aligned}
$$

The labclling scheme of the program has been constructed in a way that simplifies the expression of the assertion $\varphi(\alpha)$.

The computation of this program is based on the formula:

$$
\boldsymbol{o}^{n}=\frac{\mathrm{n} \cdot(\mathrm{n}-1) \cdots(\mathrm{n}-\mathrm{k}+1)}{1 \cdot 2 \cdots k} .
$$

The values of y_{1}, i.e., $\mathrm{n}, \mathrm{n}-1, \ldots, \mathrm{n}-\mathbf{k}+1$, are used to compute the numerator in P_{1}, and the values of y_{2}, i.e., $1,2, \ldots, \mathbf{k}$, are used to compute tho denominator. The process P_{1} mul tiplies $n \cdot(n-1) \cdots(n-k+1)$ int o y y_{3} while P_{2} divides y_{3} by $1.2 \ldots \mathbf{k}$.

The instruction

$$
m_{9}: \text { loop until } y_{1}+y_{2} \leq \mathbf{n}
$$

guarantecs even divisibility of y_{3} by y_{2}. It synchronizes P_{2} 's operation with that of P_{1} to ensure that y_{3} is divided by i only after ($\mathrm{n}-i+\mathrm{I}$) has already been multiplied into it. We rely here on the mathematical theorem that the product of i consecutive integers $\mathrm{n} \cdot(\mathrm{n}-1) \cdot \ldots(\mathrm{n}-i+1)$ is always divisible by i ! (the quotient actually being the integer $\binom{n}{i}$).

The critical sections $\ell_{3.5}$ and $m_{5 . .7}$ arc mutually protected by the scmaphore variable y_{4}. This protection ensures that y_{3} is not updated by P_{2} between, say, the computation of $y_{3} \cdot y_{1}$ and the assignment of this value to y_{3}. Without this protection, the updated value might, have been overwritten by P_{1}.

Wc start by establishing some invariant properties of this program.

$$
I_{1}: \vdash\left(\text { at } \ell_{3 . .5}+\operatorname{atm}_{5 . .7}+\quad y_{4}=\quad 1\right) \wedge\left(y_{4} \geq 0\right)
$$

'This is the usual semaphore invariant. It can be proven by observing that initially this sum equals 1 , and then by considering all possible transitions. For example, the $\ell_{6} \rightarrow \ell_{5}$ transition changes at $\ell_{3 . .5}$ from 0 (false) to 1 (true), and also decrements y_{4} by 1 , leaving however the sum constant. From I_{1} we can deduce mutual exclusion of the critical sections, i.e.,

$$
\vdash\left(\sim \ell_{3.5}\right) \vee\left(\sim m_{5 . .7}\right) .
$$

As a consequence of this we can establish:

$$
I_{2}: \vdash\left(\ell_{4} \supset t_{1}=\text { у3 } \cdot y_{1}\right) \wedge\left(m_{6} \supset t_{2}=y_{3} / y_{2}\right) .
$$

This holds due to the impossibility of interference by P_{2} while P_{1} is at ℓ_{4}.

$$
I_{3}: \vdash\left(\boldsymbol{n}-k+a t \ell_{2.6}\right) \leq y_{1} \leq n .
$$

This invariance states that y_{1} always lics between $n-\mathbf{k}$ and n. When P_{1} is at $\ell_{2 . .6}, y_{1}>n-\mathbf{k}$, whereas P_{1} is at other locations, $y_{1} \geq \mathrm{n}-\mathbf{k}$. To verify 4 we need only consider the transitions:

- $\ell_{7} \rightarrow \ell_{6}$ which maintains $\mathbf{n}-\mathbf{k}<y_{1} \leq \mathrm{n}$, assuming it was previously known that $\mathbf{n}-\mathrm{k} \leq y_{1} \leq \mathbf{n}$.
- $\ell_{2} \rightarrow \ell_{8}$ which results in $\mathbf{n}-\mathbf{k} \leq y_{1}-1 \leq \mathrm{n}$ from $\mathbf{n}-\mathbf{k}<y_{1} \leq \mathbf{n}$.

$$
I_{4}: \vdash \mathbf{0} \leq y_{2} \leq\left(\mathbf{k}-a t m_{2}\right) .
$$

This invariance bounds Lhe range of y_{2}. We need consider the transitions $m_{3} \rightarrow m_{2}$ and $m_{2} \rightarrow m_{4}$ which can be shown to maintain I_{4}.

$$
I_{5}: \vdash \operatorname{atm}_{7 . .8} \supset\left(y_{1}+y 2\right) \quad \leq n .
$$

Here we should consider two transitions:

- $m_{9} \rightarrow m_{8}$ which is possible only if currently $y_{1}+y_{2} \leq \mathbf{n}$.
- $\ell_{2} \rightarrow \ell_{8}$ is the only transition modifying y_{1}. However since it decrements y_{1} it certainly preserves $y_{1}+y_{2} \leq n$.

Let us define the following virtual variables:

$$
\begin{aligned}
& \cdot y_{1}^{*}=\text { if at } \ell_{2,3} \text { then } y_{1}-1 \text { else } y_{1} \\
& y_{2}^{*}=\text { if at } m_{6 . .9} \text { then } y_{2}-1 \text { else } y_{2}
\end{aligned}
$$

These variables are roughly equal to y_{1} and y_{2} respectively and differ from them by 1 in certain ranges.

$$
I_{6}: \quad \mathrm{I}-\quad y_{3}=\left[\mathrm{n} \cdot(\mathrm{n}-1) \ldots\left(y_{1}^{*}+1\right)\right] /\left[1.2 \cdot \cdot y_{2}^{*}\right]
$$

To verify this invariant wC have to check the transitions $\ell_{4} \rightarrow \ell_{3}, m_{6} \rightarrow m_{5}$. Making use of I_{2}, they can be shown Lo maintain I_{6}.

$$
I_{7}: \text { I- }\left[\text { at } \ell_{1} \supset y_{1}=(\mathbf{n}-k)\right] \text { A }\left[\text { atm } m_{1} \supset\left(y_{2}=k\right)\right]
$$

Using I_{6}, I_{7} and the definition of y_{1}^{*}, y_{2}^{*} we obtain partial correctness of this program, namely

$$
\vdash\left(\text { at } \ell_{1} \wedge a t m_{1}\right) \supset\left[y_{3}=\binom{n}{k}\right]
$$

To prove termination we will use the WELL rule in order lo establish $\vdash \mathbf{O}\left(\right.$ at $\ell_{1} \mathbf{A}$ at $\left.m_{1}\right)$. As the well-founded domain we take

$$
(\mathbf{A}, \prec)=\left(\mathbf{N} \times N \times \mathbf{N}, \prec_{l e x}\right) .
$$

That is, the set of trïplets of nonnegative integers ordered by lexicographic ordering. This ordering defines $\left(m_{1}, m_{2}, \mathrm{~m} 3\right) \prec\left(n_{1}, n_{2}, n_{3}\right)$ iff for the lowest $i, i=1,2,3$ such that $m_{i} \neq \mathrm{n} ;, \mathbf{m} ; \mathbf{n}$;

For our goal assertion we take ψ : at $\ell_{1} \mathrm{~A}$ at m_{1}. The parameterized assertion is given by:

$$
\varphi\left(\alpha ; \ell_{i}, m_{j} ; y_{1}, y_{2}\right):\left(y_{1}+\mathbf{k}-y_{2}, \mathbf{j}, i\right)=\alpha
$$

The helpfulness function is given by:

$$
\mathrm{h}(\mathrm{a})=h(r, \mathbf{j}, i)=(\text { if } i=1 \text { then } 2 \text { else } 1)
$$

Thus as long as the first process P_{1} has not terminated wc rely on P_{1} to bc the helpful process. Once it has terminated, we take P_{2} to be the helpful process.

We have to show that all the three premises of the WELL rule are satisfied.
Consider first premise A. Wc have lo show that every transition of P leads to $\varphi(\beta)$ with $\beta \preceq \alpha$ if ψ is not already satisfied. By simple inspection of all the possible transitions wC find that they all lead from $\left\langle\ell_{i}, m_{j}\right\rangle$ to $\left\langle\ell_{i^{\prime}}, m_{j^{\prime}}\right\rangle$ such that either $i^{\prime}<i$ or $j^{\prime}<j$ except for the following transitions:
$\bullet \ell_{2} \rightarrow \ell_{8}$. But this transition decrements y_{1} producing a strict decrease in $y_{1}+\mathbf{k}-y_{2}$
which is the first component in α.

- $m_{2} \rightarrow m_{9}$. In a similar way Lhis transition increments y_{2}, leading to a decrease in
$y_{1}+k-y_{2}$.
- $m_{9} \rightarrow m_{9}$. This transition leaves α at the same value.

Consider now premise B. As we have shown above, all transitions provide a strict decrease in α. The only exception is $m_{9} \rightarrow m_{9}$. However this is a \&transition which is considered helpful only when P_{1} is at ℓ_{1}. By I_{7}, at this point $y_{1}=(\mathrm{n}-\mathbf{k})$ so that in view of $I_{4}, y_{1}+y_{2} \leq \mathbf{k}$ and hence the only transition possible from m_{9} is $m_{9} \rightarrow m_{8}$.

To show premise C we have to prove that P_{h} is always eventually enabled. Consider first the case that $\mathrm{h}=1$. The only location in which it is not immediately enabled is when P_{1} is at ℓ_{6} while P_{2} is at $m_{5 . .7}$ (in view of I_{1}). However by simple chain reasoning it is obvious that in such a case, P_{2} will certainly reach m_{4} in which y_{4} becomes positive and P_{1} enabled.

The case $h=2$ is even simpler because it is only considered when P_{1} is at ℓ_{1}. Consequently, even when P_{2} is at m_{8}, which may potentially raise some problems, we have in view of I_{1} and at ℓ_{1} that $y_{4}>0$ and P_{2} is enabled.

Thus we conclude that $\psi:$ at ℓ_{1} A at m_{1} must eventually be realized and therefore the program must terminate.

16. PRECEDENCE PROPERTIES

The next class of properties wC will consider and provide proof principles for is that of precedence properties. These arc properties, usually needing the \mathbb{U} operator for their expression, which ensure that some event precedes another event, or that a certain event will not happen until another event happens first. In view of the fact that the basic FAlR and EVNT rules did actually provide a conclusion containing the \mathcal{U} operator, they may be naturally utilized to form precedence proof principles which are generalizations of the corresponding liveness principles.

In the following we will often consider nested until expressions in which the nesting always occurs in the second argument. We therefore adopt the convention of representing the nested formula:

$$
\varphi_{n} \cup\left(\varphi_{n-1} \cup\left(\ldots\left(\varphi_{1} \cup \varphi_{0}\right) \ldots\right)\right)
$$

by:

$$
\varphi_{n} \mathbb{U} \varphi_{n-1} \mathbb{U} \ldots \varphi_{1} \mathbb{U} \varphi_{0} .
$$

The semantic meaning of this formula is that, starting from the present there is going to be a period in which φ_{n} continuously holds, followed by another period in which φ_{n} continuously holds, . . . followed by a period in which φ_{1} continuously holds, until finally φ_{0} occurs. Any of these periods may be empty, but the occurrence of φ_{0} is guarantecd.

Let us consider first the proper generalization of the CH $\Lambda \mathrm{IN}$ rule in which we assume a finite chain ol"asscrtions $\varphi_{r}, \varphi_{r-1}, \ldots, \varphi_{1}$ leading to the goal $\psi=\varphi_{0}$.

Let $0<p_{1}<p_{2}<\ldots .<p_{s}=r$ be a partition of the index range into s contiguous segments. Then wC may formulate the following chain principle for precedence properties:

The Chain Rule for Precedence Properties - P-CHIAIN

Let $\varphi_{0}, \varphi_{1}, \ldots, \varphi_{r}$ be a sequence of state assertions, and $0=p_{0}<p_{1}<p_{2}<. . \quad<p_{s}=r$ a partition of $[1 . r]$.
A. I- P leads from φ_{i} to $\left(\bigvee_{j \leq i} \varphi_{j}\right)$ for $i=1, \ldots, r$.
B. For every $i>0$ there exists a $\mathbf{k}=k_{i}$ such that:

$$
\vdash P_{k} \text { leads from } \varphi_{i} \text { to }\left(\bigvee_{j<i} \varphi_{j}\right)
$$

C. For $\mathrm{i}>0$ and $\mathbf{k}=k_{i}$ as above:

$$
\vdash \varphi \supset 0\left[\left(\bigvee_{j<i} \varphi_{j}\right) \vee \operatorname{Enabled}\left(P_{k}\right)\right]
$$

$$
\vdash\left(\bigvee_{i=0}^{r} \varphi_{i}\right) \supset\left(\psi_{s} \cup \psi_{s-1} \ldots \psi_{1} \cup \varphi_{0}\right)
$$

where

$$
\psi_{\ell} \text { is } \bigvee_{p_{\ell-1}<j \leq p_{\ell}} \varphi_{j} \quad \text { for } \ell=1, \ldots, s
$$

The conclusion states that starting at a state that satisfies one of the $\varphi_{i}, \mathbf{i}=\mathbf{0}, \ldots r$, we are guaranteed to have a period in which $\left(\bigvee_{j=p_{s-1}+1}^{p_{s}} \varphi_{j}\right)$ continuously holds, followed by a period in which $\left(\bigvee_{j=p_{s-2}+1}^{p_{s}-1} \varphi_{j}\right)$ continuously holds, etc., until φ_{0} is finally realized. Any of these periods may be empty.

Proof:

To justify the soundness of this conclusion we will first prove it for the most refined partition possible, namely:

$$
\left(\bigvee_{i=0} \varphi_{i}\right) \supset\left(\varphi_{r} \mathbb{U} \varphi_{r-1} \mathbb{U} \varphi_{r-2} \mathbb{U} \ldots \varphi_{1} \mathbb{U} \varphi_{0}\right)
$$

This is proved in a way similar to the justification of the corresponding liveness principle. We show, by induction on $n, n=0,1, \ldots, r$; that

$$
\vdash\left(\bigvee_{\mathbf{i}=\mathbf{0}}^{\mathbf{n}} \supset\left(\varphi_{\boldsymbol{n}} \mathbb{U} \varphi_{n-1} \mathbb{U} \ldots \varphi_{1} \mathbb{U} \varphi_{0}\right)\right.
$$

For $\mathbf{n}=0 \mathrm{wc}$ have $\mathrm{I}-\varphi_{0} \supset \varphi_{0}$ which is the induction statement for $\mathrm{n}=0$.
^spume that the statement above has been proved for a certain n and consider its proof for $\mathrm{n}+1$.

Consider the EVNT rule with $\varphi=\varphi_{n+1}, \psi=\left(\bigvee_{\mathrm{i}=\mathrm{o}}^{n} \varphi_{i}\right)$. As shown in the proof of the liveness case, all the premises of the EVNT rule are satisfied. Consequently we may conclude:

$$
\vdash \varphi_{n+1} \supset \varphi_{n+1} \cup\left(\bigvee_{i=0}^{n} \varphi_{i}\right)
$$

By the induction hypothesis and the $\mathbb{U U}$ rule this yields

$$
\vdash \varphi_{n+1} \supset \varphi_{n+1} \cup\left(\varphi_{n} \mathbb{U} \ldots \varphi_{1} \cup \varphi_{0}\right)
$$

Due to $\vdash \mathrm{v} \supset(u \bigcup v)$ which is a consequence of axiom A9, the induction hypothesis can also be written as

$$
\vdash\left(\bigvee_{i=0}^{n} \varphi_{i}\right) \supset \varphi_{n+1} \text { U }\left(\varphi_{n} \cup \ldots \varphi_{1} \text { U } \varphi_{0}\right)
$$

Taking the disjunction of the last two gives

$$
\vdash\left(\bigvee_{i=0}^{n+1} \varphi_{i}\right) \supset \varphi_{n+1} \text { U }\left(\varphi_{n} U \ldots \varphi_{1} U \varphi_{0}\right)
$$

which is the required staternent for $n+1$.
Consider now a coarser partition:

$$
0=p_{0}<p_{1}<p_{2}<\ldots<p_{s}=r .
$$

By consecutively merging any Loo contiguous assertions that fall into the same partition cell, using theorem T38:

$$
\vdash\left(\varphi_{i+1} \mathcal{U}(\operatorname{Pi} \cup \varphi)\right) \supset\left(\left(\varphi_{i+1} \vee \mathrm{Pi}\right) \cup \varphi\right)
$$

wc obtain the coarser conclusion:

Examples:

As our first example, let us consider the Mutual Exclusion program analyzed above. We have already proven that mutual exclusion is maintained by this program. Wc have also proven the liveness property that if P_{1} wishes Lo enter its critical section it will eventually gain access Lo it. A more discriminating question is that, of how fair is our algorithm. That is, if P_{1} wishes to enter
its critical section, how many times will P_{2} be able to enter its own critical section before P_{1} ? Is that, number bounded? Wc refer to this question as the problem of bounded overtaking. Namely, how many times can P_{2} overtake P_{1} before P_{1} enters his critical section.

Our first analysis makes use of Fig. 1 without any modifications. Wc only read from it Lhe stronger conclusion according to the stronger P-CLAIN rule. As a partition we choose $p_{1}=7$, $p_{2}=9, p_{3}=r=11$. Consequently, from Lhe diagram of Fig. 1 we conclude by the P-CHAIN rule:

$$
\vdash\left(\bigvee_{i=1}^{11} \varphi_{i}\right) \supset\left(\left(\bigvee_{i=10}^{11} \varphi_{i}\right) \cup\left(\bigvee_{i=8}^{9} \varphi_{i}\right) \cup\left(\bigvee_{i=1}^{7} \varphi_{i}\right) \cup \varphi_{0}\right)
$$

Replacing each of the right hand side disjunctions by a weaker property and the left hand side disjunction by a stronger statement we obtain:

$$
\vdash \ell_{3,4} \supset\left(\left(\sim m_{5,6}\right) \cup m_{5,6} \cup\left(\sim m_{5,6}\right) \cup \ell_{5}\right)
$$

This implies that if P_{1} is at the wailing loop in $\ell_{3,4}$, there will ho a period in which P_{2} is not in the critical section $m_{5,6}$, followed by a period in which P_{2} is inside the critical section $m_{5,6}$ followed by a period in which P_{2} is outside the critical section which terminates by P_{1} entering his critical section. Since any of these periods may be empty this is a worst-case analysis. But it certainly assures l-bounded overtaking, i.e., once P_{1} is in $\ell_{3,4}, P_{2}$ may overtake it at most once.

Having successfully analyzed the situation from $\ell_{3,4}$ on we may attempt to obtain a similar analysis from the moment that P_{1} enters ℓ_{2}.

This analysis calls for a refinement of the diagram of Fig. 1. The following is a subdiagrarn that should replace the node corresponding to φ_{12} in Fig. 1. It consists of three nodes labelled respectively $\varphi_{7.5}, \varphi_{9.5}$ and $\varphi_{11.5}$. The fractional indexing indicates that $\varphi_{7.5}$ should be inserted between φ_{7} and φ_{8} in Fig. 1. The edges out of φ_{13} should enter one of these three nodes. Edges out of $\varphi_{7.5}$ lead Lo some of $\varphi_{1}, \ldots, \varphi_{7}$.

Similarly for edges out of $\varphi_{9.5}$ and $\varphi_{11.5}$. Considering the updated diagram composed of Fig. 1 and the above subdiagram WC obtain the following conclusion:

$$
\vdash \ell_{2 . .4} \supset\left(\left(\bigvee_{i=10}^{11.5} \varphi_{i}\right) \mathbb{U}\left(\bigvee_{i=8}^{9.5} \varphi_{i}\right) \mathbb{U}\left(\bigvee_{i=1}^{7.5} \varphi_{i}\right) \mathbb{U} \varphi_{0}\right)
$$

This again leads to

$$
\vdash \ell_{2 . .4} \supset\left(\left(\sim m_{5,6}\right) \cup m_{5,6} \cup\left(\sim m_{5,6}\right) \cup \ell_{5}\right)
$$

which ensures l-bounded overtaking even frorn ℓ_{2}. Encouraged by this, we may next ask whether a similar result can be obtained from ℓ_{1}. Unfortunately this is not the case. P_{2} may enter its critical section an arbitrary number of times while P_{1} is at ℓ_{1}. This is obvious since while being at ℓ_{1}, P_{1} has not yet modified any variable in a way that will show that it is not still in ℓ_{0}. And naturally while P_{1} is at ℓ_{0}, P_{2} may enter the critical section any number of Limes if the algorithm is correct.

THE WELL-FOUNDED PRINCIPLE FOR PRECEDENCE PROPERTIES

A natural extension of the P-CHAIN rule Lo programs that require infinite chains of assertions again uses well founded ordered sets.

Let (A, \prec) be a well founded ordered set. WC require however that the ordering is total (or linear). That is, for every two distinct elements $\alpha_{1}, \alpha_{2} \in \mathrm{~A}$ cither $\alpha_{1} \prec \alpha_{2}$ or $\alpha_{2} \prec \alpha_{1}$.

Well Founded Precedence Rule --- P-WELL

Let $\left.\varphi(\alpha)=\varphi^{\prime} \alpha ; \bar{\pi} ; \bar{y}\right)$ be a parametrized state assertion with $a \in A$.
Let $h: \mathrm{A} \rightarrow[1 \ldots k]$ be a helpfulness function.
Let $\alpha_{1} \prec \alpha_{2} \prec \ldots \prec \alpha_{s}$ be a sequence of elements of A .
t- \mathbf{P} leads from $\varphi(\alpha)$ to $\psi \vee(\exists \beta \preceq \alpha . \varphi(\beta))$
$\vdash P_{h(\alpha)}$ leads from $\varphi(\alpha)$ to $\psi \vee(\exists \beta \prec \alpha \cdot \varphi(\beta))$
$\mathrm{t}-\varphi(\alpha) \supset \diamond\left[\psi \vee(\exists \beta \prec \alpha . \varphi(\beta)) \vee \operatorname{Enabled}\left(P_{h(\alpha)}\right)\right]$
$\vdash\left(\exists \alpha \preceq \alpha_{s} \cdot \varphi(\alpha)\right) \supset\left(\psi_{s} \mathbb{U} \psi_{s-1} \mathbb{U} \ldots \psi_{1} \mathbb{U} \psi\right)$
where
ψ_{ℓ} is $\exists \beta\left(\alpha_{\ell-1} \prec \beta \preceq \alpha_{\ell}\right) . \varphi(\beta) \quad$ for $\ell=2, \ldots s, \quad$ and
ψ_{1} is $\exists \beta\left(\beta \preceq \alpha_{1}\right) \cdot \varphi(\beta)$

Note Lhat while the range of the parameter in the assertions is infinite, the partition is still finite.

Acknowledgement:

We thankfully acknowledge the help extended to us by Yoni Malachi, Ben Moszkowski, Stuart Russell, and Fran k Yellin in reading the manuscript. Special thanks are due Lo Evelyn lildridgeDiaz for TEXing the manuscript and Lo Carol Weintraub for typing its lirst draft.

REFERENCES

[II] Hoare, C.A.R., "Communicating Sequential Processes," CACM 21 (1978) pp. 666-677.
[ILL] Igarashi, S., London, R.L., Luckham, D.C., "Automatic Program Verification I: A Logical Basis and Its Implementation," Acta Informatica, Vol. 4, No. 2 (1975), pp. 145182.
[KR] Kuiper, R. and de Roever, W.P. "Fairness Assumptions for CSP in a Temporal Logic Framework," TC2 Working Conference on the Formal Description of Programming Concepts, Garmisch (June 1982).
[L1] Lamport, L., "Proving the Correctness of Multiprocess Programs," IEEE Trans. Soft. Eng. SE-3, 2 (Mar. 1977), pp. 125-143.
[L2] Lamport, L . , "Sometime' is Sometimes 'Not Never': On the Temporal Logic of Programs," 7th Annual ACM Symposium on Principles of Programming Languages (1980), pp. 174- 185.
[LPS] Lehmann, D., A. Pnueli, and J. S tavi, "Impartiality, justice and fairness: the ethics of concurrent termination," in Automata Languages and Programming, Lecture Notes in Computer Science 115, Springer Verlag (198 I), pp. 264-277.
[M] Manna, Z., "Verification of Sequential Programs: Temporal Axiomatization," Theoretical Foundations of Programming Methodology (M. Rroy and G. Schmidt, cds.), NATO Scientific Series, D. Reidel Pub. Co., Holland (1982), pp. 53-102.
[MP1] Manna, Z. and A. Pnucli, "Verification of Concurren t Programs: The Temporal Frame work," in The Correctness Problem in Computer Science (R.S. Boyer and J S. Moore, cds.), International Lecture Series in Computer Science, Academic Press, London (1982), pp. 215-273.
[MP2] Manna, Z. and A. Pnueli, "Verification of Concurrent Programs: Temporal Proof Principles," Proc. of the Workshop on Logic of Programs (D. Kozen, ed.), YorktownHeights, N.Y. (198 L). Springer- Verlag Lecture Notes in Computer Science 131, pp. 200-252.
[MP3] Manna, Z. and A. Pnueli, "Verification of Concurrent Programs: Proving Eventualities by Well-Pounded Ranking," TOPL Λ S (1983, to appear).
[MP4] Manna, Z. and A. Pnueli, "IFow to Cook a Temporal Proof System for Your Pet Language," in the Proc. of the Symposium on Principles of Programming Languages, Austin, Texas (Jan. 1983).
[OL] Owicki, S. and L. Lamport, "Proving Liveness Properties of Concurrent Programs," ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3 (July 1982), pp. 455-495.
$[P e] P e t e r s o n, ~ G . I$. ., "Myths about, the Mutual Exclusion Problem," Information Processi ng Letters, Vol. 12, No. 3 (June 1981), pp. 115-116.
[I'S] Pnueli, A. and R. Sherman, "Semantic Tableau for Temporal Logic," Technical Report,, CS81-21, The Weizmann Institute (Sept. 81).
:

