June 1983 Report No. STAN-G-83-967

Verification of Concurrent Programs:
A Temporal Proof System

by

Z.ohar Manna and Amir Paueli

Department of Computer Science

Stanford Uuivcrsity
Stanford, CA 94305

VERIFICATION OF CONCURRENT PROGRAMS:
A TEMPORAL PROOF SYSTEM

b
ZOIIAR MANNA d AMIR PNUELI
Computer Science Department Applied Mathematics Department
Stan ford University The Weizmann Institute of science
Stan ford, CA Rehovo t, Israel

and

Applied Mathematics Department
The Wcizmann Institute of Science
Rehovot, Israel

ABSTRACT

A proof system based on temporal logic is presented for proving properties of concurrent
programs based on the shared-variables computation model. The system consists of thrco parts:
the general uninterpreted part, the domain dependent part and the program dependent part. In the
general part we give a complele proof system for first-order temporal logic with detailed proofs of
useful theorems. This logic enables reasoning about general time sequences. The domain dependent
part characterizes the special properties of the domain over which the program operates. The
program dependent part introduces program axioms which restrict the time sequences considered
to be execution sequences of a given program.

The utility of the full system is demonstrated by proving invariance, liveness and precedence
properties of several concurren b programs. Derived proof principles for these classes of properties,
are obtained and lead to a compact represenlation of proofs.

This paper appears in the Proceedings of the 4-th School of Advanced Programming, Amsterdam,
‘Jlolland (June 1982).

Ihis research was supported in part by the National Science loundation under grants MCS79-
09495 and MCS80-06930, by DARPA under Contract N00039-82-C-0250, by the Uniled States
Air Force Oflice of Scientilic Research under Grant AFOSR-8 {-00 14, and by Lhe Basic Research
Foundation of the Israeli Academy of Sciences.

A. INTRODUCTION

In this work wc present a proof system based on temporal logic for proving the propertics of
concurrent programs. We refer the reader to [MP1] for a more detailed discussion of the compu-
tational model of concurrent programs, and the advantages offered by the language of temporal
logic in formulating properties of concurrent programs.

1. THE TEMPORAL LANGUAGE: SYNTAX AND SEMANTICS

We first describe the temporal language wc are going to use. This language contains special
constructs that are suitable for reasoning about programs.

The language uses a set of basic symbols consisting of individual variables and constants,
propositions, and function and predicate symbols. The set is partitioned into two subsets: global
and local symbols. Intuitively speaking, the global symbols denotc entities that do not change
during a prograrrrexecution. The local symbols, on the other hand, may change their meanings
and values in different states throughout the exccution. For our purpose, the only local symbols
that interest us arc local individual variables and propositions. Wc will have global symbols of all
types.

Wc usc the usual set of boolean connectives: A, V, D, =, and ~ together with the equality
predicate = and the first-order quantifiers V and 3. These operators arc referred to as the classical
operators. The quantifiers ¥ and 3 arc applied only to global individual variables.

The modal operators used arc: [0, 0, 0, and U, which arc called respectively the always,
sometime, next and until operators. The first three operators arc unary while the U operator is
binary. We use the next operator, 0, in two different ways -- as a temporal operator applied to
formulas and as a temporal operator applied to terms.

A model (1, e, o) for our language consists of a (global) interpretation /, a (global) assignment
a and a sequence of states o.

e The interpretation | specifies a noncmpty domain D and assigns concrete cle-
ments, functions and predicates to the (global) individual constants, function
and predicate symbols.

) The assignment « assigns a value over the appropriate domain to cach of the
global individual variables.

e The sequence ¢ = sqg, s, . . . is an infinite sequence of states. Each state s;
assigns values to the local individual variables and propositions.

For a sequence
0 =80,81,. - .
wc denote by

o) = Siy Sit1y «

the i-truncated suflix of o.

Given a temporal formula w, wc present below an inductive definition of the truth value of w
in a model (I, «, a). The value of a subformula or term 7 under (I, «, a) is denoted by 7| ‘:, with
[being implicitly understood.

Consider first the evaluation of tcrrns:

e For a local individual variable or local proposition ¥:

?I|3 = S()['y],
i.e., the value assigned to y in sg, the first state of o.
e Tor a global individual variable u:
uly = ofu],

i.c., the value assigned to u by a.

- e For an individual constant the evaluation is given by I:
c|;" = I[c].

e Tor a k-ary function f:

f(tly)tk)‘,o,‘ = [[f](tl :1 e 1tlc|3))
i.e.,, the value is given by the application of the interpreted function I{f] to the
values of ¢y, . .., tx evauated in the model (I,a,0).

e For aterm ¢:
. (Ot =tz
i.e, the value of 0 t in ¢ = sy, 81, . . . is given by the value of ¢ in the 1-
truncated suffix o(t) = 84, 89,

Consider now the evaluation of formulas:

e Ior a k-ary predicale p (including equality):

p(tly e rtk)l: = I[p](tl 3: e :tkl:)'
Mere again, wc first evaluate the arguments in the rnodcl and then test I{p] on
them.

e For a disjunction:
(wi V wg)|% = true if and only if wy| & = true or wy| & = true.

And similarly for the other binary boolean conneclives v, 2, and =.

Following are some examples of temporal expressions and their intuitive interpretations:

For a negation:
(~w)|S = true if and only if W | % = false.

For a next-time application:
(Quw)ly = wlgy-

Thus O w rncans: w will be true in the next instant — read “next w”.

For an dl- times applicalion:

(Ow)|s = true if and only if for every k > 0, w| o) = true,
i.c., w is true for all sullix sequences of ¢. Thus d w means: w is true for all
future instants (including the present) -- read “aways w” or “henceforth w”.
For a sornc- time application:

(O w)|% = true if and only if there exists a k > 0
such that w| %, = true,

i.e., w is true on at least one suffix of . Thus 0 w means: w will bc true for
some future instant (possibly the present) -- read “somctime w” or “eventually

»

w.

For an until application:

wiUwsg|% = true if and only if for sornc k > 0, wa| 5, = true and
for al i, 0 <4 <k, wy |5 = true.

Thus w; Uwsy rncans: there is a future instant in which wq holds, and such that
until that instant w; continuously holds -- read “w; until wg” ([KAM], [GPSS]).

For a universal quantification:

(Vu.w)| % == true if und only if for every d € D, w| ‘;' = true,
where o/ = o 0 [u « d] is the assignment, obtained from « by assigning d to u.
For an existential quantification:

(Ju.w){? = true if and only if for some d € D, w| ‘;' = true,

where o/ = a o [u « d].

u D Owu If uis presently true, v will eventually become true,

" =M . .

B - C W Whenever u becomes true it will eventually bc followed by wv.
0 Qe At some future instant w will become permanently true.

_O(w A 0 ~w) There will be a future instant such that w is true at that instant

OCw

and false at the next.

Every future instant is followed by a later one in which w is true,

thus w is true infinitely often.
Dﬁ‘ o0 ’:’@ If u ever becomes true, then v is true at that instant and ever after.

- Ou v (ulv) Either u holds continuously or it holds until an occurrcnce of v.

This is the weak form of the until operator that states that u will hold
continuously until the first occurrence of v if v ever happens

or indelini tely otherwise.

ov 3 ((Nv)llu) | fv ever happens, its first occurrence is preceded by (or coincides with) u.

If w is true under the model (I, , @), wc say that (I, «, @) satisfies w or that (C, a a) is a
(satisfying) model for w. We denote this by

(I, @, a) F w.

A formula w is satisfiable if there exists a satisfying model for it.

A formula w is valid if’it is true in every mode; in this case wc write

E w.

Somctirnns we are interested in a restricted class of models C. A formula w which is true for
every model in C is said lo bc C-wvalid, denoted by

cl= w.

Example:
The formula O(wy A we) D (0 wy A 0 wy) is valid, i.e,
E Ofwr A wy) D (0 wy A Owy).

It says that if there exists an instant in which both w; and wsy are true then there exists an instant
in which wy is true and there exists an instant in which wg is true.

Réversing‘ the implication does not yicld a valid formula, i.e.,
t# (O wy A 0 wg) D Olwy A ws).
For, consider an interpretation consisting of a sequence of states:

.~

g 80y Sty «.»

such that w; is true on all odd numbered states and false elsewhere, and wy is true on al the even
numbered states and false on the odd ones. Then certainly both 0 w; and 0 w4 are true on o,
hence 0 w; A 0 wy is true. On the other hand, there is no state on which both w,; and wy are
true sirnultancously. Hence O{wy A weg) is false. Consequently the implication is false under the
interpretation o.

- |

2. THE PROOF SYSTEM

Having defined valid formulas, we nalurally look for a deductive system in which validity can
be proved. In such a system we take some of the valid formulas as axioms and provide a set of
sound inference rules by which we hope to be able to prove the other valid formulas as thcorcms.
A forrnula w is a theorem of the system either if it is an axiom of the system or has a proof in
which it is derived from the axioms using the inference rules of the system. We denote the fact
that, w is a theorem is provable wilhin the system by F w.

Our interest in the temporal logic formalism is mainly motivated by Lhe applicability of this
logic to proving properties of concurrent programs. Therefore, apart from developing the general
basic logical proper-tics of the opcrators and their interrelations, we will mostly be interested in
properlies that are valid over computations of a given concurrent program {’. Thus, the notion of
validity our system will try to capture is that of a formula being true for all possible computations
of the given program, and not necessarily over an arbitrary model. This corresponds to the concept
of A(P)-validity where A(P) is the class of all models corresponding to computations of P.

We structure our proof system into three main layers dependent on the universal validity of
the theorems that can be derived in each layer. In the first layer, called the general part, we ded
with the general temporal propertics of discrete linear sequences (arbitrary models). Theoremns
proved in that part arc valid for all sequences over arbitrary domains. They univcrsnlly hold for
arbitrary computations of all programs over such domains, as well as for scquences which cannot
cven be derived as the computations of a program. In the nexl layer the domain part, we restrict
our altention to a particular domain D and provide tools for proving validity over models all of
which are interpreted over D. The third, most restrictive layer is the program part. ITere we
restrict our attenlion to a particular program I’ and develop tools for proving validity only over
models whose sequences are legal computations of P.

In a forthcoming paper, the program dependent part is proved to be complete relative to the
- general temporal theory over the data domain. We also show that its dependence on the particular
> computation model studied is modular, by presenting a similar system for proving properties of
CSP programs.

B. GENERAL PART

We start the general part by describing first the axiomatic system for propositional temporal
logic in which we do not, admit predicates or quantification.

3. THE PROPOSITIONAL TEMPORAL SYSTEM (0O,¢,0 AND u)

The proof system for the propositional part, consists of the following axioms:

AXIOMS:

Al. F~Ow=0~w

A2. I- Ow D ws)d (0w D Ows)

A3. FBHw D w

Ad. I- O~w=~0wW

A5, F O(wy D we) D (Owy D Ows)

A6.F QO Iw D Ow

A7. FOwDOOw

A8 U OB 5 Ow) > B 500

A). F o (w Bwg)=[wy v (wy A Ofw Uwy))]
A10. F (wilwg) D Owa.

Axiom Al defines 0 as the dual of CI; it slates that at all times w is false if and only if it is
not the case that someclimes w holds. Axiom A2 slates that if universally w; implies wg then if
at al times w, is true then so is wy. Axiom A3 establishes the present as part of the future by
stating that if w is true at all future instants it musl be Lrue at the present. Axiom A4 establishes
0 as sclf-dual. Consequently il implies thal the nexl instant exists and is unique, and restricts our
models Lo lincar sequences (no branching). Axiom AJ is the analoguc of A2 for the 0 operator.
Axiom A6 states that the next instanl is one of the future states. Axiorn A7 states that if w
holds in all future instants it also holds in all instants which lic in the future of the next instant.
Axiom A8 is the “computational induction” axiom; it states that if a property is inherited over
one step_transitions, it is invariant, over any suflix sequence whose first state satisfies w. Axiom A9
characterizes the until operator by distributing its cffect into what is implied for Lthe present and
what is implied for the next instant. Axiom A10 simply states thal “wy until we” implies Lhal wq
will eventually happen.

INFERENCE RULES:

R1. Propositional Tautology — PT

If u is an instance of a propositional tautology then F u
R2. Modus Ponens — MP

If I-u D v and t- u then I- v
R3. O Insertion -- Ol

IfI-uthenkQ u

All these rules are sound. The soundness of Rl and R2 is obvious. Note that in Rl we also
include temporal inslances of tautologies;, wc may substitute an arbitrary temporal formula for a
proposition letter in obtaining an instance. I'or exarnplc, the forrnula Ow 2 O w is a temporal
instance of the tautology p D p. To justify R3, we recall that validity of w means that w is true in
all models, hence Cl w is aso valid.

DERIVED RULES AND THEOREMS:

Before giving some theorems that can bc proved in this system, we develop several useful
derived rules:

Propositional Reasoning -- PR
t- (g Aug A ... A u,) 3v
t- uy, Fug, ..., andF u,
-V

The notation above is used Lo describe inference rules. IL has the general form
Fo,, Feoy, ooy B om
F

and means that if we have aready proved ¢, . . ., o, (thc assumptions or premises of the rule),
. wc are alowed by this rule to infer 4 (the conclusion or consequent of the rule).

Proof:

The rule PR follows from the propositional tautology (Rule RI)
- [(urAweA. .. Auy)DdVID[urd(med (... (undVv)...))

by applying MI’ (Rule R2) n + 1 times. 1

Whenever we apply this derived rule without explicitly indicating the premise

Fo(ur A ug A .. Awy,) Dy,

it means that the premise is an instance of a propositional tautology.

O Insertion — 01

t-U
Fou
Proof:
1 t-u
2. FO¢
3. F ou

The first theorem that we derive in the system is:

Tl. Fw > Ow

Proof:
L F(@O~w)D- w
2. t-w D {~0O~w)

3. t-w D> ow

The theorem implies (by MP) the derived rule

given
by 01

by A6 and MP-I

by A3
by PR

Al and PR
el J

& Insertion — 01

Fou

T2. FOw>DOw
Proof:

1. F(O~w)3 (O-w)

by A6

2 . F(~O~w) D (~O~w) by PR

3. t-ow Dow byAl,A4,andPR-I

The following threc rules (and a similar rule for the until operator presented later) show that
all the temporal operators are monotonic in the sense that an argument may be replaced by a
weaker statement yielding a weaker expression.

0 O Rules
t-uov Fu =w
(8 ———— b
F Ou 3 Ow FOu = 0Ov
Proof of (a):

1. tu D v given
2. HIE¢ oM by Ol
s KO o4 >@e E QU by A2
4, F0Ouw D> Ov by 2, 3 and MP

Rule (b) then follows by propositional reasoning by using the tautology

(UDv A (vDul =(us=no.

- |
0 0 Rules
tu D v Fu =
a —— () ——
Fou Dov FOu=o0 v
Proof of (a):
1. tu D v given
2, t-v 3-u by PR
3. FO~wvDcl-u byQ ICl
4. F~Qv 23 ~Qu by Al and PR
5 FOudo v by PR

Rule (b) then follows by proposilional reasoning. d

10

0 0 Rules

FuDw t-u =v
a) ————— (b)
Fou 3 ov Fou =ov
Proof of (a):
1. FuDv given
2. t-Ou 2 V) by 01
3. +FOu D2 ov by A5 and MP
Rule (b) follows by propositional reasoning. 1
Computational Induction Rule — CI
Fu Do u
¢ D0 &0
Proof:
1. t-u D Ou given
2. | OB¢ 5 Ou) by OI
3. FO > Ou) D (v D Ou) by A8
4, Fu D Ou by 2, 3 and MP
. |
Derived Computational Induction Rule -- DCI
Fu>d (vAOu)
Fv 20w
Proof:
L Fud(vAOu given
2. Fu D Ou by PR
3. Fu D2 Ou by Cl
4, tu D v by 1 and PR
5. t-« u 20w by OO

11

6. Fu D 0Ovw

The following two thcorems show that the Cl

T3.40 O ¢ = 00w

Proof:
1 FOOw 2 Ow
2. FOw > O0w
. FOw D> O0w
4. FOw=00=0¢

T4, 1-ow =oow

Proof:

1L +~Cw = 0O~w

2. FO~w=00-w

FO~Ow=.
4. 1-El-ow = ~0O0w
5 F~Ow = ~O00uw
6. FOw = OQw

by 3, 5 and PR
y J

and O operators are both idempotent:

by A3
by A7
by CI

by 1, 3 and PR-I

by Al

by T3

by 1 and EI O

by Al

by 1, 2, 3, 4 and PR

by PR
y

Because of these last two theorems we can collapse any string of consccutive identical modalities

suchas[d...0 lorO...

0 into a single modality of the same type.

The [ollowing theorem establishes that O is the dual of 0. Nolc that A1l states thal O is the

dua of Cl, i.e, Ow =~ O ~w.

T5. F (O-w) = (~0Ow)
Proof:
L kF(vrw) = w

12

by PT

F(O~~w) =0 o yQ d
F(~O~w) =0« by Al and PR
b (0 ~w) = (~240 by PR

T6. Dﬁ?. o] QUQ)D!ED wy D <>’U)2)

Proof:

t- (wy D wg) = (~wg D ~wy) by PT
¢ DB 5 wy) = O(~wy D ~wy) by @ 1c1
F§ ~w; D ~wy) D (O~wy D O~awy) by A2
F(O~wp O~w) = (~Owpd ~Owy) by Al and PR
F~Quwe o~ Owy) = (Qwp D Ows) by PT
FUBH Swy) o (Owy 2 Owy) by 2, 3, 4, 5 anti PR_I

The following thcorems show the interaction between the temporal and the boolean operators.

17.1- U

Proof:

Wl A wg) = (Owy A Ows)

F(wr A wg) D wy by PT
FO B9 ¢ wo PO w, by@Q ICl
F(wye A wa) D we by PT
¢D O waw)o0 w byQ IEJ
F A waw)a(@wald w by2, 4 and PR
Fwy DO (wg DwiA wy) by PT
po s U (wad(wiA wg)) by OO
+ D(wg D (wy A wz))) (Dwg D Dwy A wz)) by A2
F Ow, D(Dw;p O w A wz)) by 7, 8 and PR
F(Ow, AQwe) D O wa wg) by PR

13

1.+ A waw)=(0w,Ad w2

T8. <>(’U)1 V ’LU2) = (Owl Vv 011)2)

Proof:

L FO~wVw)= D (wl A ~wy)

5. F~O(wy. we)=~(Qw v
6. t- O(U)l \" ’wg) = (0 w; Vv O’wg)

F D (N’wlA Nwz) = (D ~w; A DNU)z)
F(O~wi A O ~wg) = ~(~ O ~wy Vo~ Oews)

4, i—E]~(w1Vw2)E N(N a ~Wq v o~ E]ng)

0 ’lD2)

5, 10 and PR
o Jd

by PT and CI (1
by T7
by PR

by 1, 2, 3 and PR
by Al and PR

by PR
Y

Note that because of the universal character of Cl it can be distributed over A (Thcorem T7),
while 0, which is of existential character can be distributed over V (Theorem T8). Next, wc show
that interchanging a temporal operator with a boolean operator of the opposite character yields
implication in one direction only; the implication is not necessarily true in the other direction.

o4 (Ow, * 0 wp O (Wiws)

Proof:

1. F Ow, DD ﬁ’@’:’ wy
2. Hdwd D ﬁ?. ‘:‘ Weo
3. HOw,Ow,p U B0 % w,)

)
)

T10. t - O(w A w2) D (O wy A Owy)

Proof:

1.t O(’U)l A UJ2) 3 Qwy
2. FO(wy A we) D Ow
K 0(11)1 A 'wg) o] (Owl A O'LUQ)

14

by PT and El Cl
by PT and 01O

by 1, 2 and PR
y |

by PT and O O
by PT and O O

by 1, 2 and PR
Y 2

TII. I—(ElwlA 0 11)2):)0(’(1)1A ’u)z)

Proof:
1. |-wy 2 (wz D (wy A wz)) by PT
2.+ Ow, o4 (wg D (w1 A wg)) by OO
3.k (W2 0 (w1 A w)) 3 (O wz D O(wy A wy)) by T6
4, FOw; 2 (Owe D O(wy A ws)) by 2, 3 and PR
5 F(Owi A Qwg) D Olwr A wy) by PRJ

Next we consider the commutativity properties of the next operator 0. In view of A4, O
is self-dual and can be considered Lo be of both existential and universal character. Indeed it
cornmutes with cvery other boolean or temporal operator as well as with quantifiers.

1712. F O(wy A wg) = (Owi A 0 wy)

Proof:
1. + w 3 (’11)2 O (wy A ’U)z)) by PT
2. t- 0O w D O(wg D (wy A 102)) by 00
3. FO(ws D (wi Awg)) D (0 wg D Owr A ws)) by A5
4, FOw; A (Owy D Owy A wy)) by 2, 3 and PR
5 F (O wy A Owg) D O(wy A we) by PR
. 6. F (wi A wg)D wy by PT
7. F O(wy A wg) D OQwy by 00
8. F {wi A wg) D we by PT
9. F O(wy A wg) D Owg by 00
10. F O(wy A wg) D (Owy A Owy) by 7, 9 and PR
11. F O(wy A we) =(Owy A Ouwg) by 5, 10 and PR-I

TI3.t - O(wyv we)=(Owyv Owsy)

15

Proof:
L F O(~wy A ~wg) = [(O ~wy) A (O ~wy)] by T12
2. F O(~wy A ~wg) = [(~ O wi) A (~ 0 wy)] by A4 and PR
3. F O ~wy V wg) = [(~ Owy) A (~ Owy)] by 0 0 and PR
4 F~O(wyv wy)=~(Owyv Ows) by A4 and PR
5. FO(wiv wz)=(Owyv Ouwp) by PR

Ti4.t - O(wl D ’wg) =(0 w?>D O’wg)

Proof:
L FO(~wi v wg) = (0~w) V (Owy) by T13
2 1-O{~wi v we)=(~OQwi)v (Ows) by A4 and PR
31 - Owy D wg) =(Owy D Owy) by 0 0 and PRJ

T15. O(wl = ’wg) = (O’U)l =0 ’U)g)
Proof:

1Lt [O(wy D wg) A O(wg D wq)] = [(owl 3 0 wz) A (Qwz D owl)]
by 714 and PR

2. F Of(wy 2 wg) A (w2 D wy)] = [[Owy D Owz) A (Qwy D Owy)
by T12 and PR

3. F Owy = we) = (Owy = Owy) by 0 0 and PR_I

The previous theorems show that the next operator, 0, commutes with cach of the boolean
operalors. The following two theorems establish commutation of 0 with Lhc temporal operators
Cl and 0.

Ti16. + OOw =0 ow
Proof:
L 1-ow D> (w D Ouw) by PT

16

T17.

Proof:

10.
11.
12.

13.

14.

btow o0B > Ow)

FIB 5> Ow) > OO(w > Ow)
W@D(w 5> Ow) > O(w 21 +0Q
bow> d+0 > (0w > 00w
FOOw D (Ow > O0Ow)
FOOw Do w

t-=o0w D0 0 W

t-oclw Dooow
FOOw D> O Oee
FOOw D ow
FOOOw Dnow
I-O0w D> 0OO0Ow

¢hO0¢e = 0 O

FOQw=<C0w

2.

3.

FOO~w =00 -w
~O 0w

Il

l--0ow

l-oow

]
o
o
s

T1S. + O C0Ow = ¢ 0w

Proof:

|l - ou2 <S0w

t-=w Jouw
FOOw D 00w
FOOOw 3 O¢0Ow

17

by 000

by A7

by A8 and O 0
by A5

by 2,3, 4, 5 and PR

by A3

by 6, 7 and PR
by A7 and 0 0
by CI

by A3 and 0 O
by OO

by 10, 12 and PR

by 8 13 and PR
Y d

by T16
by Al, A4, O Cl, 00 and PR

by PR
¥

by A3
by A7
by 00

by 1'17 and PR

5 FOOw 3 O¢0Ow by 3, 4 and PR
6. FOOw > OCOwW by CI

7. FOC0Ow = 00w by 1, 6 and PR.I

T19. o Od<Ow =04 Ow

Proof: By duality from T18.

These last two theorems together with T3 and T4 (O Clw =0 2uand & O w = Ow, respec-
tively) give us a normal prefix form for a string of the form

mymy ... mg(w),

where cach m; is cither El or 0. We use first T2 and T3 to collapse any substring of the form CI”
and O™ to a single O or 0. What remains must be a string of alternating O and 0. If it contains
more than one operator then it is equivalent by T18 and T19 to a string with just two operators --
the last two. Consequently any string such as the above must be equivalent to one of the following
four possibilities:

O e+« Ow, O lowar <0Ow.

In the more gencral case that the string also contains some occurrences of the next-time
operator 0, we may usc the commutation of 0 with both CI and O to obtain Lhc four normal
forms:

OfFOw, O¥Cw, O*OCwa n d oo dw

for some k > 0.

T20. - QA Iw=(wA ODOw)

. Proof:
1. FOw 3 w by A3
2. t-<JW D> oow by A7
3 F O wowaOOw) by 1, 2 and PR
4. t- oclw > Ofw A O0Ow) by 00
5 FwA OOw)d2Owa ODw) by PR

18

6. FwAOOw)>W wAOOw) by CI

7. 40 0 woowpa w by PT and O CI
8. F(w A OOw) D Q0w by 6, 7 and PR
9. FOw=(w A OOw) by 3, 8 and PRJ

T21. FOow =(w v OQw)

Proof:
L FO~w = (~w A OO~w) by T20
2. F~Ow=~wv -00-w) by Al and PR
3. F~O0O~w3 oo0ow by A4, Al, 0 0 and PR
4. 1- Qw = (wv OQw) by 2,3andPRl-l

Theorerns T20 and T21 give a fixpoint characterization of the [0 and O operators respectively.
They each give an equation using only boolean operators, the formula w and the operator 0. The
solutions to these equations are Cl w and O w respectively. This shows that in some sense O is the
most basic operator since the other operators may be defined by means of fixpoint equations using
0. Axiorn A9 similarly characterizes the U operator by a Gxpoint equation.

722. F W A O~w) D Ow A O~w).

This is the dual of the “computational induction” axiom AS8. [t states that if w is true now
and is false sometirne in the future, then there exists some instant such that w is true at that
instant and false at the next.

Proof:
1. b O(w 2> Jw) > & 2050 by A8
2 ¥ ~w 200 5 ~Ow > Ow) by PR
3 FWwWA ~Ow) D O~w 2 Ouw) by T5 and PR
4. t- O~fwdOw)=O(w A ~Ouw) by PT and 0 0
5 FwA ~Ow)d Ow A ~Ow) by 3, 4 and PR
6. 1I- (w A O~w)D Ow A O~w) by T5, A4 and PR-I

19

The following derived rules correspond to proof rules existing

in mosl axiomatic verification

systems:
Consequence Rules .

0Q rule oI, 0Q rule

- 4y 3 Ug Fuy 2 ug - vy 3 ug

Fuy D i Fu, D O t-ug D 00

- v DO g oy 3 v F vy 3 v

t-u; DO Ou,y Fug D Ouy -4 D Ouwuy
Proof of &Q:

1. kaup D ug
2.k ug 3 0 v

3 t- vy D vy

4, F Qv O Owuy

5. F u D <>’U2

given
given
given
by3and 0 O

by t, 2, 4 and PR
y o

The d Q and OQ rules are proved similarly by the O Cl-rule and 0 O-rule, respectively.

Concatenation Rules
Q%6 Oeel

Fvw D Ovw
v D Ow

w0

OC rule

Fu D O

Fu D Oe

N 5 Ow

Proof of UC:
1. Fao 3 0Ovw
2. Fov > Ow
3. F0Ow 3 O0w
4 FDOv D0
5 Fu D Ow

given
gi ven
by 2 and OO Cl
by T3 and PR

by 1, 4 and PR
Y o

The OC rule is proved similarly by the 0 O-rule. Note that the corresponding OC rule does

not hold.

20

UNTIL DERIVED RULES AND THEOREMS:

Right Until Introduction -- RUI
l-w D2Ouw
I-w D [vv(uA Ouw)

Fw D (ulv)
Proof:

L t-w 3 Qv given
2. FwDJ[vv (uA 0 w)] given
31- [vv (uA Olv))] > (ullv) by A9 and PR
4 F~@lUv)d[~A (~uv 0 ~(ulv))] by A4 and PR
5. F[w A ~ulv)]d[~v A Ow A O ~(ullv)] by 2, 4 and PR
6. F[w A~ulv)]d [~ A OwA ~(ulv))] by T12 and PR
7.t w A ~(ulv)] > O~v by DCI,

taking u to be w A ~(ulv) and v to be ~v
8. Fw A ~(ulv)] D ~ O~v by 1, T5 and PR
9. Fw D (ulv) by 7, 8 and PR

ul

The RUI rule, together with axioms A9 and A10, can bc viewed as a characterization of the
wlU v construct as a maximal solution of the two implications:

X2V @uAOKX)

(+)
Xx 2 Ouw

The ordering by which maximality is defined is the ordering induced by defining false T true.

Axioms A9 and Al O imply that
(o) D [v V (u A Oullv)]
(ulv) D0 v

Thus they show x = ulv to be a solution of the implications (t). The rule RUI states that any
other solution x = w must, satisfy w D (ulv) which implies that whenever w is true so is ulwv.
Interpreted in our ordering this is representable as w C (ulUwv). Thus x = ulwv is the maximal
solution to ().

An intuitive explanation as to why ulv is indeced the maximal solution of () can be given as
follows:

21

Let w be any proposition satisfying (t) everywhere in a sequence ¢ = sg, 81, - . . . WC note
that (x) may have many solutions. In particular z = false is a trivial solution. However an obvious
property of every solution w is that if w is true in some state s;, this state must satisfy u and the
next state s;;; must also satisfy w unless s; satisfies v. Thus once w is true it can stop being true
only in a v-state. In view of the sccond implication such a v-state is guaranteed. Conscqucntly
whenever w is true in a state, ulv must also be true in that state.

Left Until Introduction — LUI
FIvV uAOuw)]ow

I- (vUv) D w
Proof:

L kFvviuAOuw)]dow given
2 Fuuv D[v v (uA Oulv))] by A9 and PR
3 Frwd[wwA (~uv 0 ~uw) by 1, A4 and PR
4 F [ulv A ~w] D [~v A u A O(ullv) A o-w] by 2, 3 and PR
5 F[ullv A ~w] D [O(ullv) “A o0-w] by PR
6. F [ullv A ~w] D Ofully A ~w) by T12 and PR
7. 1- fullv A ~w] D> Olv A ~w) by Cl
8 F [ullv A ~w] D ~v by 3 and PR
9 F W uwA~w)dO~ by OO
0. F[ulv A ~w] D ~Ov by 7, 9, Al and PR
1. Fulv A ~w] 2 Ou by A10 and PR
12 Fullvdw by 10, 11 and PR

- |

The LUI rule, together with axiorn A9, can be viewed as a characterization of the wUwv con-
struct as the minimal solution of Ihc implication:

(#) v V (u A Oz)] 2 x

Axiom A9 implies that x = ulv is a solution of (xx). The LUI rule states that any other solution
of (xx), x = w, is implied by «Uwv. This mecans that whenever ulwv is true so is w, which is
interpretable in our ordering as wlUlv T w. Thus vUwv is the minimal of al possible solutions.

Note that (x#) posscsscs many solutions. [n particular x = true is a trivid solution. Tlowever,
the minima solution is unique and is given by ulw.

22

UU Rules
F uy DO ug Foup = ug
(a) F v D v by F vi = v
t- uiUvy D ugUvsg F ui Uy = uglve
Proof of (a):
1. kFug DO ug given
2. Fwv D v given
3. Flvev (u2 A O(ugLL'uz))] 3 uslwg by A9
4. F[vr v (ug A O(uzUvz))] 2 uglvg by I, 2, 3 and PR
5 F uyUvy D uglwg by LUI

The proof of part (b) follows from (a) by propositional reasoning and the symmetric application

of (a). g)

This rule together with the O [J, 0 0 and O O rules show that all the temporal operators
are monotonic in all their arguments.

T23. F{~w)lw =0w

Proof:
L F(~w)lw Do w by A10
2 FOw D [wv OOu] by T21 and PR
. 3. Fow D[w v (~wA OOw) by PR
4. FOw D ow by PT
5 Fow D (~w)lw by 3, 4 and RUI
6. F (~w)lw = OW by 1, 5 and [’R-I

T24.F (Owy A Qwy) D (w;Uws)
Proof:

1. [E]w1 A <>w2] D Qwy by PR

23

2.

3.

4.

5.

FOwi A Qwy] D (wy A OOwy) A (we v OO wy))
by PR, T20 and T21

F(Ow A OQwg) D [wz vV (wy A OOw; A O<>w2)] by PR
F (le A sz) D [wg V (wl AOIO w, A 'wg))]] by T12 and PR
I- [Qw; A Owz] D wilwe by 1, 4 and RUI,

taking w to be Cl wy A O wy, U to be wy, and v to bGU)gJ

T25. t- (wIUwg)Uwz = w1Uw2

Proof:

T26.

Proof:

1.

| - (wl uwg)u'U)Q 2 [’Ll)2 Vv w1Uw2] by A9 and PR
- wg D wilwse by A9 and PR
Fo(wiUwz)Uwe 5 wilw, by 1, 2 and PR
Fw Ulwy 2 Owsg by A10
Fwlwy D wev (w A OfwyUws))] by A9 and PR
FwUwg D [11)2 Vv (w1U102 A O(wIUwg))] by PR
FwiUws O (wilwe)Uws by 4, 6 and RUI
F (wilw2)Uwe = wyUws by 3, 7 and PR-I

- wilwy = wil{w Uwy)

I- wg D wilwsy by A9 and PR
I- wilwg 3 wil(w; Uwy) by UU
|- wil(wiUws) D [wiUws v [wy A O(wyU(w; Uws))]] by A9 and PR
I- wi W(wiUwy) 3 {wg V [wi A O(wiUws)] Vv [wr A Ofw; U(wi Uws))]}

by A9 and PR

FwU(wiUwy) 3 {we v [wy A O(wllfwz VwIU(uuU'wQ))]} by T13 and PR
F lwiUwe v w U(wUwe)] D wyU(w; Uws) by 2 and PR

24

Proof:

7.

8.

9.

10.

11.

[N

12.

15.

FowgU(wUws) D {wy V [wy A O(wiU(w; Uws))]}
by 6 wit

F wiU(wyUwg) O O(wiUws)

F wilwy O Owy

- OwiUwy) D0 Owy

F wiU(wiUwg) O O wy by

F wiU(wiUwe) 3 wilwg

h 0O, 5 and PR
by A10
by AlIO
by 00

8, 10, T4 and PR

by 11, 7and RUI ,

taking w to be wy U(wyUws), u to be wy, and v to be wy

F wUwe = will(wUws) . by 2, 12 and PR

. |

U Insertion -- UI
t-v l-u, FOw
‘.(a) -

for an arbitrary u

Fully t- uuv

t-v
t- v 3 uuv

F uuv

l-u
FOw
FO¢
F (Ou A Ov) D ully

F uuv by

given
by A9 and PR

by 1, 2 and PR

given

given

by | and Ol
by T24

2, 3, 4 and PR
ol

U concatenation -- UC
F o 3 ullvg

|- vg 3 ullvg

[- vy D> ullus

25

Proof:

1. ko 3 ullvg given
2. Fowvy D ullvg given
3. t-ullvg O uwll(ulivs) by W
4. Fop 3 uwl(ulwg) by 1, 3 and PR
5. Fov; D ullvg by T26 and PR4

T27.1- [Owr A wellws] D (wy A we)U(wy Aws)

Proof:
1. F walwg O Cws by A10
2 F[Owi A wlws]d (0w A Ows) by PR
3. F[Owi A wallwg] D O(w A ws) by T11 and PR
4 . Fwlwsdfwgv (wg A O(wylUws))] by A9 and PR
5 F[Owi A welws] D [(Owy A w3)v (Owy A we A O(wplUwy))] by PR
6. K (O wy A w3) D (wy A w3) by A3 and PR
7. 1 [Ow; A we A O(welws)] D [wy A weg AO L w A OfwyUws)

by T20 and PR

8 t- [Dwi A wy A O(walUws)] D [(wy A we) A O(Owy A wylws)]
by T12 and PR

9. F[Owi A welwsg]d{(wiA w3)Vv [(wi A wg)A O(Bw; A wylws)l}
by 5, 6, 8 and PR
10. t- [Owy A wallws] D (wy A wa)U(wy A ws) by 3, 9 and RU,I-I

The next theorem displays the commutation relation between the 0 and the U opcerators.

T28| = (Owl)U(sz) = O(’ll)lu’wg)

Proof:

L1 wlwe = [we v (wy A O(wq Uws))] by A9

26

2 . F O(’Il)lu'll)z) _:_'{@ \% (O’U)l A O O(wlu'IUg))]
by T12, T13, 0 0 and PR

3. F [Owy v (OwiA O OwlUws))] D OwiUws) by PR
4. t- (Ow)U(Owsz) D> OfwiUws) by LUI, taking w to be w{Uwq
5 F ’lU[U,'wg D QO wsy by AlO
6. I - O(?UluwQ)DOO’LU2 by 00
7. t- O(wilUwsz) D O Ows by T17 and PR
8. I O(w1Uw2) D {OIUQ \% [Ow1 A OO(’(UIUH)2)]} by 2 and PR
9. F O(wUwz) 2 (Ow)U(Ows) by 7, 8 and RUT,
taking w to be O(wqUws), » to be 0 wy, and v to be 0 wq
10. t- (Ow)UW(Ows) = O(wiUws) by 4, 9 and PR

=

ITaving classified [0 as a universal operator, 0 as an existential operator and O as being both
universal and existential, we observe that U is universal with respect to its first argument and
existential with respect to its second argument. This yiclds the commutation properties listed in
T29 and T30.

T29. F (w1 A wy)Uws = [w; Uws A wollws]

Proof:

Lk (wg A wg) D w by PT
2. F (w; A wp)Uwz D wyUws by W
. 3. F(wy Awe)Uws D wolUw; similarly
4. F (wy Awg)lws O [wilws A wallws] by 2, 3 and PR
5 F wilwsy 2 Ow; by AlL0
6. 1- [wilUwz A wylws] 2O ws by PR
7. F wy Uwy D {w3 V [w A Ofw,Uw;)]} by A9 and 1'11
8. Fwellwgd{wzv [weA Ofwylws)]} by A9 and PR

9. 1- [wilwg A wellwg] D {wz v [(wg A we) A OwiUws A wellws)]}
by 7, 8, T12 and PR
10. F[w Uws A walws] D (wr A we)lws by 6, 9 and RUI,

taking w to be (w; Uwsz) A (welUw;s), u to bc wy A wg, and v to be w;

27

11.

+ ('wl A ’LU2)U.’U)3 = [wlUw3 A wzuw;;] by 4, LO and PR

-l

T30. t- wIU(wz V’U)3) = [wlu’lUQ v wlleg]

Proof:

10.

ft.
12.
13.
14.

15.

F we D (wg V w;) by PT
F wilwy O wilU(we V w;) by UU
FwUws D will(we v w;) similarly
FlwiUwe v wilws] O wil(wz vws) by 2, 3 and PR

- will(wy v wa) O {(wa V w3) V [wi A O(wiU(ws V w3))]} by A9 and PR

F [we v (wl A O(wlUwg))] O wi;Uws by A9 and PR
|- ~(w1Uw2) o] {~w2 A [~w1 \% ON(’U)lu’IU2)]} by A4 and PR
F ~(w Uws) O {~w3 A [~wy V O~(w Uw;)]} similarly

Flw U(we v ws) A ~(wiUws) A ~(w; Uws)] D

[~wy A ~w3 A wi A O(wiU(wz v w3)) A O~(wilUwg) A O~(w;Uws)]
by 5 7, 8 and PR

FlwiU(we vV ws) A ~(w Uwy) A ~(w Uwsz)] D

{~(wg v w3) A Olw;U(wz V wsz) A ~(wilws) A ~(wiUws)]}
by T12 and PR

t- [wilW(we v w3) A ~(wiUwz) A ~(w;Uws)] D O~(we V w;) by DCI
Fwil(wsv wa) D Owe v ws) by A10
FwU(we v ws) D ~[~(wiUwe) A ~(wiUw;)) by 11, 12, Al and PR
I - ’U)]U.(’U)Z v 'w3) o] [w1Uw2 v w1U11)3] by PR
F w,y u(ﬂlz v 'w;,) = [wl U,U)g \ wIUw3] by 4, 14 and PRJ

T F [Qwr vV Qwa]D [(~wi)Uwy v (~wg)Uwy]

Proof:

L.

+ [<>'U)1 Y 'U)Z] D O(’LU] \% ’wz) by T8 and PR

28

2. F Owy V wa)d (~(wr V we))U(wiV ws) by T23 and PR
3. t- Olwy v wy) D (~wy A ~we)U(wy vV ws) by UU and PR
4. F Owy V we) 3 [(~wy A ~we)lwy v (~wy A ~we)Uwe] by T30 and PR
5k (~wy A ~wa)Uw; D (~wg)Uwy by UU and PR
6. F(~wi A~we)lwg D (~wi)Uwe by UU and PR
7. F O(wy V wy) D [(~wi)Uws V (~wy)Uaw] by 4, 5, 6 and PR
8. F(CwiVvo w)d[(~wi)Uwav (~wg)lUw] by 1, 7 and PRJ

The following two theorems display the one way implication resulting frorn the interchange of

the U with a boolean operator of the opposite character.

132, t- wil(we Aws) :)M[wlU.wg A wiUws]
Proof:

L F(wg A w3) D we

2. FwU(ws Awz) D wylws

3. FwlU(ws Awz) O wilws

4. FwilU(we A w3) D [wilUwg A w;Uw;]

T33. [U)IU.'U);; V ’wgu’w;;] D (’_11)1 V ’ll)g)uw;;

-

by PT
by U U and PR

similarly

by 2, 3 and PR
4

Proof:
L F w D (wy V ws) by IT
2. F wilws O (wy Vwg)ls by UU
3. - wg D (w v wy) by PT
4. F wolws D (wy V we)ls by UU
5 F [wilws v wolws] D (wy v we)Uws by 2, 4 and PRJ

T34. F (wy D wo)lUws D [wilUwsy O walws]

29

Proof:

Lk (wy D wy)Uws D O ws by A10
2. F [(wy > we)lUws A wiUws] D
{wsg V [(wr 2 wy) A O((wi D wa)lws) A wi A Ofw; Uws)]}
by A9 and PR
3. F [(wy D w)Uws A wlUws] D
{ws V [we A O((wy D w2)Uws) A OfwUws)]} by PR
4. F [(wy D wo)Uws A wilws] D
{ws V [wz A O((wy D wz)Uwg A wiUws)]} by T12 and PR
5. F [(w1 D we)Uws A wilUwsz] D wellwg by 1, 4 and RUI,
taking w to ho ((w; D 'LUQ)U’U);;) A (wyUws), u to be wg, and v to be w3
6. F (wy D wa)lws D [wilUws 2 walws] by PRJ
T35. F [wy Uwe A (~we)Uws] D wy Uws
Proof:
1. F(~wz)Uws 3 0 w; by ALO
2. F [wilwy A (~wz)Uwz] D Ows by PR
3. FwlUwy 3 {wav [wy A OwiUws)l} by A9 and PR
4. F (~wo)Uws D {ws v [~we A O((ng)llwg)]} by A9 and PR

o1

F [wIUwg A (ng)Uwg] »]

{ws V [wi A ~wy A O(w;Uwz) A O((~ws)Uws)]} by 3, 4 and PR

6. F [w1Uw2 A (~w2)liw3] 3
{ws vV [wr A O(wilUwg A (~wg)Uws)]} by T12 and PR
7.k [wilwg A (~wa)Uws] D wiUws by 2, 6 and RUI 1

T36. F wil(we A wj) D (wyUwz)Uws
Proof:
Lk wUlws Aws)dOwe A ws) by A10

30

2.+ (wz A w3) D ws by PT
3. F <>(w2 A ’LU3) D Qws by 00
4. - wilU(wg Awsz) DO Ows by 1, 3 and PR

5 t- 1U1U(’w2 /\'U);;) D {(w2 A ’w;;) \% [w1 A O(’w1u(w2 /\'u)g))]} by A9 and PR

6. F (w2 A w3) D wy by PT
7. F w U(we Aws) D wyUwg by UU
8. F wil(wg A ws) D {ws v [wilwg A O(wiU(we Aws))]} by 5 7 and PR
9. FwiU(ws Awz) 3 (wlUws)Uws by 4, 8 and RUI q

The following two theorems are referred to as “collapsing” theorems, since they may be used
to derive a conscquence of smaller nesting depth from a nested until expression.

T37. F (w1Uw2)U1u3 D (w1 \Y; wg)U’LU3

Proof:
L FwlUwdwev (wia Ofw Uws))] by A9 and PR
2. FwlUws D (wy v ws) by PR
3. F(wilwg)Uws D (wy vwe)Uws by UU-I

T38. wllL(wzle;;) o] (w1 V wg)Uwg

Proof:

L+ wUW(welws) 3 O(walws) by AlO
2. Fwylw3d 0 ws by AL0
3. Fw W wlws) 20 ws by 1, 2 and OC
4. t- wU(welws) D {wallws V [wy A O(w U(walUws))]} by A9 and PR
5. F wl(wsUws) D {wzv [waa Olwolws)]v [wia O(w U(wsUws))]}

by A9 and PR
6. F wylws O wi U (wyUws) by A9 and PR
7.1 - [wga OwylUwy)] s [(wiv wg)a O(w U(wyUws))] by 0 0 and PR

31

8 t - [wA OwiU(welUms))] D [(wi V we) A O (w; U(wg Uws))] by PR

9. |- ’LU1U('IU2U’U)3) 2 {1)3 \ [(wl \% wg) A O(wlll(wgl,twg))]}
by 5, 7, 8 and PR

10, t- wiUW(walws) D (wy Vwe)Uws by 3, 9, and RUI F

A very useful derived operator is the unless operator u il v being defined by

wilv = [Ou V (ulv)].

The unless operator does not insist on the fact that v actually happens but it requires that u
holds until such an occurrence. If v never happens u must hold forever. This operator is rclated
to the binary “as long as’ operator p [0 ¢, reading “g as long as p,” introduced by Lamport in [[.2].
The meaning of this construct is that ¢ holds continuously as long as p is continuously maintained.
We may express p [¢ by:

pOq = qU(~p)

Following is a rule for establishing the unless operator.

Unless Introduction — I
Fu 2 Ou Vv v)

Fu D (uilv)
Proof:
L FudO(uvv given
2. Fu 2 [Ou Vv Ov by T13
3. Fewln)d{~vA [~uv O~(ulv)]} by A9, T4 and PR
4. 1- 0 ~ulv)Ddo0-v by 0 0 and PR
5 F[u A ~ulv)]2[u A O ~(ulv) by 3 and PR
6. F u A ~(ulv)] 2 [u A O ~(ullv) A ~ O v by 4, 5 A4 and PR
7. Flu A ~ullw)]o[uA Oua O ~ulv) by 2, 6 and PR
8 F u A ~@ulv)] d[ua Oua ~(ulv))] by T7 and PR
9. FuAa~xlUv)>Q u by DCI
Lo. 1- u D (O u v (ulv)) by PR

32

1. t- u D (uilv) by definition of il-l

This concludes the description of the propositional section of general temporal logic. The
axiomatic system presented for this section of the logic is known to be complete, and the validity
problem decidable ([I'S]). Conscquently, there exists a procedure that lests each formula in PTL
(Propositional Temporal Logic) for validity, and constructs a proof in the presented system if the
statement is valid. The procedure given in [PS] takes exponential time in the size of the tested
formula.

4. QUANTIFIERS

Since we intend to use terms and predicates in our reasoning we have to extend our system to
admit individual variables, terms and quantification. Let us consider additional axioms involving
quanlifiers and their interaction with the temporal operators.

AXIOMS:

All. F-32.w =Vz.~w

A2 F (Veaw(z)) Dw (t)
where ¢ is any term globally free for x in w

A3 F (Vx. Ow) D (OVz.w)

[n these axioms, x is any global individual variable. Axioms Al | and A 12 are the usua
predicate calculus axioms: A | | defines 3 as the dual of V and A12 is the instantiation axiom.
Axiom AI3 is the Barcan formula for the O operator; it states that since both operators ¥V and 0
have universal characteristics they commute. We use the substitution notation w(x) replaced by
w(t) to denote Lhe substitution of the term t for all free occurrences of x in w.

A- term ¢ is said to be globally free for x in w if substitution of ¢ for all frec occurrences of
X in w: (a) does not create new bound occurrences of (global) variables, and (b) does not, create
new occurrences of local variables in the scope of a temporal operator. A trivial case: if ¢ is x
itsell, then £ is [ree for x. Condition (a) is the one stipulated in classical predicale logic. Condition
(b) is special to modal and temporal logics with quantification. Condition (b) is essential for Al2,
because without it we could derive the formula

(V2. Oz < 9)) 2 Oy < v),

~

which is not valid for a local variable y.

An additional rule of inlercnce is:

33

INFERENCE RULE:

R4. V Insertion — V[
Fu 2w

F u> Vzuw
where x is not {ree in u.

DERIVED RULES AND THEOREMS:

[From R4 we can obtain the derived rule

Instantiation Rule -- INST

F w(z)
I- w(t)
_where t is any lerm globaly free for z in w.
Proof:
L F w(z) given
2. t-Vz.au(z) by VI (taking u to be true)
3. 1 - (Vew(z)) D wt) by A12
4. + w(t by 2, 3 and MI’
(¢) y 1

The following arce the duals of A 12 and R4 for the existential quantifier 3:

T39. F w(t) D Jz.aw(z)
where ¢ is any term globally free for z in w.

Proof:
L t- (vx. ~ w(z)) D ~w(t) by A12
2. F (~3zw(z)) 2 ~uw(t) by All and PR
3. t- w(t) D Jz.w(z) by I’RnI

Note again that wc need here the additional condition (b) ensuring thal Lhc substitution of ¢
for x in w does not, create new occurrences of local variables in the scope of a modal operator.

34

Proof:

Proof of (a):

Rule (b) then follows by propositional reasoning.

Proof of (a):
1.

2.

3 Insertion - - 31
l-u D v

where x is not frec in v

t- 3xu D v

Fu D w
- ~v D ~u
F~v 2 Vz.~u

F ~v DO ~dz.u

F dzu D v
YW Rules
Fuau D v Fu=wv
b) (a) - :
FVzu 3 VYzo F Vz.ou = Vzov

F Vzou D u
l-u D v
I- Vz.ou D v

| - Vz.u D Vv

J

by VI, since Vz.u

33 Rules

(2)

tu 3 v (b)

F Jdz.u D 3x.v

Fu

il

\'%

F 3x.u = Juw

llu D v

t- (~v) D (~u)

t- (V. ~v) D (Vz. ~ u)
F (4x.2)) D (~Fz.u)

35

given

by PR

by VI

by A1l and PR

by PR
¥R

by Al2
given

by PR

contains no free occurrences of Xx.

given
by PR
by WV

by Allad PR

5. I- dz.au D 3X.V by PR

Rule (b) then fdlows by propositional reasoning.

ol

From the axiom Al,
FrOw=0-w,
we can clearly deduce the formula
Frefwy O~w)=~wyv ~Ow)
by propositional reasoning (PR). However, we cannot deduce by PR the formula
O0~w =cl-o0ow
or
Ve. O~w = V. ~ ow.
Here, the replacement of O ~w by ~ 0 w is under the scope of the operator O and the quantilier

Vz, respectively, and thus cannol be justified by propositional reasoning alone. Tfor this reason we
need the following equivalence rule.

Equivalence Rule ---- ER

Let w' be the result of replacing an occurrence of a subfor-
mula vy in w by vg. Then
F o = vy

t-w = w

Proof:

By induction on the structure of w.
Case: w is v3. Then W is vy and t- vy = vg impliess w = w'.

Cuse. w is of Lhc formm ~u. Wc assume that t- vy = vg implies - u = u’. Then by propositional
reasoning F ~u = ~u/, f.e., I-w = w'.

Case: w is of the form u; V ug. Wc assume that if I- vy = vg, then t- uy = u| and t- ug = uj
Then by propositional reasoning F (uy V ug) = (uf V uh), ie, Fw=w.

The cases where w is of forms uy; A ug, uq D ug, ete. are similar.

Case: wis of theform O Iu. We assume that if I- vy = vy, lhen F u = u. By the O Cl-rule,
F Q u=0vu,ic, ttw=w'.

36

The cascs in which w is of forms 0 u, 0 u, and u,;Uug are treated similarly, using the 0 <-
rule, the 0 O-rule, and the UU-rule, respcctivcly.

Case: w is of the form VYz.u. We assume that if t- v; = vy, then t- u = u'. Then by the YV-rule,
t- Vz.ou = Vz.u', ie, Fw=w.

The case where w is of form J3z.u is proved similarly by the 33-rule. d

Deduction Rule -- DED

wl}-wg

F (D'U)l) D we

where the VI rule (Rule R4) is never applied to a free variable
of wy in the derivation of w; F ws.

That is, if under the assumption w; wc can derive b wq, where rule R4 is never applied to a free
variable of w; , then there exists a proof establishing + (Cl wy) D wy. Wc clearly must also be
careful in using any theorem or derived rule such as the VW or ER rule Lhat was established using
the VI rule.

The additional O operator in the conclusion is obviously necessary since in general wy I- wy
does not imply t- wy; D wy. For example, obviously w + ClI w is true (an immediate application of
rule R3: t- w by assumption and therefore - O w by [II); but w D O w is not, a theorem.

Proof:

The proof of the temporal Deduction Rule follows the same arguments uscd in the proof of
the classical deduction Lhcorcm of Predicate Calculus. By the given w; + we, there exists a proof
of the form:

|"U,1
I"Uz

F Uy,

such that u; = w; is the hypothesis on which the proof relics, and u.,, = wy is the conscyucnce of
Lhc proof. Wc replace each line F w; in the proof of w; F wq by the line I- L 1zol D u;, and show
that Lhis transformation preserves soundness. That is

given show
F uq + (El'wl) D
. F uo - (D wl) D U9

37

t- u, t- (C| wy) D uy

F U F (Owy) D tm
ie, |- we ek (O wy) D we

. . . . : :)
where each u; is either the assumption wy, an axiom, Or derived from previous u;'s by some rule
of inference.

The proof is by a complete induction on 7. We assume that for all k < 4, F (O w;) D uy,
and prove that 1- (Qw;) D u,.

Case: u; is an axiom.
1. Fw axiom
2. F (D'wl) D u; by PR
Note that + w' implies w D w’ for any w, by propositional reasoning.

Case: u; is wy.

1. F (le) D wy by A3

Case: u; is obtained by rule R1, i.e, u; is an instance of a tautology.
1. F by PT
2. F (Owy) D uy by PR

Case: u; is obtained by rule R2 (using previous & ug and F g 3 u;).

L F (Ow) D ux induction hypothesis
2. F (Owy) D (ux D u) induction hypothesis
3. F (Ow) D by 1, 2 and PR

Case: u; is obtained by rule R3 (using previous F uy), i.e, u; is Du.

L F (Owy) D ugk induction hypothesis
2. t- (O0Owy) D Oug yd IC
3. 40 (Ow,) 20040 by T3 and PR
4. F(Ow,)204& by 2, 3 and PR

38

Case: u; is obtained by rule R4 (using previous F u D v, i.e. ug, Lo get u D Vz.v, i.e. u;, where
X is not free in u).

By our deduction rule assumption, we know that x is also not free in w;.

L. F (Ow) D (v Dv induction hypothesis
2. F (Owy)) Au)y o v by PR
3 1-((Owy) A u)DVzw by R4

(since x is not frec in u or w;)

4. F (Owy) D (u D Vz.v) by PR 3

A different approach to coping with the application of the CI insertion rule (rule R3) is Lo
forbid it altogether. We then get the following restricted deduction rule:

Restricted Deduction Rule -- RDED
- wy F wg

- Wy O Wo

where O (rule R3) is never applied and VI (rule R4) is never
applied to a free variable of wy in the derivation of w; F ws.

Here, wc are not allowed to use rule OI or any theorem or derived rule in whose proof OI was
used.

The proof’ of RDED follows exactly that of DIED except that Lhc case in which rule R3 is
applied does not arise.

QUANTIFIER THEOREMS:

T40. 1- (4x.w) = (3X. ~w)

Proof:
L L(~v~w)=w by PT
2. t (Vz.~~w) = Vo by W
3. F(~Jz.~w) = vxw by Al 1 and PR
4, t- ~Vzaw=3X. ~w by PR-I

39

T4l. F Vz.(w; A wg) = (Ye.wy A Vz.wg)

Proof:
1. tVzaw; 3 wy by A12
2. FVzawg 3 wy by Al2
3. 1- (Yzawy A Vzawg) O (wy A wp) by 1, 2 and PR
4.k (Yzawy A Vzawg) D Vr(wy A ws) by VI
5. F(wr A wz) D w by PT
6. t Vz.(w; A we) D Vz.aun by WV
7. F(wi A wy) D wy by PT
8. FVz.(w; A wg) D Vzwg by W

9. F Vz;(wl A wg) D (Vzwy A Vz.ws) by 6, 8 and PR

10. F V:c.(wl A ’U)2) = (Vz,wl A V;g_w2) by 4, 9 and PRJ

T42. FIz(wyv wy) = (Fzw v Tz.wy)

Proof:
L FVofvwg A ~wg) = (Vo ~ wi A Va. ~ wg) by T4l
2. v ~(wyp Vo owg) = (V2. ~ w1 A VI, ~ wy) by ER
3. kF~dz(wi v owe) = (~Jzawg A ~3zawg) by Al I and PR
4. 1 - Jz(wy v wy) = (Fzaw, v Iz.ws) by PR-I

T43. F Vz(wy V wp) = [wy V Vz.wg| where z is not free in wy.

Proof:
1t Va(wy v we) D [wy v wyl by Al2
2. F Vx(wy v wy) A ~wy] 3 wy by PR

40

3 FVz.(wi v owe) A ~w(] D Vaz.wy by VI,
since x is not free in Vz.(w, V wg) A ~w;
4. F Vo (wiv we)Ddwyv Vzawg by PR
5. Fwp D [wy v ws by PT
6. F Vz.owes D wq by Al2
7. I-Vzawg D [wy v wel by PR
8. t-[wy v Vzawg] D [wy v wyl by 5, 7 and PR
9. t- [wv Vzag] D Va.(wv wp) by VI,
since x is not free in wy V Vz.we

10. t- Va(wyv wg) = [wyv Vz.ws) by 4, 9 and PR

ol

T44. F Jz.(w; A wg) = [w) A Jz.wy] where x is not free in w,

Proof: By duality on the previous theorem.

The following two theorems show that the O operator also commutes with the quantifiers.

T45. t- (vx. 0 w) = (0 Vz.w)

Proof:
1Lk (Vz. Ow) D (O Vz.w) by A13
. 2. Fvx.w Dw by Al2
3. F(OVzaw) D ow by 00
4. F (0 Vz.ow) O (Vz.0 w) by VI
5. F (V2.0 w)= (0 Vz.w) by 1, 4 and PR-I

1'46. k (3x. Ow) = (0 Jz.w)
Proof:
I. F(Vz.0 ~w)= (0 vXx. ~ W) by T45

41

2. F(Vz.~0w) = (0-3x.w)
3. t- (-3x. Ow) = (~ 0 3x.w)
4. 1- (3x. Ow) = (O Jz.w)

The following two theorems show that each temporal operator commutes with the quantifier
that has similar character (universal, or existential).

T47. + (Vx. O w) = (OVz.w)

Proof:
L FOwD[w A OOw) by T20 and PR
2. F(Vz.0w) D Vz.(w A OOw) by VV
3. F (VYz. O w) D [(Vz.w) A (Vz. O O w)] by T41 and PR
4+ (Vo. A wol(Vz.w)a(Ovz.ld w by T45 and PR
5 t- (Ve. O w) D (OVz.w) by DCI, taking u to be Vx. Cl w and v lo be Yz.w
6. t (Vz.w) D w by Al2
7. F(OVzaw) 3 Ow by OO
8. F (OVz.w) D (Vx. Cl w) by VI
9. k(Vz. Et w) = (OVz.w) by 5, 8 and PRJ

T48. F (3x. Ow) = (¢ Jz.w)

Proof:
L 1-(Vz. O ~w) = (O vx. ~ w) by T47
2. t-(Vz.~0 w) = (O -3x.w) by Al, A 11 and ER (twice)
3. t- (~3z.0w) = (~O3zw) by Al, Al 1 and PR
4.+ (3x. OQw) = (O Iz.w) by PRJ

Theorem T47 implies the commutativily of V with CI: Both have a universal character, with
one quantifying over individuals and the other quantifying over states. Similarly, theorem T48

42

implies the commutativity of 3 with 0. The first two theorems (T45 and 146) imply the commu-
tativily of v and 3 with 0.

The next two theorems arc consistent with the interpretation that the U operator is universal
with respect to its first argument and existential with respect to the second.

T49.

Proof:

T50.

Proof:

F o Vz.(wUwy) = (Vo.w)Uwe where x is not free in wg

1. F wIUwg o] [’U)2 \ (wl A O(w,llwg))]

2. F V:v.('wlU.wg)] Vx.[wg Vv ('U)1 A O(wIU.'wg))]
3. F Vz(wilUwe) D [we v ‘v’:c.(uu A 0(101Uw2))]

4.t Vo.(w Uwse) O [we v (Vz.wg A Vz. O(w | Uws))]

5 t- Vz.(wiUwz) D [wg Vv (V:v.'w1 A O Vz.(101Uw2))]

6. t- Vr.(wiUwz) D O we

7. F Va.(wUwg) D (Ve.w)Uws

by A9 and PR
by W

by VI and PR,

since x is not free in wq

by T4l and PR
by T45 and PR
by A 12, A10 and PR

by 5, 6 and RUI,

taking w to be Vz.(wiUws), u to be Vz.wy, and v to be wy

8. F (Yz.wy) 3 wy
9. + (Vz.w)Uwgz D wyUwe

10. F (Vaz.w)Uwe D Vz.(wUws)

1. F Vz.(wiUwe) = (Vz.w;)Uwe

-k 3z (wi Uws) = w U(Tz.we) where x is not free in wy

. F wilUws DO Owy

2. t 327.(’!1)111@02) o) (H.CO ’U)g)
3.t Jz(wiUwse) O (O Iz.wy)
4 . F ’Ll)lu’l1)2 2 [w2 \ ('wl A O(u)lU.'wz))]

5. F Jz.(wi Uwy) D [(Fzawg) v I2.(wi A OfwiUwy))]

43

by A12
by UU

by Vi,
since x is not free in wq

by 7, 10 and PR
Y o

by Al0

by 33

by T48 and PR
by A9 and PR

by T42, 33 and PR

6. t- Jz.(wiUwg) D [(Fzws) v (wy A Tz O(w Uws))] by T44 and PR,
since X is not free in w,

7. F 3z (wUwe) D ((3 z.wz) V [wy A O3Iz.(w,Uws)]} by T46 and PR
8. t dz.(wiUwsz) O wU(Tz.ws) by 3, 7, RUl and PR
9 . Flwav (wiA OwiUws))] D wUwy by A9 and PR
10.t - Jzfwe v (wy A O(wiUws))] 3 Iz.(w Uws) by 33
1. t- [(Fzaws) v Iz.(wy A O(wiUws))] D Fz.(w Uws) by T42 and PR
12, F[(3z.ws) v (w1 A 3Xx. O(w1Uw2))] D 3. (wy Uwy) by T44 and PR,
since 2 is not free in wy

3. t- [(Fzaws) v (wi A O Jz.(wUwz))] D Iz.(w; Uws) by T46 and PR
14, - wiU(Fzawg) O Jz.(w Uwy) by LUI,
taking u to be wy, v to bc dz.wy and w to be Jxz.(w Uws)

15, F dz.(wUws) = wiU(Tz.ws) by 8, 14 and PR_I

While operators of similar character, i.e., both universal or both existential, commute to yield
equivalent formulas, operators of’ opposile character usually admit implication in one direction
only. Thus we have:

T51. F Jz.0w 2 QO 3xw
T52. t- OVz.w D vx. O w
T53(a). F Jz.(wUwsy) D (3z.w)Uwy where x is nol free in we

(b). Fwy U(Vz.ws) D Vz.(wiUwy) where x is not free in wy

Theorems of similar character are:

T54(a). F Jz.(ulv) D (Fzru)l(dz.v)
(b). F (Vzau)U(Vz.v) D Va.(ulw)

THE NEXT OPERATOR APPLIED TO TERMS:

The use of the nexl operator O applied Lo terms is governed by the axioms:

44

A4, FOf(ty,... ., ta)=/(Oty,...,0tn)
for any function f and terms ¢y, . . . , {n

A15. tOp(ty, ... ta)=p(Ot1,..., Otn)
t

for any predicate p and terms ty, ..., ¢,

These axioms are consistent with the evaluation rules that we gave which stated that in
order to evaluate an expression 0 €(t1, ..., t), we can evduate &(O ty, . . ., O tﬂ) whether € is a
function or a predicate.

5. EQUALITY

Equality is handled by the following axioms:

AXIOMS:

A16. Reflexivity of Equality

I-t=1t for any term ¢

A17. Substitutivity of Equality

+ (t1 = t2) D [’U)(tl,tl) = w(tl, tg)]
where tg is any term globally free for £y in w
and where w does not contain tempora opcrators

AlL8. O(t] =t2) = (Otl :Otg)

We use w(t |, t2) to indicate that ¢y replaces some of the occurrences of ¢; in w.
The axiom A18 is a special casc of Al5 when the predicate p is the equality predicate.

Recall that a term ¢y is said to be globally free for ¢; in w if substitution of ¢z for all free
occurrences of £; in w: (a) does not create new bound occurrences of (global) variables, (i.e., fg is
free for t; in w), and (b) docs not create new occurrences of loca variables in the scope of a modal
opcerator.

Note that the classical axiom for substitulivity of equality A 17
F (1 = t2) D [w(ty, t1) = w(ty, t2)]

(Whel’(;l‘\tg is free for ¢y in w) is not correct if w contains temporal operators. We could take w(tl, t2)
ibcd B4 = £5) and deduce from Al7

F (tl = tz) D [D(tl = tl) 3 D(tl = t2)],

F (t1 ﬂ tg) DD’E’@ = tg),

which is not a valid statement (since ¢t; = t3 may contain local variables).

T55. Commutativity of Equality

}" (tl = t2) 3 (t2 = tl)

Proof:
L k(1= t)D|tr=t1) = (t2 = t1)] by Al7
2. Fti=t by Al6
3. F (t1 = tz) D (t2 = tl) by 1, 2 and PRJ

T56. Transitivity of Equality

F (6= ta) A (ta = t3)] D (81 = t3)

Proof:
1. [(tl = tg) o) [(tl = t3) = (t2 = tg)] by Al7
2. - [(t1 = tg) A (t2 = t3)] D (tl = t3) by PRJ
T57. Term Equality
890 FIBW - t2) O [r(t1, ty) = 7(ts, t2)] for any term 7

(b) F (tl :tg) . [T(tl,tl) = T‘(tl, t2)]
provided 7 docs not contain the next operator.

Proof of (a):
By induction on the structure of 7.
Case: 7(t1,t1) = t1 and 7(t, t) = 1. Then

1 kit =t by A16

2. F D(t|: tg) 3 [T(tl,tl)z T(tl,tg)]
by PR and defiailion of 7(¢y, t 1) and 7(¢y , t3)

46

Case: 7(ty,t1) = t;y and 7(t1,t2) = t2. Then
1. “‘}UKD DE“ H tg) (t1 ﬂ t2) by A3

2. F A wcte)dr(t, th)=7(t1,t2)]
by the definition of 7(¢;, ;) and 7(¢, t2)

Case: 7(ty, t1) = f(11(t1, t1), - . ., 7k(t1, t1)) and 7(t1, t2) = f(ri(ts, t2), - - ,Tk(t1,t2)). Then
1 1- D(tl = tg)] [’Ti(tl, tl) = Ti(tl, tQ)], for 1 = 1, e, k
by the induction assumption.
k
2. F /\ [7alt1, t1) = 7(ts, t2)] 2
1=1
[(it) ooy mltn, b)) = F(mltn), o s 7e(tns t2))]
by repeated application of Al7 and using T56 for transitivity of equality.
A typical step in this repeated application is:
b [r(t, t1) = m(tige)] D
[f (m(t,t2), .oy mica(tr,t2), mlta,), - - oy Te(t1, 1)) =
Flr(t,te), ooy 7oty to), milt, t2), Tiga(ty, t0)y v vy Te(t1, t1))]

justified by AI7 and the fact that (¢, t2) is free for 7;(¢1, ¢1) in f(...) since f does not contain any
temporal operators.

3. + D (tlth)D{T(tl,tl):T(t[,tg)]
by 1, 2, PR anti the definition of 7(¢1, £1) and 7(¢y, t2).

Case: 7(t1, t1) = O 7'(t1, t1) and, 7(t1, t2) = 0 7'(¢ty, t2). Then

. L F 0O = t) D[t t1) = 7'(t1, t2)] by the induction hypothesis
2. Ul O OB)00 (t, t1) H (1, t2)] by 00
3. 1- Ofr'(ty, t1) = 7'(t1, t2)] 2 [O 7'(t1, t1) = O 7'(¢1, t2)] by A1 8 and PR
4. ROy = t2) 3 0 Oty = ta2) by A7
5. FABACH)0 (O7(t, 1) B O 781, 1)) by 4, 2, 3 and PR
6. FOBOO H o) o [r(tr, t1) H 7(t1, t2)] by the definition of 7(ty, t1), 7(t1, t2).

Proof of (b):

L= (= t) D[(r(t) = 7(t2)) = (v(ts) = 7(t2))] by Al7 (no 0 in 1)

2. I~ 1(ty) = 7(ta) by Al6

47

3 F (tl = t2) 3 (T(tl) = T(tg)) ‘ by 1, 2 and PR J
The following theorem generalizes Al7 to arbitrary formulas.
T58. Substitutivity of Equality
F O = t2) D [w(ty, t1) = w(ty, t2)] where tq is free for t{ in w.
Proof:
By induction on the structure of w.
Case: w contains no temporal operators. Then
1. F (tl = t2) o) [w(tl, tl) = w(tl, tz)] by A17
2. F'*D(tl = t2) o) (t1 = t2) by A3
3. | D(tl = tg) -] [’U)(tl, tl) = w(tl, tg)] by MP
Case: w(ty, to) is of the form 7y(ty, t2) = 72(t1, t2). Then
1 F D(t1 = tg) »] [TI (tl, tl) = T1(t1,t2)] by T57
2. - D = tg) o] [Tg(tl, tl) - Tg(tl, tz)] by T57
3. 1 - [n(ty, t) = mltnt)] 2 [(ntnt) = m(thh) = (1t te) = 7(t,)]

by AL7 of the form (01 = 02) o] [(01 = Tg(tl, tl)) = (02 = Tg(tl,tl))]
with 0y = 7i(t1, t1) and Oy = 7((t1, t2)

4, F D(tl = tz) D [(Tl(tl,tl) = Tz(tl, tl)) = (Tl(tl, tg) = Tg(tl, tl))]

by 1, 3 and PR

5. bk Ot = ta) D [(1(ty, t2) = 7a(ty, t1)) = (b te) = 7a(ts, £2))]
similarly by A17, using 2

6. F D(tl = tg) D [(Tl(tlytl) = Tg(tl, tl)) = (T[(tl, tg) = Tg(tl, tg))]

by 4, 5 and PR

7. F D(tl = t2) D [’ID(tl, tl) = 'U)(tl, tz)] by Lthe definition of 'w(tl, tg)

Case: w is of the fom Cl w. Then

Lk Oty = to) O [u(ts, t1) = u(ty, te)] induction hypothesis

2. + D(tl = tg)

48

assumption

3 I u(ty,) = ulty, ta)

4 FAOBMS 4) =0 o

msd B0 -t) [Oulty,t)=0 e
5. ©ah QO Ot =te)s|Oulty,t)= we tz))
6. U O BT tHOutit)=] wats)]

by MP
by OO

by DED

by T3 and PR

The cases in which w is of the form 0 u, 0 u, VYz.u and Jdz.u are treated similarly, using the

0 O-rule, the 0 O-rule, the W-rule and the dd-rule, respectively.

Case: w is of the form zUw.

. Y%ah Q w=te)D[u(ts,t1)=ult,t2)] induction hypothesis
2. 40 O w1=te)Dv(t1, t1)=v(t1,te)] induction hypothesis

3.V DR9d)

4 1ty) = u(ty, t)

5. F oty t) = v(ty,ts)

6. (u(ty,t)Uo(ty, t1)) = (u(ts, t2)Uo(ty, b))

msd B0 = t0) 0 [(ulty, t)Un(ts, t1)) = (ults, t2)Un(ts, t2))]
7. 60 O QO qta)o(ults t) Uolts,))=(ults f2) Uo(t,ta))]

8. FOBOGH o) o[(ults, t)Unlty, t1) = (u(ts, t2)Uo(ts, t2))]

by T3 and PR

6. FRAME AXIOMS AND RULES

assumption

by 1, 3 and MP
by 2, 3 and MP

by 4, 5 and ER

by DED

. |

In this section we consider the consequences of the partition of the set of all variables into
local and global variables. By the semantic definition, global variables are given their value by the
global- assignment a, and these values do not vary from slate to state. Consequently, for a global
variable u it must be universally true that u = 0 u, i.e., the value of u a any state is identical
Lo its value in the next stale (see A19 below). The following axioms arc called frame axioms in
reference to the “frame axiom” in Iloare’s deductive system for program verification ([ILL]).

Recall that we split the set of our symbols into two subsets: global and local symbols. The

logical consequence of this convention is the following frame axiom:

A19. Frame Aziom

2= Oz for cvery global variable x

49

Wc can therefore prove by induction on the structure of the term ¢ and the formula w the

following frame theorems:

T59. For a term t and formula w

@ Ft = Ot
where t is global, i.e, does not contain local symbols

(b)) Fw = Ow

where w is global, i.e., does not contain local symbols.

() Fw(Oy1,® ..,0ya)=0w(y1,® _y2)

where ¥4, . ..,y are al the local variables in w.

We present several frame theorems that facilitate moving global formulas in and out of the

scope of temporal operators.

T60.F d Wivwy)=(wivd w2
where w; is global, i.e., contains no local symbols.

Proof:

1. F ~wy 2 O~w,

I"[D('LU1V’LU2)g U ~wy D (WIvwg)A~w,)

~o

3. I- [{wy v wg) A ~wy] D we

4, F[Ow v we)A O~w]DdDOwe
5 F[O(wiVv we) A ~wy] D Owy

6. F U BT % wyw,Thoy)

7. Fwy o000

8 F(wi % U wyd (Ow;, % U0
¢ (Ow, P Ow> T B0 & wy)
0. ¥ (w, % D020 SOBH ¢ wy)

1. FAd B wa J=(w vThog)

T61. - O(wy A we) = (wy A 0 wg) where wy is global.
Proof: The proof follows from T60 by duality.

50

by T59b

by T7 and PR

by PT

by2 3 1 OadI'R
by 1, 4 and PR

by PR

by T59b

by PR

by T9

by 8 9 and PR

by 6, 10 and PR
Y J

A derived frame rule that we will be using is

Proof:

Frame Rule — IR
Fu > Ow

I- (w A u) D O(w A V)
where w is global

L. Fu D O

2. F(wAudWwA Ouv)
3. FlwAS$v) 20w A v)
4. F w A u) D Olw A V)

given
by PR
by T61 and PR

by 2, 3 and PR
y A

C. DOMAIN PART

The next part of the system contains domain axioms that specify the necessary properties
of the domain of intcrcsl. Thus, to reason about programs manipulating natural numbers, we
need the set of Peano Axioms, and to rcason about trees we need a set of axioms giving the basic
properties of trees and the basic operations defined on them.

7. INDUCTION AXIOMS AND RULES

An essential axiom schema for many domains is the induction axiom schema. This (and
all other schemas) should be formulal4 to admit temporal instances as subformulas. Thus the
induction principle for natural numbers can be stated as follows:

A20. Induction Aziom

h F {R(0) A Va[R(n) > R(n + 1)]} D R(k)
for any statement R.

One instance of this axiom, which will be used later, is obtained by taking R(n) to bc D [(Q(n) D
O p):

T62. Induction Theorem:
F {O(Q(0) > O¢) A Vu[O(Q(n) o Ov) BB 1o o9
D O(Q(k) > O9).

Using this induction theorem we can derive the following uscful induction rule:

< Induction Rule — OIND
F Q) > O
FQn+ 1) [0 9y Vv <O Q(n)

F QK > O

OIND is useful for proving convergence of a loop: show that Q(0) guarantees O 4 and that for
each n, cither Q(n + 1) implies Q(n)across the loop or it already establishes 0 3 and no further
execution is nccessary. Then for any k, Q(k) ensures that 0 ¢ is established.

Proof:

1. FQO) > Oy given

o LI 5 0y by O

52

3 tQn+1>D(0O ¢ v O Q) given

4. F O(Q(n) D ©y) 2 (©Q(n) 2 O) by T6, T4 and PR
5. FIe ED)AJEIEN) -ow)009 by 3, 4 and PR
6. I-Dﬁ*)"ﬂ?:: 20%) 2 (Qn+1) o OY) by PR
7 U ogmp ov) o A omip ow) yQ [
4oeh O Q> ©¥p d Q>) by T3 and PR
i va[O(Q(n) o 0g) O d Q)20)] by VI
10. FO(Q(k) 2 O9) by 2, 9 and T62
11. F Q(k) D Oy by A3 and MP 1

While induction over the natural numbers is usually sufficient in order to prove properties
of sequential programs, we need induction over more general orderings in order to reason about
concurrent prograrns ([LPS]). Thus we have to formulate a more general induction principle over
arbitrary well-founded orderings.

Let (A, <) be a partially ordered set. We call the ordering < a well-founded ordering if there
exists no infinitely decreasing sequence of elements in A:

oy > Qg > Qg > ..

For each well-founded ordering (A, <), the following is a valid induction rule:

RS5. Well-Founded Induction Rule — WIND
FVB[(8 <) D> w(B)] D w(a)
F w(a)

This rule should hold for an arbitrary temporal formula w(a) dependent on a global variable
a € A, and we adopt it as a primitive inference rule.

To justify the rule semantically we may arguc as follows:

Assume that the premise Lo the rule is true but the conclusion is not. Then there must exist
a model M and an a; such that w(e;) is false under M. By the premise there must exist some ag
such Lhat ag < «y and w(ag) is lalse under M. Arguing in a similar way wc obtain an infinitely
decreasing sequence:

o) > Qg > g > ..

such that for each 1, w(ai) is false under M. This of course contradicts the well foundcdncss of

(A, <).

Note that the induction axiom and rules can be derived from WIND by taking (A, <) Lo be
(N, <).

53

In order to use the WIND rule, one has to establish that the ordering < is indeed a well-founded
ordering. Several specific orderings are known to be well-founded (such as lexicographic ordering
over tuples of integers, multiscts, etc.), and may be frecly used. I lowever the gencral statement
that an ordering ‘<’ is well-founded is a second order statement which may require second order
reasoning for its establishment.

By substitution of a special form of a temporal formula we can obtain the following induction
principle for 0 formulas:

Well-Founded 0 Induction Rule -- OWIND
Fw(a) D O('«ﬁ vV AB[(B < a) A w(ﬂ)])
Fuw@ >0 vy

Wc show that OWIND follows from WIND.

Proof:

L. F wle) > Oy v 3B[B < o) A w(B)]) given
2. F w(e) o (Oy v O BB < a) A w(f)]) by T8 and PR
3. R O3B < a) Aw(p)] > Oy)

(O3BIB < a) A w(B)] 2 OY) by T8, T4 and PR
o F{we) \ADBLRUEBR <a)aw@)oo¥)}o0ow by 2, 3 and PR
5. FO@EB[(B<a) A wB)] 2 O¢¥) O (wla) 2 O9) by PR
6. F (3BI(B=< a A w(B)] 2 O9) = (~3BIB < @) A wf)] v O¢) by PT
7.k (~3B[(B< @) A w(@)] v O p) = (VB~B < a) v ~w(B)] v OF)

by All, ER and PR

8. 1- (VA[~(B<a) Vv ~w()] V O ¢) = VBB < a) > (w(B) > O9)]

by T43, PR and IiR, since 0 % docs not depend on 3

0. F (3B[B < a) A w(B)] D ©Y) = VBB < a) > (w(B) > O]
by 6, 7, 8 and PR

10. FOVB(B=<a) D (w(f) 2 O¥)] 2 (wl@) > OYP) by 9, 5 and ER
1 ot Jd IVp[(Il < @) D (w(g)3<>¢)]:>E| (w(@ D ¢) by T3, 00 and PR
2. ¥ vA VBF <a)o (w(p)o o) UBEIT) Hoy) by T47 and PR

13 1- VBB <) 2 O(w(g) > 09)] 0 ey 2 ©)
by T60, ER and PR, since (§ < @) is global

14. + D (w(cr) 2O 9) by WIND, taking w(a) to be O(w(a) 2 0)

5. F w@ 3 Oy by A3 and PR 1

54

D. PROGRAM PART

Our proof system must be augmented by additional axioms that reflect the structure of the
program under consideration. The additional axioms constrain the state sequences to be exactly
the set of exccution sequences of the program under study. This relieves us from the need to

include program text explicitly in the system; all the necessary information is captured by the
additional axioms.

8. PROGRAMS AND COMPUTATIONS

In our model a concurrent program consists of m parallel processes:
P: gi=g@); (P [|Pm]

Each process /I’ is represented as a transition graph with locations (nodes) [; = {Z', C e, é;}
The cdges in the graph are labelled by guarded commands of the form ¢(y) — |
meaning is that if ¢(y) is true the edge may bc traversed while replacing ¥ by £

Let 2, 1, £y, ..., £ € L; be locations in process P;:

ci(9) = == £1@)]
Qg @

ck(y) — [Qf: [e(@)] @

The variables ¥ = (y1, . . . , yn) are shared by all processes. We define F5p(§) = ¢y (§) V . . . V

ck(y) Lo be the ezit condition at node €. We do not require® that the conditions ¢; be cither exclusive
or ex haustive.

The advantage of the transition graph rcprcscntation is that programs arc represented in a
uniform way and that we have only to deal with one type of instruction. Wc show first that
programs represented in a linear text form can easily be translated into graph form.

Assume that a linear text program allows the following types of instructions:

Assignment: 7= f(7)

55

Conditional Branch: if p(y) then go to £; else go to €2
Halt: halt
Waiting |oop: loop until p(y)

loop w hile p(y)
and the semaphore instructions

Request: request(y)
Release: release(y)

A linear text program for each of the processes has the following form:

lo . Io
£1: Il

£ : halt or go to ¢

where £g, £1, ..., {; are labels and Iy, I}, . . . are instructions from the list above.

The graph representation of such a program for process [will be a labelled graph with
Li={l,...,L} asthe set of nodes. For each instruction I at label £ € {; we construct edges as
follows:

» for the instruction

Ly = f(y)
2
construct

true — [= f(7)]
O ()
» for the instruction

¢ : if p(y) then go to & else go to £’
¢

construct

P — (1 @

~ p(g) — []

el!

56

» for the instruction
¢ : if p(y) then go to ¢
A

construct

p(7) — (]

/

~ p(7) =[]

9

ell

» for the instruction
£: if p(y) then 7 := f(7)
A

construct

p(¥) = [= f(@)]

~ p(@) — (]

» for the instruction
¢ : loop until p(y)

construct

ol
@ p@)-11
~p(g) — [

. » for the instruction
£ : loop while p(y)

construct

A
C(\/@ ~p(¥) — [
p(7) — [

» for the instruction

57

£ : request(y)
[

construct

y>0—- [y =y—1
© O

» for the instruction
£: release(y)
A

construct

true — [y =y + 1]
@, ()

For halt at label £ we construct no edges out of £.

The actual translation into graph form need not be carried out explicitly. Rather, the general
axiomatic description of transition diagrams can be easily translated to axioms for each of the
types of instructions in the linear text form.

A state of the prograrn P is a tuple of the form s = (%) with £ € L;x . . . x L,, and
nE D™, where D is the domain over which the program variables y;, . . . , ¥ range. The vector
L= (a,...,Lm)is the set of current locations which are next to be executed in each of the

processes. The vector 7 is the set of current values assumed by the prograrn variables ¥ at state s.

Let s = (21, ..., €, ..., £™; %) be a state. We say that process I’ is enabled on s if By (7) =
true. This implies that if we let I’ run at this point, there is at least one condition ¢; among the
edges departing from ¢ that is true. Otherwise, wc say that P; is disabled on s. An example of a
disabled process is the casc where ¢ labels an instruction request(y) and y = 0. Another example
is that of ¢ labeling a halt statement. A state is defined to be terminal if no P; is enabled on it.

Given a program P wc define the notion of a computation step of P.

Let s = (€1, ..., £™7) and § = ([1, . ,Z;"ﬁ) be two states of P. Let 7 be a transition in

P; of the form: @) — 7 1@

“such that ¢(7) = true, 7 = f(%), and for every j # i, £ = ¢, Then we say that § can be
obtained from s by a Pi-step (a single computation step), and write

P
8§ —>38.

An initialized admissible computation of a program P for an input T = € is a labelled maximal
* sequence of states of P:

P;, P; P,
0. 8 > 8y > 89 > 83

> ..

58

which satisfies the following three conditions. (The sequence ¢ is considered mazimal if it cannot
be extended, i.e., it is either infinite or ends with a state sx which is terminal.)

A. Initialization:

The first state sg has the form:
s0 = (fo; 9(€))

where fo = (&), . .., £F') is the vector of initial locations. The values g(€) are the initial
values assigned to the y variables for the input &.

B. State to State Sequencing:
. Ko .
livery step in the computation s —> s, is justified by a Pi-step.
C. Fairness:

Fivery P; which is enabled on infinitely many states in o rnust be activated infinitely many
times in o, i.e., there must be an infinite number of I’;-steps in o.

We define an admissible computation of P for input ¢ to be either an initialized admissible
cornpulalion or a suffix of an initialized admissible computation.

~ Thus the class of admissible computations is closed under the opecration of taking the suffix.
This is needed in order to ensure soundness of the inference rule LI (123). Wc denote the class of
all €-admissible computations of a program P by A(P, §).

An adrnissible computation is sad to be convergent if it is finite

P‘il Pz'
0. 8¢ > 81

v

N

@
[y

If the terminal state sy in a convergent computation is of the form sy = (Etl, L B,
where each {; labels a halt instruction, we say that the computation has terminated. Otherwise,
we say that the computation has blocked or is deadlocked.

In order to describe properties of states we introduce a vector of locution variables
7= (71, ..., Tm). Each m; ranges over L, and assumes the location value ¢ in a state

s=(LY ..., 8, 0.

Thus we may describe a state s = (€;) by saying that in this state # = £ and § = 7.

A state formula @ = Q(T; y) is any formula which contains no temporal operators. It is built
up of terms and predicates over the location and program variables (’7?; y) and may also refer to
global variables.

We frequently abbreviate the statement m; = £ to at£. Since the L;’s are digioint, there is no
dillicully in identifying the particular m; which assumes the value £.

59

Let us consider a program P over a domain D with (ixed interpretation | for al the predicate,
function and individual constant symbols. A model M is said to be admissible for P if it has the
form:

M = (I, a, §)

where a and ¢ satisfy the following condition:

There exists an a[z}-admissible comnutation ¢ € A(P, a[z]) such that

either
., .
o is infinite: o0 = sg [“>31 P,2>52 > 83 . ..
and
o = so, 81y 52, « «+
or
P P p;,
o is finite: ¢ = sg—> 8, —> 359 > ... >5f
and then
G = 80y 81952, ooy 8fy 8f,y, . ¥

Thus we force ¢ to be aways infinite by indefinitely repeating the last state of ¢ if it is finite. This
corresponds to our intuition that while the computation may have terminated, time still marches
on, but no furl her change in the program will ever occur.

Let us denote the class of all admissible modecls for a program P by C(P). Note that this

class, differently from A(P, €), contains computations corresponding to different inputs.

Wc define the stale formula stating that a process I’ is enabled as follows:

Enabled(Py;7; 5) = [\ [= 8 D Eo(7)].
el

For the complete program [° we defined

Enabled(P; %;) = \/ Enabled(P;; T;).
=1
Thus a state s = (£; %) is terrinal iff
Enabled(P’; ¢; 7) = false
and we may define

Terminal (7; §) = ~Enabled(P;7;7).

60

Let the following be a transition 7 in process P;:

@ c(7) — [§T:= f@)] @

We define the transformation associated with the transition 7 by:

(7 9) . (7] 1))

The transformation is obtained by replacing the current value £ of m; by £ and the values of 3§ by
f(v)*

Let o(7; ¥) and (7;y) be two state formulas. Wc say:
e The transition 7 leads from ¢ to) if the following implication is valid:
lo(m; 5) A ate A c(G)] 3 % (r:(7; 7).
e The process P; feuds from ¢ to 1 if every transition 7 in P; leads from ¢ to 9.
e The program P feuds from ¢ to v if every P; leads from ¢ to .

We are ready now to give a temporal axiornatization for the notion of computation under the
program P.

9. AXIOMS AND RULES FOR CONCURRENT PROGRAMS

The first axiom states that the location variable 7; may only assume values in L.

NA21. Location Axiom -- [LOC

Fmel; fore=1,...,m.

This is an abbreviation for:
Fr=0)V (m=£06))V...V(==8).

Since all the locations are disjoint, it also follows from the equality axioms that m; may be equal
to at most one ¢; at a time.

For each of the three requirements defining an admissible computation we have a corresponding
inference rule scheme:

R6. Initialization -- INIT
For an arbitrary temporal formula w:

Flatlg A 5 =y(z)] DOw

Fclw

61

For let us assume that the premise to this rule holds. This implies that Cl w is true for all
initialized computations. By the semantic definition of Q , this implies that w is true for every
suflix of an initialized computation, i.e., for every admissible computation. Thus, w is C(P)-valid,
and by generalization (O) soisQ lzu.

R7. Transition -- TRNS

Let o(7; §) and ¥(7;7y) be two state formulas.
F P leads from ¢ to ¥
F [o(m;7) A Terminal(T; 7)) 2 ¥(7; 7)

Fo 2 Oy

Indeed let s be a state in the sequence ¢ corresponding to an admissible computation ¢, and
let s’ be its successor in &. Assume that (:9) is true. There are two cases to bc considered. In
the first case, s is derived from s by a Pi-step for some ¢ = 1, . . . ,m. But then, by the first
premise, P; leads from ¢ to 1 and therefore ¢ must be true for s'. In the other case, s is terminal
and s’ = s the repetition of the terminal state of a finite computation. But then s is terminal
and satisfics the antecedent of the second premise, leading to #(s) = 9(s') = true. Hence, in both
cases (s’) must held and the conclusion of the rule follows.

Note that the first premise lo this rule requires establishing rnany conditions involving the
individual transitions of each of the proccsscs. However, by examining the definitions of “leading
from ¢ to 9" wc see that they are all expressible as classical statements involving no temporal
operators. Therefore this premise should bc provable from the domain axioms plus the usual
predicate calculus proof system. The second premisc is also classical, and ensures the consequence
after the sequence has reached a terminal state.

R8. Fairness -- FAIR

Let o(7; ¥) and %(7; y) be two state formulas and Pk be
one of the processes.

A. |- P leads from ¢ to ¢ V %
B. t- Py leads frorn ¢ to %

Flp A O O Enabled(Py)] O Uy

To give a semantic justification of this rule, consider a computation such that ¢ is true initialy.

" By A, ¢ will hold until 9 is realized, if ever. By B, once P, will bc activated in a state satisfying

" it will achieve ¢ in one step. Consider now a sequence o such that ¢ A 0 0 IFnabled(Py) is

true on o. This means that ¢ is initially true and I’ is enabled inflinitely many times in o. By

fairness, P, will eventually be activated, which, if ¢ has not becn realized before, will achieve ¥
in one step.

since (pUe) D 0 %, wc often use the FAIR rule in order to derive the consequence
[A Oo0 Enabled(P))]D0 4.
There arc several derived rules that can bc obtained from the above axiomatization,

62

Proof:

Proof:

Invariance Rule — INV
F P leads from ¢ to p

Fe D Op
I- P leads from ¢ to @ given
Flo A Terminal] O ¢ by PT
Fe D Op by TRNS
by CI
Fe D Op y ¢ 4

Initialized Invariance Rule -- IINV
Let ¢ be a state formula

t- [atlg A G = g(2)] Do
F P leads from ¢ to @

QR
Flat {o AT =g(F)] Dy given
t- P leads from ¢ to ¢ given
Fe2QdW by 2 and INV
FlatloAg=92]120 1p by 1, 3 and PR
FOp by INIT

ol

The 1INV rule is the rule most often used in order to cstablish invariance properties of programs.

Proof: '

1.

Unless Establishment Rule -- {{ER

Let p be a state formula

F P leads from o to o V ¢
F o D (pUdh)

I- P leads from ¢ to @ v 9 given

63

Fo D (p V1) by PT

Flp A Terminal] 2 (p V) by PR

Fo D Olp VvV 9) by 1, 3 and TRNS
by I

Fo D (pUdh) y 4

The following rule is a consequence of the TAIR rule.

Proof:

©

10.
11.
12.

Eventuality Rule ---- EVNT

Let o(7; §) and ¥(7;) be two state formulas and Py one of
the processes.

A. |- P leads from ¢ to @ V 9
B. F Py leads from ¢ to 9
C . Fp2O(Yv Enabledl’))

- Fo D Uy
I- P leads from ¢ to p v 9 given
t- P leads from to 9 given
t- 20 (¥ v Enabled(Py)) given
t [A Q 10bhubled(Pr)] O Uy by 1, 2 and FAIR
Fo D (Op v pUy) by 1 and CINV
|- [p A O~g] D O Enabled(l%) by 3, T8, Al and PR
40 QO paO~9)oc0Enabled(Py) by 001
F[Op A O~y >0 O Enabled(Py) by T3, T7 and PR
-{@e A~ cl O Enabled(Py)] 2 O o by Al and PR
FOp 2 Oy by 4, 9, A3, A10 and PR
FOp D plUy by 10, T24 and PR
Fo 2 pUy by 5, 11 and PRJ

In contrast with earlier rules, premise C of I5VNT is nol purely classical since it contains Lhe
temporal operator 0. Since C has a form similar to the conclusion of the KVNT rule, it is Lo be
expected lhat its derivation will require once more the application of the ISVN'T rule. This scems

64

to imply circular reasoning. However, note that at each nested application of the KVN'T rule,
another [’ is taken out of consideration. This is because in trying to establish 0 [fnabled(Py) we
need not consider any I’-steps at all, since when they are possible, I, is already enabled.

A useful specia case of C that frequently suffices for the application of the INZVNT rule is:

C': Fo3 [Yv Enabled(P:)]

Note that the EVNT rule can also be used to establish properties of the form

p 2 O,
since Uy D O

The EVNT rule is the one most often used in order to establish both eventuality (livencss)
properties and precedence properties.

65

E. EXAMPLES

In this section we present scveral examples of proofs of properties of programs using the proof
system described above.

10. EXAMPLE 1: DISTRIBUTED GCD

Let us consider the following example of a program computing the greatest commmon divisor
of two positive integers in a distributed manner.

(ylyy2) = (:51’ 552)

o :if y1 > ya then yy = ¥y — yo mo : i Y1 < Yz then Y =y — y
£y if y1 #yg then go to £ my @ if Yy # Y2 then go to mg
Z9 : halt mo : halt

. — Py -

We wish to prove total correctness for this program, i.e.,

Theorem:

F [at(€o, mo) A (Y1, y2) = (z1,22)] D Olat(le, ma) A yy = ged(zy, z3)|
We will split Ihe proof into two parts, proving separately invariance and termination.

Lemma A:

F Olged(y1, y2) = ged(zy, z2)]

Proof of Lemma A:

Let us denote gcd(y1, ?/2) = QCd(IM 1"2) by (ﬁ(zh Z2, yl,'!lZ)-

It is casy to check that every transition in PP leads from ¢ to ¢. Also

F {(y1,y2) = (z1,22)] D é(z1,22,y1,Y2).

66

Thus we have the two premises to the 1INV rule, which yields the desired result. d

Lemma B:
F {atlo,1 A atmo A (y1,72) > 0 A (y1+ y2) <n + 1) A gy # yy)
D Olatlo, A atmo A (y1,52) > 0 A (y1+ ya < n)]

Here we use at £y, as an abbreviation for atfy v até,, atmgy for atmg ¥V atmy;and
(y1,92) > 0 for (y > 0) A (y2 > 0).

Proof of Lemma B:
Let us define
o(y1,y2,n): atlo Aatmoi A (y,¥2) >0A (y1+ y2<n)

Thus we have to prove:

F oy, yo,n + 1) A (Y1 # y2)] 2 © ©(y1,y2,n).

We will split the proof into two cases:
BL. F [p(y1,y2,n +1) A (31 > 32)] D Cply1,y2,7)
B2, F[p(y1, y2, n +) A (31 < 92)] D O 0(y1, y2,n)

The lemma obviously follows from these two statements.

To prove Bl we first observe that by PR:

L F ely,y2,n+ 1) D (atly V atly)

Consider therefore first the case that Py is at £y. We take

o' ey yz,n + 1) A (y1 > y2) A atlo
P ey, ye,n).
We claim that ¢’ and %' satisfy the premises of EVNT with P, = P;.

To see this, consider requirement A of KVNT that states that every transition in P leads from
o' to ' v

Consider transitions in Py,. The only relevant ones are mg — m and transitions leading out
of my. The transition mu — m, under 3, > yg lcaves ' invariant. Again, under y; > y2 the
only transition out of m; gocs to my leaving ' invariant.

67

The only transition enabled in Py is &, — £; which replaces (y1,y2) by (y1 — y2, y2). If

Y+ Y2<n+1and y1 > 0, y2 > 0 then certainly (y3 — y2) + y2 < n and (y; — yg) > 0,y2 > O.
Thus £y — ¢, leads from ¢’ to 1)’. This also establishes requirement B with P, = Pj.

Since Ky, = true, condition C is trivially fulfilled. Consequently wc conclude by the EVNT
rule that - ¢’ D 0 ¢/, i.e,

2. F[ply,yz,m + 1) A (y1 > y2) A atly] D O o(y1,y2,n).

Consider next the case where Py is at ¢;. By taking

n

" ey ye,n + 1) A (g1 > y2) A atly
P =o'+ p(y,ye,n e 1) A (yi> y2) A atlo.

Wc can show that the premises of the EVNT rule are satisfied with rcspecl to ”, ", Consequently
wc have + " D 0 %", ie,

3. Flelyn,y2,m + 1) A (y1 > y2) A atly] D
h Sle(y,yz,n+ 1) A (31 > y2) A at £o)
4. Flolynyz,n +1) A (y1 > y2) A atly] O O o(yy,ye,n) by 2, 3 and OC
5. Fle(ynyz,n+1) A (yr > 2)l O O v(yi,y2,n) by 1,2, 4 and PR
This establishes Bl1.

By a symmetric argument wc can establish B2. By propositional reasoning Bl and 132 lead to
Lemma B.

-l

Proof of theorem:

We will now procced with the proof of the main theorem.

6. F [p(y1,y2,n+ 1) A (y1 # y2)] D Co(y1,yz,n) Lemma B
7. Fooly,y,n+ 1) D [(y1 = y2) V O e(yr,y2,n)) by PR
8. Folyny,n+ UDI[OW1= y2)VOe(yr,yz,n) by T1 and PR
9. F ~p(y1,ys,0) by PR,

using the domain properly that the conjunction
(y1 > 0) A(y2 > 0) A (y1 + y2 < 0) is impossible

10 F p(y1,92,0) D Oyy = y2) by PR
1. F o(y,y2, n) D Oy = y2) by 8, 10 and OIND
12. F In.p(y1, yz,n) D Oyy = ya) by 3l

13, {at(fo,mo) A (y1, v2) = @1,22) > 0] 3 In.p(yy, y2,n)

68

by taking n = zy + x5 > 0.

By considering the different locations of I’y and P, under the assumption that yq = ys it is
easy (though long if carried out in full detail) to establish

4. + (?j[= yg) o] O[Gt(fg,’ﬂw) A (yl = yg)].
By combining 12, 13 and 14 using OC we obtain:

15 F [af{lo,m0) A (y1,92) = (z1,22) > 0] D Olat(ly,ma) A (y1= u2)).
Togelher with lemma A and T10 this gives

16. F [ai(eo,’mo) A (yl, y2) = (:L‘l,xz) > 0] 5] O[Gt(ﬂg,vnz) Ay = gcd(xl, 2}2)]
since (y1 =y2) Dy 1 = ged(yi,ye2)

Note that theorem T10 enables us to infer frorn a previously established invariant I- Cl ¢ and
an implication F w; D O wy the implication F wy 3 Olwg A @). 1

1. EXAMPLE 2: SEMAPHORES

For our next example we will present a very simple program with semaphores:

vy:—1
o : request(y) my : request(y)
¢y : release(y) my : release(y)
£ go to £y mae . go to my
— P, - - P —

This example models a solution to the mutual exclusion problem using semaphores.

There are two properties that we wish to prove for this program. The first is that of mutual
exclusion, namely:

Lemma A:

F O[(~ atly) v (~ atmy))]

Proof: .
Take
o(my,mo;y): (atly + atmy +y = 1) A(y > 0).

69

In expressions such as the above wc interpret propositions as having the numerical value 1 when
true and O otherwise.

We can easily show that ¢ is preserved under every transition. IFor example, consider the
transition ¢g — £;. When it is enabled, wc have y > 0, and the transition assigns to the variable
y the value y — 1 which is nonnegative. Considering the value of the sum

atfy + atmy + vy,

atf; changes from 0 to 1 on this transition but y is decremented by 1. Consequently the value of
the sum remains invariant.

Initially, até; + atm; +y =0+ 0+ 1=1andy =12>0.
Hence y satisfics the two premises of the [INV rule, from which wc conclude
Iy: tOfatly + atm; +y =1) A (y > o)].
This implies

I—D@“ atm <1]

which is equivalent to Lemma A.

ol

The second property is that of accessibility. It states that each process will eventually be
admitted to its critical scetion. This is established by:

Lemma B:
F atéy O O atly
and

F atmg DO 0 atmy

Proof:

Let us define
p1: atlgANatmy Ay =0
P y>0

We show that ¢ and 1, satisfy the conditions of the EVNT rule with k == 2.

In fact the only enabled transition is m; — mg which does lead from ¢, to ,. While at m,,
Py is always enabled. Thus we conclude:

L F latéy A atmy Ay = 0] D Oy > 0) by EVNT with k = 2

70

2. 1- [atly A atmy] D Oy > 0) by I, above, 1 and PR

3. F [atfo A atmg,;;] S(y > 0) also by I; and PR

4 Fatly > Oy > 0) by T, 2, 3, LOC and PR
Take now

w1 atly

’(ﬁg H at£1

We check premises A to C in the EVNT rule with respect to the pair {p2, ¥2} taking k = 1.
Clearly P always leads from g to ©g V 1. The process P, always leads (when enabled) from g
to 2. Condition C is guaranteed by 4 above. We therefore conclude

5. F atfy D 0 atl,.

By a completely symmetric argument we can show that:

F atmg DO 0 atmy. N

12. EXAMPLE 3: MUTUAL EXCLUSION

As a third example wc consider a program that solves the mutual cxclusion problem without
semaphores:

(v 1, vz, t):= (false, false, 1)

£o : Noncritical Section mg . Noncritical Section

£y y1 = true my : Yo = true

by t: =1 mg:ti=2
l3 : if yo = false then go to 5 my : if y; = false then go to ms
. £y if t = 1 then go to {3 my : if t = 2 then go to mg

25 : Critical Section ms : Critical Seclion

L :fy — false M6 * Y2 = false

£7:goLU Lo my : go to my

- P - — Py —

For convenience wc will abbreviate formulas atf; to ¢;.

71

The principle of operation of this program is that cach process F; has a variable y;, 1 = 1,2,
which expresses the process’'s wish to enter its critical section. The variable y; is set to frue at £
and my and reset to false at £ and mg, respectively. In addition, each process leaves a signature
in the common variable ¢. The process P, sets it to 1 at £y and Py scts it to 2 at mg. A process
P; may enter its critical section only if either y; = false (meaning that the other process is not
interested) or if ¢ =], for j # ¢. The latter case corresponds to both processes being interested
in entering the critical section but P; being the last to pass through the signing instructions at

(L2, ma).
To formally prove that this program is correct we first prove several invariance properties.

Lemma A:
Fy = s
Here £5 ¢ stands for atfy g. Thus the lemma states that
y1 = true if and only if m; € {£2,43, L4, L5, Ls}.

Proof:

To prove the Lemrna we take

e1: (11 = Lag)
and show that it is invariant under every transition, i.e., every transition leads from ¢ to ;.

The only transitions that can affect the truth of ¢, arc £, — £ and g — £7.

In £, — £5 both y; and atfy g become simultaneously true. Similarly in g — ¢; both y; and
at {4 ¢ become simultaneously false. Thus

L F (y1 = £a6) D Oyr = £2.6) by TRNS
2. F {atlto, mo) A [(y1, va, t) = (false, false, 1)]} D (y1 = £2.6)
3. F g =tes) by 1, 2 and TINV y

Lemma B:

Fy2 = mag
The lemma is proved by a symmetric argument.

Lemma C:
Ft=21v(t=2

72

This lemma states that the only possible values of the variable { are 1 or 2.

Proof:

The Lemma is clearly provable by the IINV principle. Obviously, it is true initially since
t = 1. The only transitions that modify the value of ¢ set it either to 1 or to 2. Thus P aways
leads to a state satisfying (¢ = 1) vV {t = 2). ,

Lemma D:

F (35,6 D [(N?jg) Vv (t = 2) \% mg]

Proof:
Let g stand for £s6 D [(~y2) V (t = 2) V my].

It is clearly true initially since k- £y D ~f56. To show that every transition leads from gy to
©q, consider the only transitions that may falsify g, i.e., that may possibly lead from @g to ~pa.
Polentially they arc:

e {3 — f5. This transition is possible only under ~y; which makes
(~y2) V (t=2) V my

true.

e {4y — f5. This is possible only when ¢ # 1 which by Lemma C makes
(~y2) V(t=2)V my

again true.

The other transitions we should consider are transitions of P, while P is already at £54. The
only oncs to bc considered arc those which affect any of the variables in ~ys V (t = 2) V ma.

e m; — mq. Causes my to become true.
e Mg — ms3. Causest to be set to 2.
e mg — my. Sets yo to false, making ~ys true.

The lemma follows by the IINV principle. 1

Lemma E:

*komge D [(Nyj) vit=1v £2]

The lemma is proved by a completely symmetric argument.

73

Theorem:

F (~56) V (~ms)

This theorem proves the mutual exclusion of the processes.

Proof:

Lk (L6 A mse) D [((~y2) V(E=2Vm)A((~y) V=1V £,))
by lemmas C, D and PR

2. F (€56 N msg) D [yr A y2 A ~ly A ~my) by lemmas A, B, LOC and PR
3. F (e5,6 A m5,6) 2t = 1) A (t = 2)] by 1, 2 and PR
4. F ~(ls6 A msg) by the equality axiorns and PR,

using the domain fact that 1 # 2

5 F ("‘ES,S) \Y (~m5,6) by PR d

Next we will prove accessibility. We will only prove:

Theorem:

Fatly O Oatly
The resull for Py is completely symmetric.

Proof:

The proof will proceed by a sequence of statements most of which are proved by the EVNT rule
in the version whose conclusion is ¢ D 0 . Simple passages juslified by propositional temporal
reasoning will not be fully presented and their omission is denoted by mentioning TR in the
justification clause.

L. F (84 Amgq At =2 D01 by BLVNT with k = 1,
using lemma A

2. F (fg A mg4 A t

2) D O(ly Amgy At =2 by EVNT with k = 2,
using lemmas A, B

3. |"‘(£3A7n3,4At:2)30£5 by 2, 1 and OC
4. (l3,4 Amzqs At =2)D0 ¥ by 1, 3 and PR
5 F (63,4 A 'm.g) 2 O[[s \% (£3,4 Amgy At = 2)] by WVNT with k = 2

74

10.
11.
12.
13.
14,
15.
16.
17.
18.
19,
20.
21.

22.

23.
24.

25.

-

b (3,0 A my) D Oty

F (L34 A mi) D Olts V (l34 A my)]
F (€34 A my) D Ol

F (€3 A mg) D Olls Vv (€34 A my)

t- (e3 A mo) D 045

F (84 A mo) 2 O[£5 V (Z3,4 A ml) \% (Zg A mo)}

- (34 A mo) D 0 ¢
o (£3,4 A 'mo) D Oy
I -
- (63,4 A m7) .} <>f5

F (6314 A ms) 3 0([3,4 A m-,)
F (43,4
F (€34

F (1f3 4 A m5) D Oy

A m6)] <>£5

A m5) D 0(23,4 A ms)

I- (€34 A mg At =1 D0 fs
I—(Z3,4Am3,4At:1)30£5

((53,4 A ?77,3,4) p RO

We may summarize now as follows:

26.

27.

28.

29.

30.

3L

(€3,4 A m7) D Oles V (€3,4 A mo)]

F (£3,4 AmygAt=1)D O(Z3,4 A m5)
F ((33,4 Amy At =1 304
- (33’4 A m3g At

by 4, 5 and PTR

by EVNT with k = 2
by 7, 6 and PTR

by EVNT with k = 1
by 9, 8 and PTR

by EVNT with k =1
by 11, 8, 10 and PTR
by 10, 12 and PR

by EVNT with k = 2
by 14, 13 and PTR
by EVNT with k = 2 and lemma E
by 16, 15 and PTR

by EVNT with k = 2 and lemma E
by 18, 17 and PTR

by EVNT with k = 2 and lemma A

by 20, 19 and PTR

=1) D O3y A mg At =1)

by EVNT with k = 2 and lemma A
by 22, 21 and PTR
by 21, 23 and PR

by 4, 24, lemma C and PR

F b4 D [lsa AM{mo VmivmegVvmgVvmgV msV mgV my)

I- €34 D 0 5
Fly D Oty
I-f3 D 0 {5
I- £ D O4e

F £, 20/

75

by LOC

by 26, 13, 8, 6, 25, 19, 17, 15 and PTR
by EVNT with kK = 1

by 27, 28 and OC

by BVNT with k = 1

by 29, 30 and &C
Y N

F. COMPACT PROOF PRINCIPLES

In the preceding sections we introduced a comprehensive proof system for proving arbitrary
temporal properties of concurrent programs. However, as demonstrated in the last examples a
fully formal proof tends to be rather lengthy and sometimes tedious to follow. Consequently we
will next discuss shorter and more compact representations of proofs and corresponding compact
proof principles. All Lhcsc principles can be derived in the basic proof system presented above.
Consequently, a proof according Lo these principles can always be mechanically expanded into a
more detailed proof using just the basic axioms. We will discuss the three main classes of properties
one may wish to prove about programs, namely: invariance, liveness and precedence properties.

13. THE INVARIANCE PRINCIPLE

The IINV principle does not significantly simplify formal proofs. Most of the needed work
in applying the IINV principle is in establishing the premise that the program P leads from ¢ to
. Several heuristics or meta-rules can bc suggested in order to reduce the number of transitions
that have to be checked, which in the worst case is proportional to the size of the program. For
example:

a) Only transitions that modify variables on which ¢ depends should be checked.

b) Assume that ¢ has the form ¢ = p; V @2 (similarly for implication), and that
some variables yy,. . , Ym appear only in @. Then, in checking transitions that
only modify Lhcsc variables, it is suflicienl to check transitions that may falsify
©1 and one may assume in checking them Lhat o = false.

c) Assume that an invariance y has already been established before. Let
[e A x] 2 (~ atf)
for some location £. Then no transitions of the form ¢ — ¢ need ever be
considered in showing that P leads from ¢ to .

A simple generalization of the IINV rule is given by:

Generalized Invariance Rule -- GINV
A. kD9

B. I- [aa& A 5 = glC)] D o
C. 1I- P leads from ¢ to ¢

F_Dzﬁ

Certainly premises B3 and C establish = O ¢ according to IINV, from which by premise A and the
O 0O rule, t- O 7 follows.

76

The advantlage of the GINV principle is that no additional temporal reasoning is required and
the rule can be proved complete by itself. By this we mean that, given a program P, any state
property % which is invariant for all executions of P can bc proven invariant by a single application
of the GTNV rule and no additional temporal reasoning.

Theorem:
The GINV rule is complete for proving invariance properties.
Proof:

Let ¢ = ¢(Z; 7; y) be a state property, possibly dependent on the input variables . We define

a state s = (f; 7)) to be €-accessible in P if there exists a segment of some computation initialized
with £ = ¢ that reaches s, i.e,

(Co; 9()) = ... — (& 7).

Define the predicate ¢ = ©(z; T) by:
go(-ﬁ;-é; 7)=true & (£ %) is T-accessible.
Thus, ¢ characterizes all the states that are Z-accessible, We will show that the predicate ¢

so defined satisfies, together with 4, al the prerniscs required by the rule GINV.

Consider premise A. Since 9 is invariantly true in all computations of [’ it must be true for

every accessible state (£; 7). Consequently

0(&67) 2 $(&6m);
when generalized to arbitrary ¢, £ and % Lhis implies
Fo D 9.

Since we assume that the underlying domain theory is adequate for proving all classically sound
formulas this implies

Fo D .

Consider now premise I3. Since every initial state is by definition accessible we certainly have
E o (Z; €o; 92)).
Again by completeness of our domain part with respect to classical formulas, this leads Lo

Flatlo A y= g¢(%)] 2 (7; 7; 7)-

Finally, consider premise C. Clearly every transition in P leads from an z-accessible state to
another Z-accessible stale. Consequently

E P leads from p to .

77

From this premise C follows by completeness of the domain part.

.

In the preceding theorem we have only shown the existence of an appropriate state predicate
. Wc have not discussed the question of the exact formal language in which such a predicate
can be expressed. IHowever, assuming that our domain contains the integers or some isomorphic
structure, and using a first-order language, it is not difficult to show that the statement:

“There exists a finite computation of P leading from (¢y; g(€)) to (¢ 7)”

can be Godel-encoded into a first-order statement over the integers.

14. LIVENESS PRINCIPLES

As a typical example of a detailed proof of liveness properties wc may rccxaminc the proof of
accessibility for the mutual exclusion program (Example 3). The structure of such a proof proceeds
through a chain of events characterized by state assertions. Let the eventuality to be proved bc
o D <O where hoth ¢ and 9 arc state properties. We may regard ¢ = g as being Lhc last
assertion in the chain. Then we identify an assertion ¢; such that by a single application of the
EVNT principle we can prove

Fpr D O,
In the example considered we have

P Ly
o114y A mggq A(t =2).

Next, we identify an assertion g such that by a single application of the IZVNT principle we
can prove

F o2 D O(gpl \Y 'l,b)

In the genera step, wc identify an assertion ¢; such that by a single application of the EVNT
- principle wc can prove

F i D O(Vepj).

i<t

Finally wc have to prove p 2 (v goi) where 1, . . . ,p,is the chain of assertions
1=0
constructed. We may summarize this proof pattern by Lhc following proof principle:

78

The huin Reasoning Proof Principle --- CHAIN

Let ©o, @1, ...,pr be a sequence of state properties satisfy-
ing the following rcqui rements:

A. F P leads from ¢, Lo V(pj fors=1,...,r.
I<i

B. For every ¢ > O there exists a k = k; such that:

F P leads from o, to \/ ©;
i<t

C. For i >0 and k = k; as above:

F ;D0 [(\/ ©;) V Enabled(Py)|
i<t

©;) D (\’/ i) Upo

1=1

-

1<

Proof:
To justify this principle we will prove by induction on n, » = 0, L, . . . 7, that

F (__\n/ i) 2 (\/ po)Ueo.

I =1

['or n = 0 we have I g D g from which trivially follows by axiom A9

F wo D (false U po).
Note that wc interpret an empty disjunction as false.
We assume that Lhe statement above has been proved for certain n and we attempt to prove

it for n + 1.

Consider the EVNT rule with ¢ = ©p41, ¥ = (\/ ©:). By premise A of CHAIN we obtain
i=o
that P leads from .41 = @ to

(v p;) = (Pat1 V (v 0;)) = (@ Vv).

j<n+1 j<n

This provides premise A of EVNT. Let k = k, 1. Then by premise B of CHAIN, Py leads
from a1 = to(\/ ©;) = ¢.Similarly, premise C of CHAIN yiclds that
' j<n+l1

. F¢ D 0('1,1') V En(z()led(l’k)).

79

By the EVNT rule it follows that
2. Fo 2 ol

or
n
3. F Ynt1 D Pnr1U(V‘Pi)-
i=0
By the induction hypothesis and the UU rule this yields

4. F Pni1 D enrtU((VSOi)U.t,oo)-

=1
Again by the induction hypothesis using part of A9, we D w;Uwy, wc can obtain

n

5. F (\n/SOi) D <,0n+1u((\/80i)u$00)-

i=0 i=1
Combining this with 4 above yiclds

n+1 n

6. (\ ©:) 2 ensr UV wi)Uwo).

i=0 =1

+

By T38, pU(qUr) > (p V g)Ur, wc can reduce the nesting depth of the U operator to get:

n+1 n+1
7.0 (\/ s 2 ((V e:)Upo)
i=0 =1
as needed.
Taking n = r concludes the proof of the principle. g
In presenting a proof according to the chain-reasoning principle it is usually suflicient to
identify @gq, @1, . . ., , and for each ¢ to point out the “helpful” process P = Pk,. It can be left
to the reader to verify that premises A to C arc satisfied for each z = 1,2, . . . , r.

We prefer to present such proofs in the form of a diagram. Consider a diagram consisting
of nodes that correspond Lo the assertions g, ©1, . . . , ©-. Ifor cach transition affected by some
process P, that leads frorn a stale s satisfying ¢, Lo a slate ' satisfying ¢y, £ < 7, wc draw an
cdge from the node p; to the node ¢, and label it by P;, the name of the responsible process.
All edges corresponding to the helpful process [’ = [%, are drawn as double arrows. We do not
explicitly draw edges corresponding to transitions frorn ¢, back to itself. However it is assumed
that such edges may exist for all but the helpful process for ;.

As an example wc present a diagram form of the proof of accessibility for the Mutual Exclusion
program. Tt is given in Iig. 1. in constructing such a proof wc rnay frecly use any invariants
previously derived.

80

Fig. 1. Proof Diagram for the Mutual Exclusion Program

81

In this program, and typically in all non-terminating programs that have no semaphore in-
structions, wc do not have to check premisc C of the CHAIN or [EVNT rule. This is because in
non-terminating programs without semaphores every process is continuously enabled and therefore
condition C is automatically satisfied.

In contrast let us consider the proof of accessibility for example 2 - a program with semaphores.
Ilere wec want to prove £g O < ¢;. The main diagram here is very simple:
Py

o 14

It denote; a single application of the IEVNT rule with ¢ : atfy and % : até; with P, = P
being the helpful process.

IHowever, in order to justify premise C, which is not trivia in this case, we have to prove
F fo DO vy > 0.

For this we have to consider Py’s position. If P is at mg or mg then y = 1 by the invariant I;
proved above, The only other case is when P is at my where by a single application of the KVNT
rule it will eventually move to mqy producing a positive value of y. This may be represented by a

sccondary diagram:

The diagram representation of a proof according to the CHAIN principle is very similar to
the proof lattices introduced in [OL] as a concise presentation of a proof of a liveness property.
A superficial difference is that Lhey choose to represent as edges the consequences of the BVNT
rule, while in our representation edges stand for the premises of the EVNT rule which arc also the
premises Lo the CIIAIN rule. To illustrate this difference, consider the following trivial program:

P

b: y:=1y mp: Qo to my
131:

- P - — Py —

The livencss properly to bc proved is €3 D 0 ;. Bclow are diagram representations of the
CIIAIN principle and a proof lattice according to [OL].

Pz

Py
\ -
6) (e
CT LAIN Diagram Proof Lattice

As wc see, the CIIAIN diagram contains a sclf-edge, labelled by Py (this time drawn explicitly)
and a helpful edge labelled by ’;. The process P is guaranteed to get us to £;. As a consequence

82

of this, by the EVNT rule, 45 D O £;. This conclusion is represented in the proof lattice by a
single edge from £y to £;. Thus, the dilferent choices of representation lead to the following minor
syntactical differences between CHAIN diagrams and proof lattices:

(a) I'roof lattices are acyclic, whereas CIIAIN diagrams are only weakly acyclic, i.e., may
contain self-loops.

(b) In CIIAIN diagrams, cdges arc labelled by the processes responsible for the transition.
Special identification is provided for cdges traversed by the helpful process. In proof
laltices, we no longer care about the identities of the processes since progress along the
lattice has already been established.

However these differences are minor and a simple procedure for translation between CIIAIN
diagrams and proof lattices exists. The important part in both is the identification of the in-
termediate assertions that are represented as nodes. [n constructing a proof, this is usually the
creative and most demanding process. Bolh graph presentations provide a natural and intuitive
rcprcscntation of these assertions and the precedence relations between them.

The chain-reasoning principle assumed a finite number of links in the chain. It is quite ade-
quate for finite-state programs, i.e., programs whose variables range over finite domains. However,
once wc consider programs over the integers it is no longer sullicient Lo consider only finitely many
assertions. In fact, scts of--assertions of quite high cardinality are needed. The obvious gener-
alization of a finite sct of assertions {¢; |7 =10, ..., r} is to consider a single assertion ¢(«),
parametrized by a parameter a taken from a well-founded ordered set (A, <). Obviously, the most
important property of our chain of assertion is that program transitions evenlually lecad from ;
to ¢, with j < ¢. This property can also be stated for an arbitrary well-founded ordering. Thus
a natural generalization of the chain reasoning rule is the following:

The Well Founded Liveness Principle — WELL

Let (A, <) be a well-founded set. Let p(a) = p(a; T; T; y) be a parametrized
state formula
Let h : A — [L .. k] be a helpfulness function identifying for each @ € A the

helpful process P for states in p(a).

A. P lends from p(a)to y v (38 2 a . p(8))
‘ B. F Ph(a) leads from p(a) to ¢ v (3ﬂ <. @(ﬂ))
c. Fp(a) DO v (3B <a. o)) v Lnabled(Ph)l

F (3. p(e) 2 B . pla))Uy

A justification of this rule can again be conducted, based on induction. Now, however, induction
over arbitrary well-founded sels is required.

83

15. EXAMPLE 4: BINOMIAL COEFFICIENT

As an example for the application of the WISLL principle, we consider the following program
that computes the binomial cocfficient (:) for inputs 0 < k < n.

(¥1, y2, ¥3, ¥4) :=(n, 0, 1, 1)
£7: of y1 = (n — k) then go to ¢; mgy: if yo = k then go to m,
Lg : request(ys) me: yg:i=7yg + 1
ls: t;:=y3 -1 myg : loop until y; + y2 < n
Ly y3 =1t mg : request(ys)
23 : release(ya) 57 to = y3/ya 1
fziylt y1 -1 mg 1 y3:=
lg: @ 0 i1z 'm5: release(ys) '
£, : halt my ‘go to mgy
my : halt
~ P - - P -

The labclling scheme of the program has been constructed in a way that simplifies the expres-
sion of the assertion o(a).

The computation of this program is based on the formula:

n _n:(n—1)---(n—k+1)
ok 1-2---k '
The values of y;, i.e, n,n—1,...,n — k + |, are used to compute the numerator in Py, and the
values of yg, i.c., 1, 2, . . ., k, are used to compute tho denominator. The process I, mul tiplies

n-(n—1)--+(n—k+1) it oys while P, dividesyz by 1.2...k.

The instruction
mg ; loop until yy + y2 < n

" guarantees even divisibility of y3 by ys. It synchronizes F%,’s operation with that of [?, to ensure
that yy is divided by 7 only after (n — ¢ + 1) has already been multiplied into it. We rely here on
the mathematical theorem that the product of ¢ conscculive integers n- (n - 1)-..(n — ¢ + 1) is
always divisible by ! (the quotient actually being the integer (%)).

The critical sections £3.5 and ms. 7 arc mutually protected by the scmaphore variable yy.
This protection ensures that y3 is not updated by P, between, say, the computation of y3 . y; and
the assignment of this value to y3. Without this protection, the updated value might, have been
overwritten by Pj.

84

Woc start by establishing some invariant properties of this program.

Ii: F (atfg.j + atms. 7 + Yq = 1) A (y4 > 0)

‘This is the usual semaphore invariant. It can be proven by observing that initially this sum
equals 1, and then by considering all possible transitions. For example, the €5 — £5 transition
changes atf3 5 from O (false) to 1 (true), and also decrements y4 by 1, leaving however the sum
constant. I'rom I; we can deduce mutual exclusion of the critical sections, i.e.,

F (~f3.5) V (~ms.1).
As a conscquence of this we can establish:
L: F (Dt =y -y1) A(meg D ta = y3/y2)
This holds due to the impossibility of interference by Py while Py is at {4.

ILi: F (n—k+atlys)<yi<n.

This invariance states that y1 aways lics belween n- k and n. When P, is at 5. ¢, y3 > n— Kk,
whereas P, is at other locations, y; > n — k. To verify 4 we need only consider the transitions:

e {7 — fg which maintains n -- k < y; < n, assuming it was previously known that
n-k<y <n.

e ly— {gwhichresutsinn - k<y;—1<nfromn—k<y;<n.

142 P—OSyQS(k—atmg).

This invariance bounds Lhe range of yo. We nced consider the transitions mg — my and
mg — my4 Which can be shown to maintain Iy.

Is: Fatmz gD (y1+y 2) <n.
Here we should consider two transitions:
e mgy — mg which is possible only if currently y; + y2 < n.

. £y — fg is the only transition modifying y;. Illowever since it decrements y; it
certainly preserves ¥y + y2 < n.

Let us define the following virtual variables:

y¥ = if atly 3 then y; — 1 else y,

ys = if atmg gthen yg — L else yq

85

These variables are roughly equal to y; and yg respectively and differ from them by 1 in certain
ranges.

Ig: 1- yga=In.(n—=1) .. (yf +1)/[t.2-. 93]

To verify this invariant wc have to check the transitions €4 — {3, mg — ms. Making use of
I, they can be shown Lo maintain .

Iy: 1- [atfy Dy = (n — k)] A [atmy D (y2 = k)]
Using Ig, I; and the definition of y;, y5 we obtain partial correctness of this program, namely

F (atll A atml) o] [y;;: (:)]

To prove termination we will use the WELL rule in order lo establish + 0(atéy A atmy). As
the well-founded domain we take

(A, <)=(NXN XN, <.z).

That is, the set of triplets of nonnegative integers ordered by lexicographic ordering. This ordering
defines (my, ma, m3) < (ny, ng, ng) iff for the lowest ¢, 1 = 1,2,3 such that m; # n;, m; < n;.

For our goal assertion we take ¥ : atf; A atm,. The parameterized assertion is given by:

(p(a; ei:mj; Y1, y2) . (yl + k — Yo, j1 l) = .
The helpfulness function is given by:
h(a) = h(r, j, t) = (if ¢ = 1 then 2 else 1).

Thus as long as the first process I’y has not terminated wc rely on Py to bc the helpful process.
Once it has terminated, we take P to be the helpful process.

We have to show that all the three premiscs of the WELL rule arc satisfied.

Consider first premise A. Wc have lo show that every transition of I’ leads to () with § X «
if ¥ is not already satisfied. By simple inspection of all the possible transitions wc find that they all
lead from (¢;, m;) to (¢;, mj:) such that either ¢/ < 7 or j' < 7 except for the following transitions:

‘e {9 — fg. But this transition decrements y; producing a strict decrease in ¥1 + k- yg
which is the first component in a.

e mgy — mg. In a similar way Lhis transition increments y3, leading to a decrease in
Y1+ k =y

e Mg — mg. This transition leaves a a the same value.

Consider now premise B. As we have shown above, al transitions provide a strict decrease in
a. The only exception is mg — mg. However this is a &transition which is considered helpful
only when P is at ¢;. By I, at this point y; = (n — k) so that in view of I, y1 + y2 < k and
hence the only transition possible from mg is mg — mg.

86

To show premise C we have to prove that Py is always eventually enabled. Consider first the
case that h = 1. The only location in which it is not immediately enabled is when P; is at /g
while Py is at ms, 7 (in view of I;). However by simple chain reasoning it is obvious that in such
a case, Py will certainly reach m4 in which y4 becomes positive and P; enabled.

The case h = 2 is even simpler because it is only considered when P is at ¢;. Consequently,

even when P, is at mg, which may potentially raise some problems, we have in view of I, and atf;
that y4 > 0 and P; is enabled.

Thus we conclude that 9 : atf; A atm; must eventually be realized and therefore the program
must terminate.

16. PRECEDENCE PROPERTIES

The next class of properties wc will consider and provide proof principles for is that of prece-
dence properties. These arc properties, usually needing the U operator for their expression, which
ensure that some event precedes another event, or that a certain event will not happen until an-
other event happens first. In view of the fact that the basic FAIR and EVNT rules did actually
provide a conclusion containing the U operator, they may be naturally utilized to form precedence
proof principles which are generalizations of the corresponding liveness principles.

In the following we will often consider nested until expressions in which the nesling always
occurs in the second argument. We therefore adopt the convention of representing the nested
formula:

Pn U (@nul U(...(p1 U goo)...))
by:

‘Pnu‘Pn—~1u...<,01ulp0.

The semantic meaning of this formula is that, starting from the present there is going to be
a period in which @, continuously holds, followed by another period in which ¢, continuously
holds, . . ., followed by a period in which ¢ continuously holds, until linally ¢g occurs. Any of
these periods may be empty, but the occurrence of g is guarantced.

Let us consider first the proper generalization of the CHAIN rule in which we assume a finite
chain of*assertions ©,, p,_ 1, . . ., 1 leading to the god % = @y.

Iet 0 < py < pg < ... < py=r be apartition of the index range into s contiguous
segments. Then wc may formulate the following chain principle for precedence properties:

87

The Chain Rule for Precedence Properties — P-CITAIN

Let o, 01, ..., ¢, be a sequence of state assertions, and
0=p0 < pr < pz <. ..< pg =1 a patition of
[1..r].

A. 1- P leads from ¢; to (Vgo,-) fors=1,...,r
J<s
B. For every 1 > 0 there exists a k = k; such that:
F Py leads from @, to (v ©;5)
i<t
C. Fori >0 and k = k; as above:

Fe>0] (v p;) V Enablcd(Pk)]
i<t

F (Vo) 2 (Ut 1.1 U o)

i=0
where
Py is V p; forl=1,...,s.
Pe—1<3<p¢
The conclusion states that starting at a state that satisfies one of the ¢,;, 1 =0,....7, we

Ps
are guaranteed Lo have a period in which (V <pj)continuously holds, followed by a period in

J=ps—1+1
Ps—1
which (\/ (pJ-) continuously holds, etc., until g is finaly reaized. Any of these periods may
J=ps--2+1
be empty.

Proof:

To justify the soundness of this conclusion we will first prove it for the most refined partition
possible, namely:

(V‘Pi) O (prUe, i lUpr ol - .1 U o).

1=0

This is proved in a way similar to the justification of the corresponding liveness principle. We
show, by induction on n, n = 0,1, ..., r, that

n

F (v Pi)) (‘p'n u Pn--1 u.. -1 U ‘100)-

i=0

For n = 0 wc have I- g D g which is the induction statement for n = 0.

88

Assume that the statement above has been proved for a certain n and consider its proof for
n+ 1.

n
Consider the EVNT rule with © = @pi1, ¥ = (V ©;). Asshown in the proof of the livcness
i=o
case, all the premises of the EVNT rule are satisfied. Consequently we may conclude:

n
F ©nt1 D @np U (\/ ©i).
i=0

By the induction hypothesis and the UU rule this yields

F onit 2 @ntt U (o0 U ...01 Upo).

Dueto kv D (uuv) which is a consequence of axiom A9, the induction hypothesis can also be
written as

F (\/‘Pi) D Pnyt U (gonu---fp1u¢>o)-
i=0

Taking the disjunction of the last two gives

n+t1
F (\/90’:) D Pnpi U- ((p'nu ~--‘P1u‘;00)1

i=0
which is the required staternent for n + 1.

Consider now a coarser partition:

O=pp<p<p2<...<ps=r.

By consecutively merging any Lwo contiguous assertions that fall into the same partition cell, using
theorem T38:

-

Flpan U (P Ue) 2 (Lt vV Pi) Up),

wC obtain the coarser conclusion:

n+1

F (\/‘Px) D « \/ 901') U \/ @J.)u,_,(\/(pJ‘)u‘PO))-J

Pa—1<T<Ps Ps—2<I<Ps-—1 0<5<m1

Examples:

As our first example, let us consider the Mutual Exclusion program analyzed above. We have
alrcady proven that mutual exclusion is maintained by this program. Wc have also proven the
liveness property that if P’; wishes Lo enter its critical scelion it will eventually gain access Lo it.
A more diseriminaling question is that, of how fair is our agorithm. That is, if Py wishes to cnter

89

its critical section, how many times will P, be able to enter its own critical section before Py? Is
that, number bounded? Wc refer to this question as the problem of bounded overtaking. Namely,
how many times can P, overtake P, before P; enters his critical section.

Our first analysis makes use of Iig. 1 without any modifications. Wc only read from it Lhe
stronger conclusion according to the stronger P-CIIAIN rule. As a partition we choose p; = 7,
p2 = 9, pg = r = 11. Consequently, from Lhe diagram of Fig. 1 we conclude by the P-CHAIN
rule:

" (.{_}*"0 > ((‘}1710@1-) u (,_Q/«oz) u (}_7/90{) U o).

Replacing each of the right hand side disjunctions by a weaker property and the lcft hand side
disjunction by a stronger statement we obtain:

F £3,4 D ((ng,,g) U ms.6 U (N'I’ﬂ5’6) U 55).

This implies that if P is at the wailing loop in £3 4, there will ho a period in which P is
not in the critical section mg g, followed by a period in which P, is inside the critical section ms g
followed by a period in which P; is outside the critical section which terminates by /? entering
his critical section. Since any of these periods may be empty this is a worst-case analysis. But it
certainly assures |-bounded overtaking, i.e., once P is in {34, P, may overtake it at most once.

Having successfully analyzed the situation from £3 4 on we may attempt to obtain a similar
analysis from the moment that P; enters £.

This analysis calls for a refinement of the diagram of Fig. 1. The following is »a subdiagrarn
that should replace the node corresponding to @9 in Fig. 1. [t consists of three nodes labelled
respectively 7.5, w9.5 and pyy.5. The fractional indexing indicates that 7.5 should be inserted
between 7 and g in Fig. 1. The edges out of ;3 should enter onc of these three nodes. Edges
out of Y75 lead Lo some of ¢y, . . ., ©7.

P
o750 | L2, (m34 /! 5T2)_V mo..g V mg =——>{p 1}

A

Py

£y, ms ¢ ——>{pg 9}

)

$9.5:

Py

1150 leym3a,t = | ===>{p10,11}

Similarly for edges out of g5 and ¢ 11.5. Considering the updated diagram composed of Fig.
1 and the above subdiagram wc obtain the following conclusion:

N O) ((y pi) U (\! e:) U (-_./,(pi) u <P0).

90

This again leads to

F o4 D ((~ms6) U msg U (~msg) U £5),

which ensures |--bounded overtaking even frorn £3. Encouraged by this, we may next ask whether
a similar result can be obtained from ¢;. Unfortunalely this is not the case. P, may enter its
critical section an arbitrary number of times while Py is at ¢;. This is obvious since while being
at £,, P, has not yet modified any variable in a way that will show that it is not still in £3. And

naturally while Py is at £y, P, may enter the critical section any number of Limes if the algorithm
is correct.

THE WELL-FOUNDED PRINCIPLE FOR PRECEDENCE PROPERTIES

A natural extension of the P-CHAIN rule Lo programs that require infinite chains of assertions
again uses well founded ordered sets.

Let (4, <) be a well founded ordered set. Wc require however thal the ordering is total (or
linear). That is, for every two distinct elements «(, as € A cither oy < ag or ag < ay.

Well Founded Precedence Rule --- P-WELL

Let p(a) = ob&;7#;7y) be a parametrized state assertion

with a € A.
Let h : A — [l .. k] be a helpfulness function.
Let a1 < ag < ... < o, be a sequence of elements of A.

t- P leads from p(a) to ¢ vV (38 < a . p(B))
F Pha) leads from o(a) to 9 v (38 < o . ©(B8))
t- pla) DO v (Hﬁ <. @(ﬁ)) \Y Enabled(]’h(a))]

F—(Hajas.p(a)) 3(¢su¢s—-1U.-.¢lu¢)

where
Ye is dP(ar1 < B L ay).p(B) fort=2,...s, and
Y1 is 3B(B X a1) . p(B)

Note Lhat while the range of the parameter in the assertions is infinile, the partition is still
finite.
Acknowledgement:

We thankfully acknowledge the help extended to us by Yoni Malachi, Ben Moszkowski, Stuart
Russell, and Iran k Yellin in reading the manuscript. Special thanks are due Lo Evelyn lildridge-
Diaz for TEXing the manuscriplt and Lo Carol Weintraub for typing its lirst draft.

91

REFERENCES

[11] Hoare, C.A.R., “Communicating Sequential Processes,” CACM 21 (1978) pp. 666-677.

[ILL] lgarashi, S., London, R.L., Luckham, D.C., “Automatic Program Verification 1: A
Logical Basis and Its Implementation,” Acta Informatica, Vol. 4, No. 2 (1975), pp. 145-
182.

[KR] Kuiper, R. and de Roever, W.P. “Fairness Assumptions for CSP in a Temporal Logic
Framework,” TC2 Working Conference on the Formal Description of Programming Con-
cepts, Garmisch (June 1982).

[LI] Lamport, L., “Proving the Correctness of Multiprocess Programs,” IEEL Trans. Soft.
Eng. SE-3, 2 (Mar. 1977), pp. 125-143.

[L2] Lamport, L ., “ ‘Somctime’ is Sometimes ‘Not Never': On the Temporal Logic of Pro-
grams,” 7th Annual ACM Symposium on Principles of Programming Languages (1980),
pp. 174- 185.

[LPS] Lehmann, D., A. Pnueli, and J. S tavi, “Impartiality, justice and fairness: the ethics
of concurrent_termination,” in Aufomata Languages and Programming, Lecture Notes in
Comnpuler Science 115, Springer Verlag (198 1), pp. 264-277.

[M] Manna, Z., “Verification of Sequential Programs: Temporal Axiomatization,” Theoret-
ical Foundations of Programming Methodology (M. Rroy and G. Schmidt, cds.), NATO
Scientific Serics, D. Reidel Pub. Co., Holland (1982), pp. 53-102.

[MP1] Manna, Z. and A. Pnucli, “Verification of Concurren t Programs: The Temporal
Framework,” in The Correctness Problem i Computer Science (R.S. Boyer and J S.
Moore, cds.), International Lecture Series in Computer Science, Academic Press, London
(1982), pp. 215-273.

[MP2] Manna, Z. and A. Pnueli, “Verification of Concurrent Programs: Temporal Proof
Principles,” Proc. of the Workshop on Logic of Programs (D). Kozen, ed.), Yorktown-
Heights, N.Y. (198 L). Springer- Verlag Lecture Notes in Computer Science 131, pp.
200-252.

[MP3] Manna, Z. and A. Pnueli, “Verification of Concurrent Programs: Proving Eventualities
by Well-Pounded Ranking,” TOPI.AS (1983, to appear).

[MP4] Manna, Z. and A. Pnueli, “ITow to Cook a Temporal Proof System for Your Pet
Language,” in the Proc. of the Symposium on Principles of Programming Languages,
Austin, Texas (Jan. 1983).

[OL] Owicki, S. and L. Lamport, “Proving Liveness Properties of Concurrent Programs,”
ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3 (July 1982),
pp. 455-495.

[e] Peterson, G.L., “Myths about, the Mulual Exclusion Problem,” Information Processi ng
Letters, Vol. 12, No. 3 (June 1981), pp. 115-1186.

[I’'S] Pnueli, A. and R. Sherman, “Semantic Tableau for Temporal Logic,” Technical Report,,
CS81-21, The Weizmann Institute (Sept. 81).

92

