
June 1983 Report No. STAN-G-83-967

Verification of Concurrent Programs:
A Temporal Proof System

%oh;lr  Manna and Anlir Pnucii

Department of Computer Science

Stanford Uuivcrsity
Stanford, CA 94305





bY
ZOT?/W  MANNA AMIR PNUI~LI
Computer Science Department Applied Mathcm:~tics  I~epnrtrncnt
Stan ford IJniversity The Weizmann Inslitute of science
Stan ford, CA Itehovo t, Israel
and
Applied Mathematics Department
The Wcizmann Institute of Science
Iichovot,  Israel

A proof system based on temporal logic is presented for proving properties of conclrrrent
programs based on the shared-variables  computation  rn~o:lcl. The system consists of thrco parts:
the general uninterpreted part, the domain dependent part and the program depcndcnt,  part. In the
geileral  part we give a complete  proof system for first-order temporal logic with detailed proofs of
useful theorems. This logic enables reasoning about general time sequences. The domain dcpcndcnt
part characterizes the special properties of the domain over which the program operates. The
program depcndcnt part introduces program axioms which restrict the time sequences considered
to be execution sccIucnces  of a given program.

The utility of the full system is demonstrated by proving invariance, livcness  and prccedcncc
properties of several concurrcn  1 programs. Ik3ivctl  proof principles for those classes of properties,
arc obtained  and lead to a compact rcprcsentation  of proofs.

IThis paper appears in the Proceedings of the 4-11~  School of Advanced Programming, Amsterdam,
:lIolland  (June 1082).

This research was supported iu part by the National Science If’oundatior~ under grants MCS’IO-
O9495  a n d  M(>S80-06!.GOY  by  DARPA  under  C o n t r a c t  N1)00:3!)-t32-C-02:,0,  b y  t h e  TJnitcd  S t a t e s
Ai r  Force Oflice of  Scientiiir* Ilosenrch  miw (:r:knl Al~OSlt-8 i-00 t/l, 2nd by Ihe T3ar;ic  Ikwmh
k’ouudation  of the Israeli Awdcrny  of’ Scicnccs.





In this work WC prcscnt  a proof system based on temporal  logic, for proving the properties  of
concurrent programs. We refer the reader to [MPI  ] f‘or a more detailed discussion of the compu-
tational model of concurrent programs, and the advantages offered by the language of temporal
logic in formulating properties of concurrent programs.

1. THE TEMPORAL LANGUAGE: SYNTAX AND SEMANTICS

We first describe the temporal language WC are going to use. This language contains special
constructs that are slritablc  for reasoning about programs.

The language uses a set of basic symbols consisting of individual variables and constants,
propositions, and function and predicate symbols. The set is pnrtitioncd into two subsets: global
and local symbols. Intuitively speaking, the global symbols dcnotc  entities that do not change
duriilg  a program~cxccution. The local symbols, on the other hand, may change their meanings
and values in diffcrcnt  states throughout the cxccut,ion. For our purpose, the only local symbols
that interest us arc local individual variables  and propositions. WC will have global symbols of all
types.

Wc USC the us11a1  set of boolean connectives: A, V, >, E, and - together with the equality
predicate = and the first-order quantifiers V and 3. These operators arc referred to as the classical
operators. The quantifiers ‘J and 3 arc applied only to global individual variables.

The modal operutors used arc:  Cl, 0 ,  0 , and 11, which arc called respectively the always,
sometime, next and until operators. The first three operators arc unary while the U operator is
binary. We use the next operator, 0, in two different ways -- as a temporal operator applied to
formulas and as a tcmpornl  operator applied to terms.

A model (1, (x, 0) for our language consists of a (global) interpretation 1, a (global) assignment
Q! and a sequence of states 0.

0 The interpretation I specifies a noncmpty domain D and assigns concrete  clc-
mcnts,  functions and predicates to the (global) individual constants, function
and predicate symbols.

0 The assignment (‘I assigns a value over the appropriate domain to each of the
global individual variables.

0 The sequence o = so, sl, . . . is an inlinitc  sequence of states. Each state 5;
assigns values to the local individual variables and propositions.

2



For a scqucncc

0 = so, 51, . . .

wc denote by

the i-truncated sufix of 0.

Given a temporal formula w, WC prcscnt  below an inductive definilion  of the truth value of w
in a model (1, a!, a). The value of a subformula or term T under (I, Q, a) is denoted by 7-1 z, with
/ being implicitly  understood.

Consider first the evaluation of tcrrns:

0 For a local individual variable or local proposition y:

4:: = So[Yl,
i.e., the value assigned

0 For a global individual

4: = +I,
i.e., t,he value assigned

to y in so, the first state of O.

variable u:

to u by cy.

. 0 For an individual constant the evaluation is given by I:

4: = l[c].

0 For a Ic-ary function $:

fh, ** * 4; = qf](tll;, * * * &cl::),
i.e., the value is given by the application of the interpreted function iT[j] to the
values of tl, . . . , tk evaluated in the rnodcl  (1,cr,a).

0 For a term t:

a (0 4 : = 4 :w )
i.e., the value of 0 t in 17 = so, s1, . . l is given by the value of t in the I-
truncakd s&ix a(‘)  = ~1, ~2, . . . .

Consider now the evaluation of formulas:

0 For a k-ary prcdicak  p (including equality):

Ph, * * * ,hJ;  = qP](hl;,  ’ 0 * J/cl::).
Mere again, WC first evaluate the argurncnts  in the rnodcl and then test I[p] on
them.

l For a disjunction:

(w v w2)IZ = true if and only if wl( z = true OT w2l z = true.

And similarly for the other binary boolean conncctivcs  V, 3, and 3.

3



0 For a negation:

k4: = true if and only if w I z = false.

0 For a next-time applicat,ion:

P4l:: = 4:w
Thus 0 w rncans: w will be true in the next instant - read “next w”.

0 For an all- times applicat,ion:

Pa: = true if and only if for every lc 2 0, 7111  Z(k)  = true,

i.e., w is true for all sufix sequences of 0. Thus q  w means: w is true for all
future instants (including the present) -- read “always w” or “henceforth w”.

0 For a sornc- Lime applicat,ion:

P4l: = true if and only if there exists a k 2 0
such that wI zCIJ = true,

i.e., w is true on at least one suflix of 0. Thus 0 w rncaus:  w will bc true for
some future instant (possibly the present) -- read “sornctimc w” or “eventually
W”.

0 For an until application:

WluW2l; = true if and only if for sornc k 2 0, ~21 zck) = true and
for all i, 0 5 i < k, wl I ,“(,, = true.

Thus wlUwp rncans: there is a future instant in which 7112  holds, and such that
until that instant 201 continuously holds -- read “~1 until w2” ([KAM], [CPSS]).

l For a universal quantilication:

(V21.w)  j z = true if und only if for every cl E D, 7~1 t’ = true,

where cy’ = (Y o [TL t d] is Ihc assignment, obtained from (x by assigning d to u.

0 For an cxistcntial  quantification:

(3u.w);;  = true if and only if for some d E D, WI “,’ = true,

where N’ = cz 0 [U +- d].

Following are some examples of temporal cxprcssions  and their intuitive interpretations:

_ u3ov If u is presently true, v will eventually bccorne  true,

q  (?L 3 0 v) Whenever u becomes  true it will eventually bc followed by V.

0 q  w At some future instant w will become permanently true.

c O(w A  0  -w) Tllcre will be a future instant such that w is true at that instant
and false at the next.

crow Every future instant is followed by a later one in which w is true,



thus ?u is true infinitely often.

q  (u 3 0 v) If u ever becomes true, then v is true at that instant and ever after.

, ctu v (UUV) IGther  u holds continuously or it holds until an occurrence  of v.
This is the weak form of the until operator that states that u will hold
continuously until the first occurrence of v if v ever happens
or indelini tely otherwise.

o v  3  ((-v)Uu) I f v ever happens, its first occurrence is preceded by (or coincides with) u.

If u, is true under the model (1, a, a), WC say that (I, CY,  a) satisfies w or that (C, a, a) is a
(satisfying) model  for w. We dcnotc  this by

(f, cl!, a )  I= w.

A formula PO is satisfiuble  if there exists a satisfying model for it.

A formula w is valid if-it, is true in every model; in this case WC write

I= w.

Somctirnns we are interested in a restricted class of models C. A formula w which is true for
every rnodcl in C is said lo bc C-vulid, denoted by

c l =  20.

Example:

The formula O(wr  A 7~2) > (0 wl A 0 ‘~2)  is valid, i.e.,
a

I= O(Wl A w2) 3 (0 WI A Owz).

It says that if there  exists an instant in which both w 1 and w2 are true then there exists an instant
in which wr is true and thcrc  exists an instant in which w2 is true.

Rdvcrsing  the implication does not yield a valid formula, i.e.,

t# (0 WI A 0 10~)  3 o(wt A 7~~).

For, consider an interpretation consisting of a sequence  of states:



such that w1 is true on all odd numbered states and false elsewhere, and w2 is true on all the even
nurnhcred  states and false on the odd ones. Then certainly boLh 0 wr and 0 ‘14 are true on 0,

hence 0 w1 A 0 w2 is true. On the other hand, there is no state on which both wr and w2 are
true sirnultancously. Ilcnce  O(wr A ~2) is false. Consequently the implication is false under the
interpretation CT.

2. THE PROOF’ SYSTEM

Elaving defined valid formulas, we nalurally look for a deductive system in which validity can
be proved. In such a system we take some of the valid formulas as axioms and provide a set of
sound inference rules  by which we hope  to be able to prove the other valid formulas as thcorcms.
A forrnula w is a theorem of the system either if it is an axiom of the system or has a proof in
which it is derived from the axioms using the inference rules  of the system. We denote the fact
that, UJ is a theorem is provable wilhin the systcrn by l- w.

Our interest in the temporal logic formalism is mainly motivated by the applicability of this
logic to proving properties of concurrent programs. Therefore, apart from developing the general
basic logical proper-tics of the operators  and their interrelat,ions,  we will mostly be interested in
properlies that are valid over computations of a given concurrent program 1’.  Thus, the notion of
validity our system will try to capture is that of a formula being lrue for all possible comput,ations
of the given program, and not necessarily over an arbitrary model. This corresponds to the concept
of A( I-‘)-validity where A(P) is the class of all models corresponding to computations of P.

We structure our proof system  into three main layers dependent on the universal  validity of
the theorems that can bc derived in each layer. Tn the first layer, called the general part, we deal
with the general temporal propertics of discrctc  linear scqucnccs  (arbit,rary  models). Thcorerns
proved in that part arc valid for all sequences over arbiLrary domains. They univcrsnlly hold for
arbitrary cornputnlions  of all programs over such domains, as well as for scqucnces  which cannot
cvcn bc derived as t,hc computations of a program. In the next, layer the domain part, we restrict
our attention  to a particular domain I) and provide tools for proving validity over models all of
which are int,crpreLcd over D. The third, most restrictive layer is the program part. ITere we

- restrict our attenlion  to a particular program I’ and develop tools for proving validity only over
models whose sequences  are legal computations of P.

In a forthcoming paper, the program dependent part is proved to be complete  relative to the
- general temporal theory over the data domain. Wc also show that its dcpcndcnce  on the particular
: computation rnodcl studied is modular, by presenting a similar system for proving properties of

CSl’ programs.



We start, the general  part by describing first the axiomatic  system for propositional temporal
logic in which we do not, admit predicates or quantification.

3. THE PROPOSITIONAL TEMPORAL SYSTEM (o,o,o AND U)

The proof system for the propositional part, consists of the following axioms:

A X I O M S :

A l .  t--owaJ-w

A 2 .  I -  a(w1 3 w2) 3 (owl 3 07112)

R3. t-ctw3w

h4. I- 0 -711  G ‘V 0 w

h5. t- O(Wl 3 202)  3 (owl 3 0’1112)

A6. I- q  lw > Ow

A 7 .  I-•lw  I) OOw

h8. I- q  (w 3 070) 3 (w 3 q  w)
A!). t- (w,Uw2)  = [w2 V  (wl A  o(w~uw~))]

ALO. I- (zulU~wz) > Ow2.

Axiom Al defines 0 as the dual of Cl; it slates that at all times ‘w is false if and only if it is
not the case that somclirncs  UI holds. Axiom A2 slates that if universally 1~1 implies ~12 then if
at all times wl is true then so is u12. Axiom A3 establishes the present  as part of the future by
stating that if w is true at, all future instants it rnusl bc Lruc at the prcscnt.  Axiom A4 establishes
0 as scII’-dual.  Consc~qucriLly  it, irnplics  LlliLt, the next instant exists arid is unique, and rcslricts  our
models Lo linc;lr sequcn~es  (no branching). Axiom  A5 is the analoguc  of A2 for the 0 opcralor.
Axiom A6 states  t,haf, Lhc next instan is one of the future shatcs.  Axiorn A7 states that if  w
holds in a.11  future inslants it also holds in all instants which lit in the future of the next instant.
Axiom A8 is the “cornprit:ltiorial  induction” axiom; it st,ates that if a property is inherited over
one st,cp.transitions,  it is invariant, over any sufl’k sequence whose first state  satisfies VI. Axiom A9
characterizes  the until operator by distribut,ing  its c#ect  into what is implied for the present and
what is implied for the nexl, instant. Axiom Al0  simply  slaks  that ‘?~t  until ~2” implies Lhat 702
will eventually happen.

7



INFERENCE RULES:

121. Propositional Tautology - PT

If u is an instance of a propositional tautology then l- u

R2. Modus Ponens - h4F

If I- u 3 v and t- u then I- v

R3. Cl Insertion -- lJ[

If I- u then I- q  u

All these rules  are sound. The soundness of Rl and It2 is obvious. Note  that in Rl we also
include temporal inslances of tautologies; WC may substitute an arbitrary temporal formula for a
proposition letter in obtaining an instance. For exarnplc, the forrnula Elw > Cl w is a temporal
instance of the tautology p 3 p. To justify 113,  we recall  that validity of w means that zu is true in
all models, hence Cl w is also valid.

DERIVED RULES AND THEOREMS:

Before giving some theorems that can bc proved in this system,  we develop several useful
derived  rules:

Reasoning -- PR

t- (U[ A u2 A . . . A 71,)  3 v
t- q, k ~2, . . . , and l- u,

I-V

The notation above is used Lo describe  inference rules. IL has the general form

and means that if we have already proved  cpl, . . . , pm (the  assumptions or premises of the rule),
- WC are allowed by this rule to infer $ (the conclusion or consequent of the rule).

Proof:

The rule PR follows from the propositional tautology (Rule Rl)

. 1- [(%I A u2 A . . . A un) 3 v] 3 [UI 3 (~2 3 ( . . . (u,-, 3 v) . . .))]

by applying MI’ (Rule R2) n + 1 times.
ml



Whenever  we apply this derived rule without explicitly indicating the premise

t- (~1 A u2 A . . . A u,,) 3 v,

it means that the premise is an instance of a propositional tautology.

0 Insertion - 01

t-U

t- o u

Proof:

1. t-u

2. t- q  u

3. t- ou

--.
The first theorem that we derive in the system is:

T l .  t-w2oOw

Proof:

1. t-(o-zu)  3 - w

2. t-w 3(4-w)

3. t-w 3 ow

The theorem implies (by h4P)  the derived rule

given

by 01

by A6 and MP
J

0 Insertion  - 01

t-U

t- o u

T 2 .  FOw 1 O w

Proof:

1 .  I- (o-4u)  3  ( O - w )

by A3

by PR

by Al and PH.
ml

by h(i



2 .  t-(-O-w) 3 (4”W)

3. t - o w  3 o w

by PR

by Al, A4, and PR
J

The following three  rules (and a similar rule for the until operator presented later)  show that
all the temporal operators are monotonic in the sense that an argument may be replaced by a
weaker statement yielding a weaker expression.

Proof of (a):

Cl Cl Rules
t-u 3 v( 1a
t- Elu  3 ctv

t-UEV
(b)

t-clu s clv

1. t-u 3 v

2. t- q  (u 3 v)
3. t- q (u 3 v) 3 (a u 3 q v)
4. t-Etu 3 clv

Rule (b) t h en follows by propositional reasoning by using the tautology

[( U 3 v) A (v 3 IL)] 5 (u f v).
J

0 0 Rules
t-u 3 v t-uu_v

( 1a -
I- o u  3 o v

(b)
t-021  Ei o v

Proof of (a):

1. t-u 3 v

t- - v  3 - u

HIl-v 3 c l - u

t--0v 3 -0u

t-ou 3 o v

given

by Cl1

by A2

by 2, 3 and MP

given

by I’R

by q  ICI

by Al and PR

by PR

Rule (b) then  follows by proposilional  reasoning.
J

10



0 0 Rules
I-u3v t - u  = v

( 1a
k o u  3  o v

(b)
t- o u  c o v

Proof of (a):

1. F7.L 3 v

2. t- O(u 3 v)

3. t-ou 3 o v

Rule (b)  follows by propositional reasoning.
ml

Computational Induction Rule - CI

t-u3 o u
--.

l-u 3 q  7L

Proof:

1. t - u 3 021

2. t- q  (u 3 021 )
3. t-0(u30u)3(u30u)

4. t-u3c.lu

1. I-u>(vA@z~)

2. t-uuou

. 3. t-uuclu

4. t-u 3 v

5. t - • u  3 ctv

given

by 01

by A5 and MF-’

given

by  IX

by A8

by 2, 3 and MP J

Derived Computational Induction Rule -- DC1

Proof:

given

by PR

by CI

by 1 and PR

b y  00

11



6. t-u 3 clv by 3, 5 and PR
J

The following two theorems show that the Cl and 0 operators are both idempotent:

I-3. t- q  w = c lc lw

Proof:

1. I-claw 3 020

2. I-clw 3 oow

t 3 . I-clw 3 clclw

4. l--o ur  = q  IEIW

by A3

by A7

by CZ

by 1,3andPR
ml

Y-4.  I - o w  f o o w

Proof:

1. I--0w G 0-w by Al

2. I-cl-J-w  Ef 0 0 - w by T3

3, l k c l-o w Ez n o - w by 1 and El Cl

4. I - E l - o w  E -0ow by Al

5. I-NOW G -0ow by 1, 2, 3, 4 and 1’12

6. I-ow=oow by PR
J

ir3ecause of these last two theorems we can collapse any string of consecutive identical modalities
suchas . . . q  lor 0 . . . 0 into a single modality of the same type.

The follot.ving theorem csklblishcts Lhal 0 is Lhc! dual of 0. Nolc that Al states  t,haL 0 is the
dual of Cl, i.e., 0 w E - Cl fij’u~.

T 5 .  I- ( O - w )  E (NOW)

Proof:

1. t-( )zw- - w by PT

L2



2. t- (0 m-w) E q  w

3. t-(-O-w) zi q  w

4. I- (0-w) = (- q  w)

by q  Cl

by Al and PR

by PR
J

T6. q (Wl 3 w2) 3 (0 Wl 3 Ow2)

P r o o f :

1. t- (WI 3 w2) = (-w2 3 -WI) by PT

2. t- q  (Wl 3 W2) = q -202 3 �WI) by q  ICI

3. t- q  ( “W2 3 �WI) I) (U-w2 3 b w1 ) by A2

4. t- (0 “W2 3 u-u/ 1 ) G (-ow2 3 -o wl) by Al and PR

5. l- (-ow2-3 -o wl) f (o wl 3 Ow2) by PT

6. I- q  (Wl 3 W2) 3 (o wl 3 Ow2) by 2, 3, 4, 5 anti PR
111

The following theorems  show the interaction between  the tcrnporal  and the boolean operators.

T7. I- q  (wl A w2)  = (Owl A 020~)

P r o o f :

1. )- (Wl A w2) 1 Wl

- 2. I- q  (Wl A w2) 3 owl

. 3 . )- (~1 A 7~2) 3 ~2

4. t- q  (wl A w2) 3 q  w2

5. i- q  (wl A ~2) 3 (0 w1 A q  w2)

6. I- WI 3 (~2 3 A 202)wl

7. t- q  wl 3 q  (w2 3 (wl A 20~))

l 8. i- q  (w2 3 (WI  A w2)) 3 (0w2 3 u(wl A 20~))

9. i- 0 w1 3 (020~ 3 q  (wl A w2))

10. t- (0 w1 A b2) 3 q  (wl A 211~)

by PT

by q  ICI

by PT

by q  IEJ

by 2, 4 and PR

by I’T

b y  Cl0

by A2

by 7, 8 and PR

by PR

13



11. t- q  (wl A ‘~2) G (Owl A q  w2) by 5, 10 and PR
ml

T8. I- O(wI v ~12)  zi (Owl v 0’1~2)

Proof:

1. t- b(wl  V w2) f q  (-wl A “20~) by PT and Cl Cl

2. k q  (-wl A “202) Fz (0 -WI A [7-~2) by T7

3, . )- (0 -WI A 0 -w2) = + 0 -20~  V - lb~2) by PR

4. I- Cl “(WI v w2) = + q  �Wl v - 04 2) by 1, 2, 3 and PR

5. l I- - O(Wl v  w2) = -(owl v  Ow2) by Al ;Ind PR

6. t- O(Wl v wg) = (0 201 v  0?4) by PR
J

Note that, because of the universal  character of Cl it can bc distributed  over A (Theorem  T7),
while 0, which is of existential characlcr  can be distributed over V (Theorem T8).  Next, WC show
that inlerchanging  a temporal operator wilh a boolean operator of the opposite character yields
implication in one direction only; the implication is not necessarily  true in the other direction.

T9. t- (o wl v q  w2) 3 q  (Wl v w2)

P r o o f :

1. I- Owl 3 q  (w1  v wq)

2. I- clw2 3 q  (Wl v w2)

3. I- (owl  v IJWZ) 3 q  (Wl v w2)

‘i’lo. t -  o(wl A  w2) 3 (0 w1 A  0w2)

Proof:

1. t- o(wl A w2) 3 owl

. 2. I- o(wl A ‘~2) 3 0~2

3. t- o(wl A  ~2) 3 (owl A  0~2)

by PT and El Cl

by 1, 2 and PR
J

by PT and 0 0

by PT and 0 0

by I, 2 and PR J

14



T l l .  I- (Owl A  0  w2) 3 o(wl A  ~2)

Proof:

1. I- ~1 1 (~2 1 (‘~1 A ~2)) by PT

2. I- c ]wl 3 q  (w2 3 (~1 A 202)) by  00

3. I- q  (w2 3 (wl A w2)) 3 (0w2 3 o(wl A ~2)) by T6

4. I- c)wl 3 (020~ 3 o(wl A ~2)) by 2, 3 and PR

5. I- (owl  A  0702) 3 o(wl  A  ~2) by PR J

Next we consider the cornrnutativity propcrtics  of the next operator 0. Tn view of h4, 0
is self-dual and can be considered Lo be of both existential and universal character. Indeed  it
cornmutes with cvcry other boolean or temporal operator as well as with quantifiers.

‘1’12. k o(wl A w2) f (Owl  A 0 ~2)

Proof:

1. I- w1 3 (~2 3 (~1 A ~2))

2. t- 0 wl > 0(w2 > (7-0~ A 20~))

3. i- 0(7u2 3 (WI A ~2)) 3 (0 w2 3 o(wl A ~2))

4. I- 0 w1 A (0 w2 3 o(wl A w,))

5. i- (0 w1 A  0~2) 3 o(wl A  21)~)

e 6. t- (WI A ~2) 2 ~1

7. i- o(wl A ,w2) 3 owl

8. I- (WI A 202) 1 w2

- 9. l- o(wl A 202) 3 0~2

10. t- o(w1 A wz) 3 (07~1 A 0 wg)

11. t- o(wl  A  ~2) z (owl A  0~2)

by PT

b y  0 0

by A5

by 2, 3 and 1’11

by PR

by PT

b y  0 0

by PT

b y  0 0

by 7, 9 and I’R

by 5, 10 and PR J

‘1‘13.  t -  O(w,  v  W’L) E (owl v  Owg)

15



Proof:

1. I- o(-u)l  A -202) - [( 0 ~1) A (0 -ul2)]

2. i- o(-u)l  A -w2) = [(- 0 ‘~1) A (- 0 ‘~2))

3. t- 0 -(wl V ~2) = [(- owl) A (- 0w2)]

4. l- -O(w1  v  w2) = -(owl v  Ow2)

5. I- O(Wl v  w2) = (owl  v  Ow2)

‘l-14.  t -  O(Wl 3 202)  G ( 0  Wl 3 Ow2)

Proof:

1. k 0(-w 1 v  wz) f ( 0 -1) v (Ow2)

2. I- O(Wl v  74 = (- owl)  v  (Owg)

3. I -  O(Wl 3 202)  = (owl 3 Owz)

by Tt2

by A4 and PR

by 0 0 and PR

by A4 and PR

by PR J

by T13

by A4 and Pit

by  0  0  and  PR J

T15.  I- O(wl  z w2)  E (Owl  EE 0 w2)

Proof:

1. t- [o(w 3 202) A 0(w2 3 WI)] = [ ( o w l 3 0 24 A (0202 3 o w l ) ]
by 7’14 and PEI

2. r- o[(w 1 ‘~2) A (m 3 WI)] = [(owl  3) 0~0~)  A (Ow2  I) Owl)]
by ‘1‘12  and 1%

3. I- O(w, Ei w2) s (owl = Owz) by  0  0  a,nd P R J

The previous  theorems show that the next operator, 0, comrnuks with each  of the boolean
operators.  The following two Lhcorcrns  establish  commutation of 0 with Lhc temporal  operators
Cl and 0.

TJ6.  k oow = q  ow

Proof:

1. I- ow 3 (w 3 Ow) by 1’T

1 6



2. I- no w 3 q  (w 3 Ow)
3. I- q  (w 3 Ow) 3 o q w 3 Ow)
4. I- OU(w 3 Ow) 3 O(w 3 q  w)
5. I- O(w 3 q  w) 3 (Ow 3 Oc lw)
6. I-now 3 (Ow 3 OUW)

7. I-now 3 o w

8. t - • o w 3 o o w

9. t - o c l w  3 o o o w

10. I-o uw 3 q  o uw

11. I-oclw 3 o w

12. I-clouw 3 n o w

13. I- OOW~~  now

14. t-o uw = q  o w

T 1 7 .  t-OOw  z OOw

Proof:

1. I-00-w  E 0 0 - w

2. I - - 0 o w  f -0ow

3. I - o o w  E o o w

Tl8. I- Cl oow G 0cl’uJ

Proof:

1. I - • o u w  oclw3

. 2. t - • w  I) o u w

, 3 . l-oclw 3 ooow

4. I-ooow oouw3

17

by  Cl0

by A7

by A8 and 0 0

by A5

by 2, 3, 4, 5 and PR

by A3

by 6, 7 and PI1

by A7 and 0 0

by CI

by A3 and 0 0

by  Cl0

by 10, 12 and PR

by 8, 13 and PR J

by ‘I’16

by Al, A4, 0 Cl, 0 0 and PR

by PR 9

by A3

by A7

b y  0 0

by 1’17 and PR



5. I-oow  3 ooow

6. t-oclw  3 cloLlw

7. HJoclw  f oclw

by 3, 4 and PR

by CI

by 1, 6 and PR J

Tl9.  t-000~  GE q  Ow

Proof: By duality from T18.

These last two theorems together with T3 and T4 (Cl Cl UI 3 q  l?u and OOw  G Ow, respcc-
tively) give us a normal prefix form for a string of the form

71217732..  . mk(‘d,

where  each WL~ is cithcr El or 0. Wc use first T2 and T3 to collapse any substring of the form Cl”
and 0” to a single 17 or 0. What remains must be a string of alLornating 0 and 0. If it contains
more than one operator then it is equivalent by T18 and T19  to a siring  with just two operators --
the last two. Consequently any string such as the above must be equivalent to one of the following
four possibilities:

q  lw, Ow, q  lOw or 0020.

tn the more general case that  the string also contains some occurrences  of the next-time
operator 0, we may use the commutation of 0 with both Cl and 0 to obtain Lhc four normal
forms:

OkElw, OkOw, OkCIOw  a n d  OkOOw

for some k 2 0.
-

T20. t- q  lw FE (w A 00~)

: Proof:

1. t-clw 3 w

2. t-•JW 3 o o w

3. I- q  u) 3 (w A 00~)

4. t -  oc lw 3 O(w A OOW)

5. t-(‘10 A  00~)  I) o(w A  00~)

by A3

by A7

by 1, 2 and PR

b y  0 0

by PR

18



6. I- (w A 0h.u) 3 q  (w A 00~)

7. t- q  (w A 00~) 3 q  w

8. t-(w A 00~) 3 q w

9. I- c]w f ( w  A  00~)

by CI

by ET and 0 Cl

by 6, 7 and PR

by 3, 8 and PR J

T 2 1 .  l- O w  s ( w  v  00~)

Proof:

1. FO-w = (-w A 00-w) by T20

2. t--0w El -(w v  - 0 0 - w ) by Al and PR

3. I-~OU~W  3  o o w by h4, Al,  0 0 and PR

4. I- ow gw v OOW) by 2, 3 and PR J

Theorerns T20 and T21 give a fixpoint characterization of the Cl and 0 operators respectively.
They each give an equation using only boolean operators, the formula w and the operator 0. The
solutions to these equations are Cl UI and 0 w respectively. This shows that in some scnsc 0 is the
most basic operator since the other operators may be defined by means  of frxpoint  equations using
0. Axiorn A9 similarly characterizes the U operator by a Gxpoint equation.

7‘22. I- (w A 0 -20)  3 o(w A hw).

This is the dual of the “computational induction” axiom A8. tt, states that if w is true now
and is false sometirne in the future, then there exists some instant such that w is true at that
instant and false at the next.

Proof:

1. I- o(u) 3 0 20) 3 (w 3 q  ?U)
2. t- -(w 3 q  w) 3 -o (w 3 Ow)
3. I- (w A -0’~) 3 o-(w 3 ow)

4 .  t -  0~(W  3 ow) EE o(w A  -0~)

5.. I- (w A dw) 3 o(w A -020)

6. I -  ( w  A  0-w) 3 o(u)  A  0-w)

by A8

by PR

by T5 and PR

by PT and 0 0

by 3, 4 and PR

by T5, A4 and PR J

1 9



The following derived  rules correspond to proof rules existing in mosl axiomatic verification
systems:

1

OQ r ule OQ rule

I- Ul 3 u2 l-u1 3 u2 I- Ul 3 u2
I- u2 3 q  lVl I- 24 3 OVl t- u2 3 0 211
t- Vl 3 112 l-q 3 212 I- Vl 3 212

t- Ul 3 cl212 I- ui 3 ov2 I- Ul 3 024

Proof of OQ:

1. l-u1 3 u2 given

2. I- 162 3 0 v1 given

3 t- Vl 3 v2 given

4. I- O.vr 3 ova b y 3 and 0  0

5. t- VI1  3 ov2 by t, 2, 4 and PR J

The q  Q and OC)  rules are proved similarly by the Cl Cl-rule and 0 0-rdc,  respectively.

Concatenation Rules

q  IC r ule

t-u 3 c lv
I-vvc lw

t- �1.4 3 El w

OC rule

l-u3 o v
l-v 3 o *w

l-u3 o w
-

Proof of UC:

1. l-u 3 clv given

2. l-v 3 Llw gi vcn

3. t-Elv 3 claw by 2 and Cl Cl

4. t-c lv 3 q  w by T3 and PR

5. t-u 3 020 b y 1, 4 and PR
J

The OC rule is proved similarly by the 0 O-rule. Note  that tt~ corresponding  OC rule dots
nol hold.

20



UNTIL DERIVED RULES AND THEOREMS: 1

Right Until Introduction -- RUI

l - w  3 ov

I- w 3 [v v (21  A Out)]

I- w 3 (UUV)

Proof:

1. t - w  3  ov given

2. I- w 3 [v v (u A 0 w)] given

3. I- [v v (u A O(uUv))]  3 (UUV) by A9 and PR

4. I- -(uUv)  3 [-?I A  (-u v  0  -(uUv))] by A4 and I’11

5. t- [w A +uv)] 3 [-v A 0 w A 0 +Uv)] by 2, 4 and I’R

6 .  l- [ w  A--+th)] > [-v A  o(w A  -(dtv))] by ‘I’12  and PR

7. t- [w A -(uuv)]  3 0-v by DCI,
taking u to be w A -(uUv)  and v to be -v

8. t- [w A +uv)] 3 N n-v by 1, ‘1‘5 and l’R

9* . I- w 3 (UUV) by 7, 8 and PR
J

The RUI  rule, together with axioms A9 and AIO,  can bc viewed as a characterization  of the
uUv construct as a maximal solution of the two implications:

( ) x 3 [v V (u A 0 x)]
t

x 3 ov

The ordering by which maximality is defined is the ordering induced  by defining false C true.

Axioms AS and Al 0 imply that

(uuv)  > [ v  V  ( u  A  ouuv)]

(dlv) I) 0  v

Thus they show x = uUv to be a solution of the implications (t). The rule RUI states that any
other solution x = w must, satisfy w II (uUV)  which implies that whenever w is true so is uUv.
Interpreted  in our ordering this is rcprcscntablc  as w & (TLUV).  Thus x = uUv  is the maximal
soluticon to (*).

An intuitive c:xplan;l.I,ion  as to why uUv is indeed the maximal solution of (*)  can be given as
follows:

21



Let w be any proposition satisfying (t) cvcrywherc in a sequence 0 = ~0, ~1, . . . . WC note
that (*) may have many solutions. In particular z = false is a trivial solution. IIowevcr  an obvious
property of every solution w is that if ‘1~ is true in some state s;, this state must satisfy u and the
next state  s;+l must also satisfy w unless s; satisfies v. Thus once w is true it can stop being true
only in a v-state. In view of the second implication such a v-state is guaranteed. Conscqucntly
whenever  w is true in a state,  uUv must also be lrue in that state.

Proof:

1. I- [v v(u A Ow)]  3 w

2. I- u u v  3 [ v  v  ( u  A  O(uUv))]

3. I- Y.W  3 [-2) A  (-u v  0  w)]

4. I- [UUV  A -WI 3 [-v A  u  A  o(uuv) A  o - w ]

5. I- [uuv A -w] I) [o(uuv) ‘A  o - w ]

6. I- [uuv A -w] 3 o(uuv A -IO)

7. I -  [uuv A  -201 3 i$d.h A  -w)

8. I- [uuv A -w] 3 -21

9. I- q  (uuv A -w) > 0-v

Until Introduction .- LU1

I- [v V (u A ow)] 3 w

I -  (UUV) 3 w

given

by A9 and F’R

by 1, A4 and PR

by 2, 3 and I’R

by PR

by T12 and PR

by CI

by 3 and I’R

by 00

IO. t- [,&J A w] 3 - 0 v

11. t-[uuv A-w] 3 ov

12. I- uuv 3 w

by 7, 9, Al and PR

by A10 and I’R

by 10, 11 and PK.
ml

The LUI rule, tog&her with axiorn 129, can be vicwcd as a characterization of the uUv con-
struct as the mzkimal  solution of lhc implication:

(M) [v V (u A ox)] 3 x

Axiom A9 implies that x = ZLUV is a solution of (:k*). The LUT rule states that any other solution
of ($*), x = w, is implied by VLUZ). This means  that whcnevcr uUv is true so is UJ, which is
interpretable in our ordering as ?LUV E w. Thus ‘ILUV  is the minimal of all possible solutions.

Note that (**) p osscsscs many solutions. [n particular x = true is a trivial solution. Ilowevcr,
the minimal solution is unique and is given by uUv.

22



UU Rules
t- Ul 3 u2 t- Ul G u2

(a) t- Vl 1 212 (b) t- ~1 f ~2

t- UlUVl 3 uJh2 t- UlUVl = u2uv2

Proof of (a):

1. l-u1 3 IL:! given

2. t- Vl 3 212 given

3. I- [v2 v  (u2 A  o(u&u,))]  3  u&u2 by A9

4. t- [Vl v (Ul A O(uaUv2))] 3 u2uv2 b y 1, 2, 3 and 1’11

5. t- UJtVl  3 u2uv2 by LUI

The proof of part (b) follows from (a) by propositional reasoning and the symmetric application
of (a).

II -=.

This rule together with the q  0, 0 0 and 0 0 rules show that all the temporal operators
are monotonic  in all their arguments.

T 2 3 .  I- (w)UW  2 O w

Proof:

1. t- (NW)Uw 3 o w

2. t-ow 3 [ w  v  OOW]

a 3. t- o w  3 [ w  v  (-1u  A  OOW)]

4. l-our 3 o w

5. t- o w 3 (-W)UW

6. t- (-JW)U?U = ow

T24.  t- (Owl A Ow2) > (w&w2)

Proof:

1. t- [owl A Ow2]  3 ow2

by A10

by T21  and l’l<

by PR

by PT

by 3, 4 and RUI

by 1, 5 and Pit
II

by 1’11

23



2. t- [owl  A  0~4 3 [(wl A  OOq)  /\ (w2 V  00w2)]
by PR, T20 and T21

3. t-(0~1 A  074 3 [w2 V  (~1 A  onwl A  00w2)] by PR

4. b-(owl  A 0w2) > [202 V (WI A o(n WI A 0 w2))]] by T12 and PR

5. I- [owl A Ow2]  3 w&w2 by 1, 4 and RUI,

taking w to be Cl WI A 0 wz, u to be ~1, and v to be 202
J

T25. t- (wlUw2)Uut2  s w1Uw2

Proof:

1. I -  (?.Q Uw2)Uw2 3 [w2 v  WIUW2]

2. I -  WfL 3 w&w2

3. I- (WIUW2)UW2  3 w&w2

4. I- ?U&l~p 3 owg

5. t- 4h2 3 [732  V  (WI A  0(quw2))]

6. t--&w2 3 [w2 V  (wluzo2  A  0(wlUw2))]

7. t- WlUW2 3 (WJ.h~)UW~

8. t- (w,Uw2)Uw:!  = WJLW:!

by A9 and PR

by A9 and PR

by 1, 2 and F’R

by Al0

by A9 and PR

by PI1

by 4, 6 and RUI

by 3, 7 and PR
J

T 2 6 .  I -  qh2  E wlU(wlUwz)

Proof:

1. I- ?U2 3 W&W2 by A9 and PR

.

2. I- qUw2 3 w1u(w,uw~) by UU

3, . I- wlu(wluw2) 3 [w&.4 V [WI A 0(w~u(w&4)]] by A9 and PR

4. I- wJl(w1Uw2)  3 { ~2 V [WI A 0(731uw2)]  V [WI A ~(w~U(UIIU?~~))]}
by A9 and PR

5 .  t- w~u(w&w2) 3  (202  V  [WI  A  o(w&202 V WI U(wl  Uw,))]} by ‘I’13  and I’R

6. t- [74Uw2  v ‘uJ~u(w&w2)]  3 24u(w&?u2) by 2 and 1%

24



7. t- 3JlU(WlUW2)  2 {w2 V  [WI  A  0(4+1 b,))]}
b y 6 wi th 0 0 , 5, a n d PR

8. t- WJl(WlUW2)  3 O(WlUW2) by  Al0

9. t- w&w2 3 ow2 by Al0

10. I -  O(WJ.lW~)  3 0  ow2 b y  0 0

11. k w&(w1Uw2) 3 ow2 by 8, 10, T4 and PR

12. t- WlU(WlUW2)  3 WlUW2 by 11, 7 and RUI,
taking w to be wlU(wlUw2), u to be ~1, and v to be w2

15. t- udlw:! = W~U(7Ud.LW2) . by 2, 12 and PR
J

U Insertion -- UI

t - V l - u ,  t-ov
-. ( 1a -

t- udiv
(b)

t -  uuv
for an arbitrary u

P r o o f :

( 1a 1. t-v

2. t- v 3 uuv

3. t- u u v

(bl

a

1. l-u

2 FOV

3. k  q  u

4. t- (b A 0-v) 3 uuv

5. t- u u v by 2, 3, 4 and I’R
d

given

by A9 and PR

by 1, 2 and 1%

given

given

by t and  01

by T24

.

U Concatenation -- UC

k Vl 3 1LUV2

I- 02 3 uuvs
I- Vl 3 UUV~

25



Proof:

1. I- Vl 3 UUVQ

2. I- v2 3 uuv3

3. t- uuv2 3 UU(UUV~)

.4. l- Vl 3 uU(uUv3)

5. k 211 3 uuvug

given

given

by UU
by 1, 3 and PR

by T26 and PR
4

T27.  I -  [Owl A  w2uwg]  3 (w, A  wz)u(wl Awg)

Proof:

1. t- ?U2UW3  3 owg by Al0

2. i- [ihl A  w&4 3 (k.ul A  ow3) by PR

3. I- [k.ul A  w&w3]  II o(u)1 A  wz) by Tll and PR

4 .  t- w&u3  3 [w3 V  (~2 A  o(wzuw3))] by A9 and PR

5. I- [bl A  W&Q]  3 [(uq A  wg) V  (bl A  w2 A  0(w2Uw3))] by PR

6. i- (0 WI A wg) 3 (wl A ws) by A3 and 1%

7. I- [Owl A w2 A o(w2h.u~)]  3 [WI  A wf~ A 0 q  wl A O(wdba)]
by T20 and PR

8. t -  [nw, A  74 A  o(w&q)]  3 [(WI A  w2) A  o(Owl  A  w2Uw3)]
by TL2 and PR

9. I- [Owl A  w2uw3]  3 {(We  A  wj)  V  [(WI A  w2) A  o(bul  A  w&w~)]}
by 5, 6, 8 and PR

10. t -  [Owl  A  w&wg]  3 (wl A  ?u2)u(w1  A  ~3) by 3, 9 and RUI J

‘l’hc  next thcorcm  displays the commutation relation  between  the 0 and the 11  operators.

T28.  I- (0wl)U(0w2) F 0(wlU9u2)

Proof:

1. I- wJ.lw2 = [w2 V  (w, A  o(w~uw~))] by A9

2 6



2 .  I- O(?UJl?U2)  E [O~2 V (owl A 0 O.(W&W~))]
by T12,  T13, 0 0 and Ptl

3. I- [0w2 V (owl A 0 o(w,uw,))]  II 0(wlUw2) by PR

4 .  t -  (OWl)U(O?&)  3 O(w&wa) by LUI, taking w to be zu1U?u2

5. I- w&w2 3 ow:! by At0

6. I -  O(lUJLW2)  3 0 ow2 b y  0 0

7. t -  O(wJlw4 3 0 ow:! by T17 and PR

8. t- 0(~w1Uw2) 3 (0~2 V [owl A 0 0(w&w2)]} b y 2 and PR

9. I- O(wJlw2) 3 (OWl)U(O  w2) b y 7, 8 and RUT,
taking w to be O(wlUw2),  ?L to be 0 ~1, and ‘u to be 0 w2

1 0 .  t -  (OW~)U(O?4  = O(WlUW2) by 4, 9 and PR
mm

-.
IIaving  classified Cl as a universal operator, 0 as an existential operator and 0 as being  both

universal and existential, we observe  that U is universal with respect to its first argument and
existential  with respect to its second argument. This yields the commutation properties listed in
T29 and T30.

T2(3. t- (wl A w2)u ‘wg = [wl uw3  A w2uw3]

Proof:

1. t- (WI A ~2) 3 wr by PT

2. I- (WI A w2)uw3  3 w&w3 by UU
3. I- (~1 A w2)uw3 3 w&w3 similarly

4. I- (WI A w,)uw 3 3 [,w&w~ A w&ws] by 2, 3 and PR

- 5. I- w&w3 3 o.w3 by  Al0

6. I -  [wluw3 A  UJ&W:~]  3 0 w3 b y  PI1

7. I- WI u’1~3  1 (~3 V [wl A O(‘LUI~W~)]} by A9 and 1’11

8. I- w&w3 3 (7~3 V  [w2 A  0(w&w3)]} by A9 and PR

9. w3. I -  [w&w3  A  w&w3]  3 { V  [(WI A  ~2) A  0(wlUw3  A  w2h.u3)]}
by 7, 8, T12  and PR

10. t- [w,u’~u~  A  w2utw~~]  3 (wl A  wz)uw3 by 6, 9 and WI,
taking w to be (7~1  U?N~)  A (?QU?DQ),  u to bc ?ul A 94, and v to bc 103

2 7



11. I- (~1 A  w~)UW~  f [wlUw3  A  w~UW~] by 4, LO and PR
J

T 3 0 .  t -  wlU(w2 vwg) = [w&w2 v wJlw3]

Proof:

1. c- w2 3 (w2 v w3) by PT

2. t- WlUW2 3 wJL(w2  vw3) by UU
3. k w&w3  3 WlU(W2  v w3) similarly

4. k [WlUW2 v WlUW3] 3 w,U(w2 v w 3 ) b y 2, 3 and FR

5. I- w,U(w, v w3) 3 {( ‘1~2 V ~3) V [WI  A o(wu(w2 V UJ~))]} by A9 and PR

6. I- [w2 V (wl A 0(74Uu~,))] 3 7ulUw2 by A9 and PR

7. I -  -(w&w~)  3 {-w2 A  [-WI  V  04w&w2)]} by A4 and PI1

8 .  I- -(w1uw3)  3 {-w3 A  [-wl v 04wlUw3)]} similarly

9. t- [w&(702 V  703) A  -(w&w4  A  -(w,  uw3)]  3

1-w2 A -2~3 A  WI A o(w&( w2 V  1113)) A  o-(wluw2)  A  o-(wluwj)]
by 5, 7, 8 and PR

lo. i- [w~u(w2V  203)  A  -(wlurw2)  A  4w1uw3)]  3

{+Q V “3) A 0[w&(w2 V w3) A -(w&w4  A +1uu~3)]}

by Tl2  and PR

f t . t -  [w&(u)2  V  w3) A  -(z4w2) A  -(wIUzu3)] 3 b+n2  V  w3) by DC1

12. k WlU(W2  v  w 3 )  3 O(w2 v  w3) by A10

13. i- w~~(w’L  V  ~3) 3 +(w~uw~)  A  +lUw3)] by 11, 12, Al and PR

14. I -  ?.4U(w2  v  w3) 3 [w&w2 v  WlUW3] by PR

15. I- Wl U(7112 v  ‘W3) = [?4 uw2 v  WlUW3] by 4, 14 and PR
J

TX k [owl v Ow2] 3 [(-Wl)UW, v (-w2)Uwl]

Proof:

1. t- [owl v 0 w2] r) O(w1 v u12)

28

by T8 and 1%



2. k O(w1 v w2) 3 (“(WI v W2))U(Wl  v 202) by ‘1’23  aIld PR

3. t -  o(q V  ~2) 3 (-2~1  A  ~w$+J~  V  2~2) by UU and PR

4. t- o(wl  V ~2) 3  [(“WI A  -w2)uwl  V  (-wl A  --ur2)uw2] by T30 and PR

5. I- (“~1 A -w2 )Uw 3 (Nw2)U’Wl by UU and PR

6. I- (-wl A -w2 pw2 ‘> (-Wl)UWZ by UU and PR

7. I- O(Wl v 7u2) 1 [(-Wl)UW2 v (-wa)Uw1] by 4, 5, 6 and PR

8. t- (Owl v 0  ~2)  > [(-w1)Uw2  v  (-w2)Uwl] by 1, 7 and E’R
J

The following two theorems display the one way implication resulting frorn the intcrchangc  of
the U with a boolean operator of the opposite character.

‘1’32. t- wlu(w2  Aw3) 3 [w,uw2 A w&w31-.

Proof:

1. t- (1~2  A w3) 3 w2

2. I- qu(w2  Aw3) 3 w&w:!

3. i- W&(UJ~ A w3) 3 w&w3

4. t- ud(w:!  A  w3) 3 [wluw2  A  u4h3]

'1'33. I- [WIUW3 V  W2UW3] > (j.01 V  W2)UW3
a

Proof:

1. I- Wl  IJ (Wl v w2)

2. t- WlUWQ 3 (WI VW&3

3t . I- ?lJ:!  3 (WI v W2)

4. k wzuw3 3 (WI v W2)u3

5. I- [W1UW3 V W2UW3]  1 (WI V UQ)UW3

by PT

by 11 U arid PR

similarly

by 2, 3 and F’lt
4

b y  I T

by UU
by PT

by UU
by 2, 4 and PR

ml

T34. t- (WI II W2)UW3  II [*W1UW:1  1 W2UW3]

29



Proof:

1. I- (WI 3 W2)UW3 r) OW3 by Al0

2. I- [(WI 1 w~)UW~  A w~UW~]  1

{w V [(WI 3 wa) A o((WI 3 w2)uw3) A WI A o(w1uw3)]}
by A9 and PR

3. I- [(WI II w~)UW~  A w~UW~]  >

(w3 V [wz A o((WI 3 w2)uw3) A o(w1uw3)]} by PR

4. I- [(WI 3 w~)UW~  A w~UW~]  1

(w3 V [w2 A o((Wl 3 w2)uw3 A ‘wluW3)]} by TL2 and PR

5. I- [(WI 1 w~)UW~  A w~UW~]  1 WQUWQ by 1, 4 and RUI,
taking w to ho (( Wl 2 w2)uwS) A (wdw3), u to bc wf~, and v to be wg

6. I- (WI r) W2)UW3  1 [WlUW3  II W2UW3] by PR
J

T35.  l- [wl ~~~~~  A (w&h~] 3 WI uw3

Proof:

1 .  I- (-W2)UW3  3  0  W3 by At0

2. I- [w~UW~  A (-w~)UW~]  1 0~3 by PR

3, . i- w&u2 3  (~02 V  [WI A  0(w,hu,)]} by A9 and PR

4. I- (-202)Uw3 > (~3 v  I-2~2 A  O((N?U~)UW~)]} by A9 and I’R

5. I- [w~UW~  A (NW~)UW~]  1

(w3 V [WI A "~2 A O(WIUW~) A O((NW~)UZU~)]} by 3, 4 and PR

6. I- [w~UW~  A (NW~)UW~]  1

(w3 v [WI A o(w1uw2 A (-w2)uw3)]} by T12 and PR

7. I- [w&w2 A (“1u&h3] 3 w&w3 by 2, 6 and RUI
ml

T36.  I- wlU(~2  A ~3) > (zu~UW~)UW~

Proof:

t. i- wlU(w2 A w3) 3 0(w2 A w3)

30

by Al0



2. t- (w2 A w3) 1 w3 by PT

3. I- 0(w2 A w3) > 0~3 b y  0 0

4. I- w&(w2 A w3) 2 0 w3 by 1, 3 and PR

5. t -  wlu(w2  Aw3)  3 {(w2 A w3) V [w A 0(w1u(w2 Aw3))j) by A9 and PR

6. I- (~2 A w3) 3 w2 by PT

7. I- wlu(w2  Aw3)  1 w&w2 by UU

8. I- wlu(w2 A w3) 3 {w3 V [w&w2 A 0(wU(tu2 Aulg))]} by 5, 7 and PR

9. I- wlu(7u2 A 7~3) 3 (quw2)uw3 b y 4, 8 and RUI
J

The following two theorems are referred to as “collapsing” theorems, since they may be used
to derive a cor~~q~~c~~ce  of smaller nesting depth from a nested until expression.

T 3 7 .  I- (w~UW~)UW~  > (~1 V  w~)UW~

Proof:

1. I- w&w2 3 [‘LUG  V  (WI A  0(w,Uw,))]
2. I- WlUW2  3 (WI v w2)

3. I- (W1UW2)UW3  1 (WI V Wz)UW3

by A9 and PR

by PI1

by UU 111

‘1‘38.  l- W~u(W2u’W:~) 3 (WI v w2)uw3
-

Proof:

1. I- WlU(W2UW3)  3 O(WzU?U3) by Al0

2. I- W2UW3  > 0 W3 by A10

3. I- VJIU(W~U?U~)  2 0 ‘W3 by 1, 2 and OC

4. t- ?~&(w&w3) > {w&w3 v [WI A o(~~u(~2u~3))]} by A9 and PR

5. i- wlu(wB~w3) 1 {~3 V  [w2 A  o(w2uzU3)]  V  [‘WI A  o(w1u(w2u~~3))]}
. by A9 and PR

6. I- W2UW3  I3 ?DiU(W2UW3)

7 .  I -  [w2 A  o(w2uw3)]  3  [(q V  7~2) A  0(w,U(~~Uw3))]

by A9 and PR

by 0  0  and  PR

31



8. t -  [w, A  0(w1u(w&4)] 3 [(‘IQ v w2) A ~(~d-+~2~71t3))~ by I’R

9 .  I -  wJl(w2Uw3) 3 {~3 V [(WI v 7U2) A o(WlU(W&W3))]}
b y 5, 7, 8 and PR

10. t -  W&(WfLUW3)  1 (Wl  VWg)UW3 by 3, 9, and RUI
J

A very useful derived operator is the unless operator u U v being defined by

7Ll.h E [ou v (UUV)].

The unless operator does not insist on the fact that v actually happens but il requires  that u
holds until such an occurrence. If v never happens u must hold forever. This operator is rclatcd
to the binary “as long as” operator p Cl q, reading “q as long as p,” iutroduccd  by l,;~.rnport  in [1,2].
The meaning of this construct is that q holds continuously as long as p is continuously maintained.
We may express p0 q by:

Following is a rule for establishing the unless  operator.

Proof:

1. I- u 3 O(u v v),

2. t-u3 [OUVOV]

3 .  I- +uv) > {-v A  [-u V  o+uv)]}

4. I -  0  q?Luv) 3 o - v

5. I- [ u  A  +uv)] 3 [ u  A  0 -(d.h)]

6. I- [u A -(uuv)] > [ u  A  0 +u~u)  A  - 0 v]

7. I- [ u  A  -(Z&J)] 3 [u A  ou A  0 -(d.h)]

8. I- [u A -(uuv)] > [?L A  o(u A  -(ub))]

given

by T13

by A9, 1‘4  and PR

by 0  0  and  PR

by 3 and PR

by 4, 5, A4 and I’12

by 2, 6 and PR

by T7 and PR

9. i- [u A -(d.tv)] 3 q  u by DC1

LO. I- u 3 (cl  u v (UUV)) by  PR

3 2



11. t -  u  3 (UUV) by definition of LI
9

This concludes the description of the propositional section of general temporal logic. The
axiomatic system presented for this section of the logic is known to be complete,  and the: validity
problem decidable ([I’S]). (>onscqucntly, there exists a procedure that tests  cxh formula in I’TL
(I’ropositional  Temporal Logic) for validity, and constructs a proof in the prcsonted  systcrn  if the
statcrnent is valid. The procedure  given in [1’S]  takes exponential time in the size of the tcstcd
formula.

4. QUANTIFIERS

Since WC intend  to use terms  and predicates in our reasoning we have to extend our system to
admit individual variables, terms  and quantification. Let, us consider additional axioms involving
quanlificrs  anal their interaction with the tctrrrporal operators.

A l l .  I- - 3 2 . w  = VX.-?U

A12. I- (Vx.w(x))  3 w ( t )
where t is any term globally free for x in w

A13.  I- ( V x .  0,~) > (0Vx.w)

tn these  axioms, x is any global  individllal  variable. Axioms Al 1 and A 12 are the usual
predicate calculus  axioms: A I t defines  3 as the du;~,l of V and A12 is lho instantiation axiom.
Axiom Al3 is the Barcan  formula for the 0 operator; it states that since both operators V and 0
Cave  universal characteristics lhoy commute. We use the substit,ution  notation *W(X)  replaced by
I to denote the substitution of the term t for all free occurrences of x in 20.

A- term t is said to be globally free for x in w if substitution of t for illI free occurrences  of
x in ?j: (a) does not create  new bound occurrences of (global) variables,  and (b) does not, create
new oi:currcnccs  of local variables in the scope of a temporal  operator. A trivial l:iise:  if t is x
itsolf, then t is free for x. Condition (a) is the one stipulated in classical prcdicatt:  logic. Condition
(1)) is special  to modal and tcrnporal  logics with clrlantific~at,iori.  Condition (b) is essential for ,412,
because without it we could derive the formula

(vx. 0(x < 9)) 3 O(y < y),.

ivhich  is not valid for a 1OCiJl variable y.

An ;~ddition;tl rule of infcrcnco  is:

33



INFERENCE RULE:

I- u > Qx.u
where x is not free in u.

DERIVED RULES AND THEOREMS:

l’rom  R4 we can obtain the dcrivcd  rule

Proof:

1.

2.

3.

4.

Instantiation Rule -- INST

I- 44
- -
I- ?D(t)

whcrcl t is any Lcrm globally frt!c for 2 in w.
-- - - - -

t- w(x) gi vcn

t- VX.?U(X) by VI (taking u to bc true)

I -  (Yz.w(x))  3 SW(t) by A12

I- ?lJ(t) by 2, 3 and MI’
Ed

The following arc Lhc  duals of A 12 and 1~4 for Lhc cxistcntial  quantifier 3:

T3Y. I- w(t)  3 3L?ll(X)
whcrc  t is any term glob:tlly free for x in w.

Pi-oaf:

1. t -  (vx .  I” fW(X)) 3 -?l$) by A12

2. I- (-3x.w(x))  3 w(c) by A11 and I’lt

3. t -  w( t )  3 !lx.w(x) by I’R
J

Note again that, WC need here  the ;~dcliLional  condil,ion  (b) cnsrrring  that Lhc substiLution  of t
for x in w does not, crcatc  new occurrcnccs  of local vnriablcs  in Lhc scope of ;I mod;~l  opcraLor.

3 4



Proof:

1.

2.

3t .

4.

5.

Proof of (a):

1. I- Yx.u 3 u by Al2

2. l-u 3 v given

3. I- vx.u 3 v by PR

4. I -  Qx.u 3 vx.v by VI, since Vx.u contains no free occurrcnccs  of x.

3 Insertion - - 31
l - u 3 v

t- 3x.u 3 v
where x is not fret in v

I-u3v
I- -v 3 -u
l--v > v/Z.-u
t- -2, > -3x.u
t- 3x.u 3 v

p:tx; v, ~x.v(b) ;;--J

given

by I’R

by VI

by A11 andPR

by I’R J

llulc (b) then  follows by propositional reasoning.
- J -

t-u 3 v l-u E vb) -
I- 3x.21  3 3 x . v I- 3 x . u  G 3x.;

Proof of (a):

1. l-u 3 v

. 2. t- (-21)  3 (“U)

3. t- (Vx.  -?I) 3 (Vx. - u)

4. I- (4x.2)) 3 (Glx.21)

given

by I’R

bY kfv

by A 1 t and E’R

35



5. I- 3x.21 3 3x.v by I’R

Rule (b) then of 11ows by propositional reasoning.
ml

From the axiom Al,

t---ow  f o - w ,

we can clearly deduce the formula

l- -(w  v  0-w) z +w v  NOW)

by propositional reasoning (PR). IIowever,  we cannot deduce by PR the formula

170-W E c l - o w

or

vx. cl+!w f vx. - o w .

IIcre, the replaccmcnt  of 0 -w by - 0 w is under the scope of Lhc operator 0 and the yuantiIier
Vz,  respectively, and thus cannol be justified by proposilional  reasoning alone. lqor this reason we
need the following equivalence rule.

Equivalence Rule ---- l3:lt

Let w’ be the result of replacing an occurrcncc  of a subfor-
mula v1 in ‘w by v~g. Then

l-q E-z v2

t - w  G w’

Proof:

13~ induction on the structure of w.

Case: w is 211. Then  w’ is 212 and t- VI G 212  implies I- w E w’.

Cuse: w is of Lhc t’orrn  -u. WC assume that t- vi EG v2 implies t- u G u’. Then by propositional
reasoning I- -u E NU’,  i.c., I- w I= w’.

Case: w is of the form u1 V ~2. WC assume that if I- VI G 212,  then t- u1 2 7~:  and t- 212  5 2~;
Then  by propositional reasoning I- (~1 V us) 5 (u\ V uk), i.e., I- w E w’.

. The cases where ‘1~  is of forms u1 A 212,  u1 1 74,  etc. are similar.

Case: w is of the form q  lu. We assume that if I- VI E 212,  lhen I- u E u’. T\y the q  Cl-rule,
k q  u z 0 u’, i.c., t- w := 90’.

36



The casts  in which w is of forms 0 u, 0 u, and TLIUU~  are treated similarly, using the 0 O-
rule, the 0 0-rule, and the UU-rule, respcctivcly.

Case: w is of the form Vx.u. We assume that if t- v1 zz 212, then t- u G u’. Then  by the VV-rule,
t- Vx.u E Qx.u’,  i.e., I- w G w’.

The case where w is of form 3x.u is proved similarly by the 3%rule.
J

I Deduction Rule -- DED

where the VI rule (Rule It4) is never applied to a free variable
of WI in the derivation of 201 k 202.

That is, if under the assumption WI WC CM derive I- ‘~12,  where rule It4 is never applied to a free
variable of ufl , then there  exists a proof establishing I- (Cl ~1)  3 ~2. WC clearly must also be
carerul  in using any theorem  or derived rule such as the VV or ER rule Lhat was established using
the VI rule.

The additional Cl opcralor  in the conclusion is obviously necessary since in genera.1  w1 I- 1.~2
does not imply t- WI 1 ~2. For example,  obviously w I- Cl w is true (an immediate application of
rule R3: t- w by assumption aud therefore I- Cl w by EN);  but w > q  w is not, a theorem.

Proof:

The proof of the temporal Deduction Rule follows the same arguments used in the proof of
the classical deduction Lhcorcm of Predicate Calculus. By the given 201  l- ~2,  there exists a proof
of the form:

I- Ul

I- u2

such that u1 = wl is the hypothesis  on which the proof relics, and u, = w2 is the conscyucnce of
Lhc pr’oof.  WC replace each line I- ?L; in Lhc proof of 101 I- w2 by the line I- q  lzol > u;, and show
that Lhis Lrnrlsl’orrrlatiorl  prcscrvcs  soundness. That is

given show

37



t- u; t- (cl WI) 3 ui
. .
. .

C Um
.
)- (owl) 1 Urn

i.e., I- 202 i.e.l- (0 wr)  1 w2

where each u; is tither the assumption WI, an axiom, or derived from previous q’s  by some rule

of inference.

The proof is by a complete induction on i. We assume that for all k < i, i- (0 ~1) 3 uk,
and prove that I- (Owl) I u;.

Case: u; is an axiom.

1. l-u; axiom

2. I- (UWl) 3 Ui by PI1

NoLe that t- w’ implies I- w > w’ for any w, by propositional reasoning.

Case: Ui is WI.

-.

1. )- (owl)  ‘> ‘wl

Case: ui is obtained  by rule Rl, i.e., ui is an instance of a tautology.

1. EUU;

2. k (Owl) 3 Ui

Case: Ui is obLaincd by rule R2 (using previous k uk and k ‘ilk  3 Ui).

1. i- (owl) 1 ‘Llk

2. k (awl) 1 (uk 1 '%)

3. k (Owl) 3 Ui

CUSe:  Ui is obtained  by rlllc Ii3 (using previous k uk), i.e., Z&i is auk.

.

1. i- (owl) 1 uk

2. t -  (nnwl) 3 [zluk

3. t- (o wl) 3 q  lOWl

4. I- (o wl) 3 q  uk

by A3

by YT

by PI1

induction hypothesis

induction hypothesis

by 1, 2 and PR

induction hypothesis

by q  ICI

by T3 and 1%

by 2, 3 and PR

38



Case: u; is obtained by rule R4 (using previous F u 1 v,.i.e.  uk, Lo get l- u > Vx.v, i.e. IL;, where
x is not Tree  in u).

By our deduction rule assumption, we know that x is also not free in ~1.

I. l- (owl)  3 (11 3 v)

2. I- ((owl) A u) 3 v

3. I- ((0 WI) A u) 3 vx.v

induction hypothesis

by 1’R

by  R4
(since x is not fret in u or WI)

4. t- (owl) 3 (21 > vx.v) by PR
J

A different approach to coping with the application of the Cl insertion rule (rule R3) is Lo
forbid it allogether. We then get the following restricted deduction rule:

TIcrc,  wc arc not
used.

Restricted Deduction Rule -- RDlCD

--.. Wl k w2

I- Wl 3 wf;z

where  01 (rule R3) is ncvcr  applied and VI (rule R,4)  is never
applied to a free variable of w1 in the derivation of WI l- ~2.

allowed to use rule 01 or any theorem or derived rule in whose proof Cl1 was

The proof’ of RI>ET> follows exactly that of J>ED cxccpt  that Lhc case in which rule 123  is
applied does not arise.

QUANTIFIER THEOREMS:

‘l-40. I- (4x.w) E (3x. -w)

Proof:

1. 1- (m-w) Ez w

2. t- (t/x. - -w) G vx.w

3. I-. (4x. w )- = vx.w

4. t- 4x.w = 3x. I\‘W

by PI

bY Qd
by Al 1 and PR

by 1’1~
161

39



‘I-41. I- VX.(Wl  A  w2) E (VX.Wl  A  vx.w2)

Proof:

1. t- vx.w, 3 Wl

2. I- vx.w2 3 w2

3. I -  (VX.Wl  A  vx.w2) 3 (WI A  w2)

4. k (tlx.wl A  vx.w2) 3 b’x.(wl A  w2)

5. t- (~1 A ~2) 1 WI

6. t- vx.(w, A w2) 3 Vx.wr

7. I- (2~1  A wa) 3 w2

8. t- vx.(wl A wz) 3 Vx.w2

9. t- v&h A  ~2) 3 (tlx.wl A  Vx.w2)

10. I- vx.(wl A  7~2)  = (Vx.wl  A  Vx.w2)

T 4 2 .  I- 3x.(wl v  w2) z (3x.wl v  3s.~~)

Proof:

1. I- tlx.(-WI A  “‘~2)  in (fix. - w1 A  Vx. - w2)

2. I- vx. - (WI V  ~2) ii (t/x. - 201 A  vx. - w2)

3. k dx.(wl V  wz) 3 (dx.20~  A  -3x.w2)

4. I -  3X.(Wl  v  w2) = (3X.Wl  v  3x.w2)

T 4 3 .  I- Vz.(wl V  wz)  zz [WI  V  Vx.w2] where  z i s  n o t  free i n  wl.

Proof:

1. t- VX.(Wl v 24 3 [WI v 2021

2. k [vx.(wl V w2) A -wI] 3 w2

40

by A12

by Al2

by I, 2 and PR

by VZ

by PT

bY VQ

by PT

bY vv

by 6, 8 and PR

by 4, 9 and PR
ml

by I’41

by ER

by Al 1 and PR

by PR
111

by Al2

by PI2



3 .  k [vx.(wl V  ~2) A  -wL] > \Jx.w2

4. I- VX.(Wl  v  w2) 3 [WI v  vx.w2]

5. l- 201 3 [Wl v wa]

6. l- vx.w2 3 w2

7. I- vx.w2 3 [Wl v w2]

8. t- [WI v vx.wg] 3 [WI v 2021

9. t -  [WI  v  vx.wq] 3 VX.(Wl  v  w2)

10. t -  VX.(?U1  v  w2) E [?& v  Vx.w2]

bY VT,
since x is not free in Vx.(w~  V WQ)  A -WI

by PR

by I”~

by A12

by 1’1~

by 5, 7 and PR

bY VI,
since x is not free in w1 V Vx.w2

by 4, 9 and PI2
J

T 4 4 .  l- 3x.(wl  A  ~2) r-‘[w, A  32.~21  where  x  i s  no t  f ree  in  WI

Proof: I3y duality on the previous theorem.

The following two theorems show that the 0 operator also comrnutcs  with the quantifiers.

T45. t- (vx. 0 w) F (0 Vx.w)

Proof:

1. t- (Vx. O?U) 3 (0 vx.w)

- 2. l- v x . w  > w

3. I- (OVX.?fl) 3 o w

4. l- ( 0  Vx.w) 3 (Vx. 0 ?II)

5. I- (Vx. 0  711)  GE ( 0  Vx.w)

1 ’4 6 .  t ( 3 x .  O w )  E ( 0  3x.w)

Proof:

1. I- (Vx. 0 w) f (0 vx. - w)

41

by  A13

by A12

b y  0 0

by VI

by 1, 4 and t’lt
9

by T45



2. l- (Vx. - 0 w) 5 ( 0 - 3 x . w )

3. t- (-3x. 07~)  ZE (- 0 3x.w)

4. I- (3x. Ow)  s (03x.w)

The following two theorems show that each temporal operator commutes with the quantifier
that has similar character (universal, or exislential).

T47.  l- (Vx.  Cl 20)  G (0Vx.w)

Proof:

1. l-our 3 [ w  A  00~) by T20 and PR

2. t-(trx.0~) 3 vx.(w A 00~) by VV

3. l- (‘ix. 0 20) 3 [(Vx.w)  A (t/x. 0 0 w)] by T4l  and PR-.

4. I- (�i⌧. q  w) 3 [(vx.w) A (OtJx.  q  w)] by T45 and PR

5. t- (Vx.  0 w) 3 (0Vx.w) by DCI, taking u to be Vx. Cl w and v lo be Vx.w

6. t- (Vx.w) 3 w by A l 2

7. k (17Vx.w) 3 clw by 00

8. l- (0Vx.w)  3 (Vx. Cl w) by VI

9. l- (Vx. Et w) G (0Vx.w) by 5, 8 and PR
J

T 4 8 .  t- ( 3 x .  O w )  E (032.~)

Proof:

1. I- (Vx.  cl 4) E (0 vx. - w) by T47

2. t- (Vx.  - 0  70)  5 (cl - 3 x . w ) by Al, A 11 and 1CIi (twice)

3 .  t -  (N3x.Ow)  SC (N03x.w) by Al, hi 1 and PR

4. l- ( 3 x .  Ow)  - (03x.w) by PR
ml

Theorem T47 irnplics I,hc cornrr~ulativily of V with Cl: 13oth have n univcrsat  character, with
one quantifying over individuals and the other quantif’ying over staLes. Similarly, Lheorem T48

42



implies the commutaLiviLy  of 3 wil,h 0. The first two theorems (T/15 and 1‘46) imply the cornmu-
tativity of V and 3 with 0.

The next  two theorems arc consistent with the intcrprctaLion  that the U operator is universal
with respect to its first argument and existential wiLh respect to the second.

T49. I- VX.(W~UW~)  = (V~.wl)llw2 where x is not free in w2

Proof:

1. l-w&w2 3 [wg V  (WI A  0(w&w2))]
2 .  l- k’x.(wluw2)  3 vx.[w2 V  (WI A  0(w,Uw2))]
3t . l- VX.(W&W~)  3 [w2 V vx.(wl A 0(tu&w2))]

by A9 and PR

bY trtJ
by VI and 1’11,

since x is not free in w2

4. t- ~z.(w+J~)  3 [w2  V (vx.w~  A vx. 0(w 1 h12))] by T41 and PR

5. t -  t/x.(w1uw2) 3 lw2 V  (vx.wl A  0  ‘dx.(w~uw2))] by T45 and PR

6. t- vz.(?&uw~) 3 0 202 by A t2, A10 and I’R

7. l- Vx.(wJlw2) 3 (vx.w&l?u~ by 5, 6 and RUl,
taking w to be Vx.(w~Uw~),  u to be VX.W~,  and v to be w:!

8. I- (Vx.w,) 3 Wl by A12

9. I- (Vx.u4Uw2 3 ?llJLW2 by UU
10. l- (Vx.w4Uw2  3 Vx.(w,Uw2) bY  V’I,

since x is not free in 11~2

11. t- vx.(w&lw2) - (VX.Wl)UW2 by 7, 10 and I’lt
ml

T 5 0 .  - l- 3x.(wlUw2)  E wlU(3x.u12) where x is not free in WI

Proof:

1. l- w&w2 3 ow:! by  n.10

2. t- 3x.(w&w~) 3 (3x. 0 Wp,) b y 33

. 3. t- 3x.(w,uw2) 3 (O~X.W~) by T48 and P R

4 .  l- wluw2 r) [w2 v (wl A  o(quw~))] by A9 and PR

5. l- 3x.(w, um) 3 [(3x.w2) V ~z.(~w, A  0(w&41)2))] by 7’42, 33 and l’li

43



6. t -  3x.(w&f~2) 3 f(h.0~)  V  (WI A  3x. 0(w&w2))]

7. t- 3x.(w&?Q) 3 ((3 x.34 V [WI h 0 3x.(W&w2)]}

8. t- 3X.(w&w4 3 W&(hw2)

9 .  l- [w2 V  (WI A  0(w&u2))]  3 w&w2

lo. t -  3x.[w2 V  (~1 A  ~(wIUW,))]  3  ~x.(w&w~)

11. t -  [(~x.wz) V  3x.(wl A  0(w&w2))]  3 3x.(201Uwg)

12. I- [(~x.?uz)  V  (~1 A  3 x .  0(w&w2))]  3 3x.(wlUw4

t3. t -  [(3x.w2)  V  (~1 A  0 h(?f~&w2))]  3 h(w&w2)

14. I- wJt(3x.w2) 3 3X.(W~UW~)

by T44 and PR,
since x is not free in w1

by T46 and PI1

by 3, 7, ltU[ and PR

by A9 and PR

by 33

by T42  and PR

by ‘I?44 and PR,
since 2 is not free in w1

by T46 and PR

by JAI,
taking u to be wl, v to bc 32.1112  and w to be 3x.(wlUw2)

15. k 3~.(w&u2) EE w&(i!h.W~) by 8, 14 and I’R
J

While operators of similar character, i.e., both universal or both existential, commute to yield
equivalent rormulas,  operators of’ opposiLe  character usually admit implication in one direction
only. Thus we have:

T51.  l- 32.0~  > q  3x.w

T 5 2 .  t -  0Vx.w  > V x .  0 w

7’53(a). I- 3x.(wlU~~)  3 (3x.?fll)U?u2  w h e r e  x  i s  no1 rree i n  w2

- ( b ) .  l- w1 U(Vx.w2)  > Vx.(w1Uw2) where x is not free in w1

Theorems of similar character are:

T54(a).  I- 3x.(711121)  3 (3x.u)U(3x.v)

( b ) .  I- (Vx.a)U(Vx.v)  > Vx.(dh)

TiE NEXT OPERATOR APPLIED TO TERMS:

The use of the next operator 0 applied Lo terms is govclracd by the axioms:



Al4. I- 0 f(tr, . . . , &) = I(0 tl, . . :, 0 tn)
for any function J and terms tr, . . . , t,

A15. t- Op(tl, . . . ,tn) z p(Otr,  . . . , Ot,)
for any predicate  p and terms tl, . . . , t,

These  axioms are consistent with the evaluation rules that we gave which stated  that in
order to evaluate an expression 0 &(tr, . . . , t,), we can evaluate &(O tr, . . . , 0 La) whether & is a
function or a predicate.

5. EQUALITY

Equality is handled by the following axioms:

A X I O M S :

A16. Reflexivity of Equality

l - t = t for any term t

1217.  Substitutivity of Equality

l- (h = t2) 1 [w(w,)  = w(t1,  ta)]

where t2 is any term globally free for tl in w
and where w does not contain temporal operat,ors

1 A18. l- O(t,  =t2) 5 (Otl=Ot2)

We use w(t l, t2) to indicate that t2 replaces some of the occurrences of tl in w.
-

The axiom A18 is a special case of Al5 when the predicate p is the equality predicate.

Recall that a term t2 is said to be globally free for tl in w if substitution of tz for all free
occurrences of tl in w: (a) does not create new bound occurrences of (global) variables, (i.e., t2 is
free f& tl in w), and (b) docs not create new occurrences of local variables  in the scope of a modal
opcralor.

Note that the classical axiom for substitulivity of equality A 17

l- (t1 = t2) 3 [w(h,  h) = w(t1, t2)l

(where tz is free for tl in w) is not correct if UJ contains temporal operators. We could take w(tr, t2)
to be q  l(tl = t2) and dcducc  from Al7

l- (h =  t2) 3 [o(t, =  t1) 3  up1 =  t’L)],

45



i.e.,

I- (tr = t2) 3 q  (t1  .= tg),

which is not a valid statcmcnt  (since tl = t2 may conLain local variables).

T55. Commutativity of Equality

)- (t1 =  t2) 3  (t2  =  t1)

Proof:

1. t- (t1 = t2) 3 [(t1  = t1)  E (t2 = t1)]

2. t- tt = t1

3. t- (t1 = t2) 3 (t2 = h)

T56. Transitivity of Equality

t- [Pl = t2) A (t2 = tz)] 3 (t1 = t3)

Proof:

1. )- (tt = tg) 3 [(tl = t3) F (t2 = t3)]

2. t- Pl = t2) A (t2 = ts)] 3 (tl = t3)

by Al7

by Al6

by 1, 2 and PR
ml

by A17

by PR
J

‘l’57.  Term Equality

(a ) t- q  (tl = t2) 1 [+l,tl) = @l,  t2)] for any term 7

(b)  t- (tl = t2) 1 [@l,h) = @I, t2)]
provided r does not contain the next  operator.

Proof of (a):

By induction on the structure of 7.

C a s e :  T(tl,tl)  =  tl a n d  T(tl, ts) =  tl. Then
. 1. t- f1 = t1 by A16

2. k qt, = t2) 3 [T(tr, t,) = 7(t&J]
by L’li and dcfirlilion of T(tl, t 1) and T(tl  , t2)

46



C a s e :  T(tl,tl)  =  tl a n d  T(tl,ta)  =  t2. T h e n

I. I- q  (tl = t2) 3 (t1  = t2) by A3

2. I- q  (t1 = t2) 3 [7(t1,t1)  = +1, tz)]
by the delinition  of T(tl,  tl) and T(tl,  t2)

Case:  +I, tl) = j(q(tl, tl), . . . , T&l, tl)) and T(h, tz) = !(71(W2)~  - - a A(W& Then

1. I- qt1 = t2) 3 [7;(tl,  tl) = 7-$1,  tz)], for i = 1, . . . , k

by the induction assumption.

2. I- i\ [T#l, t1) = r;(t1, tz)] 3

4=1

[J (Tl(Wl),  * * * ,a(t1,t1))  =  f(Tl(tl,t2),  * l  l  ,v$d2))]
by repeated  application of Al7 and using T56 for transitivity of equality.

A typical step in lhis repeated application is:
i.

t- [G(h, t1) = 7$1,  f2)] 1
[f (7l(W2),  l * * 9

7i--l(h,f2),  G(tl,tl)r * * ‘, u(td1)) =

f (7l(tlJ2), l * * ! 7; -1(t1, t2)r 7;(t1,  tz), 7;+1(t1, t1), * * * 9 nc(tlJl))]

jtlstificd  by Al7 and the fact that Ti(tl, t2) is free for 7;(tl,  tl) in J(...) since f does not contain any
Lernporal  operators.

3. I- q  (t1 = t2) 1 [7(t1,t1)  = ‘(tt,t2)]
by 1, 2, 1’11 anti the definition of 7(tl, tl) and T(tl,  tz).

Case: T(tl, tl) = 0 T’(tl,  tl) and, T(tl, tz) = 0 #(tl, tz). Then

- 1. I- up1 L= t2)  I) [7’(t1, t1)  = 7’(t1, ta)] by the induction hypothesis

2. I- 0 q  (t1  = t2) 3 0☯7�(t1 , t1 ) = 7�(t1 , tz)] b y  0 0

3. I- oiT’(tl, t1) = 7’(t1, t2)] 3 [O 7’(t1, t1) = 0 7’(t1, t2)] by Al 8 and PR

4. F up1 =  tz) 3  0  up, =  t2) by A7

5. I- q  (t1  = t2) 3 (07�(t1 , t1 ) = 0 7�(t1 , t2)) by 4, 2, 3 and i’R

6. t- q  (tl = tz) 1  ☯+l, tl) = +l, tz)] by the delinition  of ~(tl, tl), T(tl, t2).

Proof of (b):
.

1. I -  (t, =  t2) 3 [(T@,) =  -T(t2)) f (7(t2) =  7(t2))] by Al7 (no 0 in 7)

2. I- 7(t2) = T(&) by A16

47



3. t- (t1 =  ta) 1 (r(h) =  7(t2)) . by 1, 2 and PR
J

The following theorem generalizes Al7 to arbitrary formulas.

7’58. Substituta’vity  of Equality

I- qt1 = t2) 1 [w(t1,  t1) = w(t1, tz)]

Proof:

where t2 is free for tl in w.

By induction on the structure of w.

Case: w contains no temporal operators. Then

1. I- (t1 = t2) 1 [7U(t1, t1) = w(t1,  tz)]

2. t-n(t1 = t2) 3 (t1 = t2)

3. t- qt1 = t2) 1 [w(t1,  t1) = w(t1,  tz)]

by A17

by A3

by MP

Case: w(tl,  t2) is of the form Tl(tl, t2) = Ts(tl, t2). Then

1. I- qt1 =  t2) 3 [71 (t1, t1) = +1, tz)] by ‘1’57

2. )- q  (t1 =  tz) 1 [72(t1,  t1) =  72(t1, t2)] by T57

3. I -  [q(t1,  t1) =  q(t1,t2)] 1 [(q(t1,t1)  =  ~2(Wl))  = (7&,t2)  =  72(Wl))]

by AL7 of the form (Or = 0s) > [(or = r&l,  tl)) 3 (02 = ~&h,tl))]

with 01 = Ti(tl,  tl) and 02 = Tr(tl,  t2)

4. t- qt1 = tz) 1 [(+l,tl) =  72(t1,  t1)) = (4th t2) =  72(t1,  t1))l
by 1, 3 and PR

5. t- qt1 = ta) 1 [(@I,  t2) =  72(t1,  t1)) = (n(w2) =  72(t1 J tz))]
similarly by A17, using 2

6. t- qt1 = t2) 1 [(Al =  72(t1,  h,) = (n(t1,  t2) =  72(t1,  tz))]

by 4, 5 and PR

7. t- qt, = t2) 1 [w(h,  t1) = w(h,  tz)] by lhe definition of w(tl, tz)

*Case:  w is of the form Cl u. Then

1. )- qt1 = ta) 1 [u(h, t1) = u(h,tz)]

2. t- up, = tz)

induction hypothesis

trssump  tion

48



3. I- u(t1, t1) = u(t1,  t2)

4. I- q  u(tl, t1 ) = q  &,t2)

Thus, q  (tl = ta) I- [Dqt1,t1)  = q  u(t1,t2)]

5. I- q  up 1  = t2) 3 [ou(t1, t1) = q  u(t1, tz)]

by MI’

b y  170

by DED

6. I- q  (t1  = t2) 3 [lk(t1,  t1) - q  u(t1, t2)] by T3 and PR

The cases in which UJ is of the form 0 u, 0 u, Vx.u and 3x.u  are treated similarly, using the
0 O-rule, the 0 O-rule, the W-rule and the Z&rule,  respectively.

Case: w is of the form uUv.

1. I- q  (t1 = t2) 1 [u(t1, t1) = $1, t2)] induction hypothesis

2. t- q  (t1 = t2) 1 [$1,t1) g qt1, t2)] induction hypothesis

3. t- q  (t, = t2) assumption

4. I- u(t1, t1)--,= qt1, t2) by 1, 3 and MP

5. f- v(t1,t1) = v(t1,tz) by 2, 3 and MP

6. t- (u(h,tl)Uv(t~,  tl)) f (u(tl,  tz)Uv(tl,  tz,) by 4, 5 and ER

Thus, q  (tl = tz) I -  [(@l, tl)Uv(tl,  t1,) = (4th t2)Uv(t1,  t2,)l

7. t- 0 q  (t1 = ta) 1 [(@I,  tl)uv(tl,tl))  = (u(t1, t2)Uv(t1, t2))l by DED

8. I- q  (t, = tz) 1  ☯(,u(tt, tl)Uv(h, h)) = (u(tl, t2)U@ d2))]
by T3 and PR

ml

6. FRAME AXIOMS AND RULES

In this section we consider the consequences of the partition of the set of all variables into
1ocaI  ;4nd  global  variables. By I,hc semantic definition, global variables are given their value by the
global- assignment a, and these values do not vary from slate to state. Consequenlly,  for a global
variable  u it must be universally true that u = 0 u, i.e., the value of ‘u al any state is idcnlical
lo its value in the next stale  (see A19  below). The following axioms arc called frame axioms in
reference to the “frame axiom” in Iloare’s  deductive system for program vori[ication  ([ILL]).

Recall that we split the set of our symbols into two subsets: global and local symbols. The
logical consequence of this convention is the following frame axiom:

l

for every global variable x

49



WC can therefore prove  by induction on the structure of the term t and the formula w the
following frame theorems:

T59. For a term t and formula w

(a) I- t = Ot
where t is global, i.e., does not contain local symbols

( b )  I-wwClw
whcrc w is global, ix., does not contain local symbols..

(4 t- WYl,  l -,OY?a) = OW(Yl,  l ..,Y?a)
where7J1,  . . ..yn are all the local variables  in w.

We present several frame theorems that facilitate moving global formulas in and out of the
scope of temporal operators.

T60. I- q  (Wl v w2) E (201  v q  w2)
where  WI is global, i.e., contains no local symbols.

Proof:

1. k-z01  3 u-w1

2. t- [O(Wl v w2) A q  -Wl] 3 q  ((Wl v 202) A -w1>

3. I- [(WI v w2) A -WI] 3 w2

4. I- [n(wl V  ~2) A  bwl] 3 [7w2

5. k [n(wl V  ~2) A  wl] 3 0~12

6. I- q  (w1  v w2) 3 (WI v Cl W2)

7. I- Wl 3 q  lWl

8. I- (WI v q  w2) 3 (o wl v q  wg)
9. I- (o wl v clwz) 3 q  (Wl v 202)

10. t- (WI v q  w2) 3 q  (Wl v w2)

11. I- q  (w1  v w2) = (WI v 0 202)

by T59b

by T7 and PR

by PT

by 2, 3, q  Cl and I’R

by 1, 4 and PR

by PR

by T59b

by PR

by T9

by 8, 9 and PR

by 6, 10 and PR
ma

.

T61. I- O(wl A  ~2)  z (WI A  0  ~2) where  WI i s  g l o b a l .

Proof: The proof follows from T60 by duality.

50



A derived frame rule that we will hc using is ,

Frame Rule - IQ

t-u3Qv

I- (20 A u) 3 O(w A v)
where w is global

Proof:

1. l-u 3 uv

2. l- (20 A u) 3 (w A Ov)

3 .  l-(wA+u)>  O(wAv)

4. l- (w A ‘1~) 3 o(w A v)

given

by PR

by 7’61  and PR

by 2, 3 and PR
J

-=.

51



The next part of the system contains domain axioms that specify the necessary properties
of the domain of intcrcsl. Thus, to reason  about programs manipulating natural numbers, we
need the set of Pcano Axioms, and to reason about trees we need a set of axioms giving the basic
properties of trees  and the basic operations defined on them.

7. INDUCTION AXIOMS AND RULES

An essential  axiom schema for many domains is the induction axiom schema. This (and
all other schemas)  should be formula14 to admit tcrnporal  instances as subformulas. Thus Ihc
induction principle for natural numbers can be stated as follows:

I- {h!(O)  A b-@(n) 3 n(n + l)]} 3 R(k)
for any statement Z?.

One insLance of this axiom, which will be used later, is obtained by taking R(n) to bc q  l(Q(n) >

‘U32.  Induction Theorem:

I- @(Q(O)  >07/11)  A V~~@(Q(n) 1 O+)

3 qQ(k)  1 w).

1  q  (Q(n+ 1) ’ OJql>

Using this induction theorem WC can derive the foIllowing  uscfu 1 induction rule:

c> Induction Rule - OIND

I- Q(O) 1 0 4

I- Qb + 1) = P + v 0 Qb>l
I- Q(k) 3 0 1(1 -

OTND  is useful  for proving convcrgcncc  of a loop: show that Q(0) guarantees 0 $ and that for
each 72, either  Q(n + 1) implies Q(n across the loop or it already establishes 0 $ and no further)
execution is ncccssary. Then for any k, Q(lc) ensures that 0 $ is established.

Proof:.

1. I- Q(0) 3 0 +

2. I- q  ( Q(0) 3 0?j)
given

by 01

52



3. t- Q(n + I) 51 (0 1c)  V 0 Q(n)) given

4. I- 0(&(n) 1 o+) 2 (OQ(n)  3 W) by T6, T4 and PR

5. t- ☯Q(n + 1 ) A q  (Q(n) 1  W)] 3 W by 3, 4 and PR

6. t- q  (Q(4  3 0~4 I☺ (Qb +l) 1 W) by 1%

7. I- q  lO(Q(n) 3 O$ ) > q  (Q(n+l) 1  O$)

8. I- q  (Q(n) 1  O$) 1  q  l(Q(n+l) 3 O$)

9. I- Vn☯Cl(Q(n) > 0 $ ☺) I q  (Q(n + 1) 3 0 +)]

1 0 .  t- 0(&(k) r) O$)

11. t- Q(k) 1 W

by q  lCl

by T3 aud PR

by VI

by 2, 9 and 7’62

by A3 and MP
ml

While induction over the natural numbers is usually suficient  in order to prove properties
of sequential programs, we need induction over more  general  orderings in order to reason about
concurrent prograrns ([LPS]). T l~US  we have to formulate a more general induction principle over
arbitrary well-founded orderings.

Let (A, 4) be a partially ordered set. We call the ordering < a well-founded ordering if there
exists  no infinitely decreasing sequence of elements in A:

For each well-founded ordering (A, +), the following is a valid induction rule:

-

It5. Well-Founded Induction Rule -- WIND

WWI

This rule should hold for an arbitrary temporal formula w(a) dependent on a global variable
Q E A, and we adopt it as a primitive inference rule.

To justify the rule semantically we may argue  as follows:

Assume that the premise Lo the rule is true but the conclusion is not. Then there must exist
a rnodcl  M and an CXI  such that lu(trl)  is false under  M. 13~ I,hc prcmisc  thcrc must exist  some cy2
such Lhat cy2 4 01 and VJ((Y~)  is false under  M. Arguing in a similar  way wc obtain an iriIiniLcly
decreasing sequence:

such that for each i, ~(a;)  is false under M. This of course contradicts the well foundcdncss of
(A, 4.’

Note that the induction axiom and rules can be derivctl from WIND  by taking (A, -x) Lo be

w, <I-

53



Jn order to use the WlND  rule, one has to establish that the ordering 4 is indeed a well-founded
ordering. Several specific orderings are known to be well-founded (such as lexicographic ordering
over tuples of integers, multiscts,  etc.), and may bc freely used. T [owcver  the general  staterncnt
that an ordering ‘4’ is well-founded is a second order statement which may require  second order
reasoning for its establishment.

Hy substitution of a special form of a temporal formula we can obtain the following induction
principle for 0 formulas:

Well-Founded 0 Induction Rule -- OWIND

)- 44 2 o(ti v WKP -< 4 A w(P)l)
I- w(u) I) 0 7fb

WC show that OWIND  follows from WIND.

Proof:

1. t- W(Q) 2 o(ti v W[(P -< 4 A 4P)l) given

2. t- W(Q)  1 (04 v Q W[(B  < 4 A w(P)l) by ‘I’8 and PI2

(QVKP + 4 A w(a)] 1 w) by T6,  T4 and PR

4. t- {w(a ) A q  (dP☯(P i 0) A w(p )] 1  0 +)} 1  o ?lt by 2: 3 and PR

by PR

6. t- (SW 4 a) A w(p)]  > O$) E (-]a[(/? i a) A w(p)]  V +$)  by PT

7. I- (-V[(P i cx) A w(p)]  V 0 $) = (vp[-(p  -( a) V -W(p)]  V o’+>
by All, lCR and PR

8. I- (v/q+ 4 0) v -(/q] v 0 $) = Vio[@ + (2) 1 (w(P) IJ Qti)l
by T43,  I’R and ER, since 0 $J dots not depend on p

9. l- (V[(P 4 a) A w(p)]  1 oti) = &?[(a -( a) ’ (W(P) ’ o+)l
by 6, 7, 8 and P R

by 9, 5 and ER

11. t- q  lVp[(/I 4 cu) 2 (w(p)  3 O$J)]  > q  (w(a) II O$J)  by T3, 00 and PR

12. t- V☺P q  ☯(P 4  CY) 3 (w(p ) 3 O$ )] 3 q  (w(r r ) 3 o q ) by T47 and Pll

13. I- V/?[(/!J  4 cy) II lI(<u@)  > O$)]  II q  (w(cy) 1 o+)
by ‘1‘60,  ER and PR, since (lo 4 a) is global

14. t- q  (w(cr) 2 07/1) by WIND, taking w(a) to bc 0(20((v)  > 0 $)

15. I- w(a) 3 oil,

54

by A3 and PR
EDI



8) l PROGRAM PART

Our proof system must be angmcntcd  by additional axioms that reflect the structure of the
program under consideration. The  additional axioms constrain the state sequences to be exactly
the set of execution  seyucnccs  of the program under study. This relieves us from the need to
include program text explicitly in the system; all the necessary information is captured by the
additional axioms.

8. PROGRAMS AND COMPUTATIONS

In our model a concurrent program consists of m parallel processes:

Each process Pi is represented as a transition graph with locations (nodes) Li = {ah, . . . , et}.
The edges in the graph are labelled by guarded commands of the form c(g) --+  [jj := j(g)]  whose
meaning is that if c(y) is true the edge may bc traversed while replacing !/ by f(g).

Let !, !I, &, . . . , !k E L; be locations in process P;:

Cl(Y) --+ [Y := j1(g)]
Ql

The variables !/ = (~1,  . . . , yn) are shared by all processes. We define Et(g)  = cl (g) V . . . V
ck(?j)  Lo bc t,hc: exit  condition at rlotlc  1. We do not reqnil(,’ * x that the conditions ci be either  cxclusivc
or cx haustivc.

The advantage of the transition graph rcprcscntation is that programs arc represented  in a
uniform way and that we have only to deal with one type of instruction. W C show first that
programs rcprescntcd  in a linear text form can easily be translated into graph form.

.

ASSU~IN?  that a linear text program allows the following types of instructions:

Assignment: ;- := f(g)Y

55



3

Conditional Branch: if p(g) then go to 11 else go to &

Halt: halt

Waiting loop: loop until p(g)

loop w bile p(y)

and the semaphore instructions

Request: request(y)

Release: release(y)

A linear text program for each of the processes  has the following form:

e, : I()
e1: 11

ct : halt or 90 t0 lj

where  to, Cl, . . . , J$ are labels and lo,Il, . . . are instructions from the list above.

The graph representation  of such a program for process  Pi will  be a labelled  graph with
L; = {&, . . . ,a,} as the set of nodes. For each instruction I at label e E L; we construct edges as
follows:

b for the instruction
c : jj := f(g)
4Y :

construct
true -+ [jj := f(g)]

b for the instruction
k! : if p(p) th en go to e’ else go to P
t’ :

construct

56



b for the instruction
4f : if p(g) then go to !!’
c .If .

construct

b for the instruction
C: if p(y)  then jj := f(g)
C’ : --

construct
P(V)  -+ [B := f(v)1

c->a
- p(g) -+ [I

b for the instruction
e : loop until p(y)
e’ :

construct
PM -+ I 1

_ * for the instruction
c : loop while p(y)
e’ :

construct
-P(Y)  + 1 I

b for the instruction

57



t : request(y)
et :

construct

k for the instruction
4!:
e’ :

release(y)

construct

y > 0 --+ [y := y - l]

4

true -+ [y := y -I- l]

For halt at label  ! we constrnct no edges  out of C.

The actual translation into graph form need not bc carried  out explicitly. Rather, the general
axiomatic  description of transition diagrams can be easily translated to axioms for each of the
types of instructio’ns  in the linear text form.

A state  of the prograrn Y is a tuple of the form s = (I;$ with 2 E 1.1  x  .  .  .  x  Lm and
g E D”, where D is the domain over which the program variables yl, . . . , yn range. The vector
e = (a’, . . .,P) is the set of current locations which are next to bc executed in each of the
processes. The vector q is the set of current values assumed by the prograrn variables g at state s.

Let s = (C
1 9 “‘9 ei, . . . , C”; 7j) be a state. We say that process  1’; is enabled on s if ICti (7) =

true. This implies that if we let I’; run at this point, there is at least one condition cj among the
edges  departing from li that is true. Otherwise,  WC say that P; is disabled on s. An example  of a
disabled process is the case where Ci labels an instruction request(y) and y = 0. Another example
is that of @ labeling a halt statement. A st,ate is defined to be terminal if no P; is enabled on it.

Given a program Y WC define the notion of a, computation step of P.

Let s = (C, . . . , P;q)  and Z = (3, . . . ,! , $) be two states of P. Let T be a transition in“m*
Pi of the form:

4) -+ [g := f(P)]
7

1 s u c h  t h a t  c(q) =  t r u e ,  5 =  f(q),  a n d  f o r  e v e r y  j  # i, 6’ =  A@. Then  we say  tha t  s” c an  be
obtained from s by a Pi-step (a single computation step),  and write

An initialized admissible computation of a program P for an input z - z is a labellcd  maximal
’ sequence of states of P:

pi, Pi, r;,
CT:  s()‘Sl ----+s2 -> SQ -3 . . .

58



which satisfies the following three conditions. ( The sequence 0 is considered muzimul if it cannot
be extended, i.e., it is either infinite or ends with a state sk which is terminal.)

A. Initialization:

The first state SO  has the form:

so = (20;  cm

where ?u = (CA, . . . , !;;“) is the vector of initial locations. The values ~(3) are the initial
values assigned to the g variables for the input c.

B. State to State Sequencing:

P;
Every step in the computation s+ S, is justified by a Pi-step.

C. Fairness:

Every I’; which is enabled on iniinitely many states in B rnust be activated infinitely many
times in 0, i.e., there must be an infinite number of Pi-steps  in 0.

We define an admissible computation of P for input z to be either an initialized admissible
computation or a suffix of an initialized admissible computation.

Thus the class of admissible computations  is closed under the operation  of taking the suflix.
‘I’his  is needed  in order  to cnsurc  soundness of the inference rule Cl1 (123). WC denote the class of
all c-admissible  computations of a program P by A(P,F).

An adrnissible computation is said to be convergent if it is finite:

r;, P;f
0: so -----+Sl + . . . ‘Sf .

If the terminal state sf in a convergent computation is of the form sf = (4$,  . . . , eF;q),
where each !f labels a halt instruction, we say that the computation has terminated. Otherwise,
we say that the computation has blocked or is deadlocked.

In  o rde r  to  desc r ibe  p roper t i e s  o f  s t a t e s  we  in t roduce a vector of locution variables
T=(Xi,  . . . , T,). Each 71;  ranges over L;, and assumes the location value 19  in a state

s = (Cl, . . . ,P, . . . ,P;q).

Thus we may describe a state s = (Z; 7) by saying that in this state Z = Z and g = q.

A state forrnulu  Q = &(if; y) is any formula which contains no temporal operators. It is built
up of terms

- -
and predicates over the location and program variables (?r; y) and may also refer to

global variables.

We frequently abbreviate the statement X; = C to at!. Since the 1;‘s  are disjoint, thcrc is no
tfiliiculty in identifying the particular ni which assumes the value e.

59



Ilet us consider a program P over a domain D wilh fixed interpretation I for all the predicate,
function and individual constant symbols. A model M is said to be admissible for I3 if it has the
form:

M = (I, cy, 6)

where a! and 3 satisfy the following condition:

There exists an cr[!E]-adrnissibl(1  c~ornnutation  o E A(P,  CY[Z])  such that

either

0 i s  i n f i n i t e :  0 =
fi, pi,

so __cj  81 + s2 4 s3 . . .

and

& = so, Sl, 52, ’ - ’

ri, Rz I’*
0 is firiite: d = so 4 Sl + 32 4 . . . 43,
and then

& = so, Sl, 5 2 ,  "'9 Sf, Sf, l  ' * '

Thus we f’orce & to be always infinite by indefinitely repeating the last state of Q if it is finite. This
corresponds to our inl,uition that while the computation may have krrninated, time still marches
on, but no furl her change in the program will ever occur.

Let us denote the class of all admissible mod& for a program P by C(P). Note that this
class, tliIll‘crcntly from A( P, t), contains computations corresponding to different inputs.

WC define  the stale formula stating that a process I’; is enabled as follows:

Enabled(I\; T; g) = A [(7ri = !) 1 a(i
&EL;

For the complete program P we defined

Enubled(P;  ?r; jj) = v ZSnablcd(P;;  ?F; y).
i=l

Thus a state s = (2;  7j) is terrninal iff

Enabled(  I’; 7; 7) = false

and we may define

Terminal (F; :(/) E -Enablctb(  I-‘; 5; v).

60



Let the following be a transition T in process P;:

c(v) --+ [Y := f(v)1
7

We deline the transformation associated with the transition r by:

G(F  32) =  ( q wh];  I@ )) l

The transformation is obtained by replacing the current value k! of XIT; by 4? and the values of y by
f(Y)*

Let cp(E;  !I) and $(?7;y) be two state formulas. WC say:

l The transition 7 leads from y3 to $ if the following implication is valid:

[p(T; :I) A  ait! A  c(v)]  3 ?I) (+; g)).

l The process P; feuds from ‘p to ?(, if every transition r in 1’; leads  from cp to 9.

l The progrum  P feuds from cp to 4 if every P; leads from ‘p to $.

We are ready now to give a temporal axiornatization for the notion of computation under the
program P.

* 9 .  AXIOMS AND RULES FOR CONCURRENT PROGRAMS

The first axiom states that the location variable KR; may only assume values in L;.

h21.  Location Axiom -- T,OC

)- Xi E L; for i = 1,
- -

This is an abbreviation for:

Since all the locations are disjoint, it also follows from the equality axioms that xi may be equal
to at most one .!!3 at a time.

For each of the three requirements dchning  an admissible computation we have a corresponding
inference rule schcrne:

- -
RG. Initialization -- INIT

For an arbitrary temporal formula zu:
.

t- [at&) A jj =  y (z ) ]  3 Cl w
- -

l- c l w

61



For let us assume that the prcrnise  to this rule holds. This implies that Cl w is true for all
initialized computations. By the semantic definition of q  , this implies that w is true for every
suffix of an initialized computation, i.e., for every admissible computation. Thus, w is C(P)-valid,
and by generalization  (01)  so is q  lzu.

R7. Transition -- TRNS

Let cp(T;  g) and $J(F;;~J)  be two state formulas.

I- P leads from cp to +

I- [P(W)  A Terminal(?r;  jj)] 3 $(F; !I)

b-w

Indeed let s be a state in the sequence & corresponding to an admissible computation 0, and
let s’ be its successor in &-.  Assume that cp(.  )s is true. There  are two cases to bc considered. In
the first case, s’ is derived from s by a Pi-step for some i = 1, . . . ,m. But then, by the first
premise, I’; leads from ‘p to $J and therefore  $J must be true for s’. In the other case, s is terminal
and s’ = s the repetition of the terminal  state  of a finite computation. 13ut then s is terminal
and stltisfics the antecedent of the second premise, leading to $(s)  = $(s’)  = irue. Ekncc,  in both
cases $(s’)  must h4d and the conclusion of the rule follows.

Note that the first premise lo this rule requires establishing rnany conditions involving the
individual transitions of each of the proccsscs. Iiowever,  by examining the definilions  of “leading
from ‘p to +” WC see that they are all expressible as classical st,atcments  involving no temporal
operators. Therefore this premise should bc provable from the domain axioms plus the usual
predicate calculus proof system. The second premise  is also classical, and ensures the consequence
after the sequence has reached a terminal state.

R8. Fairness --  E’AIR.

Let cp(7i;  y) and $~(?r; y) be two state formulas and Pk be
one of the processes.

A. I- P leads from ‘p to ‘p V $J

I3. t- Pk leads frorn ‘p to $J

t- [‘P  A 0 Oh~bhd(Pk)]  3 cph,b

To give a semantic justification of this rule, consider a computation such that ‘p is true initially.
I I3y A, cp will hold until G$ is realized, if ever. I3y l3, once I’k will bc activated in a state satisfying
- cp it will achieve $J in one step. Consider now rz scqucncc  CT such thA p A 0 0 I<nnblerl(P~)  is

true on 0. This means that cp is initially true and 1 ‘k is  cn:lblcd  inhnitcly many times in 0. ny
fairness, Pk will eventually be activated, which, if $ has not been realized before, will achieve $J
in one step.

Since (pU$)  3 0 $, WC often use the FAIR rule in order to derive the consequence
.

[p A  cl 0  EnabZed(Pk)]  > 0  4.

There arc several  derived rules that can bc obtained from the above axiomatization,

6 2



Invariance Rule - INV
t- I’ leads from cp t;o ‘p

)-cp3m

Proof:

ProoP:

1. I- P leads from cp to ‘p

1.

2.

3.

4.

5.
e

Initialized Invariance Rule -- IINV

Let ‘p be a state formula

-- t- [at& A jj = g(Z)] 3 p

I- P leads from ‘p to cp

t- q  P

given

by PT

by TRNS

by CI
J

I- [at & A 1J = g(F)] 3 $0

t- P leads from cp to cp

b  1  q  P
I- [at& A jj = g(Z)] 3 q  lp

)-UP

given

given

by 2 and INV

by 1, 3 and PR

by INIT
J

The IINV rule is the rule most often used in order to establish  invariance properties of programs.

Unless Establishment Rule -- N3It

Let ‘p be a state  formula

F P leads  from cp to cp V $

I- P = (PW

.
Proof:

I. I- 1’ lc:lrls from cp to ‘p v II)

63

given



The following rule is a conscqucnce  of the FAIR rule.

Eventuality Rule ---- EVNT

Let (p(Z;  y) and $(F; jj) be two state  formulas and Pk one of
the processes.

A. I- P leads from (o to cp V $

13.  k F’k leads  f r o m  cp t o  $J

C .  k p 3) O(Ir,  v  Enablcd(l’k))

Proof:

1. I- I’ leads from ‘p to ‘p v $ given

2. t- Pk leads from ‘p to $J given

3. t -  p II 0  (?I, v  Ir/‘nabled(P,J) given

by PT

by PR

by 1, 3 and TRNS

by UI
J

4. t- [p A q  ]Obhu blcd(J-$)] > cpU11, by 1, 2 and FAIR

5. t-P 1 (UP v d-w) by 1 and CINV

6 .  I -  [p A  Cl-$1 3 OEnabled(Pk) by 3, 7’8,  Al and t’R

7. t- q  (p A 0 w,!J)  > Cl 0 Enablctl(P,J b y  Cl0

8. I- [I&I A Cl ~$1 > Cl 0 Enclbled(Pk) by T3, T7 and PR

9. I- [Cl p A - Cl 0 En/tz61ed(Pk)]  > 0 T+$ by Al and PR

10. t-up 3 o+ by 4, 9, A3, Al0 and PR

Il. I- up 3 pU$ by 10, ‘I’24  and I’R

by 5, 11 and 1%
111

.
In contrast with earlier rules, premise C of IWNT  is no1 purely classical since  it contains lhe

tcrnporal  operator 0. Since C has a form similar to Lhc  conclusion ol’ the I~VN’I‘ rule,  it is Lo be
expected lhat its derivation will roquirc  once more  the application of the WNT  rule. This seems

64



to imply circular reasoning. Tlowevcr,  note that at  each  nested  application of the EVN’L rule,
another 1’k is taken  out of consideration. This is because  in trying to establish 0 l~nabled(P~)  we
need not consider any I’k-steps  at all, since when they are possible, F’k is already enabled.

A useful special cast of C that frequently sufFiccs for the application of the EVNT  rule is:

C’ : I- p 3  [$ V  Enable$(Pk)].

Note that the EVNT  rule can also be used to establish properties of the form

The EVNT  rule is the one most often used in order to establish both eventuality (livencss)
properties and precedence properties.

65



E l EXAMPLES

In this section we present scvcral  examples of proofs of properties of programs using the proof
system described above.

IO. EXAMPLE 1: DISTRIBUTED GCD

Let us consider the following example of a program computing  the greatest  common divisor
of two positive integers  in a distributed manner.

(Yl,YZ)  := (21, z2)

to : g ye > 7~2 then y1 := yl - y2 mo : if yet < y2 then y2 := y2 - yl
el : if ye #‘y2  then go to !o ml : if ~1~1 # y2 then go to rng
!2 : halt rn2 : halt

- Pl - - P2 -
.

We wish to prove total correctness for this program, i.e.,

Theorem:

I- [+0,m0)  A (YL,Y~) =  (w~2)]  1 0[+2,m2)  A 91 =  ~4~~2))

We will split lhe proof into two parts, proving separately invariance and termination.

Lemma A:

)- qwd(Yl,  Y2) = wqxt, x2)]

Proof of Lemma A:

Let us denote  gcd(yl,  1~2) = gctl(xl,  22) by Cp(zl,  ~2, yl,yz).
.

It is easy to check that cvcry transition in P leads from (I; to @. Also

t- [(?Jl,Yz) = (Wz2)] 3 @(%~2,Y1,Y2)9

66



3

Thus we have the two premises to the IINV rule, which yields the desired  result.
ml

Lemma B:

i- b%l A atmo,l  A (YlJ2) >  0 A  (yl +  y2) < n  +  1 )  A  y1 # y2]

3 Obt~o,i  A at%,1 A  (~1~2)  > 0  A  (yl +  y2 5 TZ)]

Here we use at lo,, as an abbreviation for at&J v at& atmo,l  f o r  atmo Y utml a n d
(~1~~2) > 0 for (~1 > 0) A (7~2  > 0).

Proof of Lemma B:

Let us define

P(Y1, Y2,  n) : at~o,r A atmo,l A (yl,y2) > 0 A  (yl +  312 5 TZ).

Thus we have to prove: __

I- [&I, y2,n + 1) A (~1 f YZ)] 3 0 (P(YI,Y~~~)-

. We will split the proof into two cases:

Bl. I- [p(y1ryz,n+1)  A (~1 > YZ)]  1 +~(~1,~2,74

132. t- [cp(yl,  a, n + 1) A (~1 < YZ)] 3 0 ~4~1, ~2~71)

The lemma obviously follows from these two statements.

To prove Bl we first observe that by I’R:

1. I- &h,y2,n+ 1) 1 (a% V a%)
d

Consider therefore first the case that Pl is at 10.  We take

p’ : p(y1,y2,n + 1) A (yt > ~2) A atto

21,’ : P(YI,Y2?4

We claim that ‘p’ and $J’ satisfy the premises of EVNT  with Pk = PI.

To see this, consider requirement A of EVNT  that states that every transition in P leads from
p’ to p’ v $‘*

. . . .Consider transrtions  in Pz. The only relevant ones are mg --+  ml and transitions leading out
of ml. The  t rans i t ion  mu --+  ml under  7~1 >  y2 lcavc~s ‘p’ invar ian t .  Aga in ,  under  yr >  ‘1~2  the
only transition out of ml goes  to m()  leaving ‘p’ invariant.



The only transition enabled in PI is to -+ !I w h i c h  replaces  (yl,y2) b y  (yl - y2, y2). I f
YI + ~2 L n + 1 and yl > 0, y2 > 0 then certainly (~1  - ~2)  + y2 5 n and (7~~  - 1~~)  > 0,y2 > 0.
Thus !O -+ el leads from ‘p’ to $‘. This also establishes requirement B with Pk = pl.

Since Et, = true, condition C is trivially fulfilled. Consequently WC conclude by the EVNT
rule that I- ‘p’ 3 0 $J’, i.e.,

2. I- [P(YL,Y~,~ + 1) A (YI > ~2)  A ate,]  1 0 ‘P(Y~,Y~J+

Consider next  the case where PI is at [I. By taking

(0” : dYl~Y2,n + 1) A (yl > 312) A at&
$‘I = p’ : P(?J1,Y2,7L +  1) A  (yt >  y2) A  at!,.

WC can show that the premises of the EVNT rule are satisfied with rcspccl to ‘p”, $J”. Consequently
WC have I- p” 3 0 $“, i.e.,

3. t-- [~(~1,~2,n + 1) A (~1 > 7~2) A at&]  3
--.

+‘(YI,Y~,~+  1) A (~1 > ~2)  A atto]

4. I- [P(YI,Y~,~  + 1) A (~1 > ~2) A a%] 1 0 ~(m,y2,4 by 2, 3 and O C

5. t- [P(YI,Y~,~+ 1) A (~1 > y2)] 2 o~(yl, y2,4 by  1, 2, 4 and P R

This establishes l3.l.

By a symmetric argument WC can establish f32. I3y propositional reasoning Bl and 132 lead to
Lemma 13.

ml

Proof of theorem:

We will now proceed  with the proof of the main theorem.

6. I- [(P(YI,Y~,~+ 1) A (~1 f ~a)] =J OP(YI,Y~A) Lemma B

7. t- &h,Ya,n+ 1) 3 [(YI  = y2) V h4y1ry2,741 by PR

8. t- v+l,Y2,n +  1) 1 [O(yl  =  y2) V O~(y1,y2,72)1 by Tt and PR

9. )- “P(Y1,  Y2,O) by PR,
using the domain property that the conjunction
(Yi  > 0) A (~2 > 0) A (yl + y:! 5 0) is impossible

10. l- P(Yl,Y2,0)  1 O(Y1  = Y2) by PR

ll.. I- dw,Y2, n) 1 O(YI = ~2) by 8, 10 and OIND

12. I- 37w(Yl,  Y2,4  2 O(Yl  = Y2) by 31

13. t- bQo,mo)  A (Yl, Y 2 )  =  (x1,22) >  0 ]  3  hp(yl, y2,n)

68



by t,aking  rh = ~1 + z2 > 0.

By considering the different locations of I ‘1 and P2 under  lhe assumption that yt = y2 it is
easy (though long if carried out in full detail) to establish

14. t- (Yl = Y2) 1 o[at(b,m)  A  (7~1 =  y2)].

13~ combining 12,  13 and 14 using OC we obtain:

15. l- b@o?o)  A (YhY2) = (X1,x2) > o] 1 o[at(h,m2)  A  (yl =  y2)].

Togelher with lemma A and TlO this gives

16. I- [~t(~o,m) A (~1, ~2) = (~22) > 01 3 O[ut(h,m) A yl = gc@a, x2)]
since (7~1  = Y2) 1 Y l  =  WqYirYa)

Note that theorcrn  TlO enables us to infer frorn a previously established invariant I- Cl (p and
an implication I- w1 > 0 202 the irnplitr:lt,ion  I- WI 3 O(w2 A @). II

I I . EXAMPLE 2: SEMAPHORES

* For our next example we will present a very simple program with semaphores:

.-Y 1. -

& : request(y) mo : reyuest(y)

tl : release(y) ml : release(y)

e, : go to e, m2 : go to mo

- Pl - - P2 -

This example models a solution to the mutual exclusion problem using semaphores.

There are two properties that we wish to prove for this program. The first is that of mutual
exclusion, namely:

Lemma A:

t- U[(- utll) V (- utml)]

Proof: .

Take

p(~~,7&jJ) : (at!, + utq + y = 1) A (y 2 0).

69



In expressions such as the above  WC interpret propositions as having the numerical value 1 when
true and 0 otherwise.

We can easily show that cp is preserved under every transition. For example,  consider the
transition en -+ f?r, When it is enabled, WC have  y > 0, and the transition assigns to the variable
y the value  y - 1 which is nonnegative. Considering the value of the sum

at& + atm1  + y,

at!, changes from 0 to I on this transition but y is decrcrnented  by 1. Consequently the value of
the sum remains invariant.

Initially, at!, + atml + y = 0 + 0 + 1 = 1 and y = 1 2 0.

IIcnce cp satisfies  the two premises of the [[NV rule, from which WC conclude

I1 : t- cl[utB1 + atm1  + y = 1) A (y > o)].

This implies

I- q  ☯ut&  + a tr n1  5 I]--.
which is equivalent to Lemma A.

9

The second property is that of accessibility. It states that each process will eventually be
admitted to its critical section.  This is cslablishcd  by:

Lemma B:

I- ateo 3 0 ate,

t- atmu 3 0 atml

Proof:

Let us define

(PI : atto A atml A  y  =  0

$1: y>o

We show that (~1 and ~$1  satisfy the conditions of the EVNT rule with k = 2.

. In fact the only enabled  transition is ml + ma which does lead from ‘pr  to $1.  While at ml,
1’2  is always enabled. Thus we conclude:

1. i- [at& A atml A y = 0] 3 o(y > 0) by EVN’I‘ with k = 2

70



3

2. I -  [at& A  utml] I O(y >  0 )

3. I- [a%  A atm2,3]  3 ( y  >  0 )

4. k at&j 3 O(y > 0)

by 11 above, 1 and PR

also by 11 and PR

by ‘1‘1,  2, 3, LOC and PR

Take now

$72  : ate,

$2 : ate,

We check premises A to C in the EVNT  rule with respect to the pair (~2, $2) taking k = 1.
Clearly P always leads from (~2  to 922  V $2. The process PI always leads (when  enabled) from ‘p2
to $9.  Condition C is guaranteed by 4 above. We therefore conclude

5. I- ate0 3 0 at&.

I3y a complctcly  symmetric argument we can show that:

t- utmo 3 0 atml.
ml

12. EXAMPLE 3: MUTUAL EXCLUSION

As a third example WC consider a program that solves the mutual exclusion  problem without
semaphores:

(Y 1, Y2, t) := (false, false, 1)

-!& : Noncritical Section

&I : y1 := true
i&:t:=1

la :  i f  y2 =  f&e t h e n  g o  t o  &C
. !Td : if t = 1 then go to f!z

&j : Critical SectionLt6 : yl := false -1
t7 : go to e,

rng : Noncritical Section

ml : y2 := true
7732  : t := 2
mg : if yl = false then go to mg
m4 : if t = 2 then go to ma
-___-

I

-. _-- -.--- -.--
m5 : Critical Section

m6 : y2 := f&e --.-.--
rn7 : go to m0

- . - 1’1 - - P2 -
- - - -~ - -

For convenience WC will abbreviate  formulas ut!; to e;.

71



The principle of operation of this program is that qch process 1’;  has a variable y;, i = 1,2,
which expresses the process’s wish to enter its critical section. The variable y; is set to true at !I
and ml and reset to false at &j and rnf;, respectively. In addition, each process leaves a signature
in the common variable t. The process 1’1 sets it to 1 at 45~ and P2 sets it to 2 at ma. A process
Pi may cntcr  its critical section only if either yi = false (meaning t,hat the other process is not
interested) or if t = j, for j # i. The latter case corresponds to both processes being interested
in entering the critical section but Pj being the last to pass through the signing inst,ructions  at
(!2, m2).

To formally prove that this program is correct we first prove scvcral  invariance properties.

Lemma A:

IIere 4!$.6  stands for &!2..6.  Thus the lemma states that

y1 -= true if and only if 7r1 E (1~~13,  !4, &j, &j}.

Proof:
-=.

To prove the Lemrna we take

$71 : (Yl = !2..6)

and show that it is invariant under every transition, i.e., every transition leads from ‘p1  to (~1.

The only transitions that can affect the truth of ~1 arc 4!1 -+ !2 and &j --+  17.

In !I -+ 12 both ~1 and at! ‘2.6 become  simultaneously true. Similarly in 43 -+ f!7 both yl and
at !2.., become  simultaneously false. Thus

1. i- (1/l = e2..6) 1 o(Yl = 12..6) by TRNS

2. t- {u@O, m0)  A [(Yl, Y2, t> - (false,false,  I)]} 3 (2/l = !2..6)

3. t- q  (yt = !2..6) by I, 2 and TINV
J

Lemma B:

The lemma is proved by a symmetric argument.

Lemma C:

I- (t = 1) v (t = 2)

72



This lemma states that the only possible values of the variable t are 1 or 2.

Proof:

The Lemma  is clearly provable by the JINV principle. Obviously, it is true initially since
t = 1. The only transitions that modify the value of t set it tither to 1 or to 2. Thus P always
leads to a state satisfying (t = 1) V (t = 2). ,

Lemma D:

t- !5,6 1 [(“y2) v (t = 2) v m2]

Proof:

ht 972 s t a n d  f o r  &j,s 1 [(-7~2)  V (t = 2) V mz].

It is clearly he initially since t- !!() > -&j,f3. To show that every transition leads from ‘p2 to
(~2,  consider the only transitions that may falsify 992,  i.e., that may possibly lead from ‘p2  to “‘~2.
Potentially  they arc:

0 i$ + e,. This transition is possible only under -yz which makes

(-4~2) V (t = 2) V m2

0 e, --+ es. This is possible only when t # 1 which by Lemma C makes

(“~2) V (t = 2) V m2

again true.

The other transitions we should consider are transitions of P2 while PI is already at e5,c. The
only ones to bc considered arc those  which afrcct  any of the variables in -y2 v (t = 2) v m2.

- 0 ml --+ rn2. Causes m2 to become true.

l m2 -+ mg. Causes t to be set to 2.

@rq3+m7. Sets y2 to false, making -y2 true.

The lerrima follows by the IINV principle.
II

Lemma E:

’ t- m5,6 3 [(-y1)  v (t = 1) v e,]

The lcrnrna  is proved  by ;I cornplclcly  symmetric argument.

73



Theorem:

t- (-e,l6) v (‘-5,s)

This theorem proves the mutual exclusion of the processes.

Proof:

1. k (!5,6 A m5,6)  1 [((-Y2) v (t = 2) v Wj) A ((-VI)  V (t = 1) V t,)]
by lemmas C, D and PR

2. i- (!5,6 A 7n5,6)  1 [Yl A Y:! A 4 A -21 by lemmas A, B, LOC and PR

3. i- (&,6 A 7n5,6)  1 [(t = 1) A (t = 2)] by 1, 2 and PR

4. i- +5,6  A m5,6) by the equality axiorns and PR,
using the domain fact that 1 # 2

5. !- ke5,6)  v (“m5,6) by PR
ml

Next we will prove accessibility. We will only prove:

Theorem:

The rcsull  for PQ  is completely symmet,ric.

Proof:

The proof will proceed by a sequence  of statements mosl of which are proved by lhc KVNT  rule
in the version whose conclusion is cp > 0 $. Simple passages juslified  by propositional temporal
reasoning will not be fully presented and their omission is denoted by mentioning PTR in the
justification clause.

1. I- (k’4  A m3,4 A t = 2) > 0 !5 by ICVN’L  wiLh k = 1,
using lemma A

2. i- (if3 A m3,4 A t = 2) 3 o(l$ A +rn3,4 A t = 2) by EVNT wikh k = 2,
using lemmas  A, i3

3. I- (l$ A n&g,4 A t = 2) > 0 L5 by 2, 1 and OC

4. I- (&,4 A m3,4 A t = 2) 3 0 L5 by 1, 3 and PR

5. I- (&,A A m2)  3 O[& V (!a,4  A 7q3,.1  A t = 2)] by ICVN’I’ wiLh k = 2

74



6. t- (&,4 A m2) 3 0 & by 4, 5 and PTR

7. I- (13,4 A ml) 1 0[[5 V (&3,4 A m2>] by EVNT with k = 2

8. I- (&,A A ml> 1 0& by 7, 6 and PTR

9. I- (e3 A mo) 1 0[!5 V ([3,4 A ml)] by EVNT with k = 1

10. t- (13 A mo) > 0 15 by 9, 8 and PTR

11. I- (4 A mo) 3 0[& V (&,4 A mt) V (& A mo)] by EVNT with k = 1

12. I- (J!$ A mo) > 0 15 b y 11, 8, 10 and PTR

13. t- (&,4 A m) 1 o& by 10, 12 and PR

14. I -  (45~ A my) 1 O[h V (&,4 A mo)] by EVNT with k = 2

15. I- (!3,4 A m7) 1 0 e5 b y 14, 13 and P T R

16. I- (!3,4 A n26) 1 0([3,4 A W) by EVNT with k = 2 and lemma E

17. c- (!3,4 A m6) 1 0 e5 b y 16, 15 aud P T R

18. I- (l3,4 A &) 3 0(!3,4  A m6) by EVNT  with k = 2 and lemma E

19. t- (43~ A rng) 1 0 h b y 18, 17 and I’TR

20. I- (i&-,4  A rn4 A t = 1) 3 o&,4 A 74) by EVNT with k = 2 and lemma A

21. t- (&,4 A rn4 A t = 1) > 0 15 by 20, 19 and PTR

22. I- (i&,4 A rn3 A t = 1) 3 0(4!3,4  A m4 A t = 1)
by EVNT  with k = 2 and lemma A

23. I- (!3,4  A m3 A t = 1) r) 0 !5 by 22, 21 and i’TI1

24. t- (es,4 A mg,/t A t = 1) > 0 !5 by 2 I, 23 and TX

25. t- (&,4 A w,4) 3 0 h by 4, 24, lemma C and PI1

We may surnrnarize  now as follows:

26. i- f3,4 1 [&,,/I  A (w V 7% V m:! V m3 V m4 V m5 V mg V nq)]
by LOC

. 27. I- t3,4 3 0 e, by 26, 13, 8, 6, 25, 19, 17, 15 and Yl’R

28. t- t2 1 0 &,4 by EVNT with k = 1

29. I- l2 3 0 t5 by 27, 28 and OC

30. I- Cl 3 O& by EVNT  with k = 1

31. I- Cl 3 0 t5 by 29, 30 and OC
J

7 5



F l COMPACT PROOF PRI CIPLES

Tn the preceding scclions  we inLroduccd  a comprehensive proof system for proving arbitrary
temporal properties of concurrent programs. However, as demonstrated in the last examples a
fully formal proof Lends to be rather lengthy and sometimes tedious to follow. Consequently we
will next discuss shorter and more compact representations of proofs and corresponding compact
proof principles. All Lhcsc principles can be derived in the basic proof system presented above.
Consequently, a proof according Lo these principles can always be mechanically  expanded into a
more detailed proof using just the basic axioms. WC will discuss the three main classes of properties
one may wish to prove about programs, namely: invariance, liveness and precedence properties.

13. THE INVARIANCE PRINCIPLE

The IINV  principle does not significantly simplify formal proofs. MosL of the needed work
in applying the IINV principle is in establishing the premise that the program P leads from cp to
‘p. Several heuristics or meta-rules  can bc suggested in order to reduce the number of transitions
that have to be checked, which in the worst case is proportional to the size of the program. For
example:

a) Only transitions that modify variables on which ‘p depends  should be checked.

b) Assume that cp has the form ‘p = (~1  V ‘p2 (similarly  for implication), and Lhat
some variables yr,. . , Yrn appear  only in cpr.  Then, in checking transitions that
only modify Lhcsc variables, it is sufhcient  to check transitions that may falsify
(~1  and one may assume in checking them Lhat (~2  = false.

c) Assume that an invariance x has already been established before Let

[P A xl 3 (- ate)

for some location C. Then no transitions of the form I --+ C’ need ever be
considered in showing that P leads from ‘p to $.

A simple generalization of the ITNV  rule is given by:

Invariance Rule -- CINV

A .  t-cp31c,

n. I- [at& A g = g(C)] 3 cp

C. I- P leads from ‘p to p

I- w
- -

Certainly premises I? and C csLablish  I- !I ‘p according to HNV,  from which by premise  A and the
0 0 rule, t- Cl $ follows.

76



The advanLagc  of the GINV principle is that no addilional temporal  reasoning is required  and
the rule can be proved compleLc by itself. J3y this we mean that, given a program P, any state
property $ which is invariant for all executions of P can bc proven invarianl by a single application
of the GTNV rule and no addilional temporal reasoning.

Theorem:

The GINV rule is complete  for proving invariance properties.

Proof:

J,et $ = $(T;  ?i; ?j) b e a state property, possibly dcpendcnt  on the input variables I;. We deline
a state s = (Z; 7) to be - accessible in P if there exists a segment of some computation iniLialized
with ?Z = T that reaches s, i.e.,

(20; g(‘i)) + . . . + (Z; q).

- - _-Define the predicate ‘p = ‘p(z; K; y) by:
- -

‘p(  t; C; ?j) = true ti (e; q) is T-accessible.

Thus, ‘p characterizes a.11  the states that are ?&accessible.  We will show that the predicate ‘p
so dehned  satisfies, together with $, all Lhc  prcrniscs required by the rule GJNV.

Consider premise  A. Since $ is invariantly true in all computations of I’ it must be true for
every accessible state (2; 7).  Consequently

-- --
p(E;l;q) 1 4(W;‘i’j);

when generalized to arbitrary T, Z and 11 Lhis implies

Since we assume that the underlying domain theory is adequate for proving all classically sound
formulas this implies

Consider now premise J3.  Since every initial state is by definition accessible we certainly have

I= p (5; Ilo; g(z)).

Again by cornplcteness  of our domain part with respect to classical formulas, this leads Lo

I- [at?, A  y =  g(T)]  3 p(:; ?fr;  g).

Finally, consider  premise C. Clearly every transition in P leads from an z-accessible state  to
another ?&accessible  stale. Consequently

J= P leads from ‘p to ‘p.

77



From this premise  C follows by completeness of the domain part.
ml

In Lhe preceding theorem we have only shown the existence of an appropriate state predicate
cp,  WC have  not discussed the question of the exact formal language in which such a predicate
can be expressed. Ilowevcr,  assuming that our domain contains the integers or some isomorphic
struckure,  and using a first-order language, it is not difficult to show that the statement:

“There exists a finite computation of I’ leading from (&; s(t)) to (7; $”

can bc Gijdel-encoded  into a first-order statement over the integers.

14. LIVENESS PRINCIPLES

As a typical example of a detailed proof of liveness properties WC may rccxaminc the proof of
accessibility for the mutual exclusion program (1Cxample 3). The structure of such a proof proceeds
through a chain of events characterized by state  assertions. Let the eventuality to be proved  bc
‘p > O$ where h~th cp and $ arc s tate  propert ies . We may regard  $ = cpo as being Lhc last
assertion in the chain. Then we identify an assertion (~1  such that by a single application of the
EVNT principle we can prove

In the example considered we have

pl : t4 A ‘rn3,4  A (t = 2).

Next, we idenlify an assertion ‘p2  such that by a single  application of the EVNT  principle we
can prove

-

)- P2 1 O(v31  v Icl)*

In the general step,  WC identify an assertion cp;  such that by a single application of the EVNT
- principle WC can prove

.
Final ly  WC  have to  p rove  cp 1 (  v cpi)

wher e  P O ,  PI,  .  .  l  ,R
is the chain of assertions

i=o
colist,rt~cLd.  WC may summarize this proof pattern by Lhc following proof principle:

78



The huin Reasoning Proof Principle --- CITAIN

LetcPo,cPt,  --*,cp7- be a sequence of sLatc  properties satisfy-
ing the following rcqui rements:

A. I- I-) leads  from p; LO  V pj for i = 1, . . . , T.
j<i

B. For every i > 0 there exists a k = k; such that:

I- ok leads  from p; to V pj
j<i

C. For i > 0 and k = k; as above:

k pi 3 0 [( V $7j) V Enabled]
j<i

I- (\jPi) 1 (\jipi)UPo
i=o i=l

--

Proof:

To *justify this principle we will prove by induction on n, n = 0, 1, . . . ,T, that

I- (\jPi) 3 (ila;)UPo.
i=o i=L

T+‘or n = 0 we have l- ‘p()  > cp()  from which trivially follows by axiom A9

Note that WC interpret an empty disjunction as false.

We assume that Lhc  statement above  has been proved  for certain n md we attempt to prove
it [or n + 1.

Consider the EVNT  rule with ‘p = (~~+l,  + = ( \j pi).  By premise A of CHAIN we obtain
i = o

that P leads  from pn+r  = cp to

( V Pj) = (%a+1  v cv Pi)) = (L3 v G

jin+l iln

This provides premise A of EVNT.  IJet k = k,+l. Then by premise B of CHAIN, Pk leads

f r o m  (Pn+r = $2 t0 (  V pj) = +. 5‘imilarly, premise C of CI-IAIN  yields that
. j<n+l

79



By the EVNT  rule it follows that

3* k %a+1 3 Pn+lU(  \jPi)*a
i = O

By the induction hypothesis and the UU rule this yields

4* I- On+1 3 Pn+lU(( QPi)UPO)*
i=l

Again by the induction hypothesis using part of h9, 202  > u11Uu12,  WC can obtain

i = O i=l

Combining this with 4 above yields

n+l
6. t- ( V pi) 1 (P~+I U(( (’ pi)Upo)*

i = O i=l

BY T38, Pwlur)  1 (P v q)U r, WC can reduce the nesting depth of the U operator to get:

n+l n+l
7* k ( V Pi) 3 (( V Pi)UPO)

i = O i=l

as needed.

Taking n = r concludes the proof of the principle.
J

111 presenting a proof according to the chain-reasoning principle it is usually sufhcicnt  to
idenLify cpo,  cpr, . . . , pr and for each i to point out the “helpful” process I’k = Pk,. It can be left
to the reader to verify that premises A to C arc satisfied for each  i = 1,2, . . . , T.

We prefer to present such proofs in the form of a diagram. Consider a diagram consisting
of nodes that correspond Lo the assertions ~0, (~1, . . . , (P,.. For each  transition affected by some
process I:, that leads  frorn a sLaLc R satisfying Cpi Lo a state  s’ satisfying c/3e,  e < i, wc draw an
edge from the node pi to the node pe and label  it by Pj, the name of the responsible process.
All edges corresponding to the helpful process I’, = f’k; are drawn as double  arrows. We do not
explicitly draw edges corresponding to transitions frorn pi back to itself. However it is assumed
that such edges may exist for all but the helpful process for pi.

As an example WC present a diagram form of the proof of accessibility for the Mutual Exclusion
program. Tt is given in Kg. 1. in constructing such a proof WC  rnay freely use any invariants
previously derived.

80



1 3,4 3 m7 

P2
?

P* : 13,4’m6  <.

p2
r - 1

Fig. 1. Proof Diagram for the Mutual Exclusion Program

81



In this program, and typically in all non-terminating programs that have no semaphore in-
structions, WC do not have to check premise  C of the CIIAIN or J3VNT rule. This is bccausc  in
non-terminating programs without semaphores every process is continuously enabled and therefore
condition C is automatically satisfied.

In contrast let us consider the proof of accessibility  for example 2 - a program with semaphores.
llere wc want to prove !!, 3 0 11. The main diagram here is very simple:

I t  denote ;  a  single  app l ica t ion  of  the  IWNT rule wi th  ‘p :  atto and  $ :  at!, wi th  Pk =  PI
being the helpful process.

IIowever,  in order to justify premise  C, which is not trivial in this case, we have to prove

k e, II op, v y > 0).

For this we have to consider Pz’s position. If 1’2 is at mo or m2 then 7~ = I by the invariant 11
proved above, The only other  cast is when II)% is at ml where by a single application of the EVNT
rule it will eventually  move to ~74 producing a positive value of y. This may bo represented by a
secondary  diagram:

The diagram representrttion  of a proof according to the CHAIN principle is very similar to
the proof  lattices  int.roduced  iik [OL] as a concise presentation of a proof of a liveness property.
A superficial dif’fercncc  is that they choose to rcprcscnt  as dges  the consequences of the WNT
rule,  while  iu our rcprescntation  cdgcs stand for the premises of the l3VNT  rule which arc ;Jso the
premises Lo the CHAIN  rule. To illustrate this difference,  consider the following trivial program:

e,: y:=y rng : go to rno
e, :

- PI - - P2 -

The liveness properly to bc proved  is  .!a 3 0 L1. Bclow are diagram representations of the
CIIAJN  principle and a proof lattice according to [Or,].

. CT LAIN Diagram Proof Ilattice

As WC  see, the CllAIN diagram contains a self-cdgo,  labellcd  b y  P2 (Lhis tirnc d r a w n  cxplicit,ly)
and a helpful cdgo labcllcd  by 1’1. The process 1’1 is guaranteed to get us to !I. As a conscqucncc

82



of this, by the IWNT rule,  !O 3 0 !I. This conclusion is rcprcscnlcd  in the proof lattice by a
single edge from lo to !!.I. Thus, the dill’crcrlt  choices of representation lead to the following minor
syntactical differences between  CHAIN  diagrams and proof lattices:

(a) I’roof lattices are acyclic, whereas CIIAIN diagrams are only weakly acyclic, i.e., may
contain self-loops.

(b) In CIIA[N  diagrams, edges arc lahclled by the processes responsible for the transition.
Special ident,iXcation  is provided for edges  traversed by the helpful process. Tn proof
lattices,  we no longer care about the identities of the processes since progress along the
lattice has already been established.

However ihese differences are minor and a simple procedure for translation between  CIIAIN
diagrams and proof lattices exists. The important part in both is the identification of the in-
termediaLe  assertions that are reprcscnted  as nodes. ln constructing a proof, this is usually the
creative and most demanding process. Ijoth graph presentations provide a natural and intuitive
rcprcscntation of these assertions and the precedence relations between them.

The chain-reasoning principle assumed  a finite number of links in the chain. It is quite  ade-
quate for finite-state programs, i.e., programs whose variables  range  over  finite domains. IIowcvcr,
once WC consider programs over the integers it is no longer suflicient, Lo consider only finitely many
assertions. In fact, sels of--assertions of quite high cardinality are needed. The obvious gcner-
alizatiori  of a finite set of assertions {cpi  1 i = 0, . . . , r} is to consider a single  assertion cp(fl),
pararnet,rized  by a parameter QI taken from a well-founded  ordered set (A, <). Obviously, the most
important property of our chain of assertion is that program transiLions  evenlually  lead from (p;
to-pi wi th  j <  i. This property can also bc stated for an arbitrary well-founded ordering. Thus
a natural generalization of the chain reasoning rule is the following:

The Well Founded Liueness  Principle - WE:T,T,

Let (A, --x)  bc a well-founded  set. Let cp(~)  = ‘~(0;  ?Z; F; 1/) bc a parametrized
state formula.

Let 11 : A --) [l . . k] be a hclpfulncss  function identifying for each (x E A the
helpful process Phccr)  for states in P(Q).

A.  l- 1’ l ends’ f rom I to $ V  (3p 5 a  .  p(p))
- B .  l- Phca, l e a d s  f r o m  cp(a) t o  1c) V  (3p i cy .  p(p))

c .  I- p ( a )  3 O[?) v  (3p i (1 .  p(p))  v  l37Labled(P~(,)j]

I- (30 .-i&4)

~-__-

2 p a  l P( 4 )W

I _---_--

A justi lication  of this rule can again bc conducted, based  on inducLion.  Now, however,  induction
over arbitrary well-founded  sets is required.



15. EXAMPLE 4: BINOMIAL COEFFICIENT

As an example for the application of the Wl3LL principle, we consider the following program
that computes  the binomial cocflkient (z) for inputs 0 5 k 5 n.

(ylr y2, y3, y4) := (n, 0, 1, 1)

l!, : if y~r = (n - k) then go to 11

t?6 : request(yA)

e, : y1 := y1 -- 1

t* : go to t,

1, : halt _.

- PI -

mg : if y2 = k then go to ml

m2: y2 := y2 + 1

mg : loop until yl + y2 5 n

m8 : reqUe8t(y4)

r - __-
my: t2 := y3/y2 1
mg : y3 := t2

m4 : go to m3
ml : halt

- P2 -
The labclling scheme  of the program has been  constructed in a way that simplifies the expres-

sion of the assertion p(a).

The computation of this program is based on the formula:

n

0

n 8 (n - 1). a. (n - k + 1)
=

k 1.2...k  ’

The vducs of yj, i.e., n, n - 1, . . . , n - k + 1, are used to colnputc  the numerator in PI, and the
values of ~2,  i.e., 1, 2, . . . , k, are used to compute tho denominator. ‘l‘hc  process 1’1 mu1 tiplies
n.(n-l)...(n-k+l)’ t  y111 o 3 while P2 divides y3 by 1 . 2 . . . k.

-
The instruction

mg : loop until y1 + y2 5 n

- guarantees  even divisibility of y3 by ~2.  It synchronizes /‘z’s operation with that of PI to ensure
that y3 is divided  by i orlly :\ltor  (n - i + I) has already bwn  rnultiplicd  into it. WC rely hcrc  on
the rrl;lt,f~crrl:llical  thcorcrn  that Lhcl product of i conscculivc  intcgcrs  n e (n - I) + . ’ (n .- i + 1) is
always divisible by i! (the quotient actually being  the integer (1>).

The critical sections !!3..5 and mg..7 arc mutually protected by t,hc scrnaphorc  variable y4.
This protection ensures that y3 is not updated by Pz between, say, the computation of y3 . yl and
the assignment of this value to ~3. Without this protection, the updated value might, have been
overwritten by 1’1.

84



WC start by esl;~blishing  some invariant properties of this program.

II : I- (att3..5 + atm5..7 +  ~4 =  1) A (~4 L 0).

‘This is the usual semaphore invariant. It can be proven  by observing that initially this sum
equals 1, and then by considering all possible transitions. For example, the &3 --+  f& transition
changes  atl3+.5  from 0 (j’ulse)  to 1 (true), and also decrements y4 by 1, leaving however the sum
constant. From II we can deduce mutual exclusion of the critical sections,  i.e.,

t- (-!3..5)  V (-m5..7).

As a conscqucnce  of this we can establish:

I2 : t- (e, 3 tl = y3 *yl) A (n&6 > tfL = y3/y2).

This holds due to the impossibility of interference by P2 while PI is at 4.

I3 : t- (n - k -I- ute2..6) 5 YI 5 n.

--.
This invariance sLal,es that y1 always lies beLween  n- k and n. When PI is at &.s,  yl > rl- k,

whereas FI is at other locations, y1 > n - k. To verify 4 we need only consider the transitions:

l !7 --) !s which maintains n -- k < y1 5 n, assuming it was previously known that
. n -- k 2 y1 5 n.

l !2 --+ &.j which results in n - k 5 yl - 1 5 n from n - k < y1 5 n.

I4 : t- 0 _< y2 5 (k - utmz).

This invariance bounds Lhe r>.ngc  of ~2. We need cons ider  the  transilions  mg -+ m2 and
m2 --) nz4 which can be shown to maintain 14.

-
15 : t- utm7..8 2 (yl + y 2 )  5 n-

IIcre  we should consider two transitions:

* mg -i ms which is possible only if currently y1 -I-  y2 5 n.

. e, --$ & is  the only transition modifying yl. IIowcvcr  since it decrements y1 it
ccrLainly preserves yl + y2 5 n.

IA us define the following virtual variables:

l y; = if ate,,, then y1 - 1 else y1

Y$ =  i f  utmpg  t h e n  y2 - 1 else y2

85



These variables  are roughly equal to y1 and y~2 respectively and differ from them by 1 in certain
ranges.

16 : I- y3 = [n . (n - 1) l . . (yr + I)]/[1  l 2 * l * yz].

To verify this invariant WC have  to check the transitions !4 --+ !3, m6 -+ mg. Making use of
12,  they can be shgwn  Lo maintain 16.

I7 : I- [ate1 3 y1 = (n - k)] A [utml 1 (~2 = k)].

IJsing  16, 17 and the definition of yf, yz we obtain partial correctness of this program, namely

I- (uth A atml) 3 [y3 = (;)I.

To prove termination we will use the WELL rule in order lo establish I- 0( ati!1  A utml).  As
the well-founded domain we take

(A, 4) = (N x N x N, -&).

That is, the set of tfiplets of nonnegative intcgcrs  ordered by lexicographic ordering. This ordering
dcfmes  (ml, m2,  m3) 4 (nl, n2,  n3) iff for the lowest i, i = 1,2,3  such that m; # n;, m; < n;.

For our goal assertion we take $J : at!,  A atml. The parametcrizcd  assertion is given by:

‘Pb; k,mj;  yl, m) :  (~1 + k - ~2, j ,  i) = CY.

The helpfulness function is given by:

h ( a )  = h(r, j, i) = (if i = I then 2 else I).

Thus as long as the first process PI has not terminated WC rely on PI to bc the helpful process.
Once it has terminated, we take I’2 to be the helpful process.

We have to show that all the three prcmiscs  of the WIIXL rule arc satisfied.

Consider first premise A. WC have lo show that every transition of I’ leads to cp(jl)  with p 5 a!
if $ is not already satisfied. Ijy simple inspection of all the possible  transitions WC find that they all
lead from (e;, mi) to (!;I, mjt) such that either  i’ < i or j’ < j except for the following transitions:

-0 !2 --+ es. But this transition decrcmcnts  y1 producing a strict decrease in yl + k- y2
which is the first component in (Y.

0 m2 -+ mg. Tn a similar way Lhis transition increments 7~2,  leading to a dccreasc  in
YI + k - ~2.

l mg --+ my. This transiLion leaves c~ at the same value.

. Consider now premise IX As we have shown above, all transitions provitlc  a strict decrease  in
CF. The only exception  is  mg --+  mg. llowevcr  this is a &transition which is considcrcd  helpful
only when 1’1 is at !!I. J3y 17,  at  this point yl = (n - k) so that in view of 14,  yl + ya 5 k and
hence the only transition y)ssible from nag  is rng + ma.

86



To show premise C we have to prove that Ph is always eventually enabled. Consider first the
case that h = 1. The only location in which it is not immediately enabled is when PI is at &G
while  I’2 is at rng..7  (in view of 11). Ilowever by simple chain reasoning it is obvious that in such
a case, I>2 will certainly reach rn4 in which y4 becomes positive and PI enabled.

The case h = 2 is even simpler because it is only considered when PI is at II. Consequently,
even when & is at m8,  which may potentially raise some problems, we have in view of 11 and at.!,
that 7~4 > 0 and Pz is enabled.

Thus we conclude that $J : at!, A atml must eventually be realized and therefore the program
must terminate.

16. PRECEDENCE PROPERTIES

The next class of properties WC will consider and provide proof principles for is that of prow-
dencc  properties. These arc properties, usually needing the U operator for their expression, which
ensure that some event pr&edes  another event, or that a certain event will not happen until an-
other event happens first. In view of the fact that the basic F’A112  and EVNT  rules did actually
provide a conclusion containing the U operator, they may be naturally utilized  to form precedence
proof principles which are generalizations of the corresponding liveness  principles.

In the following we will often consider nested until expressions in which Ihe ncsling  always
occurs in the second argument. We therefore adopt the convention of representing the nested
formula:

Pn u (%--I u ( * * * (cpl u p,)...))

by:

(Pn u Pn-1 u . l . ‘PI u cp(-).

The semantic  meaning of this formula is that, starting from the present  there is going to be
;I pcrioti  in which ‘pn continuously holds, followed by another period in which (Pi 1 continuously
holds, . . . , followed by a period in which ‘p1 continuously holds, until Finally ‘po occurs. Any of
these periods may bc empty, but the occurrence of cpo is guaranteed.

Let us consider first the proper  generalization of the CHAIN rule in which we assume a finite
chain of’asscrtions  cpr,  (pr-  1, . . . , (~1  leading to the goal + = cpo.

IA!1  0 < pl < p’L < . . . < p, = T be  a  pa r t i t i on  of  the index rnngc in10 N cont iguous
segrncnls.  Then WC may formulate the following chain principle I’or prccctlcnce  properties:

87



The Chain Rule for Precedence Properties - P-ClIhZN

IJet PO, Pl, l ’ ’ 9 pr be a sequence of state assertions, and
0 = po < pl < p2 < . . . < p, = r a partition of
[l . . T]’

A . I- P leads from cp; to (Vpi) for i = I, . . . ,T.
j<i

B. For every i > 0 there exists a k = Cc; such that:

k ok leads from pi to ( V pj)
j<i

C. For i > 0 and k = k; as above:

I- p I 0 [ ( V pi) V EnabZed(Pk)]
j<i

r
I- (VPi)  1 (ow--l...ThuPo)

;= 0

where

4c is V pi for C = I, . . . , 8.
PL--1 <j<pf

The conclusion states that starting at a state that satisfies one of the cp;,
P*

i = 0, . . . . r., we

are guaranteed  LO have a period in which ( V ‘p. continuously holds, followed by a period in3)
j=p,--l+l

P.-l

which  (  V pj)  cont inuous ly  ho lds ,  e tc . , until cpo is finally realized. Any of these periods may
j=p.-.z+l

be empty.

P r o o f :

To juskify the soundness of this conclusion we will first prove  it for the most refined partition
possible, namely:

(VPi) 3 (cP,UPrF-lUP7-2U  . ..(plU'po).
; e 0

This is proved in a way similar to the juslification  of the corresponding livcncss  principle. WC
show, by induction 011 n, n = 0, I, . . . , T; that

n.
I- (V Pi) 3 (Pn u Pn--1 U - * *Cpl U PO)*

i = O

lqor n  = 0 WC have I- cpo > ~0 which is the inducl,ion  statcrncnt  for n = 0.

88



Assume  that the statement above has been proved fo; a certain n and consider its proof for
n+ 1.

Consider the EVNT rule with cp = (P~+I, II] = ( \j cp;). As s lawn1 in the proof of the livcness
i = o

case, all the premises of the EVNT rule are sat,isficd. Consequently we may conclude:

I- Pn+l  1 Pn+lU  (QPi)*
i = O

IIy the induction hypothesis and the UU rule this yields

I- Pn+l  1 (Pn+lU (Cpn U --.(pl  UCp,>.

Due to I- v > (‘(LUV)  which is a consequence of axiom A9, the induction hypothesis can also be
written as

)- (VPi) ’ Pn+lU (PnU
i = O -.

Taking the disjunction of the last two gives

n+l

I- (VP;) 3 Pn+lU(PnU *
i = O

which is the required staternent for n + I.

Consider now a coarser partition:

. . <

. .

‘Pl u PO>*

PIUPO),

0 = po < pl < pa < . . . < p, = r.

Ijy consecutively  merging any Lwo contiguous assertions that fall into the same partition cell, using
thcorcm  T38:

I- (Pi+1 u (Pi u Cp)) ’ ((Pi+1 V Pi) u P),

WC obtain the coarser  conclusion:

j- ’ c”i;p,J 3 (( V pj) U ( V Pj) u ’ * ’ ( V 4 ’ .‘I)* J
i = O h-1 <j<p. pa--2 <i<P.-1 0-C j<pl

Examples:

As dur first example, let us consider the Mutual Exclusion program analyzed above. We have
already  proven that mutual exclusion is maintained by this program. W C have also proven  the
livcncss property that if PI wishes Lo enter iLs critical section  it will eventually gain access  Lo it.
A more  discrimin:kLing question is that, of how fair is our algorithm. That is, if PI wishes to enter

89



its critical secLion,  how many times will Pz be able to en:tcr its own crilical  section before  PI? Is
that, number bounded? WC refer to this question as the problem of bounded overtaking. Namely,
how many times can 1-)2  overtake PI before PI enters his critical section.

Our first analysis makes use of Fig. 1 without any modifications. WC only read from it Lhe
stronger conclusion according to the stronger I”-CIIAIN  rule. As a partition we choose  pl = 7,
P2 = 9, p3 = T = 11. Consequently, from Lhe diagram of Fig. I we conclude by the P-CHAIN
rule:

Replacing each of the right hand side disjunctions by a weaker property and the left hand side
disjunction by a stronger statement we obtain:

I- !3,4 1 (( -5,6) 11 m5,6 I1 (‘-5,s)  u e,).

This implies that if PI is at the wailing loop in [3,4, there will ho a period in which P2 is
not in the critical section rn5,6, followed by a period in which -1p2  is inside the critical section mfi,g
followed by a period  in which I’2 is outside the criLica1  section which terminates by PI entering
his critical section. Since any of thcsc periods may be empty this is a worst-case analysis. But it
certainly assures l-bounded overtaking, i.e., once -1’1  is in !3,4, 13 may overtake it at most once.

Having successfully analyzed the situation from &,4 on we may attempt to obtain a similar
analysis from the moment  that PI enters &.

This analysis calls for a refinement of the diagram of Fig. 1. The following is a subdiagrarn
that should replace the node  corresponding to (~12  in Fig. 1. It consists of three nodes Iabelled
respectively (~7.5,  ‘pg.5  and ‘p11.5. The fractional indexing indicates tllal ‘~7.5  should bc insert&
between  ‘p7 and ‘pg in Fig. 1. The edges out of ‘p13  should cntcr  one of these three  nodes.  Edges
out of ~37.5  lead Lo some of ~1,  . . . , ~37.

 1’1
‘p7.5: t2, (77~3,4 A t = 2) V m0..2  V m7 - >{P1..7)

A

l’2

p2

Similarly for edges out of cp9.5  and cp 11.5. Considering the updalcd diagram composed of Fig.
1 and the above subdiagram WC obtain the following conclusion:.

t- h.4 -3 i= 10 i=8 i==l

90



This again leads to

t- b.4 1 ((“m5,6) u m!j,tj u (“m&6)  u &j),

which ensures l--bounded overtaking even frorn &. Encouraged by this, we may next ask whether
a similar result can be obtained from Cl. Unfortunately this is  not the case.  P2 may cntcr  its
critical section an arbitrary number  of times while 1’1 is at !I. This is obvious since while being
at 11,  PI has not yet modified any variable in a way that will show that it is not still in Cu. And
naturally while PI is at to, 1’2 may enter the critical section any number of Limes if the algorithm
is correct.

THE WELL-FOUNDED PRINCIPLE FOR PRECEDENCE PROPERTIES

A natural extension of the P-CHAIN rule Lo programs that require infinite chains of assertions
again uses well founded ordered  sets.

Let (.A, 4) be a well founded ordered set. WC require however that the ordering is total (or
linear). That is, for every two distinct elements u11,02  E A either  01 4 (~2  or ~2 + 01.

--.

Well Founded Precedence Rule --- P-WELL

L e t  ~(0)  =  ‘p( - -cu; T; y) be a parametrized state assertion
with a E A.

Let h : A + [l . . AT] be a helpfulness function.
LA!t a1 + a2 < . . . 4 cy, be a sequence of elements of A.

t- P leads from cp(a) to $ V (I/? 5 0 . p(p))

l- Phca, leads from p(a) to $ V (ID -< (x . p(p))

t -  p(a) 3 O[$ V  ($3 i cy .  p(p)) V  Il:nabled(l’~(,)))

I- (30 i 0.3 * p(a)) 1 (tis u 49--l  u l * l $1 u $)

where

Note Lhat while  the range of Lhc paramctcr  in the assertions  is inlinilc,  Lhe partition is still
finite.

Acknowledgement:

We thankfully acknowlcdgc  the help extended to us by Yoni Malachi, 13cn Moszkowski, Stuart
I~ussoll, and l+an k Yellin  in reading Lhe manuscript. Special Lhanks are due Lo Evelyn I?Jdridgc-
Diaz for ‘I’EXing the manuscripl  and Lo Carol Weintraub  for Lyping  its lirst  draft.

91



REFERENCES

[ I I ]  I-Ioare,  C.A.R., “Communicating Sequential Processes,” CACM 21 (1978) pp. 666-677.

[ILL] Igarashi,  S.,  London, R.I,.,  Luckham, D.C., “Automatic Program Verification I: A
Ilogical  I3asis and Its ImplemenLat,ion,” Acta Informatica, Vol. 4, No. 2 (1975),  pp. 145-
182.

[KR] Kuiper, R. and de Roever,  W.P. “Fairness Assumptions for CSP in a Temporal Logic
Framework,” TC2 Working Conference on the Formal Description of Programming Con-
cepts, Garmisch (June 1982).

[ L l ]  Lamport, L . , “Proving the Correctness of Multiprocess Programs,” IEEE  Trans. Soft.
Eng. SE-3, 2 (Mar. 1977),  pp. 125-143.

[L2]  Lamport, L . , “ ‘Sornetirne’ is Sometimes ‘Not Never’: On the Temporal Logic of Pro-
grams,” 7th Annual ACM Symposium on Principles of Prograrnrniug  Languages (1980),
pp. 174-  185.

[LPS] T,ehmann,  D. , A. Pnueli, and J. S tavi, “Impartiality, justice and fairness: the ethics
of concurrent termination,” in Automata Languages and Programming, Lecture Notes in
Colnputer S&nce 115, Springer Verlag (198 I), pp. 264-277.

[M]  Manna ,  Z., “Verification of Sequential Programs: Temporal Axiomatization,” Theoret-
ical Foundations of Programming Methodology (M. Rroy and G. Schmidl,  cds.), NATO
Scientific Scrics, D. Reidel Pub. Co., Holland (1982),  pp. 53-102.

[MPl]  M a n n a , %. and A. Pnucli, “Verilication  of Concurren  1 P rograms :  The  Tempora l
Frame  work ,” in The Correctness Problem ir’n. Computer Science (R.S. Boyer and J S.
Moore, cds.), International Lecture Series in Computer Science,  Academic  Press, London
(1982),  pp. 215-273.

[MP2] M a n n a ,  %. a n d  A .  P n u e l i , “Verification of Concurrent Programs: Temporal  Proof
Principles,” Proc.  of the Workshop on Logic of Programs (1~.  Kozen,  ed.),  Yorktown-
IIeights,  N .Y .  (L98 L) .  Springer- Verlag Lecture Notes in Computer Science 131, pp.
200-252.

jMP3] Manna, 2. and A. Pnucli,  “Veriftcation  of Concurrent Programs: Proving Eventualities
by Well-Pounded Ranking,” TOPLAS  (1983, to appear).

[MI’41  M a n n a ,  Z. a n d  A .  P n u e l i , “How to Cook a Temporal Proof System for Your Pet
Language,” in the Proc. of the Symposium on Principles of Programming Languages,
Austin, Texas (Jan. 1983).

[OL] Owicki ,  S .  and  L .  Lamport, “Proving Livcncss Properties of Concurrent  Programs,”
ACM Transactions on Programming Languages and Systems,  Vol. 4, No. 3 (July t982),
pp. 455-495.

I 1PC P e t e r s o n ,  G.L., “Myths about, the hluLw.1  Exclusion Problem,” Information Proccssi  rig
Letters, Vol. 12, No. 3 (June 1981),  pp. 115-116.

[I’S] Pnueli, A. and R. Sherman, “Semantic Tableau for Temporal Logic,” Technical Report,,
CSSl-21,  The Weixrnann  Institute (Sept. 81).

92




