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Introduction

The work in CS 204 consisted of five problems. Each one was presented and discussed
during four class sessions, over a period of two weeks. As ideas were developed, members
of the class, working in groups, implemented their solutions and reported their results to
the class.

Each problem is presented here, followed by the class discussions, and is concluded
with a summary of the results obtained. In the interest of brevity, the participants are
identified by their initials, which correspond to the names in the following list.

DEK
JSW

RJA
KPB
DMC
KC
JF
DEF
AH
DPH
LAH
JEH
ARK
SSK
Y M
TPM
JLM
RJM
JCM
YOM
RGS
AIS
ARS
AVG

Donald E. Knuth (instructor)
Joseph S. Weening (teaching assistant)

Richard J. Anderson
Kenneth P. Brooks
David M. Chelberg
Kelly Cor the11
Joan Feigenbaum
David E. Foulser
Armin Haken
David I’. Helmbold
Lane A. Hemachandra
John E. Hershberger
Anna R. Karlin
Sanjay Kasturia
Yoni Malachi
Timothy P. Mann
James L. McDonald
Robert J. Meier
Jeffrey C. Mogul
Yoram 0. Moses
Ralph G. Saavedra
Andrew I. Shore
Alan R. Siegel
Allen Van Gelder





2 Introduction

Class notes for Thursday, October 1

At the first class meeting, DEK handed out all five problem descriptions, cand made
some introductory remarks about the purpose of the course cand the work expected from
the class. He emphasized that the object of the course was to work together in Ending
solutions, and that competition was to be avoided. Three of the problems have no published
solution, and the fourth and fifth also have potential for new ideas in their solutions.

Because of this, trial-and-error approaches to problem-solving are encouraged, and
the reports handed in should include a description of methods that looked promising but
failed. They should &so include some introspection, describing the way in which various
ideas were thought of and which ideas proved useful. This comes closest to methods used
to solve problems in all areas of computer science research. ,

DEII had brought along a copy of the course evaluation from a previous CS 204
class. Comments by the students in that class stressed the heavy workload, and generally
indicated that the course was a useful way to learn problem-solving skills, though not in a
formal way.
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Problem 1: Penny Flipping

A stack of n identical pennies has been neatly arranged so that each coin is “heads
up.” Then the following operations are done, ad infinitum:

(1) Flip the top coin.
(2) Flip the whole stack.
(3) Flip the top two coins.
(4) Flip the whole stack.
(5) Flip the top three coins.
(6) Flip the whole stack.

. . .
(2’ n - 3) Flip the top n - 1 coins.
(2 n - 2) Flip the whole stack.
(2n - 1) Start over again at (1).

For example, when n = 4 the stack goes through the following configurations of heads aud
tails (reading downwards):

Starting position HHHH
(1) Flip 1 coin THHH
(2) Flip 4 coins TTTH
(3) Flip 2 coins HHTH
(4) Flip 4 coins THTT
(5) Flip 3 coins HTHT
(6) Flip 4 coins HTHT

TTHT TTTH HTTT HHTH HI-HIT
HTHH THHH HHHT THTT HTTT
HTHH THHH TTHT THTT HTTT
TTHT TTTH HTHH HHTH HHEIT
TI-IHT HHHH THTH HTTH T T T T
HTTH TTTT THTH THH’I HHHH

after which the pattern repeats in a cycle of length 36.
Question: If we do one flip per unit time, at what times are all the heads up? The

answer to this question, when n = 4, is that HHHH occurs at time 36m and 36m + 17, for
m = 0, 1, 2, . . . ) and at no other times.

A ‘bit of study reveals that th e stack will indeed return to its initial state infinitely
oft.en,  regardless of the value of n. Furthermore if this happens at times 0, tl, t2, . . . , there
will be a first time tl, > 0 such that tk is a multiple of 2n - 2; this means that all heads
will be up ;Lt time i& and that step (1) of the algorithm will be next, so the process will
repcat itself. Then the heads-up times will be precisely tkm,  tkm + tl, . . . , tkm + t&r,
for m > 0._-

This problem has been used as an exercise in programming texts for several years
(e.g., in SIMULA begin by Birtwistle, D&l, Myhrhaug, cand Nyganrd, 1973), because it
makes a nice illustration of clenlentary  concepts. But the methods proposed for solution
in these texts rcquirc time proportional to tl,, so they are unsuitable ur~less  n is very small.
In fact, some years went  by before the case n = 54 was solved; and as recently  as I981 a
computer science professor in southern California decided to extend the known results by
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coding the problem in Apple II assembly language, but he turned his machine off after it
had run more than 24 hours on the case n = 113.

Your task is to find a way to solve this problem for 1 5 n 5 120, using only a few
seconds of computer time.

Class notes for Tuesday, October 6

DEK started the class by explaining that Problem 1 is really a “toy” problem, but
although it does not have any real-world applications, working on it is a good way to learn
problem-solving techniques.

A simpler case, namely flipping the top coin, then the top two, etc., and flipping the
whole stack of coins only once per iteration, has been considered before, and a solution
was presented in Mathetnatics iUag,zzine in March 1981 (pp. 51-59). The solution to that
problem is a sequence that has a much more regular appearance than the sequence in our
version.

GSK said that he had tried two approaches to the problem. The first was to try to
Gnd a recurrence relation that would give a description of each state (i.e., sequence of H’s
and T’s) from the previous state and the current operation being performed. For example,
if we are flipping the top k coins, and xi represents the state of the ith coin, then

I - -xi --k-+-l--i, ifick-
I -xci - x;, ifi>k

describes the transformation, where xi means the new value of xi, and the “bar” operator
means to switch from H to T or vice versa. DEK mentioned that this resembles meth-
ods that others have used in trying to solve the problem, none of which have been very
successful.

The other approach is to follow each coin as it moves through the stack. In the case
n = 4, we would now represent the transitions as

Starting position 1234
(1) Flip

--- - - - -
1 coin i234 3123 2314 1234 3124 2314(2) Flip - - -4 coins 4321 4213 z132 432i 3213 4132 ---

(3) Flip 2 coins 3421 2?13 i432 3?2i Z4i3
- - -

1432
(4) Flip 4 coins i2?3 3i42

- - -
2341 1243 3.L?2 234i

(5) Flip 3 coins 4213 4132
- - - -

4321 3213 4132 4321
(6) Flip

- - - -
4 coins 3i24 2%4 1234 3124 2314 1234

The effect of the first 2rz - 2 flips (the first column) is to move 1234 into 3124, and we can
use this to compute the configurations at the bottom of subsequent columns more quickly
than by simulat~ing  all 212 - 2 flips in each column. This is because the operations done in
each column arc now seen to bc a permutation that takes any configuration ~1~2~3x4 into
~3fi1~2ii4. Applying this to 3124 gives 23i4, and so on.
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By saving information that at first appears unnecessary, we have reduced the amount
of work to be done by a factor proportional to n. This also illustrates that working out a
small case by hand cm lead to insights that otherwise might not occur; RJM pointed out
that in this case it led to an algorithm whose running time is at most O(n3). DICK also
noted that testing a small case can point out what isn’t true about a problem; counterex-
amples are as important as theorems  when WC are exploring new territory. (For example,
we might conjecture that the coin at the bottom of the stack is always still there after
272 - 2 flips, but trying n = 5 would disprove this.)

KPB asked, however, whether anyone knew what the complexity of the “brute force”
solution really is; this must be known to decide whether any potential algorithm for the
solution really saves time. By “brute force” we mean applying the flips successively until
we reach a configuration in which all of the coins are heads up. JF noted that finding an
all-tails configuration at the bottom of a column was also sufficient; if this occurred in t
steps, then al! heads would appear after 2t steps. Assuming that a flip of Ic coins requires
computer t’ime proportional to k (i.e., that there is no special hardware), and assuming
that the first heads-up configuration occurs in column m of a diagram such as shown above,
AVG stated that the time to find that configura.tion is O(mn2),  since the time needed to
do the flips in one column is

1 + n + 2 + n + l l * + (n - 1) + n = gz(n - 1).

Therefore, unless m is large, we may not be able to improve the running time significantly.
DICK told the class, however, that his experiments showed m to be quite large com-

pared to n; thus improvements on the brute force method are worthwhile. It is fairly easy
to see that m is bounded by 2”, so the brute force method takes at most exponential
time. This led into a slight digression on the running time of algorithms in general. An
exponential time is usually considered far inferior to a polynomial time; for example 2” is
worst than rh3 for n 2 10. Thus problems whose only known solutions take exponential
time are often considered intractable. IIowcver,  a polynomial with a large exponent, say
nlooo, is really far worse than 2’” since n’“‘” is infeasible even when ?a = 2; so occasionally
an exponential algorithm may be preferred. If there is a polynomial-time algorithm for a
problem, however, improvements to it often lead to a reduction in the exponent.

RJM suggested the following way to approach the coin-flipping problem: let the 272 - 2
flips in one column be represented by a mat&; so for the case n = 4 we would have

Then the powers of the matrix M, such as
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describe the transformations that result from multiple columns of flips. By computing the
eigenvalues of M, we can find the the smallest k such that M” is the identity matrix. ARS
pointed out that this is too strong a condition; all that WC really need is a power of M
with no -1’s in it.

DEK mentioned that the sequence (flip n, flip k, flip n), which occurs in the statement
of the problem, is equivalent to flipping the bottom k coins in the stack. This can be used
to speed up manual computations.

DEK now returned to using the notation of permutations to represent the result of
flipping coins, and explained how permutations can be written as products of cycles. Given
any permutation, say

1 2 3 4 5 6 7 8 9
3 1 4 7 6 5 2 9 8 >

which maps 1 to 3, 2 to 1, etc., we can rewrite it in the form

(1 3 4 7 2)(5 6)(8 9),

which is a short way of saying that 1, 3, 4, 7, and 2 are a cycle, each one being mapped
to the one listed to its right, except that 2 is mapped into 1; 5 and 6 are interchanged;
and 8 and 9 are interchanged. Any permutation on a finite set has such a representation.
(See section 1.3.3 in volume 1 of Tile Art of Computer Progl*nJnming  for a more detailed
explanation.) The cycle notation is especially useful for taking powers of permutations,
since the power operation can be done on each cycle independently of the others. For
example, the square of the above permutation is (1 4 2 3 7)(5)(G)(8)(9), the fifth power is
w&9(4)(5  W)(8 919 and the tenth power is the identity permutation. DEK asked the
class how, given the lengths of the cycles of a permutation, to find the smallest power of
that permutation which is the identity, and RJA answered that taking the least common
multiple of those lengths provided the minimum.

KPB noted that reaching the identity permutation is not necessary here, since we are
only interested in whether the coins are heads up or tails. Also, the standard notation for
permutations only refers to the positions of the coins, so DEK decided to generalize the
notation. One way to do this is to use a. permutation on 2n objects, with the head and tail
of each coin being a separate object. Then flipping the first coin in a pile of four would
be (;;;;;;;;), and the first column of 2n -- 2 flips would result in the permutation

(
li22334?- _-,2 2 3 3 114 4), which is (1 2 3 i 2 3)(4 ‘i) in cycle notation. This is interpreted as moving

the object in position 1 to position 2, and so on. For n = 5, we get (1 -? 2 5 3)(-i 4 2 5 3)
after 8 flips, and here we see some redundancy in the notation: when there is a cycle in
which no coin appears twice (i.e., we don’t have both CC and Z), then the “complement” of
that cycle also appears in the permutation.

If p is the permutatiorl  representing the operations done in the first column of the
problem diagram, then powers of p will represent subsequent columns. For example, if
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. p = (1 2 3 4 5 6) then p3 = (1 4)(2 5)(3 6). This corresponds to the matrix

7

Here we see a potential problem: the absence of -1’s means that all coins are heads up,
but M3 is not the identity matrix. SSK pointed out that the matrix equation ’

1 1
Mt 0 : =.

1

0 :.
1

expresses exactly the fact that there is a +l in each column, which is what we want. Using
techniques of block diagonalization, we may be able to solve this equation efficiently.

JF said that block diagonalization is really the same as using the cycle decomposition
of the permutations, and DEK explained that in most problems of this nature the per-
mutations contain all the necessary information, and require less space and running time
than the matrices.

AVG asked whether the object was just to find t k, or also to compute the values
t1,... , t&l that would name all of the heads-up configurations. DEK’s answer was that
he wanted the class to find the values tl, . . . , tk-1, and he sketched how we might start
to do this. If the permutations pl, ~2, . . . , p2+2 are defined to be the operations done
by the individual flips in each iteration, then p = plp2..  . ~2~.-2 is the permutation for
a whole column, and whenever p”pl . . . pi is an “all heads” permutation, we have one of
these “unlucky solutions .” If, for each j between 1 and 2n -- 1, we find the smallest such k,
then we will have all of the solutions. KPB told t,he class that he had enumerated all the
cases up to n = 14, and found that the number of such solutions seemed to approach 0 as n
increased. DEK said, however, that an examination of more values will show a surprising
pattern; he predicts that somebody will discover infinitely many “unlucky solutions.”

To end the class, DEK gave an outline of the algorithm that had now been developed:
(1) compute the permutation p for a whole column of the diagram (the first 2n -.2 flips);
(2) decompose this permutation into cycles, and find the smallest power of each cycle that
is all “heads up;” (3) take the least common multiple (lcm) of these numbers to find tk.

To do step (2), suppose we have a cycle such as (a b c d e f). The identities of the
objects being permuted don’t matter, so we can just think of this as a string of heads
and tails, i.e., 001001, where 0 represents heads and 1 represents tails. Then the smallest
amount that we can shift this string (with wraparound) until it equals itself is the desired
power of the cycle. (In this case it is 3.)

The lcm operaCon in step (3) 11~s the potential of generating a large answer with a
small amount of computation, even though the numbers used are small. This is where the
time savings of the algorithm becomes apparent.
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Someone raised the question of how large this lcm can be, so that we have a better
upper bound on m than the obvious 2’Y This is a famous problem in mathematics called
Landau’s problem. Let g(n) be the maximum lcm of positive integers that sum to 72. It
can be shown that

1% 9(n) &GG

(see J. L. Nicolas, “Order Maximal d’un Element du Groupe Sn des Permutations et
‘Highly Composite Numbers’ “, Bull. Sot. Math. France, 97, 1969, pp. 129-191).  Recent
work has provided more exact bounds on g(n).

Class notes for Thursday, October 8

The class started by determining how to find efficiently the lcm of a set of integers,
which is step (3) of the algorithm developed last time. DMC said that computing the
factorization of each integer and applying the definition of the lcm was one way, but DEK
said that there was a better way. The relation lcm(z,y) l gcd(s,y) = z l y was suggested
by LAH, since this reduces the problem to finding the greatest common divisor.

DEK pointed out that this relation resembles several others in mathematics, such as

IA u BI + IA n B( = IAl + IBI

ma+, y) + min(z, y) = x + y,

where the first holds for finite sets and the second for real numbers. In fact, the relation
between the gcd and lcm can be proved from the second equation above, since if

X = ‘Jx~3x~5x6  . . .

Y = ‘$“3Y35Yb  . . . 9

then
gcd(z,y) = 2m’“(xI,Y2)3min(xS,YS)5min(x6,Y6)  . . ,

1--4x, Y) = 2max(x2,Y2)3 max(x3 a3 1 5”““(“6~YS) , . , ,

An efficient algorithm for finding the gcd is, of course, Euclid’s algorithm, which runs
in about the same time as division of integers. Factoring, although it has never been proved
any less efficient, takes so long that nobody today knows a good way to factor loo-digit
numbers with less than several years of time on the fastest computers. DEK said that he
has never seen an efficient algorithm to compute lcm(z, y) that did not involve computing
gcd(s, y) also.

DEK asked whether anyone had made progress in finding the “unlucky solutions” to.
the coin-flipping problem, ‘and RJM started to outline the method that his group was using.
If we let qk = ~1~2.. .pk, <and let p = q2n-2 = prp2 . . . p2n-2,  where pi is the permutation
corresponding to operation i, then qk corresponds to doing the first Ic operations in a
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column. The idea is to compute each qk once, and find the patterns of heads and tails that
qk will transform into all heads. If pi has this pattern for some j, then pjqk, which is the
permutation corresponding to the first (2n - 2) j -+ Fc flips of the initial stack of coins, will
be one of the c‘unlucky  solutions.” For example, if qk = (I 2)(3 4 5 6)(i 2)(3 4 5 6) and
the bottom of some column is 561234, then we will have all heads after k operations in the
next column. Because the number of columns may be extremely large, it is better to look
at the cycles of p than to generate the configuration at the bottom of each column.

AIS interpreted the desired goal as finding a transformation that moves from column
to column in a fixed row, i.e., generating the permutations

t?k,?‘qk,P2qk,P3qk,  l l l >

and detecting which ones are all heads. DEK noted that last time WC solved this for the
special case of the bottom row (the solution was to find the minimum cyclic shift for each
cycle that would make it all heads), and now we must generalize this. If p contains a cycle
(XI 52 53 54 x5 X6), then $9 will contain the cycle (Zj Xj+l . . . Xj+s)e

TPM pointed out that the permutation qi’pqk represents the transformation from
one column to the next along a fixed row. If we first use qk to get to this row in the first
column, and then make j applications of qL1pqk, the resulting permutation is

%($?‘qk)j = ?&k,

which is exactly what we determined it should be. By computing the cycle decomposition
of 41, ‘pqk, we should be able to End the all-heads solutions.

At this point, several different notations had been introduced, and the class spent
some time deciding what to adopt as a common notation. The final choice was to use a
fortn in which pq means “first apply p, then 4,” and in which cycles read from left to right.

DEK mentioned that he always gets mixed up when deciding on notation for permuta-
tions, since there are two posibilities depending on whether you consider the permutations
of the positions or the contents of the positions; you have a fifty-fifty chance of getting it
wrong, and in this case we seemed to have gotten it wrong on Tuesday. To get the correct
interpretation we have to go more slowly. The question is whether the operation p takes
the coin pattern x1 . . . x,, into xp(r) . . . x+) or if it takes ~~(1) . . . x+) into x1 . . . x,,
where p takes j into p(j). Un d er the first interpretation the operation p followed by q
would take x1 . . . x, into ~~((~(1)) . . . x~(~(+; under the second interpretation it would take
x4?41))  ’ * * Xq(+))  into XI . . . Xn. So we should use the seco& interpretation to get our
desired conventions!  If the bottom of the first row is 561234, meaning that z1~2~3~4~~~e
has been converted to ~~~6x~x2x~z~, the permutation p should be represented in cycle
form as (1 3 5 i 3 5)(2 4 6 2 4 6). On Tuesday we had used (1 5 3 i 5 3)(2 6 4 2 6 4), since
position 1 was filled with the complement of position 5, etc., but this convention doesn’t
multiply correctly; the proper form “(I 3 . . . )” says that the clement in position 1 Inoves
to position 3, etc.

DEK decided to try a test case in which p = (1 2)(6 5 4 3)( i 2)(6 5 4 3) and qk =- - -
(I 5 3 1 5 3)(2 6 4 2 6 4) (although these might not actually occur in the G-coin problem).
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Then
QklPQk

= (1 3 5 i 3 5)(2 4 6 2 i 6) 9 (1 2)(6 5 4 3)(i 2)(6 5 a 3) l (1 5 3 i 5 3)(2 6 1? 2 6 4)
= (1 4 3 2)(5 6)(i ;i 3 2)(6 5).

DEK asked whether anyone knew a quic,k way to compute the cycles of q-‘pq, given p and q,
and JF answered that the cycles of q-‘pq are obtained by applying q to each element in the
cycles of p. If we rewrite the result of the above computation as (5 6) (4 3 2 1) (5 6) (4 3 2 i),
we see that this is the case. DEK pointed out that we can apply this fact to our problem
by not actually computing $pqk explicitly; for most values of k, it will be possible to
conclude that row k has no solutions without examining more than a few elements of p.

Continuing his presentation, TPM said that once we decompose q&k into cycles, we
get a separate linear congruence for each cycle, and if these have a simultaneous solution,
we have an all-heads configuration in row k. JF asked why there couldn’t be more than
one congruence per cycle, and DEK explained that this was impossible; he encouraged
the class to prove this for themselves, over the weekend, pointing out that it is fortunate
that at most one congruence per cycle is possible, otherwise the problem would be much
harder.

Suppose that qk’pqk  has a 7-cycle that, when applied to the configuration in the kth
row of column 1, produces all heads after 3 applications, so q&$pqk)” is an all-heads
permutation; and there is also a g-cycle that produces all heads after 2, 5, or 8 applications.
The congruences to solve in this case would be

j E 3 (modulo 7)
j G 2 (modulo 3),

and it turns out that these are equivalent to the single congruence j G 17 (modulo 21).
Some systems of congruences may have no solution in integers, which means that there

is no “unlucky solution” in that row. For example,
j f 2 (modulo 6)
j = 3 (modulo 9))

has no solution, since both j - 2 and j - 3 have to be multiples  of 3 if j - 2 is a multiple
of 6 and if j - 3 is a multiple of 9.

In general, if we want to solve the system of congruences
j z al (module nr)

3’ E a, (modulo n,.),
we can use the fact that a pair of congruences j G a (modulo m) and j z b (modulo n) is
either unsolvable or is equivalent to a single congruence j E c (modulo lcm(m, n)). Apply-
ing this to the system of congruences one pair at a time, we can eventually get a contra-
diction or just one linear congruence. DEK encouraged the class to find a constructive
proof of this fact, leading to <an efficient algorithm. The special case nr = l 9 . - a, - 0 is
what we solved previously, by conrputing the lctn of the 7~.
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Class notes for Tuesday, October 13

DEK asked what results, if any, people had gotten so far. A few groups were able
to present some of the numbers they had obtained, and some interesting patterns were
discovered.

First of all, JF conjectured that “unlucky” or “sporadic” solutions exist for n =
3,6,10,15,21,. . . , namely for all n that are triangular numbers. A triangular number is a
number  of the form

k 1
1+2+3+.+(k-1) =  2 ,

0
which is so named because it is the number of points that can be placed in a triangular
configuration, with one in the first row, two in the next, and so on. However, some values
of n that are not triangular numbers were also discovered to have sporadic solutions. In
fact, the largest number of sporadic solutions in the range tested is at n = 7, where five
were found.

YOM noticed that sporadic solutions for triangulczr numbers were found near the end
of the period, and when we examine exactly how far from the end they are,

sporadic differ-
n solution period ence
3 3 8 5
6 53 60 7

10 531 540 9
15 437 448 11
21 1267 1280 13
28 1443 1458 15

we see Can obvious pattern: the distance seems to be an arithmetic progression. KPB
suggested that the case n = 1 be undefined, since 2n - 2 flips is not meaningful. DEK
agreed, but said that in developing a mathematical theory it is often useful to make
statements that work for trivial cases such as n = 0 or n = 1.

YOM went on to say that when n is triangular, the configuration of the coins at
the end of the entire period is 123456 . . l , i.e., the same as in the original state, and at
the sporadic solution it is . . . 456231, which shows an interesting pattern. DEK suggested
looking at the last seven flips in the case n = 6 to see why this is so.

456231_ - - - - -
Flip 6 coins 132654- - -
Flip 3 coins 231654- - -
Flip 6 coins 456132- - - - -
Flip 4 coins 165432
Flip 6 coins 234561- - - - - -
Flip 5 coins 654321
Flip 6 coins 123456
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If we go from bottom to top, and look at two steps at a time, we see that first the leftmost
coin is flipped and put at the right end, then the left two coins <are  fiippcd and put at the
right end, and so on. If n is a triangular number, then, we will get to an all-tails state this
way, and the state before it will be all heads.

Last week, we saw that a sequence of three flips, namely (flip n, flip k, flip n), is
equivalent to “flip the bottom k.” This enables us to understand the first n/2 configu-
rations easily. Now we see that the flips near the end of the sequence also have such an
interpretation, and these permute the coins in an easily-defined way for the last fi steps.
For the stages between n/2 and n-- fi, however, there seems to be no easy way to describe
the configurations of the stack of coins. JLM showed the class a diagram of heads and
tails configurations, which indicated that these stayed fairly regular up to about in.

DEK mentioned that the triangular numbers provided an example of an infinite class
of values of n for which there exist sporadic solutions to the coin-flipping problem. AVG
described another class of solutions- t h o s e that occur when a power of the permutation
p gives an all-tails configuration, since this must be immediately preceded by an all-heads
state. No one could come up with a way of determining which values of n had this property.
JF said that n = 7 has sporadic solutions at 75 and 80, which also remain unexplained.

The discussion now turned to the running time of the algorithm; it was agreed that as
implemented by everyone so far, the time would be O(n2). This is because in computing
p, O(n) time per flip is taken for 2n - 2 flips, requiring O(n2) time; the operations on the
cycles of p are easily seen to be bounded by O(n2); and the search for unlucky solutions
takes O(n) time in each of the 2n - 2 rows. DEK asked if anyone had thought of algorithms
which would run in better time that O(n2), but no one had. He suggested that a “divide
and conquer” method might be appropriate, and in answer to a question, explained that
this means reducing a problem of size n into two problems of size n/2 and combining the
solutions in time O(n). If this can be done recursively to the subproblems, then the total
time will be O(n log n). (For further explanations of this technique, see Aho, Hopcroft, and
Ullman, The Design and Analysis of Cornpui;er Algorithms, pp. 60-67, and J. L. Bentley,
“Multidimensional Divide-and-Conquer,” CACM, April 1980.)

It is not clear how to apply divide-and-conquer to the penny-flip problem, but DEK
mentioned that Jim Boyce (an alumnus of CS 204) came up with an efficient strategy.
We can use a balanced tree to represent a configuration of coins, <and at each interior
vertex have a bit that tells whether the subtree  rooted at that vertex is in correct order
or reversed. Then each of the “flip k coins” operations can be done by an appropriate
combination of tree-splitting, reversing, and tree-merging operations. The reversing is done
just by changing the proper bit (i.e., not actually moving <any objects), and algorithms for
splitting and merging in O(log n) time are known. Therefore, the total time to do the
2n - 2 flips is 0 (n log n). Implementing this, though, would be much harder that the more
direct algorithm developed so far.

However, this does not help in Ending the “unlucky” solutions, and so far no one has
come up with an algorithm for that which is better than O(n2) in the worst case. DEK
mentioned that what could be done is to take advantage of the fact that sporadic solutions
care relatively  rare, and instead of completely decomposing ~L’pqk into cycles, we could do
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this “virtually” and generate only the values as they are needed. When we are working in
the kth row, the probability that we can continue searching for a solution is i after one
step, i aft,er  two steps, etc., and most of the time we conclude that there are no unlucky
solutions in the row after only a few steps.

After class, YOM and LAII described a method for solving simultaneous congruences
that they were using in their program. Suppose we are given the two congruences

3. G al (modulo nl),
j E a2 (modulo n2).

Let g = gcd(nl, nz). The extended gcd algorithm computes integers 51 and z2 such that
g = x1721+ x21)32.

A necessary and sufficient condition for there to be a solution is that g divide ~22 -al,
i.e., a2 - al = sg for some integer s. Now, modulo lcm(nl , n2), we have

3’ E al + bInI,

3* G a2 + ban2

for appropriate 61 and b2. Subtracting, we get u2 - al F blnl - b2n2, and hence sg G
bpal - bpaz. Since sg = sxlnl + sx2n2, we have bl z sx1 (and 62 E --sx~), so the desired
congruence is

j f al + 8x1131.

After computing the gcd, we can find s in one step, and readily have the solution for the
combined congruence.
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Solutions for problem I

All of the groups wrote programs based on the method discussed in class. The results
for 1 5 n 5 120 were the following:

n tk
1 2
2 8
3 8
4 36
5 40
6 60
7 144
8 196
9 128

10 540
11 200
12 440
13 312
14 2184
15 448
16 2700
17 2560
18 1088
19 15120
20 608
21 1280
22 1848
23 1848
24 828
25 2112
26 1500
27 1144
28 1458
29 2688
30 51040
31 12000
32 5208
33 14336
34 55440
35 1904
36 32760
37 8640
38 163540
39 20064
40 31122

Sporadic
Solutions

3
3
17

32, 53, 27
122, 75, 18, 80,
97
43
531

437

501

1267
923

1443

32743

n tk
41 51040 81 69120
42 11480 82 3720816
43 16128 83 66912
44 450296 84 3133914
45 88704 88685 85 11684736
46 4860 86 2917200

117 47 15088 87 4608912
48 518880 88 4478760
49 43776 89 164736
50 25284 90 149520
51 82000 91 190080 190053
52 5100 92 753480
53 73008 93 287776
54 2270520 94 156240
55 517104 517083 95 135360
56 23100 96 4806240
57 239904 97 318720
58 970368 98 38024 19011
59 1913072 99 38024
60 276120 100 540540
61 12960 101 11414400
62 2664% 102 2188872
63 461280 103 12631680
64 100548 50273 104 36165360
65 6912 105 557232 557192, 557203
66 107640 107617 106 4520880
67 137808 107 549504
68 273360 108 41944
69 404736 109 64800
70 513912 110 47088
71 856800 1 1 I 13877600
72 93720 112 4307688
73 12096 113 5720064
74 367920 114 208824
75 37296 115 563616
76 40500 116 676200
77 178296 117 551232
78 55440 55415 118 24189984
79 773136 119 4125423040
80 663600 120 26860680 26860649

Sporadic
Solutions n tk

Sporadic
Solutions

Several groups discovered improvements to the algorithm, or studied some of the details
of the problem in greater depth. These results will be described here.

Using the fact that (flip n, flip k, flip n) is equivalent to “flip the bottom k,” we
can simplify the computation of the permutation p. RJA/AVG called this transformation
“rflip k ,” and noted that the sequence

flip 1
rflip 2
flip 3
rflip 4
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would generate rows 1,4,5,8, . . . of the original configurations. However, since every even-
numbered original operation is a “flip n,” an all-heads state in one of the missing rows
will correspond to an all-tails state in one of the rows that is generated. RJA/AVG
decided that finding the all-tails states would complicate the program, and did not use
this method. However, DMC/ JLM, making the same observation, decided to test for
all-tails configurations and use only half of the rows.

LAB/YOM d iscovered a data representation that sped up the computation of p. This
was done by performing each “flip n coins” operation “virtually.” In their representation
of a permutation, a flag tells whether the state is normal, or “upside-down,” i.e. with left
and right reversed, ‘and heads and tails interchanged. Flipping the whole pile requires
simply complementing this flag, without moving data in any arrays. If n is even, the
flag is in the “upside-down” position after the final flip, so some extra work is needed
to normalize the position. But the time for the whole operation, originally estimated
as $n2 basic operations, has been reduced to approximately $n2. LAH/YOM also used
a more compact notation to represent permutations in cycle form, but switched to the
representation used in class for the shifting operations needed in finding the congruences.

Some groups, including DMC/JLM, RJA/AVG, ARS/JCM/JF, and DEF/DPH/
TPM, noted that when given a pattern of heads and tails, the minimum shift (with wrap-
around) that preserves the pattern must be a divisor of the length of the pattern. The
name “pseudoperiod” was given to this number by some of these groups.

ARS/JCM/Jr+ said that when combining congruences, it would make sense to first
try those arising from shorter cycles, in the hope that a contradiction could be found
with less work. This could be done by sorting the cycles in increasing order of their
pseudoperiod. AH/AIS found that longer cycles were usually discovered first in their
program, so they used the cycles in the opposite of the order in which they were generated
to solve congruences. DEF/DPII/TPM said that they were unsure whether analyzing long
cycles or short cycles first would be better.

KPB noticed in a debugging run that for most large n, the nonexistence of a solution
in row k was discovered in the analysis of the first cycle of Qk’pqk, ,and the solution of
simultaneous congruences was then not needed.

LAH and YOM discovered a “parity arguinent” that reduced the total amount of their
computation significantly. Let a coin that is “heads” have parity 0, and let “tails” be 1.
?he parity of a configuration of n coins is the sum of the coins’ parities. We are only
interested in whether this number is even or odd.

The first thing to notice is that flipping an even number of coins conserves parity,
while nipping an odd number changes it. Now, consider the change in parity as a result
of the permutation p (the first 2n - 2 moves). If p is even, then q;lpqk will be even for
all k, which means that moving along row k will not change the parity of a configuration.
So if we start with an odd state in the first column, all columns of row k will be odd, and
we can never reach an all-heads configuration! Therefore, we need only test the rows that
start with an even state.

On the other hand, if p is odd, then each qk’pqk is odd, meaning that as WC move along
row k, the parity of the configuration alternates between  odd and even. Thus WC know that
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<an all-heads position can only occur in an odd column or an even column, depending on
the parity of the first column of row k. However, in computing with the cycles of qklpqk,
it is still possible for some cycles to reach an all-heads state in any column. Therefore,
LAH/Y OM used the parity information in their program only by introducing a congruence
i E 0 (module 2) or j E 1 (module  2) into the set of simultaneous congruences, rather
than ruling out the use of half of the columns entirely.

The parity of p is, moreover, easy to find. It is even when n is congruent to 0 or 1
modulo 4, and odd when n is congruent to 2 or 3.

The infinite class of sporadic solutions corresponding to triangular numbers was dis-
cussed in class. ARK noticed that an all-tails configuration at position $tk, preceded by an
all-heads configuration, occurred for n = 2”) 23, 2”, as well as some other values of n. She
conjectured  that this happens for n = 2k, whenever k is a triangulczr number. (Nobody
ran their program at n =I 1024 to test the next case in this sequence.)

DMC/JLM ran their program for 2 5 n 5 400, and for some larger values, but said
that solutions for large n are unreliable since single-precision arithmetic was used. They
also collected timing statistics, which agreed with the O(n2) running time derived from
analysis of the algorithm.
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Problem 2: Archival Files

Consider a file Ftl that has just been created and put onto a file server, where many
people can read it. Later on the file is updated by a series of operations U1, and we obtain
a new file 17; = FoU1.  Eventually F, changes to Fz = FIUZ, and this process keeps going
until we reach the nth version, Frl = F& UJ . . . V,.

Sonlctimes it is important to be able to get at any of the versions Fj of a file, not just
the most up-to-date one. For example, I,‘ might contain software that has been distributed
to a large number of ‘customers; most customers have not installed the latest version and
you might need to recreate their environment when you receive an emergency phone call.
Alternatively, some other file might refer to F, and the reference may be meaningless unless
it is to the particular version of F that was current when the reference was first made.

On the other hand, it is usually too expensive to retain all versions of F, since this
rapidly fills up one’s disk allocation.

Therefore it would be nice if operating systems would provide a special means of
handling such files. Let’s suppose that when a file F has been declared “archival” the
system will treat it in a special way that makes all versions accessible without excessive
running time, yet the total storage space should be reasonable.

Your problem is to design a good way to represent and manipulate such archival files.
This is an open-ended problem, part of which consists of deciding what it means for such
a system to be “good.” You might want to consider, for example, whether it is advisable
to store a few versions from which others can be reconstructed, noting that Fj-1 = FjUJyl
so that updates can be undone. Does a “divide and conquer” approach lead to a method
that provides logarithmic overhead? Try to find a scheme that has a good tradeoff between
space and time.

We shall cassunle  that the files we deal with are text files, i.e., long sequences of
characters, and that “update” operations consist of one or more transformations that
replace one contiguous substring of a file by another string. You may wish to make further
assumptions, e.g., that each update changes only a small percentage of the file, or that Fj
will probably be “closer” to Fj-1 than Fj+l is; however, you might also be able to think
of a scheme that works well without these assumptions. One way to test your methods
might be to apply them to the transcript files written by the BRAVO editor.

Class rlotes for Thursday, October 15

DEK started the discussion of the file archival problem by mentioning that it has
recently become one of the more important problems in computer science. As computers
are used to hold large databases whose contents affect millions of people, efficient solutions
to problems such as the one we <are  considering arc needed. Another application, and the
one from which this problem originated, is the on-line storage of large text files, such as
the text of D&X’s book 7’1~ Art of Co~up~ter Progl*nrnlrGzg.  The general problem that is
being dealt with here involves a tradeoff between time and space.
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KPB asked whether we could limit the prohlcm to handling text ftles. DEK pointed
out that it does not really matter, since any file is just a collection of bits, and one that is
organized in words could be considered a stream of characters over a very large alphabet.
However, such a generalization does not necessarily mean that algorithms that are suitable
for small alphabets (such as a case statement with one case for each character) will also be
useful for all files. AVG suggested that dealing with character files is harder than working
with files organized as sequences of records, and that when that sort of forrnat is used, a
program can keep a log listing new records inserted and changes or deletions of records.
DMC added that a variable-length record format would make the problem harder than a
fixed record structure. DEK said that the archival problem in these cases is indeed simpler,
and file storage did not become an area of increased research interest until there was a
greater demand for archival of text files that are not organized with a record structure. In
a text file, the ordered sequence of characters is significant, while in the other case it is
the unordered set of records that is relevant.

AVG continued by saying that in a record-based system, there is often the concept of a
“transaction ,” a basic operation that affects one record, and that a log of these transactions
is easily kept by programs that modify the file. AIS noted that an entire editing session
with a text file can be considered a “transaction.” JLM pointed out, however, that when a
program makes changes to an entire  file, there is no simple way of recording what has been
done to the file. We cannot even say “run the program on the original file” to generate
the updated file at some later time, since the program itself may be modified and may not
then produce the same results. Therefore, we must find a method to describe changes to
a file that is general enough to handle all kinds of changes.

Considering the case of modification by an editor, DPH suggested that saving the
editor commands in sequence would provide the necessary information. The BRAVO
text editor used on the ALTO computers keeps such a “transcript file.” JCM gave a brief
description of these files, and noted that they can only be used in the “forwcard” dircction-
to construct a new file version from an older one-since the text of deleted strings is not
saved. Most of the class had not seen the BRAVO editor, so DEK described it briefly.
AH said that saving the keystrokes of an edit session would preserve as much information
as possible, but JLM noted that this was valid only as long as the editor itself didn’t
change. DMC added that the edit commands could include user-defined macros in many
editors, cand the macro definitions would have an even larger possibility of change. This
problem could be avoided, though, by saving the editor commands into which the macro
was expanded.

Another approach, suggested by GSK, is to use a file-comparison program to find the
differences between two versions of a file. He said that in his experience, such a program
generally worked quite well on most files. DEK said that file-comparison programs are
often vital components of a computer system, and described how the program SRCCOM on
the SAIL system is run. KPB asked whether there was any algorithm that could do this
type of comparison in better than O(n2) time. DEK said that the best known algorithms
are O(n2/log n>, and that work by A. Yao suggests that this is actually a lower bound
on the amount of work needed.  This problem also has applications in areas other than



Thursday, October 15 19

computer science; for example, biologists need to compare long strands of DNA efficiently.
Next DEK described a simple comparison algorithm that is O(n2) with an example.

Suppose the first text string is the word mime and the second is smiles. We create an
array with four rows and six columns, labeled by the letters in the two strings, and place
a 1 in the array wherever two letters agree.

The object is to find a path from the upper-left corner to the lower-right corner that moves
at each step either down, to the right, or crosses a 1 moving both down and to the right,
and that crosses as many l’s as possible. (The points on this path are between the array
elements; the upper-left corner will be called (O,O), and in the example, (4,6) would be the
lower-right corner.) If aij is the value (0 or 1) in the (i, j)th array element, and if @, j) is
the number of l’s on the maximum path from point (0,O) to point (i, j), then 1!(0,0) = 0
and we can compute the other values of !(;,i) from the equations

t(i, j) =
1

max(t(i  - 1, j),t(i, j - 1)) if U;j = 0
max(l(i-l,j),t(i,j-l),l+t(i-l,j-1)) if&j=1

This method is, however, too slow to be used on files of any considerable length. In a text
file, we might treat each line as a unit, and apply a hash function to the lines of the file.
Then we could use the method just described to compare the hash values.

YM pointed out that a common operation in a text file is to move large blocks of
lines (such as a paragraph), and that by recognizing diagonal blocks of l’s in <an array such
as the one above, we could make note of this fact rather than recording the change as a
deletion of text together with an insertion of the same text somewhere else.

The discussion now turned to the question of what level of change to a file to consider.
YM remarked that a multiple search-and-replacement command in an editor might change
a file in many places, though it is only a single command, and DEK suggested .that  we
restrict the set of transformations to be considered; hopefully those that we choose will be
able to easily express the editing operations that people do most often. DPII asked at what
level we should consider a new “version” of a file to be-in the extreme cases we could let
each editor command create a new version, or we could let an entire editing session define
a single new version of the file. DEK suggested that we incorporate something in between,
so that the user of our system will be able to note when version n becomes version n + 1.
If we store n versions, our retrieval algorithm should hopefully be able to get to any of
these versions in less than O(n> time and/or space.

AVG asked if we had decided whether creating a log file of changes, or using a file
comparison program to determine changes, was a better method. DEK pointed out that
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a transaction log is potentially less efficient, since multiple changes to the same part of
a file might occur in going from one version to the next. JLM suggested that we try
both methods, and see experimentally which one is better. DMC noted that the output
from a file-comparison method is a set of “transactions” where there are only a few simple
transactions possible, and suggested that we could output more complex operations that
resemble editing operations more closely. JF pointed out that any editing operation can
be reduced to insertions and deletions, so this is not really necessary.

Another question is whether all versions of the file are equally likely to be accessed.
AIS suggested that ifthe most recent version is more likely to be needed, then we should
take advantage of that fact and make that case more efficient. DMC said that a system
could make a history of its requests, and possibly adjust the information stored as the
requests change. JF added that we may want to record that some versions of the file
correspond to major revisions, since these are more likely to be referenced.

RJM outlined a list of unanswered questions that pertain to this problem. Is the
minimum object that can be changed a character, a word, a bit, etc.? Is there any relation
between the characters in the file? If so, a change such as correcting the spelling of a word
is easier to record. Is the file length fixed or variable ? What statistical characteristics
about changes to the file can be known in advance ? DEK said that these are all important
questions to ask when beginning research on a problem, such as this one, which is not
completely defined. Then we have to fix some of the choices and stick with them, keeping
the other options buried in the back of our minds.

Two extremes of the possible files that will be archived are a large file that has updates
to only a small section at a time, and a small file that is subject to frequent major changes.
AH pointed out that in the first case, it is more efficient to store the original version and a
record of the changes that were made, while in the second case, it is easier to store copies of
the entire file. TPM noted that saving only the changes uses the least camount  of storage,
while saving all versions gives the fastest access to any one of them. Some compromise
between the two methods must be found.

Using the notation of the problem description, DEK noted that

F/c = Fj(qi+l l . l uk> = FjUjk,

where Ujk is defined to be Uj+r . . . &, i.e., the sequence of changes that get us from version
j to version k. We might want to store lrjk for some, but not all, values of j cand k, and
thereby be able to retrieve particular versions of the file more efficiently. We also have
the relation Fj = FkUhp<‘, meaning that we can work backwards provided that the update
information is stored in a form that is reversible. JCM said that if we keep several versions
of the file, then when a new one is requested we can discard the least recently used one,
and noted the analogy between this and LRU paging schemes in operating systems. There
arise potential problems if someone updates a version of the file other than the most recent
one, since then we will have versions of the file related to each other in a tree structure
rather than a simple linear sequence.

JPM noted that in the two extreme versions of files mentioned above, the tradeof%
were not completely clear, because we can construct pathological casts. l?or example, the
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operations that produce one version of a file from the previous one may take arbitrarily
much space (by repeatedly changing the information in some part of the file), and a
comparison of the old and new versions would then be more eficient even though they are
almost identical. He also suggested an extension of the problem to a situation in which the
history of a file may include its being formed by merging together other files; we would want
to be able to reconstruct versions of files that no longer exist from the information that is
kept about this sort of updating operation. DEK said that this was an interesting idea,
but suggested that the class stick to the original problem to keep the work manageable.

Class notes for Tuesday, October 20

DEK suggested that the class spend today discussing only one aspect of the problem,
even though people might have different opinions about what the best way is to proceed.
It pays to first solve a simple version of any problem; otherwise we surely won’t be able to
attack the most general version. As the basic model, DEK suggested a fairly large file that
is subject to a sequence of relatively small updates. An example would be a dictionary.

In this case, JCM noted, we would be most likely to make additions to the file, and
much less likely to delete anything or change the order of text. It is probably true of
most text editing that addition is the most common operation. JPM pointed out that a
dictionary could be organized as a sequence of records, and that each primitive operation
would add, delete, or modify exactly one record. This is essentially what is done in
manipulating a database. KC added that the entries in a dictionary contain information
that describes their positions relative to other entries; this is not true of text files in general.

KPB asked whether we would be working with variable-size data items, or with a
fixed-size record format, which would be easier. DEK said that it did not matter at this
stage of the problem; we should deal with the files as abstractly as possible and make such
decisions only when necessary.

DMC asked whether a division into records was necessary, since we can identify any
character in a text file by just giving its position. DEK pointed out that the difference
occurs when a record can be accessed using a key. Also, a database may be organized
either as a set of records or as a seqtlence of records. In the first case, retrieval by key is
necessary, while in the second case, we have to keep track of the order of records in the
file, and can access records sequentially. These are two very different problems.

DPH had worked on the problem of determining the changes from one file version
to the next, given the two versions for comparison, but noted that we now seemed to be
assuming that the record of changes is already given. DEK said that this was really a
separate problem from what we are now considering, and that we should concentrate on
just the one problem. JF said t,hat she didn’t see why the two versions (file of records and
file of characters) <are  separate, since a text file can also be viewed as a sequence of records;
thus one view may be more powerful than the other. DEK said that if this were so, there
might still be a way to solve the less general problem that is more cflicient than a general
solution. JPM pointed out why the one method is more general: in a text file, the only
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key is the implied key given by the position of each character, while with explicit records,
we can make many choices for keys and for the sequence of records.

Regarding the difference between sequences and sets of records, DEK noted that it
might be extremely hard to compare two files that were organized only as sets. In fact,
the best method is probably first to sort the records, =and then compare, which takes
O(mlog m + n log n) time if the files have m and n records, respectively. If there is no

ordering relation on the keys, even this method cannot work, and we may have to use
order mn time. He asked the class to vote on whether we would look at sets or sequences
of records; the majority of the class preferred sequences.

The discussion now turned to examining how to represent the information in the
archival files. JLM presented a scheme, which the class decided to call an “amalgamated
file,” that contains the text of each record and a table that will enable us to reconstruct
any of the versions of the file. Suppose we have four versions, containing the following
records:

Fo = a b c d e
Fl = a f c d e
F2 = a f c 9 d e
F3 = h f g d e

We store the text of all records that were ever in the file, and assign each one a number.
For example,

1 2 3 4 5 6 7 8
h f g d e a b c

The lines have been arranged so that the current version of the file consists of the lines at
the beginning. In the table, we have a set of lists that tell us the history of each line. For
the set of files shown above, the table would be

(1)
(2 2 2)
(3 4
(4 5 4 4)
(5 6 5 5)
(6 1 1 1)
(5 0 0 2)
(8 3 3 3)

The interpretation of these lists is that the first element names the current position of
the corresponding record (with a special notation, such as 6, for records that have been
deleted), the next is the position in the previous version, and so on. The list ends at the
point where the record was first inserted into the file.

Several ways were suggested to abbreviate this notation. If some text had never moved
at all, it does not have to be mentioned in the table. Also, long sequences of the same
record number can be compressed. DEK commented that for each proposed abbreviation,
we must be sure to check that it keeps the table compact, makes the table easy to update,
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and does not complicate retrieval of any version of the file. Since insertion of a record is
a common operation that alters a lot of the numbers in this notation, it will be important
to find an abbreviation for that. RJM suggested that we store the relative position of
each record instead of the absolute numbers shown above. JCM noted, however, that this
would make it more difficult to represent the swithing of groups of records. KPB pointed
out that this is never a problem in the example of a dictionary, since once records are in
order, they will never be rearranged.

RJM continued to say that storing the relative position changes the distribution of
numbers stored in the table-the nutnbcr 0 would probably be most common--and we
could use a Hamming code to compress the information. This approaches the minimum
theoretical limit for the canlount of storage needed. DEK pointed out that encoding the
table would complicate the retrieval and update processes.

JLM suggested combining groups of lines that move together; thus in the above ex-
ample, (3. .5 4. .6) could represent moving three lines in going from Fs back to Fz. He
foresaw potential problems with this method, though. AIS added that some compression
schemes such as this would not enable us to get the minimum access time.

DPH presented a method that would have access time that is linear in the length of
the amalgamated file. This is done by including the version numbers of the first ,and last
appearance of each record, and ordering the records so that each version can be scanned
in proper sequence. In the example, we would store

DPH noted that the size of the table is also guaranteed to be bounded by a constant times
the number of records. AI-I said that if we use a structure with pointers, we can also
change the order of blocks of records. This requires, though, that the pointers themselves
have an associated history. YOM observed that pointers would be necessary to handle
insertions in this type of data structure; otherwise we would have to move most of the
records themselves.

A combination of this with the previous method was proposed by RJM. We can use
a table of lists as before, but with relative position information, so that in the example
above, we would have

(1)
(2 0 0)
(3 1)
(4 0 0 0)
(5 0 0 0)

.

The offset of any record is gotten by keeping track of what has been done before, so that
the “1” in the list for record 3 means all records from 3 on move by 1. Now, we compress
the multiple O's, so, for example, record 4’s list will read (4 (0 3)). Since each record has a
simple history (it is born at some time, lives for a while, and may eventually die), the size
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of this list is always quite small. (However, this is not true if we consider swapping records
as a primitive opration.) JPM pointed out that this scheme loses  some generality, because
the amalgamated file must be scanned from its beginning in order to find the position of
any record in any ,version.

DEK summarized what had been presented in today’s class. We have two methods
that are possibly equivalent. It is generally accepted that a good running time is one that
is linear in the size of the amalgamated file. If we are willing to use a line of text instead of
a single character as our basic record, then the extra storage overhead of pointers and of
numbers giving the histories of lines is reasonable. He also suggested that the class think
about what sort of data structure best represented the operation “if the version number is
greater than a and less than b then . . . else . . . ,” since this seems to be a crucial operation
in the retrieval process.

Class notes for Thursday, October 22

Today the class considered some of the more concrete aspects of solving the problem.
KPB began by asking what kind of input people thought should be used. AH said that
for testing the program and illustrating t,he algorithms, it would be sufficient just to use
single characters. Later one could worry about the problems associated with operating on
actual files.

DEF suggested creating a simple editor that has commands to add, replace, and delete
text from a file. RJM pointed out that this approach would allow access to a large amount
of test data, since Cany text file could be used as input. The class agreed that this was a
more feasible idea than using the BRAVO transcript files, since most were unfamiliar with
BRAVO. AVG noted also that with a mini-editor, it would be easy to check the results of
the program. DEK pointed out that it would be neat to use such a system on the writeup
for a group’s solution to problem two, so that the grader could look at all the versions of
the writeup.

DEK asked whether there was a way to produce test data randomly. For the method
of comparing old and new versions to compute the changes, TPM said this would be hard;
DMC’ suggested that you could produce a random new version by generating a sequence
of commands and applying them to the existing version.

JF thought that it was unnecessary to create an ctlitor to solve this problem, since it is
possible to create both the files and the update information by other means. DEK agreed
with this, but did not discourage anyone who wanted to use the editor approach from
doing so, if this was how they best viewed the problem. He mentioned that approaching
a problem theoretically Cand writing actual programs are both useful approaches, and that
he tries to do both whenever possible. Someone who works purely on the theory might
find a theoretical solution that is linear in file size and logarithmic in the size of the
updates, by storing the updates in a tree structure. This would not be considered useful
by a programmer, since in most applications the size of the updates is small and doesn’t
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justify the extra effort. When the theory in ,an area of research gets too far away from the
applications, it often starts to become uninteresting.

KPB now outlined a division of the solution into three programs: ARCHIVE, which
would convert a normal text file into an amalgamated file with only one version; EDIT,
which would add version &+I to an amalgamated file having versions Fo,. . . , Fn; and
RETRIEVE, which would extract any version Fk and present it as an ordinary text file.
JCM pointed out that if one also wants to be able to update a version other than the
most recent, then the last step is best split into two: one that produces an amalgamated
file Fo,. . . , I;;, from Fo,. . . , F,, and another that extracts Fk from Fo, . . . , Fk. If we use
the editor approach, JEH noted, we would have to extract version Fn+l as it was being
produced, to be able to see it.

A question about the format of files organized into lines was brought up by AVG, and
DEK described the standard format that is used on the SCORE and SAIL systems. Each
36-bit word contains five 7-bit bytes holding ASCII-coded characters, with the rightmost
bit unused. A line ends with a carriage-return character (octal 15) followed by a line
feed (octal 12). A page in a file is marked by a form-feed (octal 14). Also, any bytes
that are all 0 arc ignored by most programs. He explained that more modern systems do
not require an end-of-line character or characters to separate text into multiple lines on
a screen; for example, BRAVO does its own line-breaking cand its files only mark the end
of each paragraph. This is because text-processing systems are document-oriented, while
general computing systems are more often line-oriented.

ATS asked whether we should assume that <archival  files may be too large to completely
be read into main memory. DEK said this might be a good assumption, if you could do
everything by sequential access to files. This caused some disagreement-several people
felt that with an operating systems that provides paged memory, it might be best to let the
system handle input/output in whatever way it chooses. DEK <argued that the choice of
who should do the I/O depends on the nature of the problem. If access is sequential, using
system resources such as UNIX’s pipes is called for, while if random access is ncedcd, one
shouldn’t hesitate to read in the whole file. He added that there are certain applications,
such as sorting, where the best algorithm is very dependent on the operating system’s
paging strategy. At cany rate, it is a good idea to stick to sequential access if you can do
so without serious loss in the generality of your algorithm.

AVG noted another problem with file size-there might be a case where the .archival
file is so large that we cannot create a second copy, even temporarily. This is probably
beyond what needs to be considered in this problem, though JLM added that often a
simple program becomes a part of a much larger environment, ‘and then some limitations
are carried on and make it tawkward  to use.

DEK presented an idea that had not yet been discussed much: interpreting the data
in the amalgamated file as a “program” in a specialized language. This causes the archival
process to become more decentralized, since some of the control information is contained in
the files rather than in the programs that use them. Last time, we associated two version
numbers u and b with each record, and had this represent “if the version number is between
a and b, then include this text, else  don’t.” If we think of this as an “opcode” with a and b
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as the operands, then we can generalize to other opcodes. For example, a “jump” operation
would allow us to skip over large blocks of records without scanning them individually.
This would be useful for a small file with many updates. DMC suggested that the text in
a line could be thought of as one of the operands to a command.

The class ended with some discussion of record-oriented files. KPB was interested in
the dictionary concept introduced last time, cand said that such a Gle could have a two-part
structure. Each record would have a name and its contents, and there would be information
about when it was inserted and deleted. AIS said that some IBM database systems have
such an organization-records never <are actually removed from the database. DMC asked
whether this would obviate the need for using pointers. DEK noted that there are a lot
of questions of efficiency in accessing such a database. JLM presented an interpretation of
multiple versions as a generalization of fonts: just as a file might have some text in normal
type for everyone to read and some in “fine print” for a special set of users, the different
versions of an archival file could include text that pertained to some users of the file and
not others. DEK commented that in such a scheme, a “version number” is likely to be
more complex than a member of a simple linear sequence.

Class notes for Tuesday, October 27

Today the class finished discussion of the file archival problem, and described what
they had done in their programs. RJA’s group had used essentially the method described
in class, keeping “birth” and “death” information for each record, and inserting records
into the proper position so that only a single pass of the file is necessary to do retrieval.
JCM had added to this scheme operations that could move large blocks of lines at a time.
JSW asked whether a method that moved a lot of records for each insertion could be
improved upon, but RJM thought this did not really matter, since ran update involving an
insertion of a single line would still require reading and writing the entire ,archival file to
create the new version. DMC said that random access to a file is needed if you want to
record only the changes cand minimize the time.

One way to cut down this overhead, which RJM used, is to maintain the text of the
records separately from a graph containing the control information. DPH used a tree
structure with blocks of unchanged text at each node, and YOM pointed out that this
extends easily to a non-linear sequence of files, so that one can edit versions other than
the most recent.

Before starting the main work on his solution, JIIM said that he had used LISP to
experiment with various ways to manipulate strings. KPB had also done some preliminary
work, by looking at the “fonts” generalization that was mentioned last time in class.

Returning to a discussion of the representation of archival files, AH pointed out that
by keeping a separate “pointers” file, a simple scheme might cause the number of pointers
to grow arbitrarily large; for example, when records are switched and then switched  back
without changing their text. DMC noted that by keeping only the pointers for actual
changes in the file, this problem could be solved. Someone  asked for an example of the
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use of pointers, and RJM showed how his group’s representation worked. If the initial
sequence of records is, say, &de, and the first update changes this to nbcjde, then the
information stored can be represented pictorially as

(The number 2 next to one of the pointers names the first version that uses that pointer.)
If version 3 is ujde, then the pointer structure is changed to

If, however, version 3 is abcde, then the amalgamated file would be represented as

abc -> de

The record labeled 4 is one that contains no text; it exists only to allow the proper
placement of pointers.

JSW asked what other ways people had used to record changes to an archival file.
DPH said that one method of optimization is to detect when a line has been both inserted
and then deleted while producing a new version, and then not keeping the record in the
amalgamated file. DEF said that since at the end of can editing session, all the changes
can be found in one pass over the new version, it is reasonable to make also one sequential
pass over the archival file to record the changes.

TPM had recorded the exact time of each change in his program, and LAH pointed
out that this could be extended to a system that could allow one to “back up” in the
middle of an editing session to any arbitrary time.

Solutions for problem 2

Most groups solved this problem with programs to convert an ordinary text file into
an archival file, to update archival files, and to extract the text of a version into a text file.
For the sake of consistency, these operations will be called CREATE, UPDATE, ad RETRIEVE
in this summary.

The UPDATE operation took the form of a sequence of editing commands. RJA/DEF/
AIS read in these commands from a separate file, and said that they could be assumed
to be the output from a file comparison program. Other groups wrote miniature editors,
which took commands from a terminal and immediately changed the archival files (or

kept the commands in memory, and produced a new version at the end of an editing
session). KPR/TPM, ARK/JLM/JCM, and DPII/LAII/YOM wrote line-oriented editors.
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DMC/JF/JEII wrote a character-oriented editor, whose interface to the user contained two
pointers called the cursor and the marker. A mark command was used to place the marker
at the current cursor position; then the cursor could be moved, and the delete command
operated on text between the marker and the cursor.

In addition to insert, delete, and commands to read or write versions of the archival
file, there were commands such as

o undo: reverse the effect of the most recent deletion (ARK/JLM/JCM).
0 move: transfer text in the file without doing a deletion followed by an insertion

(ARK/JLM/JCM, AH, DMC/JF/JEH). This was accomplished in the DMC/JF/JEH
program by putting the location of deleted text into a “register” internal to the pro-
gram, and then providing a command that inserted the text pointed to by the register
at any desired location. A result of this was the ability to create multiple copies of
text with only one copy of the characters actually in the archival file.

l replace: replace a line with new text (KPB/TPM).
l back: return to a previous version of the archival file (ARK/JLM/JCM). This was

paired with a command to retrieve the most recent version of the file. By making this
division, their approach was to concentrate on making the most recent file version the
easiest to recover.

l simplify: Create a new archival file with only the active lines in the current version
(ARK/JLM/JCM).

Some groups also had commands to move around in the file (rather than requiring
the user to give line numbers with each command), and to type parts of the file on the
terminal.

There was a variation in the methods used to store and access the information in the
archival file. RJA/DEF/AIS kept a “birthday” and “deathday” version number with each
record, and kept the records in order so that one pass through the archival file was needed
for each update or retrieval. AH kept two files: a “text file” cand a “pointer file.” Lines were
added to the text file only at the end, and the pointer file, which was small enough to read
into main memory during execution of the program, contained a sequence of pointers in the
proper order, each having a first and last version number. This scheme allowed transferring
records as well as insertion Land deletion. DMC/JF/JEH used a similar approach. When
the pointers were read in, they were stored in a doubly-linked list to facilitate moving the
cursor in both directions.

KPB/TPM stored everything in one file, including the pointers in a doubly-linked
list, cmd used random file access. Random access was also used by DMC/JF/JEH.  This
allowed their retrieval time to be linear in the length of the version retrieved plus the length
of the control file. KPB/TPM noted that random access could create some inefficiency,
depending on the access method provided by an operating system, if groups of logically
contiguous lines became widely separated in the archival file. Their proposed solution was
to reorganize the file during periods of light load on the computer, to something logically
equivalent but with records in a better order.

RJM wrote a program that maintained a text file (of single characters) and a file of
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pointers using the graph structure that he presented in class. His original decision was
to allow any node to point to any number of other nodes. Testing this, he found that it
produced graphs that were much larger than the text files! So his final approach allowed
only two successors to each node, with the use of dummy nodes (pointing to a null text
string) to simulate more than two connections.

RJA/DEF,/AlS considered the problem of editing versions of the archival file other
than the most recent. If we have 72 versions, numbered 1 through n, but their history is a
tree rather than a simple linear list, then it. may happen that the history of a particular
record is not a single range of version numbers. If so, more space would be needed to store
the version numbers in which a record is active, and there would be pathological cases in
which this storage would grow una.cceptably.  They said that renumbering the versions in
the tree could be used to solve this. However, the renumbering process takes time, so this
presents another time/space tradeoff.

Another tradeoff, analyzed by KPB/TPM, arises from the choice of record size. With
small records, the control information takes a significant fraction of the space in the archival
file. With large records, however, there is the possibility that small changes cause large
amounts of text, to be duplicated. They recommended one- or two-line records for text
files that were to be modified over ‘an indefinite span of time.

DPH/LAH/YOM were interested in Encling the minimal-space representation needed
to represent the changes in an archival file. They did some ‘research, suggested by DEK,
into Kolmogorov conlplexity, and discovered that while there exists, for each pair of files, an
optimally small “program” to describe the changes, and there exists a “universal decoder”
program to interpret this encoding, there is provably no algorithm to find these optimal
programs. However, there exists a computable function that will give arbitrarily tight
upper bounds for the length of these programs.
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Problem 3: 2 x 2 x 2 Rubicity

The object of this problem is to study a simplified version of Rubik’s cube that is
made out of eight cubies instead of 27. You can get the effect of a 2 x 2 x 2 from the
ordinary 3 x 3 x 3 by painting all faces black except for the 24 faces adjacent to the eight
corners.

This simplified puzzle can be rotated into at most 37 . 7! = 11,022,480 essentially
different positions, because we can take one of the corner cubies (say the red-yellow-blue
one) and consider it fixed; there are 7! permutations of the remaining corners and three
orientations of each one.

Six “moves” are possible from any given position, namely to choose one of the three co-
ordinate axes and to rotate a face perpendicular to it, either clockwise or counterclockwise,
by 90 deg. The face that rotates is chosen as the face not containing the fixed red-yellow-
blue cubic. Position x is said to be at distance k from position y if there is a way to get x
to y in k moves but not in fewer than k.

Write a program that determines how many positions are at distance 0, 1, 2, . . . from
any given position, and that finds two positions at maximal distance from each other.
Your program should use at most about 200,000 computer words of 36 bits each; that’s
7,200,OOO  bits, which is fewer than 3’9 7!. Try also to make your program fast.

If you can determine the key to unlock the knack for solving this puzzle,
the final triumph can be the psychological turning point in your life.

Mathematicians may be tested to the limit and cry over this one - and you may, too!
You will gain a measure of satisfaction, when you align one plane.

You will be delighted with the completion of two.
You will be elated with the completion of three or four!

The completion of the fifth plane will quicken your pulse!!
- and you will have scaled the peak once the last unit of the sixth plane falls into place!!!!

(Quoted fro m the box of a cube puzzle made in Taiwan)
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Class notes for Tuesday, October 27

JSW started discussion of the third problem by showing a Rubik’s cube that had all
faces except the corners covered with tape-this could be used as a 2 x 2 x 2 cube. An
interesting article about Rubik’s cube, by Douglas Ilofstadter,  can be found in the April
1981 issue of Scientific American. It states that for the normal 3 x 3 x 3 cube, there are
known positions whose distance is at least 17 moves (these include half-turns as well as
quarter turns), and <an upper bound on the maximum distance is conjectured to be either
22 or 23. (However, the best algorithm that has been devised for a human to solve the
puzzle is only guaranteed to work in at most 52 moves.) This upper bound of 22 or 23 is
also easily seen to be an upper bound for the 2 x 2 x 2 case.

Next JSW asked whether the number of distinct positions was actually the number
37 . 7!, given in the problem description. Several people thought that they could reduce
this figure somewhat, but no one had an immediate proof. To be able to discuss the
problem more concretely, some time was spent on developing a notation that could describe
configurations and moves of the cube. We need to name both the faces of the 8 cubies (as
the sub-cubes are generally called), and the positions that they occupy. This is similar
to the method used in solving the coin-flipping problem. AIS suggested that the three
faces on one cubic be named, say, Green 0, Orange 0, and Yellow 0, and the faces on the
cubic furthest away (which must contain the other three colors in the start position) be
named R.ed 0, White 0, and Blue 0. Similarly there will be a face for each combination of
a color and one of the numbers 0, 1, 2, 3. JSW pointed out some problems with this, and
suggested that, first of all, the cubies be given distinct numbers from 0 to 7, and also that
instead of colors we can use a representation for the faces that is easier for a computer
program to handle.

We can agree to let cubic 0 be the one that is always fixed; then there are many ways
to assign the remaining numbers. JSW suggested the following labeling,

which has the property that the three directions away from the fixed cubic arc represented
by the numbers 1, 2, and 4, and other cubies are labeled by the sum of the numbers
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describing their position. JCM noticed a parallel between this and Gray codes. A Gray
code is an ordering of the numbers between 0 and 2” - 1, such that each number in the
sequence, when written in binary, differs from the next by exactly one bit. For example,

000,001,011,010,110,111,101,100

is a Gray code for n -= 3. Such a sequence can be found for any n, and there is a
“constructive” proof of this, that makes use of the sequcncc that has been found for n - 1
to construct a sequence for n. (If you look at the rightmost two bits in the sequence shown
above, the pattern becomes clear.) KPB pointed out that JSW’s numbering scheme has
the property that each edge connects corners with numbers that differ in only one bit.

Once the cubies have been numbered, the faces can be labeled as in the following
diagram (where parentheses enclose labels for the faces not visible).

(4 (+I

The labels are chosen so that the top and bottom faces have O’s, and so that on each
corner cubic the faces are (0, -1, -} when read in counter-clockwise order. JSW also gave
the names A, B, and C to the three clockwise,quarter-turns that leave cubic 0 fixed; these
correspond to the permutations

A =
1 2 3 4 5 6 7
1 2 3 5- 7+ 4+ 6- > ’

B = (

1 2 3 4 5 6 7
3+ 2 7- 4 1- 6 5+ > ’

c =
1 2 3 4 5 6 7

>1 6 2 4 5 7 3 ’

whcrc each one actually represents a permutation on all of the faces; the full pcrmutntion
can be determined in a straightforward way from the information given. (This notation is
very similar to what was used in the first problem.)
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TPM conjectured that the fact that (0, +, -} reads counterclockwise on each cubic
forces a restriction on the set of possible configurations, and that 37. 7! can be reduced by
a factor of 3. JSW asked if anyone could prove this, but no one was completely sure, so
it was left to be discussed in the next class. DPII also asked whether it was possible to
create a “circuit” of the cube that passes through each configuration exactly once; no one
knew whether this could be done.

JF said that one way to arrive at the solution would be by an exhaustive starch. She
suggested using a table with one bit per possible configuration; then from a comiguration
whose distance is known, we can generate the positions that can be reached in one turn,
mark them, and continue until a.11 positions are marked.

Class notes for Thursday, October 29

Today we started by finishing the proof that the original number of positions, 37 l 7!,
can be reduced to 3’. 7!, which is about 3.6 million. TPM stated that this is true because,
using the notation of labeling faces (0, +, -}, we can prove that the sum of the faces on
the top and bottom of the cube (counting +1 for “+” and -1 for “-“) is always equal
to 0 modulo 3. To prove this, we note that it is true in the original configuration, and
that each of the qucarter-turns  A, B, and C (and their inverses) preserves this assertion.
Therefore, it is always true cafter  any sequence of quarter-turns.

This implies that once we have named the positions and orientations of six cubies
(in addition to the one that is fixed from the start), the orientation of the seventh is not
arbitrary; it can only have one possible value in order to satisfy the invariant just shown.

DMC suggested a lower bound on the nmximum distance. Since there are only six
moves from any position, and (except for the start position) one of those leads to a position
at lesser distance, WC can form a tree that has six branches at the first level and five at
every other, and in which each node represents a position. The number of nodes must be
at least 3’ l 7!, since each position is represented by at least one node (some will have more
than one), so if the depth of the tree is cl, we must have

1 + 6 + 6 s 5 + 6. 52 +. l l + 6 l gd-l 1 N,

d 2 log, $+N - 1) sz 9.14,

where N = 36 .7!. Therefore, the maximal distance is at least 10. (This argument assumes
that the number 36. 7! cannot be lowered further; the class did not prove this assumption.)

Now the discussion moved back to using an exhaustive search through all of the
positions. With the reduction in the number of positions, we can now afford to use two
bits per position and still stay in the main memory of our machines. (On a 3Gbit machine
such as the P’L)I’-10, the exact requirement  is 204,120 words of storage) In fact, one
bit per position is not enough, since we may start with all positions at distance up to k
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ma&d, but then positions at distance k -I- 1 have to be marked diffcrcntly until we are
completely done with a pass through all the configurations. JLM suggested a way that we
could use a pair of bits to represent the necessary information: when we are updating the
table for positions at distance k + 1, the four possible states could represent the properties
(1) Distance < k,
(2) Distance k,
(3) Distance k + 1,
(4) Distance not known (possibly k + 1, possibly greater).

As we move through. the table, whenever we see a position in class (2), we generate its
“neighbors” and move those in class (4) to (3). Then when we have gone through the
whole table, we make a second pass and move those from class (2) into (1), and (3) into
(2), to prepare for the next pass. Everyone agreed that this is a reasonable way to do the
exhaustive search.

However, it is not immediately clear how we can eficiently encode the configurations
into the minimum space. JSW suggested that we consider first representing the 7! possible
positions of the cubies, and then deal with the orientations. The problem is thus to put the
permutations of { 1,2,3,4,5,6,7} in a one-to-one correspondence with the integers from 1
to 7!. First, it was decided to work with the set (0, 1,2,3,4,5,6}, and the integers from 0
to 7! - 1. A simple indexing scheme is not sufficient, since any of the numbers could occupy
any position, and the maximum code would thus be 77 - 1. TPM came up with a method
that works as follows: to encode a permutation, convert the original seven numbers to a
different sequence of numbers, in which the nth one is always between 0 and 7 - n. For
example, the sequence (6,0,1,5,4,3,2) would become (6,0,0,3,2,1,0).  T.he first number
remains unchanged; after it is used, the remaining numbers are {0,1,2,3,4,5}  and 0 is
number 0 in this set; then {1,2,3,4,5} are left and 1 is number 0 in this set; then {2,3,4,5}
remain and 5 is number 3; cand so on. Now, we use a mixed-radix notation to convert the
new sequence into can integer, namely, we map (a~, al,. . . , a6) into the number

ao6! + a15! + l l . + Al!.

The number @j must always be 0, so it is left out of this expression. This presents us with
a number between 0 and 7! - 1 that is uniquely determined by the original permutation.

Now, to deal with the orientations, we note that these are six quantities that can
each take on any of the values {O,+l, -1). We can represent these  in base-3 positional
notation, by some mapping of (0, +1,-l} onto (0, 1,2}, to get a number between 0 and
3G - 1. Call this number YQ,, and let n, be the number representing  the permutation of
the cubies. Then

n = nb7! + n,

is a number between 0 ‘and 36 . 7! - 1 that uniquely identifies the entire configuration of
the cube.

There was some discussion of how we might get from the encoded valne of a position to
the encoded values of its neighbors without having to explicitly decode the configuration.
No one was able to think of any such methods, but JSW suggested  that even if this
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were impossible, the program might still run in a reasonable amount of time; therefore it
was decided to deal with other issues first and come back to this later if it proved to be
necessary.

Class notes for Tuesday, November 3

One topic discussed today was how to test the programs that were being written to
solve the problem. JSW asked if anyone had come up with a simple test case that would
see if their program ran without solving the main problem. When no one said they had,
he suggested consdering the case of using only half-turns instead of quarter-turns of the
2 x 2 x 2 cube. This should reduce the total number of configurations possible, but still
can be solved with essentially the same method.

Some time was spent determining exactly how many configurations this new problem
had. The first thing that was noticed is that orientations of all seven cubies are fixed.
They start out in the "0" orientation, and half-turns never change this. Thus the factor 36
in the previous analysis is eliminated entirely, and there are thus no more than 7! states
possible.

Next, it was pointed out that each cubic can occupy only some of the seven potential
positions. Looking at the first diagram of the October 27 notes, it can easily be seen that
positions { 1,2,4,7} form a “closed set” under half-turns (or an orbit in the language of
group theory), as do {3,5,6}. (Remcmber that cubic 0 is fixed.) This means that instead
of 7! possible states, we now have at most 4! l 3! = 144.

The result is that limiting the moves to half-turns provides an extremely small test
case for the programs.

Class notes for Thursday, November 5

Since the class finished last time with enough of the problem discussed to begin work-
ing on the programs, JSW decided to investigate the idea of reducing the space requirement
by using equivalence classes of positions. As an example, suppose the sequence of turns
ABAmlCwl takes us to a position I? Then the position Q reached by the sequence
BCB-IA-l must be at the same distance from the start, since the only change is a per-
mutation of the letters A, B, and C. In general, this will be the case whenever  we make a
permutation 7r of the six qucarter-turn  moves A, A-l, B, B-l, C, and C-l which has the
property that 7r(X-l>  = r(X) -’ for each of the quarter-turns X.

Let us therefore call two positions P and Q equivalent if there exist sequences of
quarter-turns crl and 02 such that P = 01(S) and Q = 02(S), where S is the starting
position, and 01 = 7r(02), for some permutation K of the type just described. It is easy
to see that this satisfies the properties of an equivalence relation. If we work with the
equivalence  classes of positions under this relation, our algorithm will have to deal with
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significantly less than 3.6 million configurations. JSW said that the notation we have been
using so far is clumsy for this approach, though.

AH described another way to use the idea of equivalence classes of positions. He
claimed that if we rename the six colors on the faces of the cube, we can get to other
positions that are at the same distance. There are 24 such renamings, because we can
start the cube resting on any of the six faces, and then choose any of four faces to be the
front, after which the other colors are fixed. DEF mentioned that we may be ignoring
some other equivalences, which can be gotten by translating the cube across a major axis,
instead of just rotating it.

KPB said he saw how we could get a reduction by a factor of six using JSW’S method,
or 24 using AH’s equivalences. In fact, some further analysis revealed that we can increase
this number. Using the definition  of equivalence by legal permutations of the quarter-
turns, the number of positions in each class depends on the number of different turns in
the sequence used to get to them. If there is only one turn, then there are six possible
permutations. If there cute two (for example, ABA-lB uses the two letters A and B), then
there are 6 . 4 = 24 equivalent sequences of turns. And if all three letters are used, there
are 6.4 l 2 = 48 sequences.

However, TPM saw that there must be something wrong with this, for if there is
only one class with an odd number of members, the total number of positions cannot be
even, which it is. SSK pointed out that some different renamings of quarter-turns might
lead to the same positions. For example, the sequence AA is equivalent to A-l A-l, but
this is not a different position. The class generated by AA has only three members, not
six. JF asked whether we could ever get to a position at a different distance by such a
permutation; TPM noted that this is impossible since if a position is at distance d, and a
legal permutation of a sequence of moves that derives that position results in a position at
distance d’ < d, then applying the inverse of that permutation to a sequence of length d’
to get to the second position would give us a sequence of length d’ for the original position.

The object of all of this is to be able to use a bit table with only one or two bits per
equivalence class. TPM mentioned that we have not yet determined how to decide what
the classes are, and this is a significant part of the problem. KPB suggested that saving
memory by a factor of 48 might free up enough space to store in a list structure the names
of equivalence classes that we have found.

.Turning to some different questions, DPH wondered what change is the distance a
single move could perform. Certainly it cannot increase the dist<ance by more than one,
and neither can it decrease the distance by more than one. (Otherwise, we coltld get an
increase of more than one in the other direction.) But can it cause the distance to stay the
same? TPM proved that this cannot happen, because each of the quarter-turn moves is an
odd permutation (a permutation is odd or even dependin,m on whether it can be expressed
as the product of an odd or even number of transpositions), and if two positions are at the
same distance, then they both have either odd or even parity.

AH suggested that keeping track of the cube positions resulting from various move
sequnccs might be easier than keeping track of the moves themselves. We can rename
faces, if needed, during this checking. The main problem, still, seems to be finding a way
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to represent the equivalence classes. JSW suggested that we might look for one canonical
member of each class. This would be a configuration that could be easily found as a
function of any of the other members of its class.

This function would take as input the positions and orientations of the seven movable
cubies in the configuration we are considering. JSW suggested that we first ignore the
orientations, and just see what we can do with the positions. Suppose, for example, that
we are given the sequence (5,2,4,3,1,7,6) naming the cubies which occupy each of the
seven positions. How do we get from this to one which is equivalent? AH said that with
a lexicographic ordering on these 7-tuples,  in which we would always let the first cubic be
1, for example, would result in a significant savings in storage.

JSW took a different approach, using the fact that cubic positions 1, 2, and 4 had
been chosen to be “orthogonal.” In the example, the cubies that occupy these positions
are 5, 2, and 3, and we can rename the coordinates to put these in the order 2,3,5, which
is the smallest lexicoraphic  ordering. The permutation of coordinates is given by

and we can complete this to a permutation on all seven cubic positions by viewing the
permutation as the matrix

operating on the binary number representing the position, where the number is represented
by a column vector with the 4’s place on top, the 2’s place in the middle, <and the l’s place
on bottom. Thus cubic position 6 is mapped to position 3, since

and cubic 7, which is in position 6 in the given configuration, is in position 3 in the canonical
member of its class. Similarly, we compute the other positions, and get (2,3,7,5,4,1,6)
& the cubic positions in the canonical member.

Class notes for Tuesday, November IO

I-Iaving returned from his trip to Europe the past two weeks, DEIi asked the class
what progress they had made on the problem. R.JA said that he was having trouble fitting
the program into the main memory of the PDP-10. Even though the array of bits requires
204,120 words of 36 bits, and the 18-bit address space provides 262,144 words, there is
not enough room to fit the program and the SAIL runtime library. DICK said that the
same problem .had come up in his METRFONT system, and provided a solution, using
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the “extended addressing mode” available on SCORE, which was programmed by David
Fuchs. This mode allows a program to reference a 23-bit address space, although access
to words with addresses higher than 2’8 - 1 <are  more complicated than usual.

AIS, JF, and JCM, running their program on a VAX, had obtained a solution up to a
distance of 10, but at that point the system had crashed. They said that over 1.4 million
states were found with distance less than or equal to 10. They also ran the program using
half-turns of the cube, and found a total of only 24 states, with a maximum distance  of 4.
If correct, this means that the culalysis last week, resulting in at most 144 states, can be
improved. JF mentioned seeing a paper by Joe Buhler from Reed College, which showed
that the 2 x 2 x 2 cube had 11 levels, but this counted half-turns as single moves along
with quarter-turns.

As a method for addressing the encoded states (the numbers in the range [0, 3Gm7! - l]),
DEK suggested using “dope vectors.” One could, for example, have a one-dimensional
array 2, and given a permutaion (al,. . . , a~), use the word Z[Y [al,. . . , u~]+cQ] to store the
encoded position. The function Y [al, . . . , uG] could be computed similarly. JF wondered
whether there was a way to transform a state to its neighbors without decoding its position
at all. DEK said that he couldn’t think of a way, although a clever encoding scheme might
allow one of the six moves to be made easily.

AH proposed that by solving a problem similar to ours, namely considering the edges
of the 3 x 3 x 3 cube and ignoring the corners, and combining this with the problem we
were working on, we might be able to solve the general problem for the 3 x 3 x 3 cube.
YOM noticed that this is a case of the composition of two processes, which was a useful
notion in solving the coin-flipping problem. AH went on to say that he knew of sequences
of moves that permute edges  without affecting the corners-this could be used to combine
the two problems. DEK now tried to compute the number of possible configurations for
this problem. There are 12 edge cubies, each with two faces, so there are at most 12! l 2l2
states. This probably reduces to 12.1 . 2%) he said, but that number is over 490 billion,
which is far too large for our present methods.

DEK asked if there were other interesting variations of the problem. DMC suggested
working with a 2 x 2 x 3 “cube.” AH proposed using only two colors on faces. DEK’s
variation was to consider n-dimensional cub&. DPH mentioned a new puzzle that had
recently appeared, called “Rubik’s pyramid.”

As a final point in the discussion of this problem, DEK said that he would like to see
a good explanation of why there were only 24 states in the half-turn variation. He also
said that the general problem of representing a permutation as a product of a given set of
generators in the shortest possible way has been shown to be NP-hard.
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Solutions for problem 3

Five groups presented solutions to this problem, and all produced the following data:

Distance from
Starting state

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

Number of
Positions

1

;
27

120
534

2256
8969

33058
114149
360508
930588

1350852
782536
90280

276

The maximum distance is 14, and each group showed a position at this distance. The
running times of the programs varied from 22 minutes (on a DECsystem-2060)  to about
220 minutes (on a VAX-11/780).

All of the programs used the basic method outlined in class. Three of them (JEH/SSK,
KPB/RJM, and DMC/LAH/YOM) saved some passes through the bit arrays by changing
the meanings of the 2-bit codes on alternate passes. For example’ on passes 1, 3, 5, etc. the
code 10 might mean “seen this pass” and 01 might mean “seen last pass,” while the reverse
interpretation held on passes 2, 4, 6, etc. The advantage of this is that WC eliminate the
step of changing “seen this pass” to “seen last pass” at the end of each pass by changing
the meaning of the encoding, and we can convert “seen last pass” to “seen before last pass”
during the time that we are checking all of the positions in the main loop.

Various methods were used to avoid expensive operations (multiplications, divisions,
extracting bit fields from words) whenever possible. DMC/LAH/YOM used table lookups
and one-dimensional <arrays  to a great extent. They also wrote the main loop of their
program <as stright-line  code, with no sub-loops and no procedure calls, to save some
overhead. On the other hand, KPB/RJM used 12 nested loops in their main procedure to
avoid some encoding and decoding of position codes. JEH/SSK used a table of 18 different
2-bit masks, and a table of a-bit state codes shifted into the proper position, so that testing
the state of a 2-bit field in a word did not involve any shifting or division in the inner loop.,
AIS/JCM/JF realized that once all the positions found on the previous pass have been
encountered, there is no need to scan the bit tables any more on the current pass, and
implemented this simply by counting the number of such positions encountered.
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A limited use of the equivalence of positions was made by RJA/DEF. Each time a new
position was generated, they created six conjugates. These are formed from permutations
of the cube about the O-7 axis and reflections across the O-2-5-7 plane. As discussed in
class, these positions must all be at the same distance from the start. They also checked
the set of conjugates thus generated for duplication of positions; that was used to avoid
needless accesses to the bit arrays.

All of the programs run at SCORE (JEII/SSK, RJA/DEF, and KPB/RJM) used
the extended addressing features. JEH/SSK had the fastest program, requiring only 22
minutes of CPU time.
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Problem 4: Fractal Topography

An illustration that appears on the back cover of B. Mandelbrot’s book Fractals:
Form, Chance, and I&nension  (Freeman, 1977) looks remarkably like a map of some
familiar part of the earth’s surface, maybe Australia, or Arabia, or . . . ; but on closer
inspection we find that the map was actually generated by a random process and drawn
by computer, following a curious procedure invented by Paul Levy. The purpose of this
problem is to generate some more examples of such maps, because Mandelbrot gives only
one.

Here is how to construct the continents on a hypothetical planet called Stochastra:
a) Take a sphere ‘and cover it with “Gaussian noise.” This means that we generate

independent, normally distributed random variables with mean zero and vcariance
da for each infinitesimal surface area do of the sphere.

b) Define /l(p) for each point p on the sphere to be the integral of the Gaussian noise
in (a), taken over the hemisphere centered at p.

c) Determine a threshold value ho so that the area of points p with h(p) 2 ho is I/3
the area of the sphere.

Then the land masses on Stochastra consist of the points with h(p) 2 ho. (We can think
of h(p) as the altitude at p, and ho is sea level.)

Write a program that draws a globe showing the continents on some randomly gener-
ated Stochastra. (Material that explains how to draw pictures using available hardware and
software will be handed out.) The following theory should be helpful for getting started:
If X1 cand X2 are independent, normally distributed random variables with mean zero and
respective variances vr and 212, then Xr + X2 is a normally distributed random variable
with mean zero and v<ariance VI + ~2. It follows that the integral of the Gaussian noise in
(a), taken over any region R of the sphere’s surface, has the normal distribution with mean
zero and variance equal to the area of R; furthermore the integrals over nonoverlapping
regions are independent of each other. This leads to a neat property of the function
constructed in (b): For all points pr and p2 of the sphere, the value of h(pl)  - h(p2) is
normally distributed with mean zero, and its variance is proportional to the great-circle
distance between pl and ~2.

Class notes for Tuesday, November 10

DEK began the discussion of this problem by showing the class a copy of the cover of
13. Mandelbrot’s book Fractals. This provided an example of the kind of output that he
wanted people’s programs to produce. He defined the term “fractal” by saying this meant
that if you look at a pattern though a magnifying glass, you still see the same structure.

When such a pattern contains a curve, and increasing the scale from s to 2s changes
the length of that curve from L to L”, then log, x is called the dimension of that curve.
KYB asked whether dimension 2 is the limit of <any curve constrained to a plane, and DEK



Problem 4: Fractal Topography

answered that he didn’t know, but the familiar space-filling curves do have dimension 2,
and we will be working with curves of dimension 1;.

Now DEK went over the description of the problem in more detail, and said that
there is an analogy between it and the one-dimensional case of Brownian motion, In that
domain, we have a “random” function h(p),  and the variance of h(pl) -- h(p2) depends on
the distance between p1 and ~2.

DEK began to review some of the basic concepts of normally distributed random
variables. Suppose Xr has mean x1 and variance vr, and X2 has mean x2 and variance ~2.
If X1 and X2 are independent, it can be shown that Xi +X2 has mean x1 +x2 and variance
211 + v2. Let x3 = x1 + x2.

Now, suppose we are given X3 ‘and X2, and we want to find X1. There is a way to
“go backwards” and do this, which DEK said he would show in Thursday’s class.

I Class notes for Thursday, November 12

ARS had found a bug in the original statement of the problem, so DEK provided a
correction. Recall Var(X) = E(x2) - Ed. To construct the Stochastra:

a) Take a sphere and cover it with “Gaussian noise.” This means that we generate
independent, normally distributed random variables with mean zero and variance
Aa for each infinitesimal surface area Aa of the sphere.

b) Define h(p) for each point p on the sphere to be the sum (not the integral) of the
Gaussian noise in (a), taken over the hemisphere centered at p.

Equivalently,
a) Let the normally distributed random vcariables  have mean zero and variance l/Ao.
b) Define h(p) by integrating the random variables.

The reason for this scaling change is that variances add. So

Vx(~Xi) = cVar(Xi) = CA0 =/do

in the first case, and

Va~(cXi AO) = CVa(Xi Ao) z CVr(Xi)Ag2 = ca,=/do

in the second case.

Now DEK described one-dimensional Brownian motion, which is a one-dimensional
case of this problem. A Brownian function B from the real numbers to the real numbers
has the property that for all x < y, the difference U(y) - B( )x is a normally distributed
random number with mean 0 and variance y - x. A normal distribrztion  is the familiar
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bell-shaped curve, or more formally, X is a normal deviate (the word “deviate” means the
same thing as “random variable”) if

P r ( X  5 z) =  A -
X

& - s
e-x2/2dz.

7r --oo

Note that a Brownian function is more than a random variable-it is a random function
with the property that (B(y) - B(s)) /e5 is a normal deviate for all y > x.

Suppose X1, X2,.  and X3 <are independent normal deviates. Then aXr $- bX2 has the
same distribution as dw X3.

For Brownian motion, if x1 < 22 < x3, then

R( x2) - B( xl) is normally distributed with variance x2 - xl,
B(x3) - B(x2) is normally distributed with variance x3 - x2,

and if we add these together,

B(x3) - B(xr) is normally distributed with variance x3 - x1,

as it should be, because the variances add. The first one is J-Xl and the sec-
ond is J-X2, where Xr and X2 are normal deviates, so following the rule we get
+i=zx3*

KPB claimed that a function thus defined is not completely random. DEK agreed,
but said that it has properties that make it a mathematically tractable object.

Before proceeding further with the study of Brownian motion, DEK suggested that
we look at a discrete problem where we can “see” what is happening. Suppose we roll
two dice; we know the probabability of the sum being each of the numbers 2,. . . ,12. For
example, we will get 10 with probability A. Now, what if we are told that the sum is 10,
and asked “what was the first number?” It must be 4, 5, or 6, ‘and those are equally likely.

Marc generally, suppose that po,pr,p2,.  . . are the probabilities that the first roll is
0, 1,2) . . . , and Qo,ql,Q2,*** are the probabilities that the second roll is 0, 1,2,. . . . Then
the probability that the sum is 10 is

Pr(& + X2 =  1 0) =  p o q lo  +  mq 9  +  l  - l  - t  p r o mo -

We could generate a random number with this distribution in some way other than rolling
two dice. Now, what is the probability that the first roll is 3? It is

Pr(X1 =31x1+&=10)=
P3!.77

POQlO  + ’ l l + PlOQO  l

By such considerations it is possible to generate a random variable XI after generating
the random quantity X1 + X2, in such a way that the results obtained are equivalent to
what we would have if Xr had been generated first.
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Now let’s turn to the Brownian function, in which the random variables are nornA
deviates X, where

1
Pr(s < X 5 x + Ax) = -e

6
-x2/2Ax + low order terms.

7r

For normal deviates, it can be shown that the distribution of pairs ($X1 + iX2, Xl) is
the same as the distribution of pairs (-&X3, 5x3 + V/zLX,>. We can use this to compute
a Brownian function at two points R( $) and B(1) in two equivalent ways: If we choose
B(x) by having B(0) = 0, B(k) -7 -&X3, and B(1) = &X3 + -$X4, we will get the
same distribution of values at i and 1 as if we computed B(0) = 0, B(1) = X1, and
B(i) = +x1+ ;x2.

To prove the claim in the previous paragraph, notice that in the first case

Pr(iXr + +X2 = x and X1 = y) = Pr(Xr = y and X2 = 2x - y>.

So the density is proportional to e- *Y2 e-i(2x-V)2. (The constant of proportionality doesn’t
matter because it can be obtained by integrating over all x and y.) In the other case, we
have

Pr(-&Xz = x and 5(x3 -t- X4) = Y),

which works out to have a density proportional to e -~(~)2e-f(dE-~)2 . Both of these
simplify to the expression

e-+(4x2-4xy+2y2)~

Suppose we want to compute a Brownian function B at 1024 points. Without loss of
generality, let B (0) = 0. We could divide [O,l] into 1024 intervals, and at each one, take
a normal deviate and multiply by d/1024. But we may not want to do all this work.
So, DEK showed an example of a faster calculation. We choose B(1) at random. (In his
example, B( 1) = - .54.) Now, we imagine a line drawn as follows.

(1) B(l))
To  find B(+), we take i(-.54)  + ix, where X is another normal deviate. In the example,
this resulted in B(i) = +.23. Thus, J? changes by +.23 going from 0 to f, Land  by -.77
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going from $ to 1.

In general, when we split an interval of length I in half, and the change in B over this
interval is v, we choose a normal deviate X, and make B change by iv + $4X in the
first half, and iv - +dX in the second half. Thus, a summary of the computation is

B(l) = x0,
B(i) = R(O) ; ‘(‘) + :x1,

B(i) = - 2B(i) -t B(l) + Lx
6

3,

etc.

From this tableau it is clear that the Brownian curve is self-similar; i.e., small pieces
look the same as large ones when magnified. For example, if we look only at the values
of B(x) for x between 0 and i we see that they are obtained by carrying out the same
pattern that was used for x between 0 and 1, but multiplied by l/a. Thus B(~x)/J/?  is
also a Brownian function.

The formulas can be “unwound” to obtain a general formula for B(T) when 0 < r < 1
and r is any dyadic rational, i.e., a fraction whose denominator is a power of 2:

B(r) = TX0 + llrllX1 + 2-1'2112rllq2(,+1),

+ 4- 1 / 2  l14rll~y~4(r+l,l +  ~-1 �21 1 8q $ 3(r +1 ),  +  l  l  l  �

where llxl~  denotes the distance from x to the nearest integer (hence llxll 5 i).
When r is a dyadic rational, this infinite series is actually finite, because 112,%ll  will

be zero for all large n. When r is not a dyatlic rational, we can use this infinite series to
define B(r), as a function of the infinitely many normal deviates X0, X1, X2, . . . .
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Since normal deviates are not bounded, it is possible for the infinite series to diverge;
but this has probability zero. In order to get a feeling for what is going on, let’s prove in
fact that it is extremely likely that the series

Xl + 2-'/2q2(,+1),  + 4-'/2x[,(r+l)J  + l **

is less than 24, for all 0 5 r < 1: Let c = 6 and CY = .75. If X1 < c and 2-1/2X2 < ac and
2-1/2X3 < cyc and 4-lj2X4 < a2c and 9 9 l and 2-1’s ‘J12Xk < CYL’~  ‘AC and . l l , the stated
series is less than c + cyx + CY’C + l . . = c/( 1 - cy) = 4c = 24, as desired. On the other hand,
the probability that these inequalities are not all satisfied is

Or ,,,$bJ ->  ,llgkJc  or .  ..)

5 Pr(Xr > c) + Pr(Xz/fi  > cyc) + l l .
< T(c)+ 2a(~QC)+4T((&Y)2c)+  l **,-

where T(x) is an upper bound on the probability that a normal deviate is x or more. We
have

Pr(X 2 2) = - 1 00
a-

s e --t2 /2&
7r x

e-t2/2:& = 1ve -x2/2

X a-
3

TX

so we can set T(x) = Cx2/“/(&x).  Letting

Q(qc) = c 2”T ((6)"~)
k20

c 1 2"=
k>O z(Jz,y)kce

-f((fia)"c)' 9
-

and-using MACSYMA, one can compute

Q(.75,6)  = 1.2139033 x 10eg after 1 term,

= 1.24409 x lo-’after 2 terms,

-- 1.247396 x lo-' after 3 terms,

= 1.2476621 x lo-’after 4 terms,

z 1.25 x lo-".

This tiny number is a generous upper bound on the probability that the stated infinite
series could exceed 24 at any point r.
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DEK had written a SAIL program to solve a one-dimensional problem similar to prob-
lem 4. Suppose we are given a Brownian function, and want to know where it crosses $.
There might be many such places, since near a crossing, the function “wiggles” up ‘and
down. The program reports all cases in which B(l) < $ < B(r), where I and r are dyadic
rationals and IZ - r I is less than some threshhold 6.

The program works as follows. Let M be the larger of the values B(I), B(r); and let
m be the smaller. If M + &? * 12 < g and m - fi - I l 12 > $, the program does not
look between I and r for a crossing, because the probability of finding one is very small.
Otherwise, it takes the midpoint between 1 and r <and looks at the two subintervals thus
formed. Whenever m < $ < M, the program has found a solution.

ARS mentioned that a reflection principle could make this more efficient. He gave a
brief description of what this meant. (See the notes for the November 17 class.)

Now DEK explained how this could be applied to the Stochastra problem. We divide
the surface of the sphere into some number of regions. Each region has a value, which is a
normal deviate. Now, if we decide to look for a crossing of sea level in a region, we split it
into two parts, and need to get two numbers that add to the previous value. To do this,
we use the fact that the distributions of

(aX3,  aX3 + bX4) and

are the same. (The numbers a and b come from the ratio of the areas.)

Class notes for Tuesday, November 17

Using the reflection principle suggested by ARS, DEK said that he was able to improve
the program that he discussed last time. If we are given two points on the same side of
a line, we would like to find out the probability that a Brownian function through these
points crosses the line between them. If they are at distances a and 6 from the line, and
their horizontal separation is 1,

1
I

it turns out that this probability is exactly e-2u”. To prove this, suppose that the curve
crosses the line. Then construct a new curve that is the reflection of the old one, after the
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first point at’ which it crosses.

This new curve is as likely to occur as the original one, because it can be obtained from the
other by negating normal deviates, and normal deviates are symmetric about zero. By this
reasoning, the probability of a curve from a to b crossing the line is the ratio of the number
of curves from CL to b’ to the number of curves from a to b, namely ,-(“+0)‘/2/,-(a-b)‘/2  =
e . ,-2ab There might be something similar in the two-dimensional case, and DEK said that
this would be a good research topic.

If we are working with an area on a sphere, RJM asked, and want to find out if there
exists a zone within which a random function crosses zero, why don’t we do a reflection
as in the one-dimensional case ? DEK answered that we aren’t computing a Brownian
function in the same way, since it is defined by a sum. The one-dimensional version of
that would be to compute the function at each point by summing a random function in
an interval around the point.

Using a circle rather than a line segment gives a one-dimensional analog to the Stochas-
tra problem. JCM suggested looking at a change in the coordinate system.

Rather than summing in the semicircle surrounding Y, we get the same result by summing
in the semicircle preceding X. DEK said that the Brownian motion example was like
summing over all the area to the left of a point; a(?~) - I?(z) is a random variable. KPB
remarked that by summing over a hemisphere, WC get a smoothing effect. DEK added that
this causes “mountains” in the terrain to look like real mountains.
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DPH suggested a way to at,tack  the problem on a circle. First we divide the circle
into some number of segments, and generate a “noise” value for each segment. Then, at
the midpoint of each segment, we add the noise over the semicircle around that point.

xb

For example, we have f(xb) = a+b+c.  As we move from xb to xc, we add d and subtract a.
DEK said that instead of generating all the values at the beginning, we can first assign a
random value to a + b + c, and then choose another random number for cl - a, since it is
the sum of two random deviates.

LAH noticed that the Stochastra problem has the following property: If you can see
half of the sphere, then the other half is determined. Or, as DEK put it, f(p) + f(p’) is a
constant independent of p, where p’ is the antipodal point of p. LAH went on to say that
in the one-dimensional case, we can let

y ( t )  =  ⌧ ( t )  - t  l  x ( 1 ) .

This function (which probability theorists call a “Brownian bridge”) doesn’t have the
antipodal property. He asked if this could be gencralizcd to a sphere. DEK doubted this,
saying that Levy’s definition is the only one that has been proved to “work well.”

The discussion now turned to searching for ways to divide the surface of a sphere is
a “regular” way. SSK suggested inscribing a regular tetrahedron inside the sphere, then
drawing segments of a great circle through each pair of points. This gives four regions
of equal area, and we can assign them random values. Now, we can subdivide one of the
regions by taking a face of the tetrahedron, dividing it into four equilateral triangles, cand
making great-circle lines. DEK reminded the class that the area of a spherical triangle,
given the angles A, B, and C of the triangle, is equal to A + B + C - 7r, on a sphere
of radius 1. This can be generalized to show that the area of an n-gon on the sphere is
A, $- . - - + A, - (n - 2)7r.

RJM thought that it could be shown that the four triangles in SSK’s construction
have equal arca, but SSK proved that they do not. He said to consider the solid angles
subtended by each of the triangles. They must be different, so the tsiczngles  have different
area. JCM claimed that if you know the constant of proportionality between these angles,
you can still make use of the construction.

DPH suggested beginning by inscribing a cube in the sphere, but many pcoplc noticed
that there is no regular way to continue this construction after the first step. JF asked if
the reason for doing this was to get the self-symmetry property.
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Abandoning the idea of a completely regular way of dividing the sphere, KPB sug-
gested using longitude and latitude coordinates, and compensating for the irregular areas
by using a weighting factor that would increase near the poles.

A few more ideas were brought up as the class neared the end of its time. DPH asked
about DEK’s use of the reflection principle earlier- once we have points a and b, and we
decide by choosing a random number that the curve does cross the line between them, how
do we proceed to find the crossing.3 DEK answered that once we know there is a crossing,
we use the point b’ instead of b, and change the problem into finding a random path from
a to b’.

RJM noticed that in the one-dimensional case we start with an interval, ‘and use one
random number each time WC divide it in half. In the two-dimensional case, we split an
area into four sections, so we need to deal with three random numbers at once. DEK said
that we could avoid this by using triangles, and bisecting them at each step, but SSK
argued that this would make information hard to keep track of.

Another idea that was proposed was first to create a sphere covered with a random
noise function Gr, and then to define a new noise function by

G2(x) = i,(x) in the east hemisphere,
- Gl(z) in the west hemisphere,

where z is the point antipodal to x. The sum over the hemisphere about a point x is then
the same, except for a constant factor:

s

G2(t) =
s

(G(t) - G(g) = 1 G(t) - 1 G(t),

tEh(x) tEh(x)nW E:h(x) teE

where h(x) is the hemisphere about x, since t E h(x) n W if and only if t is in E but not
in h(x).

Class notes for Thursday, November 19

DEK began the class by asking what coordinates people thought should bc used to
represent points on a sphere. JF suggested spherical coordinates, in which the radius would
be fixed, and 0 (the longitude) and 4 (the latitude) would be specified. DEK reminded
everyone that we can translate between this and Cartesian coordinates by means of the
formulas

X = sin 4 cos 8,

Y = sin $ sin 0,
z = cos 4,
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and that these coordinates satisfied the relation x2 + y2 + z2 = I. We can transform the
coordinates of a point by matrix multiplication,

X0 (u11* +  u12y +  u13z

uy= U21* + u22y  +u23z .
z U31* +  u32y +  u33z

If U happens to be a unitary matrix (this means that U-l = UT, or, equivalently, that
UTU = I), then

(UX)‘(UX) = XT(UTU)X  = XTX,

so the dot product of a vector with itself (which is its length) is preserved when it is
multiplied by a unitary matrix.

RJM asked how we were going to determine what altitude would be the sea level.
Since we are dealing with an infinite number of points, we can use some analysis prior to
any computation to do this. Recalling that sea level was to be chosen so that $ of the globe
is water and 5 is land, DEK asked whether there would necessarily be a single hemisphere
that had this property. DPH answered that there would be such a hemisphere. DEK
began to answer RJM’s question by saying that a crude approximation could be obtained
by using a small number of points. RJM noted that since the heights at antipodal points
are opposite, we can rotate the sphere to get less or more area above sea level.

Now let’s assume, said DEK, that we can’t determine the $ level in advance (since he
didn’t see any way to do so). DPH claimed that if we can find an expected value for the f
level, we can create a map on the sphere and then rotate if necessary it to get a hemisphere
with $ water. YM thought that this would be a good approximation. SSK said that the
variance of this method would decrease as the number of points used increases.

Since the Gaussian noise function is a random, its integral given by the function h is
random, and the measure of the set {p : h(p) 2 s is a random variable. We wcant this to}
have expected value $. YM remarked that the integral of a Gaussian noise function is the
error function

s

x e-t2dt
erf(x) = -

-X If-7 r  l

KPB said that we may want to insert some human intelligence halfway through the
process. We could have the computer generate some samples, and then look and see what
is best. DEK said that some people may also want to compute s exactly by a method that
converges to it.

SSK said that if we break up the globe into pieces that get thinner, and then split
those into new pieces, this two-step process can be used to compute the areas of the new
pieces. AH said that all the pieces could have the same area, but different shapes. Using
spherical coordinates, for example, we could have equal increments of the longitude 0, but
vcary the increment of the latitude 4 (more near the poles, less near the equator) so that
the areas are the same. DMC said the formulas should be fairly simple, <and DEK provided
the fact that the area of a ring on a sphere, defined by two latitudes, is proportional to
the distance between  the planes containing the top and bottom of that ring. So we can
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divide the height of the sphere by m and project this onto the appropriate latitudes, and
create n equally-spaced longitude lines, to get mn equal areas.

Now, DPH said, the problem was to minimize the error gotten by adding or omitting
pieces. The pieces in question are those at the edge of hemisphere, DEF added, since an
arbitrarily drawn hemisphere would intersect only a part of some of the areas. DEK asked
how much this error could be. If we compute h by adding the values at all the pieces
a hemisphere touches, then the error is at most the number of sections at the edge of a
hemisphere, DEF answered. TPM said this is roughly the smallest width of any piece,
times the length of a. semicircle. DPH noticed that there are at most m + n such pieces,
which can be seen by looking at a planar representation of the coordinate system and the
path of a great circle. DEK remarked that as we generate a value for each of the mn
pieces, we can add it to the accumulated values for each of the points in its hemisphere.

Now DEK changed the topic by saying that when we try to solve a probletn such as
this one, it is sometimes not best to choose points totally at random, but to have a method
with some regularity in it. An example he gave is the solution of differential equations.
SSK asked how we would choose random points. DEK suggested first choosing the value of
z as a random number in the interval [ - 1, I]. Th en choose a random point on a circle, and
multiply its coordinates by dm. A random point on a circle can be gotten by choosing
random pairs (x, y) until x2 + y2 5 I and then using the point (x/d-, y/d-).
KPB said that we could, instead, choose an <angle 0 at random. DPH remarked that this
method is equivalent to choosing integers in the ranges [l,m] and [l,n] at random, and
using them as indices to select, one of the pieces that we divided the sphere into.

A few more ideas came up at the end of the class. RJM said that it seemed that we
could take two points, and find out if there is a crossing of sea level between them, as in
the Brownian motion problem. DEK said that a program could maintain a data structure
to represent a division of the sphere into polygons, with links to point to adjacent regions.
When we cut a polygon with a great circle, we update this data structure. He then made a
sketch of what a hemisphere about a point would look like using the m-n model. It is easy
for a point on the equator. If we move up or down, we get a picture such as the following.

The error in the computation will be about the square root of the number of small pieces.
Converting to a point on a plane, by projecting, should be fairly easy, hc claimed. JF
suggested using a stereographic projection.
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Class notes for Tuesday, November 24

DEK asked if anyone had general comments about the problem. AIS mentioned that
someone he knew had generated surfaces in a raster graphics system. The amount of
computation needed was only that required to accomodate  the resolution of the particular
raster size it was working with. This method generated interesting drawings of planets.

AH said that our model doesn’t reflect everything we know about the earth. For
example, continental drift and the rotation of the planet are not accounted for. DEK said
that Mandelbrot had noticed the dimension of the coastline was 1.5 in the model, but
actually only 1.3 on the earth, so he devised a more complicated model (which.does  not
appear in the book). AH added that on the earth there are also more flat areas than our
model will produce.

DEK asked the class how far they had progressed in their solutions. KPB said that
his group had devised an algorithm, but not written any code yet. Given the coordinates
(so, yo, 20) of a point p, we can find the boundary of its hemisphere as follows. First we
convert the position into spherical coordinates (0, +), 1 ya wa s using a sphere of radius 1.
Recall that

x= t/l - 22cose = cOs~cose,

Y= d1 -z2sid =cosqG.ne 9
z = sin+.

Now we rotate the point to the north pole using a unitary matrix. We want U such that

20 0

u0Yo = 00 .
20 1

First, DEK observed, if we use

then
(

cos 8’ sin 0’ 0

- sin 8’ cod
)

0 0 0 11

So LJI changes the longitude of p by the angle 8’, and we can transform p into a point with
6 = 0. Now, we need a matrix U such that

If we use
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we get

Therefore we can choose 4’ to make 4 - 4’ = 0. So the final matrix we want is

(

sin+cos0 -sin+h8 cos$
U=U2U1  =  - s i n 0 cos e 0 .

cos 4 cos e cos q5 sin 8 SiIlC$1

Since U is unitary, we can use U-l = UT to convert back, if we want.
KPB said that he had done things a bit differently. Letting +o be the angle between

p and the equator. If p is at the north pole, its hemisphere is bounded by the circle x = 0.
Otherwise, we use a coordinate transformation to convert the equation z’ = 0 (in the
coordinate system where p is the north pole) to

tan 0 cos &
2=

&an2 8 + sin2 40’

which can be rewritten as

There is a problem, though, as tan 8 approaches 00, since this will cause the sign of z to
change from positive to negative abruptly. Therefore we should use the above formula to
compute 121, and use a bit of “intelligence” to get the correct sign. DEF said that if we
multiply both the numerator and denominator by co&, we get

sin 8 cos +. sine+ - 2:
2=

h2 8 + h2 e. ~0~2 8 =j/m’

and no longer have the problem. KPB also added that his formula assumes 00 = 0; adding
appropriate terms involving 8 - 00 will correct for this.

AH now said that a point (51, yr, 21) is in the hemisphere around another point
(~,yp~)  i f  ad only  i f  21x2 +  yly2 +  z1a 2 0. DEK interpreted this as saying that
the cosine of the angle between the points is non-negative. TPM guessed that after trans-
forming to spherical coordinates, this might yield the same equation as he and KPB had
derived.

JCM and AIS had gotten a program running, and brought along some output to show
the class. All of their hemispheres had a large land mass concentrated in the center; this
seemed to indicate a bug somewhere. Their method did not involve trying to draw a
curve at the land/ocean boundary; instead they drew lines scanning across the globe, and
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changes from white to black, or vice versa, whenever they crossed the shoreline. RJM also
had some output to show from his program.

DEK commented on debugging programs that work with random numbers. Since
different things may happen on each test run, bugs become harder to find. Along the
same lines, he gave the example of chess-playing programs, which may have hidden bugs
that are reflected in play that is poor, though still legal. DMC added that some programs
contain code that is never executed in normal circumstances.

RJM said that one of his tests was to print out the variance with each drawing,
and to check it by hand. He asked if there were any debugging techniques that would
be appropriate. DEK mentioned the following: (1) be able to control the seed of the
random number generator, so that it can be duplicated when a strange bug occurs; (2)
put in redundant code to check for things that shouldn’t happen; (3) look at the output
for “random” conditions that seem to be happening too frequently; (4) in general, use
statistical inferences.

Solutions for problem 4

The programs for this problem were all written in either SAIL or C. Those using the
SAIL computer system had access to display routines and could produce sample output
on the Xerox Grapics Printer (XGP).

In general, the problem was divided into the generation of the map of Stochastra, and
its display. Those groups not using SAIL were able to produce output on SUN terminals
or the Dover printer.

JMC/AIS used the basic approach presented in class. They divided the sphere into
an m-by-n grid, with each portion having the same area, and assigned a Gaussian noise
value to each entry. Heights were computed by considering each latitude in turn. For each
latitude a point was chosen and all the values in its hemisphere were summed; then by
shifting the hemisphere, heights for the other points with the same latitute were computed.

To compute the sea level, each point’s height was used to increment a counter corre-
sponding to a range of values that it occurred in (called a “bucket”), and then the numbers
of entries in the buckets were used to determine the cutoff which would make 5 of the area
be land.

KPB’s approach was similar. He saved a factor of 2 using the fact that heights of
antipodal points must sum to zero, so only one hemisphere’s heights need to be computed.
(This fact was also used by some other groups.) In KPB’s program, the value used to
determine sea level is left to be selected in the graphics output phase.

JF/DPH/TPM used a binary search to determine the location of sea level, as did
some of the other groups.

RJM began by implementing the straightforward “brute force” method, but found
that it was too slow, so he added the improvements discussed in class.‘He  also found that
table lookup instead of calls to library routines for trigonometric functions sped up his
program.
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The display routines had a number of useful features. JEH/DEF/SSK implemented
commands to raise or lower the sea level, to display the globe with a constant x and a
varying 8, or vice versa, and to output drawings on the XGP. KPB also had commands
to read pictures from different files, as produced by the generation program, and display
them at varying resolutions.

JCM/AIS used standard Unix library routines to handle much of the work of plotting
and sending output to the Dover, and their drawing program produced output in the form
required by these programs.

DMC considered two ways of producing the display. Given that the globe is divided
into “rectangular” pieces, his first approach considered each pixel to be displayed and
darkened it if the corresponding rectangle was above water. This turned out to be too
slow. The better method was to look at each piece of the sphere, and darken or leave blank
all of the pixels corresponding to that rectangle.

LAH/ARK/YOM  implemented an approach quite different from that discussed in
class. First, they analyzed the one-dimensional analog of the problem and found that
the solution in class requires space that is worst-case O(log, n), where n is the number
of points being displayed, and asymptotically achieves this worst case with probability 1.
They gave an algorithm to solve the problem in constant space instead.

Using this, they developed an algorithm for generating approximate Brownian motion
on a plane, with an efficient method that converges to true Brownian motion as in the
problem statement. They mapped this onto a unit disk and then a sphere. Their efforts
were rewarded when a bystander, unaware of what was being displayed, looked at their
screen and said, “That’s the Caspian Sea.”

The next six pages of this report contain maps of Stochastra produced by the pro-
grams, in the following order: DMC, JCM/AIS, RJM, JEH/SSK/DEF, JF/DPH/TPM
and LAH/ARK/YOM.
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Tuesday, December 1 63

Problem 5: Question Answering

The goal of this problem is to obtain a computer program that answers questions
put to it by naive users, deriving the answers from a small database that has information
about the occupants of Jacks Hall. For example, your program should be able to answer
questions like the following:

Who is in room 328?
What is Ullman's home phone number?
Where is Professor Golub’s office?

And possibly also questions like this:

In what room is extension 70481?
Do you know anybody named Ursula?
Who are the secretaries on the third floor?
Verstehen Sie Deutsch?

Of course, we have to draw the line somewhere, since no program can be expected to
answer all conceivable questions satisfactorily.

What was the stupidest question you were ever asked?

The trick is to find a way to give sensible answers to as many questions as possible, without
an overly complicated program.

Assume that the user of your program has had little or no previous experience with
computers, and is not interested in learning a bunch of rules. The user just wants answers
to questions, and knows only how to type a question at the terminal. .

December 8 will be Demonstration Day, on which your program should be up and
running. The entire class period on that day will be devoted to trying out each other’s
solutions to this problem.

A database that holds all the relevant information about Jacks Hall people will be
available to everybody in the class. Its precise format will be clarified later, but basically
it will consist of a number of records containing a name and optional further attributes:
room number, office phone, home phone, title, nickname, home address, birthday.

Class notes for Tuesday, December 1

DEK introduced the final problem today by explaining that he intended it partly
as an exercise in “human engineering” : designing a program that a nayve person can use
without having to read a manual or learn a specialized language. The data for the problem,
which was presented as a file available on SAIL (and SCORE, consisted of about 240 lines,
representing the occupants of Margaret Jacks Hall. DEK said not to worry about whether
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this data was completely accurate; we can just assume that it is correct for the purposes
of this problem, even if there are changes since the file was compiled. DMC said that a
more general program could update the database from the dialog with its users, but DEK
suggested that this would add unnecessary complication to the problem, and was too much
to expect given the short time available.

As a general approach, DEF related an experience that he had with a similar program,
which ignored most of the sentence structure of its input and just looked for keywords.
DEK called the ignored text “noise words,” and said that they included many common
words such as ‘is’, ‘the', etc. JLM pointed out that one class of words that could not be
placed in this category are words that express negations. When such a word is encountered,
some analysis of the input is needed to determine what the negation refers to. DPH thought
that it might still be reasonable to ignore this, at the cost of sometimes printing out more
information than the user requested, but JF said that this might cause the program to
print out the entire database. RJM suggested the idea of “links” between keywords and
the objects that they represent, i.e., between nouns and things, and between verbs and
actions.

DEK compared the dialog between such a program and its user to the experience
of trying to communicate in a foreign language that one does not really understand, and
said that in such a situation, between people there always seems to be a way to get the
meaning across. He said that we should not assume that the user of our program is an
antagonist, trying to cause it to fail, since no matter where we draw the line between what
the program can and cannot do, there will be ways to confuse it.

KPB said that the vast majority of questions asked would consist of specifying some
of the fields in a record and asking for others. Therefore, he suggested that we concentrate
on discovering what the most common English phrases to express this situation are. DEK
decided to look at the example questions in the problem description.

Who is in room 328?

In this question ‘who' is a keyword, which indicates a request for the name of a person (or
persons). ‘Room’ is also a keyword, and has the property that if it is followed by a number,
then that number is the given value of the room field in the record(s) requested. Some
people disputed the interpretation of ‘who', saying that it might have other meanings. For
example, if the question was

Who is Don Knuth?

the desired answer would be ‘Professor'. In response to some who thought that the word
‘who' could be ignored, RJM said that it was necessary, since a question such as

What phone is in room 402?

requests information other than the name field. In fact, the database being used has a
separate line for each of the occupants of 402, giving the same phone number. Thus we
would want to be sure that only one instance of the information was printed out. DEK
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mentioned that when a question is too complicated for the program to handle, it should
‘fail gracefully’ with a polite response such as ‘I don’t know’, rather than printing an
obscure error message.

The next question,

What is Ullman’s home phone number?

introduced some more interesting problems. In this case, the word ‘home’ is important,
since the database contains both the office phone number and the home phone number
for each person. A problem arises when the user does not specify which phone number
he wants. There are two ways to handle this: either the program can give both phone
numbers, or it can ask the user which one he wants to know. The first solution is easier, of
course, and most of the class decided to do this, though it was pointed out that you need to
be careful not to print out too much information by generalizing this example. JF pointed
out that in this question, the word ‘what’ is important in that it requests information, but
it does not tell what information is being sought, as is the case with ‘who’ or ‘where’.

Now DEK asked how the word ‘Ullman’ in the question would be recognized as im-
portant by the program. First of all, it had to be separated from the apostrophe and ‘s’
at the end. More generally, the program might have to deal with plurals, verb. endings,
misspellings, etc. Almost everyone was against the idea of dealing with spelling correction
in their programs; if a spelling error was made, the program could give an ‘I don’t know’
response. We could consider the names of people and other objects in the database to
be keywords, and DMC suggested using keywords as a “sieve” to eliminate lines in the
database that do not apply to the question being answered. JLM disagreed with the idea
of making keywords out of words such as names, since if we later want to add a spelling
checker, we don’t want ‘Ullman’ tied in the program as the only way to recognize this
name.

The next issue raised by DEK was the question of access to the database. He con-
trasted a simple approach of linearly scanning the entire file for each transaction to using
a more complex approach that might have average- or worst-case access time of O(log n),
where n is the number of database entries, and asked the class which they thought would
be appropriate. AH noted that binary search would be an efficient way to look up a name,
since the database was already sorted in order of last names. RJM said that some sort of
hashing would allow efficient access given any of the fields. KPB said that this issue could
divide the problem into those cases where all the data can fit in main memory, and those
where access to secondary storage is needed. TPM stated that questions of database access
were not the important part of this problem at all, and he preferred to concentrate on the
interface with the user. DEK agreed with this sentiment, saying that even though his
own resea;rch often deals with efficient algorithms for data accessing, a database with only
about 200 lines is far too small to consider using such techniques. He said that it would
be quite acceptable to read in the entire database once at the beginning of the program, _
and to search it linearly for each request.

Returning to the discussion of analyzing the input, DEK said that the “sieve” approach
could be generalized to make every word a sieve of some sort. Noise words, such as ‘is’,
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would allow anything in the database to pass through, and names such as ‘Ullman’ would
allow only one record. JF added that some of the sieves would operate on fields instead
of records; for example, the word ‘phone’ would choose two of the fields and eliminate the
others. DMC said that we would have to be careful with this when the question contains
the word ‘or’, which could ask whether either of several sieves apply. JEH provided the
example

What people are in rooms 326 or 328?

which illustrates this point.
RJM asked how‘to deal with a request for information from more than one field in

a record. JF pointed out that in the model discussed earlier, this would correspond to
having more than one field marked as unknown, along with the values of the fields that
were specified. KPB asked whether we should include information picked out by the word
‘not’, such as

Who does not have a telephone?

DEK said that in most cases, ‘not’ is used in a construction of the form ’ . . . and not . . . ))
which places a limit on the total amount of output. Even if a large amount of output is
generated for a particular question, RJM suggested asking the user if he really wants to
see it whenever it exceeds a threshhold.

The class spent a while discussing the ways in which the word ‘and’ presents diffiul-
ties. To most mathematicians, ‘and’ indicates the conjunction of two conditions, while in
everyday English, it is more often a disjunction. Thus the phrase ‘men and women’ refers
to all people, not the empty set!

Several more comments were made as the class ended. JEH said that regarding
spelling errors, if the program encountered a situation where it could not find any records
that matched keywords found in the input, then it could report back to the user with
the suggestion that a word was probably misspelled. TPM raised the question of strange
input containing unrecognized words, such as ‘Pray tell me . . . ‘. In such a case, the
program would not know that ‘pray’ is a noise word. JCM suggested that if the program
can provide an answer by ignoring words that it does not recognize, then it should do so;
otherwise, it could go check for spelling errors if it has this ability. AH pointed out that
a useful type of spelling “error” detection is the use of common nicknames instead of full
first names.

Class notes for Thursday, December 3

DEK began by writing on the blackboard the question

Are there no people on the first floor?

This question can be answered ‘Yes’ or ‘No’, but whichever answer is given the user wouldn’t
know for sure what the computer thought it was saying. This is one that most programs
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would not be able to handle correctly, because of its ambiguity. Therefore, an answer of
‘Yes’ or ‘No’ could be misleading, since it carries the implicit conclusion that the program
was able to understand the question. Therefore, DEK said he preferred to have all answers
be statements of fact such as

There are no people on the first floor.

Answers like ‘Yes’ and ‘No’ are based on the context in which they appear, and DEK said
that dealing with context (including proper understanding of prepositions) is an important
aspect of artifical  intelligence programs that carry on dialogs. He considered such refine-
ments to be beyond the scope of Problem 5, but he wanted to mention their importance
in real-life applications.

Another question that might cause problems is

Is Knuth in room 326?

Since the database contains the information that Knuth’s  office number is 328, several
possible answers would be

I don’t know.
Knuth is in room 328.
Phyllis Winkler is in room 326.
Nothing in my database matches both Knuth and room 326.

JLM mentioned that in a seminar he had attended several months ago, the idea of a
‘coSperative’ database management program was discussed. This sort of program checks
for implicit assumptions in the questions it is asked, and if cry of these are false, they are
reported back to the user as a probable error. Thus, given the question

Is Knuth in room 726?

a coijperative program would answer that there is no seventh floor, rather than simply
‘No’, since the question contains an incorrect assumption.

DMC asked whether there was any way to decide if a question called for a yes/no
response. JCM suggested that if the question gives values for some fields, but does not
name any fields without giving values, then a yes/no answer is appropriate. DEK said that
even in this case, he preferred that the program output a statement, such as the ones given
above. KPB disagreed with this, saying that one thing that makes computer programs
seem “dumb” is that they are too verbose when the user expects a simple answer. He said
that to recognize yes/no questions, the program could check whether the first word of the
question is ‘Is’, ‘Are’, ‘Does’, ‘Do’, ‘Can’, etc.

At this point, DEK asked whether anyone wcanted to share with the class the strategies
that their programs were using. KPB outlined his, which involved three main phases in the
program. First, it reads the database and creates a list structure (the program is written
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in LISP) to represent the information. This involves some simple deduction, to separate
the lines representing people from those naming machines in rooms, or rooms with no
named occupants. Also, the floor of each room is determined from the room number, so
that questions can include information about floors of the building.

The second phase of KPB’s program reads the user’s input. Based on the first word of
the question, it categorizes the question as being one of (1) a request for information, (2)
a question requiring a yes/no response, (3) a “how many” question, or (4) a “describe”
question, asking for all fields in one or more records. The yes/no questions are further
divided into two types: (a) a “does he have” question, and (b) an “is it true that”
question. Category (1)) which uses information in the question to fill some fiklds, and
requests some of the other fields, is the default when a question does not fall into any of
the other categories.

The third phase computes the answer, and produces an English sentence for it. If
there are no keywords recognized in the entire question, the program will say ‘I don't
know’. Because it does not analyze its input for syntactic correctness, KPB said that it
will actually provide meaningful responses to input such as

Don Knuth what room what phone?

YOM described his program’s basic structure. First, it reads the database and does
some preliminary processing (such as converting all letters to lower-case, for easier pattern
matching). Then, when a question is typed in, the first step is to determine what is being
asked. The second stage is to find what knowledge is present in the question. The third

phase produces an appropriate response. YOM asked whether anyone knew how efficient
the set-manipulation features of SAIL are. DEK said that he had never used them himself,
but thought that they should be fast enough for this problem in any case. RJM had done
some of his program using these features initially (though he later switched to LISP), and
said that there was no noticeable slowness at all.

RJM and JLM, who were working together, now described their program. Given the
question ‘Are there no people on the first floor?‘, it would eliminate some words
as “noise ,” and end up by producing the list

(EQUAL 0 ON PEOPLE FLOOR FIRST).

This sentence, however, was not chosen as an example of normal input, so two better ones
were given:

Whose phone is 7-4132?
Who was born in June?

The first one becomes the list (WHO PHONE IS (PHONE 7 DASH 4132)); the inner list at
the end is a result of the scanner’s recognizing the structure of the input representing a
telephone number. The second pass of the program recognizes that ‘PHONE' is both a word -
in the question and a field that has been supplied, so it converts the list to

(WHO (PHONE 7 DASH 4132)).
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This causes the program to return the name of a person, because the list begins with ‘WHO’.
The second question becomes (WHO (BIRTHDAY (DATE JUNE))), in an an analogous

manner. JLM explained that the program could handle more complicated queries, such as

Whose birthday is before June?

which would be converted to (WHO (BIRTHDAY (DATE: RANGE NOW (DATE JUNE)))). The
program does these conversions by means of a grammar. For example, the production that
does the conversion just mentioned is

BEFORE (<DATE>) ---) (DATEzRANGE Now 2).

Here ‘2’ means the second element at the left of the arrow. You start with the user’s given
sentence and see if any productions can be applied starting at the first word; if you can,
you replace one or more words that match the left-hand side of the production by the
quantity or quantities on the right, and start over. If not, you try matches that start at
the second word, and so on, until you find that no more productions can be applied.

ARS asked about questions that may have conflicting information. For example, in
the question

Who was born before Knuth?

the word ‘before’, which normally introduces a date, is followed by a name. He said that
part of the program could resolve this conflict by trying to produce the desired information
(a date) from what is present. In this case, the record with the name ‘Knuth’ has a date
(his birthday), and so this could be used as the object of ‘before’.

Returning to the discussion of grammars, DEK said that a production-driven approach
like this is useful because it is a fairly straightforward programming task to write a parser.
The hard part, though, is deciding what the productions should be. Once the grammar
gets large, it is very hard to determine how the productions interact, and unexpected
results may arise. Also, if you test the grammar by choosing examples and making sure
they are accepted, then it is easy to “cheat” by introducing productions just for the sake
of fixing bugs in a few examples that you want to demonstrate.

DEK mentioned that an extension of the basic grammar approach is one that may
have several productions that are applicable at any time, with “weights” assigned to each
so that of several possible parses for a sentence, we can decide which one is most likely to
be “correct .” DEK also noted that you can add productions as you gain more experience
with your program. It turns out that the the power of production systems allows one to
handle special cases in the language by “programming” tricks; he recommended against
doing this, since it makes the grammar hard to understand and modify. Each production
chosen should have a natural interpretation and be meaningful in the context of the rest
of the grammar.

JLM pointed out that the use of idioms in English can be captured in a production
system; he felt that this was a legitimate use of productions, but that those productions
should be made separate from the others in the grammar.
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RJM told about one more feature of his program-a “hierarchy” of associations. Each
keyword is given not only an action, but also a corresponding priority. If two keywords
have the same priority, the program takes the union of their results; this is intersected
with the result of keywords of higher priority. For example, ‘who’ has a higher priority
than ‘phone’, so the phone number that is output by the action of ‘phone’ is not included
in the final output. Another example of this is that the program does not print out a full
name unless it is required by the question.

JLM mentioned another advantage of a production grammar: partial results can be
used even when the sentence as a whole cannot be parsed, since production parsing operates
“bottom up.” By contrast, a “top down” method gets nowhere unless it can parse the whole
sentence.

Class notes for Tuesday, December 8

Today was Demonstration Day, and seven groups had programs running and ready
to show to the class. DEK (with help from his wife) had prepared a list of questions that
he wanted each program to try out. These included several that he did not expect most
programs to interpret correctly. In addition, each group provided one question to “show
off” their program, and see if the others could handle it.

(A note to the reader: some of the transcripts below have been edited to save space.
All of the answers are from the programs, though.)

The first program was by KPB and AH. It was written in MACLISP.

Who ia in room 306?
James Wilkinson

What  is Ullman's phone number?
office phone- 7-1612 home phone- 494-2667

>Where is Gene Golub's office?
210

What  ie hie home address?
I don't know. Ask a human.

This question was designed to fail, since connecting the word “his” with the previous
question is more complicated than ilnybody  was supposed to attempt.

What  is Gene's  home address?
328-7064

Since address information is not part of the database, the word “address” is ignored, but
“home” then refers to the home phone number.

Where is the ladies' room?
I don't know. Ask a human

>Can  I use a computer here?
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I don’t how any.

AH explained this strange answer by saying that the “I” matched the database entry for
“Andrew I. Shore." When the question was changed to

>Can  i use a computer here?
Almanor
Diablo
Diego
Inyo
Narin
Mojave
Mono
Nont erey
Palomar
SAIL
SCORE
Toro
Yolo
Yuba

it provided a list of all the computers in the building.

>Where are the terminal rooms?
320
460
408
343
336

>Ia there a place to buy food, drink?
I don’t know. Ask a human.

>Where is the departmnt secretary’s office?
Carolyn Tajnai - 210
Marilynn Walker - 210

>Ie there a Xerox machine that i can use?
Yea

The “1” was put in. lower case to make the previous question work.

>Where is the Xerox on the fourth floor?
433

>What  is Nancy’s last name?
CSD Receptionist

>How  many students are at extension 7-0926?
8

>Ia today anyone’s birthday?
I don’t know. Ask a human.

>What  are Dave ‘s birthday and phone number?
Dave Arnold - office phone- 7-3796 home phone- 962-0376
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birthday- December 16
David Brown - office phone- 7-2462 home phone- I don't know

birthday- June 12
. . .

This continued, printing out information for anyone named “Dave” or “David.”

>Who shares an office with Dave Foulser?
316

>Is Donald
Yes

in room 328?

>What  secretaries were
I don't know any.

born in Novem.?

The strange abbreviation was not anticipated. With a slight modification, it will work.

>What  secretaries were born in Nov.?
Jayne Pickering
Marilynn Walker

>Where are the Altos?
I don't know any.

The program can’t handle both plurals and capitalization in the sitIlle word.

>Where are the altos?
Almanor  - 241
Diego - 225
Inyo - 433

. . .

>Qui e s t
I don'

sur la
t know.

deuxieme etage?
Ask a human.

>Which  students in Lia's office do not have home phones?
room 416A home phone- 493-4952

The next program was by JCM, ARK, and AIS. It is written in C.

> who is in room 306?
The name of people/places/things in room number 306 is:
James Wilkinson ,

>
I matched every record in the database --
You probably want to rephrase your question

> What is Ullman's phone number
The office phone and home phone of Ullman is:
7-1512 494-2667

> Where is Gene Golub's Office
The room of Gene Golub is:
216
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> What is his home address?
I matched every record in the database --
You probably want to rephrase your question
I didn’t understand the word(s):
‘h i s ’, ‘address ’

> What is Gene’s home address?
The home phone of Gene is:
328-7064

> Where is the ladies’ room?
I matched every record in the database --
You probably want to rephrase your question
I didn’t understand the word(s):
‘ladies ’ ’

> Can I use a computer here?
Yes

> Where are
The rooms of
225

the terminal rooms?
the Terminal Rooms

408
460

320

> Is there a place to buy food, drink?
Yes

That’s interesting! Let’s see if it can tell us where such a place is.

> Where
I matched every record in the database --
You probably want to rephrase your question

> Where is the department secretary’s office?
The rooms of the Secretary8  are:
326
210
210
030
206
214
436
340
304
358

> Is
Yes

there a Xerox machine here that I can use?

73
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The room of the Xerox Graphics Printer on the Fourth floor is:
433

> What is Nancy’s last name?
The last name of Nancy A. is :
Dorio  ,

> How many students are at extension 7-0926?
No
I didn’t understand the word(s):
‘many’, ‘extension’

> is today anybody’s birthday?
I matched every record in the database --
You probably want to rephrase your question
I didn’t understand the word(s):
‘today ’ , ‘anybody’s’

A more specific question was given.

> who was born on december 8?
The name of people/places/things with birthday December and 8 is:
Prancing Pony ,

> What are Dave ‘s birthday and phone number?
The office phone, home phone, birth day and birth month of Andrew I. is:
7-0926, 328-7965, 30, September

The reason for that response is the word ‘and’, which matches ‘Andrew’ in the database.
If we remove ‘and’ from the question, we get the following response.

> What are Dave’s birthday & phone number?
I do not understand your question --
There is no such information in the database

> Who shares an office with Dave Foulser?
I do not understand your question --
There is no such information in the database
I didn’t understand the word(s):
‘shares’,  ‘a n ’,  ‘w i t h ’

> Is Donald in room 328?
Yes

> What secretaries were born in Novem.?
The birth days and birth months of the Secretary8  are
birthday not known
4 , November
21, July
13, April
23, September
birthday not bown
26, November
14, December
17, September
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birthday not known

This program is also unaware of the strange way of abbreviating ‘November’.

> What secretaries were born in nov?
The birth days of the Secretary6  with birthday November are:
4
26

> Where are the Altos?
The rooms of the Altos are:
460

460

460

03oc
330

450

460

408

450

433

226

a41

> Qui est sur la deuxieme etage?
Permettez-moi a repondre en Anglaie:
The names of people/places/things on the Second floor are:
Dawn Yolton ,
name not known ,
Terry Winograd ,
Bill White ,
Marilynn Walker ,
Allan  Terry ,
name not known ,
Carolyn Tajnai ,
Mark Stefik ,
first name not known Spruce ,
David E. Smith ,
Susan Seabrook  ,
Betty Scott ,
Irmgild Schack ,
Barbara Roberts ,
Glenn Rennele ,
Mark Peairs ,
Thien-Huong Palmer ,
Gordon Novak ,

75
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Penny Nii ,
Jock Mackinlay ,
Doug Lenat  ,
Barbara R. Laddaga ,
John Kunz ,
Ingeborg M. Kuhn ,
Dianne Kanerva ,
Susan Hill ,
Milt  Grinberg  ,
Russell Greiner ,
Lynn Gotelli ,
Jose L. Gonzalez ,
Gene Golub ,
Phil Gerring ,
Mike Genesereth ,
Peter Friedland ,
Jeff Finger ,
Edward Feigenbaum ,
David A. Eppstein ,
Bob Engelmore ,
Nancy A. Dorio  ,
first name not known Diego ,
Linda Gail Demichiel ,
Claudia Dedo ,
name not known ,
Paul Cohen ,
William Clancey ,
Bruce Buchanan ,
Jake Brown ,
Harold Brown ,
Denny Brown ,
James Bennett ,
Avron Barr ,
Rene Bach ,
first name not known Almanor  ,
Nelleke  A i e l l o  ,

> Which students in Lia's office do not have a home phone?
The rooms and home phones of Lias the Students are:
311 366-9004
416A 493-4952

7 who is in 311?
The names of people/places/things in room number 311 are:
Stephen Nash ,
William Gropp ,

> what time is it?
Tue Dee 8 11:43:59  PST 1981

> what is your favorite color?
red

7 what is the airspeed of an unladen swallow?
African or European?



Tuesday, December 8 77

> Goodbye

The third group to demonstrate their program was DMC, SSK, and DPH. Theirs was
written in SAIL.

Your question? who is in room 308

The following are in room 306:
james Wilkinson
Your question? what is ullman's phone number

jeff ullman's office phone number is 7-1512.
Your question? where is gene golub's office

I do not know.Nothing  like that in my data

The word “off ice” is not known to the program. Maybe it will work if we try “room.”

Your question? where is gene golub's room

I do not know.Nothing like that in my data
Your question? what is his home address

Iam confused.Please rephrase your question
Your question? what uis gene's home address

gene golub's home phone number
Your question? where is gene

is 328-7064.

gene golub's room is 216 Margaret Jacks Hall.
Your question? where is the ladies' room

Iam confus ed.Please rephrase your question
Your questi on? can i use a computer herre

I am confus ed.Please rephrase your question
Your questi on? where are the terminal rooms

Iam confused.Please rephrase your question
Your question? is there a place to buy food, drink

I am confused.Pleaae  rephrase your question

A rephrasing of one of the previous questions did produce a response.

Your question? where are the terminals

The following rooms contain terminal room :
2 a5
3 43
Your question? where is the department secretary's office

I am confused.Pleaae rephrase your ques tion
Your question? where is the department secretary

The following rooms contain department secretary :
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2 10
2 10
Your question.7 is there a Xerox machine here that i can use

Iam confused. Please rephras e your question
Your question? where is the Xerox on the 4th f l o o r

I am confused.Please rephrase your question
Your question? who is the Xerox on the 4th floor

The following are on floor 4:
JUP

Your question? what is nancy’s last name

Iam confused.Please rephrase
Your question? who is nancy

your question

nancy dorio  is a csd receptionist .
Your quest ion? how many students are at extension 7-0926

The following people have phone number 7-0926:
andrew  shore
ralph saaveddra
yoram moses
timothy mann
sanjay kasturia
david helmbold
david chelberg
richard  anderson
Your question? what are dave’s birthday and phone number

I am confused.Please rephrase your question
Your question.3 is donald in room 328

yes,donald knuth’s room is 328 Margaret Jacks Hall.
Your question? what secretary born in nov

The following people were born in nov:
jayne Pickering

The program did not print “marilynn  walker" because her title is given in the database
as “department secretary.”

Your question? where are the altos

The following rooms
4 60
4 60
4 60
0 30
3 20
4 50
4 60
4 08
4 50
4 33

cant  ain alto :
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2 25
2 41
Your question? which students in lia’s office do not have a home phone

I am confuaed.Please rephrase your question

The next program, also in SAIL, was by JF, LAII,  and YOM.

(Oithink

Welcome to the wonderful world of CS204, foolish human.

You may type questions about Margaret Jacks Hall.
I may answer them.

When you have had quite enough, type “abort”.

Ask me a question, if you dare!
?>who  is in room 306?

James Wilkinson is in room 306.

Ask me a question, if you dare!
?>

Excuuuuse  me

(The program prompts each time with “Ask me a question, if you dare!;" this has
been removed from here on.)

?>what is ullman’s phone number?
Jeff Ullman has office phone number 7-1512 and has home

phone number 494-2667.

?>where  is Gene golub’s off ice?
Gene Golub is in office 216 and is on the second floor .

?>what is his home address?
This has nothing to do with the database.

?>what is Gene’s home address?
I don’t know any such person.

?>who is Gene?
I don’t know any such person.

?>where  is the ladies’ room?
Barbara R. Laddaga is in office 248 and is on the second

f l o o r  .

Apparently, the string “lad” caused that response.

?Xan i use a computer here?
Ralph Gorin was born on december 24 and is a director of

computer and is in office 422 and has office phone number
7-3236 and has home phone number 326-5879 and is on the fourth
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f l o o r  .
Chris  Tucci was born on december 10 and is a sail user and

i s  in  o f f i c e 020e and has office phone number 7-2896 and has
home phone number 327-6071 and is in the basement .

?>where  are the terminal rooms?
Invalid index for array ANSWERS. Index no. I, value is 241
Called from 416742 Last SAIL call at 416734
?IReply  [CR] to continue,
[LF] to continue automatically,
ttDt'  for DDT, "Ett to edit, clBtc for BAIL,
ttXtf t o  e x i t , ttStl to  restart
?B

At this point, the program had to be restarted.

?>is there a place to buy food,drink?
This has nothing to do with the database.

?>where  is the department secretary's office?
Invalid index for array ANSWERS. Index no. I, value is 241
Called from 416742 Last SAIL call at 416734

. . .

Another question caused the same error.

?>is there a Xerox machine here that i can use?
Yea:

?>where  is the Xerox on the fourth floor?
Invalid index for array ANSWERS. Index no. I, value is 241
Called from 416742 Last SAIL call at 416734

. . .

?>What is Nancy
Nancy A. Dorio  .

'a last

?>What are dave's birthday and phone number?
Dave Arnold was born on december 16 and has office phone

number 7-3796 and has home phone number 962-0376.
Dave Marimont waa born on and has office phone number

7-3796 and has home phone number 864-6989.

?>is donald in room 308?
No,

A mistype, but it shows that the program works!
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?>is donald in room 328?
Yes, Donald E. Knuth is in room 328.

?>what secretarie  were born in Novem?
Peter Blicher was born in the month of november.
Denny Brown was born in the month of november.
Jim DaviDson  was born in the month of november.
Kevin Karplus was born in the month of november.
Gabriel M. Kuper was born in the month of november.
Amy Lansky was born in the month of november.
Clayton wai Mock was born in the month of november.
Jayne Pickering'was born in the month of november.
David Todd was born in the month of november.
Marilynn Walker was born in the month of november.

?>what secretaries were born in Novem?
Jayne Pickering is a secretary and was born in the month of

november.
Marilynn Walker is a department secretary and was born in the

month of november.

?>where  are the altos?
Invalid index for array ANSWERS. Index no. I, value is 241
Called from 416742 Last SAIL call at 416734

. . .

?>qui est sur la deuxieme etage?
This has nothing to do with the databaae.

?>which students in lia's office do not have a home phone?
I don't know any such person.

?>abort

I'm meeeeeelting . . . . . . . .
[ Bus Error - Core Melted ]

Ding, dong . . . . .
End of SAIL execution

Next came TPM and RJA, who had also used the SAIL language.

Welcome to the RA/TM  question answering system.
Do you want me to read questions from a file? n
Ok. You can type a question whenever you see the 'X' sign.

# who is in room 306?
James Wilkinson is in 306.

# what is Ullman's phone number?
Ullman  has office phone number 7-1612.

# Where is Gene Golub's office?
Gene Golub is in 216.

# What is his home address?
I don't know what you mean.

81
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# What is Gene's home address?
Gene is a Professor.

# Where is the ladies' room?
I don't understand that question.

# Can I use a computer here?
Almanor.
Diablo.
Diego.
Inyo.
Marin.
Mojave.
Mono.
Monterey.
Palomar.
SAIL.
SCORE.
Toro.
Yolo.
Yuba.

# Where are the terminal rooms?
Room 343.
Room 226.

t Is there a place to buy food, drink?
Yes.

# Where is the department secretary's office?
Room 210.

X Is there a Xerox machine here that I can use?
Yes.

# Where is the Xerox on the fourth floor?
Room 433.

# What is Nancy's last name?
Nancy.

# How many students are at extension 7-0926?
There are 8.

# Is today anybody's birthday.
Yes.

In view of the previous “Yes” answer, the class wondered whether this was just an auto-
matic response. So a more specific qustion was typed in.

# Who was born December 8?
Prancing Pony was born on Dee 8.

# What are Dave's birthday and phone number?
Dave Arnold has office phone number 7-3796 and was born on Dee  16.
David Brown has office phone number 7-2462 and was born on Jun 12.
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David Chelberg has office phone number 7-0926 and was born on Feb 16.
David Eppstein has office phone number 7-3324 and was born on Hay 27.
David Foulaer was born on Ott 4.
David Fuchs has office phone number 7-1646 and was born on Sep 12.
David Helmbold  has office phone number 7-0926.
David Lowe has office phone number 7-3796.
Dave Marimont has office phone number 7-3796.
David Smith has office phone number 7-1809.
David Todd has office phone number 7-0446 and was born on Nov 19.

Note that no mention is made of information not present in the database. The fobwing
question demonstrates that “Who” returns information about a person, while “What” is
ignored, since TPM and RJA found it to have too many possible interpretations in different
situations.

f What is David Eppstein?
I don't have that information.

# Who shares an office with Dave Fouleer?
David Foulser is in 316.

# Is Donald in room 328?
Yea.

# What secretaries were born in November?
Nov 26.
Nov 4.

# Who are the secretaries born in November?
Jayne Pickering was born on Nov 26.
Marilynn Walker was born on Nov 4.

# Where are the Altos?
Room 241.
Room 226.
Room 433.
Room 460.
Room 408.
Room 460.
Room 320.

# where are
Room 03OC.

the alto wizards?

# Qui eat sur la deuxieme etage?
I don't know what you mean.

# Which students in Lia's  office do not have a home phone?
I cannot answer that question.

TPM decided to type in a few more questions.

# why is the Dover down?
I cannot answer that question.
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# who is the basement
Dave Arnold.
Harlyn Baker.
Tom Binford.
Peter Blicher.
David Brown.
Don Coates.
Mark Crispin.
Martin Frost.
Ron Goldman.
Roy Hayes.
Peter Hochschild.
Lassen.
Sidney Liebes.
David Lowe.
Michael Lowry.
Dave Marimont.
Allan  Mil ler .
Clayton Mock.
Mark Roberts.
SAIL.
George Schnurle.
SCORE.
Marianne Siroker.
Chris Tucci.
Rick Vistnea.

# who are the research people?
I don' t know what you mean.

# who are the r & d engineers?
David Brown.
Roy Hayes.
George Schnurle.

# who i s  v i s i t o r ,  u l lman?
There are none that I know

X who is a visitor?
Peter Blicher.
James Bunch.
Elise De Doncker.
Mike Harrison.
Ruth Levinson.
Fumichiro Maruyama.
Ernst Hayr.
E.O. Milton.
Gordon Novak.
Mihoko Okada.
Vaughan Pratt.
David Todd.

o f .

# help
I know all sorts of things about the people, rooms, and

computers in Margaret Jacks Hall. Ask me questions in
simple English, and I will try to answer. I am good with
birthdays, phone numbers, room numbers, and the like.
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In fact, I'm smarter than my programmere!

# help
I know all sorts of things about the people, rooms, and

computers in Margaret Jacks Hall. Ask me questions in
simple English, and I will try to answer. I am good with
birthdays, phone numbers, room numbers, and the like.
I'm not so good at remembering faces.

# help
I know all sorts of things about the people, rooms, and

computers in Margaret Jacks Hall. Ask me questions in
simple English, and I will try to answer. I am good with
birthdays, phone numbers, room numbers, and the like.
I am also very modest.

The last line of each “help” message comes from a random number generator.

# help
I know all sorts of things about the people, rooms, and

computers in Margaret Jacks Hall. Ask me questions in
simple English, and I will try to answer. I am good with
birthdays, phone numbers, room numbers, and the like.
If I can't figure out the answer, ask Joe Weening.

x quit

Good bye
End of SAIL execution

The sixth group, also programming in SAIL, consisted of DEF and JEH. Their pro-
gram produced the following dialogue.

What is your question ??
Who is in room 306?

James Wilkinson is in room 306.
What is your question ??

What is Ullman's phone number?

Douglas Baxter, Marsha Berger, James Boyce, Andre1 Broder, James R.
Bunch,  , Lew Creary, Elise De Doncker,  Bob Floyd, and David Fouleer
are on the third floor. Christina Fraley, David Fuchs, Dick Gabriel,
Anne Gardner, Jay Gischer, Chris Goad, Ron Graham, Daniel Greene, William
Gropp  , and Mike Harrison. John Herriot, John E. Hershberger, Juasi
Ketonen, Donald E. Knuth, Mark Lake, Fran Larson, Randall Leveque,
Ruth Andrea Levinson, Frank Liang, and Harry Mairson. Yonatan Malachi,
Jitendra Malik, Zohar Manna, Ernst Mayr, John McCarthy, Jutta E. Mccormick,
Rosemary F. Napier, Stephen Nash, Joseph Oliger, and Palomar. Peter
Pepper. Prancing Pony, Vaughan Pratt, Robert Schreiber, Alan Siegel,
Tom Spencer, Alex Strong, Carolyn Talcott,  Christopher Tong, and Luis
Trabb-pardo. Lloyd Trefethen, Jeff Ullman,  Moshe Vardi, Paul Vianna,
Joe Weening, Richard Weyhrauch, James Wilkinson, Phyllis Winkler, Pierre
Wolper, and Pat Worley. Frank Yellin and Ignacio Zabala.
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This looks like a list of everyone on the third floor. When some information, such as the
phrase “are on the third floor,” has been printed, it is not printed again in the same
answer. This explains the sentence structure above, as well as some of the answers to
follow.

What is your question ??
Where is Gene Golub' ofice?

Gene Golub is in room 216 on the second floor.

The word “off ice” was mistyped; let’s see if it makes a difference.

What is your question ??
Where is Gene Golub's office?

Gene Golub is in room 216 on the second floor.
What is your question ??

What is his home address?

I don't have enough information to answer your question.
What is your question ??

What is Gene's home address?

Gene is a PROFESSOR.
What is your question ??

Where is the ladies' room?

I don't have enough information to answer your question.
What is your question ??

Can I use a computer here?

Yes. DIRECTOR OF COMPUTER FACILITIES.
What is your question ??

Where are the terminal rooms?

NA TERMINAL ROOM is in room 320 on the third floor. NORTH TERMINAL
ROOM is in room 460 on the fourth floor. SOUTH TERMINAL ROOM is in
room 408. TERMINAL ROOM is in room 343 on the third floor. i s  i n
room 226 on the second floor.

What is your question ??
Where is the department secretary's office?

ASSOCIATE DEPARTMENT CHAIRMAN is in room 208 on the second floor.
SECRETARY is in rooms 368, 304, 340, and 326 on the third floor.
is in room 436 on the fourth floor. SECRETARY TO GENE GOLUB is in
room 214 on the second floor. ADMISSIONS SECRETARY is in room 206.
SECRETARY is in room 030 on the basement floor. DEPARTMENT SECRETARY
is in room 210 on the second floor.
What is your question ??

Is there a Xerox machine here that I can use?

Yes. XEROX COPIER and XEROX GRAPHICS PRINTER.
What is your question ??

Where is the Xerox on the fourth floor?
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XEROX GRAPHICS PRINTER is in room 433 on the fourth floor.
What is your question ??

What is Nancy' last name?

Nancy A. Dorio  is a CSD RECEPTIONIST.
What is your question ??

How many students are at extension 7-09263

There are 8 such students. Would you like to see them? (Y = yes) y
Richard J. Anderson, David Chelberg, David P. Helmbold, Sanjay Kasturia,
Timothy P. Mann,' Yoram 0. Moses, Ralph G. Saaveddra, and Andrew I.
Shore are PhD students with office phone 7-0926.
What is your question ??

What are Dave's birthday and phone number?

Lia, Richard J., Paul, Andy, Daniel, Richard I., D. George, Bob, Len,
and Per are on the fourth floor. Nelleke, , Rene, Avron, James, Denny,
Harold, Jake, Bruce, and William are on the second floor. Dave, Harlyn,
Tom, Peter, David, Don, Mark, Martin, Ron, and Roy are on the basement
f l oo r . Douglas, Marsha, James, Andrei,  James R., , Lew, Elise,  Bob,
and David are on the third floor. Kenneth P., Cindi L., James, David,
Kenneth, Jim, , Thomas E., Thomas, and Ginger H. are on the fourth
f l oo r . Paul, Claudia, Linda Gail, Nancy A., Bob, David A., Edward,
Jeff, Peter, and Mike are on the second floor. Joan, Shel,  Ross, Linda,
Erik, Ralph, David P., Lane, John D., and Ronald E. are on the fourth
f l oo r . Christina, Dick, Anne, Jay, Chris, Ron, Daniel, William, Mike,
and John are on the third floor. Phil, Gene, Jose L., Lynn, Russell,
Milt, Susan, Dianne, Ingeborg M., and John are on the second floor.
John E., Jussi,  Donald E., Mark, Fran, Randall, Ruth Andrea, Frank,
Harry, and Yonatan are on the third floor. Jerrold, Anna R., Kevin,
Sanjay, Arthur, Michael, Scott, Guy, Gabriel M., and Curtis P. are
on the fourth floor. Barbara R., Doug, Jock, Penny, Gordon, Thien-huong,
Mark, Glenn, Barbara, and Irmgild are on the second floor. Amy, Howard,
Timothy P., Rick, Fumichiro, E.o., Jeffrey, Yoram O., Ben, and Mike
are on the fourth floor. Sidney, Michael R., Allan,  Clayton Wai,
George, Marianne, Chris, a:d Rick are on the basement floor. Jitendra,
Zohar, Ernst, Jutta E., Rosemary F., Stephen, Joseph, Peter, Prancing,
and Vaughan are on the third floor. Bill, Peter, Mihoko, Harold, Oren,
Richard, Charles P., Larry, Jayne, and Stuart are on the fourth floor.
Charles, Neil, Ralph G., Art, Andrew I., Jorge, Steve, Marvin, Stephen,
and Gio. Robert, Alan, Tom, Alex, Carolyn, Christopher, Luis,  Lloyd,
Jeff, and Moshe are on the third floor. Betty, David E., Carolyn,
Allan,  Marilynn, Bill, Terry, and Dawn are on the second floor. Paul,
Joe, Richard, Phyllis, Pierre, Pat, and Ignacio are on the third floor.
Kai-zhi is on the fourth floor.
What is your question ??

Who shares an office whith Dave Foulser?

David Foulser, Christina Fraley, Lloyd Trefethen, and Paul Vianna  are
in room 316.
What is your question ??

Who is Dave Foulser and what is his office?

David Foulser is in room 316.
What is your question ??

Who is Dave Foulaer?
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David Foulser is a PHD STUDENT.
What is your question ??

Is Donald in room 328?

Yes. Donald E. is in room 328.

And now, DEF tried an ambiguous question.

What is your question ??
Is Don in 326?

No; however, I can tell you this: You seem to have specified contradictory
things. Phyllis is in room 326. Don is in room 02OG.  Donald E. is
in room 328. Gordon is in room 244.
What is your question ??

What secretaries were born in November?

Jayne Pickering is a SECRETARY with a Nov. birth month. Marilynn
Walker is a DEPARTMENT SECRETARY.

What is your question ??
Where are the altos?

ALTO is in rooms 241 and 226 on the second floor. is in rooms 433,
460, 408, and 460 on the fourth floor. is in room 320 on the third
f l o o r . ALTO WIZARD is in room 03OC on the basement floor.
What is your question ??

Which students in Lia's office do not have a home phone?

Lia Adams is a PhD student in room 416A with home phone 493-4962.
Nelleke  Aiello is a staff member in room 224 with home phone 264-7609.
Almanor  is a machine in room 241 with no home phone . Richard J. Anderson,
David Chelberg, David P. Helmbold, Sanjay Kasturia, and Timothy P.
Mann are PhD students in room 402. Dave Arnold is in room 022 with
home phone 962-0376. Paul Asente is in room 416 with home phone 493-2013.
Rene Bach and Allan  Terry are staff members in room 241 with no home
phone . Harlyn Baker is in room 022 with home phone 966-9362. Avron
Barr is a PhD  student in room 246 with home phone 322-2233. Douglas
Baxter is in room 313 with home phone 866;0728. Andy Bechtolsheim

. . .

The.program seemed to be printing out the entire database, so it was stopped here.
The last program to be demonstrated was by JLM and RJM. They were working

in LISP. This program was built on top of an already-existing natural-language parser.
Therefore, it would reject questions with syntax errors that other programs, looking only
at keywords, might accept.

(A transcript of their output from the class was not available. Here are some sample
interactions provided later by them. The questioner’s input is shown on lines starting
‘Fire away: *‘.)

Fire away: *HELP

Hi. I'm a program that will try to answer qustions about the people
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and things in Margaret Jacks Hall. Spec i f i ca l l y , I know about names,
titles, rooms, phones, and birthdays. Enter your requests in normal
English. If we're both lucky, I'll understand and answer you.

Sample questions:

Who is Lia?
Which students in Lia's office do not have a home phone?
Which professors are not on the third floor.
Who is in the basement?
How many professors are there?
Where are the ALTOS?

Fire away: *WHO IS LIA
Ok...
Lia Adams, PhD student

‘Ok...' means it parsed the question.

Fire away: *WHERE IS LIA
Lia, Room 416A.

Fire away: *WHO IS IN LIA'S OFFICE
Larry Paulson, PhD student, Room 416A.
Howard Larsen, PhD student, Room 416A.
Lane Hemachandra, PhD  student, Room 416A.
Lia Adams, PhD student, Room 416A.

Fire away: *WHEN IS KNUTH'S BIRTHDAY
Ok.. .oops.
Fire away: *WHAT IS KNUTH'S BIRTHDAY
Knuth, Birthday January 10.

The first question caused a problem because of a missing routine in the program.

Fire away: *HOW MANY PROFESSORS ARE THERE
Ok...
There are 21.

Fire away: *WHY
I'm sorry, I didn't understand that.

Fire away: *WHO IS A STUDENT
Ok...
The reply is 109 lines long. Print it anyway?
*N

Fire away: *which professors are not on the third floor
Ok...
Terry Winograd, associate professor, Room 236.
Gio Wiederhold, assistant professor, Room 438.
David Todd, visiting professor, Room 422.
Art Samuel, professor Emeritus, Room 436A.
Gordon Novak, visiting assistant professor, Room 244.
Doug Lenat, assistant professor, Room 230.
Gene Golub, professor, Room 216.
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Mike Genesereth, acting assistant professor, Room 234.
Edward Feigenbaum, professor, Room 228.
Bruce Buchanan, Adjunct professor, Room 238.

Fire away: *HOW MANY STUDENTS DO NOT HAVE A HOME PHONE
Ok...
There are 20.

Fire away: *WHO HAS A BIRTHDAY IN JULY
Ok...
Richard Weyhrauch, research associate SAIL, Birthday July 3.
Moshe Vardi, visitor Ullman, Birthday July 4.
Carolyn Tajnai, department secretary, Birthday July 21.
Glenn Rennels, PhD student, Birthday July 12.
Ruth Andrea Levinaon, visitor of Trabb-Pardo,  Birthday July 19.
Howard Larsen, PhD student, Birthday July 22.
Nancy A Dorio, CSD receptionist, Birthday July 3.
El ise  DeDoncker, visiting professor, Birthday July 22.
Mark Crispin, systems programmr, Birthday July 19.
Douglas Baxter, PhD  student, Birthday July 6.
Lia Adams, PhD student, Birthday July 24.

Fire away: *HOW MANY JIMS ARE THERE
Ok...
There are 2.

Fire away: *WHO IS JIM
Ok...
Jim McGrath,  MS student.
Jim Davidson PhD student.

It would have been better to name the two Jims in response to the first question.

Fire away: *WHO IS AN ACTING PROFESSOR
Ok...
Mike Genesereth, acting assistant professor.

Solutions for problem 5

The solutions to this problem used a variety of approaches. In general, the problem
was reduced to the subproblems of interpreting (parsing) the input questions, looking up
the solution, and presenting the answer in natural language. Some programs also did
preprocessing of the database, and handled input errors.

RJA/TPM classified input words as either words in the database, such as people’s
names, or keywords, such as ‘how many’ and ‘birthday.’ Input words might match
database entries even if they were slightly different: ‘December’ would match ‘Dee,’ and
‘Computer’ would match ‘Alto.’ This would create an array of values or patterns to be
searched for in each column of the database.

KPB/AH had a similar approach, using keywords in the input to indicate whether
certain data fields were “filled” or “empty,” and using other keywords to recognize what
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type of question to answer (e.g., “for all entries which match the filled fields, print the
empty fields ,” or “count the number of entries that match the filled fields aud print the
number” ) .

ARK/JCM/AIS used multiple stages in their parser, which first created tokens from
the input string, replaced certain ones by synonyms (to recognize plurals, for instance),
and then matched them to information in the database, keywords such as ‘who’ indicating
certain types of questions. Matching took place in three phases: exact, sub-word, and
substring matches. There was even a provision for use of languages other thau English.

JLM/RJM rejected the keyword approach, feeling that a useful program would need to
be more sophisticated. Regular and context-free grammars were also dcemcd insufficient,
and their program used a context-sensitive grammar, though most of the productions in
that grammar were context free.

The database lookup procedure was quite strightforward in all of the solutions. It
generally involved comparing each record in the database with the pattern generated by
the parser, and deciding whether to pass information from that line to the output routine,
or to count the number of occurrences of some type of match.

To create “user-friendly” output, JLM/RJM first tried to use a single “generic” tem-
plate, designed to handle all forms of output from their program, but this was unsatis-
factory. Their final solution used a set of templates, which dcpcnded  ou the fields to be
output. The selection of the templates was done by the use of flags.

JEH/DEF also used templates, which were applied to sets of records being output,
to translate the information in those records into natural-sounding English. This was
repeated until all records had been printed.

RJA/TPM developed a set of heuristics for formulating output, which were applied
in order until an answer was generated. These included several forms of error messages,
indicating that the program didn’t understand the question, or couldn’t find the requested
information.

The output of the program by ARK/JCM/AIS usually included some kind of restate-
ment of the question. The reason for this was to clarify to the questioner any possible
misinterpretation of the question. Various rules were applied to produce grammatically
and syntactically correct responses, such as putting commas in the proper places in lists,
removing trailing blanks, pluralizing when necessary, etc.

Most of the class found this problem to be the most enjoyable of the five.




