
lkccmbcr 1983 Report No. STAN-CS-83-991

i

Parallel Algorithms for Arithmetics, Irreducibility
and Factoring of GFq-Polynomials

bY

Moshe Morgensteren and Eli Shamir

Department of Computer Science

Stanford University
Stanford, CA 94305

PARALLEL ALGORITHMS FOR ARITHMETICS, IRREDUCIBILITY AND
FACTORING OF G&-POLYNOMIALS

Moshe Morgensteren and Eli Shamir
Institute of Mathematics and Computer Science

The Hebrew University, Jerusalem

Abstract

A new algorithm for testing irreducibility of polynomials over finite fields without gcd
computations makes it possible to devise efficient parallel algorithms for polynomial fat-
torization. We also study the probability that a random polynomial over a finite field has
no factors of small degree.

1. Introduction.
Efficient sequential algorithms were recently developed [3,4,5] for basic polynomial arithmetic

on GF,, the Galois field with Q elements; for testing, searching irreducible f E GF,[z]; for root
finding and factoring f.

Here we discuss parallel algorithms for these tasks where P processors can work in parallel on
one problem instance.- We use the PRAM.model of parallel computation, for which each processor
has a direct access in one step to the common memory or equivalently to any other processor. This
is very convenient for writing and analyzing parallel programs.

Performance-wise, the best one can hope is to speed-up the sequential processing time Z’S(Q)
* so that PT(Q) = W’S(Q)/P], hw ere the parallel time TP(Q) for the problem & also includes

the communication steps between the processors, which are interleaved with the computation steps
of each processor. The total number of communications CM(Q) is an important measure by itself.
Having CM(Q) = Q[TS(Q)] is a reasonable requirement for a good parallelization; otherwise,
even if we assume P communications are processed in one time unit, we get a communication time
lower-bound which exceeds O[TS(Q)/P].

The natural input-length for a problem instance f is deg(f) = n. In fact n + 1 is the number
of coefficients which specify f.

We usually assume:a

The number of processors is n/w(n) with l/w(n) = O(1) as n + 00. (11).

This restriction is amply justified on practical and theoretical grounds. In our context, the
restriction (1.1) effects primarily the computation of

(f,d=gcd 0ffaJ-m (12).

a procedure which figures prominently in irreducibility and factoring problems. As far as we know,
the procedure for (J g) resists a significant speed-up with P = n/w (n) processors. However with
nk processors (Ic = 13 or so) a speed-up is achievable [9] (but is it practical?).

The preparation of this paper was supported in part by National Science Foundation grant
MCS-83-00984.

1

The success in getting a maximal speed of n/w(n) for irreducibility and factoring-actually
even an improvement of the sequential algorithms-hinges on the scheduling of the gcd-procedure
calls. We either obviate them altogether, or’ reduce them and schedule them so that processors do
not remain idle.

The plan of the article is as follows: Section 2 treats the basic polynomial arithmetics and gcd,
Section 3 treats irreducibility for one f, Section 4 describes a search for irreducible polynomials,
Section 5 treats factorization of f. Finally in Section 6 we derive in an elementary method estimates
on the probability distribution of the lowest-factor degree of a random ‘GF, polynomial.

2. Basic Polynomial Arithmetics.
Notation: L(N) = log(N) loglog(
Ingenious sequential algorithms were developed for polynomial arithmetics in F(z), bringing

the sequential time down to N l L(n) or deg(f) < IV.
The parallel implementations follow closely the sequential algorithms. One has to allocate

efficiently P = N/w(N) processors and an almost maximal speed-up is obtained, the arguments
are somewhat simpler for w(N) = i , (P(N) = N) . The proofs are quite routine, somewhat tedious.
We do not reproduce the proofs here; only the results are stated-they are not surprising.

Multiplication: (done with Fourier Transform [7]).

TP = w(N)L(N), CM ‘= OIN l L(N)]. (2 1).

Division with remainder: f = q l g + r, deg(r) < deg(g).
The sequential algorithm is based on Newton’s approximation up to degree N of g-l.

TP = w(N) l L(N) + L(N/w(N)) log(N/w(N)) , (2 2).

CM = O(TS) =. O(N l L(N)). (2 3).

Residues: f; (mod g) , 1 5 i 5 Fc.
One has to compute the approximation to g-l once, then only muliplications are needed.

TP = k l w(N). L(N) + L(N/w(N)) log(N;Iw(N)) , (2 4.
- CM = O(TS) = O(k . N l L(N)). (2 5).

Remark: The relative contribution of the second term in (2.2)‘) (2.4) is largest when w(N) = 1,
when it gives L(N) *log(N). The speed-up is short of its maximal value by a factor of log(N) l For
k >:log(N) in (2.4), this is immaterial and we do get a maximal speed-up.

Greatest Common Divisor - (f, g):
The sequential algorithm in [l] has

TS = O(N l L(N) *log(N)). (2 6).

It is based on Euclid’s algorithm which is rigidly sequential, i.e., we cannot parallelize the
sequence of multiplications/divisions, only within a single such operation-which gives a meager
speed-up. It will be highly interesting to obtain a fo,rmal proof that one cannot get a significant
speed-up for the gcd with N/w(N) processors.

2

3. Irreducibility.

Fact 3.1: gQb - z is the product of all irreducible manic polynomials of degree s in GF,[s]
with s] k. In fact their distinct roots in the extension field exhaust all elements of GF,k , which is
a subfield of GFqn iff k 1 n. .

Thus for a manic f of degree n in GF, [51, f is irreducible, G+ f 1 (d - z) and

(f,ZQ*-z)=l, k < n . (3 1).

Rabin’s algorithm [51 is a straightforward translation of this fact. A better sequential algorithm,
which obviate the use of gcd, is
Algorithm 3.1 - Testing irreducibility of f, deg(f) = n.

begin
1. u := 5, v := 1;
2. for j := 1 to n - 1 do [U := 2cQ(mod f), v := v l (u - z)(mod f)];
3. u := (uQ - z)(mod f);

(* now u = (zqn - z)(mod f), v = &,(zQ’ - z)(mod f)*)
4 . f isirreducibleiffu=Oandv#O.

end -.

Correctness: If f is irreducible then f 1 (~8 -2) so u 7 0 and f does not divide the product.
which gives v. Conversely, if u = 0 then f 1 (zQ” - z), so all factors of f have multiplicity 1. Every
real factor (of degree -k < n) must divide a factor (~q’ - Z) if v. Thus if f is reducible then v = 0,
but v # 0 so f is irreducible.

The sequential time for Algorithm 3.1 is clearly (lines 2 and 3):

TS=nlogq=n~L(n)=n’L(n)logq. (3 2).

The parallel time and the number of communications with n/w(n) processors, are

TP=w(n)aL(n)dogq, CM = O(TS). (3 3).

Indeed, lines 2, 3 are parallelizable with the maximal speed-up factor.
Ben-Or [3] gave an algorithm which tests for factors of degree 1,2,. . . , [n/2] until a factor

is found; if none is found, then f is i&educible. The worst case of [3] is worse than (3.2), but
EXP(TS), the expectation taken over GF,[z], is much better, since EXP(L,(f)) = logn, where

L,(f) = degree of the lowest factor of f, deg(f) = n ,

cf. [3] and Section 6 below,
We present now an algorithm which isbetter or -equal than both in all respects: worst-case,.

average and tail estimate for TS. It also leads to a maximal speed-up in the parallel search for an
irreducible f (Section. 4).

3

Algorithm 3.2 - Testing irreducibility of f, deg(f) = n.
begin
1. u := s; v := 1;
2. for i:= 1 to d:=C-logn do.
3. begin u := uq(mod f); v := v l (u - z)(mod f); end;
4. if (f, v) # 1 then return ‘ f is reducible’;

repeat
5. for i := 1 to d do
6. begin u := uq(mod f); v := v l (u - s)(mod f); end
7. if (f, v) # 1 then return ‘ f is reducible’;
8. . d := 2 l d;

.until d 2 n - 1;
9. return ‘ f is irreducible’;

end
Correctness: In phase 0, lines l-4, we test for factors in the range 1 5 s 5 do = C l log n. In

phase m, which is the mth execution of lines 5-8, we test for factors in the range

-. 2“-!*do <s 5 2”*do. (3 4).

The beauty of this scheme is that the number of steps in the last executed phase, say phase m,
which is

0[2”-l l do*logq=neL(n)]

dominates the number of steps in all previous phases. As a consequence we get

Worst-case TS = O(n2
l +4 l lo g a) ; (3 5)

.

EXP(TS) = 0 (n l log n 9 L(n) . log q) ; (3 6).

Prob {TS 2 n6 +zJL(n)*logq} 5 ne6 (3 7).

Indeed for n sufficiently large the event in the braces is contained in {L,(f) 2 n6} which has
probability 5 n-’by’section 6.

Parallelization for a single (even random) f will not do better than parallelization of Algo-
- rithm 3.1 since at least one call of gcd remains untracked. But for searching an irreducible f ,

which involves testing many f s, the story is different.

4. Parallel Search for an Irreducible f.
IFinding irreducible f of degree n over GF, is needed for realizing arithmetic in GFq,, as

polynomial arithmetic (mod J) in GF,. Other uses for data protection is explained in [6].
The basic idea is to test n (for tail estimates, N = n l A(n)) random polynomials, chosen

independently. The probability p of a manic f of degree n to be irreducible is about l/n. The
expected number of tests is n. For tail estimates of the success probability

. Prob {irreducible f is not found among N}
= Prob {number of successes deviates from N . p by N l p}

5 e-;N.~ = e-+x(“) (4 1).

by Chernoff bound [2]. If A(n) = C : log n, the tail estimate is nwc. One can continue to derive
tail estimates, but in the following discussions we limit ourselves to expectations.

After choosing a set M of n random polynomials (we can use the kth processor to choose the
kth coefficient): the testing scheme is to run one phase (say phase k) of Algorithm 3.2 to conclusion
on all f E M, before the next phase (k + I) starts. The allocation of processors to polynomials
is always even-handed, with difference _< 1 between any pair. When a phase concludes, some
polynomials drop out, the processors are then eventually reallocated to the remaining polynomials.
Claim 4.1: (See Section 6.) Upon running phase k > 1 of Algorithm 3.2 on f, the probability
of f to remain (and so the expected number of remaining f s) is divided by 2 rt O(n-c+l).

Thus for running the next phase, the expected number of processors per polynomial is doubled,
but also the number of steps in the ‘for’ loop in lines 5-6 is doubled. The operations in line 6 are
maximal parallelizable (line 7 we can speed-up only by a factor of log n). Thus the expected
parallel time is about the same for the various phases and in the interesting case p(n). = n it is
log n . n l L(n) l log Q for most phases. Thus c
Theorem 4.2: For the parallkl search of an irrqlucible polynomial of degree n with n/w(n) pro-
cessors.

-- EXP(TP) = O[w(n) enlog no L(n)logqj, (4 2).

CM = O(TS) = O[n2*10g2n;L(n)*logq]. (4 3).

. In particular EXP(TP) is log-linear for n processors.

5. Parallel Factorization of Polynodals Over GF,.
The algorithms in the literature [4,5,3] have two phases.
Phase A: Returns

91 9" ,gt and dl,...,dt (5 1).

where gi is a product of all distinct factors of f of some fixed degree di,
and dl < d2 < dt, so clearly (i) = I + 2 + l l . + t 5 deg(f) = N.

- Phase B: (the harder one) factors a typical g of (5.1).
Phase A: Phase A is done in [4,5,3] without considerations of parallelization, with a long and
badly scheduled sequence of gcd’s.

_ We give another deterministic algorithm for phase A with a careful scheduling of gcd’s, which
gives a maximal speed-up.
Theorem 5.1: For P = N/w(N) processors, a parallel algorithm can be found which returns (5.1)
with

TP=O(w(N)=N*L(N)[logq+logN]) (5 3).

CA4 =O(TS) = O(N2.L(N).[logq+logN]) (5 4).

5

Proof and Algorithm: We accomplish the task in three parts.
Algorithm 5.1 - Part I - First decomposition.
begin
1 . r:=z;
2. for i := 1 to N do [r := rQ(mod f); h; := (r - z)];
3. for j := 0 step p to N do

computein one (gcd) time unit
4. aj.p+1 := (f h9 j-p+1 1 3 l . l 9 aj.p+p := (f h9 j-p+p ;1

end.
The parallel cost of line 2 is indeed (5.3). The cost of line 4 is w(N) l TS (gcd) . So the total

time is indeed given in (5.3).
Now we have czi = (f, d - z), which is a product of all the distinct factors of f of degree

dividing i. Clearly by climbing from below and successive divisions the gs of (5.1) can be obtained.
But the sequence of divisions is too long, so a better idea is to Jirst get rid of superfluous ui -those
for which f does not have an honest factor of degree i. Such tzi are characterized by the condition
% 1 nj<, "j-

Algorithm 5.1 - Part II - (gets rid of supefluous 4.-.
begin
1. r := 1, j := 0;
2. for i := 1 to N-do
3. if .ai Jr then b := J’ + 1; bj := ai; r := r l ai (modf)];

end
This part returns bl , . . . , bt where, t is clearly the same as in (5.1).
The cost is dominated by Part I. Now finally we can et the g;s in Part III.

Algorithm 5.1 - Part III - (finding the gis).
begin
1. gl:=bi;
2. for j := 2 to t do
3. begin for i := 1 to j - 1 do [if g; 1 bj then bj := bj/gi]; gj := bj; end

a end.
Correctness is clear. We do (l) divisions and (:>

Section 2 for TP (division), we get the estimate (5.3).
5 N by (5.2). Using the results from

- As for CM, all the procedures we use from Section 2 which are used have CM = 0(2’S), the
total of these is included in (5.4)) while the intermediate communications are dominated by (5.4).

Phase B: (Let g be a typical gi of (5.1) with degree (g) = I,. g has Ic irreducible factors of
degree d, I = km d).

For Phase B we follow Ben-Or [3]. Be works with the assumption that Q is much greater
than n, but remarks that it can be dropped. We shall work without this .assumption.

Ben-Or’s idea is to find a polynomial which is called a ‘separating.po1ynomia.l for g, then to
decompose g with a recursive procedure ‘SEPARATE’, and continue in the same way with the two
factors of g.

6

He shows that if we choose randomly a polynomial y E Fq [z]/(g) then

n(y) =y+y~+-~+yqd-l(mod g) (5 5).

is a separating polynomial for g with probabiity I - l/qk-‘. The cost of computing Tr(y) is
0 (d l I l L(2) l log q) and we need at most 2 l (Z/d) = 2 l k such polynomials during the execution of
SEPARATE.

So the expected total cost of computing separating polynomials for g is 5 O(Z2 . L(2) log q).
Ben-Or shows also that the expected cost of SEPARATE is 0 (log k l 2 l L(Z) l [log Q + log 21).

Going back to the original f (in the notations of Phase A) the total cost of factoring all the gis
of f is

c l 2 zf l L(E;)[lwl+logli] ~c*N-L(N)[logq+logN]*.~l~
i=l i=l.

5 CN2 L(N)[log Q + logN] . (5 6).

But this is also the sequential cost of Phase A, so this is the total cost for factoring f.
Theorem 5.2: For P = N/w(N) processors, the following par&e1 algorithm factors a polyno-
mial f, deg(f) 5 n, within

TP = O[w(N) l N. L(n) l (log Q + log N)]
CM = O☯N2 l L(N) l (higq + log N)] = O(TS).

(5 7).

(5 8).

Proof. First we run Phase A, which returns 91,. . . , gt and dr, . . . ,& of (5.1). Then we run
Phase B, which is
begin

S := (91 ,*-,st)
repeat
1. Allocate processors to subsets of S;

a 2. Compute a separating polynomial for each element of S;
3. s := result of applying SEPARATE to each element of S;
until all elements of S are irreducible

end

* For the allocation step, we group all the polynomials into subsets with sum of degrees 5
P/2. Then we work sequentially on each subset with all P processors. When the degrees of the
polynomials in the subsets is small, or if P is small, one processor will do subroutines 2 and 3 on
each polynomial. If the degree of a polynomial is high, and P is large (P 2 fi l log N); we have
available log N processors for each polynomial to speed-up the arithmetic operations in 2 and 3
by log N. This allocation’ scheme suffices to give the claimed performance (5.7)) (5.8), as one can
easily verify.

6. Probability Distribution of the Lowest Factor Degree.
For the analysis of Algorithm 3.2 in the sequential form or in the parallel form adapted for

search of irreducible f in Section 4, we need asymptotic estimates for some probabilities.
Let f be a manic polynomial of degree n in GF, [z] .

L(f) = min{deg(h) : h divides f} (6 1).

A(n, r) = {L(f) ? r). (6 2).

The probability estimates for these events will hold with high precision for r 2 c l log n. They are
based on the following easily verified lemma.
Lemma 6.1 [5,3]:

1
Prob {a manic f of degree m is irreducible} = ; + O(q-(m12)) (6 3).

Note that if m 1 2 c Jogn, the error is O(n-‘).
Now f = g l h, g is irreducible with deg(g) = t(g) = L(f). If A(n, r - 1) holds then either

L(s) = r and L(h) 2 r or L(f) 2 r + 1 so ’

A(n, r - l)={b(g)=r}*A(n-r,r-l)+A(n,r) (6 4.

(+ denotes disjoint union). If r 2 c l log n (so we can use (6.3) and r < n so that n - r and n axe
effectively the same, we get when we pass to probabilities

-PA(n, r - 1) = i PA(n, r -. 1) + PA(n, r) , (6 5).

qPA(n,r - 1) = PA(n, r) so r . PA(n, r) G constant, (6 6)l

which holds with a high precision, O(n-“) for the specified range of r; in particular we get from
the recursion in (6.6) with high-precision

PA(n, 2r) = iPA(n, r) . (6 7).

- To study relatively large values of r even close to n, we set

B(% k) = {L(f) > n/k) (6 8).

again

B(n, k) = {n/k 5 deg(g) < n/(k - 6))) l B(n - (n/k), k(1 - (l/k))) + B(n, k - 6). (6 9).

(B(n - (n/k), k(1 - l/k)) is the event that a polynomial of degree n - (n/k) has the lowest factor
degree 2 n/k) . Now we pass to probabilities for k not too small:

PB(n, k) = Ic - 6. -a&-$-t)PB(n-%,k(l-t))+PB(n,k-b), (6.10)
n

PB(n, k) = fkPB(n(l-i),k(l-t))+PB(n,k-6). (6.11)

8

If we take P(n, 1) = l/n = Prob { 1 of degree n is irreducible} then the recurrence relation (6.11)
happens to be solved precisely by

PB(n, k) = k. (6.12)
n

One is led to this solution from the assumption that PB(n, k) is a function of k/n only. Then one
gets one-step recurrence relations analogous to (6.6)

PB(n, k) F PB(n, k - 6) and PB(n, k)
k

= constant,

which imply also
PB(n, 2k) = 2 PB(n, k). (6.7’)

These relations hold for k not too close to n. For the other range we used PA(n, r) above. There
is a wide overlap of the two ranges. Clearly EXP(L(f)) = O(logn). More effort is required in
order to show that the value is asymptotically log n.

Another approach to the asymptotic extimates of the distribution of A(n, r) and other events
related to the factoring pattern of a random f is to use the fact [3] that probability-wise it is quite’
close to the cycle decomposition pattern of a random-permutation (of n objects), and use known
results about permuations [a]. There are several drawbacks to this approach: (1) ‘quite close’ is not
close enough for our purpose, (ii) the proofs in [8] are quite involved especially if one wants to use
them for L(f) 1 n/k, .where the limit also grows to infinity with n. In fact one can easily see how
to employ our elementary approach to derive sharp estimates on the distribution of the smallest

. cycle length in a random permutation of n *objects. In both cases (polynomials or permutations)
we can also get the ‘r-smallest’ (factor or cycle) distribution.

References

[l] A. V. Aho, 3.. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Algorithms,
Addison- Wesley, Reading, Mass., 1974.

[2] H. Chemoff, “A Measure of Asymptotic Efficiency for Tests of Hypothesis,” Ann. Math. Stat.
23 (1952), 493-507.

[3] M. Ben-Or, “Probabilistic Algorithms in Finite Fields,” Proceedings Zlst Annual IEEE FOCS
(1981), 334-398. ’

[4] E. R. Berlekamp, “Factoring Polynomials over Large Finite Fields,” Math. Comp. 24 (1970),
713-735.

(51 . M. 0. Rabin, “Probabilistic Algorithms’ in Finite Fields,” SLAM J. on Camp 9 (X$80), 273-
.280.

[S] M. 0. Rabin, “Fingerprints by Random Polynomials,” Preprint 1982.
[7] A . Schijnhage, “Schnelle Multiplikation von Polynomen,” Acts hformatica’7 (1977), 395-398.
[8] L. A. Shepp, S. P. Lloyd, “Ordered Cycle Length in a Random Permutation,” Zkans. Amer.

.Math Sot. lil (1966), 340-357.
[9] 3. von zur Gathen, “Parallel Algorithms for Algebraic Problems,” Proceedings 15th Annual

ACM STOC (1983), 17-23.

- 10

