
Deccmbcr 1983 Report No. STAN-E-83-992

The Language of an Interactive Proof Checker

bY

Jussi Kctonen and Joseph S. Weening

Department of Computer Science

Stanford University
Stanford, CA 94305

The Language of an Interactive Proof Checker

Jussi Ketonen
and

Joseph S. Weening

Stanford University

1. Abstract

We describe the underlying language for EKL, an interactive theorem-proving system cur-

rently under development at the Stanford Artificial Intelligence Laboratory. Some of the reasons

for its development as well as its mathematical properties are discussed.

Research supported by NSF grant MCS-82-06565 and ARPA contract NO0039-82-C-0250.

52 INTRODUCTION Page 2

2. Introduction

This paper addresses the problem of providing a mechanizable language for mathematical

reasoning-a domain characterized by highly abbreviated symbolic manipulations whose logical

complexity tends to be rather low.

A word about our goals. Our primary intention is not to present difficult results in an

established part of mathematical logic. Instead, we will exhibit a formal framework which we have

found to be particularly useful in mechanising mathematical reasoning. Hopefully, our approach

will highlight some of the problems (and possible solutions) encountered in this endeavor. The

study of logical properties of our formalism is only incidental to demonstrating it as a sound and

expressive vehicle for mathematical reasoning.

The reader may be surprised that we consider the problem of formally representing math-

ematical knowledege to be open; after all, first-order logic certainly provides an adequate

framework for mathematics. However, much of the etructure of mathematical knowledge is lost

in the process of translation into first-order logic. This problem becomes particularly acute when

one tries to represent schematic knowledge in a mechanizable way. We could beg the question

and declare all knowledge not treatable in a first-order framework to be meta-theoretic in nature;

what is meta-theoretic depends, after all, on one’s point of view. We do not find this particularly

satisfactory; as a disguised form of programming, meta-theory may not present any apparent

increase in either correctness or clarity.

While first order logic does not offer a smooth mechanization of mathematical reasoning,
-

it can serve as an adequate basis to start from. We want to preserve its basic proof-theoretic

properties. However, our primary criterion is that of ezpressibility and the ability to talk about

the intrinsic properties of the concepts in question. Such accidents of formalization as decidability

(or the complexity of a decision procedure) are of only secondary importance; we recognize the

fact that as of now we know of very few decidable theories that correspond to natural fragments

of mathematics. Since even the simplest known decision procedure for a non-trivial part of logic

has an exponential worst-case performance, it is more useful for us to tailor our algorithms to

§2 INTRODUCTION Page 3

naturally occurring inputs rather than use arbitrary syntactic constraints. Indeed, we expect

such trivial syntactic criteria as the number of quantifiers in a formula to appeal only to the most

technically oriented logician.

Most of our discussion takes place in the context of EKL, an interactive theorem-proving

system under development at Stanford. EKL can verify the correctness of proofs in various

branches of mathematics. To date, EKL has been most heavily used in the areas of computer

program correctness, logic, and the foundations of mathematics. From these experiments, we

have discovered a formal language which is highly flexible and able to express statements in a

natural way in allOof these areas. At the same time it is a relatively minor extension of standard

logical concepts-EKL can be viewed as a typed high-order logic.

We will describe this language and its semantics. The (preferred) semantic interpretation of

the language is of primary importance; hence we base the development of the language in this

paper on this interpretation, rather than give a set of axioms that the theory must satisfy. We

have adopted a strongly eztensional point of view-our language is not intended as a model for

computation.

The two main concepts introduced are terms and typerr. Each is presented as a class of objects

in a set-theoretic universe. Terms represent the objects of the mathematical proof; they are the

base elements, functions, relations, etc. as used by the mathematician. Types give us a way of

restricting the class of acceptable formulas in the language, to prevent logical contradictions from

occurring. Formulas and terms are treated in a completely uniform manner; formulas are simply

terms of type truthval. Several operations on types are presented, and the algebraic structure of

the class of types is investigated. Of particular interest is the notion of Iid types, which allows us

to talk in a natural way about parameterized formulas and functions taking an arbitrary number

of variables.

Using these ideas, we show how logical sentences and proofs are represented in EKL, and

demonstrate the soundness of this representation. Finally, the meta-theoretic extensions to EKL

are presented. They allow us to talk about numea of objects and axiomatize the formal semantics

of EKL. Our reason for the introduction of meta theory to EKL is to tie the formalism to its

§3 TUPLING Page 4

intended (preferred) interpretation and to parametrize the logic by allowing arbitrary sets and

functions as objects of discourse. Instances of deduction can then be replaced by computation in

the “real world”.

This paper is partly intended as an abstract implementation guide for a language for theorem-

proving.

We would like to thank John McCarthy, Carolyn Talcott and Richard Weyhrauch for many

stimulating discussions.

3. Tupling

We imagine working in a reasonable facsimile of the set-theoretic universe. For our purposea

it is sufficient to assume that we have a concrete Cartesian closed category (c.c.c) C with a few

additional properties. A detailed definition of Cartesian closed categories is given in [Scott 19801.

.

We assume that C is full subcategory of the category of all sets. Thus, for any two objects u, b

of C, the set Hom(a, b) is the set of all functions from a to b. By the C.C.C. assumption, C is closed

under Cartesian products. We will require more; we ask that C be closed under countable unions.

C is also assumed to contain the distinguished elements true, false, Boole = {true, false} and

0, the empty sequence.

Since C is Cartesian closed, we have the notion of evaluation, the map f,z I+ f(z); and

A-abstruction, the adjunction Hom(a X b, c) H Hom(a, Hom(b, c)).

In short, we can view C as a rather standard model of typed X-calculus. However, in order

to deal with functions admitting an arbitrary number of variables, we will modify C further.

Consider the smallest equivalence relation k: closed under

(X 1 = 5,

(x1,52,* ‘0, xn9 Yl,Y2,-.-,Ym(1) =(x1,x2,*** ,%,Y1,82,***,Ym 91

(x1,52,* l . 9 xn2 0) a (Xl, X28 l l l 9 %a),

Xl =Vl A***AXnBVn 3 (Xl)X2,**.,Xn)~(Yl,Y2,...,g(n).

§3 TUPLING Page 5

Let S be the subcategory of C consisting of the objects of C together with all morphisms f of C

which are well-behaved under =:

Let V be the category whose objects are the closures of the objects of S under k: and whose

morphisms are those induced by the morphisms of S. It can again be realized as a full subcategory

of the category of all sets. The quotient map induces a natural transformation q : s -t V.

However, the natural notion of “product,, inherited from C via the quotient map q coincides

no longer with the categorical product. For simple structures, q induces an isomorphism. For

example, if neither u nor b contain sequences of the form (~1, x2,. . . , zn), where either n = 1

or one of the xi is a sequence or xn = 0, then Homc(a, b) H Horns (q(a), q(6)). For the sake of

simplicity, we will go ahead and identify elements with their equivalence classes, and use standard

notation for the quotient of the product operation, even though its functorial properties are

different.

It should be noted that the fullness of V is not really a necessary formal criterion for our

theory to go through. What is actually needed is that the type algebra TA defined in section 7

contain infinitely many indecomposable elements in the sense to be explained later.

The category S is still closed under X-abstraction. For any a, b, c the adjoint functor described

above induces injections
Hom(a X b, c) + Hom(a, Hom(b, c)),

Hom(u X b, c) + Hom(b, Hom(cr, c)).

FACT 3.1.: For all elements of V:

(4 = 29

(x1,x2,*.*, Xnt Yl,Y2r***,Ym(1) = (Xl,X2,.**,Xn,Yl,YZ,**.,Yrn j1

(Xl, x2, * l l 9 Xn, 0) = (21, x2t l l l Y %a),

(2, u) = (Y, u), u # 0, u # 0 1 x = Y A u = u*

The tupling operation can be viewed as a way of encoding finite sequences that is right-

associative and has an “empty,, element () that acts as a right unit.

§3 TUPLING Page 6

DEFINITION 3.1.: An element x.is tupled if x = (y, z) for some y and some z # ().

DEFINITION 3.2.: A sequence xl, x2, . . . , 2, is in tuple normal form if xn # () and xn is not

tupled.

Using induction on tuples, we can easily prove the following.

FACT 3.2.: If x is tupled, then there is a unique sequence x1, x2,. . . , xn in tuple normal form

such that x = (51, x2,. . . ,2,).

The uniqueness of tuple normal form implies the existence of operations that are inverse to

tupling, namely proiectioncr. We define two kinds of projections for each i 2 1: ri, the projection

onto the ith coordinate of a tuple, and xii, the projection onto the ith “tail.,,

DEFINITION 3.3.: If x is not tupled, then for all i 2 1,

Zi(X) = 2, 7tli(X) = 5.

~Xl,X2,v xn is a sequence in tuple normal form, then for all i 2 1,

Ai((Xl, X2, l l l 9 Xn)) =
Xi, iflsi<n;

Xn) otherwise,

xb((Xl,X2, l ** 9%)) =
(Xi+l,***j Xn), if 1 5 i < n;

Xn9 otherwise.

These definitions easily imply the following facts.

FACT 3.2.: For any sequence x1, x2, . . . , xn with xn # 0, and any i 2 1,

{

2%) ifl<i<n;
~i((Xl,X2,***,%)) =

Ai-n+l(Xn), otherwise.

(Xi+l, l l l I xn), ifl_<i<n;
fl4((Xl,X2,***9%))=

mli-*+1(%), otherwise.

FACT 3.3.: For all i, j,

Ali 0 Xlj = Tli+j*

§4 THE LANGUAGE OF PURE EKL Page 7

DEFINITION 3.4.: For any class A, A* denotes the set of sequences of elements of A, namely,

A* = 0 u u h?cr.):aiEAforl~i<n}.
nZ1

4. The Language of Pure EKL

As a part of the universe Y we postulate the language L of EKL. It need not be’s recursive

set-or a set at all. L consists of three classes: the class of all terms, T, the class of ordinary

atoms, A, and the class of distinguished atoms, D. The class D consists of names for

3 , -, V, A, 1, cond, tuple, ~1, ~2, . . . , zll,nl2, . . . , =, #, univetsal,V, 3, X, empty, true, false.

We use A + to denote the class of all atoms: A + = A U D. The class 7 contains A+. To construct

terms, we have operations

Make-application : T X T* + T - A+,

Make-exist, Make-universal, Make-lambda : A * X T + T - A+.

Note that atoms are not in the ranges (which are assumed to be disjoint) of Make-application,

Make-e&&, Make-universal and Make-lambda. 7 is the closure of A+ under these operations.

Thus we can prove facts about 7 using standard inductive arguments. In sections 5 to 8 we will

consider only the class of all quantifier-free terms, Te ; the closure of A+ under Make-avvlication.

For the sake of simplicity, we use the notations

f(3J1¶=2,*“, 4 for Make-application(j, (x1,22,. . . , zn)),

3 X 1 . ..xn.t for Make-ezist((q, x2,. . . ,z,), t),

VXl. ..+t for Mcrke-univetual((xr, 22,. . . , z,), t),

xx1 . ..x*.t for Make-lambda((zl, 22,. . . ,x,,), t),

if x then y else x for cond(x, g, x),

0 for empty,

(2h,22l***, xn) for tuple(x1 , 22, . . . , xn),

when the situation affords an unambiguous interpretation. In addition, we regard atoms like

==-, Y #= as infix operators and atoms like 1 as unary operators; i.e., we write 11: for

Make-application(1, (2)).

§5 SEMANTICS: INTERPETATION OF QUANTIFIER-FREE EKL TERMS Page 8

Make-application, Make-univetaal, Make-exist and Make-lambda are assumed to be injective

functions. In fact, there are partial operators operator-of, operand.+of, bindingtuple-of and

matrix-of, with obvious commutativity rules:

operator-oj(Make-application(x, y)) = 2,

operands-oj(Make-application(x, y)) = g,

operator-oj(Make-exist(y, z)) = 3,

operator-oj(Make-univetaal(y, 2)) = V,

operator-oj(Make-lambda(y, 2)) = X,

bindingtuple-oj(Make-universal(y, z)) = I,

matrix-oj(Make-univeraal(y, 2)) = z,

bindinytuple-oj(Make-eziat(y, z)) = 8,

matrix-oj(Make-exi&(y, 2)) = z,

bindingtuplc-oj(Make-lambda(y, z)) = 1,

matrix-oj(Make-lambda(y, 2)) = z.

5. Semantics: Interpetation of Quantifier-free EKL Terms

The evaluation of EKL terms takes place in the category It. The behavior of the “EKL

interpreter” on the class of quantifier-free terms 70 can then be described using the following

rules.
-

DEFINITION 5.1.: An environment is a partial map j : A + U. Let Env denote the class of all

environments. For two environments j, g define their concatenation j#g as follows.

Dam f #9 =DomjUDomg,

(j#g)(x) = if x E Dom j then j(x) else g(x).

DEFINITION 5.2.: Each j E Env induces a partial valuation map Eval(j) : To --+ V as follows.

§5 SEMANTICS: INTERPETATION OF QUANTIFIER-FREE EKL TERMS Page 9

Eval(f)(true) = true,

Eval(f)(false) = false,

Eval(f)(empty) = 0,

Eval(f)(t) = f(t), if t E A,

Eval(f)(tupZe(zl, a,. . . , xn)) = (E-l(f)(a), - -. , E-1(&&

Eval(f)(7ri(xl,x2,. . . , xn)) = ?r;(Eval(f)(xl), . . . , Eval(f)(x,)), i = 1,2,. . . ,

Eval(f)(nli(xl, x2,. . . , xn)) = nZi(Eval(f)(xl), . . . , Eval(f)(x,)), i = 1,2,. . l .

Note that xi and XZi have different meanings on the left and right sides of the last two equations

above. On the left side they are members of I,; on the right, they are the operations discussed

..-.

in section 3.

The interpretations of the operations A, V, 1, 1 and = follow standard rules. For example, if

Eval(f)(x), Eval(f)(y) E Boole, then

E~W)(X A Y) =
true, if Eval(f)(x) = &al(j)(y) = true;
false

, otherwise.

For x,g,z E T,

Eval(f)b = Y) =
true, if Eval(f)(x) = Eval(f)(y);
f lae
a , otherwise,

Eval(f)(universal(z)) = true,

Eval(f)(if x then y else z) =
ENf)(Y), if Eval(f)(x) = true;

E=l(f)(z), if Eval(f)(x) = false.

If h is not a distinguished symbol,

E=l(f)((xl, 52,. . . , xn)) = (VI, ~2~. . .)vn),

and (q,v2,..., vn) is an element of the source of the function Eval(f)(h),then

Eval(f)(h(xl, 22,. . . p G)) = [Eval(f)(h)](vl, ~2, l . l) vn)+

DEFINITION 5.3.: Given a term t E 70, its content C(t) is the class

{(f,E~Jw)(t)) : t E D om Eval(f), f E Env}.

56 STABILITY: PROBLEMS WITH THE NOTION OF INTERPRETATION Page 10

DEFINITION 5.4.: A term t E 70 is meaningful if C(t) is non-empty.

6. Stability: Problems with the Notion of Interpretation

Consider the following terms:

f(f)
f (if true then true else f)

h(f w

The first clearly has no meaning. The second case is more interesting; it has meaning, namely

it evaluates to the value of f (true) if true belongs to the domain of the value of f. However, a

small perturbation in the syntax of the formula (namely, replacing true with faZae> causes it to

have no meaning at all. We are interested in the third term under the following interpretation:

h is the function on natural numbers such that h(n) = n + 1 and f is the function

0, ifx=o;
f (4 = aPPl=, if x= 1;

oranges, otherwise.

Clearly, h(f (0)) is meaningful under this interpretation. However, if we were to replace f with a

different function with the same source and target we could easily end up with a no interpretation

at all.

Finally, the interpretation of of a term of the form f ()2 is sensitive to inclusion relations: Ifa
f is interpreted as a function with source A, and x is regarded aa an element of a set B E A,

then we would like to interpret x via the inclusion map ig~ : B + A so that f(x) makes sense.

The current definition of semantics does not allow this.

These examples exhibit instabilitiee of the definition of interpretation of a term; instabilities

in the sense that small perturbations in the interpretation of a term or its parts may cause lack

of meaning.

97 THE ALGEBRA OF TYPES Page 11

To make the notion of stability more precise, let H be the smallest equivalence relation

closed under the following rules:

true H falae;

Xl =YlA*“A%=y?a 3(x1,22)...) x,)=(Yl,y2 ,...) yn);

f,g E Hom(z,y) > f = g.

DEFINITION 6.1.: A term t E To is atable under an interpretation f : A + V if and only if

all the immediate subterms, say tl, t2 , . . . , t,, of t are stable under f and there is a sequence of

inclusion maps (ir , i2 , . . . , in) such that for for any set xl, x2,. . . , x,, with zk H &al(f)(&), t

has a value if we use ik(zk) instead Eval(f)(tk) in the value computation. We also say that f is

a stable interpretation of t.

DEFINITION 6.2.: 1x1 denotes {y : y H x for some x E X}. E(f) denotes the function

Wlf(4N*

DEFINITION 6.3.: For any stable interpretation f of a term t E To, the type of t under f is the

equivalence class of all values of Eval(f)(t) under the perturbations described above.

LEMMA 6.1.: For any stable interpretation f of a term t E 70, the type of t under f depends

only on E(f).

7. The Algebra of Types

is hard. However, it is easy to compute the equivalence classes of contents of terms under stable

interpretations by using algebraic properties of types. In fact we can provide a simple way of

To determine whether a term t is meaningful by computing all its potential interpretations

deciding whether a term has a stable interpretation.

DEFINITION 7.1.: A type is a non-empty set that is a =-equivalence class.

§7 THE ALGEBRA OF TYPES Page 12

Define operators 8, +, V, *, Ai and TLi on types a~ follows.

A@B= IAx BI,

A -+ B = IHom(A, B)l,

A v B- IAuB),

A * = IA’I,

xi(A) = I{ri(x) : X E A}l,

nZi(A) = I(nfi(x) : 2 E A}J.

Let empty = I{()}1 and truthval = I{true,false}(. Define a partial order 5 on the class of

all types by setting A 5 B if and only if A C B. We adjoin an error term 1. with the following

proper ties:

JwLL=L UBA=L (A + I) = L, (I, -+ A) = L,

AKL=L I.vA=l_, L*=L-

In particular, for any type A, A 5 1.

Note that the operation V intuitively represents the union operation, not disjoint union

usually present in standard typing systems. This allows us far more flexibility for typing: For

example, conditional statements have a much wider range of applicability

DEFINITION 7.2.: The type algebra TA is the class of all types augmented by the structure

given above and special elements empty, truthval and 1.

It can be shown that TA forms an error algebra in the sense of [Goguen 19781.

THEOREM 7.1.: TA satisfies the following properties:

(1) @ is a right associative operator with the right unit empty.

(2) 5 is a partial order derived from the associative, commutative and idempotent operator V:

-x<yifandonlyifxV~=~.

(3) V is distributive with respect to 8.

(4) For any a: empty 5 a* and a @ a* 5 a*.

(5) If a = b + C, then xi(o) = a and nZi(o) = a.

§7 THE ALGEBRA OF TYPES Page 13

(6) If a = a1 V l ** V a,, then ri(a) = xi(al) V l -a V xi(an) and nZi(a) = nfi(al) V l l l V rZi(a,).

If a 5 b, then ni(a) < xi(b) and nZi(a) 5 nZi(b).

(7) If t = tl @ .-a @ t, and u = tl @ -a- @ t,+l, then

1

t*0 if i < n, tn 2 empty;

h V Ai(if i < n, t, > empty;
Xi(t) =

xi--n+l(fn), if i > n, t, 2 empty;

xi-*+1(k) V xi(U), if i 2 n, t, > empty,

L
ti+l 8 ’ ’ l QD L, if i < n, t, ;rS empty;

ti+l @ ” ’ 8 tn V n&(u), if i < n, t, > empty;
TZi(t) =

nli--n+l(L), if i 2 n, t, 2 empty;

TZ i--n+l(L) V 4(U), if i 2 n, t, > empty.

(8) If t = a*, then

and

empty V v(a) V a , ifi=l;
7fi(t) =

e m p t y V Ti(a) V Xi-l(t), ifi>l,

empty V rZl(a) V a*, ifi=l;
Tli(t) =

e m p t y V ?rZi(Cr) V 7&-l(t), ifi>l.

(9) For all i, j, xi o nlj = ni+j and xii o nlj = rZi+j.

(10) If a, b, c, d # I, then there is no type e such that e C a + b and e < c @ d.- -

(11) Foranya,bfI_,a -t b < c + d if and only if a = b and c = d.

(12) Call a type a is minimal if for all b 5 a, b = a and indecomposable if it is minimal and for

no c, d, (c + d) 5 a or (c QD d) < a with d # empty. The types truthval and empty are

indecomposable. Furthermore, for all indecomposable a and i 2 1, xi(a) = a and Ali = a.

If a is indecomposable, then for no c, d, (c + d) 2 a or (c Q9 d) 2 a with d 2 empty.

Let 3 be the formal (first-order) system given by the language of the type algebra, with the

properties given above as its axioms.

Clearly, a type a is minimal if and only if a is of the form I(x)1 for some x in V.

57 THE ALGEBRA OF TYPES Page 14

Define two more operations on the set TA aa follows. If the type A contains only functions

with the same source C, set

domA = ICI,

otherwise let domA = 1. Similarly, if D is the target of all of the functions in A, set

rangeA = IDI.

Ifc- (a+d)andc#~,thendomc=a,andrangec=d.

Next we shall define through mutual recursion the notions of minimal and primitive terms t

in 3, together with a list Conds(t) of formulae in 3 of the form v 2 empty, where v is a variable.

DEFINITION 7.3.:

(1) If t is an atomic term, then t is minimal and Conds(t) = 0.

(2) I f w2, . . . , t, is a sequence of minimal terms such that t, is not the term empty and not

a product, then t = tl QD . . + @ t, is a minimal term with

Conds(t) =
{t, 2 empty} lJ U{Conds(ti) : 1 < i 5 n - l}, if t, is a variable;

U{COdS(ti) : 1 5 i < n}, otherwise.

(3) If w2,... , t,, is a sequence of minimal terms then t = tl V l l l V t, is a primitive term

with

Conds(t) = U{Conds(ti) : 1 5 i ,< n}.

(4) If tl, t2 are primitive terms, then t = tl ---) t2 is a minimal term such that Conds(t) =

Conds(tl) lJ Conds(t2).

When the Iist Conds(t) is non-empty, we shall often confuse it with the conjunction

A Conds(t).

DEFINITION 7.4.: For any term t, its list of restricted variable8 Vars(t) is computed as follows.

(1) If t is an atomic term, then Vars(t) = {t}.

(2) If t = tl V l l - V t, or t = tl @ l . . @ t,, then Vars(t) = U{Vars(ti) : 1 5 i 5 n}.

(3) If t = U*, t = Xi(U) or t = Ali(then Vars(t) = Vars(u).

§7 THE ALGEBRA OF TYPES Page 15

(4) Ift=,t1 + t2 then Vars(t) - 8.

LEMMA 7.1.: If t is a term not involving *, xi, rli, then there is a primitive term t’ such that

3l--t-e.

PROOF: By induction on the term t.

LEMMA 7.2.: If t is a primitive term in variables x1, x2, . . . , xn and for some types al, a2, . . . , a,,

satisfying Conds(t)

TA I= t[al, as,. . . , a,] = empty,

then t is the term empty. In particular, 3 l-t = empty.

PROOF: By induction on the term t.

The following result shows that any minimal type can be represented by minimal terms and

indecomposable types.

LEMMA 7.3.: If t = t(xl, x2, . . . , xn) is a minimal term and al, a2,. . . , a, a sequence of types

such that ai is minimal for any xi in Vars(t), then t[ar , a2, . . . , an] is minimal. Conversely, if a

is a minimal type in TA, then we can construct in a canonical way distinct types and a minimal

term t = t(x1,22,..., x,) such that al,a2,..., a,, satisfies Conds(t) and

TA I= a = t[al, a2,. . . , aa],

where each type ai is indecomposable for xi in Vars(t).

We shall denote this term t by Term(u). Lemma 7.5. will show that it is uniquely determined

by its properties.

LEMMA 7.4.: If t is a minimal term and tl, t2, . . . , ,,t is an arbitrary list of terms, then the

following formula is true in TA when the ranges of the free variables of t in Vars(t) are restricted

to minimal types:

§7 THE ALGEBRA OF TYPES Page 16

Call a set {al,aa,..., a,) of types independent if no ai is < or 2 to a type formed from

the other aj (j #),i using the operations 8, + or V. Such sets are easy to construct; one could,

for example, choose ai to be distinct indecomposable types.

LEMMA 7.5.: Assume that t, u are minimal terms in variables xl, x2, . . . , x, and (al, as, . . . , k}

is an independent set of types satisfying Conds(t), Co&(u) such that

TA I= t[al, a2,. . . , a,] < u[al, al,. . . , cm].

Then t = u as terms. In particular, 3 l- t = u if and only if t = u.

PROOF: By induction on (t, u).

TIIEOREM 7.2.: If t, u are any terms in free variables xl, x2,. . . , x, not involving *, xi, xrli, then

TAl=VxIx2...x,.t= u if andonlyif 7l-t-u.

In fact, 3 I- t = u if and only if TA l= t[al, as,. . . , a,] = u[al, a2,. . . , a,] for some independent

set {al,afj,..., a,,} of minimal types satisfying Conds(t) lJ Conds(u). Similarly for inequalities of

the form t 5 u.

PROOF: It suffices to prove by induction the above fact for t 5 u, where t, u are primitive types.

The inductive stage follows from Theorem 7.1. and Lemmas 7.1.-7.5.

If t and u are primitive we can say more; t and u have to be of the form tr V -9. V t,,

UlV l l l V u, respectively, where ti, ftj are minimal. It follows that

3l-t-u

if and only if for all i there is a j such that 3 l- ti = uj and vice versa. Combining this

with Lemma 7.5.) we get a simple decision procedure for deciding whether the formula t = u is

identically true in TA for any terms t, u not involving *, ri or XZi.

These methods can be extended to terms using xi, nli and *. To do this, we need to modify

Definition 7.3.:

DEFINITION 7.5.: The notion of *-minimality and *-primitivity is defined as follows.

§7 THE ALGEBRA OF TYPES Page 17

(1) If t is an atomic term, then t is *-minimal.

(2) If t is of the form fi(f2(- - -fk(V)- 0.)) where every fj is of the form ri or nli for some i, v a

variable and only fl can be of the form ZZi, then t is *-minimal and Conds(t) = 8.

(3) If wz,*** , t, is a sequence of *-minimal terms such that t, is not the term empty and

not a product, then t = tl QD l . . @ t, is *-minimal. If t is a variable v or of the form

fl(fi(* l -fk(tl)’ l l)), the*

Conds(t) = {v 2 empty} U U{Conds(ti) ; 1 5 i 5 n - l},

otherwise

Co&s(t) = U{Conds(ti) : 1 < i 5 n}.

(4) If w2 , . . . , t, is a sequence of *-minimal terms, then t = tl V l l . V t, is a *-primitive

term.

(5) If t is *-primitive and t # empty, then t* is *-minimal and Conds(t*) = Conds(t).

(6) If ti,t2 are *-primitive terms, then t = tr --) t2 is a *-primitive term.

LEMMA 7.6.: For any term t, there is a sequence of *-primitive terms (tr, t2,. . . , tn) and formulas

(+1,42,* l '# &) such that each 4i is a conjunction of formulas of the form v 2 empty, v > empty

andv= empty(v a variable), with

and for all i,

3wdi 3 t-t+

PROOF: By induction on t. We can “push,, the projections in by using Theorem 7.1. This

generates conditions of the form t > empty, t 2 empty and t = empty, where t is a term.

These conditions can be further reduced by applying the indecomposability of empty. The final

requirements on the order of applications of the projections are satisfied by part (10) of Theorem

7.1.

$7 THE ALGEBRA OF TYPES Page 18

THEOREM 7.3.: If t = t(xr, x2, , x~) is any term not involving *, then one can in a uniform

way construct a primitive term

k7 = t&+,. . .,g”)

for any sequence u = (tr , t2, . . . , tn) of primitive terms of the form ti = ti(#) with the following

properties: For any sequence a = (3’). . . ,7in) of sequences of types satisfying Conds(t,) which

are indecomposable when they occur in positions corresponding to the Vars(t,),

TA kt[tl[iT’], . . . ,tn[P]] = to[a].

Moreover,the following statements are equivalent for any two terms t, u.

(1) t = u holds identically in TA.

(2) For all B, t, = u0 holds identically for the indecomposable types.

(3) 31-t-u. --.

We could extend our methods further to arbitrary terms of 3 with considerable complications

in proofs. Theorem 7.3. is quite sufficient for our purposes.

PROOF: The first part follows from Lemma 7.6. and Theorem 7.1. By Lemma 7.3., (1) is

equivalent to (2). We need only show that (1) implies (3). Assume that (1) holds. By Theorem

7.2.) each t, = u, is provable in 3. By Lemma 7.6., we may assume that both t, u are *-primitive.

Let TA’ be the subalgebra of TA generated by the indecomposable elements. Then any

element a E TA’ is a finite join of minimal elements. Let the support of a; Supp(a); be the

e (finite) set of all indecomposable types given via Lemma 7.3. Note the following fact: if F, G are

two disjoint sets of indecomposable elements, then the intersection of the subalgebras generated

by F, G respectively is the trivial subalgcbra generated by the empty set. This fact follows from

the-first part of our theorem and Theorem 7.2.

We shall prove by induction on t the following fact for any finite set X of indecomposable

elements: if t 5 u holds for all elements of TA’ satisfying Conds(t) whose support is disjoint

from X, then 3 t-t < u.

§8 TYPE INTERPRETATIONS FOR QUANTIFIER-FREE TERMS Page 19

Without loss of generality, we may assume that t is *-minimal and u = ul V 0.. V urn,

where uj are *-minimal. Since t is a minimal, it can be expressed as a product of atomic terms or

terms in the form given by parts (1)) (2) or (6) of D fie nition 7.5. We may assume that the product

in question has only one element; i.e., t is one of the cases mentioned above. The case of products

can be reduced to a system of “simultaneous” inequalities by taking projections. Our techniques

apply with minor modifications in this case. We may also assume that t is not a constant.

Next part of the proof consists of showing that for some i the inequality t 5 ui holds for all

elements of TA’ satisfying Conds(t) whose support is disjoint from a set Y > X. If not, we can

construct type sequences (7ir , . . . , a,) from TA’ satisfying Conds(t) whose supports are mutually

disjoint and disjoint from X such that for all i

Let in: be the componentwise join of the iZi. By the disjoint support assumption, we cannot have

t 5 u hold for this a, a contradiction. Thus we may assume that u = ur is minimal; it ia

represented as a product. It is easy to see that this product cannot have more than one element.

It follows that both t, u must be terms in the form given by parts (l),(2) or (6) of Definition

7.5. If one of t, u is of the form x + y, then both must be and the result follows by induction.

Othewise t must have the form fl(f2(. -afk(V)- l 0))) k: 2 0 and u have the form gr(g2(* l -fi(w)* l l)),
1 > 0, where v, w are variables and fi, gj are projections such that only fl and gr can be a ~rl. By

substituting nested products of indecomposable elements for v one can show that v = w, & = I

mdfi= giforalli. Thus31-t=uu.

8. Type Interpretations for Quantifier-free Terma

We can now express stable interpretations as type interpretutiona.

DEFINITION 8.1.: A type interpretation is a partial map f : A + TA. Each type interpretation

§S TYPE INTERPRETATIONS FOR QUANTIFIER-FREE TERMS Page 20

induces a partial map Teval(f) : Tc + TA, as follows:

Teval(f)(true) = truthval,

Teval(f)(false) = truthval,

Teval(f)(enzpty) = empty,

Teval(f)(t) = f(t), if t E A,

Teval(f)(tupZe(xl, x2,. . . , xn)) = Te=l(f)(⌧ 1) 63 l l l QD Teva l(f)(⌧n),

Teva l(f)(~i(⌧l, ~2,. l . j 2,))
= zi(Teval(f)(x1) Q9 - - + 8 Teval(f)(x,)), i = 1,2,. . . ,

Teval(f)(7tli(xl, x2,. . . , 2,)) = rZi(Teval(f)(xl) Q9 l l - @ Teval(f)(x,)), i = 1,2,. . . .

The type interpretations of the operations A, V, 1, > and = follow standard rules:

truthval,
Teval(f)(xl A x2) =

if Teval(f)(xl) = Teval(f)(xz) = truthval;

12 otherwise,

Teval(f)(xl = x2) =
{

truthval, if Teval(f)(xl) # 1, Teval(f)(a) # _L;

1-j otherwise,

Teval(f)(univereaZ(x~)) =
{

truthval, if Te-l(f)(m) # 1;

1, otherwise,

Teval(f)(if x1 then 22 else x3) =
Te-l(f)(x2) V Teval(f)(x3), if Teval(f)(xl) = truthval;

19 otherwise.

If h is not distinguished, and Teval(f)(tupZe(xl, x2,. . . , xn)) ,< dom Teval(f)(h), then

Teval(f)(h(xl, x2,. . . , xn)) = range Teval(f)(h).

DEFINITION 8.2.: A correct type intefpretation for a term t E rc is a type interpretation
a

f : A --) TA such that Teval(f)(t), the type of t under f, is # 1. A term t E To is well-typed if

it has a correct type interpretation.

LEtiMA 8.1.: If f is a correct type interpretation for t E To, then any type interpretation g such

that for all x E Dom f, g(x) 5 f(x is also a correct type interpretation for t. The type of t under)

g is < the type of t under f.-

THEOREM 8.1.: A term is well-typed iff it has stable interpretation.

§8 TYPE INTERPRETATIONS FOR QUANTIFIER-FREE TERMS Page 21

PROOF: If a term t has a correct type interpretation f, then any g such that for all x E Dom f,
g(x) E f(x) is a stable interpretation of t. The type of t under E(g) (see Definition 6.2) is ,< to

the type of t under f. The converse is equally easy to see.

THEOREM 8.2.: Let t E ‘G’s be a term with free variables x1, x2, . . . , x,,. One can in a uniform

way construct a formula r$ = 44x1, x2,. . . , xn, yr, ys, . . . , y,), which is a conjunction of terms of

the form t 1 = t2 and a term r of 3 with free variables xl, x2,. . . , xn, yr, ys, . . . , y,,, not involving

the operator * such that f is a correct type interpretation for t if and only if

TA t= 3~2. . - arm. +[f (xl), . . . s f (xv& Yl, Y2, l l l f a r m]*

In this case,

7[f (Xl), * l l , f (xn), w, W2r * l - 9 %I = Te-qf l(t)

for any sequence of types (wr , ws, . . . , wn) satisfying the existential variables. Moreover, t has a

type interpretation if and only if

PROOF: 4 is constructed inductively. Perhaps the most interesting case is that of application.

Assume that t = tr(t2) and we are given 4i,ri for tie In this case, introduce a new variables y’, y”

and let T = aJ’,

4 = 41 A 42 A(71 = (Y’--) Y”)) A ((71 v y') = Y’).

The second part follows from Lemma 7.2. and Theorem 7.3.

Finding a correct type interpretation for a term corresponds to a problem of proving an

existential statement valid. By the results of section 7, this in turn can be reduced to a set of

unification problems. For example, to type a formula of the form x A y we need to match it

against the form truthval A truthval. In fact, this is precisely what EKL attempts to do when

presented with a term with only partially known types. However, a “most general typing” may

fail to exist for some terms. For example, the term f(nl(x)) has no most general typing.

!I9 EXTENSIONS: TYPES, SORTS, SYNTYPES AND QUANTIFICATION Page 22

9. Extensions: Types, Sorts, Syntypes and Quantification

The notion of a context is of fundamental importance in the actual implementation of

the logic of EKL. It is used to place further useful restrictions to the class of terms under

consideration, both syntactically and semantically.

DEFINITION 9.1.: A context is a partial function C : A * U such that for any atom x in the

context, i.e., x E Dom C, C(x) is a triple consisting of the syntype, type and 8ort of x:’

C(x) = (Syntype-of (x), Type-of(x), Soft-of(x)).

The syntype of an atom is a member of (constunt, variable}. The type of an atom is a member

of TA. The sort of an atom is a member of T, which is assumed to be well-formed with respect

to C; a term is well-formed with respect to C if it is built up from atoms in the context such that

for any term of one of the forms Make-exMt(y, z), Make-uniuersaZ(y, z), Make-Zambda(y, z), where

g is a tuple of atoms of variable syntype, z is a well-formed term, and all atoms in y have the

sort universal in Make-lambda(y, z).

From now on, all our discussion takes place relative to a fixed context C. In addition, we

assign syntypes and sorts to the distinguished atoms in the most obvious way; they will all have

the sort universal and constant syntype.

The function Type-of

well-formed terms.

induces in a natural way a type interpretation for all quantifier-free

DEFINITION 9.2.: The type of a term t, Type(t), is computed as follows: if t is quantifier-free,

thene
Type(t) = Teval(Type-of)(t).

If t has the form Vxlx2.. .x,. u or 321x2 . . . x,. u, then

Type(t) =
{

truthval,

L

If t has the form Xzrx2 . . . xn. u, then

if TYP44 = truthval;

otherwise.

Type(t) = Type(q) @ . * l GO Irrp&) -+ he(u)*

99 EXTENSIONS: TYPES, SORTS, SYNTYPES AND QUANTIFICATION Page 23

A term t is well-typed if Type(t) # j-.

From now on, we shall assume that all terms are well-typed. In particular, we assume that

for any atom x, the term (Sort-of (x))()x is well-typed and of type truthval.

DEFINITION 9.3.: A function f E Env is an environment relative to the context C if for all

XE A,

(1) If x has type A, then f(x) E A.

(2) If x has sort a, then (Eval(f)(a))(f (x)) = true.

A context is con&tent if there is at least one environment relative to it.

We shall assume that C is consistent. We may think of a type as a syntactic restriction and

a sort as a semantic restriction. The function Eva1 is extended in a natural way to handle terms

with quantifiers.

DEFINITION 9.4.: Given a term t and atoms xi, x2,. . . ,x, of variable syntype define a partial

function Eval(f;xl,x2,...,x,)(t) : I)” + ‘U as follows. For any h E ‘v” such that the function

g defined by Dam(g) = {XI, ~2,. . . , xn), g(xi) = h(i) is an environment relative to C, set

[Eval(f; x1, x2,. . . 5 G)(t)](h) = EV&#f)(t)*

If t has the form Vxrx2.. . xn. u and R = Range(Eval(f; xl, x2,. . . , xn)(u)) ,C Boole then

true, if false 4 R;
E-4fP) = falee

9 otherwise.

If t has the form 321x2 . . . xn. u and R = Range(Eval(f; x1, x2,. . . , xn)(U)) E Boole then

true, if true E R;
E=4fW = false

9 otherwise.

If t has the form Xxr x2 . . . xn* u, then

Eval(f)(t) = Eval(f; xl, x2,. . . , xn)(u).

From now on, all environments are given relative to the context C.

§9 EXTENSIONS: TYPES, SORTS, SYNTYPES AND QUANTIFICATION Page 24

It is worthwhile to define few more operations on 7; namely, substitution for atoms and

computation of free variables.

DEFINITION 9.5.: A sub&it&m Iid is a partial function f : A + T such that for any 2,

Type(f(z)) < Type(z). Each substitution list induces a partial function Subd(f) : T + T.

The functions Subrrt(f) and Freevars : T* + V are defined by induction as follows. If x is an

atom, set

Sub&(f)(x) =
f (4, ifxEDomf;

5, otherwise,
and

Freevars(x) =
{

c+ if Syntype-of(x) = variable;

0, otherwise.
Freevars and Subst are extended to r* inductively:

Freevars(xl, x2,. . . ,x,,) = U{Freevam(xl), . . . , Freewm?(s,,)),

Sub&)(xl, x2, - - l , ⌧n) = (sub 8t(f)(⌧l), . - a , sub 8t(f)(⌧,)),

Freevars(Muke-upphztion(x, y)) = Freevure(x) U Freevors(y),

Subst(f)(Muke-appldcation(x, y)) = Make-application(Subst(j)(x), Subst(j)(g)),

Freevars(Muke-exbt(y, z)) = Freevars(a) - Freevarrr(y),

Freevars(Muke-univered(y, 2)) = Freevom(s) - Freevare(y),

Freevars(Make-Zambdcr(y, 2)) = Freevam(z) - Freevare(y),

Subd(f)(Muke-ex&(y, 2)) = Make-exist(y) Subat(f

Subst(j)(Muke-universd(y, 2)) = Muke-universal(y, Sub&(f)(z)),

Subet(f)(Muke-Zumbdu(y, z)) = Make-hmbdu(y, Sub@)(a)) .

In order to prevent captures of bound variables, we require that in the last three equations

y fl Dom f = 8, and for all v E Dom f, y n Freevars(f(v)) = 8. In the actual implementation of

EKL, these restrictions are circumvented by renaming bound variables.

DEFINITION 9.6.: A variable z occurs free in the term t if z E Freevurs(t).

LEMMA 9.7.: If f is a subsitution list, then for any well-typed term t, the term Sub&(f)(t) is

well- typed.

Given a substitution list f such that Dom f = (21, x2,. . . , xn}, f(xi) = ti, we use the

notation u[xl /t f , . . l , xn/tn] for Subm!(f)(u).

THE LOGIC OF EKL: AXIOMS, VALIDITY ANI) SOUNDNESS Page 25

10. The Logic of EKL: Axioms, Validity and Soundness

DEFINITION 10.1.: A term t is valid if for all environments f, Eval(f)(t) = true.

It is easy to see that any axiom of propositional logic is valid. Similarly for axioms of

predicate logic, with suitable modifications:

LEMMA 10.2.: If x is a variable of sort S, then following formulas are valid, when sui+bly typed:

A[+] A S (t) I 3x-A’

Vx. A > (S(t) 3 A[+]).

Lemma 10.2. is an immedediate consequence of the subatdution property of our semantics.

LEMMA 10.3.: If x is a variable, t a term, h an environment such that Eval(h)(t) = v and f is

an environment such that Dom f = {x} and f(x) = v, then for any term A

Eval(f#h)(A) = Eval(h)(A[x/t]).

We can prove that the standard rules of inference, modeled after [Kleene 19521 are valid,

i.e., application of these rules yields valid conclusions from valid premises.

LEMMA 10.4.: The following two rules are valid, where v is a variable not occurring free in C

and x has sort S:
C I (S(v) > A) S(v) A A 3 C
C 3 Vx.A[v/x] ’ 3x. A[v/x] r> Co

We also have a rule of replacement:

LEMMA 10.5.: Assume t and u are terms such that Type(t) 5 Type(u). Then the following

rule is valid:
t = u,A
-Xi

Note that the type restrictions for equality are rather loose. In particular, the transitivity

rule for equality is not valid. Aside from this, one can show that most, other standard facts from

logic carry through without modification. There are other, slightly more interesting facta for

EKL:

0 10 THE LOGIC OF EKL: AXIOMS, VALIDITY AND SOUNDNESS Page 26

THEOREM 10.1.: The following terms are valid, when suitably typed:

universal(x),

S(X)’ ifxhassorts,

(4 = Xl

ni(rlj(X)) = ni+j(X),

KZi(xlj(X)) = Tli+j(X),

Xn # () 3 ni(Xl, 229 l l l 9 Xn) = Xi9 if 1 < n,i < n,

Xn # () 3 ni(Xl, 22, l . .9&b) = ?m-i+l(%), if1 < n,iz n,

Xn # () 3 7&(X1,X2,***, Xn) = (Xi+19 - l l ’ Gb), ifl<n,i<n,

Xn # () 3 4(X1,X29 l * l ,Xn) = TL-i+l txn), if1 < n,i> n,

(Xl’X2’---‘%‘**- Ijll’*-•‘Vm(1) = (Xl’X2,***‘Xn,*..,Yl,***~~m 91

(x1,x2, l l a, Xn, 0) = (Xl 9 22 9 l * l 9 Xn),

P(if cc then b else-c) = if a then P(b) else P(c),

(if a then b else c)(x) = if u then b(x) else c(x),

(hx2 l . s Xn. P)(tl, t2, e l l , tn) = P☯Xl/ tl, � �1 Xn/ tn]*

- If the type of x contains no product types,

Xi(X) = 2, Wli(X) = 2.

If x and g have the same type, x has sort S and y has sort universal,

3x. P(x) = 3y. S(y) A P(y), vx. P(x) = vg. S(y) 3 P(g).

The statements given in Theorem 10.1. can be viewed as axioms for the logic of EKL

along with the rules of inference stated above. We could then consider EKL to be a variant
- of ordinary high-order logic satisfying many of the nice proof-theoretic properties (deduction

theorem, normalization, etc.) of the more traditional logics given, say, by [Prawitz 19651.

We can also formulate the principle of tuple induction:

THEOREM 10.2.: If x is a variable of type t* and v is a variable of type f and universal sort and

P is a variable of type t* + truthval, then

VP.P() A (Vx y* P(x) 3 P(j/, 2)) 3 Vx.P(x).

5 11 FURTIIER EXTENSIONS: ABSOLUTE CONSTANTS Page 27

Given that we have natural semantics for this system, it immediately follows that it is both

sound and consistent.

11. Further extensions: Absolute constants

We postulate a “quote” operator for EKL - this is regarded as an injective partial function

’ : V X TA -+ A such that for any x E V, type A with x E A, ‘(x, A) is an atom of EKL of type

A, sort universal and syntype conatunt. When thd type of ‘(x,A) is well understood, ‘x is used

to denote this atom. We may also use the notation tt for ‘t when t is a well-formed term. The

quote map gives us a way of talking about objects in the “real” world, including terms of our

language itself, regarded as set-theoretic objects.

The semantics given above can be easily extended to absolute constants. For any f E Env,--_

Eval(f)(‘x) = x.

LEMMA 11 .l.: For any function f, sets xl, x2, . . . , xn) y such that f(~1, ~2, . . . , xn) = d/, the

following formula is valid, when properly typed:

‘f(’x11,x2,*-, '2,) = '1.

Similarly,

true = ‘true, false = 'fahe.

Note that for any function f, EKL contains the axiom schema given above--thus the language

of EKL becomes highly non-recursive. The object f is an extensional entitity; it is a “real,,

function as opposed to a term or a program computing a function. In the acfual implementation

of EKL we have a fixed list, of quoted objects, including numerals and functions like +,* and

Make-application. Verifying the correctness of statements like “5+9=14” is then a simple matter

of computation, instead of deduction from first, principles.

§ 12 META THEORY: FORMAL EVALUATION Page 28

Lemma 11.1. legitimizes in our system the notion of semuntic attachment that was first

proposed by [Weyhrauch 19781 in a more intensional context. In spirit it is, however, closer to

the theory proposed by [Boyer-Moore 1979B].

12. Meta Theory: Formal evaluation

We have constructed the quote operation in rough analogy with the LISP programming

language. While for obvious reasons we one cannot say too much about the properties of “quote,,,

it would be desirable to have an “inverse,’ operation, corresponding to evaluation of LISP S-

expressions. In our context, the “formal evaluation operator,, will be denoted by “1” - a new

object to be added to the list D of distinguished symbols. Great care must be taken in assigning

semantics to 1; we need to avoid complications in inference rules and at the same time unintended

captures in binding contexts. Consider, for example, the following fallacious chain of inference:

2 = 1tx the value of a quoted term is . . .

vx. x = 1tx universally generalize . . .

1 = 17x specialize the only variable x under V to 1 . . .

1 = x ah&!

To solve these problems, each term of the form 1s is coupled with an environment. The

typing rules and semantics can then be defined as follows:

DEFINITION 12.1.: For any term 8 whose type is a set of terms and any environment, h for these

terms, 1[8, h] is a term such that
-

Type(l[s, h]) = U{Type(x) : 5 E Type(a)),

and for any environment, f

Eval(f)(1 [a, h]) = Eval(h)(Eval(f)(8)).

LEMMA 12.1.: The substitution property of Lemma 10.3 still holds for the extended language.

5 12 META THEORY: FORMAL EVALUATION Page 29

PROOF: We have to verify by induction on the term s that for all variables x, terms t, en-

vironments h the following fact holds: if Eval(h)(t) = v and f is an environment such that

Dom f = {x} and j(x) = v, then

Eval(f# h)(8) = Eval(h)(8 [x/t]).

The only interesting situation occurs when TV has the form J[u, e] for some environment e. In that

c-1

and

Eval(f#h)(a) = Eval(e)(Eval(f#h)(u)),

Eval(h)(a[x/t]) = Eval(e)(Eval(h)(u[x/t])),

so the claim follows by induction again.

One can prove again that the soundness and the consistency of the formal system described

before is preserved.

The formal properties of expressions of the form Its are somewhat different from those

implied by our example.

THEOREM 12.1.: If t is any term, then the following formula is valid:

l[tt, h] = ‘(E-l(h)(t)).

In particular, if t has no free variables, then

1tt = t.

PROOF: By definition, for any environment f,

Eval(f)(l[tt,h]) = E-l(h)(t).

If t has no free variables, then for any f

Eval(f)(t) = Eval(h)(t) = Eval(f)(t)[‘(Eval(h)(t))].

§ 13 EXAMPLES OF EKL EXPRESSIONS Page 30

Theorem 12.1. shows that 1 does indeed formalize the properties of Eva1 in V. If we choose

not to introduce new quoted terms, we can express Theorem 12.1. as follows:

THEOREM 12.2.: If t is an arbitrary term, and t’ is the term obtained by replacing each free

variable x in t by an expression of the form J[tx, h], then

l[tt, h] = t’.

PROOF: It is easy to prove by induction on t that for any environments e, f,

Eval(e# h)(t) = Eval(e#f)(t”),

where t” is obtained by replacing each free variable x in t which does not occur in Dom e by an

expression of the form l[tx, h]. Thus, for any environment f

Eval(f)(J[tt, h]) = Eval(h)(t) = Eval(f)(t’).

In fact, we can axiomatize the semuntics for quantifier-free terms in the current framework.

For example, the following statement is valid: for suitably typed variables x and g,

J[‘Muke-uppZicution(x, y), h] = Make-upplication(l[x, h], J[y, h]).

For quantified terms such commutativity rules are harder to state. For example,

l[‘Make-lambda&), t(v(x))), h] = ‘(Evdh)(v)),

whereas J[t(v(x)), h] may not make sense.

For validity, we can also state a trivial “reflection principle:,,

it’s.8 = ‘true > 1s

13. Examples of EKL expressions

The use of propositional types

§ 13 EXAMPLES OF EKL EXPRESSIONS Page 31

EKL makes no distinction between terms and formulas. Formulas are simply terms of type

truthval. For instance, the statement

vx Y.-(X V y) = (lx) A (1~)

expresses a familiar law of De Morgan. Type restrictions prevent us from forming such obviously

contradictory expressions as Xx. ix(x).

The tL8e of high-order type8 and list types

It seems that most of the concepts regarded as “metatheoretic” can be naturally expressed

in terms of high-order predicate logic. The need for meta-theory has in many cases been an

artifact of restriction into first-order expressions. For example, facts about simple schemata can

be formulated in terms of second-order quantifiers; the induction schema

4(O) A (Vn. 4(n) > +(n + 1)) > Vn. 4(n)

can be equally well expressed as the second-order sentence

VP. P(0) A (Vn. P(n) r> P(n + 1)) 3 Vn. P(n).

The use of list types gives a way of talking about parameterized schemata. For example, we can

express the traditional function definition by primitive recursion given by [Kleene 19521, page

219, as the following sentence:

vi&fun indcase. qfun. ‘dpare. fun(o) = initfun(par8) A
Vn.fin(n + 1, pare) = indcase(n, fun(n) pars), pars)’

Here par8 is a variable of list type; it, can match to any sequence of (suitably typedj variables,

including the null sequence. This sentence can then be automatically instantiated to a desired

definition by the use of high order unification; see [Huet 19751. Examples of the use of the EKL

unification mechanism are given in [Ketonen 19831.

The use of list types allow us to talk about functions of arbitrary number of variables in a

natural way. Consider, for example, the problem of expressing the following statement in our

0 13 EXAMPLESOFEKLEXPRESSIONS Page 32

formalism:

This can be interpreted aa a schema:

Vs. x E {} z false,

Vxy.sE{y}=(x=y),

vxyo,xE{y,r}E(x=yVx=#),

leaving it up to a meta-theoretic apparatus to formulate the obvious inductive function that

constructs these sentences. The full formulation in this manner would be quite painful. Another

alternative is to use list induction to achieve the same result. Here we show how this is actually

done in EKL. The LISP function DECL declares new atoms; TRW expands definitions by rewriting,

;firet some declaration8

(DEcL SET (TYPE: I cRouND*I))

(DECL ELEMENT (TYPE: IGROUND

(DECL ELEMENT-EQUAL (TYPE: IGR~~ND~(GR~UND*)+TR~THVALI) (SYNTYPE: CONSTANT))

(DEcL MEMBER (TYPE: IGR~UND@GR~UND+TRUTHVAL~) (INFIXNAME: E) (BINDINGPOWER: 926))

;definition for X equal to a member of SET

(AXIOM IVX Y.ELEMENT-EQUAL (X,())=FALSEJ)
(LABEL EQUAL)

(AXIOM k'X Y SET.ELEMENT_EQUAL(X,Y,SET)=((X=Y)VELEMENT-EQUAL(X,SET))l)
(LABEL EQUAL)

;definition of membership

(AXIOM IVX SET.X~(SET)=ELEMENT-EQUAL(X,SET) 1)
(LABEL MEMBERDEF)

;expanding the definition...

W&x~I3l (usE (MEMBERDEF EQUAL) MODE: ALWAYS))

;and 80 on

(TRW lx~(Y,Z)l (USE (MEMBERDEF EQUAL) MODE: ALWAYS))

0 13

;x~~Y,z)zx=YvX=Z

EXAMPLES OF EKL EXPRESSIONS Page 33

The we of meta theory

Suppose one has a decision procedure D : T ---) (0, 1) such that if D(t) = 0, then t is a valid

sentence. Then one may want to state this property of D as an EKL expression:

Va.‘D(a) = ‘0 > 1s.

References

[Boyer and Moore 1979A]

Boyer, R. S., Moore, J. S., A Computational Logic, Academic Press, New

York, 1979.

[Boyer and Moore 1979B]

Boyer, R. S., Moore, J. S., Metafunctions: Proving them correct and using

them efficiently as new proof procedures, SRI International, Technical Report

CSL-108, 1979.

[de Bruijn 19681

de Bruijn, N.G., AUTOMATIC-A Language for Mathematics, Technological

University Eindhoven, Netherlands, 1968.

[Feferman 19771

Feferman, S., Tbeories of Finite Type liTelated to Mathematical Practice, in

‘(Handbook of Mathematical Logic,” edited by J. Barwise, 913-971, North

Holland, 1977.

§ 13 EXAMPLES OF EKL EXPRESSIONS Page 34

[Goguen 19781

Goguen, J. A., Abstract Errors for Abstract Data Types, in “Formal

Descriptions of Programming Concepts”, edited by E. J. Neuhold, 491-525,

North Holland, 1978.

[Huet 19751

Huet, G. P., A Unification Algorithm for Typed X-Cakulus, Theoretical

Computer Science 1, 27-57, 1975.

[Ketonen 19831

Ketonen, J., EKL-A Mathematically Oriented Proof Checker, 16 pp.,

Stanford University, 1983.

[Ketonen and Weening 19831

Ketonen, J., Weening, J. S., E.KL-An hteractive Proof Checker, Users’

Reference Manual, 40 DD., Stanford University, 1983.

[Kleene 19521

Kleene, S. C., Introduction to. Metamathematics, Van Nostrand,l952.

[Prawitz 19651

Prawitz, D., Natural Deduction: A Proof-theoretical Study, Almquist

and Wikse11,1965.

[Scott 19801

Scott, D., Relating Theories of the X-calculus, in “To H. B. Curry: Essays

on Combinatory Logic, Lambda Calculus and Formalism”, edited by J. P.

Seldin and J. R. Hindley, 403-450, Academic Press, 1980.

[Weyhrauch 19781

Weyhrauch, R. Prolegomena to a theory of mechzized formal reasoning,

Stanford AI Memo AIM-315, 1978.

