
April 1984 Report No. STAN-G-84-1003
I

Parallelism and Greedy Algorithms

bY

Richard Anderson and Ernst Mayr

Department of Computer Science

Stanford University
Stanford, CA 94305

Parallelism and Greedy Algorithms

Richard Anderson*

Ernst Mayr

Computer Science Department
St anford University

Stanford, California 94305

Abstract

A number of greedy algorithms are examined <and are shown to be probably inherently
sequential. Greedy algorithms are presented for finding a maximal path, for finding a

. maximal set of disjoint paths in a layered dag, and for finding the largest induced subgraph
of a graph that has all vertices of degree at least Ic. It is shown that for all of these
algorithms, the problem of determining if a given node is in the solution set of the algorithm
is F-complete. This means that it is unlikely that. these sequential algorithms can be sped
up significantly using parallelism.

This research was supper ted in part by an IBM Faculty Development Award
* Also supported in part by a National Science Foundation Graduate Fellowship

Introduction

There are two basic approaches to take in designing parallel algorithms. One can
either look for a new algorithm for. the problem, or one can attempt to speed up a known
sequential algorithm. Some sequential algorithms can be sped up substantially with minor
modifications that take advantage of parallelism. An example of such a case is matrix
multiplication where the standard algorithm can be sped up by having each entry in the
product be computed by a different processor. On the other hand, there are many sequen-
tial algorithms which.appear to be much harder to speed up. One class of algorithms which
appears to-be very sequential in nature is the class of greedy algorithms. These algorithms
are some of the simplest sequential algorithms. In a certain well defined sense some of
these algorithms will be shown to be probably inherently sequential. It is interesting that
in some cases, different approaches to the same problem will yield fast parallel algorithms.

Preliminaries

The standard model of synchronous parallel computation is the P-RAM model[FW].
A P-RAM is a collection PI,. . . , P, of identical processors and a collection A4r, . . . , Mm of
global memory cells. Each processor has its own local registers and is capable of performing
the standard arithmetic operations (+, -, V, A, 1, but not x). A processor can also.

. communicate with any memory cell by reading or writing a value. There is a single
program that all processors execute one step at a time. Each processor has a register
which contains its processor number and instructions may depend on this number, so
different processors may do difFerent things. on the same instruction. For example, if did
is the processor number, then the instruction “if p;d mod 2 = 0 then Mpi, +- 1” sets the
even numbered memory locations to 1. The time taken for an algorithm is the number of
instructions that are executed. If the unit cost model is used to measure space, the space is
the sum of the number of processors and the number of memory cells. There are variants
of the P-RAM model which handle conflicting reads and writes to the same global memory

a cell differently. These variants can be simulated by one canother with at most a log’ n slow
down for some small r. One interesting class of problems to look at are the problems that
can be solved in O(logk n) time and O(nj) space on a P-RAM. These problems exhibit an
exponential degree of speed up while using a reasonable number of processors. This class
is Ireferred to as NC [P].

The parallel computation thesis [FW] is that parallel time is roughly the same as
sequential space. PTIME(T) and DSPACE(S) denote the class of problems that can
be solved in pczrallel time T and in deterministic sequential space S respectively. (The
model of sequential computations is that of multitape Turing machines). The relations
between these classes are PTIME(T) C DSPACE(T*) and DSPACE(S) & PTIME(S)
for S 1 log n [FW) . These results are proved by simulating a parallel computation by
a space efficient sequential computation and a sequential computation by a fast parallel
computation. A related result is that DLOCSPACE c AK, where DLOGSPACE denotes
the problems that can be solved on a multitape Turing machine in logarithmic space. This
result doesn’t follow immediately from DSPACE(S) C: PTINIE(S), since it must also be

1

shown that the number of processors required for the simulation is polynomial. The result
for the other direction is that MC C DPOLYLOGSPACE where DPOLYLOGSPACE is
Uk@SPACE(l og” n) problems that can be solved in log” n space. The space efficient
simulation of .h/C problems generally does not give polynomial time algorithms. However,
.A/C c P, since a polynomial number of processors can be simulated by a single processor
with a polynomial slowdown, using possibly polynomial space.

The parallel computation thesis implies that the most difficult problems to parallelize
are the same as the problems that are the most difficult to compute in a small amount
of space. Complexity theory provides the notion of completeness which allows the most
difficult problems in a class to be identified [GJ], [HU]. A problem is complete for a class if
it is in the class and all problems in the class can be reduced in an appropriate manner to
it. This means that a solution to the complete problem provides solutions to all problems
in the class. The most difficult problems in P to compute in a small amount of space are
the problems that are logspace complete for P, or P-complete for short. For defining P-
completeness, logspace reductions are used. A Zogspace reduction of problem A to problem
B is a transformation which converts an instance of A into an equivalent instance of B
and uses only logarithmic space for the computation. Logarithmic space only counts the
work space that the computation uses, read only input and write only output are provided
and do not count in the space bound. We will use A o(lOg B to denote that there exists
a logspace reduction of A to B. Logspace transformations are transitive, so if A oclOg B
and B wag C, then A cqog C. This implies that if a P-complete problem is solvable

. O(logk n) space, k 2 1, then all problems in P are solvable in O(log”n) space. Also, once
a P-complete problem is known, other problems in P can be shown to be P-complete by
reducing the P-complete problem to-them.

If a problem is shown to be P-complete, then it is unlikely that there is a fast parallel
algorithm for it. Logspace transformations can be done in log n time on a P-RAM using
a polynomial number of processors so the P-complete problems are the most difficult
problems to parallelize. If a P-complete problem is found to be in A/C, then P = .K and
P C DPOLYLOGSPACE. If this were the case, then all problems in P could be solved-
very fast in parallel and could be solved sequentially using very little space. Both of these

- are considered to be very unlikely. There is of course,. as of this writing, no known proof
‘that P # NC as there is no known proof that P # A/P.

Quite a few problems are known to be P-complete. The central such problem seems
to be the circuit value problem [L]. It is:

- given a boolean circuit and values for its inputs, compute the value of its output.
The generic reduction to show that the circuit value problem is P-complete is given a
polynomial time Turing machine M, and input x, a circuit is constructed in logspace that
when given input x will have output 1 if <and only if M accepts input x. The circuit con-
structed simulates the Turing machine configurations at each time step. The circuit value
problem plays a similar role for P-completeness as satisfiability does for NP-completeness.
Most P-completeness proofs are reductions from variants of the circuit value problem.
Three important problems that are known to be P-complete are computing the value ‘of
the maximum flow in a network [GSS], 1incar programming [DLR.], and unification [DICM].

One of the drawbacks of P-completeness is that it is defined strictly in terms of

2

language recognition problems. There are quite a few problems which can not be phrased
as language recognition problems in any reasonable manner. An example of such a problem
is the problem of finding a maximal independent set in a graph. This problem is given
an undirected graph, find a set I of vertices which contains no two adjacent vertices and
every vertex of the graph not in I is adjacent to some member of I. This problem must
be distinguished from the maximum independent set problem which is to find a largest
cardinality independent set. It would be difficult to express the maximal independent set
problem in terms of language recognition. For example the problem of the existence of a
maximal independent set is trivial while the existence of such a set with a certain property
might be a much more difficult problem.

The maximal independent set problem is of the general form that we have a re-
lation R(x,y) and want to find a function f such that R(x, f(x)) for all x in the do-
main. One approach to showing such a problem to be difficult would be to find a
logspace Turing reduction from a P-complete problem to it. A Turing reduction of prob-
lem A to problem B is a Turing machine that solves problem A assuming that there
exists a Turint machine that solves problem B that it can call as a subroutine. A
second approach which is weaker is to show that a specific function or algorithm that
solves the problem is “P-complete”. With a function f, there is an associated language
Lf = {(x, a, i)] the i-th symbol of the output f(x is a}. A function f will be said to be)
P-complete if the corresponding language Lj if P-complete. Results of this form show
that a particular approach to a problem is not likely to yield an efficient parallel algo-

. rithm. Showing that a specific sequential algorithm probably can’t be sped up does not
imply that the problem itself is difficult. The greedy algorithm for computing a maximal
independent set is to consider the nodes in a specific order and add them to an independent
set if possible and discard them otherwise. Cook has shown that the language associated
with this problem is P-complete [Cl. Wigderson and Karp have found a polylog algorithm
which outputs a maximal independent set[KW]. Another problem which has a fast parallel
algorithm even though its natural greedy algorithm appears to be inherently sequential
will be discussed in this paper.

Greedy Algorithms

Greedy algorithms are some of the simplest sequential algorithms.. A greedy algorithm
solves a problem by building its solution set one element at a time. Once an element is
added to the solution, it will not be removed, so that there is no backtracking. The rule
that adds elements to the solution set is generally fairly simple. Greedy algorithms appear
to be very sequential since the decision whether to add an element to the solution set
depends on all previous decisions. The following results will show that the problem of
computing the same result as the greedy algorithm gives, is P-complete for a number of
simple graph problems. This is evidence that some greedy algorithms probably can not
be parallelized, and different approaches will have to be used if these problems are to be
solved by fast parallel algorithms.

A problem is shown to be P-complete by giving a logspace reduction from a known.
P-complete problem to it. All of the reductions in this paper will be from the circuit

3

value problem. ‘The circuit value problem is given a circuit made up of boolean gates
and specified inputs, compute the value of the circuit’s output. A circuit ,0 is a string
PI,--*, n>P where /3d is either an input with value 0 or 1, or a boolean gate from some basis
such as {AND, OR, NOT}. The gates care numbered topologically so if.pk has inputs i, j
then i < k and j < k. An example of a circuit is shown below with both the numbers and
the types of the gates shown. Many variants of the circuit value problem are known to be
P-complete [G]. Two P-complete circuit problems that will be used in this paper are the
monotone circuit value problem (MCVP) and the planar circuit value problem (PCVP).
Circuits can be restricted to be only made up of AND and OR gates giving the monotone
circuit value problem. The outdegree of a gate can without loss of generality, be limited to
being at most two. It is quite easy to simulate higher fanout using extra circuit elements.
For another variant, the circuit can be restricted to being planar, i.e. its underlying graph
is planar, and it contains only NOT and OR gates. The circuit can be further restricted
so that the gates can be laid out in levels with connections only going to adjacent levels.
The problem remains P-complete with these restrictions [G].

4
1 0 1 0

Example circuit
The circuit is encoded as (l,O, 1, 0,l A 2,2 V 3,5 V 6,6 A 4,7 V 8)

The Lexicographic Path Problem

The dead end path problem is:

given a graph G = (V, E) cand a distinguished node T-, find a simple path starting
from T that cannot be extended without going to a vertex that is already on the
path.

The greedy algorithm for finding a dead end path is to start at the root and always go
to the lowest numbered unvisited neighbor. When the algorithm stops a dead end path
has been found. If the edges are represented by adjacency lists, then the greedy algorithm
will go to the first element in the list that has not been visited. If the adjacency lists are
sorted then the algorithms are the same. The algorithm is:

4

Algorithm Greedy

path +- vo; v + vo;
while v has an unvisited neighbor do

w +- lowest numbered unvisited neighbor of v;
path +- path followed by w;
V&W

end

The natural lexicographic ordering on paths is p <lez q if p and q are the same for
the first k - 1 positions and pk = E or pk < qk. The path formed by the greedy algorithm
is the lexicographically minimum dead end path. The lexicographic path problem (LPP)
is to determine whether the vertex v, is on the lexicographically minimum dead end path.
The problem LPP will be shown to be P-complete. This result applies to directed graphs
(DLPP), undirected graphs (ULPP), and planar graphs (PLPP). We will first show that
DLPP is P-complete and then give the modifications to the construction to show that the
undirected and planar cases are also P-complete. This will show that there is little hope of
finding a fast parallel algorithm that computes the same dead end path as the sequential
algorithm.

To show that DLPP is P-complete we will give a logspace reduction from MCVP to
. DLPP. To do this we must show how we can simulate a circuit with a path in a. graph.

Let p be a monotone circuit. Each gate of Pk will be simulated by a collection of nodes.
The gates will be simulated in order, with the path testing inputs and setting outputs as
appropriate. The gate Pk will be simulated by a path which will go from node kin to k,t.
The key component of the simulation is a switch which is used to simulate the value of
a wire. If a switch is traversed from the corresponding gate, then it will indicate a true
value. When a gate tests a value of a switch it will traverse the switch if it was not set,
and will not be able to enter it if it was set. A switch is:

1 T0-0l-

2
I T
0-e

1 T
If the switch is entered from node 1, it will be left from node 4, (and if it is entered from 3,
it will be left from 2. The nodes adjacent to nodes 2 or 4 that are outside the switch have
labels greater than 4. This prevents the path from leaving the switch before it has visited
all the nodes of the switch. Two switches may be needed for the outputs of a gate, so they
are joined as in the figure below: Note that the numbering insures that both switches are
visited if entry is made from k, but only 1 switch will be visited if entering from 2 or m.

5

5

2
I I

6 e-o
1 T

m

Theorem :

The directed lexicographic path problem is P-complete.

Proof: The proof is a logspace reduction of MCVP to DLPP. Let p = {PO, PI, . . . , /3,}‘be
a monotone circuit. A graph G will be constructed such that the node vun is visited by the
lexicographic path starting from vo iff the value of the gate Pn is 1.

Each gate Pk corresponds to a subgraph with nodes k;, and kout. If k # n, kout will
be connected to (k + l);,. The four types of gates are O-INPUTS, l-INPUTS, AND gates,
and OR gates. The subgraphs for these gates are illustrated in the figures below. If pk is
an AND or an OR gate with inputs from i, and jY, x, y E {1,2}, it is connected to switches

’ x and y of gates i and j. The nodes are numbered so that all nodes associated with gate k
are greater than the nodes associated with gate j for k > j. In the illustrations, the nodes
labeled k, ICI, and kz are numbered so that k < Ccl < k2.

The lexicographically minimum path from Oiti will set the switches for the inputs that
are one and will not set the switches for inputs that are zero. It is straight forward to
verify that the path will go through k’s switch(es) if k is an AND gate and both of its
input switches were set by earlier gates, or if k is an OR gate and at least one of its inputs
was set by an earlier gate, and the switch(es) will not be visited otherwise. Hence, the
switch for gate n will be visited iff the value of ,& is 1. 1

k-an kout
0-0

0-0

I I

k-an kout
0 0

I I
Of-0

I I
0-0

O-INPUT 1 - INPUT

Theorem :

-0
kout

k .-ok k o-o k

AND gate

I I
k e-ok k o-o k

OR gate

The undirected lexicographic path problem is P-complete.

kout

Proof: The same reduction is used as in the directed case except with a minor modification
so that undirected edges will simulate directed edges. The node k is replaced by three nodes
numbered k, -lk, and ooir,. There is an edge between k and -lk and between -lk and

oc)k. Every directed edge from k to some j is replaced
a node k is visited, the next node visited will be -1k
that would have been visited in the’directed case. The
from being traversed in the opposite direction from the
illustrated below. 1

by an edge from oak to j. When
and then cx& and then the node
nodes numbered 00 prevent edges
directed case. The modification is

_ Converting directed edges to undirected edges

Theorem :

The pkanar lexicographic path problem is P-complete.

Proof: This proof is a reduction from PCVP to PLPP. The reduction is very similar to the
previous ones. The circuit is assumed to be planar and laid out in levels. The connections
only go between consecutive levels. The gates are inputs, NOT’gates, and OR gates. The
path simulating the gates traverses one level at a time, reversing direction after each level.
Since the connections are only between adjacent levels, the edges between gates will not
cross the connections. The structures simulating the inputs and the OR gate are the same

e as for the directed case. The NOT gate is shown below. The NOT gate avoids having to
.have an edge crossing by using the anti-parallel edges between the nodes a and b. The
nodes a and b are numbered less than k and kout and greater than i. If node a is entered
before b, then the path will go to b and then to k,,t, if b is entered first, then the path
will go to a and then to the switch. This circuit can be converted to an undirected circuit
by a similar method as was used above. There is an exception that the two nodes a and
b must be handled differently. The pair of anti-parallel edges between them and the edges
out of a and b can just be replaced by undirected edges. 1

Finding a dead end path in a planar graph

Although the greedy algorithm for finding a dead end path in a planar graph is P-
complete, a different approach yields an cflicient parallel algorithm for finding a dead end
path in a planar graph. The basic method is to find a path which divides that graph into

8

i

e t - - - - - - -

I I
k 0-0 k

Planar NOT gate

two components. This path can be used to reduce the problem to a problem of half the
size of the original problem. The situation is the same as for the maximal independent

’ set problem where the greedy algorithm probably can not be sped up significantly, while
a different approach can be used to get a parallel algorithm. It is not known if there is an
algorithm which will find a dead end path in a general graph in polylog time:

L e t G = (V , E) b e a p l anar graph, and r E V The key observation for our algorithm is
that if a path from r separates the graph into more. than two components, then the problem
can be reduced to a problem of less than half the size of the original problem. The path
can be followed from r to the last node that is adjacent to two of the components. The
path can then be made to go into the smaller of the components. Since the path will never

leave the component, we have reduced the problem to solving a much smaller problem.
d To split the graph we shall pick a node v and attempt to visit all of its neighbors.

Since the graph is planar, we can find a node v with degree at most 5. First we can make
sure that the root r has degree at least two. If r is an articulation point, then the trivial
path just containing r splits the graph. If the graph has an articulation point different
from r, we can Cnd an articulation point v that is adjacent to at least two members of the
biconnected component containing r. We then find the shortest path from r to v which
will clearly split the graph into at least two components. If the graph does not have an
articulation point, we pick a node v that has lowest degree. Let ~1,. . . , vu, be the neighbors
of v. We temporarily delete the node v from the graph. We then find a path from r to VI,
then from vi to an unvisited neighbor of v, and from that neighbor to another neighbor
and so on, never visiting any node more than once. When we can no longer visit any
neighbors, we add v to the path. There are three cases that can occur. First, if we have
visited all of v’s neighbors, we have found a dead end and we are done. Otherwise if the
path splits the graph into at least two components; then we can reduce the problem. The.
other case is when all the unvisited nodes are in a single component and some neighbor

9

of v was not visited. This case is illustrated by the figure below. The last node visited
before v was v’. C is the connected component of vertices not on the path. The node v’
cannot be connected to C or else the path could have been extended. Since v is not an
articulation point, there must be au edge from C back to the path. Let in be the last node
on the path other than v that has an edge to C and let u be the node that follows w. We
can now find a dead end by following the path from r to 20, then taking the edge into C
and then going to v and back up the path to u. All of u’s neighbors must be on the path,
so we have a dead end.

Finding a dead end path

The individual steps such as finding a path between two vertices, testing for artic-
ulation points and finding connected components can all be done in O(log2(n)) time on
0(n3) processors [VI. Since the problem size is reduced by at least half every time a path
is found that splits the graph, no more than logn stages will be required. Since the graph
is planar, we will have to find at most 5 paths in each stage. The algorithm therefore runs
in O(log3(n)) time on O(n3) processors.

The maximal set of disjoint paths problem

Another path problem is: find a maximal set of disjoint paths in a layered directed
acyclic graph. The motivation for looking at this problem is that it occurs as a subroutine
in a number of sequential max flow and matching problems. A layered dag is a dag with

10

its nodes laid out in levels. The edges only go between consecutive levels. The problem
is to find a maximal set of node disjoint paths from the first level to the last level. The
greedy algorithm for solving this problem finds paths one at a time and removes them
from the graph. This process continues until the first level is separated from the last level.
The paths found by the greedy algorithm are the lexicographically minimal paths from
the krst level to the last level. When a path is removed, it might cause some nodes to be
separated from the last level. These nodes are also removed when the path is removed.
We will show that the problem of determining if a node lies on one of the paths found
by the sequential algorithm is P-complete. It should be noted that the complexity of the
problem does not arise from finding the lexicographically minimal path, since that can be
done easily in a dag. The complexity arises from the dependence of a path on the previous
choices of paths.

In this proof the reduction will be from the circuit value problem. The circuit will be
restricted to only contain inputs, NOT gates, and AND gates. The fanout of all gates will
be at most 2. For convenience it will be assumed that the fanout is exactly 2, although
one of the outputs of a gate might not be connected to anything. The gates are numbered
so that inputs to a gate are always from lower numbered gates. The outputs of gate i will
be ir, is. If k and k’ have inputs from i and k < k’ then k will get the output i2 and k’ will
get the output il. It is also assumed that the AND gates get their inputs from distinct
gates, so the situation k = AND(i,i) is not allowed.

Let p = PI,... ,pn be a circuit satisfying the above conditions. The basic structure
’ of the dag which simulates the circuit will be:

*Gk is a gadget which simulates the gate pk. A path & will be constructed in Gk which
computes the value of the gate, The paths will be constructed in the order PI, pZ,. . . , P,.
The path Pk willbe in Gk except when it tests the inputs of the gate pk. In each Gk there
will be two special nodes which will be visited by the path Pk if the output of Pk is true.
These nodes might be visited later if they are not set by Pk. The value of the circuit will
be true iff the special nodes of G, are visited.

The graph will have 372 levels. The output nodes for Gk will be numbered ICI, k2.
There will also be a node k3. These nodes will be on levels 3k - 2, 3k - 1, and 3k
respectively. The gadgets for the inputs are illustrated below. In the figures, all edges are
directed downwards. Then nodes 1 and m are on other gadgets. In both cases the path will
go directly from k to k’. The nodes ICI, ka will be visited if the input is true and passed
up otherwise.

.

The not gate tests its input, and sets its output if the input is false. For the gate
k = NOT(&), x E { 1,2}, the construct is shown below. The node 1 is numbered so it

k I k I
kl

k2

k

1

k3 m

k’ .

1 - INPUT 0 - INPUT

is greater than i,, so if i, has not been visited, the path will be down through. ICI and
k2. The node ir+l will have been visited before i, is visited so the path will not go out
on another gadget. This will be proved below. The AND gate visits both .of the nodes
corresponding to its inputs, and if they are both true, then the outputs are set. The gate

. for k = AND(i,, j,) is shown. It is straight forward to verify that kl and k2 will be set if
i, and i, are set assuming that i,+r and &,+I have been set previously. Note that even if
i, is false, the path will still attempt to read &,.

For both NOT and AND gates it was critical*that if an input is read from i, that the
node iz+r has already been visited. When a gate k is simulated, the node k3 is visited.
The first gate that gets an input from k will read k2 since that was one of the conditions
put on the circuit. Since the gates read all of their inputs, k2 will be traversed before ICI is
read. This completes the proof that this disjoint path problem successfully simulates the

circuit.

. High valency subgraphs

Another problem which is P-complete is findin,e the maximum induced subgraph of
a graph that has all its nodes having degree at least k. A lemma by Erd6s is that if a
graph has n nodes Cand m edges, then it has a.n induced subgraph with minimum degree
at least [F] [E]. The proof of this lemma is essentially a constructive algorithm. The
algorithm just discards nodes of degree less than 1 ZJ until all nodes have degree at least
Lz]. It turns out that this set is non-empty. Unfortunately, the problem of determining
if a particular node is discarded by this algorithm is P-complete. For a graph G and an
integer k, the maximum induced subgraph of degree k may be found by discarding nodes
until all nodes have degree at le<ast k. The maximum induced subgraph could of course be
empty.

The proof that the problem of determining if a node n is in the maximum induced

12

. k
...

0 k

kl

l k �

NOT gate

.
2,

ir+1 /PI
.AJ ...&+l kl
...

k2

k3

AND gate

subgraph of degree k (k > 2) is P-complete will be another reduction from a circuit value
e problem. In this case the reduction will be from the monotone circuit value problem, so the

gates are AND gates and OR gates. The proof will be for k = 3. A gate will be simulated
by a collection of nodes. One of the nodes .will give the value of the gate, it will be left in
the maximum induced subgraph iff the gate’s output is true. The inputs have fanout 1.
The false inputs are just an isolated node k which will be removed. A true input consists
of 4 nodes, connected to themselves, since they all have degree three, they will never be
removed. One of them is distinguished and will be connected to the gate that reads it.
The AND gates and OR gates have 4 distinguished nodes kl, k2, ki, kk. The nodes kl
and k2 are inputs to the gate and ki and kb are the outputs of the gates. If the input k, is
connected to the output jb of another gate, then there is an edge between ji ,and k,. The
gates are shown below. On both of the gates, k’, and k& will only be removed if the node
i is removed. In the OR gate, i will be removed if both kl and k2 are removed and in the
AND gate, i is. removed if either kl or k2 is removed. The nodes kl and k2 are removed
if the connection into themare removed, in other words if they receive a false input. Note
that the values will not propagate backwards through the circuit, so a node depends only

13

OR gate

AND gate

on the nodes of the gates prcccding it. Hence the graph simulates the circuit.

Conclusions

The major conclusion to be drawn from these results is that greedy algorithms are not
likely to yield fast parallel algorithms in some cases. Other approaches will be necessary if
efficient parallel algorithms are to be found. It is not known if the dead end path problem
or the maximal set of disjoint paths problem can be solved by a fast parallel algorithm.

14

There are a number of problems where it is not known if the greedy algorithms yield a
P-complete problem or not. One particularly interesting problem is finding a maximal
matching by the greedy algorithm. This is a special case of finding a maximal independent
set with the greedy algorithm since finding a maximal matching is equivalent to finding
a maximal independent set in the corresponding line graph. The proof that finding the
maximal independent set found by the greedy algorithm is P-complete does not hold for
line graphs. It is possible to simulate logical gates with a line graph, the difficulty is that
it doesn’t appear to be possible to fanout information. The problem of finding a maximal
matching with the greedy algorithm exhibits a complex dependency between the various
steps of the algorithm, so that it also appears that it would be difficult to find a fast
parallel algorithm for this problem.

15

References

PI

WMI

PJRI

[clI

P-v

IGJI

PI

. [GSS]

WI

[KWI

[Ll
-

PI

[v-l

Cook, S.A., “The Classification of Problems which have Fast Parallel Algorithms”,
Technical Report No. 164/83, Department of Computer Science, University of
Toronto 1983.

Dwork, C., Kanellakis, P.C., Mitchell, J.C., “On the Sequential Nature of Unifi-
cation” , 1983.

Dobkin, D., Lipton, R.J., Reiss, S., “Linear Programming is Log-Space Hard for
P”, Information Processing Letters, 8 1979, pp 96-97.

ErdGs, P., “On the Structure of Linear Graphs”, Isreal Journal of MatBematics, I
1963, pp 156-60.

Fortune, S., Wyllie, J., “Parallelism in Random Access Machines”, Proc. 10th
ACM STOC, 1978, pp 114-118.

Garey, M., Johnson, S., Computers and Intractability: A Guide to the Theory of
NP-Compkteness, H. Freeman, San Francisco, 1978.

Goldschlager, L.M., “The Monotone and Planar Circuit Value Problems are Log
Space Complete for P”, SIGACT News 0, 2 1977, pp 25-29.

Goldschlager, L.M., Shaw, R.A., Staples, J., “The Maximum Flow Problem is Log
Space Complete for P”, Theoretica Computer Science, 21, 1982, pp 105-111.

Hopcroft, J., Ullman, J., Intronuctjon to Automata Theory, Languages, and Com-
plexity, Addison- Wesley, Reading, Mass., 1979.

Karp, R.M., Wigderson, A., “A Fast Parallel Algorithm for the Maximal Indepen-
dent Set Problem”, 1983.

Ladner, R.E., “The Circuit Value Problem is Log Space Complete for P”, SIGACT
News 7, 1 1975, pp 583-590.

Pippenger , N., “On Simultaneous Resource Bounds”, Proc. 20th FOCS, 1979, pp
307-311.

Vishkin, U., “An Optimal Parallel Connectivity Algorithm”, RC 9149, IBM T. J.
Watson Research Center, Yorktown Heights, N. Y ., 1981.

16

