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ABSTRACT

This paper presents proof principles for establishing invariance and liveness properties of
concurrent programs. Invariance properties arc established by systematically checking that they
are preserved by every atomic instruction in the program. The methods for establishing liveness
properties are based on well-founded assertions and are applicable to both “just” and “fair’” corn-
putations. These mcthods do not assume a decrease of the rank at each computation step. It is
sufficient that there exists one process which decreases the rank when activated. Fairness then
ensures that the program will eventually attain its goal. In the finite state case such proofs can be
represented by diagrams. Several examples are given.
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INTRODUCTION

Most of the temporal” properties of programs can be partitioned in a natural way into two
classes. Properties in each of the classes can be characterized by the form of the temporal formulas
expressing them.

The first sct in this partition is the class of invariance properties (safety in the terminology of
[OL]). These are the properties that can be expressed by a temporal formula of the form:

OY or »>0O%.

Such a formula, stated for a program P, says that every computation of P continuously satisfies .
In the case of the second form it states that whenever ¢ becomes true, 9 is immediately realized
and will hold continuously throughout the rest of the computation. Some properties falling into
this class are: partial correctness, clean (error-free) behavior, mutual exclusion, and absence of
deadlocks.

The second sct in the partition is the class of liveness properties (eventualities in the termi-
nology of [MPI], [Pn]). These are properties which are expressible by temporal formulas of the
form:

OGP or DO

In both cases these formulas guarantee the occurrence of some event 3); in the first case uncondi-
tionally and in the second case conditional on an earlier occurrence of the event ¢. Some properties
falling into this class are: total correctness, termination, accessibility, lack of individual starvation,
and responsiveness.

An extension of the class of liveness properties is the class of until properties, whose ternporal
formulation is of the form:

xUp or o D xUy.

In both cases the formulas again guarantee the occurrence of the event <), but they also ensure
that from now until that occurrence, x will continuously hold. Some properties falling into the
until class are: strict (FIFO) responsiveness, and bounded overtaking.

A fuller discussion of these classes and the general expression of program properties in temporal
logic is provided in [MP1] .

- In [MP4] (an earlier version is presented in [MPZ]) a comprehensive proof system for proving
the temporal properties of programs is described. It provides a basis for proving the validity of
an arbitrary ternporal formula over a given program. Howcver, being so general, it gives very few
guidelines for the construction of proofs of properties that belong to special classes,

In this paper we specialize the general approach presented in [MP4] to the particular classes
of invariance and liveness (including until) properties. For each of these classes, we recommend a
single proof principle that may be uniformly applied to establish properties of this class.

The first proof principle we present is for establishing invariances. This principle is not new,
and in one form or another has been suggested by almost every work on the.subject of concurrent
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verification, e.g. K], [L], [0G]. Itis a natural extension of the invariant-assertion method for
sequential programs (see [M]).

The second proof principle, which establishes liveness (and untz’l) properties, is more interest-
ing. It is an extension of the classical method of well-founded assertions for proving termination of
sequential programs (see [M]) Similar suggestions emphasizing the role of well-founded induction
in proofs of termination are included in many of the works on concurrent verification (e.g., [K] and

[L]).

The work in [OL] presents an approach which is close to ours. It gives comprehensive coverage
of both invariance and liveness properties with an emphasis on the liveness. There is similarity
between the proof lattice presented in [OL] and our diagram proofs. One direction in which
the current report obviously extends the methods of [OL] is the presentation of the well-founded
principles, enabling proofs of liveness properties for programs with an infinite number of states.

MOTIVATION

A well-founded structure (W, >) consists of a set W and a partial order > over W such that
any decreasing sequence wg > wy > wg > . . . , Where w; € W, is necessarily finite. A typical and
frequently used well-founded structure is (N, >), where N is the set of nonnegative integers, and
> is the usual “greater than” ordering: there is no infinitely decreasing sequence of nonnegative
integers.

A general method for deriving composite well-founded structures from simpler ones is the
formation of lexicographical orderings. Let (W,, >)and (W2, >2) be two well-founded structures.
Then the structure given by (W; x W, >-,u), where the lexicographic ordering ez over Wi x Wy
is defined by

[
o

(ml,MQ) >lez (nl,nz) _=e-. (m1 ~1 nl) or (m1 = ny and mg >9 n2)

is also well-founded.

The basic idea for proving livcness by well-founded assertions is to find an assertion Q(s; w)
relating the program state s to a well-founded parameter w € W. Let us assume that wc wish
to prove & %, ie., that eventually % will occur in any computation. In the simple approach we
require a descent of the parameter w on every computation step until ¥ is attained. This means that
whenever Q(s; w) holds and s”is a possible successor of s under one computation step, then either
s' satisfies 9 or there exists a w”such that w > w' and Q(s'; w?) holds. Thus, any computation that
fails to achieve % generates an infinitely descending sequence of w-elements, which is impossible.

Consider for example the following prograrn, which computes the ged (greatest common divi-
sor) of two positive integers 1 and ».

Program GCD: sequential gcd computation

(yb 3/2) = (501, $2);
while y; # y2 do
f y1 > y2 then 'yy = y; — ya
else Y2 == ¥z - Yy



Suppose we wanted to prove that any computation of this program will eventually reach a
state in which y1 = ys, i.e, O (y1 = y2). Wc may choose the well-founded structure to be the set
N of nonnegative integers with the usual greater-than > ordering, and the paramctcrized assertion

Q(y1,y2;n): (¥1>0) A (y2 > 0) A (31 + y2 = n).

Here the state is specified by the values of the variables y;,ys, and the well-founded parameter
is n > 0. We consider the exccution of the body of the loop as one computation stép. Clearly
whenever 1 has not been achieved yet and consequently y; # ys, the execution of this statement
leads to new values of y; and yo, say y} and y4 such that y; + ya > y} + yb. Taking the parameter
value to be n' = ¥} + y4, the assertion Q( y} , ¥5; n?) holds for the new values of y; , y2, but with a
parameter value n' = ¥} -t ¥4 < y; + y2 = n. This establishes that any computation is bound to

achieve & (y1 = ya).

The example demonstrates that the simple approach, requiring descent on each step, works
successfully for sequential programs.

However it may easily fail for concurrent programs. Let us consider the following concurrent
program that performs the distributed computation of the gcd of two positive integers zy, zo.
Program D G CD: distributed gcd computation

(y1, Y2) = (21, z2)

£y :  while y3 # y2 do mg . while ¥; # y3 do
if y1> yo then y1 = y1 — y2 f y1< ya then yy:=ys —yy
£y : halt my . halt
— Py - - Py —

In the execution of this program, we assume each of the labelled instructions is atomic in the
sense that testing and modification of the variables by one process, say P; at £y, are completed
before the other process may access them. Note that when P; is activated in a state in which
Yy < yg, it does not modify any of the variables and returns to £,, thus replicating exactly the
original state. Consequently, the termination, and hence the correctness of this program, depends
strongly on the basic assumption of fairness that we assume throughout this work. For this
program, the assumption of fairness requires that if a process has not terminated it must eventually
be activated. Only under fairness would each of Py and P, be activated as often as nceded until
termination is achieved.

Trying to prove the termination of this program by the simple approach of well-founded
assertions immediately runs into difficulties when we fail to find an assertion Q(s; w) with a well-
founded parameter w that will decrease at every step of the computation, No such assertion can
exist for the above program since, as observed, some steps may preserve the state and leave the
value of a state-dependent parameter constant. This points out emphatically that a well-founded
argument may succeed for this program only if it takes fairness into account and does not insist
on a decrease of the parameter at every step.

The basic observation made in [LPS] and implied in [MP2] is that it is sufficient that, at any
stage of the computation, we can identify one of the processes such that any computation step of



this process will guarantee a decrease. A slightly different but essentially equivalent formulation
of the same principle was independently” developed in [GFMR].

The liveness principles that wc present here can bc developed as part of the formal temporal
system of [MP4]. But once the principles are justified they can be used without any additional
temporal reasoning. Since these rules can bc shown to bc complete, it follows that they arc the

only rules which are needed in order to prove liveness properties.

PROGRAMS AND COMPUTATIONS

The computation model used in our presentation is based on the shared-variables model of
concurrent programs. For a fuller discussion of the model wc refer the reader to [MP1]. As ‘is
implied by [MP4] the same techniques are easily adaptable to deal with other models based on
synchronous as well as asynchronous communication.

Let P be a program consisting of m parallel processes:

P: 3:=g(@); [Pl - |Pm)
Each process P; is represented as a transition graph with locations (nodes) labelled by elements
of £; = {€, . .., £;}. The edges in the graph are labelled by guarded commands of the form

c(¥) — [§ := f(¥)], whose meaning is that if ¢(7) is true the edge may be traversed while replacing
7 by (%)
Let £,¢y, ..., & € L, be locations in process Pj:

_eu(s) = [7:= h1(5)] (D

cx (¥) = [7 := fu(@)] @

We define Le(y) = ¢ (F) V . . . V cx(F) to be the exit condition at node £. Locations in the program
can be classified according to their exit conditions:

o A location is regular if Ej = true. This is the case of locations such that the set of conditions
labeling their outgoing transitions is exhaustive in the sense that for every possible value
of ¥ at least one transition is enabled.

e A location is terminal if E; = false. This is the case of locations labeling halt instructions
which have no outgoing transitions. In our model there is usually only one such location
per process. This location for process P; will be labelled £.

5



e Any location ¢ such that the exit condition Eg("y') is nontrivial, i.e., it is neither identically
true nor false, is called a semaphore location. Examples of such locations arc those
corresponding to the instruction request (y,) whose transition diagram is:

@ (y- > 0) = [y, =y, — 1 @

Note that E.(¥) = (yr > 0). The request instruction is used in order to reserve a resource,
where y, counts the number of units of this resource currently available. In this paper,
the only semaphore locations we consider are the locations having a request(y) transition
departing from them.

The symmetric counterpart to the request instruction is the release(y,) instruction. It is used
to release one unit of a reserved resource. Its transition diagram is:

true = [y, =y, +1
(O—m=tezanl (5

The location of the release instruction is regular.

A state of the program P is a tuple of the form s = (¢ 7) with £ € L3 x . . . x L and
77 € D™ where D is the domain over which the prograrn variables y3, . . . , ¥, range. The vector I
is the list of current locations which arc next to be executed in each of the processes. The vector
7 is the list of current values assumed by the program variables ¥ at state s.

Let s = (€%, ..., £, ..., ™ 7) be a state. We say that process P; is enabled on s if By (7) is
true. This implies that if we let P; run at this point, there is at least one condition ¢; among the
edges departing from ¢ that is true. Otherwise, we say that P; is disabled on s. An example of a
disabled process P; is the case that £ labels an instruction request(y) and y = 0; another example
is that £ labels a halt statement. A state is defined to be terminal if no P; is enabled on it.

Given a program P wc define the notion of a computation step of P.

Let s = (¢, ...,f™; ) and § = (?1, oL 77) be two states of P. Let 7 be a transition in

P; of the form: ~ 3 ~
@ e(y) — [3T/ = f ()] . @

such that ¢(7) = true, 7 = f(7), and for every j # 1, # = 7. Then we say that 3 is a successor of
s under the transition 7 (a T-successor for short), and write:

T
s—P3.
If § is a T-successor of s under some transition 7 € P;, then wc may also describe 3 as being
obtainable from s by a P;-step (a single computation step of Pi), and write:

P
s—Pg.

An initialized admissible computation of a program P for an input z = E is a labeled sequence .
of states of P
P;,

[

F P
P gy Dy — g3 —D ..

o: 8-



satisfying the following conditions:
A. Initialization.

The first state sg has the form:
8 = (zo; g(z))v

where £y = (€8, ..., €7) is the vector of initial locations in all the processes. The values
g(f) are the initial values assigned to the 3 variables for the input £.

B. State to State Sequencing.

_ _ o S _
Every step in the computation s —b 8, is justified by s being obtainable from s by a
single P;-step.

C. Maximality .
The sequence is maximal, i.e., it is either infinite or ends in a state sy which is terminal.
Dp. Fairness.

Every P; which is enabled in infinitely many states of & must be activated infinitely mémy
times in o, i.e., there must be an infinite number of Pi-steps in o.

We define an admissible computation of P for input Z to be either an initialized admissible
computation or a suffix of an initialized admissible computation. The class of all admissible com-
putations of program P is the set of all sequences which are admissible computations for some
input Z We denote the class of all admissible computations of the program P by A(P). A state 8
is defined to be accessible by the program P if it appears in an admissible computation.

By Dp, a computation o is fair if there is no process P; such that P; is enabled an infinite
number of times in o, yet P; is activated only finitely many times. Thus, fairness requires an
imaginary scheduler to monitor the number of times a process becomes enabled and to ensure that
repeatedly enabled processes are not neglected forever. Any finite computation is necessarily fair.

To emphasize the fact that in our standard definition the computations are required to be fair
we sometimes refer to this class as the class of fair computations of P, and denote it by Ag(P).

In the absence of semaphore instructions, each process P; is initially enabled and can become
disabled only by terminating. Hence we can define the weaker notion of just computation, which
replaces the requirement of being enabled an infinite number of times by the requirement of being
continuously enabled.

Dy. Justice.

Every P; which is continuously enabled beyond a certain state s in o, must be activated
infinitely many times in 0.

We refer to the class of all computations that satisfy conditions A, B, C and Dy, as the class
of all just computations, and denote it by A s(P).

For an arbitrary program P wc have in generhl:

Ap(P) C As(P),



i.e., every fair computation is also just. For programs that contain semaphore instructions, there
may exist just computations which arc unfair.

To see that the first claim holds, let ¢ be an infinite fair computation. Let P; be any process
that is continuously enabled beyond a certain statc in ¢. Then, P; is certainly- enabled an infinite
number of times, and by fairness must be activated an infinite number of times. Hence o is just.

To show that the inclusion between the sets Ar (P) and A ;(P) may be strict, consider the
following program which is the simplest program modelling mutual exclusion:

y*=1
&y. request(y) mg . request(y)
¢ . release(y) my . release(y)
£y : got0 &y my: got0 mg
-P— . —Py—

Note that here and in the following examples we prefer to present the programs as lists of labelled
instructions. The corresponding representation in transition diagram form is obvious.

The following computation:

P1 P1 Pl
o: (lo,mo;1) —® (€1,mq;0) —> (€3, mg;1) —

P P, : P,
(€0, mo; 1) e (€1, mo; 0) > (0g,mg; 1) —> ..

is just. The process Py is activated infinitely many times. On the other hand, P, is never continu-
. ously enabled since it is disabled in the infinitely recurring state (¢;, mg; 0). Consequently justice
does not require it to be activated at all. Obviously ¢ is unfair since I’ is also enabled infinitely
many times, on all recurrences of (£, mg; 1) and (€2, mo; 1), but is never activated.

However, when a program P contains no semaphore instructions, we may use the above
observation that a process is continuously enabled if and only if it is enabled infinitely many times
to conclude:

Ar(P) = A;(P).

Thus, in order to study programs without semaphores, we need only consider properties that hold
for the class of all just computations.

An admissible computation is said to be convergent if it is finite:

Pi Pt Pi_f—l
o 80~—°>31——$ co. TP sy
If the final state s; of a convergent computation is of the form sy = (lftl, ..., & 7), where each

€ labels a halt instruction, we say that the computation has terminated. Otherwise, we say that
the computation is blocked (deadlocked).




In order to <describe properties of states we introduce a vector of locution variubles T =
(7r_1, ce 1rm). Each w; ranges over £;, and assumes the value £ in a state

s = ((Zl, ol T ).
Thus we may describe a state s = (Z; ﬁ) by saying that in this state # = ¢ and g=7.

A state formula Q = Q(7;¥) is any first-order formula. It is built from terms and predicates
over the location and program variables (#; %) and may also refer to additional variables. We will
also refer to state formulas as assertions.

A state formula may refer also to the input variables Z. Our computational model explicitly
assumes that no statement may modify the values of the input variables. consequently in any
states belonging to a Ecomputatmn the values of Z in s are necessarily 5

A state s that satisfies a state formula ¢ is referred to as a ¢-state.

We frequently abbreviate the statement m; = £ to at or simply £. Since the £;’s are pairwise
disjoint, there is no difficulty in identifying the particular w; which assurnes the value £. A similar
notation at£ is used to make a statement about all the locations in the state, namely # = £.

Let the following be a transition 7 in process P;:

@ (@) ~ [?T = /(@) @

Let ©(7; ) and ¥(7;¥) be two state formulas. We say:

e The transition 7 leads from ¢ to %, if every r-successor of an accessible p-state is a

gblstatc Thus, if §=(aA,. ,E", R A %) is a T-successor of the accessible state

AR 0™ ), WhICh of course implies that ¢(77) = eaen and 7 = f(7), then the
followmg |mpI|cat|on must be true:

P8, By ) D B L E )

One way of establishing that 7 leads from ¢ to 4 is to show the general validity of the
following implication:

[e(e,.... 6,.... ™ 5) ac@m] Dw(e, ... & ... f@)

for every choice of (€2, ..., &1 ¢+t . ™) el X .. X LicixLivi X .o o X L.
This is a stronger statement, since it does not utilize the fact that s is accessible.

This notion is extended to processes and then to the complete program as follows:
e A process P; lends from ¢ to 1, if every transition 7 in P; leads from ¢ to .
e A program P leads from ¢ to 9, if every process P; leads from ¢ to 1.

In the following, when we present a formal or an informal argument that establishes the fact .
that a process P; leads from ¢ to %, we say that this fact is provable. and denote it by writing:.

F P; leads from ¢ to 9.



An analogous notation is used for the full program P leading from ¢ to .

THE LANGUAGE OF TEMPORAL LOGIC

Ternporal logic is a language that enables a natural expression of propertics of timeequences.
Since our main interest is in stating and proving properties of computations of some program, we

will consider temporal formulas to be interpreted over the sequences of states arising in computa-
tions.

With the computation

5 P;, P;
6: sg—Ps—> ...

wc associate the sequence of states
g 80, 81, - - -

Note that infinite computations are associated with infinite state sequences and finite computations
are associated with finite sequences. This is an improvement on the version presented in [MP1}-
[MP5] that required all considered state sequences to be infinite. In order to achieve this, finite
computations were artificially extended by an infinite duplication of the final state.

The basic formulas of the language are the state formulas (assertions). As already mentioned,
these are formulas written in some first-order language that describe a property of a program state.
For example, for a program with variables yi, ¥2 and location £, the formula et O (y; = ys) is a
state formula (assertion) which is true for all states such that either the program is not currently
at the location £, or such that currently y; = 2.

The basic state formulas may now be extended by combining the boolean operators

(—n, A, V, D, =) and quantifiers (\7’, 3) of first-order logic with four temporal operators, called
respectively:

O — always (henceforth)

¢$ — sometimes (eventually)
O — nezttime

U — until

The interpretation of general temporal formulas over (computation) scqucnccs is defined as
follows:

Let o : 85,81, . . . be a nonempty sequence of states.

We define the length of o, denoted by £(a), as follows. For a finite sequence o : Sp, . . . , Sk We
let £(¢) = k. For an infinite sequence we define £(c) = w, the first infinite ordinal.

For a state formula ¢, °

oF p,
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i.e., o satisfies ¢, if and only if sg (the first state of a) satisfies ¢.

The boolean connectives and first-order logic quantificrs are interpreted in the natural way,
for example

o FE(p1V psa) if and only if 0 F @1 or o F pa.

To interpret the temporal operators we introduce the notation a("), 0<k< Z(a), standing
for the sequence obtained from o by removing. the first k elements, i.e.

a(") = 8ky Sk+1y - - - -

Then:

o B[ g if and only if Yk(0 < k < £(0)), o) E
ok Opifandonlyif 3k(0< k< (o)), o E p
o E O p if and only if £(o) > 0 and o) E

o E pUy if and only if 3k(0 < k < £(g)) such that o) k9 and Vi, 0 < i < k, 6@ k o

For the simple cases that ¢ and % are state formulas the general definitions above can be
given the following intuitive interpretation:

o satisfies [ ¢ if and only if all states in o satisfy ¢
o satisfies O ¢ if and only if some state in o satisfies @
o satisfies Q ¢ if and only if the second state in o satisfies

o satisfies U1 if and only if some state s’ in ¢ satisfies ¥ and
all the states until s” (excluding s?) satisfy .

Note that in the definition above, ¢ can satisfy QO ¢ only if a second state 8; exists in @.
Some more complicated combinations are very useful. For example,

e The formula

Q bhe

means that ¢ must be true on infinitely many states of o. Note that when all sequences
are assumed to be infinite, 0 © ¢ is the natural expression for the fact that o contains
infinitely many ¢-states. However, once we allow finite sequences, a finite sequence & may
satisfy 1 O ¢ by having its last state satisfying . Yet, of course, such a finite sequence
cannot contain infinitely many ¢-states. The more complicated expression J O ¢ ¢
forces any sequence ¢, satisfying it, to bc infinite and contain infinitely many ¢-states.

e The general nested until formula

il (qu- . (PkUQ)),
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means that o starts with a sequence of states satisfying pi, followed by a sequence of
states satisfying pg, . . . followed by a scqucncc of states satisfying pg, followed by a state
satisfying ¢. Any of these sequences can be empty.

A temporal, formula ¢ is defined to be valid for the program P, P-valid for short, if every
admissible computation o € 3(P) satisfies . We denote this fact by

F(P)E .

When the identity of the program P is clearly determined by the context, we omit the prefix 7(P)
and write simply E .

In the following we present some proof principles or rules that establish P-validity for some
formulas. Whenever we want to state that the P-validity of a formula ¢ has been established by
a rule, we write

F(P) F o,
or simply I- ¢ when the identity of P is determined by the context.

THE INVARIANCE PRINCIPLE

A very simple and intuitive principle suffices in order to establish invariance properties

Invariance Rule — INV

Let ¢(7;y) be a state formula
F P leads from @ to ¢

FeD0Op

. The form of this rule, which will be used throughout the paper, states that if the premise, “P
leads from ¢ to @,” has been established, then the consequence, “¢ D [J ,” logically follows as a
P-valid formula. The way to establish the premise is to check all the atomic instructions in each
of the processes and verify that each of them always leads from @ to ¢.

It is very easy to convince ourselves of the validity of this rule. Consider an admissible
Ttomputation of P whose initial state sq satisfies . Since all subsequent states are derived from
previous states by atomic actions of the program P, all of which have been shown to preserve ¢,
¢ must be an invariant of the computation.

With the addition of an extra premise, guaranteeing that all initial states satisfy ¢, we can
conclude the unconditional invariance of ¢ over all admissible computations.

Initialized Invariance Rule — I-INV
Let ©(T; ¥) be a state formula
Flatlo AT=9(Z)] D ¢
t- P leads from ¢ to ¢
FOp

12




The first premise in the rule assures that any legal initial state, defined by having all processes
reset to their initial locations 20 = (Z(‘), ..., ), and the program variables ¥ initialized to g(Z),
must satisfy ¢. The second premise ensures, as bcforc, that once ¢ is established, it is preserved
forever after. Rcnce any accessible state must satisfy .

As an application of the I-INV rule let us prove a property of semaphore variables.

Example (semaphore variables):

A semaphore wartable is a variable y such that the initial value it receives is a nonnegative
integer, and the only instructions that may alter its value are request(y) and release(y) instructions.

Let ¥ be some semaphore variable. Let

$(y): y20.

By definition, any proper initialization § = g('f) must assign to y a nonnegative value, establishing
@ initially. Consider next the instructions that can modify y. Since y is a semaphore variable, the
only such instructions are request(y) and release(y).

A request instruction is equivalent to (y > 0) — [y =y - 1}. Therefore the condition that it
leads from ¢ to @ is

(>0 A (y>0)] > (¥y-1)20,

which is always true.

A release instruction is equivalent to y := y + 1. It certainly leads from ¢ to ¢ since
(¥20) > (v+120)

Obviously, all the other transitions do not modify y and hence lead from y > 0 to y > 0.
Thus all the premises to the I-INV rule are established, and it follows that in any accessible state

> 0.
vt

Earlier we indicated that one way to establish “r leads from ¢ to ¥” was by proving a
verification condition appropriate for 7. However the verification condition did not utilize the fact
that it is supposed to hold only for accessible states. The fact of accessibility may be introduced
by the following rule that uses invariance properties rather than infers them:

Accessibility Rule — ACC

Let ¢, x and ¥ be state formulas
FOep
F 7 leads from (@ A x) to (¢ D ¢)

l 7 leads from x to ¢

13



To justify the rule, consider an accessible x-state 8. Since it is accessible it must satisfy the
invariant © and is therefore also a (tp A x)-state. Let § be any r-successor of s. By the 'second
premise it is a (lp D $)-state, and since obviously it is also accessible, it must also satisfy the
invariant . Consequently it is also a $-state.

The validity of an invariance property does not depend on whether we consider fair or just
computations. Livcness properties, on the other hand, may behave differently on just or fair
computations. Consequently we need different sets of rules for just and fair liveness.

RULES FOR JUST COMPUTATIONS

In this section we present a proof principle enabling us to prove liveness properties that hold for
the class of just computations A;( P). This will suffice for proving liveness properties of programs
without semaphore instructions.

The basic liveness proof rule for just computations is given by:

Just Liveness Rule — J- LI VE

Let ©(7; ¥) and ¥(7; §) be two state formulas and Px be one of the
processes

A. I P leads from p to o V ¢

os]

I Py leads from ¢ to 4
C. FeD[YV Enabled(P)]

F o D (pUy)

Note that the conclusion is somewhat stronger than simple livcness and guarantees not only the
eventual occurrence of ¥ but that ¢ will continuously hold until then. It implies ¢ D & ¥.

To establish the validity of the rule, suppose that conditions A to C hold. Let o be a just
computation such that initially ¢ holds but, contrary to our conclusion, % is ncver realized. By
condition A, the only way out of ¢ is to achieve 1. Hence ¢ must be continuously true all along
o. By condition C, the “helpful” process Py is continuously enabled throughout o. Consequently
o cannot contain a terminal state and must therefore be infinite. By justice, eventually Py will be
activated from a ¢-state. By condition B, this would lead to %, contradicting our assumption that
¥ is never realized.

In applying this basic principle to prove a liveness property of a program we often observe the
fcllowing pat tern: There is a sequence of state formulas (assertions) @g, ©1, - . . ; ©r Such that
the initial state satisfies ¢, and the desired goal is ¥ = pg. WcC then repeatedly apply the J- LI VE
principle to show that being at p;, 0 < ¢ < r, we eventually get to p;_1, i.e. p; D O p;—1. More
generally, we may show that being at ¢;, + > 0, we eventually get to p; for some j < 1. This of
course establishes that being at ¢,, or as a matter of fact at any ¢;, 0 <1 <r, we are guaranteed
to eventually achicve pg. If we summarize the premises for each application of the J- LI VE rule, we
obtain the following useful rule:
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Just Chatn Rule -- J-CHAIN

Let po,01,. .., ©, be a sequence of assertions satisfying the following

requirements:
A Tori=1, . . .,r

F P leads from p; to (V ;)
i<

B. Fori=1,...,r there exists a k;, such that:

I- P, leads from ¢y to (V ‘PJ')

i<t
C. Fori=1,. . .,r and k; as above:
F p; D [(V ©;) V Enabled(Py,)]

j<i

F (\'/ wi) D (\'/ pi)lpo
i=0 i=1

DIAGRAM REPRESENTATION OF THE CHAIN RULE

In presenting a proof according to the CHAIN rule it is usually sufficient to identify g, @1,
., p, and for each ¢+ = 1, . .. , r to point out the “helpful” process P,. It can be left to the

reader to verify that fremises A to C are satisfied for each 3.

We prefer to present such proofs in the form of a diagram. Consider a diagram consisting of
nodes that correspond to the assertions g, ©1, ..., ©r.

For each two accessible states s; (satisfying <p,-) and s; (satisfying go,-) and a” process Py such

P,
that s; —® s;, we draw an edge — from the node p; to the node p; and label it by Py, the

process responsible for the transition.

[p]— Tt [#]

All edges corresponding to the helpful process Pg,, are drawn as double arrows =>
Py
B —s

In order for a diagram to represent a valid proof by the JCHAIN rule the following conditions
must hold:

e Every successor of an accessible p;-state, for ¢ > 0, satisfies some P20

« For every edge connecting ®; to @; we must have ¢ > |.
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« For every edge connecting @; to @; and labelled by Pk, we must have 7 > j.

e For every accessible, state s, if ¢ > 0 is the lowest index such that s satisfies y,
then Py, must be enabled on s.

Woc illustrate diagram proofs by two examples. The first demonstrates a complex invariance
proof accompanied by a relatively simple liveness proof. The other example, demonstrates a more
involved livencss proof with a relatively casy invariance proof.

EXAMPLE A
The following program provides a distributed solution for achieving mutual exclusion without
scmaphorecs.
Program PF: The Peterson-Fischer Algorithm
(y1, t1, 2, t2) == . L, 1,

£o: noncritical section 1 mg . noncritical section 2

£y t;:=ifyp=Fthen Felse T my: tag:=1tf yy=Tthen Felse T
ly 1y =ty mg : Yo = Iy

03: if yo # L thenty:=ys mg: If yy # L then tp:= -y,

by 1y =t my ! Y = i

Z5:  loop while y; = yg ms . loop while ~yg == 34

£g : critical section 1

(y1, 1) == (L, 1) ' (y2, t2) :== (L, 1)
€, : goto fy myg:  goto mg
._.Pl_ *-Pz—-

The boxed segments are the critical sections to which we wish to provide exclusive access. It
is assumed that both critical and noncritical sections do not modify the variables yy, ¢; , y2 and ¢a.
Also the critical section must terminate. The program is distributed in the sense that each process
P; has a private variable y; which is readable by the other process but can be written only by P;.

.The basic idea of the protection mechanism of this program is that when competing for the
access rights to the critical sections, P; attempts to make y; = y, in stateents £; to €4, while
P, attempts to make y = ~y; in statements my to my4. The synchronization variables y; and
92 range over the set {l, F; T}, where L signifies no interest in entering the critical section. The
partial operator -1 is defined by

-T=F, -F=T, -lisundefined.

(Hence in writing ~y2 = y; we also imply that y; # 1 and y; # 1.) Protection is esscntially
assured by the fact that when both processes compete on the entry to the. critical section, both

16



T

y1 # L and ya # L. Under these assumptions, the entry conditions to the critical sections, y3 # ¥2
and —yy # y; respectively, cannot both be true at the same time.

When Py gets to £y it waits until y; # yo and then enters the critical section. This condition
is satisfied either if y3 = L (since y; # L at €5 ), implying that Py is not currently interested in
entering the critical section, or if y; = —ys (and y3 # 1) which implies that P, got to ms after Py
got to £5. This is because in ¢; to &4, Py attempts to set y; = yq; if now Py finds y; = ~yq at €y, it
knows that P, changed the value of yo after Py last read this value. This argument is only intuitive
since P, may have changed yq after P; last read it. and yet arrive at mg before Py arrived at £y.
This is why we need a formal proof of both protection and liveness.

Symmetrically, when Ps arrives at ms it waits until —yg 7 y;. This can occur only” if y; = 1L,
implying that P; is not currently interested in entering the critical section, or if yo = ¥; (and
y1 # 1) which now implies that P; modified the value of y; after Py last read it. This is because
in my to my, Py attempts to make —yg = ¥i.

An interesting fact about the algorithm is that two groups of instructions, one consisting of
{¢,, €2} and the other consisting of {3, ¢4}, seem to be redundantly trying to achieve the same
goal. Both groups try to make y; = ys if y2 # L, and y;1 # y2 otherwise. Why should we have
this redundancy? The answer is that if we could perform the assignment

y1 = #f yp = F then F else T

as one atomic instruction, then only one such instruction would have been necessary. Since we use
an interleaving model for concurrency we have had to break this monolithic instruction into two
atomic instructions such as given in £y and ¢;. This faithfully models the possibility that ys could
change its value before yi is assigned the intended value.

Such breaking is required whenever an instruction contains more than a single critical reference
to a shared variable, if the interleaving model is to represent all the possible behaviors of real
concurrent, executions of such instructions. Consequently we break the instruction into two simpler
instructions, the first fetching the value of y5 and computing in t; the intended value, and the second
moves t; into y;.

However, now that the other process may change ys between these two instructions. the algo-
rithm with a single pair of such instructions is 1o longer correct. That is, there exists a computation
that violates mutual exclusion. The critical interference point. is between £; and £5. By duplicating
the sequence of £;, £y at €3, €4 and similarly in P;, we make it impossible for the other process to
repeat its damaging interaction both when Pj is at €5 and when it is at £4. By essentially dupli-
cating the broken instruction twice, computations that violate mutual exclusion will be shown to
be impossible.

By simple application of the initialized invariance rule 1-1Nv, it is possible to derive the
following invariants:

I : (t; # 1) = atly g
Iy : (y1 # 1) = atlse
Is @ (t2 # 1)
I . (y2 # 1) = atmgs,

K

atmg. g
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where at £, g stands for at ¢y V atls V . .. V atlg, etc. Note that stating that Iy is an invariant is
the same as stating that t- [J [(t; # 1) = atf2.6].

In order to derive safety we prove the following sequence of invariants:

Is: (y1=t1) v at €5 v ate,

Is:  (y2 = ta) V atmg V atmy

Ir: atles D [(t2 = L) V (8= t2) V (t1 =91)]
Ig: atmgs D [(tl = 1) V (ta = ~ty) V (g = yz)]
Iy:  [atlye A atmg] D (y2 - ti1)

I : [atm4_,6 A atesl D (y1 = "'1t2).
e Invariants Iy and Ig

The invariants I5 and Ig are easy to verify since the only transitions that may cause y; and
t, to differ are £; — €5 and £3 -+ £4 and the only transitions that may cause y and t; to differ are
mi; — meq and mg — my.

o Invariants I7 and Ig

In order to verify I; and Ig we observe that they hold initially since both atly s and atmgs
are initially false. Next, we assume that they hold at a certain instant and show that both I; and
Ig are preserved by cach individual transition.

We show first that I is preserved. Let us denote by t}, ¥}, t5, ¥4 the values of the respective
variables after a transition. We only consider transitions that affect variables on which I7 depends.
Consider first such transitions that can be made by Pj.

€3 — €4: If yo = -L then ¢, is not changed and hence hy Iy, t| = t; = y;. Therefore let us
consider the case that y; # L and hence by I3 and I4, t3 # 1. We also have t} = y,.
The following two cases are considered:

Case: yg = tg: Then t} = yg = ta satisfying the second disjunct of I.

Case yg = —itg: In view of Ig, the assumption y3 # L and I4, P, can only be
at my4. From Is, the fact that Py is at f3 (hence t ; # 1), and the assumption
yg = —itg, it follows that t2 = =t;. Wc thus obtain t| = yg = =ty = =(—ty) = ¢;.
Since t; = y; while Py is at 3, we obtain ¢} = y; satisfying the third disjunct
of I.

€y — 05 yy =t satisfying the third disjunct of I5.

Next, we consider transitions of P, made while Py is at £45 that affect variables appearing in
I

my — Mo t’2 = -y since. y1 # 1. If y3 = 1 then I7 continues to hold. We may therefore
assume that y; = -ty which leads to t'2 = —1(—wt 1) =13 , satisfying the second disjunct of
I7.
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mg — my: Similarly to the case above, since y; # 1 while Py is at 45, this transition
assigns ty = —yy. By the same argument as above Iy must still hold after this transition.

mg — mq: Sets t3 to L satisfying the first disjunct of Iy.

In a similar way we establish that Ig 13 preserved under any transition initiated from a state
that satisfies I; A Ig. Consequently, both I7 and Ig are invariants.

e Invariants Iy and Iyg
Next, let us consider Iy (and symmetrically Im).
The only transition of Py that could affect Iy is £5 — €4 while Py is at mg. But then t} = ys.

The only transition of Py that could affect Iy is mg — mg while Py is at €4 . The fact that
ms — mg is possible implies that ~(—ys = y1), i.e. Y1 = ya. By Iy either t; = y; or ¢; = t5. In
the first case we have t; = y3 = ¥y2 and in the second case t; = t2 = yq is ensured directly, Note
that when Py is at ms, ta = yo. Thus in any case t; = ys.

o Safety

The safety of this algorithm is expressed by the statement of mutual exclusion. This means
that it is never the case that while Py is at &g, Py is at mg, i.e.,

N(atEG A atms).

To derive safety assume a state in which both at g and at mg are true. By Ig and Iy we have
that yo = t; and y; = —¢2 at the same time. By Is and Ig we also have y; = t; and yg = tg. This
leads to both y; = y2 and y;1 = —y2 which is contradictory. Hence, mutual exclusion is guaranteed.

e Liveness
The liveness property we wish to show for this program is
atly O O atlg.

In Figure 1 we present a diagram proof for this property. In constructing the diagram we have

freely used some of the invariants derived above. Observe for example the node corresponding to
the assertion:

pe: atls A atmyg.

Here the helpful process (indicated by a double arrow :>) is Py since we know (by I4) that while
P, is at mg, y2 = L and while Py is at. &5 (by I3) that y; # I, hence whenever P is activated at Iy
it proceeds immediately to g, i.e., arrives at a state satisfying ¢q. In this diagram wc abbreviate
atls A atmg to €y, myg.

Insert Figure 1. Diagram. Proof of the Program PF
o Precedence

To illustrate the application of the CHAIN rule to the proof of un#il properties, consider the
following prcccdence property:

[at Oy A ~ atm4,,3] D [(~ atmg) U (ates)].
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It states that if Py arrives at &5 before Py arrives at any location in {my4, ms, mg} then Py will
be the first process to enter its critical section. To prove this fact we only have to consider the
subdiagram of Figure 1 consisting of nodes @g to @7.

It is a general property of proof diagrams that if a diagram establishes conditions A to C of

the JCHAIN rule for assertions g, . . . ,» ¥, then it also establishes these conditions for each prefix
chain ¢q, . . . , Yk, k < r. Thus, conditions A to C are fulfilled for the particular prefix chain
Pos ... P

We may therefore conclude:

(Ve > ((.\Zf") U o).

By examination of the relevant assertions it is easy to derive the following two implications:

[atls A ~ atmy g] D (\7/50.-) and (\7/pi) D ~ atmg.
i=0

The three implications together yield the desired precedence property.

EXAMPLE B

The following program provides another shared-variable solution for achieving mutual exclu-
sion without semaphores. Historically it” was one of the earliest such solutions.
Program DK: The Dekkcr Algorithm

(t) Y1, y2) = (1- F, F)

£9 : noncritical section 1 mg . honcritical section 2
&ty =T my: yg =T
€y . ifys = F then goto &y mq : tfy; = F then goto my
£3: ift = 1then goto¥ls .. mg: if t =2 then goto my
by: y:=F mg: yz:=F
ls: loopuntilt =1 ms . loop until t =2
lg: gotol, meg . Qot0 my
¢q . critical section 1 mq : critical section 2
t:=2 te—=1
€g: y1:=F mg: Y2:=F
¢y : got0 &y mg . got0 mg
—Py— —Py—
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The variable y; in process Py (and y2 in Py rcspectively) is set to T at £ to signal the intention
of Py to enter its critical section at £7. Next, P; tests at €5 whether P2 has any interest in entering
its own critical section. This is tested by checking if y3 = F. If yo = F, P, proceeds immediately to
its critical section. If yo = T we have a competition between the two processes on access rights to
the critical sections. This competition is resolved by using the variable ¢t (turn) that has the value
1 if P; has the higher priority and the value 2 if Py has the higher priority. If P; finds that t = 1
it knows it can insist and so it leaves y; on and loops between £5 and ¢s waiting for ¥ to drop to
F. If it finds that ¢ = 2 it realizes it should yield to P, and consequently it turns y; off and enters
a waiting loop at fs, waiting for ¢ to change to 1. As soon as P, exits its critical section it will
reset £ to 1, so PP; will not be waiting forever. Once ¢ has been detected to bc 1, P; sets y; to T
and returns to the active competition at £5.

In order to prove safety, i.e. mutual exclusion for the DK program it is sufficient to establish
the following invariants:

I (’yl =T = (atez__4 A at£7,3)

IL: (y2=T) = (atmg 4 V atmrg).

They can be justified by considering the local transitions in P; and P, independently.
o Safety

Safety now follows from Ij and I as an invariant:
132 ~ Gte'],s vV o~ atm-,,s.
The only two transitions that could falsify Ig are:

€ — £7 while Py is at myg. But then by I3, y2 = T and the transition €y — £7 is
impossible.

mg — mq while Py is at €7g. Similarly impossible by I;.
Liveness

The liveness property of program DK is given by:
até; O O ate-,.

In Figure 2 we present a diagram proof of this property. In constructing the diagram we are aided
by the previously derived invariants I;, I, I5 and the following two additional invariants:

Iy: atmg D (t =1)

I5Z [atesns A (t = 2)] 3 atml,_7.

In particular we use Is when constructing the Pj-successors to node (g3. In all of these successors

Py is at ¢4 and t = 2 holds, hence by Is, Py is restricted to the range of locations mj_7 which is
represented by the nodes pig, . . . , V22

To justify the above invariants, consider first 14, Therc are two potentially falsifying transitions
that have to be checked:
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my — mg: sets ¢ to 1.

¢; — €g while P, is at mg: This transition is impossible since by Is while Py is at mg, P
cannot be at £7.

Consider next Is. Here the potentially falsifying transitions are:

£, — €3 while ¢t = 2. This transition is possible only when y; = T which, due to Iy, implies
that Py is either in mg, 4 or in myg. In view of I4, P, cannot be at mg while ¢ = 2. Hence
P, is restricted to mg, 4 or 'my, which is a subset of my 1.

m7 — mg: . Sets t to 1 and hence makes the antecedent of Iy false.

Insert Figure 2.  Diagram Proof of the Program DK

o Precedence

Again we may use the full (until) version of the rule in order to prove some precedence
properties of this program. First we can show:

[at82,3 A (t =1 A~ atm7] D [(N atm7) U (atZ-,)].

This is established by considering the subdiagram of Figure 2 formed out of nodes @qg to pig. It
ensures that once Py is in £33 with £ = 1, it will precede P, in getting to the critical section.

A full analysis of the number of times that P, may enter the critical section before P; does, .
from the time that P; is at £;, leads to the following conclusions:

Once Py is at £y it will eventually get to €5. If currently ¢ = 1, then, by the until property
derived above, the next process to enter the critical section is P;. If £ = 2, then in the worst
case P; proceeds from £y to 5. Meanwhile, Py  can enter its critical section at most once before
resetting ¢ to 1. Once ¢ = 1, P; returns to ¢, and has again, by the established until property, the
priority on the entry rights to the critical section. Additional overtaking, i.e., additional entries
of Py to its critical section, may occur while P; is moving from £; to €2 or through the sequence
E5 ——»ZG—rel —-*82.

It is interesting to compare our diagram proofs with the proof lattices suggested in [OL]
as a compact representation of proofs of liveness properties. One difference between the two
representations is that an edge in our diagram corresponds to a transition that occurs in one
atomic step. In the proof lattice, the fact that the node ; is connected by edges to ¢;,, . . . , ©j,
states that

i D Opj, V . - Vi)

has been established. Viewed in our framework, wc may consider the proof lattice to be a proof
diagram for a crain rule in which premises A, B and C have been replaced by the single premise:

D. Fori=1,...,7: F Pi D O(\/goj).
J<i

The establishment of condition D for each ¢ > 0 is then based on the J-LIVE rule. Consequently,
our rcprescntation describes the proof to a greater detail, specifyirz, for example, the identity of
the helpful process for each assertion.
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PARAMETERIZED ASSERTIONS

The J- CHAI N rule assumes a finite number of links in the chain. It is quite adequate for
finite state programs, i.e., programs where the variables range over finite domains. However,
once we consider programs over the integers it is no longer sufficient to consider only finitely many
assertions. In fact, sets of assertions of high cardinality may be needed. The obvious generalization
of a finite sct of assertions {p; |4 =0, . .., r} is to consider a single assertion ¢(a), parameterized
by a parameter a taken from a well-founded structure (A, >). Obviously, the most important
property of our chain of assertions is that program transitions eventually lead from ; to ©; with
j < %. This property can also be stated for an arbitrary well-founded ordering. Thus a natural
generalization of the chain reasoning rule is the following:

Just Well-Founded Liveness Rule - J- WELL

Let (A, >) be a well-founded structure.
Let p(a) = p(a; m; Y), @ € A, be a parameterized state formula.

Let h : A — [1..m] be a function identifying for each & € A the helpful
process Ph(a) for states satisfying <p(a).

A. I- P leads from p(a) to ¥ V (38 < a. ¢(B))
B. F Py(q leads from p(a) to ¥ V (38 < a. p(B))
C.hop(@)d[pVv(@EB<a.p(P)) V Enabled(Pyy)]

F (BQa. p(a)) O (Fa. p(a))Uy

We refer to h as the helpfulness function.

A justification, based on induction over arbitrary well-founded ordered sets of this rule can be
constructed.

Example (distributed gcd):

As an illustration of the J- WELL principle we reconsider Program DGCD for the distributed
computation of the gcd function.
Program DG CD: distributed gcd computation

(yuyz) = (-"31,1'2)

fo: while y; # y5 do mg . while y; # ya do

if y1> y2 then yy :=y1 — yo fy1<yzthenys =y — 4y
¢, . halt my . halt
— P — — P —
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In Figure 3 we present a proof diagram of the liveness property:
O latly A atmy A (y1 = y2)]
for this program.
Insert Figure 3. Diagram Proof of the Program DGCD

In this diagram we mix applications of the J- CHAI N rule with an application of the J- V\ELL
rule. The J-VWELL rule ensures that from ¢ = @3 we will eventually exit to 5 or to 4, ie,
% = @1 V py. The well-founded structure that we use is that of lexicographic pairs (n, k) of which
n € N is a positive integer and k € { 1, 2). The second parameter k is determined according to
whether 41 > y2 or Yy < y2. In turn it determines the helpful process. If k = 1, then y1 > ¥y,
and any transition of Py (namely £y — £p) will decrement n = y; + ya, thus decrementing the pair
(n, K). On that same state, any transition of P leaves y,;, y2, and hence n and k invariant. For
k = 2 the situation is reversed, P, being the helpful process.

Once we arc in g or ; the arrival at ¢q is ensured by the usual application of the J- CHAIN
rule.

- |

Note that in proof diagrams containing parameterized assertions, we allow edges of the helpful
process to lead back to the same node, provided that they always lead to a lower value of the well-
founded parameter.

RULES FOR FAIR COMPUTATIONS

Next we consider programs with semaphore instructions. For such programs the classes of
. just and fair computations do not necessarily coincide and we have to consider the more general
concept of fair computations. Since F(P) C J(P), any property that has been proved correct
by the J- VELL rule certainly holds for all fair computations. However, the completeness of the
J-VELL rule breaks down in the case of programs with semaphores; we are not always guaranteed
that this rule is applicable. Hence, we propose a more general method for establishing eventuality
properties under fair computations:

The basic liveness principle under the assumption of fatr computations is given by:

Liveness Rule— LI VE

Let o(7;y) and 9(7; ¥) be two state formulas and P one of the pro-
cesses

A. |- P leads from ¢ to ¢ V 3
B. I- P, leads from ¢ to %

C. FpDO[¢pV Enabled(Py)

F e D (pld)
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To justify the livcness rule LI VE, let o be a fair computation such that ¢ is initially true. By
condition A, g will hold until 4 is realized. Assume therefore that % is never realized and hence
© holds in all states of . By condition B, P, was never activated, since any activation of P
from a p-statc would have realized ¢ immediately. By condition C, each state, being a p-state, is
eventually followed by a state in which either 4 holds or Py is enabled. By our assumption that
1 never occurs, the latter must be the case, i.e. P is enabled. Consequently, ¢ must be infinite,
since otherwise its last state must be such that Py is enabled on it, contradicting the dcfinition of
execution sequences being maximal. We may now repeat the argument above for every ¢p-state.
This shows the existence of an infinite sequence of states on which Py is enabled. Thus Py is
enabled infinitely many times on ¢ but never activated, contradicting our initial assumption that
o is a fair computation. Consequently, any fair computation beginning in a @-state must contain
a P-state.

The difference between the LI VE and the J- LI VE rule is in condition C. While the J- LI VE
rule requires that the helpful process is enabled now, the LI VE rule only assures that it will be
eventually enabled. An apparent advantage of the J- LI VE version of condition C is that it is statie,
i.e. contains no temporal operators. The LI VE version of condition C, in comparison is dynamic,
i.e. is a temporal statement, having the same form as the conclusion we set out to prove: ¢ D & .
Two obvious questions arise: How do we prove condition C of the LI VE rule? Is there a danger of
circular reasoning?

The answer to both questions lies in the observation that in establishing condition C we may
ignore the process Px. This is because as soon as it is enabled we have already arrived at a
goal state (i.e., one satisfying ¥ V Enabled(Pg)). Thus, if currently Py is disabled, only the other -
processes may cause it to become enabled again; Pj can never help itself become enabled.

To emphasize this point we may rewrite condition € as:
F(P - {Pi}) t- ¢ D 0 [¢ v Enabled(P)] .

This means that if we consider all fair computations of the program obtained from P by omitting
the process Py, then @ guarantees the eventual realization of 9 V Enabled(P). In the modified
program we should consider as initial states all the states accessible by P. Thus, circular reasoning
is avoided since we consider as a premise to our rule a simpler program with one process less than
the original program.

Note that the static version of condition C always implies the dynamic version.

We may now develop the CHAI N and VEELL rules in a similar way by appropriately generalizing
condition C. Thus to obtain the CHAI N rule we replace condition Cdof the J- CHAI N rule by:

F p: D 0[(\/50,-) V  Enabled(Py,)| .

j<i

The full VELL rule is given by:
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Well-Founded Liveness Rule — WELL

Let (A, >) be a well-founded structure.
Let <p(d) = p(o; T; §), a € A, be a parameterized state formula.

Leth: A — [1..'m] be a function identifying for each a € A the helpful process
P (a) for states satisfying ¢(c).

A. F P leads from p(a) to ¥ V (38 < a. ¢(8))

B. F Pi(a leads from p(a) to ¢ V (38 < a. p(B))

C. F pl@) D 0¥ V (38<a.p(B)) V Enabled(Pya))]
F (Ba.e(e) > (Fa.p(a))Uy

We refer to h as the helpfulness function.

We will proceed to illustrate first the application of the cHAIN rule and then the application
of the weLL rule to proofs of liveness properties of programs with semaphores.

EXAMPLE C

This example demonstrates the application of the chain rule for programs with semaphores.

Program PC: Producer-Consumer

(b, s, bf, ce) = (A, 1, 0, n)

£y: compute yy mg: request(cf)

£y . request (ce) my . request(s)

¢ : request (s) mg: 1y := head(b)
€3: tj:=b-ys B mg: tg = tail(b)

£y: b=ty : my: b= 1y

f5: release(s) ms . release(s)

ls: release(cf) mg: release(ce)

£7: got0 £y mq: compute using ys

mg: got0 my

—P; : Producer - --Py: Consumer—
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The producer P; computes at {5 a valuc into y; without modifying any other shared program
variables. It then adds y; to the end of the buffer b. The consumer P, removes the first element
of the buffer into y2 and then uses this value for its own purposes (at m7) without modifying any
other shared program variable. The maximal capacity of the buffer b is n > 0.

In order to ensure the correct synchronization between the processes we use three semaphore
variables: The variable s ensures that accesses to the buffer arc protected and provides exclusion
between the critical sections £3_5 and mq, 5. The variable ce (“count of cmptics™) counts the
number of free available slots in the buffer b. It protects b frorn overflowing. The variable cf
(““count of fulls”) counts how many items the buffer currently holds. It ensures that the consumer
does not attempt to remove an item from an empty buffer.

o Liveness

Here we wish to show that
atly O O atls.

We start. by presenting the top-level diagram proof (Figure 4). This diagram proof is certainly
trivial. Everywhere, P; is the helpful process and leads immediately to the next step. However,
we now have to establish clause C in the CHAIN rule. This calls for the consideration of fair
computations of > ~ {P;} = {P;}. We thus have to construct two subproofs:

F(P2) F atly D O(ce > 0)
F(P2) t- atly D O(s > 0).

The first statement ensures that if Py is at £y, Py will eventually cause ce to become positive which
is the enabling condition for P; to be activated at £;. Similarly, in the second statement P, will
eventually cause s to become positive, making P; enabled at £3. For both statements we present
diagram proofs.

Insert Figure 4

Consider first the diagram proof for the at €; case (Figure 5). In the construction of this
diagram we use some invariants which are easy to derive. The first invariant is:

Il . at€3“5 + atm205 +8=1

It has been used in order to derive that being at ¢; and at my implies s > 0. In an expression
such as the above we arithmetize propositions by interpreting false as 0 and true as 1. The second
invariant we use is

Io: cf+ce+atly g +atmy. g =n.
It is used in order to deduce that being at £; and at ms g implies that either ce > 0 or cf > 0.
Insert Figure 5
The diagram proof for the at €3 case is even simpler (Figure 6).

Insert Figure 6

EXAMPLE D

The following program demonstrates the application of the WELL rule For programs with
semaphores.
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Program BC: Binomial Cocfficicnt

(y1, y2, ¥3, ¥4) = (0, 0, 1, 1)

£o: if y1 = (n — k) then goto ¢y mg: tfys = k then gbto mg
2, :  request (y4) my: v =yst+1
ly: ty:=wy3-yy m2: loop until ;3 + ya < n
3 yz:=1; mg request (y4)
{8y . release(yy) my: tz:=y3/ys
€ yr=y1—1 ms: Y3 :=tig
lg: got0 & mg : release(yy)
¢7 : halt mq . got0 my
mg : halt
-P - -Py-

This is a distributed computation of the binomial coefficient (:) for integers n and k such that
0 < k < n. Based on the formula

n _n.(n—-1)....-(n—k+1)
ok 1-2...0 Cc
process Py successively multiplies y3 by n, (n — 1), ..., while Py successively divides y3 by 1,2, . . . .

In order for the division at m4 to come out evenly, we divide y3 by yz only when at least y, factors
have been multiplied into y3 by P;. The waiting loop at mgy ensures this.

Without loss of generality we can relabel the instructions in the program, as follows:
Program BC *: A relabelled version of the Binornial Coefficient Program

(yl, Y2, Y3, y4) = (na 0) 1’ 1)

€y . if y; = (n = k) then goto £, mg: ifys = k then goto my
lg: request(ys) mgiy 2 =y2+1
&s: t; =y3 .y mg . loop until yy + y2 <n
ly: y3s:=t mg : request (y4)
€3 . release(ys) my: ty:=y3/ya
iy 1=y1—1 mg Y3 = i3
£g: gotO &y ms :  release(ys)
£y : halt myg: gotO mg
my halt
-P- —Py—
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The liveness property we wish to prove is:

[at{e7a7n3} A (ylay2)y3,y4) = (naoa 1a 1)] 20 at{glaml}'
We derive first several invariants necded for the liveness proof:

It (atlg.5 + atms.7 + ya) = 1
IL: ((n~k) +atlhg) <y1 <n
I3: 0 <y < (k — atmy)
I;: atéy D (y1 = n ~ k).
For our well-founded domain we choose:
W = (N x [0..14] x [0,1], >iez ).
That is, the domain of triples of integers (r, s, t) such that » > 0, 0 < s < 14 and 0 <t < 1. The
ordering defined on them is the lexicographic ordering on triples.

The parameterieed assertion is:

‘P(w; &, mj; v, Y2) = ‘P((",S,t); &, my; oy, yz) :
(r=y1+k—y)a(s=1+ J) A (t = athy).

Thus s is the sum of the indices of the locations of the two processes; also t = 1 if and only if Py
is at ¢y; otherwise ¢ = 0.

The helpfulness function is:

Pift=1

h(r, s, t) = {

Py otherwise.

The sequence of labels was designed in such a way that moving to the next instruction will neces-
sarily lead to a lower value of (r, s, t). This is so because the label sequence is always decreasing
except for the instructions which decrement y; and increment yg. Changes in the y% have been
given the highest priority in the lexicographical ordering. The parameter ¢ has been added in order
to make h dcpendent on w = (r, a, t).

There are only two situations to be checked. First, when P; is at ¢; and P, is at mg wc have
to show that the next step indeed decrements (r, 8, t). This is so because in such a situation
we are assured by I3, I4 that both y3 < Kk and y; = n — K hold, leading to y; + y2 < n, which
means that the next step leads to mg. Another point is to show that being at £ guarantees that
eventually y4 will become positive, by the actions of P alone. This is easily established by the
diagram in Figure 7, supported by invariants Iy to Iy.

Inscrt Figure 7
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CONCLUDING REMARKS

We have presented two basic proof principles, the | - | NV rule for establishing invariance proper-
ties and the WELL rule for establishing liveness properties. While we have not discussed the issucs
of completeness here, both are complete. We refer the reader to [MPS] for proof of completeness
of the | -1 NV rule, and to [LPS] for the completeness of the VELL rule.

We believe that the level of detail (and formality) at which these rules are formalized leads
to an optimal presentation of proofs for human readers. It summarizes the dependence on the
program structure under the general “leads from ¢ to %” notion. Usually, for a particular ¢ and
1, no detailed proof of this statement is needed. In more subtle cases, as presented in some of our
examples, we need to consider some critical transitions in detail. The diagram representation of
the proof offers even a more succinct presentation, where only the key ideas are pointed out.

Closcly related approaches to well-founded methods for liveness which concentrate on nonde-
terministic rather than concurrent programs are described in [AO] and [GFMR].
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