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A B S T R A C T

This paper prcscnts proof principles for establishing invariance and liveness properties of
. concurrent programs. Invariance  propcrtics  arc established by systematically checking that they

are preserved by every atomic instruction in the program. The methods for establishing liveness
properties are based on well-founded assertions and arc)  applicable to both ‘Ljust”  and “fair” corn-
putations. These m&hods do not assume a decrease of the rank at each computation step. It is
sufficient that there exists one process which decreases the rank when activated. Fairness then
ensures that the program will evcntuczlly  attain its goal. In the finite state case such proofs can be
represented by diagrams. Several examples are given.
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INTRODUCTION.

Most of the temporal’ properties of programs can he partitioned in a natural way into two
classes. Properties in each of the classes can be chcaractcrizcd by the form of the temporal formulas
expressing them.

The first set in this partition is the class of invariance properties (safety  in the terminology  of
[OL]). These are the properties that can be expressed by a temporal formula of the form:

Such a formula, stated for a program P, says that every computation of P continuously satisfies q5.
In the case of the second form it states that whenever cp becomes true, $J is immediately realized
and will hold continuously throughout the rest of the computation. Some properties falling into
this class are: partial correctness, clean (error-free) behavior, mutual exclusion, and absence of
deadlocks.

The second set in the partition is the class of liveness properties (eventualities in the termi-
nology of [MPl],  [Pn]). Th ese are properties which are expressible by temporal formulas of the
form:

In both cases these formulas guarantee the occurrence of some event $J; in the first case uncondi-
tionally and in the second case conditional on an earlier occurrence of the event cp. Some properties
falling into this class are: total correctness, termination, .accessibility,  lack of individual starvation,
and responsiveness.

An extension of the class of liveness properties is the class of until properties, whose ternporal
formulation is of the form:

In both cases the formulas again guarantee the occurrence of the event q5, but they also ensure
that from now until that occurrence, x will continuously hold. Some properties falling into the
until class are: strict (FIFO) res onsiveness, and bounded overtaking.p

A fuller discussion of these classes and the general expression of program properties in temporal
logic is provided in [MPl]  .

1 In [MI?41  (an earlier version is presented in [MP2]) a comprehensive proof system for proving
the temporal properties of programs is described. It provides a basis for proving the validity of
an arbitrary ternporal formula over a given program. However,  being so general, it gives very few
guidelines for the construction of proofs of properties that belong to special classes,

In this paper we specialize the general approach presented in [Ml?41  to the particular classes
of invariance and liveness (including until) properties. For each of these classes, we recommend a
single proof principle that may be uniformly applied to establish properties of this class.

The first proof principle we present is for establishing invariances. This principle is not new,
and in one form or another has been suggested by almost every work on the.subject  of concurrent



verification, e.g. ’ [K], [ L ] ,  [ O G ] .  It is a natural extension of the invariant-assertion method for
sequential programs (see [MI).

The second proof principle, which establishes  liveness (and until) properties, is more interest-
ing. It is an extension of t,he classical method of well-founded assertions for proving termination of
sequential programs (see [MI).  S imi ar1 suggestions emphasizing the role of well-founded induction
in proofs of termination are included in many of the works on concurrent verification (e.g., [K] and
PJI) .

The work in [OL] presents an approach which is close to ours. It gives comprehensive coverage
of both invariance and liveness properties with an emphasis on the liveness. There is similarity
between the proof lattice presented in [OL] and our diagram proofs. One direction in which
the current report obviously extends the methods of [OL] is the presentat’ion of the >vell-founded
principles, enabling proofs of liveness properties for programs with an infinite number  of states.

MOTIVATION

A well-founded structure (IV, >) consists of a set W and a partial order > over W such that
any decreasing sequence wa > wr > wp + . . . , where w; E IV,  is necessarily finite. A typical and
frequently used well-founded structure is (N, >), where N is the set of nonnegative integers, and
> is the usual “greater than” ordering: there is no infinitely decreasing sequence of. nonrlegative
integers.

A general method for deriving composite well-founded structures from simpler ones is the
formation of lexicographical orderings. Let (WJ., > )1 and (W2,  +2)  be two well-founded structures.
Then the structure given by (IV1 x W2, +lez),  where the lexicographic ordering >iez over Wr x IV2
is defined by

.
(7m,m2)  ,lez (wn2)

def
f . (ml >-1 n1) or (ml = n1 and m2 >Q n2)

is also well-founded.

.

The basic idea for proving livcness by well-founded assertions is to find an assertion Q(s; 20)
relating the program state s to a well-founded parameter iu E IV. Let us assume that WC wish
to prove 0 $, i.e., that event,ually  + will occur in any computation. In the simple approach we
require a descent of the parameter w on every computation step until $J is attained. This means that
whenever Q(s; w) holds and s’ is a possible successor of s under one computation step, then either
s’ satisfies $J or there exists a w’ such that w > w’ and Q( a’; w’) holds. Thus, any computation that
fails to achieve + generates an infinitely descending sequence of w-elements, which is impossible.

Consider for example the following prograrn, which computes the gcd (greatest common
sor) of two positive integers zr and x2.

Program GCD: sequential gcd computation

(Yl, Y2)  := (Xl, 52);
while y1 # y2 do

if y1 > y2 then ‘~1 := y1 - y2
else y2 := y2 -- yl

divi-
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Suppose we want4  to prove that any computation of this program will eventually reach a
state in which yl = ~2, i.e., 0 (yr = ~2).  WC may choose the well-founded structure  to be the set
IV of nonnegative integers with the usual greater-than > ordering, and the paramctcrixcd  assertion

Q(y1, ~2; 72) : (Y.1 > 0) A (Ya > 0) A (y1 + y2 = n).

Here the stnt,c  is specified by the values of the variables yl,y2, and the well-founded parameter
is n 2 0. We consider the execution of the body of the loop as one computation step. Clearly
whenever + has not been achieved yet and consequently  yr # ~2, the execution of this statement
leads to new values of yr and ~2, say y\ and y& such that yr + y2 > yi + y;. Taking the parameter
value to be 72’ = y\ + yi, the assertion Q( yi , yi; n’) holds for the new values of yr , ~2, but with a
parameter value 72’ = yi -t y& < y1 + y2 = n. This establishes that any computation is bound to
achieve 0 (yr = ~2).

The example demonstrates that the simple approach, requiring descent on each step, works
successfully for sequential programs.

However it may easily fail for concurrent programs. Let us consider the following concurrent
program that performs  t:he  distributed computation of the gcd of two positive integers xl, x2.

Program D G CD: distributed gcd computation

(Yl, Y2) := (Xl, x2)

e, : while y1 f y2 do mo : while y1 # y2 do .

if YI > ~2 then YI := YI - y2 if YI < y2 then y2 := y2 - yl

e, : h a l t ml : halt -

-- Pl - - --- p2 -

In the execution of this program, we assume each of the labelled  instructions is atomic in the
sense that testing and modification of the variables by one process, say Pr at go, are completed
before the otther  process may access them. Note that8  when Pr is activated in a state in which
y1 < ~2, it does not modify any of the variables and returns to e 0, thus replicating exactly the
original state. Consequently, the termination, and hence the correctness of this program, depends
strongly on the basic assumption of fairness that we assume throughout this work. For this
program, the assumption of fairness requires that if a process has not terminated it must eventually
be activated. Only under fairness would each of PI and P2 be activated as often as needed until
termination is achieved.

Trying t,o prove the termination  of this program by the simple approach of well-founded
assertions immediately runs into dificultics when we fail to find an assertion Q(s;  w) with a well-
founded parameter w that will decrease at every step of the computation, No such assertion can
exist for the above program since, as observed, some steps may preserve t.he state and leave the
value of a state-dependent parameter constant. This points out emphatically that a well-founded
argument may succeed for this program only if it takes fairness into account and does not insist
on a decrease of the parameter at every step.

.

The basic observation made in [LPS] and implied in [MP2]  ’is that it is sufficient that, at any
stage of the c*omput,ation,  we carr identify one of the processes such that any computation step of
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tIhis process will guarantee a decrease. A slightly different but csscntially  equivalent formulation
of the same principle was independently’ developed in [GFMR].

The liveness principles that WC present here can bc developed as part of the formal temporal
system of ]MP4]. nut once the principles are justified they cm be used without auy  additional -
temporal reasoning. Since these rules can bc shown to bc complctc,  it follows that they arc the
only rules which are needed in order to prove liveness properties.

PROGRAMS AND COMPUTATIONS

The computation model used in our presentation is based on the shared-variables model of
concurrent programs. For a fuller discussion of the model WC refer the reader  to [MPl].  As *is
implied by [MP4] the same techniques are easily adaptable to deal with other models based on
synchronous as well as asynchronous communication.

Let P be a program consisting of 773  parallel processes:

Each process P; is represented as a transition graph with locations (nodes) labelled  by elements
of &; = {e& . . . , !?i}. The edges in the graph are labelled  by guarded commands of the form
c(v) ---)  [?J := rm> w hose meaning is that if c(g) is true the edge may be traversed while replacing
v bY f(v)*

Let e,&, . . . , .$ E Lj be locations in process I”: ’

ck (g) --+ [g := fk(Y)]

We dcfinc El(g) = cl(g)  V . . . V ck(g) to be the exit condition at node e. Locations in the program
can be classified according to their exit conditions:

.
l A location is regular if Ed k true. This is the case of locations such that the set of conditions

labeling their outgoing transitions is exhaustive in the sense that for every possible value
of v at least one transition is enabled.

l A location is terminul if Et 2 f&e. This is the case of locations labeling ha lt instructions
which have no outgoing transitions. In our model there is usually only one such location
per process. This location for process I’; will be lnbclled  ef.
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l Any location !!‘such that the exit condition Et(k) is nontrivial, i.e., it is neither identically
true nor false, is called a semaphore location. Examples of such locations arc those
corresponding to the instruction request (y,) whose transition diagram is:

(Yf > 0) + [Yr := yf - I]

Note that El(g) = (yr > 0). T he re,Q uest instruction is used in order to reserve a resource,
where yT counts the number of units of this resource currently available. In this paper,
the only semaphore locations we consider are the locations having a request(y) transition
departing from them.

The symmetric counterpart to the request instruction is the reZease(y,)  instruction. It is used
to release one unit of a reserved resource. Its transition diagram is:

true --+ [yf := yf + 11

The location of the release instruction is regular.

A stute of tlie program P is a tuple of the form s = (e;  ;?) with 2 E ll x . . . x Icm and
v E D”, where D is the domain over which the prograrn variables ~1, . . . , yn range. The vector z
is the list of current locations which arc next to be executed in each of the processes. The vector
v is the list of current values assumed by the program variables g at state s. .

Let s = (P, . . . , ei, . . . , em;  q) be a state. We say that process Pi is enabled on s if Eei  (q) is
true. This implies that if we let P; run at this point, there is at least one condition cj among the
edges departing from e’ that is true. Otherwise, we say that P; is disabled on s. An example of a
disabled process Pi is the case that @ labels an instruction request(y) and y = 0; another example
is that @ labels a halt statement. A state is defined to be terminal if no Pi is enabled on it.

. Given a program P WC define the notion of a computation step of P.

Let s = (k!‘, . . . ,em; 7) and Z = (F, . . . , Frn; 5) be two states of P. Let r be a transition in
Pi of the form:

4) ---) (5 := f (91
@J- T y(3-J

such that c(v) = true, q = f(q), and for every j # i, 5 = @. Then we say that Z is a successor of
s under the transition r (a T-successor for short), and write:

If Z is a T-successor of s under some transition r E P;, then WC may also describe Z as being
obtainable from s by a Pi-step  (a single computation step of Pi), and write:

An initialized admissible computation of a program P for an input z = 7 is a labeled sequence _
of states of P

Pi, PiI . Pi,
0: so --t+ Sl -----b~---$s~‘...

I 6



satisfying the following conditions:

A. Initialization.

The first state SO has the form:

SO = (Zo; gm,

where & = (eh,  . . . , er) is the vector of initial locations in all the processes. The values
g(t) are the initial values assigned to the g variables for the input t.

B. State to State Sequencing.

pi
Every step in the computation s --+ g, is justified by ? being obtainable from s by a
single Pi-step.

C. Maximalit y .

The sequence is maximal, i.e., it is either infinite or ends in a state sk which is terminal.

DF. Fairness.

Every Pi which is enabled in infinitely many states of CT must be activated infinitely mmy
times in O, i.e., there must be an infinite number of Pi-steps in 0.

We define an admissible computation of P for input t to be either an initialized admissible
computation or a suffix of an initialized admissible computation. The class of all admissible com-
putations of program P is the set of all sequences which are admissible computations for some
input %. We denote the class of <all  admissible computations of the program P by A(P). A state s
is defined to be accessible by the program P if it appears in an admissible computation.

By DF, a computation o is fair if there is no process Pi such that Pi is enabled an infinite
number of times in O, yet P; is activated only finitely many times. Thus, fairness requires an
imaginary scheduler to monitor the number of times a process becomes enabled and to ensure that
repeatedly enabled processes are not neglected forever. Any finite computation is necessarily fair.

To emphasize the fact that in our standard definition the computations are required to be fair
we sometimes refer to this class as the class of fair computations of P, and denote it by AF(P).

In the absence of semaphore instructions, each process Pi is initially enabled and can become
disabled only by terminating. Hence we cil~l define the weaker notion of just computation, which
replaces the requirement of being enabled an infinite number of times by the requirement of being
continuously enabled.
L

DJ. Justice.

Every Pi which is continuously enabled beyond a certain state s in O, must be activated
infinitely many times in 0.

We refer to the class of all computations that satisfy conditions A, B, C and DJ, as the class
of all just computations, and denote it by A J(P).

For an arbitrary program P WC have in gene&:

h(P) c AJ(P),



i.e., every fair computation is also just. For programs that contain semaphore  instructions, there
may exist just computations which arc unfair.

To see that the first claim holds, let B be an infinite fair computation. Let P; be any process
that is continuously enabled beyond a’certain  state  in 0. Then, P; is certainly- enabled  an infinite
number of times, and by fairness must be activated an infinite number of times. Hence 0 is just.

To show that the inclusion between the sets AF (.F’) and A J(P) may be strict, consider the
following program which is the simplest program modelling mutual exclusion:

. -Y 1* -

e, : request(y) mo : request(y)

e, : reZease(  y) ml : reZease(  y)

e2 : got0 e, m2 : got0 m0

Note that here and in the following examples we prefer to present the programs as lists of labelled
instructions. The corresponding representation in transition diagram form is obvious.

The following computation:

Pl Pl Pl
C7: (~o,mO;1)~(~~,mO;O)---P(~2~mO~1)’

Pl PI Pl
(to, mo; 1) ----+  (&, mc; 0) - (altm0.i  1 ) - l * *

is just. The process PI is activated infinitely  many times. On the other hand, Pg is never continu-
. ously enabled since it is disabled in the infinitely recurring state ([I, m0; 0). Consequently justice

does not require it to be activated at all. Obviously o is unfair since P2 is also enabled infinitely
inany times, on all recurrences of (to, mc; 1) and (es, mc; 1)) but is never activated.

However, when a program P contains no semaphore instructions, we may use the above
observation that a process is continuously enabled if and only if it is enabled infinitely many times
to conclude:

Thus, in order to study programs without semaphores, we need only consider properties that hold
for the class of all just computations.

An admissible computation is said to be convergent if it is finite:

p;, P;, Pi,-,
U: q-)--bf--+ . . . -sp

If the final state ,sf of a convergent computation is of the form sf = (et, . . . ,er; 5j), where each
c labels a halt instruction, we say that the computution has terminated. Otherwise, we say that

the computation is blocked (deadlocked).



.

.

.

In order to ‘describe properties of states we introduce a vector of locution vuriubles ?i: =
(Tl’ *‘a , ‘rr,). Each 7ri ranges over f;, and assumes the value P in a state

S = V
1 45 em; ii).7 “” ’ “”

Thus we may describe a state s = (2; q) by saying that in this state F = ? and g = q.

A state formula Q = Q(F;?~) is any first-order formula. It is built from terms and predicates
over the location and program variables (F; v) and may also refer to additional variables. We will
also refer to state formulas as assertions.

A state formula may refer also to the input variables ZF.  Our computational model explicitly
assumes that no statement may modify the values of the input variables. consequently in any
states belonging to a $computation,  the values of 3 in s are necessarily f.

A state s that satisfies a state formula cp is referred to as a p-state.

We frequently abbreviate the statement K; = f? to ate or simply f!. Since the &‘s are pairwise
disjoint, there is no difficulty in identifying the particular TTT; which assurnes the value e. A similar
notation at? is used to make a statement  about all the locations in the state, namely F = z.

Let the following be a transition r in process Pi:

Let cp(~; g) and $(Z;g)  be two state formulas. Wesay: *

l The transition r leads from cp to $, if every r-successor of an accessible p-state  is a
$-state. Thus, if 5 = (4?‘,  . . . ,E’ . . . ,L”; f) is a T-successor of the accessible state
(a 1 *”ei em;7 “‘7 7)’ which of course implies that c(q) = tr ue and 5 = f(q), then the
follbwing  implication must be true:

p(e’, . . . , ei, . . . ,p; 7) 3 +(el, . . . ,i?, . . . ‘em; 6).

One way of establishing that r leads from cp to II) is to show the general validity of the
following implication:

[p(el, . . . , ei, . . . , em; g) A c(g)] 3 +(el, . . . , 3, . . . , em; f(g)

for every choice of (el, . . . , ei-l,ei+l, . . . , em) E Ll x . . . x Lc;-1 x &+l x . . . “x LCm.
L This is a stronger statement, since it does not utilize the fact that s is accessible.

This notion is extended to processes and then to the complete  program as follows:

l A process P; lends from cp to $, if every transition r in Pi leads from ‘p to 4.

l A program P leads from cp to $, if every process Pi leads from cp to $.

In the following, when we present a formal or an informal argument that establishes the fact .
that a process Pi leads from cp to $, we say that this fact is provable. and denote it by writing:.

t- Pi leads from ‘p to 9.
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An analogous notation is used for the full program P leading from cp to +.

THE LANGUAGE OF TEMPORAL LOGIC

Ternporal logic is a language that enables a natural expression of propertics of time’sequences.
Since our main interest is in stating and proving properties of computations of some program, we
will consider temporal formulas to be interpreted over the sequences of states arising in computa-
tions.

With the computation

if?::
Pi, PiI

so-Sl’...

WC associate the sequence of states

CT: SO’ 51’ . . .

Note that infinite computations are associated with infinite state sequences and finite computations
are associated with finite sequences. This is an improvement on the version presented in [MPl]-
[MP5]  that required all considered state sequences to be infinite. In order to achieve this, finite
computations were artificially extended by an infinite duplication of the final state.

The basic formulas of the language are the state formulas (assertions). As already mentioned,
these are formulas written in some first-order language that describe a property of a program state.
For example, for a program with variables yr, y2 and location e, the formula ate I (~1 = ~2) is a
state formula (assertion) which is true for all states such that either the program is not currently
at the location 4?, or such that currently yr = ~2.

The basic state formulas may now be extended by combining the boolean operators
( 1’ A, V, >, E) and quantifiers (V, 3) of first-order logic with four temporal operators, called
respectively:

. 0 - always (henceforth)

0 - sometimes (eventually)

Q - nexttime

U - until

The interpretation of general temporal formulas over (computation) scqucnccs is defined as
follows:

Let ~7 : so,sr, . . . be a nonempty  sequence of states.

We define the length of CT, denoted by e(a), as follows. For a finite sequence 0 : so, . . . ,8k we
let 4?(a)  = k. For an infinite sequence we define e(g) = w, the first infinite ordinal.

For a state formula cp, -

I .t



i.e., CJ satisfies cp, if Cand  only if SO (the first state of 0) satisfies ‘p.

The boolean connectives and first-order logic quantifiers  are interpreted in the natural way,
for example

u I= (cpr  V cps) if and only if cr I= cp1 or Q I= ~2.

To interpret the temporal operators we introduce the notation ~(~1,  0 5 k 5 !(a),  standing
for the sequence obtained from CJ by removing. the first k elements,  i.e.

u(k) = Sk, sk+l, . . . .

Then:

u k 0 cp if and only if Vk(b 5 k 5 e(a)), ~(~1 I= 9

aI= 0cp i f a n d o n l y i f  3k(O< k<l!(a)),  a(kh= cp

u I= 0 p if and only if e(a)  > 0 and a(‘) I= cp

u k y3U$  if and only if 3k(Q 5 k 5 l(a)) such that o(k) I= II) and Vi, 0 5 i < k, CT(~) I= cp.

For the simple cases that cp and $ are state formulas the general definitions above can be
given the following intuitive interpretation:

u satisfies c] cp if and only if all states in u satisfy (o

CT satisfies 0 p if and only if some state in u satisfies ‘p

cr satisfies () cp if and only if the second state in u satisfies 60

u satisfies (pU$ if and only if some state s’ in u satisfies $ and
all the states until s’ (excluding s’) satisfy ~0.

Note that in the definition above, u can satisfy 0 cp only if a second state sr exists in ct.

Some more complicated combinations are very useful. For example,

l The formula

q  OOP
1

means that cp must be true on infinitely many states of u. Note that when all sequences
are assumed to be infinite, 0 0 cp is the natural expression for the fact that u contains
infinitely many cp-states.  However, once we allow finite sequences, a finite sequence u may
satisfy q  0 ‘p by having its last state satisfying ‘p. Yet, of course, such a finite sequence
cannot contain infinitely many p-states. The more complicated expression 0 0 0 (o
forces any sequence u, satisfying it, to bc infinite and contain infinitely many p-states.

o The general nested until formula

Plu (P2u - . . (Pkh)),

11



means that b starts with a sequence of states satisfying ~1, followed by a sequence of
states satisfying pa, . . . followed by a scqucncc of states satisfying pk, followed by a state
satisfying Q. Any of these sequences  can be empty.

A temporal, formula cp is defined to be valid for the program P, P-valid for short, if every
admissible computation u E 3(P) satisfies cp. We denote this fact by

3(P) I= P*
When the identity of the program P is clearly determined by the context, we omit the prefix 3(P)
and write simply I= ‘p.

In the following we present some proof principles or rules that establish P-validity for some
formulas. Whenever we want to state that the P-validity of a formula cp has been established by
a rule, we write

3(P) I- 9,
or simply I- cp when the identity of P is determined by the context.

THE INVARIANCE PRINCIPLE

A very simple and intuitive principle suffices in order to establish invariance properties
I

Invariance Rule - INV

Let y;l(r;g)  b e a state formula
I- P leads from cp to ~0

. The form of this rule, which will be used throughout the paper, st,ates that if the premise, “P
leads from cp to cp,” has been est,ablishcd,  then the consequence, “p > 0 cp,” logically follows as a
P-valid formula. The way to establish the premise is to check all the atomic instructions in each
of the processes and verify that each of them always leads from ‘p to cp.

It is very easy to convince ourselves of the validity of this rule. Consider an admissible
‘computation of P whose initial state SO satisfies cp. Since all subsequent states are derived from
previous states by atomic actions of the program P, all of which have been shown to preserve ‘p,
cp must be an invariant of the computation.

With the addition of an extra premise, guaranteeing that all initial states satisfy cp, we can
conclude the unconditional invariance of cp over all admissible computations.

Initialized Invariance Rule - I-INV

Let cp(?i;  y) be a state formula

t- P leads from cp to cp

)-CM



The first premise in the rule assures that any legal initial state, defined by having all processes
reset to their initial locations Za = (!A, . . . , Q), and the program variables jj initialized to g(Z),
must satisfy ‘p. The second premise ensures, as bcforc, that once cp is established, it is preserved
forever after. Rcnce any accessible state must satisfy cp.

As an application of the I-INV rule let us prove a property of semaphore variables.

Example (semaphore variables):

A semaphore varicrble  is a variable y such that the initial value it receives is a nonnegative
integer, and the only instructions that may alter its value are request(y) and release(y) instructions.

Let y be some semaphore variable. Let

By definition, any proper initialization g := g(Z)  must assign to y a nonnegative value, establishing
‘p initially. Consider next the instructions that can modify y. Since y is a semaphore variable, the
only such instructions are request(y) and release(y).

A request instruction is equivalent to (y > 0) -+ [y := y - 11. Therefore the condition that it
leads from cp to ~0 is

[(Y L 0) A (Y > o>] 2 (Y - 1) 2 0,
which is always true.

A release instruction is equivalent to y := y + 1. It certainly leads from p to ‘p since

(Y 1 0) 1 (Y + 1 2 0).

Obviously, all the other transitions do not modify y and hence lead from y 1 0 to y 2 0.
Thus all the premises to the I-INV rule are established, and it follows that in any accessible state

Y 2 0. A

Earlier we indicated that one way to establish “r leads from p to $” was by proving a
verification condition appropriate for r. However the verification condition did not utilize the fact
that it is supposed to hold only for accessible states. The fact of accessibility may be introduced
by the following rule that uses invariance properties rather than infers them:

Accessibility Rule - ACC

Let ‘p, x and II) be state formulas

l- r leads from (‘p A x) to (‘p > $)

k 7 leads from x to +

13



To justify the rule, consider  an accessible x-state ;s. Since it is accessible it must satisfy the
invariant cp and is therefore also a (‘p A x)-state. Let s” be any r-successor of s. By the xxond
premise  it is a (‘p > $)-state, and since obviously it is also accessible, it must also satisfy the
invariant cp. Consequently it is also a $-state.

The validity of an invariance property dots not depend on whether we consider fair or just
computations. Livcness properties, on the other hand, may behave diffchrcutly  on just or fair
computations. Consequently we need  different sets of rules for just and fair liveness.

RULES FOR JUST COMPUTATIONS

In this section we present a proof principle enabling us to prove liveness properties that hold fbr
of programsthe class of just computations A,J( P). This will suffice for proving liveness properties

without semaphore instructions.

The basic liveness proof rule for just computations is given by:

Just Liveness Rule - J-LIVE

Let cp(F;  g) and $(;rT;  g) be two state formulas and Pk be one of the
processes

A. I- P leads from ‘p to cp V $

B. !- Pk leads from $D to $

C .  k p 3 [$ V  &zubled(Pk)]

)- P 1 (dw

Note that the conclusion is somewhat stronger than simple livcness and guarantees not only the
eventual occurrence of $J but that cp will continuously hold until then. It implies cp > 0 4.

To establish the validity of the rule, suppose that conditions A to C hold. Let u be a just
computation such that initially ‘p holds but, contrary to our conclusion, $ is never realized. By
condition A, the only way out of cp is to achie&  $. Hence cp must be continuously true all along
u. By condition C, the “helpful” process Pk is continuously enabled throughout u. Consequently
u cannot contain a terminal state and must therefore  be infinite. By justice, eventually P,+ will be
actjvated  from a p-state.  By condition B, this would lead to $, contradicting our assumption that
1c) is never realized.

In applying this basic principle to prove a liveness property of a program we often observe the
fcllowing pat tern: There is a sequence of state formulas (assertions) cyo,  ~1, . . . ; pr such that
the initial state satisfies pr and the desired goal is $J = cpo. WC then repeatedly apply the J-LIVE
principle to show that being at cpi,  0 < i 5 r, we eventually get to (pi-l,  i.e. cp; > 0 p;-l.  More
generally, we may show that being at cp;, i > 0, we eventually get to ‘pi for some j < i. This of
course establishes that being at cpr, or as a matter of fact at any cp;, 0 5 i 5 r, we are guaranteed
t,o eventually achicvc  cpo. If WC summarize the premises for each application of the J-LIVE rule, we
obtain the following useful rule:
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Just Chiia Rule -- J-CHAIN

I.&  c p O,Pl, l  * l
, pr be a sequcncc  of assertions satisfying the following

requirements:
A. l?ori=l, . . ..r

t- P leads from p; t0 (V Ipi)
j<i

B. For i = 1, . . . , r there exists a k;, such that:

I- Pki leads from pi to (V pi)
j<i

C.  Fori=l,  .  .  ..randk.asabove:
I- (Qi > [(V $Oj) V EnChlfXi(i~;)]

j<i

DIAGRAM REPRESENTATION OF THE CHAIN RULE

In presenting a proof according to the CHAIN rule it is usually sufficient to identify cpo, ~1,
. . . , pr and for each i = 1, . . . , r to point out the “helpful” process Pki. It can be left to the

reader to verify that ‘premises A to C are satisfied for each i.

. We prefer to present such proofs in the form of a diagram. Consider a diagram consisting of
nodes that correspond to the assertions ‘po, (~1, . . . ) bore

.For each two accessible states s; (satisfying cp;) and sj (satisfying pj) and a’ process Pe such
pt

that S; e sj, we draw an edge + from the node cpi to the node pj and label it by Pl, the
process responsible for the transition.

All edges corresponding to the helpful process Pki, are drawn as double arrows +

In order for a diagram to represent a valid proof by the J-CHAIN rule the following conditions
must hold:

l Every successor of an accessible pi-state,  for i > 0, satisfies some (Pi, j 1 0.

l For every edge connecting cpi to pj we must have i 2 j.
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l For every edge connecting cp; to yj and labellcd  ‘by pk, we must have i > j.

l For every accessible, state s, if e’ > 0 is the lowest index such that s satisfies cpi,
then Pki must be enabled on 8.

WC illust,rate  diagram proofs by two examples. The first demonstrates  a complex invariance
proof accompanied by a relatively simple liveness proof. The other example, demonstrates a more
involved livencss proof with a relatively easy invariance proof.

EXAMPLE A

The following program provides a distributed solution for achieving mutual exclusion without
scmaphorcs.

Program PF: The Peterson-Fischer Algorithm

(Yl, t1>  Y2, t2) :== (I, .L, 1, I)

e, : noncritical section 1 m0 : noncritical section 2

e,: t1 := if y2 = F then F elie T ml : t2 := if yl = T then F else T

e, : y1 := t1 ma : y2 := t2

e3 : if y2 # I then tl := y2 ma : if yl # I then t2 := 1~1

e4 : y1 := t1 m4 : y2 := t2

e, : loop while y1 = y2 m5 : loop while 7~2 = yl .

El, 

e ,  : g0t0 e, m7 : goto mg

-PI-- -Ps-

The boxed segments are the critical sections to which we wish to provide exclusive access. It
is assumed that both critical and noncritical sections do not modify the variables ~1, tl , y2 and t2.
Also the critical section must terminate. The program is distributed in the sense that each process
Pi has a private variable yi which is readable by the other process but can be written only by Pi.

#The basic idea of the protection mechanism  of this program is that when competing  for the
access  rights to the critical sections, Pi attempts  to make y1 = y2 in stntcmcnts  e, to 4?4,  while
P2 attempts to make y2 = 7yi in statements ml to m4. The synchronization variables yi and
y2 range over the set {I, F; T}, whcrc I signifies no interest in entering the critical section. The
partial operator -1 is defined by

1T=F, 7F=T, -4 is undefined.

(Hence in writing 32 = yl we also imply that yi # I and y2 # 1.) Protection is essotltially
assured by the fact that when both processes conlpete  on the entry to the. critical section, both
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311 # 1. and y2 # ‘.L. Under these assumptions, the entry conditions to the critical sections,
aud 17~2  # y1 rcspcctively,  cannot both be true at the same time.

Yl # y2

When  PI gets to .& it waits until yr f y2 and then enters the critical section. This condition
is satisfied either if y2 = I (since y1 # 1. at & ), implying that P2 is not currently interested in
entering the critical section, or if y1 = 1~2 (and yr # I) which implies that P2 got to m5 after PI
got to &. This is because in er to &, PI attempts to set yr = ~2; if now PI finds yr = 1~2 at &,, it
knows that I3 changed the value of y2 after PI last read this value. This argument is only intuitive
since P2 may have changed y2 after PI last read it. and yet arrive at m5 before PI arrived at &.
This is why we need a formal proof of bot’h protection and liveness.

Symmetrically, when P2 arrives at 7735  it waits until -3~2 # yr. This can occur only’ if y1 = -I_,
implying that PI is not currently interested in entering the critical section, or if y2 = yr (and
y1 f I) which now implies that PI modified the value of y1 after 1)~ last read it. This is because
in ml to m4, P2 attempts to make 1~2 = ~1.

An interesting fact about the algorithm is that two groups of instructions, one consisting of
{!I,  C,} and the other consisting of {es, e,), seem to be redundantly trying to achieve the same
go,al.  Both groups try to make yr = y2 if y2 # 1, and y1 # y2 otherwise. Why should we have
this redundancy? ‘The answer is that if we could perform the assignment

Yl := if y2 = F then F else T

as one atomic instruction, then only one such instruction would have been necessary. Since we use
an interleaving model for concurrency we have had to break this monolithic instruction into two
atomic instructions such as given in 4!, and 4!2. This faithfully models the possibility that y2 could
change its value before yl is assigned the intended value.

Such breaking is required whenever an instruction contains more than a single critical reference
to a shared variable, if t’he interleaving model is to represent all the possible behaviors of re‘al
concurrent, executions of such instructions. Consequently we break the instruction int,o two simpler
instructions, the first fetching the value of y2 and computing in tl the intended value, and the second
moves tl into yl.

However, now that the other process may change y2 between these two instructions. the algo-
rithm with a single pair of such instructions is uo longer correct. That is, there exists a computation
‘that violates mutual exclusion. The critical interference point. is between f!r and &. By dltplicating
the sequence of el, 4!2 at .f!s,  & and similarly in P2, we make it impossible for the other process to
repeat its damaging interaction both when PI is at & and when it is at &. By essentially dupli-
cating t)he broken  instruction twice, computations that violate mutual exclusion will be shown to
be impossible..

13~  simple application of the initial&d invariance rule I-INV, it is possible to derive the
following invariants:

I1 : (tl # I) = at&..6

I2 : (yl f 1) = ate,..6

I3 : (t2 # I) z atm2..6

14 : (~2 # -J-) = atm3..6,
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where at!!,.., stands for czt k$ V at& V . . . V at&, etc. Note that stating that 11 is an invari~ant  is
the same as stating that t- 0 [(tr # I) G ateg..a].

In order to derive safety we prove the following sequence of invariants:

I5 : (y1  = t1) v at e2 v ate,

16 : (~2 =  t2) V atm2 V itrnd

17 : atJ?4,~ 3 [(tz = 1) v (t1 = t2) v (h=y1)]

Is : atm4,5 3 [(tl =  I )  V  (t2 =  +I) V  (t2 =  yz)]

Ig : [ ate4..6 A atm6] 1 (~2 = tl)

I10 : pme..s  A d3] 1 (Yl = 7t2).

a Invariants Is and Ia

The invariants Is and Ie are easy to verify since the only transitions that may cause y1 and
tl to differ are .4Yi  -+ & and 4!s --+ f?4  and the only transitions that may cause y2 and t2 to differ are
ml -+ m2 and mg -+ m4.

l Invariants 17 and 18

In order to verify 1~ and Is we observe that they hold initially since both at&,5 and atm4,5
are initially false. Next, we assume that they hold at a certain instant and show that both 17 and
1s are preserved by each individual transition.

We show first that 17 is preserved. Let us denote by t\, y\, tk, yi the values of the respective
variables after a transition. We only consider transitions that affect variables on which 17 depends.

. Consider first such transitions that can be made by PI.

e3 --+ e4: If y2 = -L then tl is not changed and hence hy Is, t\ = tl = yr. Therefore let us
consider the case that y2 # I and hence by I3 and 14, t2 # 1. We also have t\ I= ~2.
The following two cases are considered:

C a s e :  y2 =  t2: T h e n  ti =  y2 = t2 satisfying the second disjunct of 17.

Case y2 = lt2: In view of Is, the assumption y2 # -L and 14, P2 can only be
at m4. From Is, the fact that PI is at !3 (hence t 1 # I), and the assumption
y2 = lt2, it follows that t2 = +I. WC thus obtain t\ f y2 = lt2 = -(Al)  = tl.
Since tl = yi while PI is at !3, we obtain t\ = y1 satisfying the third disjunct
of 17.

e4 + e5 : yi = t 1 satisfying the third disjunct of 17.

Next, we consider transitions of P2 made while  PI is at f4,s that affect variables appearing in
17.

ml --+ m2: th = ly1 since. yr # 1. If yr = tl then 17 continues to hold. We may therefore
assume that yi = ltl which leads to tb = -(it 1) = tl , satisfying the second disjunct of
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mg --+ m4: Similarly to the case above, since yl # ‘I while PI is at &5, this transition
assigns tb = 1~~1.  By the same argukent  as above 17 must still hold after this transition.

.
m6 + m7: Sets t2 to I satisfying the first disjunct of 17.

In a similar way we establish that Ia
that satisfies 17 A Ifj. Consequently, both

preserved under any transition initiated
and 18 are invariants.

from a state

l Invariants IQ and Ilo

Next, let us consider 19 (and symmetrically 110).

The only transition of PI that could affect I9 is 4 + 4 while P2 is at me. But then t\ = ~2.

The only transition of P2 that could affect 19 is m5 -+ rnc while PI is at &.s. The fact that
rn5 --+ m6 is possible implies that ~(1~2  = yl), i.e. y1 = ~2. By IT either tl =I y1 or tl = t2. In
the first case we have tl = y1 = y2 and in the second case tl = t2 = y2 is ensured directly, Note
that when P2 is at mg, t2 = ~2. Thus in any case tl = ~2.

. Sujety

The safety of this algorithm is expressed by the statement of mutual exclusion. This means
that it is never the case that while PI is at &, P2 is at ma, i.e.,

--(at& A atme).

To derive safety assume a state in which both at & and at me are true. By I9 and Ilo WC have *
that y2 = tl and y1 = it2 at the same time. By 15 and Ia we also have y1 = tl and y2 -= t2. This
leads to both y1 = y2 and y1 = 1~2 which is contradictory. Hence, mutual exclusion is guara,nteed.

0 Liveness

The liveness property we wish to show for this program is
.

de1 3 Q at&.

In Figure 1 we present a diagram proof for this property. In constructing the diagram we have
freely used some of the invariants derived above. Observe for example the node corresponding to
the assertion:

P6 : at& A atmg.

Here the helpful process (indicated by a double arrow +) is PI since we know (by 14)  that while
P2 is at mg, y2 = _L and while I’1 is at. !5 (by 12) that y1 # I, hence whenever PI is activated at e5
it proceeds immediately to 4!0, i.e., arrives at a state satisfying cpo. 111 this diagram WC abbr’eviatc
ate, A utmo t0 t$,mO.

Insert Figure 1. Diagram. Proof of the Program PF

l Precedence

To illustrate the application of the CHAIN rule to the proof of vntil  properties, consider the
following prcccdcnce property:

[ at e5 A - atm4..6 ] > [(- h(j) u (de,)].
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It, states that if & arrives at & belore P2 arrives at any location in (m4, mg, mo} then PI will
bcl the first process to enter its critical section. To prove this fact we only have to consider the
subdiagram of Figure 1 consisting of nodes ‘po to ‘p7.

It is a general property of proof diagrams that if a diagram establishes conditions A to C of
the J-CHAIN rule for assertions cpo, . . . , tpr then it also establishes these conditions for each prefix
chain cpo, . . . , cpk,  k 5 r. Thus, conditions A to C are fulfilled for the particular prefix chain
PO, - l * 9 P7*

We may therefore conclude:

Ph4 ’ ((\jPi, lb,>.
i=o i=l

l3y examination of the relevant assertions it is easy to derive the following two implications:

7 7

[ate5 A - atmd..G] 3 (v >Pi and (v >P i > - atm&

i=O i = l

The three implicabions together yield the desired precedence property.

EXAMPLE B

The following program provides another share’d-variable solution for achieving mutual exclu-
sion without semaphores. Historically it’ was one of the earliest such solutions. .

Program DK: The Dekkcr Algorithm

(t, Yl, Y2) := (1, F, F)

e, : noncritical section 1

e, : y1 := T

e2 : ifY2 = F then goto &

e3 : i/t = 1 then goto t?2 . .

e4: yl:=F

e6 : goto e,

es : got0 e,

-PI--

m0 : noncritical section 2

ml : y2 := T

m2 :’ ifyl = F then goto m7

mg : ij t = 2 then goto m2

m4: y2:=F

m5 : loop until t = 2

m6 : got0 ml

m7 :

I

critical section 2

t 1.-. -

77%8  : y2 := F

mg : got0 mo

-P2-
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The variable y~1 in process PI (and y2 in P2 rcspcctivcly) is set to T at !I to signal the intention
of PI to enter its critical section at &. Next, PI tests at & whether P2 has any interest in entering
its own critical section. This is tested by checking if y2 = F. If 7~2 = F, PI proceeds immediately to
its critical section. If y2 = T we have a competition  between the two processes on access rights to
the critical sections. This competition is resolved by using the variable t (turn) that has the value
1 if 1’1 has the higher priority and the value 2 if P2 has the higher priority. If PI finds that t = 1
it’ knows it can insist and so it leaves yi on and loops between e2 and !a waiting for y2 ‘to drop to
F. If it finds that t = 2 it realizes it should yield to P2 and consequently it turns yl off and enters
a waiting loop at es, waiting for t to change to 1. As soon as P2 exits its criticcal  section it will
reset t to 1, so P1 will not be waiting forever. Once t has been detected to bc 1, PI sets y1 to T
and returns to the active competition at &.

In order to prove safety, i.e. exclusion for the DK program it is sufficient to establish
the following invariants:

11 : (yl = T) = (at&4 v d&,8)

I2 : (y2 =  T )  G (atm2..4  v atm7,8).

They can be justified by considering the local transitions in PI and P2 independently.

l Safety

Safety now follows from I1 and I2 as an invariant:

I3 : - de,,8 v - &m&8.

The only two transitions that could falsify Ia are:

t$ -+ e, while  P2 is  at  ?-Y&7,8.  But then by 12, +i~2  = T and the transition & --+ e7 is
impossible.

m2 -+ m7 while Pi is at &$. Similarly impossible by Il.

e Liveness

I The liveness property of program DK is given by:

ateI 3 0 at&.

In Figure 2 we present a diagram proof of this property. In constructing the diagram we are aided
by the previously derived invariants II, I2,Is and the following two additional invariants:

4
-

I4 : &m&j > ( t  = 1)

I5 : [ de3..s A (t = 2)] 3 atml..7.

In particular we use I5 when constructing the Pi-successors  to node ~23. In all of these successors
PI is at e4 and t = 2 holds, hence by Is, P2 is restricted to the range of locations ml..7 which is
represented by the nodes $316,  . . . , ~32.

To justify the above invariants, consider first I4. There  are two potcntically falsifying transitions
that have to be checked:
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m7 -+ mg: sets t to 1.

t7 --+ i& while Ps is at mg,: This transition is impossible since by 13 while 1’2 is at ms, PI
cannot be at &.

Consider next Is. Here the potentially  falsifying transitions are:

43~  ---+  .t?z  while t = 2: This transition is possible only when y2 = T which, due to I2, implies
that P2 is either in rn2..4 or in m7,s. In view of Id, P2 cannot be at ?ns while t = 2. Hence
P2 is restricted to rn2..4 or ‘m7, which is a subset of rn1..7.

rnT--+rna: . Sets t to 1 and hence makes the antecedent  of 15 false.

Insert Figure 2. Diagram Proof of the Program .DK

0 Precedence

Again we may use the full (until) version of the rule in order to prove some precedence
properties of this program. First we can show:

[at&,3 A (t = 1) A - atml] 3 [(- atm7) U (utt7)].

This is established by considering the subdiagram of Figure 2 formed out of nodes cpa to ~310.  It
ensures that once PI is in es,3 with t = 1, it will precede P2 in getting to the critical section.

A full analysis of the number of times that P2 may enter the critical section before PI does, .
from the time that PI is at 4!,, leads to the following conclusions:

Once PI is at ei it will eventually get to &. If currently t = 1, then, by the until property
derived above, the next process to .enter  the critical section is PI. If t = 2, then in the worst
case PI proceeds from, 4?2 to &j. Meanwhile, P2. can enter its critical section at most once before
resetting t to 1. Once t = 1, PI returns to .&J and has again, by the established until property, the

. priority on the entry rights to the critical section. Additional overtaking, i.e., additional entries
of P2 to its critical section, may occur while PI is moving from er to & or through the sequence
25 -4?,-4?~  -4,.

It is interesting to compare our diagram proofs with the proof lattices suggested in [OL]
as a compact representation of proofs of liveness properties. One difference between the two
representations is that an edge in our diagram corresponds to a transition that occurs in one
atomic step. In the proof lattice, the fact that the node cp; is connected by edges to (oj,, . . . , pj,
states that

Pi 1 O(Pj,V l -• vcPj,)

has been established. Viewed in our framework, WC may consider the proof lattice to be a proof
diagram for a CHAIN rule in which premises  A, B and C have been replaced by the single premise:

D.  Fori=l,  .  .  ..r. I- Pi 1 O(VPj)-
j<i

The establishment of condition D for each i > 0 is then based on the J-LIVE rule. Consequently,
our rcprcscntation describes the proof to a greater detail, specifyin,,q for example, the identity of
the helpful process for each assertion.
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PARAMETERjIZED  ASSERTIONS

The J-CHAIN rule assumes a finite number of links in the chain. It is quite adequate for
finite state programs, i.e., programs where the variables range over finite domains. However,
once we consider programs over the integers it is no longer sufficient to consider only finitely many
assertions. In fact, sets of assertions of high cardinality may be ncedcd.  The obvious generalization
of a finite set of assertions {cpi 1 i = 0, . . . , r} is to consider a single assertion (p(o),  parameterized
by a parameter cy taken from a well-founded structure (A, s). Obviously, the most important
property of our chain of assertions is that program transitions eventually lead from cpi to ‘pi with
j < i. This property can also be stated for an arbitrary well-founded ordering. Thus a natural
generalization of the chain reasoning rule is the following:

.

Just Well-Founded Liveness  Rule - J-WELL

Let (A, >) be a well-founded structure.
- -Let (p(o) = ‘~(cY;  x; y), cy E A, be a parameterized state formula.

process &toL)  for states satisfying cp(cr).

A. I- P leads from (p(o) to II, V (3p 5 a. cp(p))

B. I- Q&J leads from (p(o) to $ V (3p 4 a. p(p))

c. )- $44 1 [+ v (w 4 ar’. P ( P ) )  v Ena~qeL(a))]

I- pa. p(a)) 3 (3Q. cp(4)W

. We refer to h as the helpfulness function.

I Let h : A -+ [l..m]  be a function identifying for each cy E A the helpful

A justification, based on induction over arbitrary well-founded ordered sets of this rule can be
constructed.

Example (distributed gcd):

As an illustration of the J-WELL principle we reconsider Program DGCD for the distributed
computation of the gcd function.

Program DG CD: distributed gcd computation

(Yl,YZ)  := (a,z2)

e, : while  y1 # y2 do mo : while y1 # y2 do

if YI > y2 then y1 := yl - y2 if YI < y2 then y2 := y2 - y1

e, : hult ml : halt

- PI -. - p2 -
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In Figure 3 we present a proof diagram of the liveness property:

for this program.

Insert Figure 3. Diagram Proof of the Program DGCD

In this diagram we mix applications of the J-CHAIN rule with an application of the J-WELL
rule. The J-WELL rule ensures that from ‘p = ‘p3 we will eventually exit to ‘p2 or to ~1,  i.e.,
~)=p~vy3~. Tlre well-founded structure that we use is that of lexicographic pairs (n, Ic) of which
n E IV is a positive integer and k E { 1, 2). Th e second parameter k is determined according to
whether yr > y2 or yr < ~2. In turn it determines the helpful process. If k = 1, then yr > ~2,
and any transition of Pr (namely A!!, --+ &-J) will decrement n = yr + ~2, thus decrementing the pair
(n, k). On that same state, any transition of P2 leaves ~1, ~2, and hence n and k invariant. For
k = 2 the situation is reversed, I5 being the helpful process.

Once we arc in 99 or cp1  t,hc arrival at ~0 is ensured by the usual application of the J-CHAIN
rule.

II

Note that in proof diagrams containing parameterized  assertions, we allow edges of the helpful
process to lead back to the same node, provided that they always lead to a lower value of the well-
founded paran;eter.

RULES FOR FAIR COMPUTATIONS

Next we consider programs with semaphore instructions. For such programs the classes of
. just and fair computations do not necessarily coincide and we have to consider the more general

concept of fair computations. Since ?(P) C J(P), any property that has been proved correct
by the J-WELL rule certainly holds for all fair computations. However, the completeness of the
J-WELL rule breaks down in the case of programs with semaphores; we are not always guaranteed
that this rule is applicable. Hence, we propose a more general method for establishing eventuality
properties under fair computations:

The basic liveness principle under the assumption of fair computations is given by:

Liveness  Rule - LIVE ’

Let (p(7T;v) and $(F; g) be two state formulas and Pk om of the pro-
cesses

A. I- P leads from cp to ‘p V $J

B. I- Pk leads from cp to ?,/I

C .  t- cp > 0 [4 V  habled(

I- P 1 (PW)
- -

24



To justify the livcness rule LIVE, let cr be a fair computation such that p is initially true. By
condition A, cp will hold until  $ is realized. Assume therefore that + is never realized and hence
~3 holds in all states of ‘p; By condition B, Pk was never activated, since any activation of Pk
from a cp-state  would have realized + immcdiatcly.  By condition C, each state, being a cp-state, is
eventually followed by a state in which either $ holds or Pk is enabled. By our assumption that
$ never occurs, the latter must be the case, i.e. Pk is enabled. Consequently, CT must be infinite,
since otherwise its last state must be such that & is enabled on it, contradicting the definition  of
execution sequences being maximal. We may now repeat the argument above for every p-state.
This shows the existence of an infinite sequence of states on which Pk is enabled. Thus Pk is
enabled infinitely many times  on CT but never activated, contradicting our initial assumption that
o is a fair computation. Consequently, any fair computation beginning in a p-state  must contain
a $-state.

The difference between the LIVE and the J-LIVE rule is in condition C. While the J-LIVE
rule requires that the helpful process is enabled now, the LIVE rule only assures that it will be
eventually enabled. An apparent advantage of the J-LIVE version of condition C is that it is static,
i.e. contains no temporal operators. The LIVE version of condition C, in comparison is dynamic,
i.e. is a temporal statement, having the same form as the conclusion we set out to prove: cp > 0 $.
Two obvious questions arise: How do we prove condition C of the LIVE rule? Is there a danger of
circular reasoning?

The answer to both questions lies in the observation that in establishing condition C we may
ignore the process Pk. This is because as soon as it is enabled we have already arrived at a
goal state (i.e., one satisfying II) V habled(P T hus, if currently Pk is disabled, only the other *
processes may cause it to become enabled again; Pk can never help itself beco.me  enabled. .

To emphasize this point we may rewrite condition G’ as:

?(P - { P i } )  t -  p 3 0  [?j v  Enabled(Pk)]  .

This means that if we consider all fair computations of the program obtained from P by omitting
the process Pk, then ‘p guarantees the eventual realization of $ V Enabled(Pk).  In the modified
program we should consider as initial states all the states accessible by P. Thus?  circular reasoning
is avoided since we consider as a premise to our rule a simpler program with one process less than
the original program.

Note that the static version of condition C always implies the dynamic version.

We may now develop the CHAIN and WELL rules in a similar way by appropriately generalizing
condition C. Thus to obtain the CHAIN rule we replace condition Cdof the J-CHAIN rule by:

b (QPi 1 0 (Vpj) V hubled(Pki) .
j<i 1

The full WELL rule is given by:
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.-rwekI;‘ounded .Liveness Rule - WELL

Let (A, >) be a well-founded structure.

Let cp(k) = ‘p( cu; 3; ?j), cu E A? be a parameterized  state formula.

Let, h : A --+ [l..m] be a function identifying for each Q! E A the helpful process
&(a~  for states satisfying (p(a).

A. I- P leads from ~(a)  to $ V ($3 5 a. p(p))

We refer to h as the helpjulness  function.

We will proceed to illustrate first the application of the CHAIN rule and then the application
of the WELL rule to proofs of liveness properties of programs with semaphores.

EXAMPLE C

This example demonstrates the application of the chain rule for programs with semaphores.

Program PC: Producer-Consumer

(b, 5, if, ce) := (A, 1, 0, 73)

e, : compute yl mo : request(cf)

e, : request (ce) ml : request(s)

e2 : request (8) m2 : y2 := head(b)

ma: t2 := tad(b)

m4: b:= t2

rng : release(s)

e, : reZetrse(cf) 7710 : reZease(  ce)

e7 : got0 e, m7 : compute winy y2

7328 : got0 mg

-PI : Producer - --P2 : Consumer-
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The producer PI computes at PO a value  into yi without modifying any other shared program
variables. It t,hen adds 711  to the end of the buffer b. The consumer P2 removes the first element
of the buffer into y2 and then uses  this value for its own purposes (at m7) without modifying any
other shared program variable. The maximal capacity of the buffer b is n > 0.

In or&r to ensurc  the correct synchronization between the processes we use three semaphore
variables: The variable s ensures that accesses to the buffer arc protected and provides exclusion
between the critical sections es..5 and m2..5. The variable ce (“count of cmptics”) counts the
number of free available slots in the buffer b. It protects b frorn overflowing. The variable cf
(“count of fulls”) counts how many items the buffer currently holds. It ensures that the consumer
does not attempt to remove an itern from an empty buffer.

0 Liveness

Here we wish to show that
at.t!l 3 0 at&.

We start. by presenting the top-level diagram proof (Figure 4). This diagram proof is certainly
trivial. Everywhere, PI is the helpful process and leads immediately to the next step. However,
we now have to establish clause C in the CHAIN rule. This calls for the consideration of fair
computations of P - {PI}  = {Pz). We thus have to construct two subproofs:

?(P2)  I- at& 3 O(ce >  0 )

?(P2)  t -  at& 3 O(s >  0 ) .

The first statement ensures that if PI is at #?I, P2 will eventually cause ce to become positive which
is the enabling condition for PI to be activated at !I. Similarly, in the second statement Ps will
eventually cause s to become positive, making PI enabled at !2. For both statements we present
diagram proofs.

Insert Figure 4
<:onsider first the diagram proof for the at !?I case (Figure 5). In the construction of this

diagram we use some invariants which are easy to derive. The first invariant is:
I1 : at& -I- atm2..5 + s = 1

It has been used in order to derive that being at J!r and at ml implies s > 0. In an expression
such as the above we arithmetize propositions by interpreting false as 0 and true as 1. The second
invariant we use is

’I2 : cf + ce + ate 2..6 + atm.6 = ‘n.

It is used in order to deduce that being at er and at m7,s,o implies that either ce > 0 or cf > 0.
Insert Figure 5L

The diagram proof for the at & case is even simpler (Figure  6).
Insert Figure 6

EXAMPLE D

The following
semaphores.

program demonstrates the application of the WELL rule For programs with
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Program IX: Binomial Cocfficicnt

(Yl,  Y2, Y3, Y4) := (n, 0, 1, 1)

e, : ij y1 = (n - k) then goto if7 m0 : ifY2 = k then goto m3

e, : request (y4) 7721: Y 2 := y2 + 1

m2 : loop until y1 + y2 < n

mg : request (y4)

f?5 : y1 := y1 - 1

e, : got0 e,

e7 : halt m7 : got0 mg

mg : halt

-P1- -P2-

This is a distributed computation of the binomial coefficient (z) for integers n and k such that
0 < k < n. Based on the formula

n
0

= n l (n - 1) . . . . .- (n - k + 1)
k 1*2*  . . . l Cc

process PI successively multiplies y3 by n, (n - 1)) . . . , while P2 successively divides y3 by 1,2, . . . .
In order for the division at m4 to come out evenly, we divide y3 by y2 only when at ,least  y2 factors
have been multiplied into y3 by PI. The waiting loop at rn2 ensures this.

Without loss of generality we can relabel the instructions in the program, as follows:.
Program BC * : A relabelled version of the Binornial Coefficient Program

(Yl,  Y2, Y3, Y4) := (n, 0, -1, 1)

e7 : if y1 = (n - k) then goto & mg : ifY2 = k then goto ml

efj : wuest(y4) m2: Y 2 := y2 + 1

e5 : t1 := y3 l y1 mg  : loop until y1 + y2 5 n

’
e2: Y l := y1 - 1

e8 : got0 4$

128 : request (y4)

m7 :

m6 : y3 := t2

m5 :

e, : halt m4 : got0 m3

ml : halt

-P1-
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The liveness property we wish to prove is:

I-

1.at{e7jrn3)  A (Yl,Y2d3,Y4)  = (%0,171)]  1 o ~~{&~ml)*

We derive first several invariants needed for the liveness proofz

I1 : ( ate3..5  + atm5..7 + ~4) = 1

12 : ((n - k) + a%..,) L yl I n

I3 : 0 L ~2 5 (k - atm)

I4 : ate1 II (yl = n - k).

For our well-founded domain we choose:

W = (Iv x [0..14]  x [O,l],  >Iez  ).

That is, the domain of triples of integers (r, s, t) such that r 2 0, 0 5 s < 14 and 0 5 t < 1. The
ordering defined on them is the lexicographic ordering on triples.

The parameterieed assertion is:

4w; ei, “j; Yl, Y2 1 = P((r,s,t);  tit mj; Yi, Y2) :

(r = YI -I- k --‘~a) A (s = i + j) A (t = ate,).

Thus s is the sum of the indices of the locations of the two processes; also t = 1 if and only if PI
is at &; otherwise t = 0.

The helpfulness function is:

PI if t = 1
h(r, s, t) =

PI otherwise.

The sequence of labels was designed in such a way that moving to the next instruction will neces-
sarily lead to a lower value of (r, s, t). This is so because the label sequence is always decreasing
except for the instructions which decrement yr and increment ~2. Changes in the y’s have been
given the highest priority in the lexicographical ordering. The parameter t has been added in order
to make h dcpcndcnt on w = (r, a, t).

There are only two situations to be checked. First, when PI is at !!I and P2 is at mg WC have
to show that the next step indeed decrements (r, s, t). This is so because in such a situation
we are assured by 13,  14 that both y2 < k and y1 = n - k hold, leading to yr + y2 5 n, which
means that the next step leads to ms. Another point is to show that being  at & guarantees that
eventually y4 will become positive, by the actions of P2 alone. This is easily established by the
diagram in Figure 7, supported by invariants I1 to 14.

Insert  Figure 7



CONCLUDING REMARKS

We have presented two basic proof principles, the I-INV rule for establishing invariance propcr-
ties and the WELL rule for establishing livencss  properties. While we have not discussed the issues
of completeness here, both are complete. We refer the reader to [MP5]  for proof of completeness
of the I-INV rule, and to [LPS] for the completeness of the WELL rule.

We believe that the level of detail (and formality) at which these rules are formalized leads
to an optimal presentation of proofs for human readers. It summarizes the dependence on the
program structure under the general “leads from cp to $‘, notion. Usually, for a particular ‘p and
$, no detailed proof of this statement is needed. In more subtle cases, as presented in some of our
examples, we need to consider some critical transitions in detail. The diagram representation of
the proof offers even a more succinct presentation, where only the key ideas are pointed out.

Closely related approaches to well-founded methods for liveness which concentrate on nonde-
terministic rather than concurrent programs are described in [AO] and [GFMR].
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