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I. Tntroduc tion

Problen~s  which are P-complete mdcr logspace reductions  probably cannot  be solved
in a sum!1  zmount  of space. Jhcause of the Pa~~dlel Col~lputabiou  Tllcsis [ FW],  an al-
tcrnativct  way to view thcsc problems is as problems that probat~iy  canmt be solved fast
in p,zrnllci. Quite  a few problems arc known to be P-complete,  such a the circuit value
problem [I,], 1’mear programming  [DLR] ad unificatim  [l>KM].  Most of the ctmbinatorial
problenls  which are known to bc l-‘-co~qkde  rely on some n~echmism which allows mm-
putations to be encoded  in them. In the P-con~plct,~n~s~  proofs fQr network flow [GSS]  and
list scheduling [I-IM],  large  intcgcr weights  are used. The latter problem can be solved  in
.MC if the weights  <are restAct to being small. Another  mcchanisin  that is :~scd to force
problems to being P-complctc  is to require that  the solution bc lcxicog.r;~pl~ieally  mini-
mum. Examples of P-colnplctc  problems  of this typo include fiding the 1cxic:ographically
minimini  nmxiinal  indepctndcnt  set [C] or the lexicographically  n~inituum  maximal  path
[AM]: Thcsc  rcs~llts show that the natural grcdy algorithms  for the problmls  probably
miinot bc sped up using parailclisn~.  This paper  will discuss ;c l’-coiiq3iete prolAm which
does not rely 011 any of these mechanisms.  It can bc considcrcd a ((Im-cly combinntorial”
prolh11. Since this prd~ien~ does not rely on auy special  mechanism,  it is an attractive
problenl for exploring  SC~~:J~ICS  of ;cpproxi:nate  solu tio.rl to I’-con-:plctc problems.  Two dif-
ferent approxiiimt~ion  scl~ci~~cs  will bc discussed for dhc pmblciu.  One of them solves  21
variant  of the problcni to a f~:t.or arbitrarily close to half of the optiiimm iii NC.  ‘It is
tllcrl  sfl0Wll that ttlC ~)~Obicill  C~Ililt~t  I)(! ~.pprOXiilliltCtl  by il factor Of better  tIllail  one hdf
tlJtic!ss P ::: J/C. The scco~~d  schcn~c  finds a solution within a factor of the desired rcsdt.
‘i’llis  aig~~rith~rr  has ai illtcrcsting trade .;fr between the tixnc it t,altcs  n11d the degree  of
aI)!)roxilm.l,ioi~  aciiicvcd.



IW&(G) d iscardcd by the algoritfuu and let T hc the graph just bcbforc  v is discarded.
Shcc dlv(v) < k rmd ~II)SI,(~~) g T, v roust have degree  less than k in Hll :.5’,(G). 1Ience
s =z m&(G).  B

It is possible that UD&!k(G) is cnq$y. The following lenlnla  due to Erdiis [IX] estab-
lishes an iniportan  t cast when II DSk(G) is not empty.

Roof:  The result holds for graphs consisting  of a single vertex. Suppose it hol(!s for all
graphs wilh less tllan n vcrticcs. Suppose WC have a graph with r~ vertices and wt edges. If
all vertices  have degree  at least  [$I, tlml we arc done. Otkrwisc the vertex with snlallest
degree  cau bc delctcd  along with its incident  edges, lcaving a graph with rz -- 1 vertices and
m - k > m - [‘:I edgcs. By the induction  hypothesis  it has an induced subgraph  with
tuininnlnl degree



distinguished  and will be connected  to the gate that reads the input. The AND gates-and
OR gates have 4 distinguished  nodes Cc 1, IC2, ki, A$. The nodes ICI, and kz arc inputs  to
the gate and k’, and k;:! are the outputs of the gates.  If the output  k: is conncctcd to the
input jg of another g;;te, then there  is an cdgc between k: and j?,. The gates arc shown
below. On both of the gates, ki and I;; will only bc removed  if the node i is removed.  In
the OR gate, i will be removed  if both ICI and k2 are rcnlovcd,  ;~;rxl in the AND gate, 2 is
removed  if either  ICI or k2 is removed. The nodes ICI and k2 arc rcmovcd  if the connections
into them are removed, in other words if they reccivc  a false  input.  Tf a gntc has a single
output, the same construction  is used and one of the outputs  is left dangling. Note that
the values will not propagate  backwards  through  the circuit, so a node dcpc~lds  only on
the nodes of the gates prcccding it. tlencc Chc graph sirnalatcs  the circuit.

For k > 3, the same basic construction  is used, the degrees  of the nodes are just
padded to brin g them up to about degree  k. First the graph G is constructed as outlined
above. Then k - 3 nodes aIre added  to the graph and these nodes  arc conrtccted to all
0tJlcr ilodcs in the graph G’. It is clcxr that a node v E G will be in 11l.JSk.C’) ifl’ it is in
IID&( p

kl k’,

OR gate



AND gate

The P-cornplctcncss rest& can be nlxlc slightly stronger.  The stronger  result, is that
it is P-complete to detcrminc  if IIDSk(G) is noucnipty.  One implication of this is that
it is probably  not I)ossil)le  irl J/C to clctmminc  wl~nt,  is tJle dt,grcc of the highest degree
induced subgraph that a grapll has.



4. Approximations to F-complete Problems

If a problem is known to be I?-cornplcte,  there is little hope of finding au J/C solution
for it. As is often done with NP-complctc  problems,  we can lower  our sights and atlcmpt
to fiud an npproximate  solution. The high dcgrco  subgraph problem is well suited for
approximation.  A varimt of the problem which  is au optimization  ~~O!J~CIN  is to ask wlmt---__  --_
is the largest  cl such that /rD&(  G) is noncmpty.  This value will be denoted by H.DS(G)._ --_-- --._- --
For this problem an approximation  would be to find a cl’ where  IIDS(Gj  >_ cl’ 2 ~11 IX(G)
for some fixed c < 1. It will be shown that this problem can be zipproxinlatcd  for c < 3 in
AK, but cannot bc approximated  for c > i unless P - J/C.

Proof: Let E > 0. The basic procedure  for the algorithm  is a routine  Ted(k) which will
r&urn an mswcr which is either  ‘%hc graph has no subgraph of tlcgree  at lmst k”, or “the
graph has a subgraph of dcgrce at Icast 55 EC”. The routine  Il’cst discards nodes  from
the grq)h until the graph is empty or less than  e7~’ of the notlcs have dcgrcc  less than k ,
where  7~’ is lho rnmbcr  of r~odcs curr&tly  in the graph. All nodes of dcgrcc less thnn k are
discarded at each step. If the routiuc  tcrminatcs  with <an empty set of v&ices, the graph
could not have had r?, subgra.ph with nlininmul dcgrcc k. If the algorithm  terminates  with
n’ vcrlims, then it nlust have at lcast %Lkn’ edges.  Hy Lcmnm 3, it nlust have ;I subgraph
with ruininlt1m  dcgrce at lc,ast  j-i5 k. The proccdurc  ‘I’cst  is applictl for each value  between
0 and n. A value?  Ic will bc found where  the graph !ms a subgraph of rlcgrec  at lmst j+k
but no suhgrnpl~  of dcgrcc k + 1. 1

The next thcorc1n  shows ttiat  the yrcvious  result is csscxltially  the Lest possible as-
ing 1,!1i11 P -/- A/C. 11, will bc showii tIllat,  n circuit, can bc simuiatcd  !)y a graph ~hicli_-- - _--
II I)S((G) :: 2k if tllc ouI,pllt is 1 ar~r! I/US(G)  --:  k-j- 1 if ~,!Ic output  is 0. TJ’ 010  l)rol)lcu\
tl tx q)proxin~ntctl by a. factor of t>cttor  Lh;m i then the followirrg coiisbruclion  could
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The OR and AND gates nro ill~rstratcd  in the figures  below. ‘J.‘he outputs  01, 02, and
o3 xc connected  to t?xpanders, which  arc! in turn conuected  to inputs  of other gates.  The
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Prnof: Su~~pose nodes of degree  less than i care removed until all rrodcs have dcgrec at
least  i. Let S,l IN the set of nodes that initially h~c degree  at least n that arc scmoved.
Before  CL node of SCi is removed, it mtst have had 2” rxlges  rcmovcd  that go to it. Each
node that, is xenloved  & have at most $ cdgcs which go to members  of Sd that arc removed
after it is. Putting these two facts togcfhcr  WC have y jSd/ 5 $z + f IS& so !S,,f < g.
Hence at most -$ nodes arc removed. i



reduced by a factor of f(n at the end of each phase and threshold is initially ?cq. When)
a phase ends, less than threshold vertices have degree less than bound, so the ~~~irtimum
degree  of the subgraph  that is found will be the value of tmad when threshold = f. which
is:

d
4~%/(,)  n-1 .

Vi’l~~ .a phase begins, there arc less than f(n)+!hreshoZd xo&s of degree  less than Mm.md.
Lemma 4 says that by removing nodes of d cgrec less than bound, at most $f(n) . threshold
nodes wiil be removed. Since at le,lns~  threshold nodes arc removed  at each iteration, there
are at most $(n) iterations per phase. Hence there care at most $J(n) logI n iterations
a l t o g e t h e r .  1

11” different values  are used for j(n) an intcresting time/performance  trade off is ex-
hibited. When f(n) = logn tlle algorithm is in.K and a subgraph  with minimum degree
O(d?F), for any E > 0 is found. Time and pcrformaacc  figures are given in the table
Mow.  The time is given as the total number of iterations,  neglccling tire factor of $. The
pzt-f<irm:tncc  is i,hc ratio of 4d to the degree of the minimum dcgrec subgraph  that is found.
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I 6. COllf 1 u&xxl

This paper  has introduced a IXX P-conq~lefe  problem, the High Degree S ubgraph
problen1. ‘3%:~  problem is interesting bcc;luse  natural approximations for its solution can
lx dcfincrl. In this paper, we explored two slich approaches  for approximate solutions.
7%~ first apijroach  show4 that it is possible to find, with an J/C algorithlil,  the largest
degree  for which there exists a noncmpty subgraph  satisfying this degree bound, up to
any factor sidlw than 2.’ Analogous to the situation for certain NP-complete  problems,
WC also showed that the exisknce  of any approxinlation  algorithm in NC for this problem
with a factor strictly bigger than i would actually imply that P = NC.

The second approach for an approximation to the High Degree Subgraph Problem
yields an approximation scheme trading time for the minimllm  degree of the snbgraph
found by the algorithm. For a specific setting of the parameters,  it gives an J/C algorithm
which, given d < rz, finds a subgraph  that has minimum degree 0(&F). An open problem
is whdther t~his  rcsnlt can bc improved to find a s&graph  with minirnu~n  dcg!-cc O($log-“)
or cvcn O(d) in polylog parallel time.

An area of future rcscarch is to find other P-complete problenls  that c;m be efficiently
q:proxinlakcd in some  natural sense. Considering the Parallel C,onlputation  Thesis, a very
closely rclz~tcd problem is to explore time/space trade-offs for apyroxim  stio-n  i?roblems.
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