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Abstract: The P-complete problem thal we will consider iz the High Daogree Subgraph
Problem. This problem is: givea a graph ¢ = (V, &) and an integer k, find the maximum
induced subgraph of G that has all nodes of degree at least . After showing Lhat this
problem is P-complete, we will discuss wwo approaches (o linding approximate solutions
to it in M C. We will give a variant of the problem that i% also P-complete Lhat can be
approximated to within a fau,m of ¢ in NC, for any ¢ < 3, but cannot be approximnaied
by a facior of better than 1 y un less P == NC. We will alse give an algorithi that fiuds a
subgraph with moderately high minimun degrez. This algorithun exhibits an ineresting
relationship between its performance and the time 15 Sakes,
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1. Introduc tion

Problemis which are P-complete under logspace reductions probably cannot be solved
in a small amount of space. Because of the Parallel Computation Thesis | FW], an al-
ternative way to view these problems is as problems that probably cannot be solved fast
in parallel. Quite a few problems arc known to be P-complete, such as the circuit value
problem [L], linear programming [DLR] and unification [DKM)]. Most of the combinatorial
problems which are known to be P-complete rely on some mechanism which allows com-
putations to be encoded in them. In the P-completeness proofs for network flow [GSS| and
list scheduling [HM], large integer weights are used. The latter problem can be solved in
NC if the weights are restricted to being small. Another mechanisim that is nsed to force
problems to being P-complete is to require that the solution be lexicographically mini-
mum. Examples of P-complete problems of this type include finding the lexicographically
minimam maximal independent set [C] or the lexicographically minimum maximal path
[AM]. These results show that the natural greedy algorithms for the problems probably
cannot be sped up using parallelismi. This paper will discuss a PP-complete problemn which
doces not rcly on any of these mechanisms. It can be considered a “purely combinatorial”
problem. Since this problem does not rely on any special mechanism, it is an attractive
problem for exploring schemes of approximate solu tion to P-complete problems. Two dif-
terent approximation schemnes will be discussed for the problemi. One of them solves a
variant of the problem to a factor arbitrarily close to hall of the optimum in NC. It is
then shown that the problein cannot be approximated by a {actor of better than one half
anless P = NC. The second scheme finds a solution within a factor of the desired result.
This algorithin has an interesting trade ol between the time it takes and the degree of
aporoximalion achieved.

2. The Iigh Degree Subgraph Problem

The High Degree Subgraph Problem is: given a graph G - (V, I2) and an integer k,
find the maximum induced subgraph ol the graph that has all nodes of degree at least k.
There is a simple sequential algorithm for this problem which can be implemented to run
in O(|&]) time. The algorithm discards nodes of degree less than k until all nodes have
degree at least k, or the graph is empty. The correctness of this algorithm follows from
two casy lemmas. The first lemma establishes that there is a unique maximum induced
subgraph of G with minimum degree al least k; it will be denoted by F DS,(G).

Lemma L. Let S and T be maximum induced subgraphs of (i that have minimum degrec
al least k, then S == 1T.

Proof: The induced subgraph on S 1T must have minimum degree at least k. Since S

S| =T =]SUT],s0 S=T. 1§

rmn .
and T are maximum,

Leinma 2. The sequential algorithm outlined above finds I1DS,(G).

Proof: Let S be the induced subgraph found by the algorithn. Since the nodes of S bave
degree al deast k, S C 1 SE(G). Suppose that S/ DS (C). Let v be the first node of



ITDS(G) discarded by the algorithm and let T be the graph just before v is discarded.
Since dp(v) < k and HDS(G) C T', v must have degree less than k in HJ :5¢(G). lence
S = HDS(G).

It is possible that 1 DS, (G) is empty. The following lemma due to Erdds [E] estab-
lishes an importan t case when I DSy.(G) is not empty.

Lemma 3. If a graph has n vertices and m edges then it has an induced subgraph with

minimum degree HH .

Proof: The result holds for graphs consisting of a single vertex. Suppose it holds for all
graphs with less than n vertices. Suppose we have a graph with n vertices and m edges. If
all vertices have degree at least f'—”:-] , then we are done. Otherwise the vertex with smallest
degree can be deleted along with its incident edges, lcaving a graph with n - 1 vertices and

m-—k>m - [';’l‘] edges. By the induction hypothesis it has an induced subgraph with

minimum degree
m — k m — [»’—"| m— 2 m
ni] [m121] 2] gy
n—11]7 n—1 Tl n-1 n

3. The High Degree Subgraph Problem is P-complete

The high degree subgraph problem can be reformulated as a decision problem DS
by asking il a specilic node v is in I/ DS(G). The proof that HDS is P-complete is a
reduction from the Monotone Circuit Value Problem (MCVDP). This problem is:

Given acircuit consisting of AND and OR gates and values for its inputs, compute

the value ol its output.

Here, a circuit 3 is a stving By, ..., By where B ¢ {0 INPUT, 1-INPUT, AND(4, §),
OR(4,5)}. An AND(,5) (resp., OR(4,7)) gale Ay forms the logical “and” (resp., “or”) of
the outputs of the gates f3; and f; where ¢ < k, and 5 < k. The gates 3; and g; are called
the inputs of gate . We assume without loss of geuerality that AND and OR gates have
out degree | or 2, and that 0-INPUTS and 1-INPUTS have oul degree 1.

Theorem 1. 11DS is P-complete.

Proof: To show that I1DS is -complete, a logspace reduction will he given which when
given an instance of MOV will construct a graph ¢ with a distinguished node v, where
v is in the maximum induced sabgraph of degree & if and only if the outpul of the circuit
18 true. The prool will be for & = 3. A gate will be simulated by a collection of nodes.
One of the nodes will give the value of the gate, it will be left in the maximum induced
subgraph il the gate’s oubput is true. The false inputs are just an isolated node which
will be removed. A true inpul consists of 4 nodes, connected to themselves. Since they
therefove all have degree three al least three, they will wever be removed. One of them is
9
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distinguished and will be connected to the gate that reads the input. The AND gates and
OR gates have 4 distingunished nodes k (, k2, k}, k5. The nodes k;, and ko arc inputs to
the gate and k| and k), are the outputs of the gates. If the output k., is connected to the
input j, of another gite, then there is an edge between k., and j,. The gates are shown
below. On both of the gates, k| and k% will only be removed if the node & is removed. In
the OR gate, k will be removed if both k; and ko are removed, and in the AND gate, k is
removed if either ky or kg is removed. The nodes k; and ky are removed if the connections
into them are removed, in other words if they reccive a false input. If a gate has a single
output, the same construction is used and one of the outputs is left dangling. Note that
the values will not propagate backwards through the circuit, so a node depends only on
the nodes of the gates preceding it. Hence the graph simulates the circuit.

For k > 3, the same basic construction is used, the degrces of the nodes are just
padded to bring them up to about degree k. First the graph G is constructed as outlined
above. Then k — 3 nodes are added to the graph and these nodes are connected to all
other nodes in the graph G'. Tt is clear that a node v € G will be in DS (G') iff it is in
uDsS;(G). &

ky ki
/Cg A.’z
OR gate
For the case k- 2, it is possible to find [TDS,(G) in NC. The algorithm for computing

11 DS3(G) has logn phases, where cach phase removes all chains. A chain is a path of
vertices that starts with a vertex ol degree 1 and contains no vertex of degree greater
than 2. The chains can casily be identified by path doubling techniques. When the cliains
are deleted, more nodes of degree 1 night be created, however cach new node of degree 1
required the removal of ab least two chains, so the number of chains removed decreases by
ab lease hall at cach phase. So we have the following theorem:

Thearem 2. [t is possitle to compute TDS,(G) in NC. B
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The P-completeness resuit can be made slightly stronger. The stronger result is that
it is P-complete to determine il [/ DS (G} is nonempty. One buplication of this is that
it is probably not possible in NC to determine what is the dogree of the highest degree
induced subgraph that a graph has.

Theorem 3. The problem of determining il 11 DS (G) is nonempty is P-complete.

Proof: The previous construction is modified so that all ol the nodes are removed if the
output of the final gate is removed. The case k - 3 will be described. The same method
as was used in the Grst theorem may be used to extend this to other values of k. The

1-INPUTS are replaced by five vertices arranged:

The vertex &Y is connected to the gadget for the gate that it is connected to. The vertex
ky is the leal of a binary tree. This tree has the output of the final gate as its root. 10 the
final output is removed, then all of the -INPUTS will be vemoved, and then everything
will be removed. I the final oulpnt is not removed, then the nodes of the tree and the
1-INPUTS will not be removed, so the simlation proceeds as in the first construction.

b
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4. Approximations to F-complete Problems

If a problem is known to be P-complete, there is little hope of finding an N C solution
for it. As is often done with NP-complete problems, we can lower our sights and attempt
to find an approximate solution. The high degree subgraph problem is well suited for
approximation. A variant of the problem which is an optimization problem is to ask what
is the largest d such that I[I DS,( G) is nonempty. This value will be denoted by 11 DS(G).
For this problem an approximation would be to find a d’ where I DS(G) > d' > ¢Il DS(G)
for some fixed ¢ < 1. 1t will be shown that this problem can be approximated for ¢ < % in
NC, but cannot be approximated for ¢ > 4 unless P = NC.

Theorem 4. For any coustant ¢ < %, the optimization problem can be solved by an
algorithm in NC to a factor of c.

Proof: Let ¢ > 0. The basic procedure for the algorithm is a routine T'est(k) which will
return an answer which is either “the graph has no subgraph of degree at lcast k7, or “the
graph has a subgraph of degrece at least l—;'— k”. The routine T'est discards nodes {romn
the graph until the graph is empty or less than en’ of the nodes have degree less than kK,
where n' is the number of nodes currently in the graph. All nodes of dcgrcc less than k are
discarded at cach step. If the routine terminates with an empty set of vertices, the graph
could not have had a subgraph with minimum degree k. If the algorithm terminates with

n”vertices, then it must have at least -l—;—‘—kn' edges. By Lemma 3, it must have a subgraph

with minimum degree at least 3¢ k. The procedure Test is applied for cach value between

2
0 and n. A value k will be found where the graph has a subgraph of degree at least 454k

but no subgraph of degree k + 1.

The next theorem shows that the previous result is essentially the Lest possible as-
sun ing that P £ NC. It will be shown that a circuit can be simulated by a graph which
has 11 DS(G) = 2k il the output is land HDS(G) = k+ 1 if the output is 0. I the problem
cou d be approximated by a lactor of better than ; then the lollowing construction could

be used to solve the monotone circuit value problem.

Theorem 5. I P / NC, then it is not possible to approximate IIDS(G) by a factor
greater than é in NC.

Proof: This theorem will be proved by giving a logspace transformation of a monotoune
k-t 11l the output is 0. This reduction is a variation of the reduction used in Theorem 1.
The figures used will be for the case & = 3, the generalization to other values of k is
straightforward. In the sumulation, groups of k vertices will indicate the value of the wires.,
During the simulation, the vertices will all have degree > 2k if the wire is true and degree
at most k4 1if the wire is false. The circuit can be simulated by traversing the gates in
order. The structure in the figure below 5 an expander, its purpose is to fanout values.
It can be modified to Lanout an arbitrary number of values by adding extra layers. The
two vertices labelled py are the same vertex, as arc the vertices labelled po and p3. The
vertices ¢, g2, and ¢z are connected to the inputs to the expander. If we remove vertices
of degree 24 or less then vemoving an oulput of the expander such as » will nol cause any
obhier vertex of the expander Lo be removed, so values will be propagated correctly.

5



v P1 P2 P3

q1 % %/‘ P1
LTSI LI s
VAVAVAVAV AV

q3 ¢—

3-Expander

The OR and AND gates arc illustrated in the figures below. The outputs oy, 09, and
03 arc connected to expanders, which are in turn connected to inputs of other gates. The
expanders allow values to be fanned out and also insure that information is propagated
correctly. In the AND gate, the long rectangle is a k™-expander. The inputs of another
expander are connccted to the output of the circuit. The outputs of this expander are in
turn connected to all of the inputs of the gates that are 1-INPUTS. 1-INPPUTS will then
have degree 2k and 0-INPUTS will be left with degree k. If the final culput is false, the
expander will be removed, and all of the 1-INPUTS will be removed.

This graph simulates a circuit in a siutlar manner to the other simulations. Suppose
the oubput of the circuit is true. If all nodes of degree less than 2k are removed, then
the outputs of the false gates will be removed, and the outpuls of the true gates will be
left. Since the final output will not be removed, the T-INPUTS will be left, this will leave
a graph with minimum degree 2k, I all nodes of degree 24 or less are removed, clearly
the civeuit is false. Il all nodes ol degree al most k& + U are removed, the outputs ol all
the false gates will be removed. The removal of the output of the final gate will cause all
of the 1-INPUT gates to be removed, which in turn will cause the vest of the nodes to be
removed. Thus, if the outpul is false, IIDS(G) < k+ 1. Siuce the expander construct has
a subgraph of minimum degree &k + 1, ]TDS(G’) =k 1.

5. Pinding a Iligh Degree Subgraph

A sccond approach to approximating the High Degree Subpgraph problem is to attempt
to find a subgraph with high degree withoul jnsisting that it is the maximum subgraph
with that degree. As long as we ave looking for a subgraph with minimum degree d, where

15 . , . . . .
d = “V”’ we know that such a subgraph exists. The difliculty that arises in this problem
is that when nodes of degree d are discarded from the graph, the number of nodes of degree
less than d still in the graph might actually increase. T appears to be diflicult to identily
which nodes will become nodes of degree less than d. A way that the number of nodes that

6



OR gate

AND gate using a k3-expander

are to be discarded can be controfled is to throw out nodes of degree much less than d.
. . ] . \ « ey

If todes of degree § are removed, then the number of nodes that initially have degree at

least d that get removed is bonnded. This is formalized in the following lemma:

Lemma 4. Let G - (V, I2) be au n node graph with k nodes of degree less than d, then
- . . . 1 4
G contains a subgraph with minimmm degree :{ that has at least n - 5k nodes.

7



Proof: Supposc nodes of degree less than {f are removed until all nodes have degree at
least ‘—f Let S; be the set of nodes that initially h:wi: degree at least d that are removed.
Before a node of §; is removed, it must have had §d cdges removed that go to it. Each
node that is removed can have at most ;—l cdges which go to members of Sy that are removed
after it is. Putting these two facts together we have 3;1‘—1 [Sal < %k + ’Zl [Sal, s0 |S4] < —'25

[

b1
Hence at most §~ls nodes arc removed. 4

The lemma provides a way to find a subgraph with minimum degree 54! in O(nl/ 2log n)
time. The algorithm is:

while at least n1/? nodes have degree less than d do
remove nodes of degrce less than d;
while there is a node of degree less than 'zl do

remove nodes of degree less than g;

Each iteralion of a loop can be done in G(logn) parallel time. The first loop can not
be exccuted more than n'/? times since it removes at least nl/? clements each iteration.
The lemma insares that the second loop will not remove more than %nl/ 2 clements, so
it will also have O(nl/z) iterations. This algorithm can be genecralized to more than two
phases. A phase is run as long as a certain nuinber of elements can be discarded. When
a new phase is run, the degree bound is reduced. The algorithm maintains two counts,
bound, and threshold. If there are more than threshold vertices of degree less than bound,
then they are discarded, otherwise the values of bound and threshold are altered. The
function f(n) determines the runtime and the performance of the algorithm. The previous
algorithm corresponds to the second algorithm with f(n) = n' /2. The second algorithm

1582

begin
threshold == nf f(n);
bound :=- d;
while threshold > t and there is a node of degree less than bound do
S === {ul(v) < bound};
if |S| > threshold then
ViV -8

else
threshold :== threshold/ f (1)
end.
Lemma 5. The algorithm finds a subgraph with minimum degree at least
d
4[0;!,”,‘) n—1
. 3 \ . .
in at most 3} f(n) log () n iterations.

Proof: A phase will be considered to be the group of iteralions for which Jound and
threshold have fixed valies. There will be log () 1 phases, since the value of threshold is

8



reduced by a factor of f(n)at the end of each phase and threshold is initially T(’?;). When
a phase ends, less than threshold vertices have degree less than bound, so the ininimum
degree of the subgraph that is found will be the value of bound when threshold = 1 which
is:
d
410;;“,.) "—1,

When a phase begins, there arc less than f(n)-threshold nodes of degree less than 4-bound.
Lemma 4 says that by removing nodes of degree less than tound, at most % J(n) . threshold
nodes wiil be removed. Since at least threshold nodes arc removed at cach iteration, there
are at most 3 f(n) iterations per phase. Hence there are at most 3 f(n) log,,) n iterations

altogether. §

If different values are used for f(n) an intcresting time/performance trade off is ex-
hibited. When f(n) = logn the algorithm is inNC and a subgraph with minimum degree
O(dn™), for any ¢ > 0 is found. Time and performance figures are given in the table
below. The time is given as the total number of iterations, neglecting the factor of ; The
performance is ihe ratio of 4d to the degree of the minimum degree subgraph that is found.

Time Performance
.. Tomr .
f(n) f(r) logsny n 408y ™
nl/k lc'nl/k 4:;
7”7 4k l()gn J. k T
4 2%k nt/

foghk 11, n'.Z/k loglog n
kloglogn

gl = v | e e oy - —)e e

2V | pielogn | 22V

Time/performance relationship



6. Conclusions

This paper has introduced a now P-comiplete problem, the High Dcgree S ubgraph
problem. This problem is interesting because natural approximations for its solution can
be defined. In this paper, we explored two such approaches for approximate solutions.
The first approach showed that it is possible to find, with an NC algorithin, the largest
degrec for which there exists a nonempty subgraph satisfying this degree bound, up to
any factor smaller than %.Analogous to the situation for certain NP-complete problems,
wc also shiowed that the existence of any approximation algorithm in NC for this problem
with a factor strictly bigger than 1 would actually imply that P = NC.

The second approach for an approximation to the High Degree Subgraph Problem
yields an approximation scheme trading time for the minimum degree of the subgraph
found by the algorithm. For a specific setting of the parameters, it gives an NC algorithm
which, given d < =, finds a subgraph that has minimum degree O(dn~¢). An open problem
is whether this result can be improved to find a subgraph with minimum degree O(d log_k)
or even O(d) in polylog parallel time.

An area of future research is to find other P-complete problems that can be efficiently
approximated in some natural sense. Considering the Parallel Computation Thesis, a very
closely related problem is to ¢xplore time/space trade-offs for approxim ation problems.

i
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