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1. Int roduction

The representation and manipulation of incomplete and imperfect knowledge are issues central to the design of
reasoning systems Drawbacks in traditional probabilistic approaches to the management of such uncertainty led us to
develop the certainty factor (CF) model of inexact reasoning [14] The initial CF model was implemented in the medical advice
program known as MYCIN and subsequently adapted for use in similar (EMYCIN) systems [3]. However, despite the model’s
good performance in many task domains, its restrictive assumptions [1] and its inability to deal consistently with hierarchical
relationships among values of parameters have left us dissatisfied with the generality of the approach. We have accordingly
been attracted to to the mathematical theory of evidence developed by Arthur Dempster Although it also makes assumptions
that do not hold in all problem solving domains, its coherent approach to the management of uncertainty among hierarchically

related hypotheses merits careful study and interpretation in the context of automated reasoning systems.

This theory was first set forth by Dempster in the 1960’'s and subsequently extended by Glenn Shafer when he
published A Mathematical Theory of Evidence [13] The theory’s relevance to the issues addressed in the CF model was not
immediately recognized [17], but recently researchers have begun to investigate applications of the theory to artificial

intelligence systems [2, 6, 7, 10, 15}

An advantage of the Dempster Shafer (D-S) theory over previous approaches is its ability to model the narrowing of
the hypothesis set with the accumulation of evidence a process which characterizes diagnostic reasoning in medicine and
expert reasoning in general An expert uses evidence which may apply not only to single hypotheses but also to sets of
hypotheses that together comprise a concept of interest The functions and combining rule of the D-S theory are well suited to

represent this type of evidence and its aggregation

We believe there are several reasons why the D-S theory is not yet well appreciated by the artificiat intelligence
research community One problem has been the mathematical notation used in most of the books and papers that discuss it.
In addition, the discussions generally lack simple examples that could add clarity to the theory’s underlying notions  Finally,
the D-S theory is widely assumed to be impractical for computer-based implementation due to anevidence combination
scheme that assures computational complexity with exponential time requirements  Although we could not totally avoid
mathematical notation in this paper, we do address all three of the issues cited here, paying particular attention to methods for

applying the theory in ways that are computationally tractable

In 1981, Barnett showed that apparent exponential time requirements of the D-S model could be reduced to simple
polynomial time if the theory were applied to Single hypotheses. and to their negations, and if evidence were combined in an
orderly fashion {2]. However, Barnett’'s proposal drd not solve the larger problem of how to allow evidential reasoning about

sets of hypotheses in a way that is computationally trac table for complex domains
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In this paper we propose a technique that permits adapting the D-S theory so that hierarchical relationships among
hypotheses are handled in a consistent manner The method builds on Barnett's approach, augmenting it to provide the
additional features in a computationally efficient manner We shall show that the technique requires an assumption (that the
hypothesis space can be reduced to a strict hierarchy) and an approximation (it assigns disconfirmatory evidence only to
hypotheses with “meaning” in the domain), but it does manage to capture the major strengths of the D-S theory while

achieving a computationally tractable execution time and, hence, a practical method for its implementation.

We accordingly have three goals in this paper. First, in Sec. 2 we wish to describe for an Al audience the central
elements of the D-S theory, avoiding excessive mathematical notation and basing our exposition on simple examples drawn
from the field of medicine. In Sec. 3 we demonstrate the relevance of the D-S theory to a familiar expert system domain,
namely the bacterial organism identification problem that lies at the heart of MYCIN [3]. Since MYCIN's identification rules deal
with single hypotheses and ignores hierarchical relationships, the Barnett technique is directly relevant to the program’s task.
In Sec. 4 we present an adaptation of the D-S approach that allows computationally efficient reasoning within abstraction

hierarchies.

The importance of hierarchical relationships among hypotheses can best be appreciated in the setting of a simple
example. Consider MYCIN's task of bacterial organism identification. Here the hypothesis set is a group of over 100
organisms known to the program. By focusing on single organisms (hypotheses), MYCIN s rules and Cf mode! are unable to
deal with groups of organisms as hypotheses that have explicit relationships to the single bar teria about which knowledge I1s
available. Such relationships, if they exist, must be specified in MYCIN using additional rules, they are not reflected
automatically in the structure of the hypothesis space for the domain. When searching for the identity of an infecting organism,
however, microscopic examination of a smear showing gram negative (pink staining) organisms narrows the hypothesis set of
the 100 or so possible organisms to a proper subset This subset can also be thought of as a new hypothesis. the organism is
one of the gram negative organisms However, this piece of evidence gives no information concerning the relative likelihoods
of the individual organisms in the subset Bayesians might ass::me equal prior probabilities and distribute the weight of this
evidence equally among the gram negative organisms but, as Shafer points out, they would thus fail to distinguish between
-uncertainty, or lack of knowledge, and equal certainty Because the D-S approach allows one to attribute belief to subsets, as
well as to individual elements of the hypothesis set, we believe that it is similar to the evidence gathering process observed

when human beings reason at varying levels of abstraction

A second piece of evidence, such as the morphology (shape) of the organism, nartows the original hypothesis set
(the 100 or so bacterial organisms) to a different subset How does the D-S theory pool this new piece of evidence with the
first? Each is represented by a belief function, and the two belief functions thus must be merged using a combination rule to

yield a new function Belief functions assign numerical mea -ures of belief to hypotheses based on observed evidence In a
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rule-based expert system, for example, each Inferential rule would have its own belief function associated with it, a function
that assigns belief to the consequent based on the evidence in the premise. The combination rule proposed by Dempster, like
the Bayesian and CF combining functions, is independent of the order in which evidence is gathered and requires that the
hypotheses under consideration be mutually exclusive and exhaustive’ . In fact, the D-S combination rule includes the

Bayesian and CF functions as special cases.

Another consequence of the generality of the D-S belief functions is avoidance of the Bayesian restriction that
commitment of belief to a hypothesis implies commitment of the remaining belief to its negation, i.e., the assumption that belief
in H is equivalent to P(H) so that the resulting belief in NOT-H is 1 -P(H). The concept that, in many situations, evidence
partially in favor of a hypothesis should not be construed as evidence partially against the same hypothesis (i.e., in favor of its
negation) was one of the desiderata in the development of the CF model [14]. As in that model, the D-S measures of belief
assigned to each hypothesis in the original set need not sum to 1 but may sum to a number less than 1; some of the remaining

belief can be allotted to sets of hypotheses that comprise higher level concepts of interest

Although the D-S theory includes many of the features of the CF model, its derivation I1s based on set theoretic
notions which allow explicit and consistent handling of subset and superset relationships in a hierarchy of hypotheses As we
shall show, this feature provides a conceptual clarity that is lacking in the CF model In the next sections, we motivate the
exposition of the theory with a medical example and then discuss the relevance of the theory to systems that reason in

hierarchically organized hypothesis spaces

2. Basics of the Dempster-Shafer Theory

2.1. A Simple Example of Medical Reasoning

Suppose a physician is considering a case of cholestatic jaundice, i.e , the development of a yellow hue to a patient’s
skin (jaundice) due to elevated blood levels of bilirubin (a pigment produced by the liver) This problem is caused by an
inability of the liver to excrete bile normally, often due to a disease within the liver itself (intrahepatic cholestasis) or blockage
of the bile ducts outside the liver (extrahepatic cholestasis) In a typical case of this type, the diagnostic hypothesis set might
well include two types of intrahepatic cholestasis, hepatitis (Hep) and cirrhosis (Cirr), and two types of extrahepatic
cholestasis, gallstones (Gall) and pancreatic cancer (Pan) There are actually more than four causes of jaundice, but we have
simplified the example here for illustrative purposes In the D-S theory this set of four disorders is called a frame of
discernment, denoted © or {Hep, Cirr, Gall. Pan} As noted earlier, the hypotheses in O are assumed mutually exclusive and

exhaustive.

1 .
As we shall later discuss, this requirement neea NOt DE 3 SE& “2.% €3 (' 3r v & merg are ‘el hrigus s ava ‘able for accephing Ty nypotheses by partt ur.rg the
hypothesis space ito subsets for whiCh the assumpt ons ne'n



Gordon and Shortliffe

One piece of evidence considered by the physician might lend support to the diagnosis of intrahepatic cholestasis
rather than to a single disease, i.e., it might support the two-element subset of ©, {Hep, Cirr}. Note that this subset
corresponds to the hypothesis which is the disjunction of its elements, viz. the hypothesis HEP-OR-CIRR  Similarly, the
hypothesis extrahepatic cholestasis = {Gall, Pan} = GALL-OR-PAN. Evidence confirming intrahepatic cholestasis to some

degree will cause the physician to allot belief to the subset {Gail, Pan}.

Subsequently a new piece of evidence might help the physician exclude hepatitis to some degree. Evidence
disconfirming HEP (i.e., disconfirming the set {Hep}) is equivalent to evidence confirming the hypothesis NOT-REP, which
corresponds to the hypothesis CIRR-OR-GALL-OR-PAN or the subset {Cirr, Gall, Pan}. Thus, evidence disconfirming {Hep}
to some degree will cause the physician to allot belief to this three-element subset Note, however, that although evidence
disconfirming the set {Hep} may be seen as confirming the set {Cirr, Gall, Pan}, it says nothing about how the belief in the

three-element subset should be allocated among the singleton hypotheses {Cirr}, {Gall}, and {Pan}.

As illustrated above, any subset of the hypotheses in O gives rise to a new hypothesis, which is equivalent to the
disjunction of the hypotheses in the subset Each element in © corresponds to a one element subset (called a singleton) By
considering all possible subsets of ©, denoted 29. the set of hypotheses to which belief can be allotted is enlarged
Henceforth, we use the term “ hypothesis” in this enlarged sense to denote any subset of the original hypotheses nO  We
shall also hereafter use set notation to refer to the corresponding hypothesis, e g.. {Cirr, Hep} refers to the hypothesis

HEP-OR-CIRR, {Pan} refers to the hypothesis PAN. etc

A diagrammatic representation of 27 for the cholestasis example is given in Fig 1. Note that a set of size n has 2"
subsets. (The empty set, 0, is one of these subsets, but is not shown in Fig. 1; it corresponds to a hypothesis known to be false

since the hypotheses in © are exhaustive.)

2.2. Basic Probability Assignments

The D-S theory uses a number in the range [0,1] inclusive to indicate belief in a hypothesis given a piece of evidence
This number is the degree to which the evidence supports the hypothesis2 Recall that evidence against a hypothesis is
regarded as evidence for the negation of the hypothesis, i e , for the complement in the set theoretic interpretation of
hypotheses introduced in the previous section. Thus, unlike the CF model, the D-S model avoids the use of negative numbers

to represent disconfirming evidence

The impact of each distinct piece of evidence on the subsets of O is represented by a function called a basic

probability assignment (bpa). A bpa is a generalization of the tradititonal probability density function, the latter assigns a

2
Note that this Jetirutior corresponds to the not:or of a Meas e »f Be = (ME, 4 the CF 7 ude
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{hep, cirr, gall, pan}

{bep, cirr,gall} {hep, cirr, pan} {hep, gall, pan} {cirr, gall, pan}

AN ol R A

{hep, cirr} {hep, gall} {cirr, gali} {hep, pan} {cirr, pan} {gall, pan}

{hep} {cirr} {gall} {pan}

Figure 1: The Subsets of the Set of Causes of Choiestasis

number in the range [0,1] to every singleton of © such that the numbers sum to 1. Using 29. the enlarged domain of all subsets
of ©, a bpa, denoted m, assigns a number in [0, 1] to every subset of © such that the numbers sum to 1. (By definition, the
number 0 must be assigned to the empty set, since this set corresponds to a false hypothesis ) Thus, m, allows assignment of a
portion of the total belief of 1, based on a given piece of evidence i, to every element in the hierarchy of Fig 1. not just to those

elements on the bottom row as is the case for a probability density function.

The quantity m(A) is a measure of that portion of the total belief committed exactly to A, where A is an element of 29
This portion of belief cannot be further subdivided among the subsets of A and does not include portions of belief committed to
subsets of A. Since belief in A certainly entails belief in all subsets of © containing A (i.e., nodes “higher” up in the network of
Fig. 1), it would be useful to define a function which computes a total amount of belief for each subset in ©  This function
applied to a subset in 29. A, would include not only belief committed exactly to A but to all subsets of A. Such a function, called

a belief function in the D-S model, is defined in the next section.

The quantity, m(G), is a measure of that portion of the total belief which is committed to ©, i.e. which remains

unassigned after commitment of belief to various proper subsets of ) For example, evidence favoring a single subset A need
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not say anything about belief in the other subsets. If m(A) =s and m assigns no belief to other subsets of 6, then m(0) = I-s.
Thus, the remaining belief is assigned to © and not to the negation of the hypothesis (equivalent to A%, the set-theoretic

complement of A), as would be assumed in the Bayesian model.

Examples

Ex. 1. Suppose there is no evidence concerning the specific diagnosis in a patient with known cholestatic
jaundice, i.e., a patient for whom © = {Cirr, Hep, Gall, Pan). The bpa representing ignorance, called the vacuous
bpa, assigns 1 to © = {Hep, Cirr, Gall, Pan) and 0 to every other subset of ©. Bayesians might attempt to represent
ignorance by a function assigning 0.25 to each singleton hypothesis ({Hep}, {Cirr}, {Gall}, and {Pan}), or by a
function apportioning the total belief in accordance with information regarding prevalence of the four disorders in
the population. As remarked before, however, such functions would imply more information given by the evidence
than is truly the case

Ex. 2. Suppose that the evidence supports, or confirms, the diagnosis of intrahepatic cholestasis = {Hep, Cirr}
to the degree 0.6, but does not support a choice between cirrhosis and hepatitis. The remaining belief, I-0.6 = 0 4,
is assigned to ©. The hypothesis corresponding to © is known to be true under the assumption of exhaustiveness
Thus, m({Hep,Cirr}) = 0.6, m(G) = m({Hep Cirr,Gall,Pan}) = 0.4 and the value of m for every other subset of O is 0.
Bayesians might have assigned the remaining belief to extrahepatic cholestasis {Galt,Pan}, the negation
(complement) of intrahepatic cholestasis, rather than to ©.

Ex. 3. Suppose that the evidence disconfirms the diagnosis of {Hep} to the degree 0 7 This is equivalent to
confirming that of {Cirr, Gall, Pan} to the degree 0.7. Thus, m{{Cirr, Gall, Pan}) = 0.7, m(O) = 0.3 and the value of
m for every other subset of 8 is 0 Note that the notion of disconfirmation does not have a clear correlate in
classical probability theory, the CF theory, for example, was developed largely in an effort to address the need to
define relationships between confirmation and disconfirmation.

Ex. 4. Suppose that the evidence confirms the diagnosis of {Hep} to the degree 0 8 Then, m({Hep}) =08,
m(G) = 0.2, and mis 0 elsewhere

2.3. Belief Functions
A belief function, denoted Be/, corresponding to a specific bpa, m, assigns to every subset A of © the sum of the

beliefs committed exactly to every subset of A by m For example

Bel({hep,cirr,pan}) =
m({hep cirr,pan}) + m({hep.cirr}) + m({hep.pan}) + m({cirr,pan}) + m({hep}) + m({cirr}) + m({pan})

Thus, Be/(A) is a measure of the total amount of belief in A and not the amount committed precisely to A by the evidence

corresponding to the belief function m.

This relationship may be clarified by referring to Fig 1 Note that the following observations follow from the definition

given
e Beland m are equal for singletons For example, Be/{{Hep}) = m{{Hep})

e Bei(A), where A is any other subset of O, Is the sum of the values of m for every subset in the subhierarchy formed
by using A as root. For example, Be!(intrahepatic cholestasts) = Bel({Hep.Cirr}) = m({Hep Cirr}) + m({Hep}) +
m({Cirr}).
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® Be/(G) is always equal to 1 since Bel(©) is the sum of the values of m for every subset of ©. This sum must be 1 by
definition of a bpa Clearly, the total amount of belief in © should be equal to the total amount of belief, 1, since the
singletons are exhaustive In Fig 1, this means that Bel(cholestatic jaundice) = Bel/(O) = 1.

To further illustrate, the belief function corresponding to the bpa of Example 2 above is given by Bel/(©) = 1.

Bel(A) =0.6, where A is any proper subset of © containing {Hep, Cirr}, and the value of Bel is 0 for every other subset of O

2.4. Combination of Belief Functions

The evidence gathering process for diagnosis requires a method for combining the support for a hypothesis, or for its
negation, based upon multiple, accumulated observations [14]. The D-S model also recognizes this requirement and provides
a formal proposal for its management. Given two boa’s, each with the the same frame of discernment O but based on two
different observations (e.g , two different inferential rules lending positive or negative support to the same or competing
hypotheses in an expert system), Dempster's combination rule shown below computes a new bpa which represents the impact

of the combined evidence.

Concerning the validity of thrs rule, Shafer writes that aithough he can provide “no conclusive a priori argument. . . . it
does seem to reflect the pooling of evidence " In the special case of a frame of discernment containing two elements,
Dempster’s rule can be found in Johann Heinrich Lambert’s book, Neues Organon, published in 1764 In another special case
where the two bpa's assign evidential support to exactly one and the same hypothesis the rule reducesto that found in the
MYCIN CF model and in Ars Conjectandi, the work of the mathematician James Bernoulli in 1713 It I1s based on intuition of how

evidence should combine, however, and not on any formal underlying theory

The Dempster combination rule differs from the CF combining function in the pooling of evidence supporting
mutually exclusive hypotheses For example, evidence supporting {Hep) reduces belief in each of the singleton hypotheses
-- {Cirr}, {Gall}, {Pan} -- and in any disjunction (subset of 0) not containing {Hep}, e.g. {Cirr, Gall, Pan}, {Cirr, Pan}, etc As
we discuss later, if the D-S model were adapted for use in an EMYCIN system, each new piece of evidence would have an
indirect impact on competing hypotheses, a feature not provided by the CF model The Dempster combination rule also differs
from the CF model in its approach to the assignment of belief in a hypothesis when confirming and disconfirming evidence is

pooled.

Let Bel,, Be12 and m, m, denote two belief functions and their corresponding bpa's, respectively. The D-S
combination rule defines a new bpa, denoted m,®m2, which represents the combined effect of m, and m,. The corresponding

belief function, denoted Bel1®Bel2, may then be computed from m,GBmZ by definition of a belief function.

The Dempster combining function, also knowr as Dempster’s Rule, suggests that m1EBm2 may be calculated from m,

and m, by considering all products of the form m1(X)m2(Y) where X and Y are individually varied over all subsets of & It can
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be shown that the resulting function is itself a bpa since the result of summing all such products is 1 by elementary algebra and

the definition of a bpa:

ZmXm,)=ZmX Zmy)=1x1=1

Oempster’s Rule states that the bpa representing the combination of m, and m, apportions the total amount of belief among
the subsets of © by assigning m,(X)mz(Y) to the set intersection of X and Y. Note that there are typically several different
subsets of © whose intersection yields the same subset of ©. In the cholestatic jaundice example of Fig. 1, for example, the set
{Hep, Cirr} will be obtained by intersecting {Hep, Cirr} with any superset of {Hep, Cirr}, by intersecting {Hep, Cirr, Pan} with
{Hep. Cirr, Gall}, etc. Thus, for every subset A of ©, Dempster’s Rule defines m1®m2(A) to be the sum of all products of the
form m'(X)mz(Y) where X and Y are selected from the subsets of © in all possible ways such that their intersection is A. The
commutativity of multiplication ensures that the rule yields the same value regardless of the order in which the functions are
combined. This is an important property since evidence aggregation should be independent of the order of its gathering The

following two examples illustrate the combination rule

Ex. 5. As in Examples 2 and 3, suppose that for a given patient, one observation supports intrahepatic
cholestasis = {Hep, Cirr} to degree 0 6 (m,) whereas another disconfirms hepatitis (i e , confirms
{Cirr, Gall, Pan}) to degree 0 7 (m2). Then our net belief based on both observations is given by m,®m2 For
illustrative purposes, an “intersection tableau” with values assigned by m, and m, along the rows and columns,
respectively, is a helpful device Only non-zero values assigned by m, and m, need be considered since if m,(X)
and/or m,(Y) is 0. then the product m,(X)mz(Y) contributes 0 to my@mz(A)' where A is the intersection of X and
Y. Entry i in the tableau is the intersection of the subsets in row i and column j. Clearly, a given subset of © may
occur in more than one location of the tableau The product of the bpa values is shown below in parentheses next
to the subset The value of m,@mz(A) is computed by summing the products in the tableau that are noted in
parentheses adjacent to each occurrence of A.

] m,
| {Cirr,Gall,Pan}(0 7) e(0.3)
_________ T
m , {Hep,Cirr}(0.6) | {Cirr}(0 42) {Hep,Cirr}(0.18)
0(0.4) | {Cirr,Gall,Pan}(0.28) 6(0.12)

In this example, each subset appears only once in the tableau and m, ®m2 is easily computed

m '@mz({Cirr}) =0.42
m'$m2({Hep.Cirr}) =0.18
m,®m2({Cirr,GalI.Pan}) =028
m,@mz(O) =012

m @m, is 0 for all other subsets of ©.

Since Bel,$8elz is fairly complex, we give only a few sample values

BeI,@BeIZ({Hep,Cirr}) = m1$m2({Hep Cirt}) + m’$m2({Hep}) 4 my@mz({Ccrr})
018 + 0+ 0 42
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= 0.60

Bel1@Belz({Cirr,Gall.Pan}) = m1®m2({Cirr.Gall,Pan}) + m’@mz({Cirr,GaH}) + m1$m2({Cirr,Pan})
+ my@mz({Gan,Pan}) + m,GBmz({Cirr}) + my@mz({Gall}) + m1@m2({Pan})
=028+0+0+0+042 +0+0
= 0.70

Bel,@Belz({Hep.Cirr,Pan}) = BeI1GBBe12({Hep.Cirr}) = 0.60
since m,@mz({Hep,Cirr.Pan}) = m'emz({Hep‘Pan}) = m,@mz({Cirr,Pan}) = 0.

In this example, the reader should note that m,@mz satisfies the definition of a bpa: Zm,@mz(X)z 1 where X varies
over all subsets of ©, and m,ﬂam?(ﬁ) = 0. We have already shown that the first condition in the definition of a bpa is always
fulfilled, i.e., the sum of the beliefs assigned to all subsets in © by the Dempster Rule will always sum to 1. However, the
second condition (viz. that a bpa assign 0 to the empty set) is problematic in cases where the “intersection tableau” contains
0. This situation did not occur in Ex. 5 because every two sets with nonzero bpa values always had at least one element in
common. In general, nonzero products of the form m1(X)m2(Y) will be assigned to O whenever X and Y have nonzero bpa

values but their intersection is the empty set

The D-S model deals with this problem by setting m,@mz(@) equal to 0 and normalizing the remaining bpa
assignments so that they continue to sum to 1.3 Thrs behavior is achieved by defining k as the sum of all nonzera values
assigned to 0ina given case (k = 0 in Ex. 5). Dempster then divides all other values of m1$m2 by 1-k. The revised values still

sum to 1 and hence satisfy that condition in the definition of a bpa. This approach is illustrated by the following example

Ex. 6. Suppose now that, for the same patient as in Ex. 5, a third belief function (mg) corresponds to a new
observation which confirms the diagnosis of hepatitis to the degree 0.8 (i e , suppose we have a combination of
examples 4 and 5). We now need to compute m3®m4.where m,= m1$m2 of Ex. 5.

| m, =m1®m2
| {Cirr}(0 42) {Hep.Cirr}{(0 18) {Cwr,Galt,Pan}0 28) ©(0 12)

m, {Hep}(0 8) | 2(0.336) {Hep}0 144) B(0 224) {Hep}(0.096)
0(0.2) | {Cirr}(0 084) {Hep CirrHO 036)  {Cirr,Gall,Pan}{0.056) ©(0.024)

In this example, there are two null entries in the tableau one assigned the value 0.336 and the other 0 224 Thus:
k=0.336+0.224=0.56and 1-x=0.44
m3®m4({Hep}) =(0.144 +0.096)/0 44 = 0.545

m3®m4({Cirr}) =0.084/0.44 = 0.191
m3®m4({Hep,Cirr}) =0.036/0.44 = 0.082

3 (]

This convention 1s intuitive N that it maintans the relatve Je efs ar org e es” of the hypotheses N 2 It should be noted. however, 'hat the normahzatior
convention 'S not supported N any theoretic sense and car lead 'o parad - « Zai be* 2. ¢ of the -rode” in certann settings [17). Some have argued that it wauld be ,ust aS
rationai to move the behef origirally assigned to & 10 &

10
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m:,@m‘({Cirr.Gall.Pan}) =0.056/0.44 =0.127
m ®m (6) =0.024/0.44 = 0.055

m3$m4 is 0 for all other subsets of ©.

Note that zmsﬂam‘(X) =1, as is required by the definition of a bpa.

2.5. Belief Intervals

After combining all bpa's with the same frame of discern/ment and then computing the belief function Bel defined by
this new bpa, how should the information given by Be! be used? Be/(A) gives the total amount of belief committed to the subset
A after all evidence bearing on A has been pooled However, the function Bel/ contains additional information about A, namely
Bel(A°), the extent to which the evidence supports the negation of A. The quantity 1 -Be/(A°) expresses the plausibility of A, i.e.,

the maximum extent to which the current evidence could allow one to believe A (note that this is not the same as Be/(A), the

extent to which the current evidence specifically supports A).

The information contained in Bef concerning a given subset A may be conveniently expressed by the interva!
[Bel(A), 1 -Bel(A%)]
It is not difficult to see that the left endpoint is always less than or equal to the right: Bel(A) < 1-Bel(A%), or equivalently, Bel/(A)
+ Bel(A%) < 1. Since Be/(A) and Bel(A%) are the sum of all values of m for subsets of A and A, respectively, and since A and

A° have no subsets in common, Be/(A) + Bel(A%) < b m(X) = 1 where X varies over all subsets of ©

In the Bayesian situation, in which Be/(A) + Be/(A°) = 1, the two endpoints of the belief interval are equal and the
width of the interval. 1 - Bel(A%) - Be/(A), is 0. In the D-S model, however, the width is usually not 0 and is a measure of the
belief which, although not committed to A, is also not committed to A®. It may be seen that the width is the sum of belief
committed exactly to subsets of © which intersect A but which are not subsets of A. If A is a singleton, all such subsets are
supersets of A, but this is not true for a non-singleton A To illustrate, let A = {Hep} and refer to Fig !

1 - Bel(A%) - Be/(A) = 1 . Bel{{Cirr,Gall,Pan}) Be/({Hep})

"

1 - {m{{Cirr.Gall,Pan}) + m({Cirr,Gall}}) + m({Cirr,Pan}) + m({Gall.Pan}) + m({Cirr})
+ m{({Gall}) + m({Pan})] - m({Hep})

m({Hep,Cirr}) + m({Hep.Gall}} + m({Hep.Pan}) + m({Hep,Cirr,Gall}) + m({Hep,Cirr,Pan})

H

+ m{{Hep,Gali,Pan}) + m(O)
Belief committed to a superset of {Hep} might, upon further refinement of evidence, result in belief committed to {Hep} Thus,
the width of the belief interval is a measure of that portion of the total belief 1, which could be added to that committed to

{hep} by a physician willing to ignore all but the disconfirming effects of the evidence

The width of a belief interval can also be regarded as the amount of uncertainty with respect to a hypothesis given

11
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the evidence It is belief which is committed to neither the hypothesis nor the negation of the hypothesis by the evidence The
vacuous belief function results in width 1 for all belief intervals and Bayesian functions result in width 0. Most evidence leads

to belief functions with intervals of varying widths where the widths are numbers between 0 and 1.

3. The Dempster-Shafer Theory Applied To Singleton Hypotheses

Despite the intuitive appeal of many aspects of the D-S theory outlined above, the enumeration of all subsets of 0 in
the application of the Dempster combining rule becomes computationally intractable when there are a large number of
elements in © (as is true for many real-world problems in which the evidence gathering scheme could otherwise be employed).
If we restrict the hypotheses of interest in 2% to0 the mutually exclusive singletons and their negations, however, Barnett has
shown that a linear time algorithm will permit rigorous application of the Dempster Rule [2]. In this section we show that one
expert system, MYCIN, can be viewed as a reasoning program in which the principal hypotheses are restricted to singletons
MYCIN will therefore be discussed to illustrate the applicability of the D-S theory in general and the relevance of the Barnett

formulation in particular

MYCIN's representation may be simply recast in terms of the D-S theory we have outlined A frame of discernment In
MYCIN, for example. is a clinical parameter (attribute) which may take on a range of values The possible values are mutually
exclusive and may therefore be seen as the competing hypotheses that make up the elements in ©.* This condition may be a

stumbling block to the model’s implementation in systems where mutual exclusivity does not generally hold

The belief functions which represent evidence in MYCIN correspond to the individual rules in the system’s knowledge
base. These are of a particularly simple form (the CF in a rule corresponds to the value assigned by a bpa to the hypothesis in
the rule’s conclusion based on the evidence in its premise). These features will now be discussed and illustrated with

examples.

3.1. Frames of Discernment

How should the frames of discernment for a reasoning system be chosen? Shafer points out [13] that.

It should not be thought that the possibilities that comprise © will be determined and meaningful independently
of our knowledge Quite to the contrary O will acquire its meaning from what we know or think we know; the
distinctions that it embodies will be embedded within the matrix of our language and its associated conceptual
structures and will depend on those structures for whatever accuracy and meaningfulness they possess

The “conceptual structures” in MYCIN, for example are the associative triples found in the conclusions of the rules
[3]. These have the form (object attribute value), 1 e , each triple corresponds to a singleton hypothesis of the form “the

attribute of object is value.” As mentioned previously, a frame of discernment would then consist of all triples with the same

4
Some parameters IN MYCIN car take 3 multiple /alues &g 'he cate s drug a.e:ges[3] n.t ve ~ ! be ‘ociissing nere an the :entra nferences in the syster:
such as an organism’ dentty which satisty the mutuai 2xciusivty egure.ent
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object and attribute.

For example, one frame of discernment is generated by the set of all triples of the form (Organism-I| Identity X),
where X ranges over ail possible identities of organisms known to MYCIN -- Klebsiella, E. coli, Pseudomonas, etc. Another
frame is generated by replacing “Organism-I” with “Organism-2". A third frame is the set of all triples of the form

(Organism-I Morphology X), where X ranges over all known morphologies -- coccus, rod, pleomorph, etc

Although it is true that a patient may be infected by more than one organism, these organisms are represented as
separate objects in MYCIN (not as separate values of the same parameter for a single object). Thus MYCIN's representation
scheme for the parameter that corresponds to its major classification task (i.e., the identity of an organism) complies with the
mutual exclusivity demand for frames of discernment in the D-S theory. Many other expert systems meet this demand less
easily. Consider, for example, how the theory might be applicable in a system which gathers and pools evidence concerning a
patient’s diagnosis. Then there is often the problem of multiple, coexistent diseases, i.e., the hypotheses in the frame of
discernment may not be mutually exclusive. One way to overcome this difficulty is to choose O to be the set of ail subsets of all
possible diseases. The computational implications of this choice are harrowing since if there are 600 possible diseases (the
approximate scope of the INTERNIST-1 knowledge base [11]), then |O] = 25% ang |29| = 22600! However, since the evidence
may actually focus on a small subset of 29, the computations need not be intractable because the D-S theory need not depend
on explicit enumeration of all subsets of 22 when many have a belief value of zero  An alternative would be to apply the D-S
theory after partitioning the set of diseases into groups of mutually exclusive diseases and considering each group as a
separate frame of discernment. The latter approach would be similar to that used in INTERNIST-I [11], where scoring and
comparison of hypotheses is undertaken only after a partitioning algorithm has separated evoked hypotheses into subsets of

mutually exclusive diagnoses.

3.2. Rules as Basic Probability Assignments

In the most general situation, a given piece of evidence supports many of the subsets of ©, each to varying degrees
However, the simplest situation is that in which the evidence supports or disconfirms only one singleton subset to a certain
degree and the remaining belief is assigned to & Because of the modular way in which knowledge is captured and encoded in

MYCIN, this latter situation applies in the case of its rules

If the premises confirm the conclusion of a rule with degree s, then the rule’s effect on belief in the subsets of © can
be represented by a bpa. This bpa would assign s to the singleton corresponding to the hypothesis in the conclusion of the
rule, call it A, and I-s to ©. In the language of MYCIN, the CF associated with this conclusion is s. Since there is no concept
equivalent to ©® in MYCIN, however, the remaining belief I-s, is left unassigned If the premise of a rule disconfirms the

conclusion with degree s, then the corresponding bpa would assign s to the subset corresponding to the negation of the

13
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conclusion, A, and I-s to ©. The CF associated with this conclusion is -s. Thus, we are suggesting that the CF's associated
with rules in MYCIN, and other EMYCIN systems, can be viewed as bpa's in the D-S sense Note, however, that MYCIN's rules
do not permit inferences regarding non-singleton hypotheses in 29. e g, the conclusion that an organism is either an E coli or
a Kiebsiella, which corresponds to the two element subset {E. coli, Klebsiella} Our suggested solution to this problem is

outlined in Sec 4.

3.3. Dempster’'s Rule Applied To Singleton Hypotheses

If we continue the analogy between CF's in MYCIN's rules and bpa's in the D-S theory, we can consider the use of
Dempster’s Rule for combining belief when two or more rules succeed and assign belief to the same or competing singleton
hypotheses. To illustrate, we consider a frame of discernment 8 consisting of all associative triples of the form (Organism-|
Identity X), where X ranges over all possible identities of organisms known to MYCIN. The triggering of two rules that affect

belief in such triples can be categorized in one of three ways
@ they may both confirm or both disconfirm the same hypothesis
e one may confirm and the other may disconfirm the same hypothesis

@ each may bring evidence to bear on different competing hypotheses

We describe the approach to each of these possibilities below

Category 1. Two rules are both confirming or both disconfirming of the same triple, or conclusion. For
example, both rules confirm Pseudomonas (Pseu), one to degree 0.4 and the other to degree 0 7. The effect of
triggering the rules is represented by bpa's, m, and m, where m1({Pseu}) = 0.4, m,(G) = 0.6, and
mz({Pseu}) =0.7, m,(0) = 0.3 The combined effect on belief is given by m1@m2. computed using the tableau
below:

| m,
| {Pseu}(07) 6(0.3)
m {Pseu}(0.4) | {Pseu}(0.28)  {Pseu}(012)
©(0 6) | {Pseu}(O 42) ©(0 18)

Note that k = 0 in this example, so normalization is not required (i.e., 1 -k = 1).

m,®m.({Pseu}) = 0 28 + 0.12 +0.42 = 0.82
m,®m,(6) = 0.18

Note that m’$m2 is a bpa which, like m, and m,, assigns some belief to a certain subset of ©, {Pseu}, and the
remaining belief to ©. For two confirming rules, the subset is a singleton; for disconfirming rules, the subset is a
set of size n-1, where nis the size of o5

5 ) .
Note that in this case Dempsters Ruie has provided the same result as would the arigira' cF combining function (M YCIN wauld also combine 04 ard 0 7 to ge! 0 82
see[14))
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Category 2. One rule is confirming and the other disconfirming of the same singleton hypothesis. For
example, one rule confirms {Pseu} to degree 0 4 and the other disconfirms {Pseu} to degree 0 8 The effect of
triggering these two rules is represented by bpa's m,m, where m_ is defined in the previous example and
ma({Pseu}°) =0.8, m,(0)=0.2 The combined effect on belief is given by m ,Gama.

| m,
| {Pseu}<(0.8) 6(0.2)
m, {Pseu}(0 4) | (0 32) {Pseu}(0.08)
©(0.6) | {Pseu}“(0 48) ©(0.12)

This time the tableau does contain the empty set as an entry; therefore k = 0.32 and 1 -« = 0.68.

m ®m, ({Pseu}) = 0.08/0.68 = 0.118
Cy —_
m,GBma({Pseu} ) = 0.48/0.68 = 0.706
m1€9m3(9) = 0.121068 = 0.176
m,®m3 is O for all other subsets of O

Given m, above, the belief interval of {Pseu} is initially [Bel ({Pseu}). 1-Bel’({Pseu}c)] = [0 4. 1]. After
combination with m_, it becomes [0.118, 0.2941. Similarly, given m_ alone. the belief interval of {Pseu} Is [0, 0 2]
After combination with m,, it becomes [0.118, 0.294].

As is illustrated in this example, an essential aspect of Dempster’'s Rule is the effect of evidence that supports a
hypothesis in 2%in reducing belief in other hypotheses in 29 that are disjoint from the supported hypothesis. Thus, evidence
confirming {Pseu}" will reduce the effect of evidence confirming {Pseu}; in this case the degree of support for {Pseu}, 0.4, is
reduced to 0.118. Conversely, evidence confirming {Pseu} will reduce the effect of evidence confirming {Pseu}®; 0.8 is
reduced to 0.706 These two effects are reflected in the modification of the belief interval of {Pseu} from [0 4, 1] to

[0.1 18, 0.294], where 0.294 =1 - Be/{({Pseu}) = 1 - 0 706.

Consider the application of the CF combining function (CF ) to this same situation 5t CFD is the positive

COMBINE

(confirming) CF for {Pseu}, and CFn is the negative (disconfirming) CF:
CF comame!CFp CF) = (CF_ + CF /(1. min{lCFpl.lCFnl})
= (s, - sp)/(1. min(s1.ss})
=(04-08)/(1.04)

= -0.667

bthe cF combining function show here nas beer used n EMYCIN systzms ‘or severa years but is siightly different from. the formula described in the originai CF
model [14] The re.ised empirically de’ ved functior prevents single aie zes if Lus * v@ ur egat ve e.derce fom overwhelming the effect of several pieces of evidence n
t h e opposite directicn T h e combiming functior remains unchange rui its X'gr a *urn howe /€’ wher applied lo twe 0eces of evidence that Ar€ ether both
confirming or both disc sntirm ng  See Chagter 10 of [3] or a more Jeta ‘el 32,83 °n of these pants
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Adapting this certainty factor to the language of the D-S theory, the result of the CF combining function is belief in {Pseu} and
{Pseu}‘ to the degree 0 and 0.667, respectively. The larger disconfirming evidence of 0 8 completely negates the smaller

confirming evidence of 0 4. The confirming evidence reduces the effect of the disconfirming from 0.8 to 0.667.

If one examines CF applied to combinations of confirming and disconfirming evidence as shown here, it is

COMBINE
clear that it results in a CF whose sign is that of the CF with the greater magnitude Thus, support for A and A€ is combined into
reduced support for one or the other In contrast, the D-S function results in reduced support for both A and A", a behavior

that may more realistically reflect the competing effects of conflicting pieces of evidence

The difference in the two approaches is most evident in the case of aggregation of two pieces of evidence, one
confirming A to degree s and the other disconfirming A to the same degree. The CF function yields CF = 0 whereas the D-S
rule yields reduced but nonzero belief in each of A and A®. We believe that the D-S rule’s behavior in this case is preferable on
the grounds that the notion of applying confirming and disconfirming evidence of the same weight should be different from that

of having no evidence at all

We now examine the effect on belief of combination of two pieces of evidence supporting mutually exclusive
singleton hypotheses The CF combining function results in no interaction between the beliefs in the two hypotheses and

differs most significantly from the D-S rule in this case.

Category 3. The rules involve different hypotheses in the same frame of discernment. For example, one rule
confirms {Pseu} to degree 0 4 (see m, in the examples from Categories 1 and 2) and the other disconfirms {Strep}
to degree 0.7. The application of the second rule corresponds to m,. defined by m‘({Strep}c) =0.7,m (0)=0.3.
The combined effect on belief is given by m,®m‘,

| m,
| {Strep}°(0.7) 0(0.3)
_______ [ e s e e e e e e e
m ,{Pseu)(o 4) | {Pseu}{(0.28) {Pseu}{0.12)
0(0.6) | {Strep}°(0 42) ©(0.18)

In this case K = 0 since the empty set does not occur in the tableau.

m ®m ({Pseu}) = 0.28 + 0.12 = 0.40
m, @m‘({Strep}C) = 0.42

m’@m4(0) = 0.18

m,@m‘ is O for all other subsets of ©
Bel,QBBe/‘({Pseu}) =0 40

Be! ®Bel ({Strep}?) = m ,®m ({Strep}©) + m, ®n. ({Pseu})
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0.42 + 0.40

u

= 0.82

Bel ®Bel ({Pseu}°) = Bel ®Bel ({Strep}) = 0

Before combination, the belief intervals for {Pseu} and {Strep}® are [0.4, 1] and [0.7, 1], respectively. After
combination, they are (0.4, 1] and {0.82, 1]. respectively Note that evidence confirming {Pseu} has also confirmed {Strep}®, a
superset of {Pseu}, but that evidence confirming {Strep}’ has had no effect on belief in {Pseu}, a subset of {Strep}°. This kind

of interaction among competing hypotheses is ignored by the CF model.

3.4. Evidence Combination Scheme

Although the calculations in Categories |I-3 in the previous section were straightforward, their simplicity is
misleading As the number of elements in © increases, Barnett [2] has shown that direct application of the D-S theory. without
attention to the order in which the bpa’'s representing rules are combined, results in exponential increases in the time for
computations. This is due to the need to enumerate all subsets or supersets of a given set For settings in which it s possible
to restrict the hypotheses of interest to singletons and their negations, Barnett has proposed a scheme for reducing the D-S
computations to polynomial time by combining the functions in an order that simplifies the calculations We outline this
scheme as it could be adapted to a reasoning system (such as MYCIN) in which evidence bears on mutually exclusive singleton

hypotheses.

Step 1. For each triple (i.e., singleton hypothesis), combine all bpa's representing rules confirming that value of
the parameter. Ifs,,sz.. ... s, represent different degrees of support derived from the triggering of k rules
confirming a given singleton, then the combined supportis 1 - (1-51)(1-32).,.(1-3’(). (Refer to the example in
Category 1 above for an illustration of this kind of combination. The formula shown here may be easily derived
and is identical to the combining function used in the original CF model). Similarly, for each singleton, combine all
bpa’'s representing rules disconfirming that singleton. The same combining function is used for this calcutation,
and the numerical beliefs can simply be associated with the negation of the singleton hypothesis, it 1s not
necessary to enumerate explicitly the elements in the set of size n-l (where nis the size of 0) that corresponds to
the complement of the singleton hypothesis in question. Thus, all evidence confirming a singleton is pooled and

. represented by a bpa and all evidence disconfirming the singleton (confirming the hypothesis corresponding to
the set complement of the singleton) is pooled and represented by another bpa We thus have 2n bpa's, half of
which assign belief to a singleton hypothesis and © (and which assign zero to all other hypotheses), the other half
of which assign belief to the negation of a singleton hypothesis and ©. Except for the notion of ©, this step is
identical to the original CF model’s approach for gathering positive and negative evidence into the total confirming
and disconfirming evidence respectively (MB and MD, see [14]).

Step 2. For each triple (singleton hypothesis), combine the two bpa’'s computed in Step 1. Such a computation
is a Category 2 combination and has been illustrated Formulae that permit this calculation without the
enumeration of any but the singleton subsets in 29 are derived in [2] and described with examples in [9] This step
results in the definition of n bpa's, one for each of the n singleton hypotheses Each bpa that results assigns belief
to a singleton hypothesis, its complement, and O while assigning zero to all other hypotheses
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Step 3. The final task is to blend all n bpa's from Step 2 into a single belief function. This can be accomplished
by combining the bpa’s derived in Step 2 in one computation, using formulae developed by Barnett to obtain the
final belief function Be/ [2]. Since these formulae allow computation of both the net belief in a singleton A and in
its negation AS, the belief interval [Be/(A), 1 -Be!(A%)] for each singleton hypothesis can then be computed

The details of Barnett’s approach are described in [2] In another publication, we have also provided the form of the
required computation and have shown an example based on a smal' MYCIN rule set [9]. Since the new method proposed in

the next section borrows only on Step 1 of the Barnett approach, we will not show the details of Steps 2 and 3 here.

4. The Dempster-Shafer Theory Applied To A Hierarchical Hypothesis Space
In a system in which all evidence either confirms or disconfirms singleton hypotheses, the combination of evidence
via the D-S scheme with Barnett’'s formulae can be computationally simple as outlined in the previous section. As we have

shown, a program such as MYCIN could be easily recast to use the D-S approach rather than the CF model 7

What attracted us to the D-S theory, however, and left us dissatisfied with the approach to singleton hypotheses
proposed by Barnett, is the theory’s potential for handling evidence bearing on categories of diseases as well as on specific
disease entities We are unaware of another model that suggests how evidence concerning hierarchically-related hypotheses
might be combined coherently and consistently to allow inexact reasoning at whatever level of abstraction is appropriate for
the evidence that has been gathered The pure D-S model provides such a method for handling the aggregation of evidence
gathered at varying levels of detail or specificity. Much of our frustration with the original MYCIN representation scheme and
the CF model resulted from their inability to handle such hierarchical relationships cleanly In recent years, a recurring theme
in Al has been the explicit representation of hierarchic relationships among hypotheses (e g, [812]) Thus the D-S scheme
might be especially suitable for handling uncertainty in such hierarchically organized networks The problem, as we have
emphasized, is the theory’s computational complexity due to the potential need to enumerate all subsets in 2%, Thus we have
sought a technique that allows the model’s use in a hierarchical hypothesis space while avoiding the exponential time
requirements that the theory otherwise would entail Since Barnett’s approach is applicable only when the space is limited to

singleton hypotheses and their negations, it will not serve our purposes

To illustrate the need for such a capability, consider the way in which hierarchic relationships in the MYCIN domain
were handled in that program. An example would be evidence suggesting that an organism was one of the Enterobacteriaceae
(a family of gram negative rods) The triple (hypothesis) for this conclusion was handled as (Organism Class

Enterobacteriaceae), i.e., the frame of discernment (the Class parameter) was different from that normally used for concluding

' Additional conventions simitar to those adopted .0 the CF mode' would be neeed befure the D-s approact could be used however For example, it would be
necessary to adopt some mechamism for propagator of yncertarly ra ry e che  fig er cronr ert  Barmett's suggestion [2] that MYCIN 1s ill-sutted to such as
implementation (due to its failure to sat'sfy the mutuai exclusivity requ.rement) refle s a misinde stand.ng of the program s represertator ard control mechamsms.
Mulitiple diseases are handled by instantiating each as a separate :gntes! (o€ ') will » a g er cortex” the requiremen's of singie valued parameters {attributes
assumed to take on precisely one Jalue) mamtain mutua exclus: .ty [3]
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the identity of an organism (the ldent parameter). There was no way for the system to reach conclusions about both singleton
hypotheses (e.g., Ident = E. coli} and supersets (e.g , ldent = Enterobacteriaceae) within the single Ident frame of
discernment. Thus the Class parameter was introduced to handle the latter case. The relationship between the Class
Enterobacteriaceae and the individual organisms that make up that class was handled using rules in which evidence for
Enterobacteriaceae was effectively transferred to Ident This was accomplished by assigning as the values of the Ident
parameter each of the bacteria on the list of gram negative organisms in that Class. The CF's assigned to the individual
organism identities in this way were based more on guesswork than on solid data The evidence really supported the higher
level concept, Enterobacteriaceae, and further breakdown may have been unrealistic In actual practice, decisions about
treatment are often made on the basis of high level categories rather than specific organism identities (e.g., “I'm quite sure that
this is one of the enterics [i.e., the Enterobacteriaceae], and would therefore treat with an aminoglycoside and a cephalosporin

[i.e., two types of antibiotic], but | have no idea which of the enteric organisms is causing the disease ").

Problems such as this would be better handled if experts could specify rules which refer to semantic concepts at
whatever level in the domain hierarchy is most natural and appropriate. They should ideally not be limited to the most specific
level -- the singleton hypotheses in the frame of discernment -- but should be free to use more unifying concepts. Because of
the complexity in the D-S theory’s approach to handling evidence, then, the challenge is to make these computations tractable,
either by a modification of the theory or by restricting the evidence domain in a reasonable way By taking the latter approach,
we have developed an algorithm for the implementation of the theory which merges a strict application of the D-S combining

function with a simplifying approximation.

4.1. Simplifying the Evidence Domain to a Tree Structure

The key assumption underlying our proposed approach is that the experts who participate in the construction of
large knowledge bases can define a strict hierarchy of hypotheses about which the reasoning system will gather evidence. In
D-S terms, we are suggesting that, for a given domain, only some of the subsets in 29 will be of semantic interest and that these
can be selected to form a strict hierarchy. In medical diagnosis, for example, evidence often bears on certain disease
categories as well as on specific disease entities In the simplified case of cholestatic jaundice discussed earlier, for which ©
= {Hep, Cirr, Gall, Pan}, evidence available to the physician tends to support either intrahepatic cholestasis = {Hep, Cirr},
extrahepatic cholestasis = {Gall, Pan}, or the singleton hypotheses {Hep}, {Cirr}, {Gall}, and {Pan}. The other nodes of 29
shown in Fig. 1 are not particularly meaningful notions in this context The network of subsets in Fig. 1 could thus be pruned to
that of Fig. 2, which summarizes the hierarchical relations of clinical interest The hierarchy of Fig 2 is a tree in the strict sense
- each node below 8 has a unique parent In the medical expert system known as MDX, the causes of jaundice have been
usefully structured in precisely this way [4]. We believe, as do others [12], that such a structuring is characteristic of medical

diagnostic tasks (as well as of many other problem-solving situations)
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Cholestatic Jaundice

Intrahepatic Cholestasis Extrahepatic Cholestasis

{hep} {cirr} {gall} {pan}

Figure 2 The Subsets of Clinical Interest in Cholestatic Jaundice

4.2. Evidence Combination Scheme for a Strict Hierarchy

We now propose a new three-step scheme for the implementation of the D-S theory in the situation in which the
hypotheses of interest have been restricted by domain experts to subsets which form a strict hierarchy It should be noted that,
in general, the negations of hypotheses in the hierarchy (i.e., their set complements) will not be in the tree For example,
{Hep}® = {Cirr, Gall, Pan} does not occur in the hierarchy of Fig.2 Thus, as did Barnett in his Step 1, we propose an approach
in which disconfirming evidence is handled computationally by associating it directly with the disconfirmed hypothesis rather
than by converting it to be manipulated as confirming evidence regarding the complement of the disconfirmed hypothesis The
first two steps in our approach are a strict application of the D-S theory, in which simple formulae can be derived due to the
tree structure of the hypotheses of interest In the first step all confirmatory evidence is combined for each node in the tree,
and the same is done for all disconfirmatory evidence This step is similar to the first step in Barnett’s approach (Sec 3 4)
except that the hypotheses are not restricted to singletons In the second step all confirmatory evidence is combined for the
entire tree. The third step is an approximation for combining disconfirmatory evidence Strict application of the D-S theory in

this step may result in an exponential time computation, whereas our approximation is computationally more efficient.

To illustrate these formulae, we use a slightly expanded version of the cholestatic jaundice tree depicted in Fig. 2.
Suppose we add to © a fifth cause of cholestatic jaundice, impaired liver function due to effects of oral contraceptives,
denoted Orcon = {Orcon}. This addition will permit us to better demonstrate the properties of the technique we are proposing.
Note that now © = cholestatic jaundice = {Hep Cuwr. Orcon, Gall, Pan} whereas intrahepatic cholestasis becomes the three
element subset {Hep, Cirr, Orcon} and has three direct descendents {Hep}. {Cwr}, and {Qrcon} This new tree is shown in

Fig. 3 with only the first letter of each singleton hypothesis used and commas and set brackets omitted for convenience of
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notation.

HCOGP

H C

Figure 3: The Expanded Tree of Cholestatic Jaundice

For the general case, we shall let T denote the set of all subsets (except for © itself) in the hierarchy of hypotheses
that has been defined by the domain expert Note that T is itself a subset of 29 However, it is convenient to think of T as simply
the hypothesis tree without 0. In our example, T is the set consisting of intrahepatic cholestasis, extrahepatic cholestasis. and
the five single disease entities --i.e., {HCO,GP,H.C,0.G,P}. Let T’ denote the set of all complements of subsets in T T' is also a
subset of 29. but the entities in T' will generally not be in T and hence are of interest only because they correspond to

negations of pertinent hypotheses. In this example, T' is the set {HCO®,GPS, H®,C°,0°.G°,P°}

Step 1. Using the combining functions described in Step 1 of Barnett's evidence combination scheme detailed
in Sec. 3.4, for each subset X' in T, combine all confirmatory evidence to obtain a bpa, m,., and all disconfirmatory
evidence to obtain another bpa, m, c 8 Note that m, can have a nonzero value on only X" and ©, m, con only X'C

. 1 . I 1
and ©. Using our example, we would thus compute the following bpa's: Moo Mapr My Mo My M My, My oC

Moo, Mc. mee, moc, mec, mc. Thus, chO(HCO) is the belief in intrahepatic cholestasis (i.e., HCO) after all
evidence confirmatory of this disease category has been combined. The remaining belief, 1 - mHCO(HCO), is

assigned to © Similarly, mHCOc(HCOC) is the total belief against intrahepatic cholestasis and 1 - mHCOc(HCOC) is

assigned to 6.

Our goal is to compute the single aggregate bpa that assigns net belief to all elements of T (by definition the only

hypotheses of semantic interest for the domain) by blending in the disconfirming evidence associated with the sets in T'. This

corresponds to the bpa
m, ®m &
1 2
where YI takes on the value of all subsets occurring in either T or T'. However, a strict application of the D-S theory in

determining this bpa will assign nonzero values to many subsets that are in neither T nor T’, precisely the event that we wish to

denotes

8
Note that we have introduced a variatior on the notatior Jsed up ' thes 5 nt 1. has Jer.ated the boa assaciated with the ith prece 0f evidence whereas mx
U
1

the bpa associated with the set X, after all evidence confirming X ha. beer s bired
i
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avoid in order to prevent the enumeration of all sets in 2% The technique we propose combines in an organized fashion the

bpa's just computed in Step 1 Through a simple assumption defined below (see Step 3), we avoid the generation of new

subsets.
We continue by observing that our aggregate final bpa can also be written as
mTQmT,
where
m, = mxl @mxz ®. . XET
and

_ ey
m, -mxl <:@m)(2 c®. ., X| €T

. The bpa, m,, has nonzero values on only O or subsets in T, i.e., on TUG, since the intersection of any two subsets in T is
either the empty set or in T (the smaller of the two subsets) This computation is therefore performed as Step 2

Step 2. Combine all confirmatory evidence by computing the aggregate bpa, m_, of the bpa's in Step 1 of the
form m,, where

m.= m)1( @mx ..., X'€T.

Note that m_ has nonzero value only on TUO In our example,

m. mHCOQmGPQmH®mc®mo$mG€BmP

The quantity, mT(HCO), is the belief in HCO (intrahepatic cholestasis) after combining all evidence confirmatory
of this disease category with all evidence confirmatory of every other disease category or entity in the tree

Note that the calculation in Step 2 does not include evidence &confirmatory of HCO or the other hypotheses in
T. That task in left to Step 3, i.e., the remaining problem is to compute mr®mr,. However, as mentioned earlier, if m_, is
computed by a strict application of the D-S combining rule, it has nonzero value on many subsets that are in neither T nor T'.
Even the aggregation of evidence disconfirmatory of a single subset in T (i.e , confirmatory of a single subset in T') with m,
leads to the generation of new subsets. For example, the combination of m_ with evidence disconfirmatory of hepatitis leads to
a bpa, mr@ch. which assigns belief to the diagnosis of CO, i.e. the set {Cirr, Orcon}.9 This set is not in the tree of Fig 3
because it was not originally defined to be of diagnostic interest. If this bpa is then combined with that representing evidence
disconfirmatory of cirrhosis, belief is assigned to the diagnosis of HO = {Hep, Orcon}. This set also is not in T. As more bpa's

are aggregated via the D-S combination rule, more subsets are generated which are not in T and thus not of diagnostic

interest. Hence, we make the approximation described in Step 3.

Step 3. Combine disconfirmatory evidence by step-wise combination of the mxc‘s in the following way
Choose any set X1° in T" and compute mremx ¢, which is an approximation to mTEBn'vx ¢ with the property that
mremx ¢ has nonzero value on only TUO Belidf assigned to a subset X by D is instead a'ssigned by © to the first
ancestof of X in T if X itself is not in T. Now choose another set, X2°, in T', and compute (mremx c)emx C.
Continue until all sets in T' have been chosen The result is an aggregate bpa in which belief assigned to'a set Alin

9 c C
Note that mTQch assigrs the guantity of be -ef mr(HCO;chtH to cCO HCO NH
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2@ by the D-S function is sometimes assigned instead to an ancestor of A in TUG. It may be shown (see
Appendix) that such an assignment is unique Belief is thus displaced upward in the tree in order to avoid
consideration of subsets not in T. Note that belief in A implies belief in B if B is a superset of A. The function, 8, is
order-independent except in an easily identifiable case (see Appendix).

To illustrate, belief assigned in the previous example to CO, a set not in the tree, is instead assigned to HCO, the
smallest set in the tree containing it. Belief assigned to HO is also assigned to HCO Note that disbelief in a
singleton, which is represented as belief in its complement, is assigned by the approximation as belief in © (unless
the complement happens to be in T).

As we have noted, the final bpa obtained by step-wise application of the function & in Step 3 differs from that
obtained by the D-S function in that some belief assigned to a given subset by the latter is assigned to an ancestor of that
subset by the former. Since belief in a subset of hypotheses implies belief in a superset of that subset, the upward
displacement of belief in the hierarchy seems to be a reasonable exchange for the computational simplicity of our

approximation method.

A final point is important to stress regarding the approach in Step 3. It should be clear that the scheme assigns all
belief to subsets in Tor to @ Thus, for A in T, Bel(A) can be computed by summing net belief in A with belief assigned to all its
descendents. However, it will not in general be possible to compute Bel(A°) since A€ will usually be in T but not in T. Thus the
notion of a belief interval, [Be/(A), 1-Be/{(A%)] is lost in the scheme we have proposed. Competing hypotheses would need to be

compared based upon Bel alone without regard to the width of the plausibility interval (see Sec 2.5)
In summary, the proposed evidence aggregation scheme is as follows

Step 1: Calculate m, for all XI in T and mxcfor all X'° inT.
1 i

Step 2: Calculate m. = m, ®&m, ®...forall X.in T.
1 2 !

Step 3: Calculate m,©m, c, then (m ©m, c)©m, c, etc. for all XIC inT.
1 1 2

Recall that Step 1 is accomplished using the technique described in Sect. 3.4 and does not require the assumption of the tree
structure of the domain or an approximation technique Steps 2 and 3 do depend upon the assumption of the tree structure,
however, and Step 3 requires the approximation outlined above. The formulae for the calculations in Steps 2 and 3 are given

below, with their derivations provided in an Appendix
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Step 2:

Km, (A)[Im () ‘if AET

XeT
XZA
mT(A) =

Knmx(e) ifA=0
XeT

where K = 1/(1-x) and.

1k = Z [m,(A) [T m(0)]
AET X&-I-
&pP*

Step 3:
There are different formulae in Step 3 depending upon which of three relationships hold between X and A -- XCA,
XNA =0, or XDA -- where X is a subset of TUO and A is a subset of T. In all cases, K =1/( 1 -x) where
K=m Ac(AC)ZmT(X)
XET
XeA
Case 1. XCA:
mTemA:(X) =Km_ (X)m c(6)

Case 2. XNA =0 (i.e , XNA® = X)

If XUA is a set in TUO:

mremAc(X) = K[mT(X) + mT(XUA)mAc(AC)]

If XUA is not in TUO:

m Om (X} = Km,.(X)
Case 3. XDA:

If XNASis not a set in T:

mremAc(X) = Km,(X)

IfXNA%isinT:
m Om,c(X) = Km_ (X)m,c(0)

-24



Gordon and Shortliffe

5. Conclusion

A major drawback for practical implementation of the Dempster-Shafer theory of evidence in reasoning systems has
been its computational complexity (and resulting inefficiency). Based on the observation that evidence used in diagnhostic
reasoning involves abstract categories that can often be naturally represented in a strict hierarchical structure, we have
designed a method for evidence aggregation based on the D-S theory. Using combinatorial analysis, a strict application of the

theory, and an approximation, we have presented an approach which is computationally tractable.

Some observers may question the value of using the D-S scheme rather than the CF model or some other ad hoc
method for handling uncertainty when dealing only with singleton hypotheses. Systems like MYCIN and INTERNIST-1 have
demonstrated expert-level performance using their current techniques for inexact reasoning [11, 16]. We have previously
suggested, in fact, that the details of a model of evidential reasoning in an Al system may be relatively unimportant since the
careful semantic structuring of a domain’s knowledge seems to blunt the sensitivity of its inferences to the values of the
numbers used '© Some have even suggested that evidential reasoning can be handled without the use of a numerical model at
all [5]. As was emphasized in Sec 4, however, it is the D-S theory’s techniques for managing reasoning about hypotheses in
hierarchic abstraction spaces that we have found particularly appealing. The failure of previous models to deal coherently with
these issues has led to unnatural knowledge representation schemes that require evidential associations among related

concepts to be stated explicitly rather than provided automatically by the hierarchic structure of pertinent domain concepts.

Directions for further work lie in the implementation and evaluation of our method in an actual reasoning system.
Additional conventions will need to be defined before this can be done For example, it is common for the evidence itself to be
of an uncertain nature, and partially supported hypotheses in one frame of discernment may themselves be used as evidence
to assign belief to hypotheses in another frame of discernment. This is a key feature of rule-chaining systems, for example,
where belief in the premise conditions of rules may be less than certain. The ad hoc methods being used currently (e.g , the CF
model’'s multiplicative convention [14]) may simply be borrowed for a D-S implementation. More interesting. perhaps, is the
issue of how best to use the belief in the hypotheses after the proposed scheme has been applied There is not likely to be a
“correct” approach to this problem because the nature of the actions based on evidence varies so greatly from one domain to
another. Heuristics may be devised, however, for using thresholding or relative belief measures to determine what level of
abstraction in the hypothesis hierarchy is most appropriately selected as the basis for a final conclusion or recommendation

from an advice system.

The techniques described here will be neither necessary nor adequate for all expert system application domains

Some tasks are well managed by purely categorical inference techniques, and others do not lend themselves to hierarchical

o
10

SEE chapter 10 of {3] for a discussion of this pont ard ar ar alysis of the ,ensitwity of MYCIN § conclusions to the CF values used IR IS rules As s discussed there.
MYCIN s performance can be shown to extremely insensitive ¢ rather wide .a: atiors in the CF $ assigned to its rules

25



Gordon and Shortliffe

domain structuring and the evidence gathering model of problem solving. However, for diagnostic or classification tasks in
settings where the hypothesis space is well suited to assumptions of mutual exclusivity and hierarchical organization, we
believe that our adaptation of the Dempster-Shafer theory holds great appeal as a computationally tractable and coherent

belief model.
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I. Appendix

We present here the details of Steps 2 and 3 in the proposed evidence combination scheme outlined in Sec. 4.

1.1. Step 2: Aggregation of Confirmatory Evidence

The bpa m, is the aggregate of all bpa's of the form, m, where X is a subset in T. Each m, has been obtained by
combining all confirmatory evidence for X For the following discussion we shall use A to refer to an arbitrary subset in TUG.
We now derive formulae for m, by first computing the normalization constant, K =1/(1-x), and then m,(A) for any subset A in

TUG

The Normalization Constant of m_

Recall that 1 «is the sum of all beliefs not attributed to the empty set. Thus, 1 -kis
EP&I\X(YX)
where Yx is either X (a subset in T) or © and the Yx's intersect to give a non-empty subset. For example, in the cholestatic
jaundice hierarchy of Fig. 3, two of the summands in 1 -x would be
mH(H)mC(G)mo(O)mG(O)mP(O)mGP(O)m (HCO)

HCO

m, (H)m (O)m (O)m_(O)m_(O)m__(O)m, . (O)

Note that once we choose YA = A for a specific A, then, in order to avoid the empty set as the final intersection, we must choose
all other YX = O except for descendents (subsets) or ancestors (supersets) of A. In the above example, once we chose YH =H,
we had to choose YX = 0O for all other X except for X = HCO, the one ancestor of H in T. For YHCO‘ we could choose YHCO as

either HCO or ©. Thus, we claim that

1x = Z[m (A I1 mx(e){:_“[mx(xumx(on}

Aet xeT
x2A XA
Since m,_has nonzero value on only X and O, mX(X) + mx(O) =1 for all Xin T. Thus, n[mX(X) + mx(e)] =1 and the above
kT
simplifies to *OA

1ok = ?T[mA(A) Mm o).
A€ xET
A

The two products given above for the cholestatic jaundice example would be represented in this expression by the

summand in the expression for 1-K formed by choosing A =H Because m___(HCO) + m__ (O) = 1, note that these two

HCO HCO

summands add to mH(H)mC(G)mO(O)mG(O)mP(O)mGp(O)

Computation of m,(A)

In order to derive a formula for m,(A), where A I1s any subset in TUG, we need to enumerate all products of the form
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ITm (Y,).
X' x
XeT
where Yx is either X (a subset in T) or © and the intersection of the Yx’s is A. For A =8, we must choose Yx = © for each X in

T. Thus,
©) = KITm_(©)
my et

For every A in T, we must choose YA = A for the factor mA(YA) since YA = © will in general make it impossible to
achieve a final intersection of A due to the tree structure of the subsets. If X is not an ancestor of A, then we must choose
Yy = O since Yx = X will yield an empty intersection for some subset of A. If X is an ancestor of A, then both Yx =X and Yx=©

will yield A as the intersection. Thus, we obtain

m_(A) = Km A(A)xl;l{nx(e) E T[mx(X) +m (0)].
»ZA XA

Once again, the indicated sum, and hence the last product, is 1 and the above simplifies to

m(A) = KmA(A){eIme(e).
*2A

For example, in our model of cholestatic jaundice from Fig. 3, the effect of all confirmatory evidence on belief precisely in

hepatitis is given by
mT(H) = KmH(H)mC(O)mO(G)mG(O)mp(G)mGP(e)
The effect on belief in intrahepatic cholestasis (i.e, HCO) is given by

m(HCO) =Km . (HCO)m, (B)m (B)m (O)m (0)m_ (B)m ().

HCO
1.2. Step 3: Aggregation of Disconfirmatory Evidence

As mentioned in Sec. 4, it is in this step that we first depart from a strict application of the D-S combining function in
order to avoid the assignment of belief to subsets which are neither in T nor T'. Our solution to this difficulty is an
approximation, mremAc. which assigns all belief to subsets in TUB; i.e., the subsets on which m, may have nonzero value
For example, in the hierarchy of Fig. 3, belief that would be assigned to CO is instead assigned to its smallest ancestor in T,

HCO. This is a justifiable assignment because,

® the subset CO is, by the domain expert's definition of T. not of diagnostic interest and so should not be assigned
belief

e evidence confirming a subset also logically supports supersets of that subset

@ there is a unique smallest superset due to the strict tree structure of the hierarchy defined by the subsets in T, i.e.,
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each subset in T has precisely one parent in T, except for those at the top of the hierarchy whose parent is ©

Thus, mremAc assigns mr(X)mAc(Ac) to XMNAS if XNAC lies in TUG and to X (which can be shown to be the unique

smallest superset in TUO containing XNAC) if not. We now derive formulae for mrem‘c.

Computation of Normalization Constant for the Modified Combining Function

This time we consider x, the sum of beliefs assigned to 0, instead of 1-x as we did in Step 2. Thus, we want a
simplified expression for
k= 2 m_(X)m c(Y,c)
XQTT A A .
where Y,c=A° or ® and XNY ¢ = 0. Clearly, X and Y, care not disjoint if Y,c = ©. # Y, c =A% then we must choose X = A or X a
subset of A to yield XﬂYAc= 0. Thus,
k= mAc(A°),2n_;J(X).
Re
X<A

Formulae for the Modified Combining Function

We derive formulae for mremAc(X) where X lies in TUG and therefore falls into one of three cases. We are looking in
each case for all sets in TUG which intersect with either A€ or © to give X. For purposes of illustration, consider the hypothesis

tree of Fig. 3 and the calculations necessary for combining evidence d&confirmatory of pancreatic cancer (A = P).

Case 1. XC A There is no subset in TUG that will intersect with A to give X so the only possibility is to choose
X and © to yield XNe = X. Thus,

m,©m c(X) = Km_(X)m,c(6).

In our example with A =P, the only set X in this case is X=A =P. Thus,

m ©m _<(P) = Km_(P)m_c(6).

Case 2. XNA = 0 (i.e., XNA®= X). Note that we may choose either X, A® or X, @ as pairs yielding an
intersection equal to X. Two subcases should be distinguished: that in which XUA is in TUG and that in which
XUA is not. For if XUA is in TUG, then we may also choose the pair XUA, A€ to yield X as the intersection. Thus,
in the first subcase:

m,rem LX) = K[mT(X)mAc(AC) + mT(X)mAc(G) + mT(XUA)mAc(Ac)]

This expression simplifies to

m. Om,c(X) = Klm(X) + mT(XUA)mAc(AC)]
since mAc(AC) +m,c(O) = 1.

In our example with A = P, the set G falls into this subcase and
C:
m Om_c(G) = KM (G) + m (GP)m_c(P7)].

The second subcase applies for all X in T such that X,A€ and X, are the only two pairs Yyielding an intersection
equal to X:
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m Om c(X) = K[mT(X)mAc(AC) + m (X)m,<(©)]
which simplifies to
mTemAc(X) = Km,(X)
since mAc(AC) + mAc(O) =1,
In our example with A = P, the subsets HCO, H, C, and 0 fall in this subcase and thus
mTGmP::(HOO) = KmT(HCO)
mTGmPc(H) = Km,(H)
mTGmPc(C) =Km,(C)
mTempc(O) = Km,(O)

Case 3. XDA In this case, the only pair yielding an intersection of X is X,0. However, consider the pair X,A°
whose intersection may or may not lie in T. If XNA® does not lie in T, it may be shown that X is the smallest
superset of XNAS containing XNA® and we assign m (X)m c(A%) to X. Then,

mTem 4o(X) = K [mT(X)m AC(AC) + mT(X)mAc(G)]
=K m,(X)

In our example, mTSmP:(0)= Km,(0), since mr(O)mPc(Pc) is assigned to ©, the smallest superset of P in TUO

If XNA® does lie in T. then m (X)m,c(A°) was assigned to XNA® in Case 2. Clearly, if XNAS s a subset in T,
XMA® falls into Case 2 since (XNA“)NA = 0 Thus, for XDA and XNACET:

mTGmAc(X) = KmT(X)mAc(G)
. In our example, mremp:(GP) = KmT(GP)mpc(O).

Optimal Ordering of Evidence Aggregation

It can be shown that the function © is order independent except in the case of evidence involving a subset A where
both A and its parent have exactly one sibling. In the hierarchy shown in Fig 3, for example, the configuration of concern
occurs when A is taken to be either G or P. In this situation, evidence involving the higher level subset GP should be combined
before that involving G or P. A small portion of the belief that would be assigned to G or P by the D-S function is correctly
assigned to G or P if disconfirming evidence mx € is aggregated first with the higher level subset and then with G and

P. However, it is assigned to GP, the parent of G and P, if the disconfirming evidence is aggregated with the lower level subsets

first.

Thus, a better approximation to the D-S function is obtained depending on the order for aggregation chosen in Step
3. However, this difference is insignificant in that the amount of belief involved is small and more importantly, it is only
displaced upward by one level from a subset to its parent Such upward displacement is a common result of the approximation
function anyway. Combining evidence in a breadth-first fashion, from higher to lower levels, will result in an optimal

approximation.
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