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1. INTRODUCTION

The cooperation of II proccss!H-s to solve a problem  is useful only if the following two

goals can bc achicvcd:

1. Efficient parallclization  of the compulalion  involved.

2. Efficient communicafioil  of partial results between processors.

Models of parallel computation that allow processors to randomly access a large shared

memory (c.g. PRAM) idcalizc communication and let us focus on the computation. Indeed,

they arc convcnicnt  to program and most parallel algorithms in the litcraturc use them.

Unfortunately,  no realization of such models seems fcasiblc in foresccablc technologies.

The only current fcasiblc model is a distributed syslem - a set of processors (RAMS) conncctcd

by some communication network. As thcrc is no shared memory, data items are stored in the

processors’ local mcmorics, and information can bc cxchangcd  bctwccn processors only by

mcssagcs. A processor can send or reccivc only one data item per unit time.

Let N bc the number  of processors in the system and 111 the number of data items. At

cvcry logical (c.g. PRAM) step of the computation, each processor  can specify one data item it

wishes to access (read or update). ‘I’hc cxccution time of the logical step is at icast the number

of machine steps rcquircd  to satisfy all thcsc rcqucsts in parallel.

To illustrate the problem,  assume m 2n *. A naive distribution of data items in local

mcmorics that uses no hashing or duplication will result in some local memory having at least

n data items. ‘I’hcn. a ~CIVCIX program can in CVCQ  step fbr~c all pro~~~sor~  to ~CCCSS  thcs~

particular datrr items. This will cause an Sl(/r) communication bottlcncck, cvcn if the commun-

ication network is complctc. This means that using n prvcessws  may no1 have an advarrlage

over using jusr one, even when computation is parallelizable!

WC thcrcforc see that it is a fundamental  problem  is to find a schcmc to organize the

data in the processors’ mcmorics such that information about any subset of tz data items can bc
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retricvcd and updated  in parallel as fast as possible.

This problem, called in scvcral rcfcrcnccs ‘the granularity problem of parallel memories’,

is discussed in numerous  papers. The survey paper by Kuck [Ku] mentions 14 of them, at1

solving only part of the problem as they tailor data organization to particular families of pro-

grams. For a gcncral purpose parallel machine, such as the NYU-Ultracomputcr (Gottlicb et

al. [GGK]), the PDDI machine (Vishkin [Vi]]), and others, one would clearly like a gcncral

purpose organization schcmc, that will be the basis of an automatic (compiler-like)  cfTicient

simulation of any program written for a shared memory model  by a distributed model.

If the number of data items, 111,  is roughly the number of processors, n, then the fast

parallel sorting algorithms, (AKS], and [IX], solve the problem. Howcvcr, WC argue that in

most applications this is not the cast. For example, in distributed  databases, typically

thousands of-processors  will perform transactions on billions of data items. Also, in parallel

computation, appctitc incrcascs with eating; the more processors WC can have in a parallel com-

putcrs, the larger the problems WC want to solve.

In a prob&ilistic scnsc, the problem  is solved cvcn for tn>n. Mclhorn and Vishkin

[MV] propose distributing the datn items using universal hashing. This guarantees that one

parallel rcqucst for n dat;r items will bc satisfied in cxpcctcd time O(*loglog  t, )- UPfal IUI

prcscnts a randomized  distributed  data structure that guarantees  cxccution of any scqucncc of

T parallel rcqucsts in O(T log rz) steps with probability tending to 1 as rl tends to 00.

lly cotrtrast,  if ttt >n, no dc/cntritri.rfic  upper bouttd bef/er lhan the trivial  0 (tt ) in known.

Mclhorn and Vishkin [MV]. who provide an cxtcnsivc study of this problem,  suggest keeping

several topics  of each data item. In their schcmc, if all rcqucsts arc” for ‘read’ instructions, the
1

‘easiest’ copy will bc read, and a\1 rcqucsts will bc satisfied in time O(kt?7)  whcrc m = nb.

When update  instructions arc prcscnt, they cannot guarantee time bcttcr than 0(/l), as all .

topics  of a data item have to bc updated.
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In this paper we prcscnt  a data organization scheme that guarantees a worst case upper

bound of 0(log n (loglog n)*), for any tn polynomial in n . Our schcmc also keeps several

copies of each data item. The major novel idea is that not all of these copies have to be updated

w it su_tfices  that a majority of them are. This idea allows the ‘read’ and ‘update’ operations  to

bc handled completely symmetrically, and still allows processors to access only the ‘easiest’

majority of topics.

Our schcmc is dcrivcd from the structure of a concentrator-like  bipartite graph [Pi]. It is

a long standing open problem to construct such graphs explicitly. Howcvcr, a random graph

from a given family will have the right propcrtics  with probability 1. As in the cast of

cxpandcrs  and supcrconccntrators (c.g. [Pi]) this is not a serious drawback, as the randomization

is done only once - when constructing the system.

. One immcdiatc application of the upper  bound is to the simulation of idcal parallel

computers  by fcasiblc ones. Since a bounded dcgrcc network can simulate a complctc  network

in O(log n) sfcps ([AKS). [IX]). a typical simulation result which is derived from our upper

bound is the following: Any n-processors I’/< AAd prograttt  ihat runs in T sops  can be sitttulared

by a bouttdcd  degree  rtelwork  of n processors (Ullracottlpuicr[~~~l)  rhaf runs in dc~ermitris~ic  lime

O( T(log  n )2(loglog  ti J2> skys

The schcmc WC propose  has very strong fault-tolcrancc properties,  which arc very dcsir-

able in distributed  systems. It can sustain up to O(log n) maliciously chosen faults and up to

(1- E)N random ones without any information or cfficicncy loss.

Finally WC dcrivc lower bounds Tar the cficicncy of memory organizations schcmcs.

WC consider  schcmcs that allow many topics  of each data item, as long as each memory cell

contains one copy of one data item. The redundancy  of such a schcmc is the avcragc number

of cop& per data item.

Our lower bound. gives a tndc-off bctwccn the cfiicicncy of a schcmc and its r&n-

dancy. If the redundancy is bounded, WC get an C2(trc)  lower bound on the cfIicicncy. This
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result partially explains why previous attempts, that considcrcd  only bounded  redundancy  failed

(MV], and why our scheme uses O(log n) topics  per data item.

WC also derive an a(s) unconditional lower bound on the eficicncy - almost

matching our O(log n(loglog  n)*) upper bound. This lower bound is the first result that

scparatcs models with shared memory from the fcasiblc models of parallel computation that

forbid it.

2. DEI+‘I  N I’I’IONS

To simplify the prcscntation, WC shall conccntratc  on simulation of the nvokes/ shared

memory model - the ‘f=.R!?W (Exclusive-Read  Exclusive-Write) PRAM, by the strongest distri-

butcd  system - a model cquivalcnt to a complctc network of processors. Extending this result

to a simulation of a the strongest PRAM model (the CRCW  PRAM) by a bounded  dcgrcc nct-

work of processors (an Ultracomputcr) rcquircs standard tcchniqucs, which WC shall mention  at

the end of section 3.

An EREW PRAM consists of n processors I’], . . . , I’,, (RAMS) which opcratc syn-

chronously on a set U of nr shared variables (or data items). In a single PRAM step, a proccs-

sor may perform some internal computation or access (read or update)  one data item. Fach

data item is acccsscd by at most one processor  at each step.

An MPC (Module  Parallel Computer) [MV] consists of n synchronous processors,

Pl, . . . , P,, , and n tttetnoty modules Ml, . . . , M,. IScry module  is a collection of memory

cel/& each of which can store a value of unc data item.

In each MPC step, a processor may perform some intcmal computation, or request  an

access to a memory ccl1 in one of the memory modules. From the set of processors trying to

access a specific module,  exactly one will (arbitrarily) bc granted  pcnnission.  Only this proces-

sor can conscqucntly  access (read or update)  exactly one ccl1 in this module.



task of each of the n processors in this instruction. The sub-instruction of the processor Pi can

bc either to exccutc some local computation, or to access (read or update)  a data item (shared

variable) ui f V. In the cast of an update, a new value vi is also assigned.

For the simulation, each data item uEV may have several ‘physical addresses’ or copies

in scvcral memory modules of the MPC, not all of which arc necessarily updated. :Lct P(u) be

the set of mod&s contiining  a copy of u. WC somctimcs rcfcr to T(u) also as the set of

topics  of u.

The esscncc of the simulation is captured by an organiza/ion  schetne S. It consists of

an assignment of sets r(u) to every UC V, togcthcr  with a ptvrocol for execution of

rcad/updatc  instructions (c.g. how many topics  to access, in what order, etc.). Both the assign-

mcnt and the protocol may be time dcpcndcnt.

A schcmc is cotrsis/ctt/  if after the simulation of cvcry PRAM instruction It, a protocol

to read data item u tcrminatcs with the vduc assigned to u by the latest previous write instruc-
.

tion.

The e~cicncy of a given schcmc S is the worst cast number of parallel MPC steps

rcquircd  to cxccutc one PRAM instruction (according to the protocol). Note that the worst

cast is taken over all possible  n-subsets of the set of data items V, and over all possible access

patterns  (mad/w ri tc).

Finally, WC d&c the redundancy  r(S) of S (at this step), to bc r(S) =
&I WI

WI
..

the avcragc number of topics  of a data item in the schcmc at this step.



3. UYPKR ROUNDS

Our main results arc given below.

THEOREM 3.1: If nt is polynomial in n lhen there exisls a consislenl scheme whose

efficiency is 0 (log n (loglog n >2>.  .

Thcorcm 3.1 is a special cast of:

I’HEOREM 3.2: There is a conslanl bo > 1, s 1. for ever) b 2 bo and c saksfLing

6’ 2 ttr*, there  exists a cotwistctrl  schrtnc wilh cflcietrcy

O(b[c  (log c)* + b log n log c]).

In our schcmc, cvcry item u E V will have exactly 2c - 1 topics, i.e. I r(u)1 =2c - 1.

F!.ach copy of a data item is of the form <value,  time-stamp>, before the cxccution of the first

instruction all the copies of cxh data item contain identical value and arc time stamped  9’.

WC will show later how to locate the topics  of each data item.

The prcjtocol Tar accessing data item u at the I’~ instruction is as follows:

1. To update u, access any c topics  in r(u), update their values and set t.hcir time-

stamp t0 1.

2. To read u, access atry c topics  in I’(u), and read the value Of the copy with the latest

timestamp.

This protocol complctcly symmctrizcs the r01cs of read and update instructions, and

gives a new application to the majority rule used in p’h] for concurrency  control of distributed

IXMMA 3.1: The scheme is cottsis/en&

PROOk’: WC say that a copy yj(U) of the data item u is updated after step I, if it con-

tains the value assigned to u by the latest previous write instntction.

From the fact that cvcry two c-sub& of T(u) have a non-cmpty intcrsckion, it follows
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by induction on I that when the simulation of every instruction II tcrrninatcs, at Iyst c topics

of cvcry data item u arc updated, thcsc topics  have the latest time stamp among all the topics

of u, and a read 11 protocol would rctum their value. 0

Let ui bc the data item rcqucstcd by Pi, l<i In, at this step. Recall that. c topics  in

T(u;) have to bc accessed in order to read or update ui. Denote the jfh copy in T(u) by yj(u).

During the simulation of t!lis instruction, wc will say that Yj(Ui) is alive if this copy was not

acccsscd yet.  Also, say that ui is alive if at least c topics  in T’(Ui) are still alive. Notice that a

rcqucst for ui is satisfied when Ui is no longer alive. At this point the protocol for accessing ui

can tcrminatc.

WC arc ready now tb dcscribc the algorithln.  WC start with an informal description.

Assume that the task of f’i is cithcr to read Ui or to update  its value to vi. Processors

will help each other to access thcsc data items according to the protocol. It turns out to bc

cfficicnt if at most fi data items arc proccsscd at a time. Thcrcforc,  WC shall partition the

set of processors into k = fi groups, each of sii?c 2c - 1. ‘I’hcrc will bc 2c phases to the

algorithm. In each of thc’phascs, each group will work, in parallel, to satisfy the rcqucst of oic

of its mcmbcrs. This will bc done as follows: ‘1%~ current distinguished mcmbcr, by Pi, will

broadcast its rcqucst (access Uir and the new value Vi in cast of a write rcqucst) to the other

mcmbcls of its group. Each of them will rcpcatcdly try to access a fixed distinct copy of ui.

After each step, the processors in this group will check whcthcr ui is still alive, and at the first

time it is not alive (i.c. at Icast c of its topics  wcrc acccsscd), this group will stop working on

Ui. If the rcqucst was for a read, the copy with the latest time stamp will bc computed and

sent to PI.

.

Each of the first 2c -1 phases will have a time limit, that may stop the processing of the

kk data items while some arc still alive. Howcvcr, WC will show that at most -2c 1 Ftom the k

items proccsscd in each phase will remain alive. Hence, aficr 2c - 1 phases at most k items



will remain. Thcsc will bc distributed,  using sorting, one to each group. The last phase, that

has no time limit, will handle them till all arc processed.

For the formal prcscntation  of the algorithm, let P(,-lxk -l)+i, i = 1, . . . ,2c - 1 denote

thcproccssorsingroupI.I=1,...,k. k _= A. The structure of the jth copy of the data

items u is, as bcforc, <VOlUej(U ), the - Shl??lpi(U )>.

Phase (i .limeJimif  ):
begin

I : = I proces.wr~no
2c - 1 1

f:=(I - lX2c - 1);
I’f+ i broadcast its request
[kdu/,i) or updatdu~+~,v~+J
to I’
d

+I* l l l 9 P /+2&

liv U/+i): = me;
count: = 0;
while livc(Ul+i)  end count < time-limit  do

count : = count+ 1:
Pf+j t&s t0 iKlCC!SS  Yj(Uf+i);

if permission granted then
if read rcqucst then

read < \WlUCj (U/ + i 1. /i/rtc-da/~t/)j  (u/ + i )>;
clsc (upda tc rcqucst)

<VtliUCj(u/+i),  tir,rc’,rkrr,tp(u/+I))  := <Vf +,.l>:
if less than c copies of u/ + i arc still alive then

liVc(U/+i)I= f&t?;
end while
if a read rcqucst then

find and send to /‘/+i the V~!UC with the
latest time-stamp;

end Phase i:

The algorithm:
begin

for i=l to 2c-1 do
run Phasc( i Jog, 4c):

( for a fixed q (to IX c;rlculatcd  la&),
thcrc am at most k live rcqucst at this

@lint of the algorithm]
sort the k’ live rcqucsts and route them to
the first proccssots in the k’ first groups,
one to each processor;
run Phasc( l,logq n);

end algorithm.

Consider  now one i&ration of the while loop in an cxccution of a phase in the algo-



rithm. The number of rcqucsts sent to each module during the cxccution of this iteration is

equal to the number of live copies of live data item this module  contains. The module  may

rcccivc all the rcqucsts togcthcr  and thcrcforc process only one of them, thus WC can only

guarantee  that the number of copies processed in each iteration of the while loop is equal to

the number of memory modulcs’containing live topics  of data items that wcrc alive bcforc this

iteration.

Let A C U dcnotc the set of live data items at the start of a given iteration. Let the set

I”(u )C r(u) dcnotc the set of live topics  of u f Cl at this time. Since u is alive, 1 J”(u) 1 2 C.

The number of live topics  at the start of this iteration is given by C 1 T’(u)1  . The number of
UEU

memory modules containing live topics  of live data items, and thus a lower bound for the

number of topics  proccsscd during this itcntion is given by 1 r’(A) 1 = I “Utir’(u) J .

WC first show that a good organization schcmc can guarantee that I I”(A) I is not too

small.

IXMMA 3.2: For cvcry b24, if 111 s (nJf Mt there is a way lo dislribufe /hef

each i/era/km of lhe ‘while’ loop I r’( A ) 1 2 +2c - 1).

PROOF: It is convcnicnt  to model the arrangcmcnt of the copies among the memory

models in terms of a bipatitc graph G(U,N,I:‘), whcrc V rcprcscnts the set of nr shared data

items, N the set of n memory modules, and l’(u), the set of neighbors  of a vcrtcx u f V

rcprcscnts the set of memory modules  storing a copy of the data item u. WC use a probabilis-

tic construction in order to prove the cxistcncc of a good memory allocation.

Let G,,H,C bc the probabilistic space of all bipartite  graphs G(U,N,B) SL

WI = nt, INI = tt and the dcgrcc of each vcrtcx u f U is 2c - 1. Give ail graphs in the

space equal probability.



-ll-

Say that a graph G( U,N ,I?) f G,,n,c, is ‘good’ if for all possible chokes of the sets

u%d : W)md, IrYdi 2c, u E V} and for all A C, V, I A I 5 fi, the inequality

I r’(A) I 2 i(2c - 1) I A I holds. This condition captures the property  that for any set A of

live data items,  no matter which of their topics  are still alive, the set of all the cdpics of data

1items in A arc distributed  among at least $2~ - 1) I A I memory modules.

Pr( GIG”,,, is no! ‘good’ ) < C

for m 5 (-b )t
(2e I4

.andb>4. ‘0

In what follows WC assume that the algorithm is applied  to a memory organization that

posscsscs  the propcrtics  proven in Lemma 3.2.

lXM M A 3.3: If /he number of live items al lhe bcginrting  of a phase is w (5 k ). lhen

afet /he@/ s Waliorrs  of /he while loop at most 2( 1 1- -$ w live copies remain.

WOOI?  At the beginning  of a phase thcrc arc w live items,  and all their topics arc

alive, so thcrc is a total of (2~ - 1)~ live topics. IBy Icmma 3.2, after s iterations, the number

of live topics  remaining is ,< (1 +2c-1)w. Since 1 J+‘(u)1 2 c for each live item, thcsc

can bc the live topics  of at most (1 - JY 7l 2c-1 w < 2(1- - -$ w .itcms. 0

COHOl,I,A HY 3.2: Ler q = (1 - 7l I-?

kI. Afler fhe fiMI log,,(4c - 2) iteralivns  of lhe while loop in a phase.  a! most 2~ five items

wnain  alive (eslablishes rhe facr lhar lhe last phase has 10 process no more lhan k request&

2. AjIer log,, 2k s log,, n ilemlions in a phase, no live items remaiu  (ejtublishcs Ihe coweclness

of Ihe last phase).
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To complcte  the analysis, observe that each group needs. during each phase to perform .
the following operations:  broadcast, maximum (for finding the latest time stamp) and summa-

tion (testing whether ui is still alive). Also, bcforc the last phase, all the requests that arc still

alive arc sorted.

LEMMA 3.4: Ally subsel of p pnxlessors of rhe MPC,  using only p of the memory

modules can perform maximum, summatiort,  arrd sorting of p elements arrd can broadcast one

message in 0 (log p) steps

PROOK ‘Ihc only non-trivial cast is the sorting and this can bc done  using Leighton’s

sorting algorithm [Le]. Cl

THEOREM 3.2: For every b 2 4. ifm s (&)i thert  lhere  exists a memory organ-e

&lion scheme with eficiency

O(bc(log  c)2 + b(log n&g c)).

PROOF: In each iteration of the while loop each processor pcrfims  up to ON a~~css

to a memory module, and c&h group of 2c - 1 prt~cssors computes the summation and the

maximum of up to 2c - 1 clcmcnts. Thus, each iteration takes O(log c) steps. The’ first 2c - 1

phascs’pcrform log, c itcmtion caeh, thcrcforc  togcthcr  they rcquirc

* (2c -1Xlog cy
I log tl 1

parallel steps.

The sorting bcforc the last phase takes O(log n) steps, and the last phase consists of

OUogqn) while iterations, hcncc rcquircs 0 ((log $1 Xlvg c 1) steps. As

1% t) = log (l-+)-I = O(i) the total number of steps is

O(bc(log  c)2 + b(log n)(log  c)). 0

WC mention  how to cxtcnd the result of this section to a simulation of a CRCW (con-

current read concurrent write) PRAM by an Ultracomputcr. The CKCW PRAM differs from
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the EREW PRAM (dcfincd in section 2) in having no restrictions on memory ace- When

several processors try to write into the same memory cell, the one with the smallest index

succeeds.

An Ultracomputcr is a synchronized network of n processors, connected together  by a

fixed bounded dcgrcc network. At each step each processor can send and receive only one

mcssagc, through one of the lines connecting it to a direct neighbor  in the network. The net-

work topology enables sorting of 11 keys, initially one at each processor, in O(log 111) steps.

WJKOR KM 3.3: Any prograttt  /hat rcquircs T steps on a CRCIV J’RAM wi!h  II proces;

sors and tn shared variables (tn polytlotnial in n), can be sitnulalcd  6)) an n processor Ultracorn-

putcr  wirhin O(T(log  tr)*loglog n) steps.

PROOF (sketch): Thcrc arc two logical parts to the simulation of each instruction.

Both parts relay on the capability of the Ultracomputcr to sort n items in O(log N) steps. The

first part (which involves prc- and post-processing)  implcmcnts a simulation of a CKCW

PRAM instruction by the F,Rl+W PRAM model. An O(log n) algorithm for this simulation is

dcscribcd in scvcral papers (c.g. [ViZ]). The second part simulates the MPC model on the

Ultracomputcr. WC use the local nrcmorics of the individual processors to simulate the MPC’s

memory mtdulcs. ‘I’hc only difficulty in this simulation is to gunrantcc that no processor (as a

module) rcccivc mom than one mcssagc at any step. ‘r0 achicvc that, the memory rcqucst arc

sorted bcforc each cxccution of the ‘while’ loop, and only one rcqucst for each memory

module  is cxccutcd. Each of the broadcast, minimum and summation computation rcquircs

. O(log n) steps on the Ultracomputcr instead of the O(log c) steps it rcquircs on the MPC.

Thus each CRCW PRAM instruction is simulated by O((log n)2loglog N) Ultracomputcr steps.

0

WC conclude  this section with some remarks:

1. Feult tolmncc: A variant of our schcmc, in which cvcry processor tries to access

(2- E)C topics  rather than c, guarantees that cvcn if up to (l- 2e)c of the copies of each data
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item arc dcstroycd by an adversary, no information or effrcicncy loss will occur.

2. Explicit construction: ‘Ihc problem  of explicit construction of a good graph in Gmr,c

remains open. This problem is intimately rclatcd to the long standing open problem  of explicit

construction of (tn ,rz)-concentrators (e.g. [DDPWJ), when m >n.

4. LOWER IIOUNDS

The fast pcrformancc  of the organization schcmc prcscnted above dcpcnds  on having at

least Oflog n) updated topics  of each data item, distributed  among the modules. A natural

question to ask hcrc is whcthcr this redundancy  in rcprcscnting the data items in the memory is

csscntial. In this section WC give a pos’ltivc  answer to this question.  WC prove a lower bound

relating the cff’icicncy of any organizrtion schcmc to the redundancy in it Using this trade-off

we derive a lower bound for any on-lint simulation of idcal models for parallel computation

with shared memory by fcasiblc models that forbid it.

WC assume without loss of gcncrality that each processor of the MPC has only a con-

stant number,  d, of rcgistcrs for intcmal computation. (This is no restriction as Pi can USC Md

as its local memory). In what follows WC consider  only schcmcs that allow a mcmdry ccl1 or an

internal rcgistcr to contain one value of one data item (no encoding  or compression  are

allowed).

TH KOH KM 4.1: The eflciency  of any organizaGon  schetne with m data ilena n

memory tnodulcs  and redundancy r is Q((T)2’).

PROOh’: Let S bc a schcmc wilh m data items, II modules, and redundancy  r. If the

cfftcicncy of the scheme S is less than some number h then thcrc is no set of n data items

such that all their updated  topics  arc conccntratcd in a set of h’*n modules. Othcrwisc, it

would have taken at lcast h steps to read thcsc data items, since only ot& data item can bc read

per step at each module.
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Recall that f is the average number of updated  topics  of a data items in th< q:(:heme.4 .

Thcrcforc,  there arc at least f data items with no more than 2r topics. At most dn out, of

these items appear in the internal rcgistcrs  of processors.

There  are $lnI I sets of h-b modules, and each set can store all the topics  of no

more than n - 1 data items. If a data item has at most 2r copies then all its topics  arc included
.

in at hst - 2r
I I
h!lll _ 2r sets of h % mod&s. Counting the total number of data items with

at most 2r topics  that arc stored by the schcmc, WC get

I 1h?l,, h-l)
I I-“1- 2r

zy-dn

h n-2r

which implies h = Q((:)*‘). 0

Using the result of thcorcm 4.1 WC can now dcrivc a lower bound for the on-line  simu-

lation of a PRAM program by the MPC model.

.In an on-lint simulation, the MIT is rcquircd  to finish cxccuting the I’~ PRAM instruc-

tion bcforc reading the I + I’*. Of course it can pcrfonn other operations  as well during the

cxccution of the lfh instruction, but thcsc can not dcpcnd  on future instructions.

WC shall assume, w.1.o.g.. that the initial value of all data items (and all MPC memory

1 cells) arc zero. Since WC have III data items and tt processors, it makes scnsc to consider

PRAM programs of length n(T). othcrwisc some items wcrc redundant.
1

THEOREM  4.2: Any on-line sitttulabotr  of T sleps of a PRAM wilh n processors and

m shared  variables on an MPC with n processors and n metnoty  modules requites

lo nQ( T g, parallel Mi’C stepsloglog n
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PROOF: WC will construct a PRAM program of length T as follows: The first T

instructions will assign new values to all the data items. Subsequent  instructions will alternate

between a hard read and a hard wrife  instructions.

. Consider  the redundancy St, of the schcmc after the cxccution of the ffh instruction. A

hard read instruction will csscntially implcmcnt  theorem 4.1 - it will assign processors to read n

items that all of their updated  topics  are condcnyd among a small number of modules. A

hard write instruction will assign new values to t.hc n items with the highest number of updated

topics. Clearly thcrc arc always n data items with at lcast r, updated  topics  (as nt>n)

For simplicity consider each pair of a hard read followed by a hard write as one PRAM

instruction. Let s, bc the number of MPC steps used while cxccuting the frh instruction. For

the first 7 = z instructions, at most c Sl
r=l

memory locations wcrc accessed,  and hence

r,S +,. 41). m ( = 1

Recall that r, is the redundancy  when WC start alternating reads and writes. Let
1

I>+. 13~ thcorcm 4.1, at Icast T*‘~--’ = p, -1 of tlrc s, M PC steps wcrc used by each

processor to cxccutc the hard read instruction. Hcncc, at most (sl - /II -l)n cells wcrc

I acccsscd for write instructions. Also, the value of n data items, with >r, -1 updated  topics

each, was changed,  thus, WC have

rf 5 r,-l + (~,-&-1--r,-l)-+
9

forr = 7+1,..., T. . .

Summing all thcsc incqualitics we get

5 rr 5 I ~+l~t-l  + *, ~+wLl-ct-l~*
1=7+1 = =

Using simple manipulation wc get:
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fr,+ i St2
z=r+l

ZrT + i f/L-l+r,_d,
f=r+l

and using (l),

T T

c s, = i 4 + c Sl 2
T

f=l r=l I=?+1
FrT+ c $2

1=7+1
ffr~ + T~l@l + r.12 ‘ii/St +rr

t=7 t=r.

Whcrc i s, is the total simulation time.
t = l

Let ‘; = ’ T&l be thc
(7-B’“) t=r

avcragc redundancy  in the last T- % steps. Notice

n

that P(r) = t-f-1’ is a convex function in r, for r20. Hcncc by Jcnscn’s inequality

[RV,21 l-2161,

‘$‘S, = T$l($ > (7’m,$e
t=r 1=r n n n

Hence,

$ s, 2 (T +~+(fi)fi)  = ).
r=l n

For ml.2 I?+c, and T 2 (1 +E)~,I , the simulation time is Cl(T=j. 0loglog I1

5. CONCLUSIONS

WC dcscribc a novel  schcmc for organizing data in a distributed  system, that admits

highly clljcicnt  rctricvirl and update  of information in pitrallcl.

This paper conccntratcs  on applications to synchronized  models of parallel computation,

and specifically  to the question of the rclativc power of deterministic models with and without

shared memory. Quite surprisingly, WC show that thcsc two families of models arc nearly

cquivalcnt  in power, and thcrcforc WC justify the USC of shared memory models in the design of

parallel algorithms.
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There  are other applications of our schcmc that we did .not pursue  in this paper. One

application is to probabilistic simulation. An interesting open  problem, which we are consider-

ing, is whcthcr  our scheme can improve the probabilistic results in [MV] or [I&

Another application WC did not pursue  here is to asynchronous systems. Although a

similar schcmc was suggcstcd in this context  m], we belicvc that the potential  of this idea was

not fully exploited there, and we plan to continue research in this direction. However, WC

believe that the new notion of consistency suggested by our scheme can have a major impact

on the theory and design of such systems. in particular for distributed  database systems. WC

intend  to continue research in this direction.
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