October 1984 Report No. STAN-CS-84- 1024

How to Share Memory in a Distributed System

by

Eli Upfal and Avi Wigderson

Department of Computer Science

Stanford University
Stanford, CA 94305

HOW OSHAREMEMORY| NADI STRI BUTEDSYSTEM

Eli Upfalt

Stanford Universi ty
Stanford, CA 94305

Avi Wigderson ¥

IBM Rcscarch Lab.
San-Jose, CA 95193

ABSTRACT

Wc study the power Of shared-memory in models of parallel computation. Wc describe
a novel distributed data structure that climinates the nced for shared memory without
significantly increasing the run time of the parallel computation. More specifically WC show
how a complctc network Of processors can dctcrministicly simulatc onc PRAM step in
O(log n (loglog n ») time, when both models USC # processors, and the size of the PRAM’s
sharcd memory IS polynomial in n. (The best previously Known upper bound was the trivial
O(n)). Wc also establish that this upper bounds is nearly optimal. Wc prove that an on-lint
simulation of 7 PRAM steps by acomplctc network Of processors requires £(T—?L—-I ; g" ~) time.

A simple conscquencc of the upper bound is that an Ultracomputer (the only currently
feasible gencral purposc parallel machine), can simulate onc step of a PRAM (the most con-
venicnt parallelmodel to program), in O((log # loglog n)?) steps.

Catcgorics and Subject Descriptors: C.1.2 [Processor Architectures]: Multiple Data Stream
Architectures (Multiprocessors) - Parallel Processors; 1D.4.2 [Operating Systems]: Storage
Managemen t - Distributed memories; 1).4.7 [Operating Systems]: Organization and Design -
Distributed Systems; F.1.2 [Computation by Abstract Devices): Modes of Computation - Paral-
lelism; Relations among Models:

General Terms: Algorithms, Theory

Additional Key Words and Phrascs: Parallel Computation, Theorctical Model, Feasible model,
Simulation bctween Models, Parallel Algorithm

A preliminary version of this work was presented at the 25th Annual Symposium on Foundations of Computer
Scicnce, Ilorida, October 1984.

Part of this work was donc whilc the authors were visiting U.C. Berkeley.
‘|' Rescarch supported by a Weizmann Post- l)octoml feliowship, and in part by DARPA Grant N00039-83-C

t Rescarch supported by DARPA Grant N00039-82-C-0235.

1.INTRODUCTION

The cooperation of # processors to solve a problem is uscful only if the following two

goals can bc achicvcd:
1. Efficient parallelization of the computationinvolved.
2. Efficient communication of partial resultsbetween processors.

Models of parallel computation that allow processors to randomly access a large shared
memory (c.g. PRAM) idealize communication and let us focus on the computation. Indeed,

they arc convenient to program and most parallel algorithms in the literaturc usc them.

Unfortunately, no realization of such modcls seems fcasiblc in foresccabl ¢ technologies.
‘The only current fcasiblcmodel is adistributed system - asct of processors (RAMs) connected
by some communication network. Asthere is no shared memory, dataitems are stored in the
processors’ local mecmorics, and information can bc exchanged bctwcecen processors only by

mcssages. A processor can send or receive only one dataitem per unit time.

Let n bc the number of processors in the system and m the number of data items. At
cvery logical (c.g. PRAM) step of the computation, each processor can specify one dataitem it
wishes t0 access (read or update). The exccution time of the logical step is at least the number

of machinc steps required to satisfy all these requests in paraticl.

To illustratc the problem, assume m >n2. A naive distribution of dataitems in local
mcmorics that uses no hashing or duplication will result insome local memory having at least
n data items. ‘Then, a perverse program can in cvery step force all processors to access these
particular data items. Thiswill cause an £(#) communication bottlcncck, even if the commun-
ication network iscomplctc. This means that using n processors may not have an advantage

over using just one, even when computation is parallelizable!

Woc thercforc see that it is a fundamental problem is to find a scheme to organize the

datain the processors’ mcmorics such that information about any subset of » dataitems can bc

-3-

retricved and updated in parallel as fast as possible.

Thisproblem, called in several rcferences ‘the granularity problem of parallel memories’,
is discussed in numerous papers. The survey paper by Kuck [Ku] mentions 14 of them, all
solving only part of the problem asthcey tailor data organization to particular familics of pro-
grams. For agcncral purpose parallel machine, such asthe NY U-Ultracomputcr (Gottlich et
al. [GGK]), the PDDI machine (Vishkin [Vil]), and others, one would clearly like a general
purpose organization schemc, that will be the basis of an automatic (compiler-like) cfficient

simulation of any program writien for ashared memory model by a distributed model.

If the number of dataitems, m, is roughly the number Of processors, n, then the fast
parallel sorting algorithms, [AKS], and [L¢], solve the probiem. Howcvcr, wc argue that in
most applications this is not the casc. For example, in distributed databases, typically
thousands of processors will perform transactions on billions of dataitems. Also, in parallel
computation, appetite increases With cating; the more processors WC can have in aparallel com-

putcrs, the larger the problems WC want to solve.

In a probabilistic SCNSC, the problem is solved cven for m>»n. Mclhorn and Vishkin

[MV] propose distributing the data items using universal hashing. This guarantees that onc
parallel request for n data items will bc satisfied in cxpccted time 0(%2%1). Upfal [U]

presents a randomized distributed data structure that guarantees exccution of any scqucncc of

T parallel requests in O(T log n) steps with probability tending to 1 as # tends to 0.

By contrast, if m>n, no deterministic upper bound betier than the trivial QO (n) in known.
Mclhorn and Vishkin [MV]. who provide an cxtcnsive study of this problem, suggest keeping

several copics Of each dataitem. In their schemc, if all requestsarc” for ‘read’ instructions, the

. 1-x
‘casicst’ copy Will be read, and all requests will be satisfied in time O(kn *) where m = n*,
When update instructions arc prcsent, they cannot guarantee time better than 0 (n), as all .

copics of adataitem have to bc updated.

-4-

In this paper we present a data organization scheme that guarantees aworst case upper
bound of O (log n (loglog n)?), for any tn polynomial in n . Our schcmc also keeps several
copies of cach dataitem. The major novel idea is that not all of these copies have to be updated
- it suffices that a majority of them are. Thisidea alowsthe ‘read’ and 'updatc’ operations to
be handled completely symmetrically, and still allows processors to access only the ‘ easiest’

majority of copics.

Our schemc isderived from the structure of aconcentrator-like bipartite graph [Pi]. It is
along standing open problem to construct such graphs explicitly. Howcvcr, arandom graph
from a given family will have the right propertics with probability 1. As in the casc of
expanders and supcrconcentrators (c.g. [Pi]) thisis not a serious drawback, as the randomization

isdonc only once - when constructing the system.

. Onc immediate application of the upper bound is to the simulation of ideal parallcl
computers by feasible oncs. Since a bounded dcgrec network can simulate @ complete network
in O(log n) steps ([AKS]. [l c]). atypical simulation result which is derived from our upper
bound isthe following: Any n-processors PR AM program that runs in T steps can be simulated

by a bounded degree network of n processors (Ultracomputer [Sc]) that runs in deterministic lime

O(T (log n ¥(loglog n) steps.

The schcme we propose has very strong fault-tolerance properties, which arc very desir-
able in distributed systems. It can sustain up to O (log n) maliciously chosen faults and up to

(1- €)n random ones without any information or cfficiency | oss.

Finally wc derive lower bounds for the cfficiency of memory organizations schemcs.
WC consider schemes that allow many copics of cach dataitem, aslong as cach memory cell
contains onc copy of onc dataitem. The redundancy of such a schcmc is the average number

of copies per dataitem.

Our lower bound. gives a tndc-off bctween the cfiicicney of a schemce and its redun-

dancy. If the redundancy is bounded, wc get an 2(1€) lower bound on the cfficicncy. This

-5-

result partially cxplains why previous attempts, that considered only bounded redundancy failed

[MV], and why our scheme uses O (log n) copics per dataitem.

Wc aso derive an §(l—o—lg-l%g—;) unconditional lower bound on the efficiency - almost

matching our O(log n(loglog n)?) upper bound. This lower bound is the first result that
scparatcs models with shared memory from the feasible models of parallel computation that

forbid it.

2. DEFINITIONS

To simplify the presentation, wc shall concentrate on simulation of the weakest shared
memory model - the EREW (Exclusive-Read Exclusive-Write) PRAM, by the strongest distri-
buted system - a model equivalent to a complete network of processors. Extending this result
to asimulation of athe strongest PRAM model (the CRCW PRAM) by a bounded dcgrcc net-
work of processors (an Ultracomputcr) requires standard tcchniquces, which wc shall mention at

the end Of section 3.

An EREW PRAM consists of n processors Py, . . ., P,, (RAMS) which opcrate syn-
chronously on asct U of m shared variables (or dataitems). In asingle PRAM step, aproces-
sor may perform some internal computation or access (read or updatc) onc data item. Each

dataitem isaccessed by at most one processor at cach step.

An MPC (Module Parallel Computer) [MV] consists of n synchronous processors,
Py, ..., P,, and n memory modules My, ..., M,. Every module is a collection of memory

cells, cach of which can storc avaluc of one dataitem.

In cach MPC step, a processor may perform some internal computation, or request an
access to amemory cell in onc of the memory modules. From the sct of processors trying to
access a specific module, cxactly one will (arbitrarily) bc granted permission. Only this proces-

sor can consequently access (read or update) exactly onc cell in this module.

6

The task of the MPC is to executc a PRAM program. This program is a sequcnce of
instructions /,, (=1,..., T. Each instruction is a vector of n sub-instructions, specifying the
task of cach of the n processors in thisinstruction. The sub-instruction of the processor P; can
be either to execute some local computation, or to access (read or update) a dataitem (shared

variable) ¥; € V. In the case of an update, anew value v; is aso assigned.

For the simulation, cach dataitem u € U may have several ‘ physical addresses’ or copies
in several memory modules of the MPC, not all of which arc necessarily updated. Let I'(w) be
the sct of modules containing a copy of u. Wc sometimes refer to I'u) aso as the set of

copics of U.

The essence of the sSimulation is captured by an organization schetne S. It consists of
an assignment of scts T'(u) to cvery u€ V, together with a protocol for execution of
read/updatce instructions (c.g. how many copics to access, in what order, etc.). Both the assign-

ment and the protocol may betime dcpendcnt.

A schemc is consistent if after the Simulation of every PRAM instruction /,, a protocol
to read data item u terminates with the value assigned to u by the latest previous write instruc-

tion.

The efficiency of a given schcmc § is the worst case number of paraliel MPC steps
required to cxccutc one PRAM instruction (according to the protocol). Note that the worst
casc istaken over all possibic n-subsets of the set of dataitems U, and over all possible access

patterns(rcad/writc).

S T

Finally, wc definc the redundancy r(S) of S (at this step), to bc r(S) = ueul T

the average number of copics of adataitem in the schcmc at thisstep.

3. UPPER BOUNDS
Our main results arc given below.

THEOREM 3.1: If mis polynomial in n then there exists a consisten! scheme whose
efficiency is 0 (log n (loglog n). .

Thecorcm 3.1 isa specia casc of:

THEOREM 3.2: There is a constant bg > 1, s & for ever) b 2 by and c satisfying

b > m?, there exists a consistent schrinc with efficiency

O(blc (log ¢» + b log n log ¢).

In our schemc, cvery item u € V will have exactly 2¢ — 1 copics, i.e. | T(u)| =2¢c - 1.
Each copy of adataitem is of the form <valuc, time-stamp>, before the exccution of the first
instruction all the copics of cxh data item contain identical value and arc time stamped ‘0°.

Wc will show later how to locate the copics of cach dataitem.
The protocol for accessing dataitem u at the +* instruction is as follows:

1. To updatc u, access any C copics in I'(u), updatc their values and sct their time-

stampitof.

2. To read u, access any C copics in I'(x), and read the value Of the copy with the latest

time-stamp.

This protocol completely symmetrizes the roles of read and update instructions, and
gives ancw application to the majority rule used in [Th] for concurrency control of distributed

databascs.
LEMMA 3.1: The scheme is consistent,

PROOF: Wc say that acopy v,(u) of the dataitem u is updated after step 1, if it con-

tains the value assigned to u by the latest previous write instruction.

From the fact that cvery two c-subsets of I'u) have a non-cmpty intcrscétion, it follows

-8-

by induction on I that when the simulation of every instruction /, terrninatcs, at feast C copies
of every dataitem u arc updated, thesc copics have the latest time stamp among all the copics

of u, and arecad « protocol would return their value. 0

Let u; be the data item rcqucested by P;, 1<i <n, at this step. Recall that. ¢ copies in
I'(4;) have to bc accessed in order to read or update u;. Denote the j* copy inT(u) by y;(u).
During the simulation of this instruction, wc will say that y;(y;) is alive if this copy was not
accessed yet. Also, say that y; isalive if at least € copies in T'(y;) are still alive. Notice that a
rcqucst for u; is satisfied when u; iS no longer alive. At this point the protocol for accessing u;

can terminate.
Wc arc ready now to describe the algorithin. WC start with an informal description.

Assume that the task of P; is cither to read «; or to update itS value to v;. Processors

will help cach other to access these data items according to the protocol. It turns out to bc

"_1 dataitems arc processed at atime. Thercfore, w shall partition the

efficicnt if at most
2c

sct Of processors into k = groups, cach of size 2¢ — 1. ‘1"hcrc will be 2¢ phases to the

n
2c—-1
algorithm. In cach of the phascs, cach group will work, in parallcl, to satisfy the requcst of or;c
of its mcmbcers. Thiswill bc done as follows: The current distinguished membcr, say P;, will
broadcast its rcqucst (access u;, and the new value v; in case of awrite rcqucst) to the other
members of its group. Each of them will rcpcatedly try to access a fixed distinct copy of ;.
After cach step, the processors in this group will check whether u; is still alive, and at the first
time it is not alive (i.C. at least c of its copics were accessced), this group will stop working on

;. If the rcquest was for a read, the copy with the latest time stamp will bc computed and

sent to P;.
Each of the first 2¢ -1 phases will have atime limit, that may stop the processing of the

k dataitems while some arc still alive. Howcvcer, wc will show that at most from the k

k
2c 1

items processed iN cach phase Will remain alive. Hence, after 2¢ — 1 phases at most k items

-9-

will remain. These will be distributed, using sorting, one to cach group. The last phase, that

has no time limit, will handle them till al arc processed.

For the formal presentation of the algorithm, let Pg_1y2c -1+, =L . . ., 2¢ — 1 denote

the processors in group I, I=Lk, Kk -2—c£:f The structure of the j* copy of the data

items u is, as bcforc, <value;(u), time — stamp;(u)>.

Phasc (i time_limit):
begin
[= [Lrocessor_no

2C
[i=0 - 1N2c - 1);
Iy +; broadcast itsrequest
[l’CZId(llf+,') or updatc(u/H.v_,H)]
t0Pr 41 ... Praze-1s
live(uy ;). = true;
count: = 0;
while live(us4;) end count < time_limit do
count ; = count+ 1:
Py, jtrics to access y;(ury;);
if pcrmission granted then
if recad rcqucst then
rcad<valuc;(uy +;), time_stamp;(us+;)>;
else (upda tc rcqucst)
Svaluei(uy ;). time_stampQuy 4)> := <vp 41,005
if less than ¢ copies of u, , ; arc still alive thea
livc(u/“-): =false;
end while
if arcad rcqucst then
find and scnd to P/ 4 ; the value with the
latest time-stamp;
end Phasc i;

Thealgorithm:
begin
for i=11to 2c-1 do
run Phasc(i.loggdc);
[for afixed g (to IX calculated later),
there arc at most k live rcqucst at this
point of the algorithm]
sort the k ”live requests and route them to
the first processors inthe k*first groups,
onc tocach processor;
run Phase(1,log, n);
end algorithm.

Consider now onc iteration of the while loop in an exccution of a phase in the algo-

-10-

rithm. The number of rcqucsts sent to each module during the execution of this iteration is
cqual to the number of live copies of live data item this module contains. The module may
reccive all the requcsts together and thercforc process only one of them, thus wc can only
guarantee that the number of copies processed in each iteration of the while 00p is equal to
the number of memory modulcs’ containing live copies of dataitems that were alive before this

iteration.

L.ct A C U dcnotc the set of live data items at the start of a given iteration. Let the set
I'(u)C () denotc the set of live copics of u € U at this time. Since u is alive, | J'(u) | > ¢.

‘The number of live copics at the start of this itcration is given by 3 | T'(«){ . The number of
u€U

memory modules containing live copies of live data items, and thus a lower bound for the

number Of copies processed during thisitcntion is given by [T(A) | = | |J T'(w) | .
u€A

Wc first show that a good organization scheme can guarantee that | 17 (A) | is not too

small.

<
LEMMA 3.2: For cvery 624, if m < ()2 then there is a way {o distribute the

b
(2e)
2c =1 copies of each of the m shared data items among the n modules s.t. before the start of

each iteration of the While”loop |T'(A4)|> -I-%—L(Zc— 1).

PROOF: It is convenient to model the arrangement of the copies among the memory
modcls in terms of a bipatitc graph G(U,N.I), where V rcpresents the set of m shared data
items, N the sct of » memory modules, and T'(u), the set of ncighbors of a vertex u € V
rcpresents the set of memory modules storing a copy of the dataitem u. Wc use a probabilis-

tic construction in order to prove the cxistcnee of a good memory alocation.

Let Gpa. be the probabilistic space of all bipartite graphs G(U,N.E) st
JU| = m, |N| = nand the degree of cach vertex u € U is 2¢ - 1. Give ail graphsin the
spacc equal probability.

-11-

Say that agraph G(U N ,E) € G ., 1S good’ if for al possible chokes of the sets

{T'u):T'W)Clr), T w)|2c,u €V} andfordl ACU,| 4] < < the incquality

1

IT'(4) |2 —}J—(Zc - 1) | 4] holds. This condition capturcs the property that for any set A of
live data items, no matter which of their copies are still alive, the sct of all the copics of data

itemsin A arcdistributed among at lcast %(2c —1)| 4] memory modules.

Pr{ G€G, . is not good”} < S ("') [(20-1] I_Zf_:l_)ﬂ] 'll),
<E-n
for m<(()4)2 and b>4. O

In what follows wc assumc that the algorithm is applied to a memory organization that

posscsscs the propertics proven in Lemma 3.2,

LEM M A 3.3: If the number of live items at the beginning of a phase is w (< k). then
afier the first s iterations of the while loop at most 2(1 - -i—)’ w live copies remain.

PROOV: At the beginning of a phase there arc w live items, and all their copics arc
alive, so there is atotal of (2c —)w live copics. By kemma 3.2, after s itcrations, the number

of live copics remaining is< (1 —%)‘(Zc'—l)w. Since | I'(w)| 2 ¢ for cach live item, these

can be the live copies of at most (1—%)2—51-\7‘\/ < 2(1-—-)‘w ittms. O

COROLLARY 3.2: Let 5= (1 ~ %)-1,

I. Affer the first log,(4c — 2) iterations of the while loop in a phase, at most five items

k
2c~-1
remain alive (establishes the factthat the last phase has fo process no more than k requests).

2. Afier 10g,, 2k < log,, n iterations in a phase, nolive items remain (establishes the correctness

of the last phase).

-12-

To complete the analysis, observe that each group needs during cach phase to perform:
the following operations: broadcast, maximum (for finding the latest time stamp) and summa:
tion (testing whether ; is still alive). Also, before the |ast phase, al the requests that arc still

alivearc sorted.

LEMMA 3.4: Any subset of p processors of the MPC, using only p of the memory
modules can perform maximum, summation, and sorting of p elements and can broadcast one

message in O (log p) steps

PROOI: The only non-trivial casc isthe sorting and this can be donc using L.cighton’s

sorting algorithm [Le]. O

b
(2e)*

£
THEOREM 3.2: For every b 2 4. if m < ()2, then there exists a memory organ-

&lion scheme with efficiency

O(bc(log ¢)? + b(log nXlog ¢)).

PROOF: In cach iteration Of the while loop cach processor performs up to one access
to a memory module, and cach group of 2¢ — 1 processors computes the summation and the
maximum of upto2c¢-1cl cments. Thus, cach iteration takes O(log C) steps. The first2c— 1
phascs pcrform log, ¢ iteration cach, thercfore together they require

0 (2c —1Xlog c)?
| log 9

paraliclsteps.

The sorting bcforc the last phase takes O(log n) steps, and the last phase consists of

O(logyn) while iterations, hence requires O((logynXlog c)) steps. As
log 9 = log (l—%)‘l = 0(%) the total number of steps is

O(bc(log ¢)* + b(log nXlog c)). O

Wc mention how to extend the result of thissection to a simulation of a CRCW (con-

current rcad concurrent writc) PRAM by an Ultracomputcr. The CKCW PRAM differs from

-13-

the EREW PRAM (dcfincd in section 2) in having no restrictions on memory acccs When
several processors try to write into the same memory cell, the one with the smallest index

succeeds.

An Ultracomputcr is a synchronized network of n processors, connected together by a
fixed bounded dcgrcc network. At cach step cach processor can send and receive only one
mcssagc, through onc of thelines connecting it to a direct neighbor in the network. The net-

work topology enables sorting of # keys, initially one at each processor, in O(log n) steps.

THEOR KM 3.3: Any program that requires T steps on a CRCW PRAM with n proces-
sors and tn shared variables (m polynomial in n), can be simulated by an n processor Ultracom-

puter within O(T (log n)?loglog n) steps.

PROOF (sketch): There arc two logical parts to the simulation of cach instruction.
Both parts relay on the capability of the Ultracomputcr to sort n items in O(log n) steps. The
first part (which involves prc- and post-processing) implements a simulation of a CKCW
PRAM instruction by the EREW PRAM modecl. An O (log n) algorithm for this simulation is
described in several papers (c.g. [Vi2]). The sccond part simulates the MPC modc! on the
Ultracomputcr. WC use the local memories of the individual processors to simulate the MPC’s
memory mtdulcs. ‘I he only difficulty in this simulation is to gunrantcc that no processor (aSa
module) rcccive more than one messagce at any step. To achicve that, the memory requcst arc
sorted before cach exccution of the ‘while® loop, and only one rcqucst for cach memory
module is cxcecuted. Each of the broadcast, minimum and summation computation rcquircs
. O(log n) steps on the Ultracomputcr instead of the O(log ¢) steps it rcquircs on the MPC.
Thus cach CRCW PRAM instruction issimulated by O ((log nPloglog n) Ultracomputcr steps.

O
Wc conclude thissection withsome remarks;

1. Fault tolerance: A variant of our schcmce, in which every processor tries to access

(2- €)c copics rather than ¢, guarantecs that even if up to (1— 2€)c of the copies of cach data

-14-

item arc destroyed by anadversary, no information or efficiency losswill occur.

2. Explicit construction: The problem of explicit construction of agood graph inGy, ,
remains open. This problem iSintimately related to the long standing open problem of explicit

construction of (in,n)-concentrators (€.g. [DDPW]), when m >n.

4. LOWER BOUNDS

The fast performance of the organization schcmc presented above depends on having at
least O(log n) updated copics of cach data item, distributed among the modules. A natural
qucestion to ask here iswhether thisredundancy in rcpresenting the dataitems in the memory is
cssential. In this section WC give a positive answer to this question. WC prove alower bound
relating the cff’icicncy of any organization schcmc to the redundancy in it Using this trade-off
we derive alower bound for any on-lint simulation of idcal models for parallel computation

with shared memory by feasible models that forbid it.

Woc assume without loss of gencrality that each processor of the MPC has only a con-
stant number, d, of registers for internal computation. (This is no restriction as P; can UsC M;
asitsloca memory). In what followswc consider only schemes that allow amemdry celi or an
internal register to contain onc value of onc data item (no encoding or compression are
allowced).

TH EOR EM 4.1: The efficiency of any organization scheme with m data items, n

1
memory modules and redundancy r is Q((%)z')-

PROOY: Lct § bc a scheme with m data items, # modules, and redundancy 7. If the
cfficiency of the scheme S is less than some number h then there is no set of n data items
such that all their updated copics arc concentrated in a set of A~!n modules. Otherwise, it
would have taken at Icast h steps to read these dataitems, since only one dataitem can bc read

per step at cach module.

-15-

Recall that r is the average number of updated copics of a data items in the Echeme.

Therefore, there arc at least —'21'— data items with no more than 2r copics. At most dn out' of

these items appear in the internal registers of processors.

There are I’ I',| sets of A~1n modules, and each set can store al the copics of no

morethan n — 1 dataitems. |If adataitem has a most 2r copies then al its copies arc included

n-2r

IN at least |h‘1n o

]scts of h ~'n modules. Counting the total number of data items with
at most 2r copics that arc stored by the scheme, wc get

[h ﬂ"](n -1

n-2r
h=ln — 2r

m
Zz—dn

1
which implics h = ﬂ((";':')z’). O

Using the result of theorem 4.1 wc can now derive alower bound for the on-line sSimu-

lation of aPRAM program by the MPC modcl.

In an on-lint simulation, the MPC is required to finish exccuting the 1" PRAM instruc-
tion before reading the ¢ + 1. Of course it can perform other operations as well during the

exccution of the (™ instruction, but these can not depend on future instructions.

Wc shall assume, w.Lo.g.. that the initial value of all dataitems (and all MPC memory

- cells) arc zero. Since WC have m data items and n processors, it makes sense tO consider

PRAM programs of length 9(%), otherwisc some items were redundant.

THEOREM 4.2: Any on-line simulation of T steps of a PRAM with n processors and

m shared variables on an MPC with n processors and n memory modules requites

T 1) harallel MPC steps
‘loglog n

-16-

PROOF: Wc will construct a PRAM program of length T as follows: The first %

instructions will assign new values to all the dataitems. Subscquent instructions will alternate

between a hard read and a hard wrife instructions.

Consider the redundancy -r, of the scheme after the execution of the (# instruction. A
hard read instruction will essentially implement thcorem 4.1 - it will assign processorstoread n
items that al of their updated copics are condensed among a small number of modules. A
hard write instruction will assign new values to the nitems with the highest number of updated

copics. Clearly there arc always n dataitems with at |cast r, updated copics (aSm»n)

For simplicity consider cach pair of a hard read followed by a hard write asonc PRAM

instruction. Let s, bc the number of MPC steps used While executing the ¢ instruction. For

— . . T -
the first 7 — % instructions, at most 3, s, memory locationswere accessed, and hence
=1

<=y Q)
S ‘Els,.

Recall that r, is the redundancy when WC start alternating reads and writes. Let

1
(>r = —"1:— By thcorem 4.1, at lcast p 21 = B, -1 of the s, M PC steps were used by cach

processor t0 cxccutc the hard read instruction. Henee, at most (s, — 8, —1)n cells were
accessed for write instructions. Also, the value of n dataitems, with >r, _; updated copics

each, was changed, thus, wc have

n
n<n_y+ (Sx—ﬂt-l"'}—l)',';;"
A]

fort =++1,...,T...

Summing all thescincqualitics we get

T T n I
SnL Y nat— 3 -Bia-n-p
t=7+1 t =r+l t=7+1

Using simple manipulation wc get:

-17-

T
Bt T a2 o+ 3 Birtnod,

t=71+1 t=7+1
and using (1)
T L4 T m T m T-1 T-1
E =X 8+ X252t 3 52— ms XBin)2 3T Bi+n
=1 =1 t=1+1 n t=7+1 n t=7 t=7-

T-1
Let7 = # 3 n, be thc average redundancy in the last T- stcps Notice

()l'r

1
that B(r) = (—'3)" is a convex function in r, for r20. Hcnee by Jenscn's incquality

[RV,211-2161,

Hence,

m

T 1; 0
3 5 2 (T=-Z2Xr+(2)?) = o7 - Z)—2-),
=1 n n Iogk)g%

For m > n*reand T > (1 +s)—- the smulanonumclsﬂ(’rrl;-’l%g—") o

5. CONCLUSIONS

WC describe a novel scheme for organizing data in a distributed system, that admits

highly cficient retricval and update of information in parallel.

This paper concentrates on applications to synchronized modcls of parallel computation,
and specifically to the question of the relative power of deterministic models with and without
sharcd memory. Quite surprisingly, wc show that these two familics of models arc nearly
cquivalent in power, and thercforc wc justify the usc of shared memory models in the design of

parallel agorithms.

-18-

There are other applications of our schcmce that we did .not pursue in this paper. One
application is to probabilistic smulation. An interesting open problem, which we are consider-

ing, is whether our scheme can improve the probabilistic resultsin [MV] or [U].

Another application wc did not pursuc here is to asynchronous systems. Although a
similar scheme was suggested in this context [Th], we belicve that the potential of this idea was
not fully exploited there, and we plan to continue research in this direction. However, we
believe that the new notion of consistency suggested by our scheme can have axixajor impact
on the theory and design of such systems, in particular for distributed database systems, WC

intend to continue rescarch in this direction.

ACKNOWLEDGMENTS:

Wc thank Dick Karp for helpful discussions, and Edna Wigdersn, Oded Goldreich, and

David Shmoys for their comments on carlicr version of this paper.

REFERENCES

[AKS]

[AIS]

[DDPW]

[GG]

[GGK]

(Ku]

L4

(MV]

[Pi]
[RV]

M. Ajtai, J. Komlos and E. Szcmeredi. An O(log n) sorting network. Proc. of the
Fifieenth ACM STOC, 1983. 1-9.

B. Awcrbuch, A. Isragli and Y. Shiloach. Efficient simulation of PRAM by Ultra-
computer. Preprint, Technion, Haifa, Isragl. 1983.

D. Dolev, C. Dwork, N. Pippenger, and A. Wigderson. Superconcentrators, gen-
eralizers and gencralized connectors with limited depth. Proc. of the Fifteenth

ACM STOC, 1983. 42-51.

0. Gabber and Z. Galil. Explicit construction of linear-sized superconcentrators. J.

Comp. and Sys. Sci. 22, 1981.407-420.

A. Gottlieb, R. Grishman, C.P. Kruskal, K.P. McAuiliffe, L. Rudolph, and M. Snir.
The NYU Ultracomputcr - designing a MIMD shared memory parallel machine.
IEEE Trans. on Comp. C-32, 2, 1983. 175-189.

D.J. Kuck. A survey of parallcl machines organization and programming. Com-
puter Surveys Vol 9, No. 1, 1977. 29-59.
T. Leighton. Tight bounds on the complexity of parallel sorting. Proc of the Six-

teenth ACM STOC, 1984. 71-80.

K. Mclhorn and U Vishkin. Randomized and deterministic Simulation of PRAMS
by parallcl machincs with restricted granularity of parallel mcmorics. Ninth
Workshop on Graph Thcorctic Concepts in Computer Scicncc, Fachbereich

Mathematic; Universitat Osnabruck, Junc 1983.
N. Pippengcr. Supcrconcentrators. SIAM J. on Computing, 6, 2, 1977. 298-304.

A.W. Roberts and D.E. Varberg. Convex Analysis Academic Press, New York,
London 1973.

[Sc]

[Th]

[vil)

[vi2]

20-

J. T. Schwartz. Ultracomputcrs. ACM TOPLAS 2 (1980) 484-521.

R.H. Thomas: A majority consensus approach to concurrency control for multiple

copy database. ACM Tran. on Database System. 4 (1979) 180-209.

U. Vishkin. A parallel-design distributed-implementation gcncral-purpose com-
puter. Preprint, Courant Institute, New Y ork University. 1983. To appear in J,
TCS.

U. Vishkin. Jmplcmentation of simultaneousmemory address accessinmodels that

forbid it. J. of Algorithms, 4,1 (1983) 45-50.

E. Upfal. A probabilistic relation between desirable and feasible modcls of paralicl
computation. Proc. of Sixteenth ACM STOC 1984. 258-265.

