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resentation of the) execution times is bounded by O(log® n) there is an N C algorithm
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1. Introduction

It is now feasible to build massively parallel multiprocessor systems. One way to exploit
the parallelism in these supcrcomputers is to partition problems into a number of small
subtnsks and then schedule the subtasks on the various processors. It is conceivable that,
with an inefficient scheduling, all of the supercomputer’s parallelism may bc lost. It is
desirable that these tasks bc scheduled optimally, to complete the problem in the shortest
possible time. Since some subtasks may have to wait for the results of other subtasks, full
schedules are not, always possible. This ‘must-wait-for” relationship between tasks is often
represented by a directed graph, commonly called the dependency graph or precedence
constraint graph. For many classes of dependency graphs, finding just the length of an
optimal schedule is known to be an NP-complete problem [Ull75, May81]. Although good
sequential algorithms exist for finding optimal or almost optimal schedules in other cases,
few parallel scheduling algorithms arc known.

In this paper we first, consider scheduling problems given by: a number of identical pro-
cessors, a set of m unit cxccution time jobs, and a dcpcndency graph on the jobs. Our
results are algorithms which find greedy optimal schedules for subclasses of this problem
in polylog time running on a PRAM with a polynomial number of processors. Our first
algorithms are applicable when the dcpcndcncy graph can be broken into many separate
components. Wc then present an algorithm for scheduling outtrcc precedence graphs. Our
main result is an algorithm which schedules intree prcccdcnce graphs. Intrce precedence
graphs are an important special case because they result from many natural problems,
such as expression evaluation and production assembly.

List scheduling is another type of scheduling problem, consisting of a list of jobs with
intcgcr execution times. A list scheduling instance docs not contain precedence constraints,
but jobs must be started in list order. WC prove that this problem with arbitrary intcgcr
cxcention times is P-complele under log-space reduction. We also exhibit an N C algorithm
for the list scheduling problem when the cxccution times are at most O(log® n) bits long.

We use the Exclusive-Read, Exclusive- Write (EREW) PRAM modcl [FWy78| for our al-
gorithms. This model consists of numbcrcd, autonomous processors sharing a common
memory and clock. Each processor is capable of the normal arithimctic operations (plus,
inimls, times and divide by 2), as well as intlircct addressing. Wc assume that the proces-
sors arc able to compu Cc the memory location of an array cell in unit time (i.c., we use
the uni t cost model). Although the processors share a common memory, cach individual
memory cell can only bc accessed by a single processor at any one step.

We will often nced to fan out many copies of intermediate results between stages of our
algorithms. Using n processors we can create n copies of a value in logn time. This
additive factor of log n does not alfect the asymptotic running time of our algorithms.



2. Basic Algorithms and Definitions

This section defines the scheduling problem and important concepts used throughout the
paper, as well as presenting fundamental parallel algorithms.

2.1 Basic Algorithms

Since all our algorithms have steps requiring at least n? processors, we chose to represent
our graph inputs in adjacency matrix form. This form is easy to manipulate in parallel
with large numbers of processors. On the other hand, the processor requirements of some
steps can be reduced to O(n) by choosing a more appropriate input representation. We
have attempted to note which steps can be implemented more efficiently.

One well known parallel algorithm is the prefix sum algorithm. This algorithm takes the
array VALUE(0..n — 1) of numbers and computes for each ¢ < n, 3, <, VALUE(k). We
assume that n is a power of two, if not the array can be padded with zeros. This algorithm
is stated recursively, however it can be implemented iteratively using O(n) space.

algorithm PREFIX-SUM (n, VALUE);

Input: The number of inputs, n, and VALUE(0..n — 1) containing their values.
Output: The array VALUE(0..n — 1) containing the prefix sums.
begin
if n > 1 then
for each j from 0 to n/2 — 1 do in parallel
TEMP(J) := VALUE(2 . j7)4-VALUE(2 .. + 1)
od;
PREFIX-SUM (n/2,TEMP);
for each j from 0 to n/2 — 1 do in parallel
VALUE(2 .. := TEMP( j) - VALUE(2 .. + 1);
VALUE(2 - j + 1) := TEMP(j)
od
fi
end .

Our scheduling algorithms make frequent usc of the path doubling algorithm. This algo-
rithm essentially computes the transitive closure of a directed acyclic graph with outdegrce
one, i.e. of an inforest. The algorithm starts with each vertex finding its successor® suc-
cessor. This gives us all paths of length two. Then, using these paths as edges we again
find each vertex’s successor’ successor and so omn. It is not hard to find a concurrent read
path doubling algorithm. The [DUWS84] paper contains an exclusive read path doubling
algorithm for linked lists similar to the following.
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Our path doubling algorithm runs on a graph of in- and out-degree at most one (i.e. a group
ol disjoint linked lists). One of the input vertices is marked. The algorithm computes the
sink reachable from each vertex, the distance to that sink, and marks all vertices reachable
from the marked vertex.

algorithm PATH DOUBLING;
Input: A set of n vertices, one of which (the start vertex) is marked.
The array E(v) is initialized to v’s successor, for all vertices v; if v is a sink, then
E(v) is initialized to NIL.
The array elements of DIST(v) are set to 1if Ii(v) # NIL and 0 otherwise.
Output: The array E(v) will contain the sink reached from each vertex v.
The array DIST(V) will contain the distance from each node v to a sink.
Those vertices on the path from the start vertex to a sink will be marked.
begin
LENGTH := 1;
while LENGTH < n do
for cach v do in parallel
if v is marked then mark IE(v) fi;
if E(v) # NIL then
DIST(v) := DIST(v)-+-DIST(E(v));
E(v) == E(E(v));
fi
od,
LENGTH := 2.LENGTH
od
end PATH DOUBLING.

Synchronization of at most two processors rcading the same array clement is nol a problem
since the processors run in lockstep. This algorithm takes Q(log n) time on O(n) processors
to compute the marking, DIS'T and E arrays.

When the graph is an intrec, the path doubling algorithm results in read conflicts. Our
Path Finding Algorithm is applicable in this case. "The I’ath Finding Algorithm takes an
inforest with one marked node (m) as input and and finds all nodes on the path from m
to its root. IF the in Forest is initially given in pointer form, wc can convert it to adjacency
matrix form using n? processors in constant time.

The first step in the algorithm is to expand the tree by replacing each node as in Figure 1.
We call the resulting directed graph the expanded tree. Each vertex in the expanded tree
contains information indicating its node in the tree and whether it is an S- or ['-vertex.

Wc can now compute the path through the expanded tree. The path enters each expanded
node through the S (start) vertex, visits the node’s dcscenrlents, and leaves through the F
(final) vertex. Using the path doubling algorithm on the expanded tree wc can find each
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Figure 1: Node expansion to compute the tree traversal.

vertexs position in the path. This allows us to create an array containing the vertices in
the order they appear in the path.

Each S-vertex in the path is paired with the F-vortex for the same node. Every node in
the tree whose S-vertex appears belore m3 F-vertex and whose F-vertex appears after
m? F-vertex is an ancestor of m. Therefore, if we examine that portion of the path
following m3 F-vertex, all of the unpaired F-vertices will belong to ancestors of m.

When the path leaves an F--vertex it moves up a level in the tree, when it enters an S-
vertex it moves down a level. Thus, wc assign the value 1 to all F-vertices, ---1 to all
S-vertices and 0 to all other verticcs. Whenever the partial sum from m to some vertex k
reaches a new maximum, we arc leaving a level for the first time (since reaching node m).
Thercforc, k3 node must be an ancestor of node m. Furthermore, if k is an I"-vertex for
on of m3% ancestors, then the partial suun from m3% F-vertex to k is a new maximum.

Now wc can find all of m% ancestors. Wc first compute all partial sums from m3% F-vcrtcx.
Then wc find the left to right maximum to the left of each position in the array. (This
is done similarly to path doubling, except wc keep track of the maximum instead of the
distance.) Those locations where the maximum increases must contain an F'- vertex from
onc of m3 ancestors.

The most cxpensive step of the Path I'inding Algorithm is computing the expanded tree. If
the original trec has n nodes, all other steps take O(log n) time on m processors. Computing
the (pointer representalion of the) expanded tree requires n? processors and O(log n) time.
Thus the total requirements for the Path I'inding Algorithm arc n? processors and O(log n)
time.



2.2 Defini tions

An instance of the scheduling problem is:
a number of itlontical processors, m;
aset of n jobs, {Jy,J2,. ... .}, each taking a single tirnestep to cxecute;

a partial order, <, on the set of jobs.

A solution to the scheduling problem is a schedule, S, which maps jobs to (integer)
tiniestcps. The schedule must be legal, i.e. no more than m jobs arc mapped to any
onc timestep and if J < J” then S(J) < S(J’). Without 1oss of generalily we assume
min; {S(J;)} =1 and {t : t =S(Ji),s €{1,....n}}issome interval, {1,....L(S)}

A job, J, is available at timestep ¢ if all its predecessors, i.e. jobs J”such that J”< J, are
mapped to timesteps less than . A schedule, S can have several properties. The length
of the schedule, L(S), is the number of timesteps which jobs are mapped to. If S maps
k < m jobs to timeslot ¢t (1 <t < L(S)), then S has m - k empty slots at timestep £ A
schedule, S is full if it has no empty slots at timesteps < L(S); S is completely full if it
has no empty slots. It is greedy if there does not exist an empty slot at some timestep ¢
and a job, J such that SQJ) > t and .J is not a successor (directly or indirectly) of a job
scheduled at timestep t. A schedulc, S, is optimal if there is no legal schedule, S” with
L(S’) < L(S). lvery full schedulc is optimal, but of course not every optimal schedule is
full.

Wc use the partial order on the jobs to define other useful quantities. The full precedence
graph is the directed acyclic graph with nodes representing the jobs and an edge going
from J to J”ifl J < J7 The sources are those jobs with no incoming edges. The sinks are
thosc jobs with no outgoing edges. The reduced precedence graph or simply the precedence
graph is the subset of the full precedence graph obtained by removing transitive edges.
The prccedence graph is an inforest if every node has at most onc outgoing cdge. The
prccedence graph is an outforest if every node has at most one incoming edge. An inforest
or outforcst can bc trivially made into a tree by the addition of a dummy root job, tying
the roots of the forest together. Although we usc the term tree throughout this paper, the
results apply to forests as well.

Definition EPT( J):

The earlicst possible tinlcstcp a job J can be scheduled, EPT(J), is 14 the length of
a longest path in the precedence graph cnding at J.

If we take a precedence graph and schedule all available jobs at each timestep (using up to
n processors), then J will be scheduled at timestep EPT(J). Intuitively, EPT levels push
jobs up as close to the sources as possible.



Definition d(P):

The depth of a precedence graph P, denoted d(P), is the maximum FPT value over
the jobs.

Definition LPT(J):
LPT(J), is d(P) --the length of a longest path from J to a sink.

If we have au unlimited number of processors avnilablc and wc desire an optimal schedule,
then each job must bc mapped to a timestep at or before the jobs LPT Icvel. Intuitively,
the LPT levels arc obtained by pushing the nodes of P down (towarcls the sinks) as far as
possible.

The ith LPT level is {J : LPT(J) == 1}. Each LPT level, 7, partitions the jobs into thrce
groups, those in the lcvcl, those above the level (with LPT < ¢) and those below the level
(with LPT > ). EPT levels are defined similarly. We use N(i) to denote the number of
jobs on LI>T level z.

When P is au outtree, the values d( P), EPT( J), and LPT(J) can bc found by path
doubling. First, if a tree node has k sons then we expand the node into a k + 2 node
structure as shown in I'igure 1. We then use the basic path doubling algorithm to find
the path starting at node S of the root% structure, entering all of the nodes, and ¢nding
at node F' of the root% structure. Everytime we hit an S node in this path we go down
a level, and every time wc hit an F' node we go up a level. Therefore, we count S nodes
as ones, F' nodes as minus ones, and other nodes as zeros. Job J3 EPT Icvcl is the prefix
sum f{rom the start of the path until just after J% S node. Job J% LPT Icvcl will be d(P)
minus the maximum value of the prefix sums starting with J% S node and ending at J5 F'
node. By listing the jobs in the order the path reaches their S (resp. F') nodes, we obtain
a preorder (resp. postorder) traversal of the tree. A similar algorithm finds the EPT and
LPT values for intrees. All these computations can easily be done in O(log n) time using
n? processors.

The EPT (and d(P)) values can be computed more cfliciently using a different input
representation. When the tree is given by pointers to the parent and right brother for each
node, the above transformation requires only O(n) processors with no significant loss of
tinie. In [DUWS84] there is an O(n) processor, O(log n) time algorithm for computing the
LPT values as well.

Definition Highest Level First:

A schedule S is highest level first if it is greedy and there do not exist two jobs Jy, J2
such that LPT(Jy) < LPT(J2), S(J2) < S(J1) and J; is available at timestep S( J2).

A highest lcvcl first schedule prefers jobs with the lowest LPT values. It is known that
highest Icvcl first algori t his yield optimal sched ules for both in t ree preeced ence graphs and



outtree precedence graphs [Hu61, Bru8l].
Definition R(P):

The revel-d of a precedence graph P, written R(1?), is the precedence graph contain-
ing:
(1) the same set of jobs as P;
(2) the edge (J, J?) ifand only if the edge (37 J) is in P.

In other words, the reversal of a precedence graph is created by reversing all of the cdges in
the graph. It is easy Co see that R(I¢(F)) = P and the rcverssl of an intrcc is an outtrce.
Any (optimal) schedule for an outtree can be reversed to form an (optimal) schedule for
the associated intree (and vice versa), however, the resulting schedule will in gencrnl not
be greedy.

Definition SIM:

The Schedulability Interval Matrix, STM, is the d(P’) xd(P) array of scts where SIM(%, j)
is the set of jobs J having EPT(J) = ¢ and LPT( J) = j.

Later it will be important to order the jobs in each SIM cell. We compute a preorder
traversal for the tree and order the jobs in each cell according to their positions in the
traversal.

Lemma 1:
If 2 > j then no jobs arc in SIM(z, j).

Proof: Assume to the contrary that ¢ > j and some job J is in SIM(v, j). Then,
LPT(J) < EPT(J) or the latest possible time a job can be scheduled is less than the
carlicst possible time it can be scheduled; contradiction.  §

Definition SIM Path:

A SIM path from cell (¢, j) to cell (z/, j) (+' <7, 7' > ) isalistof ¢ — <" + j7-—-j+1
SIM ceils such that:
(1) cell (2, j) is the first cell on the list;
(2) cell (¢, j) is the last cell on the list;
@) ifcell(z;, 71) immediately preceeds cell (72, 52) on the list then it must be that cither
(12, 72) = (1 — L, 1) or (v2, J2) = (1,51 + 1).

Thus a SIM path is a rectilincar path running from lower-left to upper-right. The number
of jobs in a path is the sum of the number of jobs in each of the path% SIM cells.

Definition Directly Above:

Let p and p’ be cqual length SIM paths, then p is directly above p' if the lists difler by
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only one ccll, with p having cell (2, j) and p’ containing cell (z + 1, j + 1).
Definition Above:

Path p) is above path py if there is a sequence of paths, py, pa, . . . . pi, such that p; is
directly above p;j,2=1,.... k-1

Definition Reverse Running Average:

Wc say that the reverse running average from some level (or column or row) 7 up or
back to level (or column or row) j, is al least (at most) c¢ if for all k (j < k < 7), the
averages:

> 1., number of jobs on level !
1—k+1

are at least (at mos t) c.

We can fiad the smallest integer greater than the reverse running average in O(log n) time

on n processors by the following algorithm:

(1) Sum up the number of jobs on cach row.

(2) Use thie prefix swm algorithm to compute the number of jobs in the rows from z up to
each k > j.

(3) For cach of these k, find the smallest integer ¢ such that:

ck(v — k1) > Znumber of jobs on row {,
I -k

(1) Compute the maximum of these cg’s.

Step (3) can be done in O(log n) time using only addition by computing the products
27(i—k+1),r=1,.... [log n]. A similar algorithm computes the largest integer less than
or equal to the running average.

3. Precedence Graphs With Many Components

Although the general scheduling problem is very hard [May8 1], there arc some natural
special cases which arc casy. Two of these special cases arise when the precedence graph,
P can be partitioned into several components, Cy, Cy, . . . . Cy, with no edges joining nodes
of different componcnbs. Wc use n; to denote the number of jobs in componcent Cj.

In this scction wc use the terms schedule and scheduling not only for the precedence graph
P, but also for subgraphs of P.



Special case 1: The components are all small, i.e.

m;jmx(ni) < [%J

Letr=n-|2|. m

The algorithm proceeds in threc phases. The first phase linearizes the precedence con-
straints, creating a single list containing every job in P. This list is then partitioned into
m bins in the second phase. In the third phase, the jobs within each bin are assigned
timeslots in a manner consistent with the precedence constraints. These partial schedules
can be merged to form a schedule for P.

Algorithm 1:

1. In the first pass, wc linearly order the jobs in each C; in any way which does not violate
the precedence constraints. W record the position of each job in its list. These sublists
for each C; arc concatenated to form L, a list containing every job in P.

2. Using prefix sums, wc divide L belween the m bins. We give each of the first r bins
[_ %J + 1 contiguous jobs from L, and each other bin [},';J contiguous jobs from L. Let
L; be the sublist of jobs given to bin 3.

3. Wc examine cach L; in parallel. If it contains a proper prefix of the jobs in some Ck,
then that prefix is scheduled before anything else in L; (using just the one processor).
If L; contains a proper suffix of the jobs in some C} then we schedule those jobs after
everything else in the bin. If L; completely contains the jobs in Cj then those jobs in
Ck can be scheduled whenever convenient.

Now wc have m single processor schedules which can be merged to form an m processor
schedule for P.

Theorem 1:
Algorithm 1 finds a legal, full schedule for P.

Proof: It is obvious that the resulting schedule is full, what we must show is that it does
not violate the precedence constraints. Since there arc no constraints between components,
all we have to show is that the precedence constraints within components arc met. Let L;
be the list for an arbitrary component (from phase 1). We show that the list is scheduled
in order. If the entire component is placed in a single bin, then its jobs arc scheduled
accord ing Co ;. T'he component can be split between at most two bins (n o component
has more jobs than & bin). Because L; contains no more jobs than any bin and the first
part of L, is scheduled at the carliest, and the seccond part at the latest possible timesteps,
the list will bc scheduled in order. |

Special case 2: The precedence graph P has k components with at least d(P) jobs each
and at least (m -- k) . d(Y) iobs in components with fewer than d(P) jobs.



When this condition holds, P can be divided into m independent groups, each with
at least d( P) jobs. These groups have the property that their schedules can casily be
combined to form an optimal schedule for P. The algorithm starts by creating the groups.
By examining each group independently we create a temporary schedule, Sy, for . The
schedule S| satisfiecs the precedence constraints but may use far more than m processors.
Using Sy, the algorithm sorts the jobs of P into a list. The final schedule, which is full
and legal, is easily derived from this list.

Algorithm 2:
1. Divide P into m groups, each containing at least d(P) jobs. Create temporary sched-
ulcs for each of these groups.

(@) The k components of P having at least d(P) jobs are each placed in their own
group. Schedule each of these group such that the precede-nce constraints are met;
each timestep from 1 to d(P) has at least one job and no timesteps after cl(P) are
uscd (any number of processors can be used with any number of cupty slots; of
course, at least one task must be scheduled at every timestep). For each of the
above k components, this can be done as follows: Let C be such a component.
First calculate the EPT levels of the jobs in C, and d(C). Then find the highest
numbered EPT level [ in C with more than d(P) — [+ 1 jobs at or after it. Spread
these jobs so they cover the last d(P) -- [ + 1 timesteps, and schedule the jobs J
with EPT(J)< { before them, level by level.

(b) The jobs in the remaining components are first linearized as in Algorithm 1. From
the beginning of that list, m — k sublists each of length d(P) arc taken away and
rearranged as in step 3 of Algorithm 1. They for m another m — k “columns™ of
the temporary schcdulc §;. Finally, the remaining jobs arc put into one more
“column”, according to their LPT level (in P).

2. Now we have at least m temporary schedules of length < d(£), and at least the first

m of them have length exactly d( I’). Wc use these schedules to create an ordered list,

L, of the jobs in J°. The first jobs on L arc those scheduled at timestep one in the

temporary schedule, then those at timestep two, . . . . and those at timeslep d(P) arc

placed at the end of L. Within cach timestep the jobs are ordered by groups.
3. We assign to timestep ¢ the (¢ — 1)-m+ 1’st job through the ¢t -m’th job of L. Of course,
the last timeslot may be only partially filled if the list does not contain a multiple of

m jobs.

Theorem 2:
Algorithm 2 finds a full schedule for P.

Proof: The resulting schedule is obviously full. It only remains to check that the prece-
dence constraints arc satisfied. Jobs of the same component but in different groups are
separated by a full timestep by S;, and thus at least m jobs in L. This means that they
cannot possibly be mapped to the same timestep by S. Since the temporary schedule
satisfies the prccedcncc constraints of P, the only other way the prccedcncc constraints
could be violated is if two jobs in the same group are mapped to different timesteps by Sy,
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but the same timestep by S. This cant happen because in L there are at least m -- 1 jobs
(one from each other group) between any two jobs of the same group. R

Resource usage: Finding the connected components takes O(log n) time using no more
than O(n®) processors [SVi82]. The EPT levels can be found in O(log® n) time using O(n?)
processors by the following procedure. First, wc find the sources of the graph. Then using
max-plus transitive closure we find the maximum distances in the precedence graph from
each job to the sources. (After each successive “squaring” of the matrix, we create n new
copics of the matrix using O(log n) time.) This gives us the length of the longest path
from cach source to each job. Taking the maximum over these lengths gives us the EPT
levels of the jobs. The depth of the graph (d(P)) is the maximum EPT value.

We label each connected component by its least-numbered job. Every job is given a pointer

to its, component number. Now, we can employ standard summing techniques to determine
the number of jobs in each component.

4. An Outtree Scheduling Algorithm

This chapter describes our outtrce scheduling algorithm. Section 4.1 presents scveral pre-
liminary results for SIN% with outtrces. Section 4.2 describes a sequential algorithm for
optimally scheduling outtrces. Section 4.3 shows how to compute this schedule quickly in
parallel.

4.1 SIM for Outtrees
Let P be the outtrce wc arc attempting to schedule. Let d be the depth of P.
Lemma 2:

There is only one job in |J; SIM( 1, j); i.e. the top row contains only the root of P.
Those jobs in the last (d*") column are the leaves of P.

Proof: Only the root has EI’T==1. The leaves, and only the leaves, have LPT = d. |

Theorem 3:

If J is in SIM(%, 5) then the parent of J is in UJ;;SIM(< — 1,1); the children of J are
in Uy ;SIM(¢ + 1,1); and at least one child is in SIM(z -+ 1,5 -+ 1).

Proof: The EPT of J% parent is exactly 1 less than J% EPT. The LTT of J3% parent is
at least 1 less than J% LPT. The EPTs of J% children arc one greater than J% EPT. The
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LPTs of J% children arc at least 1 greater than J3 LPT. At least one of J's children is on
the longest path from J to a leaf and thercforc has EPT and LPT one greater than J. B

Corollary :
If SIM(z, j) (¢, j < d) contains r jobs, then SIM(z + 1, j + 1) contains at least r jobs.

Proof: Every job in SIM(z, j) has a child in SIM(z + 1, j +1). §

Corollary :

If p and p”arc paths where p is above p”then p”contains at least as many jobs as p.
4.2 A Sequential Outtree Algorithm
Definition SIM Schedule:

Given a SIM matrix we can compute the SIM schedule iteratively as follows: At the
first timestep we schedule the job [rom the top row. The last cell of the first row is the
corner for the first timestep. On the t'' timestep wc attempt to schedule m jobs; we first
schedule those jobs on the ¢t row up to (and including) the previous timestep’s corner.
Then we schcdulc jobs from the next column to the right, working from the top to the
. bottom. If necessary, wc use the left to right, ortlcring to break ties. If, in this column, wc
reach the ¢ row before taking = jobs, then wc start on the next column (again working
from the top down), and so on. Within each SIM cell, we take jobs according to their
preorder position. The corner for timestep t (denoted CORNIZR(t)) is the rightmost STM
. cell on the t*" row whose jobs have all been scheduled by the ¢ timestcp. We will show
below that this algorithmm is optimal and doces not violate the precedence constraints.

For convenicnce we define CORNIZR(0) t0 be d. Since the algorithm finishes a column
(down to the current timestep) before moving on to the next one, no jobs more than one
column to the right of CO RNIZ R( ¢) will be scheduled at timestep . The example below
shows how the SIM algorithm works.

Theorem 4:
The SIM schedulc is highest level first and thercforc optimal.

Proof: The SIM schedule is greedy. Clearly the first timestep schedules all available jobs
(the root). Assume that until timestep ¢ the schcdulc has been greedy and legal.

Case 1: The CORNLER( t -- 1) is less than d -- 1. This mcans that m jobs were scheduled
in the previous timestep, none of which was in the last column. Each of these jobs has
a son cither on the ¢ row, or in the CORNER(t ~ 1) + 1" or CORNER(t — 1) + 224
column above the t*" row. The algorithm stops scheduling jobs only after these cells have
been exhausted or m jobs have been taken. Since there are at least m jobs in these cells,
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Figure 2a: The tree to be scheduled

Job# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
EPT 1 2 2 2 2 2 3 3 3 3 3 4 4 5 5 5 5 6
LPT 1 2 5 5 5 4 3 6 6 6 5 4 6 6 5 6 6 6

LPT

1 2 3 4 5 6

EPT
1 o o]l 1
el 1‘ 5
o] 6

Figure 2¢: The SIM matriz and scheduling for m = 4.

A o indicates the corner of that row. Icavy lines divide the sections of SIM
scheduled at diflerent timesteps.

the algorithm will schedule m jobs at timestep ¢.

The ordering within SIM cells ensures that all m sons of jobs scheduled at timestep ¢ — 1
will be scheduled before any sons of jobs scheduled at timestep ¢. Therefore the precedence
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constraints will not he violated.

Case 2: The corner of the previous timestep is d or cl -- 1. If the algorithm schedules less
than m jobs, then all unscheduled jobs at or above the " row will ho taken. Since no jobs

below the t™ row can possibly be available at the t*™! timestep, all available jobs will be
scheduled.

In this case, only jobs on the t*! row or in the last column are scheduled. Since no jobs
below the ¢*" row arc schcduled, no dependents of jobs on the t*"' row are scheduled. Since
the jobs in the last column have no descendants, none of their descendants are scheduled.
Therclore the SIM schedule obeys the precedence constraints.

Because the SIM schedule is greedy and it takes available jobs in the lowest LPT columns,
it is highest level first. |}

4.3 Parallel Implementation of’ the SIM Algorithm
Once we know where the corners are, it is easy to find the SIM schedule in parallel.
Theorem 5:

The corner of a times tep (or EPT row) ¢ is the largest column num ber ¢ (¢ < d) such
that the reverse running average, counting only jobs in or before column c, from row ¢ up
to the first row is at most m.

Proof: The corner is no greater than the ¢ computed above. If CORNIIR(t) were greater,
then there is a row t”< t such that there are more than m- (t — t”+ 1) jobs in the rectangle
bounded by cotumn CORNIR( ¢) and rows ¢ and ¢' inclusive. All of these jobs must have
been scheduled between timesteps ¢’ and t, however there arc not enough slots for all of
the jobs. Contradiction.

We now prove that the corner (when less than d) can not be smaller than the ¢ computed
above. Assume, to the contrary, that timestep ¢ is the first timestep where the corner is
less than the ¢ computed above. Let ' be the last timestep before timestep ¢ where the
corncr of ¢/ is at least ¢. There arc at most rn- (¢ -~ ¢') jobs on or to the left of column ¢ and
between rows ¢ and t' + 1, inclusive. Since the corners of” all timesteps between ¢ and 17 arc
less than ¢, no jobs to the right of column ¢ will be taken in those timesteps. Therelore, all
of the < m.. --- t) jobs to the left of column ¢ will be taken. Thus the corner of timestep
t is at least the ¢ value computed above. |

The eztended SIM array is an n x d array. The first d rows are identical to the rows of the
SIM array. The other rows contain all zeros.

Algorithm: Our algorithm computes the SIM schedule [or the outtrce in four phases. The
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first phasc computes the extended SIM array. The second phase computes the corners for
each timestep. The third phase computes the number of jobs scheduled from each column
before each timcstep. The final phase, using information from the first, phases, computes
the specific jobs scheduled during each times tcp.

The second phase computes the corners for each timestep. This phase consists of three
steps:

a. Using prefix sums, find the matrix ROWSUM(Z, j), which contains the number of jobs

on row j at or to the left of column ¢ in SIM.
b. Create n copies of ROWSUM, one for each possible timestep.
c. For each timestep, t:
1. For each column 7 of ROWS UM, compute the least integer greater than reverse
running average of column ¢ from ( to the top.

2. Find the rightmost column such that the reverse running average for that column
is at mos t m This column is the corner for timcstcp ¢.

The first step requires just n? processors and O(log n) time. Step b. can be donc using n3
processors and O(logn) time using binary trees to propagate the values. Step c. is done
for n timesteps requiring O(logn) time and a total of n® processors. The entire phase
takes O(log n) time on n® processors.

The third phase computes TAKEN(t, ¢), the number of jobs scheduled from column ¢
before timcstep ¢{. For each t wc do the following steps:
a. For each c, compute LAST(t, c), the last timestep before ¢t when the corner was at or
to the right of c.
h. Set TAKEN(¢, c) to ttic nuber of jobs in column ¢ at or above row LAST(¢, c).
c. Additional jobs may be scheduled from column ¢ when the corner is ¢ — 1. Therefore,
if LAST(¢,¢c — 1) > LAS™(¢, c¢) then wc add to TAKEN(t,¢) the amount by which
m - (LAST(¢, ¢ — 1) — LAST(L, c)) exceeds the number of jobs in the rcctnnglc bounded
by column ¢ -- 1 and rows LAST(t, ¢) -+ 1 and LAST(¢,¢ -- 1) inclusive.

Claim: The value of TAKEN(t, c) is the number of jobs scheduled from column ¢ before
timcstep t.

Proof: Jobs can be schcdaled from column ¢ only when the corner is at or to the right of
column ¢ — 1. Tf at time ' < ¢, the corner is to the right of column ¢ -- 1 then we know
that all jobs in the column ¢ at or belore timestep ¢’ have been scheduled. By (i nding the
largest such t’, we account for all jobs scheduled from column ¢ during timesteps up to ¢'.
Between t' and { the corner stays strictly to the left of c. By each timestep 17 > t” when
the corner is in column ¢ — 1 < d, an additional m . (¢ — t’) jobs have been scheduled.
Exactly the number of jobs in the rectangle bounded by column ¢ — 1 and rows ¢’ + 1 and
t” (inclusive) do not conic from column ¢, so m . (t” —t’) --this number have come from
c. By taking the latest approprintc t”, we cnsure that all jobs taken form column c are
counted. |l
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The third phase must be done for n values of t. For each of these values, the first step
requires n processors and O(log n) time; step b, . . ., can bc done in O(log n) time with
n? processors; and step ¢ takes n? processors only a constant amount of time. Thus the
entire third phase takes n® processors O(log n) time.

Our outtree algorithm can be adapted for release-deadline scheduling problems. When
EPT is replaced by relcase time and LPT by deadline, the intrce algorithm computes a

schedule minimizing the maximum tardiness.

5. An Intree Parallel Scheduling Algorithm

This chapter describes our intree algorithm. The first step in the algorithm is to divide
the intree into two segments. Section 5.1 describes this division. The first segment can be
easily scheduled using our outtrec algorithm, this is also presented in section 5.1. Section
5.2 contains the basic thcorems and definitions needed to schedule the other segment.
Section 5.3 presents an optimal secquential algorithm for scheduling the second segment.
Section 5.4 gives the parallel implementation of the algorithm.

5.1 Division of the Intree

This section shows how we divide the intrcc and schedule one of the segments. The
division must be carefully chosen so that the schedules for the two segments can be merged
into a greedy optimal schedule for the whole intree. This section closes with an obvious
scheduling of the first segment.

Definit ion Cut:

A cut of a precedence graph, P, is a partition of P into two parts, 1’ and P such
that some optimal schedule maps all jobs of P, to timesteps at or before some timestep ¢,
and maps all jobs of I’ to timesteps after ¢.

Theorern 6 (Optimality Theorem):

If Pis cut into /7, and P, then any optimal schedule for P, can be concatenated with
any optimal schedule for I’; to create an optimal schedule for P.

Proof: If the concatenated schedule is not optimal then one of the two pieces must take
more timesteps than the corresponding part of the whole schedule, and is therefore not
optimal; contradiction. |}

The algorithm works by partitioning the intree, T, into two segments, A, and B. The
division is chosen so that both segments are casy to schedule independently, and once
found, the two partial schedules can bc merged to form an optimal schedule for T'.
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To End the A scgment, we divide the trec at an LPT level, t. We pick ¢ to bc the largest
LPT level such that tre reverse running average from ¢ up to the first LI°T Icvcl is at least
m. Those jobs at or above LI'T lcvel ¢ form the AT segment. Let {Jy,J2, . . ., Jy()} be
the N(t) jobs whose LPT is ¢t. Reorder these jobs by EPT value so that Jy has the least
EPT value, Jy has the sccond least, etc. The number of jobs in the A segment will be the
largest multiple of m which is not greater than ), ., N(k). The jobs in the A segment
arc all those with LPT < t and cnough low-numbered jobs with LPT = ¢ so that A has
the right cardinality. Let T4 be the precedence subgraph restricted to the jobs in the A
scgnment. The B segment consists of all jobs not in the A segment; let 7z be the precedence
subgraph containing the jobs of the B segment. An example is given in Figure 3.

Number of jobs

I'igure 8: Division into A and B segments, m = 4

Assuming jobs on the same LPT level are socted by EPT values, the jobs in
this fligure above the line are in the A segment and those below are in the B
scgment. The A' segment consists of all jobs at or above level 5.

We will show below that this partition forms a cut, and that there is a completely full
highest level first schedule for the A segment. Using our outtrce algorithm wc can End
an optimal schedule for 1t(A). This schedule can then bc reversed to yield an optimal
schedule for the A segment.
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Lemma 3:

If the reverse running average from level d up to level [ is at least k, then if some job
is moved down from lcvcl ¢ to level j (! € 2 < j < d) the reverse running average from
level d up to level [ remains at least k.

Proof: The reverse running average is just a series of sums. When a job is moved down,
it continues to ‘e counted in all the sums where it originally appeared. 1§

Lemma 4:

If LPT level [ of an intrce has N(1) unscheduled jobs and lcvel [ + 1 has N( [+ 1) > N(2)
unscheduled jobs then there are at least N(l + 1) — N(1) available jobs on level [ + 1.

Proof: Siiice wc have an intree, each job has at most one successor. Any job without an
unscheduled predecessor ou the previous LPT Icvel is available. At most N(1) jobs on Icvel
! + 1 have unscheduled predecessors. Therefore, at least the remaining N(Il + 1) — N (1)
jobs on level [ 4 1 are available. B

Corollary :

If there are k unscheduled jobs on LPT level [, and k”> k unscheduled jobs on a lower
level, {’, then there are at least k” — k available jobs below level { and at or above level I'.

Lemma 5:

At any step (cxcept possibly the last) in an HLT schedule for the A" segment, there
arc at least m leaves. Furthermore, if 1 nonempty LPT levels remain in the AT segment
then the reverse running average from level d(A ") up to (and including) d( A ") — {4 2 is
at least m jobs.

Proof:: This obviously holds before the first tumestep. Assume it holds through timestep
t — 1 when the k — 1% (but not the lc“‘) Icvcl has been completed. By the induction
hypothesis, the reverse running average [rom level d(A™) to k + 1 is at least m.

Case 1: If the k* lcvel has more than m jobs, then no jobs are scheduled from below the
k'™ level so the running average is still at least m.

Case 2 If the &' 1cvel has less than m jobs, and the k -+ 1** Icvcl has m or more jobs
then the k -+ 1% Icvel becomes the new top lcvel. No jobs below this level are scheduled
at timestep t. Therefore the running average from level d up to the k 4 2" Icvel is still at
least m.

Case 3: If the k! level and the K -- 1* lcvcl both have less than m jobs then there must
be some lcvel with more than m jobs. Let level ¢ be the highest Icvel with more than m
jobs.
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Since, in step t, only tasks from levels between k and ¢ are taken, the reverse running
average is unchanged after step ¢ for all levels lower than z. If it would drop below m for
some level 7, k+ 2 < 5 <1, this would imply that before step t the reverse running average
for level k ++ 1 was below m since all levels above ¢ contain fewer than m jobs and m jobs
are scheduled in timestep ¢t. |}

Given an inforest, P, examine the EPT values of the roots. If those jobs scheduled in
the first timestep of any HLF schedule arc removed, then the new EPT values will not
increase. Furthermore, if the I5PT value of a root decreases then the values for all roots
with larger EPT values will also decrease.

Lemma 6:

Let P be an inforest with roots ry,r2, . ... r, such that EPT(r,) < EPT(rp) <...<
EPT(r,). There is a highest level first schedule for I> which maintains these inequalities
after every timestep.

Proof: By contradiction. Whenever we have a choice in the highest lcvcl first algorithm we
schedule those jobs in the lowest nurnbered roots subtrce first. Assume at some timestep
the EPT value of root r; becomes less than EPT(r;_,). Since EPT values can decrease
by at most one (and never increase) each timestep, the EPT values of rj and r;..; must
have been equal at the previous timestep. This implies that all the ancestors of r; at the
highest lcvel were scheduled, but at least one ancestor of r;_; at that level was not. But
that contradicts the algorithm’s tie breaking method.

Hence, the k leftover jobs in the last timestep must be the k highest numbered roots of
the A" segment (therefore they can easily be found).

Corollary :
There is a completely full highest level first schedule of the reduced A segment.

5.2 Preliminary Lemmas and Definitions

The B segment algorithm uses the SIM matrix. Since the B segment is an intrce, we
prove several facts about SIM’s for intrees.

Lemma 7:
Those jobs in UjS]M(l,j), i.e. the top row, arc the leaves of T'.

Proof: Every leaf, and only the leaves, have EPT = 1. |

Lemma 8:

If J is in SIM(3, 7) then all of the immediate predecessors of J are in | J, . ;SIM(k,j—1).

19



Proof: Let J” be an immediate predecessor of job J. The path from J” to the root is
one longer than the path from J to the root (it includes the arc (J', J)). The longest
path from J~to a leaf is at most one less than the longest path from J to a leaf. Thus,
LPT(J') = LPT(J) - 1 and EPT(J') < EPT(J). |

Theorem 7:

If J is in SIM(z, 7), with 7, j > 1, then J has an immediate predecessor, J', in SIM(z —
1, j - 1) ( the cell diagonally up and to the left).

Proof: By Lemma 7 we know that J is not a leaf. Examine any longest path from J to
a leaf. Let J” be the job following J on the path. Then EPT( J) = EPT(J)~-1=j— 1

and since J' is a direct predecessor of J, LPT( J) = LPT(J) - 1 =¢ — 1 (by Lemma 8).
Therefore J”is in SIM(z—1,j—1). &

Corollary :
If cell (2, j), %, j > 1, contains k jobs then the cell (7. — 1, j — 1) contains at least k jobs.

Proof: Tivery job in cell (7, j) has a predecessor in cell (¢ — 1, j - 1). Since wc are dealing
with an intree, these are all distinct. §

Corollary :
If path p is directly above path p’ then p contains at least, as many jobs as p’.

Proof: The paths p and p’ differ by only one SIM cell, p contains some cell (z, j) while p’
contains cell (7 - 1, j + 1). I'rom the above, cell (z, j) contains at lcast as many jobs as cell

(t+1,7+1). |

Corollary :

If path p is above path p' then p contains at least as many jobs as p'.
The most difficult portions of the B segment to schedule are the LPT levels containing
more  han m jobs. Since an optimal schedule progresses one LPT level cach timestep
(Lemma 15 below), those jobs in excess of m must be scheduled before the level is reached.
The following algorithm meets this condition by special trecatinent of the columns in SIM
with more than m jobs. I'irst we give some definitions.

Definition Bad Column:

Jf an LPT column of the SIM matrix contains more than m jobs, then that column is
a bad column.
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Definition Bad Cells:

Cell (2, j) is a bad cell if there are at least m jobs in column j below row z. All other
cells are good cells.

If & column has k bad cells, they will bc the k& topmost, cells of the column.

Theorem 8:
If cell (4, ), 4,j >1,isa bad cell, then so is cell (¢ — 1,7 — 1)

Proof: Since cell (z, j) is a bad cell, the path from cell (7, j) to (¢ + 1, j) contaius at least
m jobs. The path from cell (j — 1, j — 1) to (¢, j — 1) is above this path, thercfore it also
contains at least mn jobs. Thus therc are at least m jobs in column j -- 1 below row z — 1
socell (¢~ 1,j—1)isa bad cell. [}

Definition Barrier Cell:
If cell (2, j) is a bad cell and cell (z, j + 1) is not, then cell (z, j) is a barrier cell.
Definition Barrier Diagonal.

Tf an (upper left to lower right) diagonal in the SIM array contains a barrier cell then
thatl diagonal is a barrier diagonal.

Lemma 9:
If cell (1, j) is on a barrier diagonal then cell (1, j) is a bad cell.

Proof: There is some bad column ¢ == j -+ k with al least k 4 1 bad cells if the diagonal
is a barrier diago nal. Therefore, by Theorem 8, column ¢ has at least 1 bad cell, so cell
(1, o) is a bad cell. |}

Definition Flow:

. The flow is an ordering of the upper triangular SIM cells derived from the barrier
posilions. We.deli ne it inductively. The first layer of the flow starts in the first row of the
fi rst column. Let the last cell so far be cell (2, ). 16 (2, j) is on a barricr diagonal then
the next cell is (¢ — L, j), otherwise the next cell is (2,7 1). When the next cell would be
outside of the SIM array the layer ends. The ¢** layer starts with cell (i, 1), and proceeds
as above.

Notec that the flow order cm easily be computed by the following algorithm: First map

the STM cells into a d by d array, sending cell (z,7) to cell (1 — B(z, j), j + B(z, j)) (where
B(1, j) is the number of barrier diagonals below cell (%, j)). 12ach row or this new matrix is
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a flow layer. The flow order is found by concatenating the rows of the new matrix. I'rom
this mapping it is clear that the flow layers partition the cells of SIM.

B b§b
b b B
b B|b
b b
b

Figure 4a: Barrier cells and diagonals.

Cells with a hcavy outline are bad cells. Those containing a “B” arc barrier
cells. Cells containing a “B” or “b” are on a barrier diagonal.

1ty 212)13841]¢+4
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313|4]14}15
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5|56

616

7

Figure 4b: Flow layers.

Each cell is labeled with its flow layer.

Lemma 10:
Once a flow layer cnters a bad cell, it ends before entering another good cell.
Proof: Assume the flow layer is currently on a bad cell. If the flow layer goes up, it enters

another bad cell (or leaves the array). If the flow goes to the right then wc arc not on a
barrier diagonal, thus not on a barrier cell, and therefore not moving to a good cell. i
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Lemma 11:
The last cell in each flow layer is either a bad cell or in the last column.

Proof: Flow layers end by leaving STM. They can leave by being in the top row at a barrier
diagonal or by being in the last column at a non-barricr diagonal. By Lemma 9, if a cell
on the top row is also on a barrier diagonal, then that cell is a bad cell. §

Lemma 12:

When flow layer f first enters a bad cell, then it enters from the left, not from the
bottom.

Proof: Assume, by contradiction, that flow layer f is on a good cell, (1, j) and moves up
onto the bad cell (¢ — 1, j). For this to happen thcrc must be a barrier cell on (i, 7)’s
diagonal. Becausc of Theorem 8, there arc no bad cells, and thus no barrier cells on (7, 7)’s
diagonal below (i, j). Also there arc no good cells on (i — 1, 7)’s diagonal above (z, j), and
thus no barrier cells on (i, 7)’s diagonal above (%, j). Therefore (i, j) is not on a barrier
diagonal and the flow moves right, not up. Contradiction.

The flow order combined with the ordering within each cell is a complete ordering of the
jobs in SIM. This ordering is consistent with the partial ordering given by the precedence
constraints among the jobs.

Lemma 13:

For every (intcger) value c, the first ¢ LPT levels of the B segment contain less than
c - m jobs.

Proof: Assumec by contradiction that ¢ is the first LIPT level in the B segment where
there arc at least m . ¢ jobs at or above c. Then for every level j, 1 <j < ¢, of the B
scgment, there are less than m . (j — 1) jobs above level j. This mcans that there arc at
least . (¢ — j - 1) jobs bctween levels j and ¢ inclusive, for every j. Therefore ¢ would
be in the A scgment not the B scgtnent. |

5.3 A Sequential 3 Segment Algorithm

Now wc state a sequential algorithm for scheduling the B scgment.  Just before
timestep ¢ the ¢ - 1** column will have been completed and there will be a first unscheduled
job from the flow order. At timestep t wc schedule the remaining jobs from column ¢ and
as many additional jobs in flow order as possible (until on is reached or prccedence would
bc violated). Wc yrovc below that this algorithm yields an optimal schedule.

Wc say the flow has entered the rightmost column when all jobs up to and including the
first job with LP'T = d (in the flow ordering) have been scheduled.
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Lemma 14:
The schedule is full until the flow enters the rightmost column.

Proof: Assume we arc working on LT column ¢ and flow layer f. Let ccll (z, j) be the
first cell in f with unscheduled jobs. Let cell (¢, j3 be the first bad cell entered by f. Let
path p go fro m cell (7 j) to cell (s' + 1, j). Since (¢, j) is a bad cell, there arc at least m
jobs in path p. Let path p’ go from cell (c, c) to the first cell in flow level f 4- 1 and then
along flow level f + 1 until it hits cell (' -+ 1, j). Since path p’ is above p therc are at least
m jobs in path p’, so there arc at least m jobs that can be scheduled. If cell (i, ) precceds
cell (<, j) in f, then for every job in p”which is not available, there is at least one job on
flow level f available, so there are at least m total jobs for the algorithm to schedule. If
cell (7, ) does not preceed cell (7', j) in f, then all of the jobs in path p’ can be scheduled
by the algorithm without violating precedence constraints.

Lemma 15:
The algorithm completes an LPT column every timestep.

Proof: by contradiction. Assume that at timestep ¢ the algorithm fails to complete LPT
column ¢. Let f bc the current flow layer. No flow layer before f contains a good cell from
column ¢, because it would have been scheduled leaving less than m jobs in the column.
By the same reasoning, if f contains a good cell from ¢, then that cell has not yet been
completed. Therefore no good jobs to the right of column t have been scheduled. Since
the flow has not yet rcached the right edge of SIM (all layers before f end in bad cells), m
jobs have been scheduled every timestep. Let ¢ be the leltmost column {rom which jobs
have becn scheduled. Since no good jobs to the right of ¢ have been scheduled, this column
¢ and all columns between t and ¢ contain bad cells. Therelore they all contain m good
jobs. Thus there arc m . (¢ — t -+ 1) unscheduled jobs at or before column c. In addition,
there is at least one unscheduled bad job in colummn ¢. Adding these up we find that there
arc more than mec jobs at or to the left of column c, so ¢ should bc in the A segment rather
than the B scgment. Contradiction. §

Lemma 16:
The B scgment algorithm is greedy.

Proof: Until the flow enters the rightmost column, the schedule is full. After the rightmost
column has been entered, the algorithm takes cither m or as many jobs in flow order as
possible. Any job not scheduled is the¢ descendant of some job scheduled, therefore it is

greedy. |
Theorem 9:
The I3 segment algorithm yields a greedy optimal schedule for the B segment,
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Proof: The schedule is greedy and it progresses one LPT level cach timestep. |

5.4 The Parallel B Segment Algorithm

Our B segment algorithm can be paraliclixed. The parallel version is stated below:

Parallel Algorithm for B segment:
1 Create the SIM matrix for T'g.
2 Find the bad cells of SIM.
3 I'ind the barrier cells of SIM.
4 For each job, J, in SIM compute F(J) = the position of J in the complete flow
ordering.
5 Create the graph of pairs (I, f) wliere [ is the last LPT level completely scheduled,
and f is the position in the flow last scheduled.
6 I'or each node (pair) in the graph above add an edge to the successor pair obtained
by:
a first scheduling the jobs on the next LPT level of SIM,
b and taking the next jobs (until = reached or precedence trouble encountered)
from the flow ordering.
7 Use path finding to find the path through the graph starting from node (0,0).
8 From this path it is casy to compute the jobs scheduled at each timestep.

Only step 7 in the above algorithm takes more than n® processors to run in O(log n) time.
Step 7 requires (nd)? < n* processors to complete in O(logn) time. Thercfore the entire
algorithm runs in O(log n) time on n* processors.

6. List Scheduling

Section 6.1 states the list scheduling problem and defines the offset. Section 6.2 exhibits
a proof that the list scheduling problem is P-complete under log-space reduction. This
proof, like the max-flow proof uses exponentially large numbers. Section 6.3 contains an
NC algorithm for the list scheduling problem, even when the execution times arc rather
large (i.c. their maximum number of bits is bounded by O(log® n)).

6.1 Problem Statement

A list sched u ling problem instance consists of:

an ordcretl list of n jobs, {Jy,J2, . ... Jn};

and a positive integer execution time for each job, T" (J;).
The jobs are to bc executed on two (identical) processors.

A solution to the list scheduling problem is a (nonpreemptive) schedule mapping cach job
to a processor and start time. Any such mapping must satisfy the following propcrlics:
1. no two jobs run on the same processor at the same time;
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2. no job starts before any jobs preceeding it on the list;
3. both processors arc in use until all jobs have been started.

Therc is a trivial sequential algorithm for this problem: simply start at the front of the list
and deal the jobs out one by one to the processor whose jobs have the least total execution
time. At each stage in this algorithm therc is an offset, by which the execution times of
one processors jobs exceeds the others. Clearly, jobs J; and J;4, are mapped to the same
processor only if the offset before J; is at least T'(.J;). The final offset of a list scheduling
problem is the difference in total exccution times of the two processors.

Although we state the list scheduling problem for two target processors, our results gen-
eralize to any constant number of target processors (with some increase in the processor
requirements of our N C algorithms).

6.2 P-Completeness Result

Hero wc prove that computing the value of a circuit containing only NOR gates reduces
to computing the final offset of a list scheduling problem. Technically, the circuit value
problem is one of recognizing the set of all inputs which encode a circuit whose output
is true. Wc can redefine the list scheduling problem as one of recognizing all properly
encoded list scheduling instances where the flnal offset is non-zero. It is not hard to see
that the reduction below also works for the set recognition problems.

Theorem 10:;

The general list scheduling problem is polynomial-time complete.

Proof: By reduction from the circuit value problem [Gol77] for boolean circuits containing
only NOR gates. The basic idea Of this reduction is to encode the value of wires in the
offset. Wc start with an oflset encoding the true inputs. Iach gate is represented by a
chunk of jobs. Scheduling the chunk for a given gate modifics the offset so the inputs of
the gate are no longer rcprescnted, but the outputs are.

Wc use the term wire in this construction to mean the connection between gates. Therefore,
although cach gate has only a single output, it may have scveral output wires.

The construction starts by topologically numbering the gates, wittt the gate generating the
outpul getting 1. The output wire is labeled with the value 4. The inputl wires Of gale ¢
arc labeled 4% and 4%*1'L, We dcefine V; to be the sum of the labels on all output wires of
gate ¢. For cach gate wc create the following gadget:

) 2 2, v,
A chunk of 17 jobs with times: one at 2 . 41!, fourteen at -, and two at i—;i.

The list of jobs starts with One whose execution time equals the sum of all true circuit
input wire labels. Then the gadgets for cach gate appear (in descending gate Order). We
shall sec that, after each chunk, the offset equals the sum of all dangling true wires. The
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Figure 5. Labeled circuit, nodes represent NOR gates.

final offset will be four (zero) iff the output of the boolean circuit is true (false).

The idea behind the chunks is that if the oflset before the chunk is small enough (both
inputs are false) then the oflset after the chunk firsé job will be large. If one or both
inputs are true, then the oflsct after the first job is small. The next fourteen jobs reduce
small offsets 60 the low order bits, so the last two jobs” eflects on the oflset cancel. When
the offset is large enough, the fourteen jobs do not entirely reduce it, so the V;/2 terms in
the last two jobs combine to allect the offset.

The above table shows the eflects of a chunk on the offset for all possible input combina-
tions. The low order bits (LOB) are modificd only when both inputs arc false, and those
bits cncoding the gate’ inputs are always consumed. Since chunks arc placed on the job
list in reverse gate order, the most significant bits of the offset before a chunk will always
encode the inputs 60 that chunk gate. T'hercfore the construction will faithfully mimic
the evaluation of the gates so that the final offset will be 4 il and only if the output of the
circuil is true.

Now we must show that the reduction can be done in O(log n) space. Since wc assume the
gates are given in topological order, the topological numbering can be done in logarithmic
space, as cm determining if two gates are joined by a wire. These procedures are repeated
cach time one of their values is needed.

When wc are to output a bit of the first job (initial offsct), we simply look to see if the
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TT TF FT FF next job

01010 LOB 01000 LOB 00010 LOB 00000 LOB 10000 0
00110 —-LOB 01000 -LOB 01110 -LOB 10000 ~LOB 00001 0
00101 -LOB 00111 -LOB 01101 -LOB 01111 ~LOB 00001 0
00100 -I.OB 00110 -LOB 01100 -LODB  01.110 -LOB 00001 0
00011 -LOB 00101 -LOB 01011 --LOB 01101 -LOB 00001 0
00010 -LOB 00100 -LOB 01010 -LOB 01100 -LOB 00001 0
00001 -LOB 00011 -LOB 01001 -LOB 01011 -LOB 00001 0
00000 +LOB 00010 -LOB 01000 -LOB 01010 -LOB 00001 0
00001 -LOB 00001 -LOB 00111 -LOB 01001 -LOB 00001 0
00001 -LOB 00001 -LOB 00001 -LOB 00011 -LOB 00001 0
00000 +LOB 00000 +LOB 00000 +LOB 00010 -LOB  00001+V;/2
0000 1+V;/2-LOB  00001+V;/2—-LOB 00001+V;/2-LOB 00001-LOB~V;/2 00001+V;/2
00000 +LOB 00000 +LOB 00000 +LOB 00000 +LOB+V;

Figure 6: The effects of a chunk.

appropriate wire contains a true input. Thus we need only keep track of the gate number
we arc working on. While we are genecrating the chunks, we need to kecp the current
gate number. The value V;/2 can be computed each time it must be written by the same
procedure which computes the initial offset. Since gate numbers can be stored in binary,
the entire reduction can be done in O(logn) space. i

6.3 An NC Algorithm

In this scction we give a fast parallel algorithm which dcterministically solves the list
scheduling problcm. The algorithm works by computing an estimate for the offsct after
.cach job, and then iteratively improving the estimalte. If the largest T'(J) is k bits long,
then wc represent all offsets and job times as k bit numbers. The precision of an offset
cstimatc is the number of leading bits, from the k-bit job times, used to compute the
cstiinate.

Theorem 11:

When the job times are bounded by 2Z(") for some function L, then the list scheduling
problem can be solved in O(L(n) . log n) time using n* processors.

Proof: Wc can cstimatc the first log n bits of the oflset by path finding. This is done by
examining cach of the n possible offset estimales before each job and compu ting the next
offset estimate. This uses n? processors and O( log n) time to give us log n bits ol precision.

Increasing the precision by one bit changes any offset cstimatc by at most tn. For each
position and 2n — 1 possible changes, we can compute the change in the next position.
Using path finding we can determine the effect of the additional bit of precision on cach
offset. Adding one bit of precision thus takes 0( log n) time and n* processors,

We can iterate the above process O(L(n)) times to recover the entire offset before each
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job. Using these offsets it is trivial to compute the start time and processor for cach job.
Therefore the entire process takes O(L(n) - log n) time on n* processors.  §

Corollary:

If L(n) = O(log® n) for some constant c, the list scheduling problem can be solved in
O(logC+1 n) time on n* processors, and is thus in NC.

When concurrent reading is allowed, path doubling can be used instead of path finding.
In this case the algorithm requires only n? processors.

7. Conclusions

The list scheduling result provides a very simple problem which is P-complete under
logspace reductions. It uses large numbers as does the reduction for the max flow problem
[GSS82]. In addition, the parallel time complexity of the list schcdnling problem is, in one
direction, closely tied to the size of the numbers in a problem instance since the analysis
of our algorithm shows that this size (measured in maximum number of bits) basically
yields the parallel running time. It should be interesting to study whether, in the other
direction, lower bounds greater than log n can be obtained. This problem, however, scems
to be very hard in general, and no progress has been made so far.

Our intree and outtrec algorithms are based on a common data structure, the schedu-
lability interval matrix. While, in sequential computation, it is straightforward to derive a
greedy optimal schedule for an inforcst given an optimal algorithm for outforests, this need
not be true for fast parallel algorithms. In fact, for slight variations of these problems, such
as outtrees on a varying number of processors, greedy algorithms become non-parallelizable
[DUWS84|. There are many other examples of problems with good sequential greedy algo-
rithms which can not be parallelized [AMa84].

It is now known that scheduling problems with either intree or outtrcc precedence
constraints arc in NC. However, there arc still several classes of scheduling problems, such
as chordal graph precedence constraints or other kinds of scheduling problems with empty
precedence constraints, which are not known to be either P-complete or in NC.
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