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Abshnct:  With the introduction  of prcrallcl  processing, scheduling problems have gen-
ernl,cd  great interest. Although there  arc good scqucntial nlgorit ltnls for many sclicduling
problcnis, there  are few fast pai-nllcl schccluliug algorithms. In this paper we present
scvcrnl good schcdulillg nlgorithlns  that run 011 l3Rl3W I’IUMS.  For the unit time
execlltion  case,  WC Ilave  algoritllnls  that will schedule  n jobs with intrce or outtrce
prcccclcnce  constraints in O(log ?z) time. The ilArcc algorithm rcquircs  n3 processors,
aud t,hc outtree  ;rlgorithnl requires n4 processors.

huothcr type of schcd~lling problem is list scllcdulirlg,  where a list of 7~ jobs with integer
execution times is to be schediilcd  iri list order. WC show that the gcncrnl  list scheduling
problem 011 two idcutical processors is polyllominl-time complete, and therefore  is not
likely to have  a fast parallel algorithm. How(3ver,  whfm  the length of the (binary rep-
rescntntion of the) execution times is bounded by O(log” n) there is an A/C algorithm
using n4 processors.
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1. Introduction

It is now feasible to build massively parallel multiprocessor  systems. One way to exploit
the parallclisni  in these supcrcomputers is to partition problcnls  into a number of small
subtnsks and then schedrllc  the subtasks on the various processors. It is conccivnble  t,hat,
with can inefficient scheduling, all of the supcrcolnputcr’s parallelism  may bc lost. It is
desirable that these tasks bc scheduled optimally, to coJnplcte the problem in the shortest
possible time. Since SOJ~C subtasks  may have to wait for the results  of other sllbtasks, full
schedules are not, always possible.  This ‘must-wait-for’ relationship  between tasks is often
represented by a directed graph, commonly called the dependency graph or precertence
constraint graph. For many classes of dependency graphs, finditlg just the length of can
optimal schedule is known to be an NP-complete problem [U1175,  May81]. Although good
sequential algorithms exist for finding optional  or almost optimal schedules in other cases,
few parallel scheduling algorithms arc known.

In this paper we first, consider scheduling problems given by: a number of identical pro-
cessors, a set of 72 unit cxccution time jobs, and a dcpcndcncy graph on the jobs. Our
results are algorithms which find greedy optimal schedules for subclasses of this problem
in polylog time running on a PRAM with a polynomial number of processors. Our first
algorithms are applicable when the dcpcndcncy graph can be broken into many separate
components. WC t,hen present an algorithln  for scheduling outtrcc prccedcnce  graphs. Our
main result is <an algorithm which schedules intree prcccdcnce graphs. Intrce precedence
graphs are an important special cast because  they result from many natural pro.blems,
such as expression evaluation and production assembly.

List scheduling is another type of scheduling problem, consisting of a list of jobs with
intcgcr execution times. A list scheduling instance  dots not contain prcccdcncc constraints,
but jobs must be started in list order. WC prove that this problem with arbitrary intcgcr
cxccntion tinlcs is P-complete under log-space reduction. We also exhibit an A/C algorithm
for the list scheduling problem when the cxccution tilncs  are at most O(log’ n) bits long.

We use the Exclusive-Read, Exclusive- Write (EREW) PRAM model  [FWy78]  for our al-
gorithms. This model consists of numbcrcd, autonomous processors sharing a common
memory and clock. Each processor  is capable of the normal arithmetic  operations (plus,
;ninus,  times antI tlividc by 2), as well as intlircct addressing. WC assume that the proccs-
sors arc al)lc to conlpu Cc the nlcinory  locat,ion of an array cell in rlliit tinI< (i.o., we use
the urli t cost ~~dcl). A~~~KNQ.$I the processors sharc a co1uinon nicmory, each individual
memory cell can only bc accessed by a single processor at any one step.

We will often rlcccl to fan out many topics of intermediate results between stages of our
algorithms. Using n processors we can create n copies of a va!uc in logn time. This
additive factor of log n dots not affect the asymptotic running time or our algorithms.



2. Basic Algorithms and Definitions

This section defines the scheduling problem and important concepts used throughout the
paper, as well as presenting fundamental  parallel algorithms.

2.1 Basic Algorithms

Since all our algorithms have steps requiring at lcast n2 processors,  we chose to represent
our graph inputs in adjacency matrix forru. This form is easy to manipulate in parallel
with large numbers of processors. On the other hand, the processor requirements of some
steps can be reduced to O(n) by choosing a more appropriate input representation. We
have attempted to note which steps can be implemented  more  efficiently.

One well known parallel algorithm is the prefix sum algorithm. This algorithm ‘takes the
array VALUE(0 .A - 1) of numbers and computes for each i < n, ‘&<k<i VALUE@).  We
assume that rz is a power of two, if not the array can be padded with z&&s.  This algorithm
is stated recursively, however it can be implemented iteratively using O(n) space.

algorithm PREFIX-SUM (n, VALUE);
Input: The number of inputs, n, and VALUE(O..n - 1) containing their values.
Output: The array VALUE(O..n - 1) containing the prefix sums.
begin

if n > 1 then
for each j from 0 to n/2 - 1 do in parallel

TEMP(J) := VALUE(2 . j)+VALUE(2 l j + 1)
od;
PREFIX-SUM (n/2,TEMP);
for each j from 0 to n/2 - 1 do in parallel

VALUE(2 l j) := TEMP( j) - VALUE(2 l j + 1);
VALUE(2.  j + 1) := TEMP(j)

od
fi

Our scheduling algorithms make frequent USC of the path doubling algorithm. This algo-
rithm essentially computes the transitive closure of a dircctcd acyclic graph with outdegrce
one, i.e. of an inforest. The algorithm starts with each vertex  finding its successor’s suc-
cessor. This gives us all paths of length  two. Then, using these paths ras cclges  we again
find each vertex’s  successor’s successor and so on. It is not hard to find a concurrent  read
path doubling algorithm. The [J)IJW84] paper contains an exclusive read path doubling
algorithm for linked lists similar to the following.
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algorithm PAT11 l>O~JI31,ING;
Input: A set of 72 vertices, one of which (the start vertex)  is marked.

The arr;ly TX(v)  is iniiializccl to V’S succcsso~‘, for all vertices v; if v is a siuk, then
E(v) is initi;dzetl  to NIT,.
The array elcmenls  of DIST(v)  X-C set to 1 if E(v) # NIT, and 0 otherwise.

Output: The array E(v) will contain  the sink rcd~cd from each vertex v.
The army l>IST( )v will contain  the distance from each node v to a sink.
Those vertices on the path from the start vertex to a sink will be marked.

b&n
LENGTII  :== 1;
while T,ENGTH < n do

for each v do in parallel
if v is nmrkcd then mark E(v) fi;
if E(v) # NIL then

DIST(v)  : =  DIST(v)-l-DIST(lX(v));
E(v) := E(E(v));

fi
od;
LENGTH := 24XNGTII

od
end PATH DOUnZING.

Synchronization of at most two processors rcading the same array element is no1 a problem
since the processors run in lockstep. This algorithni  takes Q(log n) time 011 O(n) processors
to compute the marking, DIST <and  E arrays.

When the graph is an intrec, the path doubling algoritlliu  remIts in read confljcts. Our
Path Finding Algorithm is applicable in this case. The Path Finding Algorithm  takes an
inforest with one marked node (m) cas  input and and finds a11 nodes on the path from m
to its root. IF the in Forest is initially given in pointer  forIn, WC can convert it to adjacency
matrix Form using rb2 processors in constant time.

The first step in the algorithm is to expand the tree by replacing each node <as in Figure  1.
We call the resulting directed graph the expanded tree. .Encl~ vertex in the cxpandecL  tree
contains information indicating its node in the tree and whether it is <an S- or I;‘-vertex.

WC can now compute the path through the expanded tree. The pat11  caters each expanded
node through the S (start) vertex, visits the node’s dcsccnrlcnts, and Ieavcs through the P’
(final) vertex. Using the path doubling algorithm on the expanded tree  WC can find each
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Figure I: Node expansion to compute the tree traversal.

vertex’s position in the path. This allows us to create  an array containing the vertices in
the order they appear  in the path.

Each S-vertex in the path is pairccl  with the F-vortex for the same node. Every node in
the tree whose S-vertex appears before m’s F-vertex and whose F-vertex appears after
m’s F-vertex is an ancestor  of m. Therefore, if we exanline  that portion of the path
following m’s F-vertex, all of the unpaired F-vertices will belong to ancestors of m.

When the path leaves an F--vertex it moves up a level in the tree, when it enters an S-
vertex  it moves down a level. Thus, WC assign the value 1 to all F-vertices, ---1 to all
S-vcrticcs and 0 to all other vcrticcs. Whcucvcr the partial sum from m to some vertex k
reaches a new maximum,  we arc lci~ving a lcvcl for the first tiluc (since reaching node m).
Thercforc, k’s node must be an ancestor  of node m. Rrrthcrnrorc, if k is an I?--vcrtcx  for
on of m’s ancestors, then the partial sum from m’s F-vertex to k is a new nlaximum.

Now WC cm find all of m’s ancestors. WC first compute all partial sums from m’s F-vcrtcx.
Then WC find the left to right maxinulnl  to the left of each position in the array. (This
is douc siluilarly  to path doubling, cxccpt  WC keep track of the maximum iustcad of the
distance.) ‘.l’l~osc locations whcrc the! 11liWil~llllll iucrcascs iiiust contain an F’- vertex  from
one of m’s ancestors.

The most expensive step of the Path Finding Algorithm is computing the expanded tree. If
the original tree has n nodes, all other steps take O(log n) tiure  on n processors. Computing
the (pointer rcprcscntation  of the) cxpantlcd  tree rcquirca n2 processors and O(log n) time.
Thus the total rcquirc~lrcuts  for the Path 1Gnding  Algorithm arc n2 processors and O(log n)
time.
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2.2 Dcfhi t iorls

An instance of the schcduliug problcln  is:
a nunlber  of itlontical processors, m;
a set of 7~ jobs, (51, J2, . . . . .J?,}, each taking a single tirnestep to execute;
a partial order, 4, on the set of jobs.

A solution to the scheduling problcnl  is a  schedule, S ,  which n~aps jobs  to  (integer)
tiniestcps. The schedule nnlst be legal, i.e. no more than m jobs arc Inapped to any
one tin~estep and if J  -X J’ then S(J)  < S(J’). Without 1 oss of generalily we assunie
.tnini{S(J;)}  = 1 and {t : t = S(.J&i E (1, . . . . n}} is sonic interval, {I, . . . . L(S)}.

A job, J, is available at tinlcstcp t if all its predecessors, i.e. jobs J’ such that J’ -< J, are
nqq~cl  to tiiucstcps less than t. A scl~ctlulc,  S can have several properties. Tl~c length
of the schedule, L(S), is the nnnlbcr of tilnesteps which jobs <are nlapped to. If S snaps
k < m jobs to linlcslot t (I < t 5 L(S)), 1,I ion S 11;~ m - k empty slots at tinlcstcp t. A
schedule, S is jull if it has no elnpty slots at Gnlestcps < L(S); S is completely full if it
has no culpty  slots. It is greedy if there does  not exist an empty slot at sonle tinlestcp t
and a job, ,J such that S(J) > t and .J is not a successor (directly or indirectly) of a job
scheduled at tilncstcp t. A schcdulc, S, is optimal if there is no lcgnl schedule, S’, with
L(P) < L(S) . 1 Cvcry full schcdulc is optinla.t,  but of course not every optinlal schedule is
full.

WC use the partial order on the jobs to dcliuc other ~~scful  quantities. The full precedence
graph is the directed acyclic graph with noclcs rcprcscnting the jobs and an edge going
front  J to J’ iR J --x J’. The sources are t,hosc jobs with no inconling  edges. The sinks are
those jobs with no outgoing cdgcs. The reduced precedence  graph or silllply tllc precedence
graph is the subset  of the full prccctlcncc  gr,zph obtained  by rcntoving transitive edges.
‘.L’ilc prcccdcncc graph is an inforest if cvcry node has at nlost one outgoing edge. The
prcccdcncc graph is an outforest if every node has at nlosl one incolning  cdgc. An inforest
or outforcst can bc trivially rllade  into a tree by the nddilion of a dunlnly root job, tying
the roots of the forest together. Although we USC the terns tree throughout this paper, the
rcsrilts apply to forests <as  well.

Dclinition l.CPT(  J):

The earliest  possible tinlcstcp a job J can be scheduled, EPT(J),  is I+ the length of
a longest path in the precedence graph cncliug at J.

If we take a precedence  graph and schedule all available  jobs at each tirncstep  (using up to
n processors), then J will be ~cl~Iul~d  at tinlcslcp  lCI’T(J).  Intuitively, T!:PT  Icvc:ls push
jobs up as close to the sources as possible.
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Definition d(P):

The depth of a precedence  graph P, denoted d(P), is the xnnxilnunr EPT value over
the jobs.

Definition LPT(J):

LPI’(J), is d(P) --the length of a longest path from J to a sink.

If we have au unlimited number of processors avnilablc and WC desire  an optimal  schctlule,
then each job must bc umpped  to a timestep  at or before the job’s LPT lcvcl. Intuitively,
the LPT levels  arc obtaihcd by pushing the uodcs of P down (towarcls the sinks) as far as
possible.

The i’th LPT level is {J : LPT(J) - i}. Each LPT level, i, partitions the jobs into three
groups, those in the lcvcl, those above the level (with LPT < i) aud those below the level
(with LPT > ,i). TG’T levels  are defined  similarly. We use N(i) to denote the numhcr of
jobs on LI’T level i.

When P is au oattree,  the values ~1( r>, ICPT( J), Cand LPT(J) can bc found by path
doubling. First, if a tree node has k sons then we expand the node into a k -t- 2 node
structure <as shown in Figure  1. We then use the basic path doubling algorithm to find
the path starting at node S of the root’s structure, entering  all of the nodes, and cndihg
at node F of the root’s structure. Everytime we hit an S node in this path we go down
a level, and every time WC hit an .F node we go up a level. Therefore, we co~ult  S nodes
as ones,  F nodes as minus ones, aud other nodes as zeros. Job J’s EPT lcvcl is the prefix
sum front  the start of the path until just after J’s S node. Job J’s LPT lcvcl will be d(P)
minus the maxin~um value of the prefix sums starting with J’s 5’ uode and ending at J’s F
node. By listing tbc jobs in the order lhe path reaches their S (resp. 1;‘)  uodcs, we obtain
a prcortlcr  (rcsp. postordcr) I,r~~VcrSibl  of the tree. A similar  iLlgOritl.kI11  finds Gho 13PT aml
LPT values for intrecs. All these computations can easily bc done in O(log  n) time usiug
2 processors.

The EPT (and d(P)) c 1v.1 ues can be computed more cf’ficicntly  using a diKerent  input
representation. When the tree is given by pointers to the parent  <and right b&her for each
node, the above transformation rcquircs ouly O(n) processors with no significant loss of
tinic. III [DUW84/ thcrc is an O(n) processor, O(log n) time algorithm for computing the
LPT values  as well.

Definition Highest Level First:

A schedule S is highest  level Jirst if it is greedy and there do not exist two jobs JI, &
such that LPT(J1)  < LPT(Jz),  S(J2) < S(Jl) and J1 is availiAle at timestcp  S( S,).

A highest lcvcl first schcdulc  prcfcrs jobs with the lowest LPT values.  It is kllowrl that
highest lcvcl first algori t htlls yield  optimal  s&cd ulcs for both in t rcc prcccd chcc graphs and
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outtrec prcceder~ce graphs [IIuGl,  BruKt].

Definition n(P):

The revel-d of a preccdcnce  graph P, written 12(P), is the yrecccIc~tce  graph coutain-
in g:
(1) the same set of jobs as P;
(2) the edge (J, J’) fi and only if the edge (J’, J) is in P.

In other words, the reversal of a precedence graph is created  by reversing all of the edges in
the graph. It is easy Co see that R(Z1(1’))  = p and the rcvcrssl of an intrcc is an outtrce.
Any (optimal) schedule for an outtree can be reversed to form an (optimal)  sclledulc for
the associated intree (and vice versa), however, the resulting sclredr~le  will in gencrnl not
bc greedy.

Dc4nition  S I M :

‘IYle Scheddability Interval Matrix, STM, is the d(P) xd(.P) array of sets where SIM(i, j)
is the set of jobs J having IX”I’(J) = i anal LPT( J) :x j.

Later it will be important to order the jobs in each SIM cell. We compute  a preorder
traversal for the tree <and order the jobs in each cell according to their positions in the
traversal.

Lemma 1:

If i > j then no jobs arc in SIM(i,  j).

Proof :  Assuxnc to  the  contrary  that  i > j  and some  job  J is  in  SIN@, j ) .  Then,
LPT( J) < k:l”l’( J) or the latest possible  time a job can be scl~cclulcd  is less than the
carlicst possible  tiltic it can lx! scl~cdulcrl; contraclictiou. 1

Definition SIM Path:

A SIM path from ccl1 (i, j) to cell (i’, j’) (i’ 5 i, jr 2 j) is a list of i - i’ $- j’ -- j + 1
SIM ceils such that:
(1) ccl1 (i, j) is the first ccl1 on the list;
(2) cc~lI (i’, j’) is lhc last ccl1 ou the list;
(3) if toll (il , ji) i~t~l~lct!iaColy  prccc!cds cell (iz, jz> on UIC list then it nlust bc that tither

(iz, j2) :-= (il -. 1, jl) or (GJ, Jo) - (il,jl -I-- 1).

Thus a SIM path is a rcctilincar  path running from lower-left to upper-right. The number
of jobs in a path is the sun1 of the nulnber  of jobs in each of the path’s SIM cells.

Definition Directly Above:

Let p and p’ he qua1 length SIM paths, then p is directly ahovc p’ if the lists differ  by



only o:no cell, with p ll:Lving cell (i, j) and JJ’ containing cell (i +- l., j + 1).

Definitiorz  Above:

Path JQ is u6ove path 1~ if tJ\crc is a sequetlcc of paths, pl, 112, . . . . JJ~, such that pi is
directly al)ovc  pa +I, i - 1, . . . . k - 1.

Definition Reverse Running Average:

WC 5~t.y  that Ihc reverse running average from some lcvcl (or column or row) i up or
back to level  (or column or row) j, is al leust (at most) c if for all k (j 5 k 5 i), the
averages:

c
ilzk number of jobs on level I- - - - -

i-k+1

are at lci~f; (at nios t) c.

We can fi:.A the smallest intcgcr greater  than the revcrsc  running average in O(log n) time
on 72 pro~ssors by the Mowing  algorithm:
(1) Sum up the number of jobs on each row.
(2) Use the prefix sultl algorithm to compute the number of jobs in the rows from i up to

each k 2 j.
(3) For each of thcsc k, find the smallest integer CA: such that:

ck(i - k -I- 1) 2 2 nunlber  of jobs on row 1.
l-k

(4) Coutprrte  the inaximuln  of these ck’s.

St”p (3) can bc dono in O(log n> time using only addition Ly comput,ing  the products
2’(2 - k -+ I), r = 1, . . . . [log n] . A sintilar  algorithm computes  the largest integer less than
or equal to the running average.

3. Preccdcnce Graph3 With Many Components

Although the general scheduling problem is very hard [May8 L], there arc some natural
special casts which arc easy. Two of ttlcse special cases arise when the preccdcnce  graph,
P can bc partitioned into several components, Cl, C2, . . . . Cl, with no edges joining nodes
of difl’crcnt  componcnbs. WC use n; to denote the number of jobs in component  Ci.

In this section WC use the terms schecl~le  and schcdding not only for the prcccdcncc  graph
P, but dso for subgraphs of P.
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Special case 1: The components  are all small, i.e.

Let r = n -- [zi] . m.

.

The algorithm proceeds in three phases. The first phase linearizes the precedence  con-
straints, creating a single list containing every job in P. This list is then partitioned into
m bins in the second phase. In the third phase, the jobs within each bin are assigned
timeslots  in a manner consistent with the precedence constraints. These partial schedules
can be merged to form a schedule for P.

Algorithm I:
1. In the first pass, WC linearly order the jobs in each C; in cany way which does not violate

the precedence constraints. WC record the position of each job in its list. These sublists
for each Ci arc concatenated to fornl  L, a list containing every  job in P.

2. Using prefix su~ns, WC divide L between the m bins. We give each of the first r bins
1 E] + 1 contiguous jobs from L, and each other bin [z] contiguous jobs from L. Let
J!,; be the sublist  of jobs given to bin i.

3. WC examine cnch Li in parallel. If it contains a proper prefix of the jobs in some Ck,
then that prefix is scln~fulcd  before anything else in Li (using just the one processor).
If I,; contains a proper suffix of the jobs in some Ck then we schedule those *jobs  after
everything else in the bin. If Li completely contains the jobs in Ck then those jobs in
Ccc can be scl~cdulcd whenever convenieut.

Now WC have  m single processor schedules which can be merged to form an m processor
schcclule  for P.

Theorem I:

Algorithm 1 finds a legal, full schedule for P.

Proof: It is obvious that the resulting scl~cdulc is full, what we must show is that it does
not violate the precedence constraints. Since there arc no constraints between components,
all we have to show is that the precedence constraints within components arc met. Let Li
be the list for a.11 arbitrary component  (from phase 1). WC show that  the list is schcdulcd
i n  order. I f  Clic entire con~poncht  is placed in a singlc bin, then its jobs arc scheduled
accord i ng Co I;;. ‘I’hC  COlll~)Ol~Ct~t  Cilfl l)(! sl)lil,  b(!tWC(!ll it219 IllOSl CWO bilk3  ( n o  COlll~~O~l~Ilt

hiIS JllOrC  jOl>S tllikll ik bill).  h!CiLllSC  Li COllkLhS IlO 11101’C  jOt>S  thT1 Xly bhl zllld thC ht

part of Li is scheduled at the carliest, and the second part at the latest possible tirncsteps,
the list will bc scheduled in order. 1

Special  case 2: The precedence  graph P has k components  with at least d(P) jobs each
and at least  (712 -- k) l d(Y) J b‘o s in components  with fewer than d(l>) jobs.
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When this conclition holds, P can be divided into m indcpcndent  groups, each with
at least ~l( f’) jobs. These groups have the property that their schedules can easily be
conlbincd  to forni an optimal schedule for P. The algorithm starts by creating the groups.
By cxnirlilling each group irldependcntly  we create a tctnporary  schedule, Sr, for 1). The
schedule SI satisfies  the prcceclcncc  constraints but may use far more than m processors.
Using Sr , the algorithnr sorts the jobs of P into a list. The linal scheclule,  which is full
and legal, is easily derived front  this list.

Algorithm 2:
1. Divide P into m groups, each containing at least d(P) jobs. Create ternpor‘ary sched-

ulcs for each of these groups.
(a) The k components of P having at least d(P) j bo s are each placed in their own

group. Schedule each of these group such that the precede-nce constraints are met;
each timestcp from 1 to d(.P) has at least one job and no timesteps after cl(P) are
used (any number of processors can be used with any nunlber  of clupty slots; of
course, at least one task must be scheduled at every tinrcstcp). For each of the
above Ic components, this can be done as follows: Let C be such a component.
First calculate the EPT levels  of the jobs in C, and (i(C).  Then find the highest
nunrbercd EPT level  I in C with more than d(P) - I$- 1 jobs at or after it. Spread
these jobs so they cover the last d(P) -- I+ I timesteps, and schcdulc  the jobs J
with EPT(J)< I before theni, level by level.

(b) The jobs in the remaining components are first linearized as in Algorithm I. From
the beginning of that list, m - k sublists  each of length d(P) arc taltcn away and
rearranged as in step 3 of Algorithm 1. They for u1 auother  m - 1~ “columns” of
the temporary schcdulc S1. Finally, the remaining jobs arc put into one more
“COllllllfl”, according to their J,PT level  (in P).

2. Now we have at least m tcmpornry  schedules of length < d(l)), cand at least the first
m of thctu have length exactly d( 1’). Wc use these scheclr~lcs to create an ordered list,
L, 0C the jobs in 1’. The first jobs on L arc those  scheduled at tiincstcp  one in the
terrrporary  schedule, then those ikt tiriiestep two, . . . . and those at tiincstep  d(P) arc
placed at the end of 1,. Within each timestep  the jobs are ordered by groups.

3. We assign to timcstcp  t the (t - 1) urn+ l’st job through the t am’th  job of L. Of course,
the last tinrcslot nray be only partially filled if the list does not contain a multiple of
m jobs.

Theorem  2:

Algoritlini  2 finds a full schedule for 1’.

Proof: The resulting schedule is obviously full. It only remains to cheek  that the prece-
dcncc constraints rare satisfied. Jobs of the same coinponent  but in diffcrcnt  groups are
separated by a full tinrestcp  by S1, and thus at least  m jobs in 4, This nn~ns that they
cannot possibly be mnppcd to the same timestep  by S. Since the tempor<ary  schedule
satisfies  the prccedcncc constraints of I-‘, the only other way the prccedcncc constraints
could bc violated is if two jobs in the same group are mapped to tliffcrent timestcps by SI,
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but Ihc same timestep  by S. This can’t happen because in L there arc at lcast 7~), -- 1 jobs
(out from each other group) between any two jobs of the same group. i

Resource usage: Finding the connected components  takes O(log n) tinlc using no more
than O(n3) processors [SVi82].  The J31’T  levels  can be foulid  in O(10g2 n) time using O(n3)
processors by tlhe following procedure. Firsl, WC find the sources of the graph. Then using
max-plus transitive closure we find the maximum distances in the precedence graph from
each job to the sources. (After each successive “squariug” of the matrix, we create n new
topics of the matrix using O(log n) time.) This gives us the length of the longest path
from each source to each job. Taking the maximum over these lengths gives us the EPT
levels  of the jobs. The depth of the graph (d(P))  is the mCaximum  JXI’T value.

We label each connected component by its least-numbered job. Every job is given a pointer
to its, componcrtt nuukbcr. Now, we can enlploy standard summing techniques to determine
the numLer of jobs in each component.

4. An Outtree  Scheduling Algorithm

This chapter describes our outtrce scheduli~lg algorithm. Section 4.1 presents scvcral pre-
liminary results for SIN’s with outtrces. Section 4.2 dcscribcs a sequential algorithm for
optimally scheduling outtrces. Section 4.3 shows how to compute this sclledule quickly in
paral 14.

4.1 SIM for Outtrees

Let P be the outtrce WC arc attempting to schcdulc.  Let d be the depth of P.

Lemma 2:

.

There is only one job in Q. SIM( 1, j); i.e. the top row contains only the root of P.
Those jobs in the last (&‘I) colunm care the leaves of P.

I’rocjf: Only the root has EJ’T--1.  The lcavvs, and only the lcavcs, have LPT - tl. 1

Theorem 3:

If J is in SlM(i,j)  then the parent of J is in U,,iSIM(~ - 1,Z); the children of J are
in Ul,jSIM(i  -f- l,l); and at least  one child is in SIM(i -)-- 1,j -!- 1).

Proof: The EPT of J’s prcrcnt  is exactly 1 less that1 J’s EI’T. The LTT of J’s parent  is
at Icast .L less than J’s LPT. The El’Ts of J’s children arc one greater than J’s EPT. The
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LPTs of J’s childrcn arc at least 1 greater  than J’s WT. At lcikst one of J’s children is on
the longest path from J to a leaf a~ct thcrcforc has EI’T and IJ’T one grcatcr than .J. n

Coro l l a ry  :

If SlM(i,  j) (i, j < d) contains r jobs, then SIM(;  + 1, j -t- 1) contains at least r jobs.

Proof: Every job in SIM(i, j) has a child in STM(i + 1, j + 1). 1

Coro l l a ry  :

If p and p’ arc paths where  p is above p’ then p’ contains at least as ~uany  jobs as p.

4 . 2  A  S e q u e n t i a l  Outtree A l g o r i t h m

Debition S I M  S c h e d u l e :

Given a SIM matrix we can compute  the SIM schedule iteratively as follows: At the
first tilnestep  we schedule the job from the top row. The last ccl1 of the first row is the
corner for the first timestep. On the t+” tilllestcp WC attempt to schedlllc m jobs; we first
schcdulc those jobs on the iltl’ row up to (and including) the previous tinlestep’s corner.
Then we schcdulc jobs front the next colnnm to Ihe right, working from the top to the

. bottom. If necessary,  WC use the left to right, ortlcring to break ties. If, in this column, WC
reach the P” row before taking m jobs, then WC start on the next column (again working
frown  the top down), and so on. Within each SIM cell, we t&c jobs according to their
prcordcr  position. The corner for titncstcp  t (denoted C0RNII:R(t))  is the rightnlost  STM

. cell 011 th P’ row whose jobs have all been scheduled by the t’*” timcstcp. We will show
below that this algorithtn  is optimal and dots not violate the prccedcncc constraints.

For convcuio~lcc wc dofinc collNE1l(0)  t0 1)c tl. Since the algorithm finishes ;I column
(down to the current tilncstcp)  bcforc nloving on to the next one, no jobs 111orc  than o’nc
colun~n to the right of CO I’VE R( t) will b e schcdulcd  at timcstcp  t. The example below
shows how the SIM algorithm works.

T h e o r e m  4 :

The SIM schcdulc is highest lcvcl first and thcrcforc optinml.

Proof :  ‘I’lw  SIM schcdulc  is  grcotly. Clearly the tirst tin~cstop schcdulos al1 iI.Vi~ilill~lC  jObS
(the root). Assume that until tinlcstcp  t the schcdulc has been greedy and legal.

Case 1: The CORNER( t -- I) is less than d -- 1. This mcans that m jobs were scheduled
in the previous timestcp,  none of which was in the last column. Each of these jobs has
a son cithcr on the t”” row, or in the CORNER(t - 1) + 1”” or CORNEl2(t  - 1) + 2”‘l
colun~~  a.bovc the tto*’ row. The algorilhm stolx schcdllling jobs only after thcsc cells have
been exhausted or m jobs have been taken. Since 1hcre are at lcast m jobs in thcsc cells,

12



Y 0

0 0 0 0



constraints will not he violated.

Cxse 2: The corner of the previous tinlcstep is d or cl -- 1. If the <algorithnl  schedules less
than m jobs, then all unsch4ulcd  jobs at or above the t”” row will ho taken. Since no jobs
below the ttll row can possibly be availa’blc  at the t’,” tilncstcy, all available jobs will be
scheduled.

In this case, only jobs on the tt” row or in the last coluuln are scheduled. Since no jobs
below the tt” row arc schcdulcd, no dcpcndcnts of jobs on the t U’ row are schcdulcd. Since
the jobs in the last column have no dcscencimnts, none of their dcsccndants  arc schodnlecl.
Thcrcfore the SIM schedule obeys the prcccdcnce constraints.

I3ccause the SIM schedule is greedy and it takes available jobs in the lowest WT columns,
it is highest lcvcl first. 1

4.3  Paral le l  Implementation of’ the  SIM Algor i thm

Once we know where the corners ,arc, it is easy to find the SIM schedule in parallel.

T h e o r e m  5 :

The corner of a tinles tcy (or IWT row) t is the largest colunln nunI her c (c 5 d) such
that the reverse running average, counling  only jobs in or before colu~nn c, front  row t up
to the first row is at niost m.

Proofi The corner is no greater  than the c conlplttcd  above. If CORN’l~lt(t)  were  greater,
then there is a row t’ 5 t such that there are more than me (t - t’ --I- 1) jobs in the rcctarlgie
bounclcd  by COh 111Jl  COJtNIW( 1) and rows t aud t’ inclusive. All of thcsc jobs rn~~st  have
been schcct~~lcd  txtwccn  tinlcstcps  t’ and t, howcvcr thcro arc not enough slot3  .for all of
the jobs. Contradiction.

We now prove  that the corner (when  less than d) can not,  he snlallcr than the c couq)utecl
ab ove . Assun~e, to the contrary, that tinlcstep t is the first tinlcstey  where the corner is
less than the c cotnputcd  above. Lct i’ bc the last titncstcp before tinlcstcy t where  the
corner of t’ is at Icast c. Thcrc arc at nlost me (t -- 6’) jobs on or to tllc 1cTt of colu111n  c and
bctwccll  rows 1 a11d 1’ -t- 1, itlcl1lsivc.  Since tllc corricrs of’ all tinlcstcps bctwecn i and 1’ arc
less tllan c, HO jobs to t+hc riglIt, of CO~U~~IJ~  c will 1~ taken in those tilncstcps. Thcrcl’orc,  all
of the 5 m l (t --- t’) jobs to the left of colulurl c will bc taltcn. Thus the corner of tilucstcp
t is at least the c value cornputcd above. 1

The extended  SIM array is can rz x d array. The first d rows carc identical  to the rows of the
SlM array. The other rows contain all zeros.

Algorithm: Our algorithnl coJq)utcs the S[M schcdulc Li,r the outtrce in four phases.  The
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. .

first phmc co~~~ptcs  the extended SIM array. The second phase computes the corners for
each tinmdep. The third phase computes the number of jobs scheduled from cac11 column
before cacli timcstep. The final phase, using information from the first, phases, computes
the specific jobs scllcduled  during each tinlcs  tcp.

.
The second phase computes the corners for each timestep. This phase consists of three
steps:

a. TJsing prefix sums, find the matrix nOw,sll/M(i,  j), w ich h contains the number of jobs
on row j at or to the left of column 2’ in SIM.

b. Create 72 copies of ROWSUM,  one for each possible timestep.
c. For each timestep, t:

1. For each column i of ROWS UM, compute the lc‘ast integer  greater than reverse
running average of column i from I, to the top.

2. Find the rightmost column such that the reverse running averngc for that column
is at nlos t m. This column is the corner for timcstcp t.

‘IXc first step rcqllires just n2 processors and O(log n) time. Step 1,. can be done using n3
processors and O(logn)  time using binary trees to propagate the values. Step c. is done
for r), timesteps requiring O(logn) time and a total of n3 processors. The entire phase
takes O(log n) time on n3 processors.

The third phase compatcs TAKEN(t,  c), tl le number of jobs scheduled from column c
before timcstep t. For each t WC do the following steps:

a. For each c, compute LAS’r(t, c), the last timestep  before t when the corner was at or
to the right of c.

h. Set TAKEN@,  c) to tt ~0 nunibcr of jobs in column c at or above row LAST(t,  c).
c. Additional jobs may bc sclleduled from column c when the corner is c - 1. Therefore,

if LAST(2, c - 1) > LAS’l’(t,  c) tlwn WC add to TAKJ<N(t,c)  the amount by which
m - (LhST(c, c - 1) - I,AST(1,  c)) cxccotls the number of jobs in the rcctnnglc bounded
by column c -- 1 and rows LhST(t,  c) -I- 1 and LAYT(l,c -- ‘1)  inclusive.

Claim: The value of TAKEN(t,  c) is the number of jobs schcdulcd from column c before
timcstep t.

I,roof:  Jobs ca11 be schcdaled from colunm c ouly when the corner is at or to the right of
coluuln c - 1. Tf at tinic 1’ < t, the corner is to the right of column c -.- 1 thcri we know
tliikt ii11 jobs ill tllc colunnr  c at or before  tilllestcp  t’ have been scliodriletl.  13y fi rldiilg tlic
largest such t’, we account for all jobs scheduled from colurun  c during timcstcps  up to t’.
Between t’ and 1 the corner stays strictly to the left of c. I3y each timcstcp 1” > t’ when
the corner is in column c - 1 < ct, an additional m l (1” - t’) jobs have been scheduled.
Exactly the nmnbcr of jobs in the rectangle bounded by column c - 1 and rows t’ f 1 <and
t” (inclusive) do not conic from column c, so m l (t” - t’) -- this number have COJI~ from
c. I3y taking the latest approprintc t”, we cnsurc that all jobs taken form column c are
c0u1dJcd.  1
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requires r2. processors and O(log rb) tiille;  step 11, . . . , can bc done in O(log 72) time with
n2 processors; and Y@ c takes 7x2 processors ody a constant amount of time. Thus the
entire third phase takw 2 processors O(log n) time.

Our out~rec  ;IlgoriUlm  can be adq)t4  f’or rclc;l!;o-dcacllillc,  scheduling problems.  When
EPT is replaced by rclcnsc time arid LPT by deadline, the intrce algorithm conlputes  a
schedule minimizing the maximulu  tardiness.

5. An Zutree Parallel  Scheduling Algorithm

This ch+ptcr  describes our intree algorithm. The first step in the algorithm is to divide
the intree into two scgmcnts.  Seclion 5.1 describes this division. The first segment can be
easily schcdulcct  using our orlttrcc  algorithnl, this is also prcscntcd in section 5.1. Section
5.2 contGns  the basic 01corcms and tlofinitions needed to schedule the other segment.
Section 5.3 presents an optimal scqucntial  algori&n for scheduling the second segment.
Section 5.4 gives the parallel implementation of the algorithm.

5.1 Division of the Intree

This section shows how we divide the intrcc and schcdulc  one of the segments.  The
division lllust be carefully chosen so that the schcdulcs  for the two segments can be merged
into a greedy  optinlal  scl~ctlule  for the whole intree. This section closes with an obvious
schcduliilg  of the first segment.

Dcfinit ion Cut:

A c7tt of a prcccdcllcc graph, P, is a partition or P into two parts, 1’1 and Pz such
that SOU~C oplilnnl schedule maps all jobs ol’ PI to timesteps at or before some timestep  t,
and maps all jobs OC I,2 to Cimestcps  after t.

Theorern 6 (Optimality Theorem):

,If P is crlt into 1’1 arltl Pz, tllorl any oplimal schedule for 1’1 can be concatcnatcd  with
any q,tintal  scl~eclrilc  for I‘2 t0 CtTil.l,(!  iLt\ opthal SCllCdUlC  for 1’.

Proof: If the concatcnatctl  schctlulc  is not optional  then one of t,hc two pieces must take
more timcstcps than the corresponding part of the whole schedule, and is thcrcfore not
o p t i m a l ;  conlradiction.  1

The algorit,hm  works by partitioning t,hc intree,  T, into two segments, A, and B. The
division is chosen  so t,hat  both scgmcnts  are easy to scl~lulc indepcndcntly,  and once
found, the two partial schedules can bc merged to form an opt,imal  schedule for !Z’.
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1

To End the A scC’;IlLent,  we divide the Ireo at an LPT level, t. We pick t to bc the largest
LPT led such tht th ,e reveryc running average front  t 11.1,  to the first LI’T lcvcl is at least
m. rl’l~osc jobs at or above LI’T lcvcl t forln the A+ segment.  Let (.J.~,~~, . . ..JNtt)}  be
the AT(t) jobs wllosc  LPT is t. R,cordcr tllcse jobs by EPT value so that Jl has the least
l3f’T value, .J2 h.s the second Icast,  etc. 1’31~ number of jobs in the A scgnlent  will be the
largest  multiple of m which is not greater than xk<t N(k). The jobs in the A segnlcnt
arc all those wit,11  LPI. < t and enough low-nunlbered jobs with LPT = t so that n has
the right cardinality.  Let TA be the prcccdence subgraph  restricted to the jobs in the A
scgn~~t.  The B scgnlcnt  consists of all jobs not in the n scgnlent; let TL, be the precedence
subgraph containing the jobs of the R scgnlcnt. An exalnple  is given in Figure 3.

L P T 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

Nulnber  of jobs

P?iyure  S: Division inh A and R segments, m = 4

We will show below that this partition fortns  a cut, and Ihat there is a coniplctcly full
highest level firs1 schedule for the A segnlcnt. TJsing our outtrce algorithm WC can End
;~JI optiinal  schcd~~lc  for It(A). ‘LY iis schcc’luic  can then bc reversed to yield an optilual
scllcd&! for the A scgnlent.
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Lemma 3:

If the rcvcr3e running averagc  from level d up to level 1 is nt Icast k, then if sonx job
is n~ovcd down from lcvcl i to levd j (I 5 i < j 5 d) the reverse running average from
level d up to level 1 rcnlains  at least k.

Proof: The reverse running averago  is just a series of sunrs. When a job is nloved  down,
it continues to ‘be counted in all the sunrs where it o:riginally  appeared. 1

Lemma 4:

If LPT level 1 of an intrce has N(1) unscheduled jobs and Icvel I -I- 1 has N( I $- 1) 2 N(Z)
unscheduled jobs then there are at least N(I + 1) - N(1) available jobs on level  I + 1.

Proof: Siilcc  WC have an intree, each job has at nlost one successor. Any job without an
unschcciulctl prcdeccssor  ou the previous LT’T Icvel is available.  At nlost N(1) jobs on Icvel
1 $- 1 have unschcdulcd predecessors. Therefore, at least the renlaining  N(I + 1) - N (I)
jobs on level  1 $- 1 are available. 1

Corollary :

If there are k unscheduled jobs on LPT level I, and k’ > k unscheduled jobs on a lower
level, I’, then there are at least k’ - k available jobs below level I and at or above level  I’.

Lemma 5:

At any step (cxccpt possibly the last) in an IILI? schedule for the A-+ scgnicnt, there
arc at least m leaves.  Vurthcrnloro,  if 1 noncrnpty LPT Icvcls rc~~~,in  in the A+ segrnertt
then the rcvcrse  running average  ~I-OJII  lcvcl cl(A t-) up to (and including) d( A I’) - 1 -I-- 2 is
at least m jobs.

ProoT: : This obviously holds bcforc the first tinicstcp.  Assunre  it holds through tilncstep
t- 1 when the k - lSte (but not the kto”) Icvcl has been colnpletcd.  1zy the induction
hypothesis,  the reverse running average  Ii-on1 IeveI d(A4-)  to k + 1 is at least  m.

Case I: If the k’*’ lcvcl has more than am jobs, then no jobs are schcdulcd l’rorn  below the
kt” level  so the running avcragc  is still at least m.

cASC 2: if the k’s” Icvcl hs less CIKW rn jobs, and the k --I 1”” Icvcl has VI or more jobs
then the k -t lSt Icvel bcconles the new top Icvcl. No jobs below  this Jevcl  are schcdulcd
at tilncstep 1. Therefore the running average  front level d up to the k + 2”‘l Icvel is still at
least m.

C‘ase 3: If the kth level and the k -I- ltit lcvcl both have less than m jobs then there inust
be sornc Icvcl with nrorc than m jobs. Let IcvcI i be the highest  Icvel with Inore than m
jobs.
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Since, in step t, only tasks from levels between Ic and i care  taken, the reverse running
average is unchnnged after step t for all levels  lower than i. If it would drop below  TYJ for
solve  lcvcl j, k--t- 2 5 j 5 i, this would inlply that before step t the reverse  running average
for level k -1 1 was below nz since all levels above i contain fewer than M jobs and m jobs
are schcdulcd  in tin~cstcp  t. 1

Given an inforest, P, exsnlinc the EPT vdnes of the roots. If those jobs scheduled in
the first tinlcstep of any I-ILI? schedule arc removed, then the new EE’T values will not
increase. Furthernlore,  if the 1CPT value of a root decreases  then the values for all roots
wit,11  larger EPT v&es will also decrease.

Lemma 6 :

Let P be an inforest  with roots rl,r2 , . . . . ~~ such that EPT(rl) ,c EP5!‘(r2)  5 . . . <
EP?‘(r,.). There is a highest level first schedule for I’ which maintains these inequalities
after every timcstep.

Proof: 13~ contradiction. Whenever we have a choice in the highest lcvcl first algorithm we
schedule those jobs in the lowest nurnbered root’s subtrce first. Assunle at sonle tinlcstep
the EI’T value of root rj bcconles less than EPT(rj-1). $3L irlce EI’T values can decrease
by at nlost one (and never increczsc)  each tinlestep, the t;:PT values of rj and rj--l nlust
have been equal at the previolls tinlestcp. This inlplies that all the ancestors of rj at the
highest  lcvcl were scheduled, but at least,  one ancestor  ot’ rj-1 at that level was not. But
that contradicts the algorithn?s  tie breaking nrethod. 0

Ilcncc, the k leftover jobs in the last tinlcstcp  nlust bo the k highest  nunlbercd roots of
the A-‘-  segnlcnt  (therefore they can easily be found).

Corollary :

There is a cou~plctcly  full highest Icvcl first schctl~lc OC the rcduccd A scgxncnt.

5.2 Preliminary Lemmas and Definitions

The B seglnent algorithal uses the SIM nlatrix. Since the R scgnjcnt  is an intrce, we
prove several facts about SIM’s for intrees.

Lemma 7:

T~IOSC  jobs in UjSIM(l,j), i.e. the top row, arc the lcavcs of T.

Proof: Every leaf, and only the leaves, have EPT = 1. 1

Lemma 8:

If J is in SIM(i,  i) then all of the inznlcdiatc  predcccssors  of J are in UkJXM(Ic,~-- 1).

19



Proof: Let J’ be an imtuetliatc  predecessor of job J. The pnth from J’ to the root is
one longer than the path from J to the root (it includes the arc (J’, ,I)). The longest
path from J’ to a leaf is at most one less that1  the longest path from J to a leCaf.  Thus,
LPT(J’) - Ll’T(J) -. 1 and EI’T(J’) < EPT(J). 1

Theorem 7:

If .J is in SIM(i, j), with ;, j > 1, then J has an immediate predecessor, J’, in SIN@ -
1, j _-- 1) ( 01 1e cell diagonally up and to the left).

Proof: I)y Lemma 7 we know that J is not a lcCaf.  Exalninc  any longest path from J to
a leaf. T,ot J’ be the job following J on the path. Then EI’T( J’) == EPT( J) .- 1 = j - 1
and since ,J’ is a direct predecessor  of J, LPT( J’) = LPT(J)  - 1 = i - 1 (by Lemma 8).
Therefore J’ is in SIM( i - 1, j - 1). 1

Corollary :

If cell (i, j), i, j > 1, contains k jobs then the cell (i - 1, j - 1) contains at least k jobs.

Proof: Every job in cell (i, j) has a predecessor in cell (; - 1, j -- 1). Since WC <are dealing
with an intree,  these are all distinct. 1

Corollary :

If path p is direclly above path p’ then p contains at least, Gas many jobs as pt.

Proof: 9’110 paths y axid p’ differ by or11y  one SIM cell, p contains solve cell (i, j) while p’
contains cell (i -I- 1, j -{- 1). I+om the above, cell (i, j) contains  at lcikst as ~tlany  jobs as ccl1
(d-l,j-l-1).  I

Corollary :

If path p is above path p’ then p contains at least cas  many jobs cas p’.

The JWSI, diflicult porliolls  of the U scgnient  to scl~cdr~le are the LPT levels containing
l1101’c 1, tm1 rn jh. Since ali opbitllitl  sctled~~le  I)~O~IYWXS OI~C  IA’T ~OVCI t~i~cll t,illlestep
(LClIlllliL  I5 I~elow), l~l10so jobs in excess of m I1itls1,  be sclled1ile(l  I&ore  the level is rcxAcd.
Tllc following algorilhnl  lllccts  this condition by special Ireatnlent  of the colunms in SIM
with more tlli\rl m jobs. E’irst  we give some definitions.

Definition Bad Column:

Jf an LPT column of the SIM Inatrix contains more than m jobs, then that column is
a bad column.
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Definition Bad Cells:

Ccl1 (i, j) is ;I bad cell if there are at least  m jobs in column j below row i. All other
cells are yood cells.

If n column has k; bad cells, they will bc the k topmost, cells of the column.

Theorem 8:

If cell (i, j), i, j > 1, is 2% bad cell, then so is cell (i - 1,j - 1)

Proof: Shcc ccl1 (i, j) is a bad a-41, the path from cell (j, j) to (; -I- 1, j) contaius  at least
r-n *jobs. The path fl-on1  cell (j .- 1, j - 1) to (i, j - 1) is above this path,  thercforc it also
conlains at Icast m jobs. Thus them are nt least m jobs in column j -- 1 below row i - 1
so cell (; .-_-  1, j - 1) is a bad cell. 1

Definition Barrier Cell:

If cell (i, j) is a bad cell and ccl1 (i, j + 1) is not, then cell (i, j) is c?, barrier cell.

Definition Barrier Diagonal:

Tf ran (upper left to lower right) diagonal in the SIM array contains a barrier cell then
that diagonal is a Gamier  diagonal.

Lemma 9:

If cell (1, j) is on ;L bmricr diagonal then cell (1, j) is a bad cell.

Proof: Thcrc is SOIIIC 1~~1 CO~IIII~U  c -1: j -1. k with al I(!il.st  k -I-- t bid CCIIS if the diikgonal
is it 1XLLTicr Cliil~O tl ;Ll. Tl~crcforo, by Thcorou\  8, column c has al least 1 bad cell, so cell
(1, C) is ZI l)ikd ~~11. 1

Definition Flow:

.  The Jkm is ill) ordering of the upper tri;~nglll;~r  SIM cells &rived fro111  the lmricr
posilions. W I 1 ,I(b ( (‘ i I)(! iL irltlrlct,ivoly.  Tlrc first, lilyOr  of 1,11(:  Ilow StilrtS  it! tl1C lirst, row of th(!
li rst coilllll II. Let Clrc lull cell s o  far IX cell (VI, j ) .  If’ (1:, j ) i s  011 (1, imrrior diil~OJ\iCl  tlkCll
the next ccl1 is (; - 1, j), otherwise t,hc ncxl ccl1 is (i, j -I- 1). When t110  next ccl1 would be
olltside of the SlM array the layer ends. The P layer stats  with cell (i, i), Cand proceeds
cas above.

Note that the flow order cm easily be co~~~pul~ed  by the following algorithm: First n~ap
the STM ~11~ into it n by d itrri\y, scuding ~~11 (;,j) to CCII (; - f3(i, j), j --I- B(z’, j)) (where
U(;, j) is the nnmbcr  of bilrricr tliiI,gOfIFLlS  below cell (i, j)). 13iK’ I row Of this HCW  IllibtriX is1
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a flow laycr. The flow order is found by concatenating  the rows of the new matrix. ICrorn
this mapping it is clear that the flow layers partition the cells of SIM.

Figure ia: Barrier cells and diagonals.

Cells with a heavy outline are bad cells. Those containing a 73” arc barrier
cells. Cells containing a “B” or “b” are on a barrier diagonal.

1

Figure 4th Flow layers.

Each cell is labeled with its flow layer.

L e m m a  1 0 :

Once a flow layer cntcrs a bad cell, it ends before entering ,another good CCL

Proof: Assume the flow layer is currently on a bad cell. If the flow layer goes up, it enters
another  bad ccl1 (or l(!iLv(ts the array). If the flow goes to the right then WC arc not on a
barrier diagorlal,  thus IWG on a barrier ccl], and thcrcrore not moving to a good cell. 1
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Lemma 11:

The last cell in each flow layer  is either a bad cell or in the last column.

.

Proof: Flow laycm  end by lcaving STM. They can leave by being in the top row at a barrier
dkgonal  or by being in the last column at a non-barrier diagonal. By Lemma  9, if a ccl1
on the top row is also on a barrier diagonal, then that cell is a bad cell. 1

. Lemma 12:

When flow layer 1 first enters a bad cell, then it enters from the left, not from the
bottom.

Proof: Assume, by contradiction, that flow layer f is on a good cell, (i, j) and moves up
onto the bad cell (; - I, j). For this to happen thcrc must be a barrier ccl1 on (i, j)‘s
diagonal. 13ecalasc of Theorem  8, there arc uo bad cells, and thus no Larricr cells 011 (it j)‘s
diagonal below (i, j). Also there arc no good cells on (i - 1, j)‘s diagonal above (i, j), rand
thus no barrier ~011s on (i, j)‘s diagonal above (i, j). Tllcrcforc (i, j) is not on a barrier
dingorlal  and the flow moves right, not up. Contradiction. 1

The flow order combined with the ordering within each cell is a complete  or&ring of the
jobs in SIM. This ordering is consistent wikh the partial ordering given by the prcccdence
constraints among the jobs.

Lemma 13:

For every (intcgcr) value c, the first c LPT levels  of the L3 segment contain less than
c - m jobs.

Proof: Assunlc by contradiction Chat  c is the first ITT lcvol in the 13 scgmcot  where
tltcrc arc at Icast m . c jobs at or above c. Then for cvcry level j, .l 5 j 5 c, of the B
scgmcnt, there are less than m . (j - 1) jobs above level j. This means that there arc at
lcast in . (c - j -I- 1) jobs bctwccn levels  j and c inclusive,  for every j. Thcrcforc  c would
be in the A scgtmnt  not the B scgtncnt. 1

5.3 A Sequential [I Segment Algorithm

Now WC sIti~l,c a s~~~~~~~~~l~i;ll atgorjlhlll for schaduli~~g Che .D scgnlcltt. hst bcl’orc
titncstcp 1 the t -- Lst colrltun will have IXCII complctcd  iLlId thcrc will bo a lirst ut~schcduled
job from the flow order. At tinlcstcp  t WC schedule the rcnmi.ning  jobs from column t and
as nmny additional jobs in flow order as possible (until on is rcachcd or prccedcncc would
bc violated). WC yrovc below that  this algorithm yields an optimal schedule.

WC say the flow 11ibs enterctl the rightmost column when ail jobs up to aud including the
first job with LPT _- d (in the llow ordcrillg)  Imvc been scheduled.

I 23



Lemma 14:

The sc’hcdule  is full until the flow enters the rightmost column.

Proof: Assunre  we arc working on LPT column c and flow layer f. Let co13 (i, j) be the
first cell ill S with unschc~luled  ,johs. Let ccl1 (i’, j’) be the first bad cell entered by f. Let
path p go fro tn cell (j’, j’) to cell (2.’ -+ 1.) j’). S incc (i’, j’) is a bad cell, there arc at least m
jobs in path 1). Let path p’ go from ccl1 (c, c) to the first cell in flow level f $- I and then
along flow level f -+- 1 until it hits cell (i’ -J- 1, j’). 5‘incc path p’ is above p there are at least
m jobs iu path p’, so there arc at least m jobs that can be scl~edulccI.  If cell (i, j) precceds
cell (j’, j’) in f, then for every job in p’ which is not available, there is at least one job on
flow level f available, so there are at least m total jobs for the algorithnl  to schedule. If
cell (i, j) does not prccccd ccl1 (i’, j’) it1 f, then all of the jobs in path p’ can be scheduled
by the algorithm without violating precedence constraints. $I

Lemma 15:

The algorithm completes an LPT column every timestep.

Proof: by contradiction. Assume that at tirncstep  t the algorithm fails to complete LPT
column t. Let f bc the current flow layer. No Ilow layer before  f contains a good cell from
colunxr t, bccausc it would have been scheduled leaving less than m jobs in the column.
I3y the snnlc reasoning, if j contains a good cell from t, then that cell has not yet been
cornpleteil. ‘I’hcreforc no good jobs to the right,  of column i have been scheduled. Since
the flow IUS not yet reached the right ctlgc of SlM (all layers before f end in bad cells), m
jobs have been scl~edulcd cvcry tinicstep. Let c be the lcftniost coluuln frorJr which jobs
have bech scheduled. Since no good jobs to the right of 1 have bcch scheduled, this column
c and all coluluns hetwcen t and c contain bad cells. Thcreforc they all contain m good
jobs. Thus there arc m . (c - t -+- 1) ~~r~schcdr~lctl *jobs  at or boforc column c. In adtlitiou,
thorc  is at least one it~~schctlulecl  bad job ih coluu~n 1. Acltling  these up we lind that there
arc hlorc than mc jobs at or to the left of column c, so c shoultl  bc in the A soglucnt rather
than the ~!3 scgn~nt.  Contradiction. 1

Lemma 16:

.Thc 1T? sogn~cnt  algorithm is greedy.

Proofi IJhtil the Ilow enters the riglltlllost colullln, t110 ~cl~cduIc is full. After tlkc riglltrllosl
colunln has been cntcrotl,  the algoritllnl  takes either m or as I~GW~  jobs irl flow order as
possible. Any job not scheduled is the descendant of some job scheduled, therefore it is
g r e e d y .  1

Theorem 9:

The J1 scg~ncnt algorithm yields a greedy optiulnl schedule for the B segment,
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Proof: The schcd~le is greedy and it progresses one IJ’T level each timestep. 0

5.4  The ParaW I!? Segment  Algor i thm
Our B segnlcnt  algoritlun  can be parallclixed. The parallel version is stated below:

Parallel  Algorithm for B segment:
1 Create the SIM nlatrix  for TB.
2 Find the bad cells of SIM.
3 Find the barrier cells of SIM.
4 For each job, J, in SIM compute F(J) = the position of J in the complete flow

ordering.
5 Create the graph of pairs (I, f) w lcre I is the last LPT level completely scheduled,1

and f is the position in the flow last scheduled.
6 I?or each node (pair) in the graph above add an edge to the successor pair obtained

by:
a first scheduling the jobs on the next LPT level  of SIM,
b and taking the next jobs (until r)z reached or precedence trouble encountered)

from the Ilow ordering.
7 Use path finding to find the path through the graph starting from node (0,O).
8 l?rom this path it is easy to compute the jobs schcdulcd  at each timestep.

Only step 7 in the above algorithm takes more i&an n3 processors to run in O(log n) time.
Step 7 rcquircs (w!)~ 5 n4 processors to complctc in O(logn) time. Therefore the entire
algorithm runs in O(log n) time on n4 processors.

6. List Scheduling

Section 6.1 states the list scheduling problcnl  and dcfincs the oflqet.  Section 6.2 exhibits
a proof that the list schetiulitlg problem is P-conlpletc  under log-space reduction. This
proof, like the nlax-JIow  proof uses cxponcntially  large nunlbers.  Section 6.3 contains an
NC algorithm for the list sclioduling problem, even when the cxccution  times arc rather
1 <argc (i.e. their nlaximum  nulnber of bits is bounded by O(log’ n)).

6 .1  Problem Sta tement

A list schcd u lirlg problciu iJ1staucc  coksts of:
an ordcrctl list of n jobs, {Jl, .J2, . . . . ,Jn};
and a positive integer execution time for each job, ‘f (Ji).

The jobs are to bc executed on two (idenlical) processors.

A solution to the list scheduling probleln  is a (nonpreclnptivc)
to iI processor  arltl start tilnc. Any such In;kpping  1lNst satisfy

1. no two jobs run on the sa~nc processor  at lhc sanlc tixne;

25

schedule mapping each job
the following propcrlics:



2. no job starts bcfOrc any jobs precccding  it on the list;
3. boLh processors arc in use until all jobs have been started.

There is a Irivial  scqucntial algorithm for this problem: simply start at t@hc fxo,ut of the list
and (lea1 the jobs out one by one to the processor whose jobs have the lcast LotA execution
time. At each stage in this algorithm there is an oflset, by which the execution timt’s of
one processor’s jobs exceeds the olhcrs. Clearly, jobs J; and Ji+l are mapped to the same
processor  only if the offset before J; is at least T(Ji). The jinal Onset  of a list scheduling
problem is the difference in total cxccution times of the two processors.

Although we state the list scheduling problem for two target processors,  our results gen-
eralize to any constant number of target processors (with some increase  in the processor
rcquiremcnts  of our Ai C algorithms).

6.2 P-Completeness Result

Hero WC prove that cc,mputing the value of a circuit containing only NOR gates reduces
to conlputirtg the final ofrsct  of a list scheduling problem. Tcci~riically,  the circuit value
problem is one of recognizing the set of all inputs which encode a circuit whose output
is true. WC can redefine the list scheduling problem as one of recognizing all properly
encoded list scheduling instances where the flnal offset is non-zero. It is not hard to set
that the reduction below also works for the set recognition problems.

Theorem IO:

The gcncral  list scheduling problem is polynonlial-tilllc complete.

Proof: Uy reduction  from the circuit value  problem [Go1771  for 1)oolcan circuits containing
0111~ NOi<. giLI,es. T’tle basic idea Of this rccluction is to cncoclc  tltc va111c of wires in the
olfsct. WC  sl,art with a.11  olrsct encoding the true inputs. I<;& gate is rcprescntcd by a
chunk of jobs. Scheduling the chunk for a given gate modilics  the offset so the inputs of
the gate arc no longer rcprescntcd, but the outputs are.

WC use the term wire in this construction to mean the connection bctwecn  gates. Therefore,
although each gate llas only a single  output, it may have scvcral  outpllt  wires.

Tttc cot~st,rrtctiort starts I)y topolo~ic~lly  tttttttboring  the gates, wittt the gal0 gctleraling the
out~prtl, gc:l,li  ttg 1. ‘.L’ltc 0ttLpttC wire is IiLl)(!l<!tl wiltt kttc valttc I. ‘l‘ttc ittpitl, wires  Of gate i
arc labclcd  ,LZi and 425-1-1. WC dclinc Vi to bc the sutn of the labels 011 all OutpItt  wires  of
gate i. For each gate WC create the following gadget:

A chunk of 17 jobs with times: one at 2 . 42i-I-1, fourteen  at $, and two at v.

The list of jobs starts with One whose  execution titnc equals the sum of all true circuit
input wire labels. Then the gatlgcts  for each gate appear (in dcsccnding  gilt<? Order). We
shall set tllat, after each chunk, the olrsct equals the sum of all dangling true wires. The
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Figure 5: Labeled circuit, nodes represent  NOR gates.

final ofYfsct  will be four (zero) iff the output of the boolean circuit is true (false).

The idea behind the chunks is that if the o&et  before the chunk is small enough (both
inputs <arc false) then the offsot  <after the chunk’s firs6 job will be large. If one or both
inputs rarc  true, 6hcn the o&c6 after the first job is snmll. The next fourteen jobs reduce
s~n;all oKscts  60 the low order bils, so the last two jobs’ c~kc6s on the ofI’sc6  cancel. When
the ofI’sc6  is Ixrgc enough, the fourtcm  jobs tlo not eJl6ircly  reduce it, so the Vi/it terms in
the last two jobs combine to alfcct the offset.

.

The above tablo shows the effects of a chunk on the offs& for all possible input combina-
tions. The low order bits (LOI3) arc modified only when h6h inputs arc false, and those
bits cncoding the gate’s inputs are always consumed. Since chunks arc placed on the job
list in reverse ga6c order, the 1nost  significant bits of the ofI’s& before a chunk will always
c~~cotlo  tlic inputs  60 that chunk’s gate. Thcrcforc  the construction will faithfiiIly  mimic
6l10 ov;~lua6ioll  of 6ho ga6cs so 61lat  611~ lirml  ofl’sc6 will hc 1 il’ ;mtl only if Chc ouCplr6 of’ Che
circrlil  is true.

Now we must show that the reduction can be done in O(log r~) space. Since WC ass~~~~~c the
gates are given in topological order, the topological numbering  can be done in logarithmic
space,  ras cm dctcrmining if two gates are joined by a wire. These procedures  axe rcpmtcd
each time one of their values is needed.

When WC care to output a bit of the first job (initial offset),  we sinqAy look to see if the
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00000 +LOB 00000 +LOB 00000 fLOB 00000 +LOB+Vi

Figure 6: The effects of a chunk.

appropriate wire contains a true input. Thus we need only keep track of the gate number
we <arc working on. While  we are gcncrating the chunks, WC need to keep the current
gate number. The value Vi/2 can be computed each time it must be written by the same
procedure which computes the initial offset. Since gate numbers can be stored in binary,
the entire reduction can be done in O(logn)  space. 1

6 . 3  A n  N C  A l g o r i t h m

In this section we give a fast parallel algorithm which dcterministically solves  the list
schcd ulin g problc m . The algorithm works by computing an estimate for 6lte offset after

.cach job, and then iteratively improving the est,inlaCe.  If the largest T(J) is k bits long,
then WC rcprescnt all offsets and job times as k bit numbers. ‘IIc precision of an ofl’set
cstimatc is the numbor of leading bits,  from the k-bit job times, used to compute the
cstiinate.

T h e o r e m  II:

When the job times m-c bound4 by 2 L(7L)  for some  function L, then the list schednling
problem can be solved iu O(L(n) . log n) time using n4 processors.

Proof: WC can cstimatc tllc first log 7~ bits of the olrsct by path finding. This is done by
cxmllirting w.ch of Chc 71 possil)lc olrsct osti~~~;k.t,c:s  hoforc odr job i111fl colllptl  t.ing ttlo llcxt
oifsct cstillmtc. This uses  n4 processors  and O( log n) Cinlc to give us log 7~ bits of precision.

Increasing th precision  by one bit changes any oKsct  cstimatc by at most kn. For each
position and 2n - I possible changes, we can compute the cllangc in the next position.
Using path finding we cm detcrminc the eEcc6  of the additional bit of precision  on each
offset. Adding one bit of precision  tlms takes 0( log n) time and n4 processors.

We can itcratc the above process O@(n))  t.imcs to rccovcr  the cntirc ollisct  before each
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job. Using these offsets it is trivial to compute the start time and processor  for each job.
ThcreForc the entire process takes O(L(n) - log n) time on n4 processors.

Corollary:

If L(n) -1 O(log” 7%) for some constant c, the list scheduling  problem can be solved in
o(log”+l n) time on n4 processors, and is thus in NC.

When concurrent reading is allowed, path doubling can be used instead of path finding.
In this case the algorithm requires only n2 processors.

7. Conclusions

The list scheduling result provides a very simple problem which is P-complete under
logspace reductions. It uses large numbers <as does the reduction for the m<ax Row problem
[GSS82].  In addition, the parallel  time complexity of the list schcdnling problem is, in one
direction, closely tied to the size  of the numbers in a problem instance since the analysis
of our algorithm shows that this size (measured in maximum mrmbcr of bits) basically
yields the parallel running time. It should be interesting to study whether, in the other
direction, lower bounds greater than log n can be obtained. This problem, however, stems
to be very hard in general, and no progress has been made so far.

Our intree and outtrec algorithms are based on a common data structure, the schedu-
lability interval nratrix.  While, in sequential computation, it is straightforward to derive a
greedy optimal schedule for an inforcst given an optimal algorithm for outforests, this need

* not bc true for fast parallel  algorithms. In fact, for slight variations of these p~oblcms, such
as outtrces  on a varying number  of processors, greedy algorithms become  non-pnr~~llclizable
[DUW84].  TIlerc are many other examples  of problems with good sequential  greedy algo-
rithnls which can riot be paralleiizcd  [A%84].

It is now known that schccluling problems with either intree or outtrcc prccedcnce
constraints arc in J/C. However,  there arc still several classes of scheduling problems, such
as chordal graph prcccdc~~cc constraints or other kinds of scheduling problems  with empty
precedence constraints, which <are not known to be either P-cornplctc or in NC.

I .

29





References

[AMa84]

[Bru81]

[DSa81]

[DUW84]

PWY781

[G 01771

[GSS82]

[HuGI]

[May8 11

[Pip751

[SVi82]

[ U1175]A

Anderson, R..; Mayr, E.: Parallelism and Greedy h!@orithms
TR STAN-CS-84-1003, CS Dept. Stanford University (1984).

Bruno, J.; DcIcrministic  and stochastic scheduling problems with trcelike
precedence constraints. NATO Confcrcnce, Durham England, (198 1)

Dckel, E.; Sahni, S.: Parallel  scheduling algorithms.
TR81-1,  Dcpt of Computer Science, U. of Minnesota, Minneapolis, Minn. (1981)

Dolcv, D.; Upfal, E.; Warmuth, M.: Scheduling trees in parallel.
Proc. In&nation  Workshop on Parallel Computing and VLSI,
Amalfi, (1984), pp. l-30.

For tune, S.; Wyllic, J.: Parallelism in random access machines.
Proc. 10th ACM STOC (1978),  pp. 114-118

Goldschlager, L.M.: The monotone and planar circnit value problems  are
LOG SPACE complete for I? STGACT  News 9,2 (1977)) pp. 25-29

Goldschlager, L.M.; Shaw, R.A.; Staples, J.: The maximum flow problem  is log
space complete for P. Thcorctical Computer Science, 21 (1982),  pp. 105-111

Ha, T.C.: Parallel sequencing and assembly  line problems.
Operations Research 9 (1961), pp. 841-848

Mayr, E.: Well structured programs are not easier to schedule.
TR STAN-CS-81-880, Computer Scicncc Dept. Stanford University (1981).

I’ippengcr  N.: The complcxi  ty theory  of switchil~g notworks.
Technical Itcport,  Research Lab of Electronics,  MlT (1975)

Shiloach, Y.; Vi&kin,  IJ.: An O(log n) parallel  connectivity  algorithm.
J. of Algorithms 3,1 (1982), pp. 57-67

Ullman,  J.D.: NP-coillplctc  schctluling problems.
J. Compli 1. SysOcm  Sci. 10 (1975)) pp. 384-393

30




