December 1984 Report No. STAN-CS-84-1028

Parallel Graph Algorithms

by

Peter H. Hochschild
Krnst W. Mayr
Alan R. Siegel

Department of Computer Science

Stanford University
Stanford, CA 94305







Stanford University
Department of Computer Science

Parallel Graph Algorithms

Peter H. Hochschild
Ernst W. Mayr
Alan R. Siegel

Support for this research included an NSF Graduate Fellowship and NSF grant MCS-
82-03405 (PHII), an IBM Faculty Development Award (EWM), and NSF grant MCS-82-
03405 and DARPA contract MDA-80-C-0107 (ARS)






DRAFT

TABLEOFCONTENTS

Introduction
1.1 Parallel Machlnes
1.2 Parallel Algorithms

. Connected Components

2.1 Introduction : :

2.2 A Divide-and- Conquer Connected Components Algorlthm

2.3 A Tree-Machine Connected Components Algorithm G
2.4 Computing Connected Components in Low-Communication Environments
2.5 Conclusion

. Funnelled-Pipeline Algorithms

3.1 Introduction

3.2 Filtration . :
3.3 Funnelled- Plpellne Algorlthm Structure .
3.4 A Minimum Spanning Forest Algorithm

3.5 A Funnelled-Pipeline Algorithm for the Blconnected Components Problem

3.6 Conclusion

Planarity and Representation

4.1 Introduction :
4.2 Sparse Graphs and Thelr Representatlon ..
4.3 Finding 2c-representations of c-sparse Graphs
4.4 The Cornplexity of Finding“ Representations .
4.5 Conclusion

. Two-Stage Funnelled Pipelines .

5.1 Introduction.

5.2 Two-Stage Arc}ntecture .

5.3 A Two-Stage Connected Components Algorlthm .

5.4 Finding Minimum Spannine Trees and 2c-Representations
5.5 Conclusion

. Strongly Connected Components
6.1 Introduction
. 6.2 The Strongly Connected Components Problem
6.3 A Lower Bound . .
6.4 A Strongly Connected Components Algorlthm :
6.5 Other Hard Problems

. References .

O N> WwWw — k-

[ERN
ol

W NP PP e
o ® o o o

wWw W wwww
o Ul Wk kB

N o
A W O O O

13, B N O NG NG
N N O o1 o1 01

(6]
w






1. Introduction

This paper presents new paradigms to solve efficiently a variety of graph problems on
parallel machines. These paradigms make it possible to discover and exploit the “paral-
lelism” inherent in many classical graph problems. We abandon attempts to force sequen-
tial algorithms into parallel environments for such attempts usually result in transforming
a good uniprocessor algorithm into a hopeclessly greedy parallel algorithm. We show that
by employing more local computation and mild redundance, a variety of problems can be
solved in a resource- and time-efficient manner on a variety of architectures.

1.1 Parallel Machines

There is a great deal of literature concerned with solving graph problems on various
kinds of parallel machines ([A-K], [CLC], [D-S], [H]) Our para diyms are applicable to both
VLSI ([L-S],[U]) and distributed systems (as well as local networks, e.g. ethernets).

In our model of VLSI computation, the two most important parameters are area and
time. Detailed features of VLSI technology will not concern us here. For our purposes,
a VLSI circuit is both3ynchronous and digital. We make two assumptions of primary
importance. First, we assume that every active component (e.g. gate, flip-flop, etc.)
introduces a unit-time propagation delay. Second, wc assume that every VLSI circuit is
composed of at most some fixed number of layers, and that no two components on any given
layer are separated by less than unit distance (unless they arc connected together). This
assumption implies that any region stores a quantity of information at most proportional
to its area, and that the quantity of information crossing a boundary in unit time is at
most proportional to the boundary length. Note that in our model, signal propagation
time is independent of wire length. A formalization of this model can bc found in [L-S].

1. 2 Parallel Algorithms

- To illustrate our techniques, wc develop algorithms for solving such problems as con-
nected components, minimum spanning forests, biconnccted components and planarity
testing. Our algorithms accept as input n-by-n matrices (adjacency matrices in the case of
connected components, edge-weight matrices for minimum spanning forcsts). The matrices
arc rcad row by row. The successive rows are read in order, with a fixed time schedule.
Thus the data is read once in a “when- and where-dctcrminatc™ fashion (i.e. -there is a
fixed input schedu le that determines when and where cach input value is supplied). VLSI
circuits for these algorithms require time and area of O(n Iog’n) (for some small c), and
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thus arc nearly optimal. Hereafter we will not write these powers of log n; instead we write
f(n) = O*(g(n)) if f(n) = O(g(n) log®n) for some c.

Lipton and Valdes [L-V] present a circuit for computing connected components in area
and time O*(n) but with a “when-indeterminate” 1/0 schedule (i.e. with data-dependent
row read timing). We notc that the obvious when-determinate implementations of the
graph algorithms in [L-V] would run in O*(n?) time.

| N Chapter 2 we show how to remove this indeterminateness without sacrificing effi-
ciency. Central to this task is the idea of filtration. A filter is a device used to discard
irrelevant input data. This mechanism can reduce the storage, time, and communication
requirements of a wide variety of problems. Tilter construction demands balancing two
opposing goals. On the one hand, a filter must operate quickly enough to avoid becoming
a bottleneck. On the other hand, it must be thorough enough to discard a significant
portion of the data. Thus, in general, a filter performs a kind of approximation to the
desired computation. This approximation is later refined to yield the correct result,

In Chapter 3 we develop a more refined view of filtration and introduce the generally
applicable concept of a funnelled pipeline. This concept is illustrated with algorithms
for finding minimum spanning forests and biconnected components. Chapter 4 applies the
funnellcd-pipeline paradigm to planarity testing and related data-rearrangement problems.
In Chapter 5 we present an alternative (and somewhat more powerful) algorithm structure,
the two-stage funnelled pipeline.

In the last chapter wc explore a graph problem of greater parallel computational com-
plexity, namely the strongly connected components problem. Using some of the funnelled-
pipeline techniques, and a more liberal input schedule, we derive a relatively efficient
algorithm. We also present lower bounds on the complexity of several related difficult
graph problems.



2. Connected Components

2.1 Introduction

In this chapter we discuss the problem of finding the connected components of a graph.
Wc present a number of algorithms that solve this problem. Each of them demonstrates
imp or tan t principles of const ructing efficient parallel algorithms. The progression of tech-
niques leads to and motivates our notion of funnelled pipelines, the topic of the next
chapter.

Definition 2. 1:  Given a graph G = (V, E)where V = {0, 1, . . . ,n—1}, define the function
cc:V —Vhy

cc(j) = min{k € V | k = j or k is connected to j by a path in G}.

By the connected components problem, we mean the problem of computing the func-
tion cc from a graph G.

In all algorithms to follow, wc will assume that the graph is prcscnted as an upper-
triangular adjacency matrix. I"'urthermore, the matrix will be read row by row in a when-
and where-determinate fashion.

The first problem to confront is the volume of input data. In order to achieve an
O*(n) arca circuit, most of that data must be discarded. In order for the circuit to bc time
eflicient, discarding must be rapid. We accomplish eflicient data elimination by a Eltration
process.

Jn the algorithms presented in this chapter, filtration will involve a benign form of
deceit. We note that the exact edge structure of the input graph bears little relevance to
its connected components; in fact there arc a variety of graph transformations that leave
invariant the connected components. For example, suppose that the graph G contains

a star-shaped subgraph consisting of a “hub’ vortex c, “rim” vertices vy, v, . . . , vk, and
“spoke” edges e, e,,.. ., € connecting ¢ to vy,. . ., v respectively. If we replace these
spoke edges by a chain consisting of the edges {c,v,},{vi,v2}, {v2,v3},. .., {vk—1,vk}, we

obtain a new graph that possesses exactly the same connected components as G. Indeed,
any transformation that prescrves path conncctivity, preserves connected components.
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2.2 A Divide-and-Conquer Connected Components Algorithm

Our first connected components algorithm is based on recursive deceitful filtration. We
remark that in designing parallel ‘divide-and-conquer” algorithms, one must address not
only the logical concerns vital to sequential recursion, but also the geometrical constraints
imposed by data communication requirements. It is often tempting to shuffle data about;
unfortunately this tends to waste a great deal of area or time.

The input to the algorithm is an n-by-n (upper-triangular) matrix A. For simplicity,
assume that n is a power of two. Let the rows of A be denoted Ay, . ..,A,_1. WC may also
assume that for each ¢, the :** entry of the 7*" row, denoted A;(i), is one. (If the input
fails to obey this convention, it can be brought into compliance by the input stage.)

Taken faithfully, each row z represents a star. Vertex 2 forms the hub, the vertices
j > @ for which A;(j) = 1 constitute the rim. However, as previously observed, it does no
harm to pretend that these vertices are linked in a chain. Thus the algorithm will interpret
each row as a statement indicating that the vertices whose corresponding entries are one
should be linked together in a chain (proceeding from lowest to highest numbered vertex),

The algorithm operates in two major phases. The first phase consists of reading
and filtering the adjacency matrix. At the conclusion of this phase, the circuit will have
recorded a set of O(n log n) edges. The graph composed of these edges will have the same
connected components as the original graph. This filtration reduces the number of edges
from as much as Q(nz) to O(n log n); it is deceitful by virtue of the fact that it may store
edges that were not originally present. The second phase merely computes the connected
components induced by the stored edges.

The phase-one circuit is a recursive construction of filter units. We first describe the
geometry and the interconnection of these filter units; their detailed operation is explained
later. The topmost filter (which performs the outermost level of recursion) is of size n.
It receives as input the rows of the adjacency matrix. Its output is fed to two filters of
size n/2. Similarly, each of these units feeds two units of size n/4, etc. Each filter unit
of size k is rectangular in shape with a row of k input ports along the top, and k output
ports along the bottom. The recursion ends with filter units of size two; there are a total
of n/2 of these. This arrangement is illustrated in Figure 2. 1.

A filter unit of size k accepts as input a sequence of bit vectors of length k. Each
vector is processed and results in the output of a similar vector. Each output vector is
cut into halves; onc half is directed to cach of the subfilters of size k/2. The rows of the
adjacency matrix form the sequence of vectors input by the top filter. At all levels of
recursion, vectors are interpreted in the same way; vertices corresponding to entries with
value one are regarded as being connected to each other in a chain.

We now describe the function of the topmost filter unit. Let L = {0,..., (n/2) -1}
denote the first half of the vertices; let R = {n/2,. . . , n —1} denote the second half. The
top filter is responsible for recording all information about connections joining vertices in L
to vertices in R. This is its only job; connections between pairs of vertices in L and between
pairs in 2 will bc handled recursively. Thus the graph is cut in half, information about
interconnections between the halves is recorded, and finally, the halves are recursively
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Figure 2. 1. Divide-and-Conquer Architecture

and separately p roccssed. Thus the filter separates the graph edges into three classes.
E; contains those cdges with both endpoints in L, the set I7p contains those with both
endpoints in I, and Ex contains the cross edges. E; and Ep arc processed recursively;
Ey is processed by the top filter.

The connection information derived from the edge set Ex is stored in an array link(z)
for 0 < ¢ < n/2. Each clement link(z) is associated with the vertex ¢ (which is a member
of L). The ficld link(i) contains either nothing or the name of a single vertex in R to
Which the vertex 7 is connected.

Initially all clements of link are empty. Whenever the top filter unit reads an input
vector a, it first checks whether a contains both a one entry corresponding to a vertex in L
and a one corresponding to a vertex in R. If not, the vector implies no connection between
L and R; the filter need mercly transfer it to the output port for recursive processing. In
other words, such vectors may contribute cdges either to Ej, or to Ep, but not to Ex.
Otherwise let | = max{7 € L | u(§) = 1} and r = min{j € R | u@) = 1}. | is the
rightmost “active” vecrtex in I while r is the leftmost active vertex in R. The filter must
now somechow record the fact that [ is connccted to r. No other connections from active
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vertices in [ to active vertices in R nced be recorded; recall that the vector a is interpreted
as a chain.

If the filter is lucky, lznk(l) will be empty. In that case, the filter can simply set link(Z)
to r and pass a on to the output for recursive processing; the edge {l, r} is contributed to
E x, while the other edges in the chain represented by a are placed in £, and Ep.

Otherwise the filter finds that link(l) is already set to some vertex k in R. In this
case the filter will set u(k) to one and pass this updated vector to the output. Thus the
filter adds an edge to Ep instead of placing {l, 7} into E x. That deceit is excused by the
following observations:

« Connectivity between the active vertices in L and those in R is preserved by the fact
that the filter has on record a connection from { to k and the fact that, recursively, k
will be registered as being connected to r.

« Since | was connected both to all active nodes in R (by the current input vector a), and
to node k (by some previous input vector), no new path connections are introduced
by setting a(k) to one.

We now describe an implementation of the top filter unit. It consists of a binary

tree of (simple) processors. There are n leaf processors; these are arranged, like the 1/0

ports, in a row. Each leaf processor ¢z contains a one-bit cell a(i). Each leaf processor 7 for

0 < < 3 also contains the log n-bit cell link(i). The interior node processors provide the

ability to perform census functions (e.g. finding in 0* (1) time the maximum of a set of

numbers stored one per leaf); the entire unit is controlled by the root processor (refer to
" [L-V] for further detail).

The program executed by the root processor for a filter of size k is illustrated below:

procedure filter (k, n);
begin
co graph size is n; filter size is k oc;
for all z, 0 < ¢ < k/2 do in parallel link(i) := empty od;
for timestep :=0to n — 1 do
co Read the input vector oc;
for all 7, 0 <7 < k do in parallel rend a(z) from input port ¢ od;
- co Check whether there is a connection between halves oc;
if |{4]0<i<k/2and a(i)=1}|> 0 and |{i | k2 <i <k and a(s) = 1}| > 0
then
1:= max{: |0 <1< k2 and a(z) = 1};
r = min{i | k2 < ¢ < k and a(z) = 1);
if link(l) = empty then link(l) := r ese a(linlc(l)) =1 fi
fi;
co Write out the possibly nltercd vector oc;
for all ¢, 0 <7 < k do in parallel write a(z) to output port ¢ od;
od;
end filter .

Observe that the filter units of all sizes are similar (except that those of size two need
produce no output vectors). Each filter unit of size k is of width O*(k), height 0*( L)
and rcquires time 0*( 1) per row of input. Bach filter unit reads n vectors output by the
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preceding filter (except the topmost, which reads the adjacency matrix); thus they can be
pipelined so that the topmost reads one adjacency row every 07 (1) time units. The entire
assembly of pipelined filters consumes O*(n) area and total time.

At the conclusion of the above described processing, a set of edges are stored in the
link cells. This set of at most % (log n— 1) edges defines a graph with connccted components
identical to the original graph. The second phase, computing these connected components,
can be accomplished in a variety of ways. The easiest, though not the most elegant, is
to sequentially transfer the stored edges to a standard sequential processor executing a
conventional connected coruponents algorithm (for example [AHU], [RND]). Because there
are only O(nlogn) edges, this costs only O*(n) area and time.

We observe that while the above divide-and-conquer approach is conceptually simple,
it suffers a number of shortcomings. Prominent among these is its dependence upon rather
specialized hardware. The next connected components algorithm we examine is based upon
hardware of wider applicability.

2.3 A Tree-Machine Connected Components Algorithm

We develop a connected components algorithm that runs on a tree machine. This
algorithm is in many respects similar to the previous algorithm. Indeed it is possible to
" simulate the divide-and-conquer algorithm on a single tree machine by a form of time
sharing. However, we choose to implement a somewhat more symmetric algorithm whose
structure remains more constant over varying values of n. (Recall the asymmetry in a
divide-and-conquer filter of size k: only the leftmost k/2 processors possess a link cell.)

Wc begin with a tlcscriptiou of the structure and terminology of the tree machine.
The machine consists of a minimal depth binary tree having n lcaves (placed as far left
as possible), which arc called Nodes. The internal tree vertices nrc called Switches. Thus
a Switch a has two subtrees, called ay.p¢ and a, ;5. Nodes ¢ and j have a least common
ancestor Switch, denoted by lca(z, 7).

The graph vertex j is represented in the machine by loaf Node j. Node j can store up
to log n names of vertices belonging to the same conncctcd cotnponcnt as vertex j. The
Switches will be used to communicate connection messages stating that two vertices are
in the samnc component.

Definition 2.2: Let m be a Node and let s be its #** ancestor Switch (i.e. m’s first
ancestor is its parenl; its sccond ancestor is its grandparent, etc.) Then the set Of 2t
cousins of m consists of the Nodes ¢ such that lca(m,¢) = s.

Note that the [log, n] or [log, n| sets of cousins of m form a partition of the other
Nodes. Olserve also that if vertex k is an ¢t* cousin of vertex j and Switch a is j3 ¢t*
ancestor, then either lcal Node k belongs to subtrcc a;.;¢ and 5 belongs to subtree a g,
or k belongs to d,iyny and j belongs to ay.s,. For example, if n = 16, Node 6 has the
following scts of cousins: {7}, {4,5},{0, 1,2, 3},{8,9,.. . ,15). Incidently, there is a close
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relationship between the notion of cousins and the use of link fields in the divide-and-
conquer algorithm.

The tree machine runs in big and little time steps. There are n big time steps, each
composed of log2 n little time steps. At the beginning of big step 2, each leaf Node j reads
bit A;() of the adjacency matrix. The little time steps are used to restructure the stored
connection information to maintain the following invariant;

At the completion of each big time step, leaf Node j stores the name of at
most one vertex from each of its set of cousins. Furthermore, the vertices whose
names are stored at Node j belong to the same connected component as j, and
the connectivity relation defined by the stored edges is the same as that given by
the adjacency matrix rows so far read.

When row : of the adjacency matrix is read, each Node j for ¢ + 1 < j < m is made
“active”if A;(7)= 1. Each active Node would like to store the vertex name i. However, an
active Node may discover that it has already stored the name of another cousin from the
set of cousins containing i. If that is not the case, Node j stores the name i. Otherwise, if j
has already stored a competing cousin named h, where h # i, we say that j is a contention
Node. In this case, Node j sends a message up the tree which says, (destination: i, message:
I am already connected to somebody else, signed: j). We abbreviate the message by (i, j).
The tree Switches route these messages along the tree to Node i; whenever two messages
collide, one is arbitrarily discarded. Note that any message (i, j) received by Node i, will
rise through the tree to the least common ancestor of Nodes j and i, whence it will descend
to Node i. Node z processes only the last message it receives. This message comes from the
least common ancestor of Node ¢z and the contention Nodes. The victorious “maximally
distant” message (i, m) arrives at Node i within 2 log n small time steps.

Notice that i will be in subtree lca(z,m)icss, and m will be in lea(z, m),igne- When
Node i receives the message (i, m), it examines its storage location corresponding to the
set of its cousins containing Node m. If that location is empty, it is set to m. Whether
formerly empty or not, that storage location now holds some vertex named z. Node i now
transmits the message (destination: lca(z,m), tell all active Nodes in your right subtree
they may conncct themselves to z) up the tree to lca(z, m) (whence lca(z,m) sends to all
leaves in the subtree lca(z, m),iyne the message (connect yourself to ).

At this point, the following facts hold:

« All contention Nodes are contained in the subtrec rooted at lca(z,m).
e Node i has recorded the fact that i and z arc in the same component.
v xisin lca(i,m)n-,,m, and i isin lca('i, m)leﬂ.

In the next little time step, the contention Nodes in lca(z, m),; n: try to store vertex
name X rather than i, and contention Nodes in lca(’i, m)lejt try again to store i (;md send
messages to i since they fail). The connection scheme can run in parallel on both subtrees
since no messages will reach lca(z, m). This process must terminate after log n recursions
(ie. a total of O(log® n) little time steps).

A big time step is now completed, and adjacency matrix row i+l can be read. After all
rows have becn read, the remaining connected components problem can be satisfactorily
solved by any standard sequential algorithm. Morcover, it is easy to devise reasonable
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algorithms that utilize the existing machine structure. The algorithm in [L-V], for example,
suffices.

We note that with simple modifications the algorithm can be pipelined (by traditional
means) to run in O(n log n) little time steps (instead of O(n log® n) little time steps). That
performance improvement can be obtained at the cost of only a few registers per node; no
other machine structures are needed. This simplicity is due in part to the computational
power of a tree of internal Switches. Such a structure has other uses. It can, for example,
link an arbitrary subset into a linear list in log n time. Moreover, a circular shift (of one
step) can be implemented for such a subset list in O(logn) time.

We also briefly remark on another possible implementation of the pipelined tree-
machine algorithm. Instead of providing log n storage cells at each Node, one can provide
storage at the Switches. In particular, if C is one of the sets of cousins of a Node j, we
place the corresponding storage cell not at Node j, but at the Switch associated with the
least common ancestor of the set {j} U C. Thus there are n storage cells located at the
root Switch, n/2 at each of its two children, etc. This provides an alternative structure
for implementing an O*(n)-area, O(n log n)-little-time-step pipelined algorithm.

The tree-machine filter makes heavy use of the tree structure. The latter stages of the
divide-and-conquer scheme rely on multiple simultaneous switching in the interconnection
tree; the completion of a big time” step may require sending 2(n) messages. Thus the
entire process may involve Q(nz) messages. A simulation by a system of n processors
interconnected by an ethernet [M-B] or a bus (a one-word concurrent-read-prioritized-write
- PRAM [IT-W]) would therefore require n2) time. This observation raises the question
of whether the amount of communication can be reduced sufficiently to permit an efficient
ethernet algorithm. In the following section we find that the answer, perhaps surprisingly,
is yes.

2.4 Computing Connected Components in Low-Communication Environments

We now present a parallel algorithm for computing connected components which re-
quires only minimal intcrprocessor communication. As before, this “ethernet” algorithm
receives its input in the form of an adjacency matrix, is when- and where-determinate,
and requires time 0* (n). If implemented in VLSI, it consumes O*(n) area. If imple-
mented as a distributed system, n processors, equipped with O( log n) memory words and
interconnected by an cthernet or bus, suflice.

We assume that-the architecture consists of n conventional processors. The processors

arc interconnccted sulliciently well to implement the following operations in at most O*(l)
time.

« Broadcast: Any processor may execute this function to broadcast a message of length
O(log n) to all other processors. At most one processor may be engaged in the execu-
tion of this command at any time.
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« Minimum: Suppose that each processor ¢ has an O(logn)-bit register priority; and a
one bit register awake;. Execution of the Minimum operation simultaneously informs
all processors of a value m (if any) such that priority,, = min{priority; | awake; = 1).

o Maximum: Execution of this operation simultaneously informs all processors of a value
m (if any) such that priority, = max{priority; | awake; = 1}.

For purposes of exposition, we will assume that the Maximum and Minimum functions
are provided as primitive operations. Of course, in practice, they would be implemented
by subroutines using only primitive communication functions. Note that the Maximum
and Minimum operations can be accomplished in O(logn) time with a binary search algo-
rithm executing on a bus or ethernet architecture with collision detection. (The collision
detection provides nothing more than the n-way “OR” function.) Maximum and Mini-
mum operations can be used in order to designate a unique processor for the Broadcast
operation.

As before, each vertex z is represented by processor z. Each processor ¢ contains an
array link;, a counter count;, and a few miscellaneous temporary registers and flags. (All
registers are of length [log n].) Each entry link;( j) for 0 < j < count; can be understood
to represent the edge {z, link;(j)}. The value of count; is thus the number of edges in
processor i3 link list.- For simplicity of exposition, we will initialize link; with the single
entry 1.

At every time for every vertex 7, the list consisting of link;(j) for 0 < j < count;
contains names of vertices to which z is known to bc connected. The entries of this list
" will always be distinct and sorted, that is, link;(j) < link;(k) for 0 < j < k < count;. It
may help the reader to think of the smallest entry, link;(0), as vertex i% current estimate
of its connected component number cc(z).

The main difficulty is to keep the link lists from growing too large. This goal is
accomplished by what can best be described as an abasing process. From time to time, a
uniquely designated processor, say processor z, will initintc an abasing event. This event
will result in giving all names stored in link; a single new alias b. This is accomplished
by having processor z broadcast its list link;. All processors, including processor z, will
monitor this activity; any processor storing a name that was in link;, deletes it, and
" instead remembers the name b. In this way, the new alias, b, is made universal; the old
aliases arc forgotten everywhere and forever. It may bc that some processord link list
had contained several of the old names; in that case the list becomes shorter. Indeed,
the point of performing aliasing operations is to shorten link lists. The key to choosing
which vertices to alias, thercefore, is to pick ones that arc so ‘popular” that rc-abasing
them causes lists Lo contract signilicantly.

For convenience we lel, as before, the adjacency matrix A;(j) be upper triangular with
oncs along the main diagonal. The algorithm runs in n big time steps, each composed of
O(logn) little time steps.

At each big time step 17, each processor j reads A;( j) and sets awake; = A;(j). (Recall
that awake; will therefore bc set to one.) All processors j set the temporary register cc;
cqual to link, (0). The Maximum operation is now used to select an awake processor k
with largest count value. Vertex k will play the role of being “most popular”
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Next, processor k iteratively broadcasts each of its link entries. Among the values
transmitted will be cci. During the broadcasts, all processors listen to the transmitted
values. Any processor storing such a value in its link array, deletes it and becomes (or
stays) awake. At the conclusion of the broadcasts, count will be zero, k will still be awake,
and ccy will still be recorded. Note that all processors awakened by a one in A; remain
awake.

Now a minimum cc value (i.e. alias) is selected from the set of awake processors and
broadcast. All awake processors store that alias in their link array. Note that this alias
will be the smallest name recorded in any awake processor. All names that were broadcast
by the most popular processor k have been globally aliased. Moreover, all processors j
for which A;(j) = 1 have recorded links to the possibly new alias of vertex k. Thus the
connectivity information represented by the adjacency matrix row has been recorded. A
big time step has now been completed.

Our algorithm is presented below. We assume for the moment the existence of the
insertion and deletion subroutines used to manipulate the link lists. These routines are
assumed to maintain sorted order and to update the count registers in the appropriate
manner.
program components(n);
begin

co Initialization oc;
for all 7, 0 < j < n do in parallel

count; := 0 od;

insert j into link;

od;

co Filtration oc;
fori:=0ton-1 do

co Start a big time step oc;

co Read adjacency matrix row oc;

for all j, 0 < j < n do in parallel

awake; := Ai(7);
cc; := link;(0)
od;
co Sclcct the most popular awake processor oc;
let k be so that awaker = 1 and countx = max{count; | 0 < j < n and awake; = 1};

. co Broadcast and delete k's list oc;
- for all v € link, do
Proadcast v;
for all 7,0 < 7 < n do in parallel
if v is a member of link; then
Delete v from link;;
awake;:=1
A
od;
od;
co note that county = 0 oc;
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co Pick the new alias a oc;
a :*min{cc; | 0 < 5 < n and awake; = 1};

co Re-alias all awake vertices - make a their new alias oc;
for all j, 0 € 3 < n do in parallel
if awake; = 1 then Insert a into link; fi
co Note that since a is smallest, a is always stored in link;(0). Thus, during next big time
step, ccy will be equal to a. oc;
od

co End of big time step oc;
od;
end connected.

Our next task is to examine how long each big time step takes. Only one loop causes
much concern, namely that in which the most popular processors link entries are itera-
tively broadcast and deleted from all lists. All other operations performed during a big
time step require at most O*(l) time. The time required for the iterative broadcast and
delete loop depends on the length of the link arrays. Let bound denote the maximum value
ever attained by any count register. We observe that since the link arrays are sorted, the
loop can be done in a number of steps bounded by O(bound( log® n + log bound) + bound)
even under the most pessimistic architcctural assumptions. This formula charges log” n
for each Broadcast, log bound to check whether the broadcast value appears in a list (if
so, the entry is ﬂaggec}), and bound for each processor to delete the flagged entries and
compact the list. There arc, of course, a variety of other efficient ways to implement the
loop; the number of steps can be reduced to O(bound) at the expense of providing each
processor with an additional buffer array of length bound. We will show later that bound
never exceeds [log n]+ 1.

Two issues remain to be addressed. First we must establish correctness of the filter; it
must be shown that no connected component information is lost. Second, wc must verify
that bound <[log n]+ 1. This upper bound will guarantee a total running time (and area)
of O*(n).

Correctness of the filter is established by the following invariant.

At the completion of each big time step 7, the edges rcprescnted by the link
entries induce the same connected components as the edges comprising the first z
adjacency matrix rows.

This is easily verified by induction.,

The proof of the running time is somewhat technical; the trusting reader may wish
to skip over it. In order to establish a bound on the length of the link arrays, we must
examine the conditions under which such a list grows. We make the following observations.

« During each big time step 7, only those processors j for which A;( j) = 1 can increase
the length of their lists. Furthermore, the length of each such list can grow by at most
one.

o If during some big time step the list link; grows, it must have had no more entries at
the beginuing of the time step than did the processor designated “most popular” whose
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list was broadcast. We say that the most popular processor “shielded’ processor j.
Furthermore, lznk; must have had no entries in common with the broadcast list.

o All stored edges point to the left; that is, at all times, for all j and k, we have
link;(k) < j.

o Suppose that at some big time step the most popular processor, k, broadcasts its list
{l, 1 L, = link,(p) for 0 < p < countr}. Then, for all subsequent time, no name in
{b1p> 1} appears in any link list. In other words, once a vertex is re-aliased, its
old alias becomes extinct. Incidentally, the name [y may or may not become extinct,
depending on whether it is selected as the new alias.

Armed with these observations, we make the following definitions.

Definition 2.3: A growth event of order p, denoted g( j, {,p, a), occurs whenever a big
time step ¢ results in increasing the value of count; from p — 1 to p by installing the new
alias a into lenk;. (Growth events of order one are denoted g(j, —1, 1, j); these occur during
initialization.)

Definition 2.4: An aliasing event of order p, denoted m(k, t,p, l), occurs whenever during
big time step t the most popular processor k broadcasts the p names link; (0), link&),
vo., lainkg (p — 1). The list 1 contains the names thereby made extinct. Thus ! equals
{link,(z) | 0 < ¢ < p} or {linki(z) | 0 < ¢ < p} according to whether link;(0) was chosen
as the new alias.

We note that every growth event g(j, t, p, a) is naturally associated with a shield-
ing aliasing event of order p’ > p — 1, namely the simultaneously occurring aliasing
event m(k, t,p’,l) in which the most popular processor k shielded j. It is also natu-
rally associated with a precursor growth event g( j, t', p — 1, a) (for the sake of definiteness,
choose the most recent if there were several) in which count; attained the value p — 1.

Similarly, cach aliasing event m(k, t, p, [) has a naturally associated precursor growth
event of order p, namely the growth event g(k, t’',p, a) most rccently cxpcricnced by pro-
cessor k.

Wc now describe a critical event tree. It is a recursively-defined binary tree each of
whose nodes is labeled with a growth cvent. If a node has as its label a growth event of
order onc, then the node is a leaf. Otherwise suppose that a node n has label g. Then the
left child of n is labeled with g3 precursor growth event and the right child of n is labeled
with the precursor of the shielding aliasing cvent associated with g.

We say that a critical event tree is of order p if the label of its root is of order p.
By the above definition, we see that a critical event tree of order p contains at least 2771
leaves. Recall that cach leaf has a label of the form g( j, — 1, 1, j); wc call j the leaf name.
What remains to be shown is that all of these leaf names arc distinct. This fact will assure
that no tree has order greater than |log n] + 1.

Definition 2.5: Let alias(v, t)d cnote the alias of vertex v at the end of big time step &.
(Let alias(v, — 1) = v for all v.)
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That the above definition is meaningful is a consequence of the fact that all aliasing
operations are done globally. Thus, if m(k, ¢,p, l) is an aliasing event in which a is the new
alias chosen, then for all v we have that

. t _ J alias(v, t — 1), if link, NI = @;
allas{y )_{m if link, N | # 0.

In particular, if ' > t then alias(alias(v, t), t') = alias(v, t').

Lemma 2.1: If at some time ¢, the list lsnk; contains the name v, then for all times ¢’ > t,
the name alias(v, t') is @ member of link;.

Proof 2.1: Whenever a name is deleted from a list, its new alias is inserted into the list
during the same time step. |

This lemma establishes that once a name joins a link list. it is forever represented in
that list by an alias.

Lemma 2.2: Suppose that g = g(j, ¢,p, a) is a growth event and that the leaf named v
is one of its descendants. Then at the end of time step ¢ (and forever after), we have
alias(v, t) in link;.

Proof 2.2: This is established by induction. Suppose that v is in the left subtree of g
and that g(j, t',p — 1,a’) is the left child of g. By induction, alias(v, t') appeared in link;
at time t', hence since t' < t, we have alias(v, t) in link; at time t as required. If v is in
the right subtree of g and g(k, t’,p’, uy is the right child of g, we have by induction that
at the end of time ¢’, the name alias(v, t') is in linkg. But then, since k was most popular
at step ¢, we have that alias(v, t) = a. Hence alias(v, t) is in link; at the end of time ¢t. ||

Theorem 2. 1. The leaf names appearing in a critical event tree are all distinct.

Proof 2.3: The proof follows by a simple induction. Let g = g(j, ¢, p, a) be the root
of a critical cvent tree. Let L be the set of leaf names in the left subtree; let % be the
leaf names in the right subtree. We show that L N R = (. Suppose that v € L N R. Let
a( 7,t',p- 1,a') and g(k, t”, p", a”) be the left and right children of g respectively. Now
at the beginning of time £ we must have that link; N linkg, = 0 since otherwise j could
not have grown. Butl by the previous lemuma, v is represented in both link; and link; at
the beginning of time ¢ by alias(v, t -- 1). This contradiction establishes that L and R are
disjoint. |

This thcorem establishes the promised upper bound on the length of the link lists:

Corollary 2.1: bound < [log n|+ 1. ||
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This completes the proof that the filtration is correct and runs in time O*(n). Of
course any reasonable sequential algorithm cm be used to find the connected components
of the filtered output since it comprises no more than O(n logn) edges. A more attractive
possibility is to use a postprocessing pass of the filtration algorithm in which the identity
matrix is the input. This scheme sequentially causes each processor to broadcast (and
thereby reduce to one entry) its link array. After the last row of the identity matrix has
been processed, each list lznk; contains only one entry, and it is easily seen that for all
7, the entry link,;(0) is equal to cc(j). (We suggest to the reader the following question.
After row i of the identity matrix is processed, count; = 1. Is lznk;(0) = cc(i)? We give a
hint: if at some time some processor j has a link entry containing any name other than
j, then no other processor3 list contains the name j.)

An even more attractive possibility is to interleave this second pass with the filtration
process. Then no postprocessing is required; after the last big time step, the connected
components problem is solved. It is easy to verify that the interleaving neither affects the
correctness nor the 0* (n) time bound.

We remark that an analogous, but simpler, algorithm can be designed where the most
popular processor k broadcasts only one name instead of its entire list, and no deletions
from memory occur. In this case, however, the filtering is less efficient; each local memory
may have to hold 0( /n) entries; thus O* (n%/?) area is required.

2.5 Conclusion

In this chapter wc have illustrated a progression of successively better parallel con-
nected components algorithms. The key clements in all of these algorithms are the ideas
of filtration, data distribution, control of communication and the appropriate usc of mild
redundance.

The unfortunate thing about these algorithms is that they give little guidance for
constructing efficient algorithms for other problems. Our rcliance upon deceitful filtration
is particularly daunting; while deceit is fine for connected components, it is far from clear
that it can be employed in more diflicult graph problems. In the next chapter, we develop
a paradigm, based on faithful filtration, that is readily adaptable to a much wider class of
problems.



3. Funnelled-Pipeline Algorithms

3.1 Introduction

In this chapter we explore what we call the funnelled-pipeline paradigm. Circuits
constructed with this paradigm make use of cascaded filtration. Thus such circuits are
composed of a series of pipelined processors. Because each of these stages acts as a filter,
the data flow decreases along the pipeline. The decreasing data flow is essential in that it
allows successive filtration stages to run longer, and hence more thoroughly. This feature is
a marked departure from conventional pipclines; transition times along our pipeline form
an exponentially-increasing sequence.

We begin by examining in greater detail the idea of filtration. Then we present a
general outline of the data flow and hardware architecture of the funnelled-pipeline model;
finally we apply the paradigm to several specific graph problems.

3.2 Filtration

In the preceding chapter we exploited the idea of filtration. It is useful to define this
idea in greater detail and formality.

For the sake of exposition, assume that we are given a fixed set, V, of vertices. Let S
denote the powcrset of the set of all edges {u,v} for u and v members of V. Thus S
can be viewed as the family of all graphs on V. By a graph problem, we will mean a
function 7 with domain S. The range of P’ depends on the problem. For instance, for the
connected components problem, P maps members of S to functions cc : V — V. In the
minimum spanning forest problem, P maps S to S. Perhaps wc should note that some
common problems are best described as relations rather than as functions. An cxample is

- the problem of finding a spanning forest of a graph; there are often several. However, in
order to keep the notation simple, we restrict ourselves to functions; it is a simple matter
to adapt what follows to rclations.

We would like to define the properties that make something a filter. In keeping with
our carlier use of the term, a filter is a map ' : S — S. (Though, of course, several
generalizations arc possible.) The obvious property that I should possess is that it should
leave invariant the graph problem. That is, we require that P(F(E)) = P(E) for all E € S.

That, however, is not quite enough for our purposes. Recall that our aim is to produce
linear sized circuits for solving quadratic sized problems. This implies that our filters will
at any time be operating only on a subgraph of the input graph. Therefore a filter must
sumarize each portion of a graph in a manner that permits solving the problem no matter
what the rest of the graph may be. Thercforc wc propose the following definition.
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Definition 3.1: ¥ : S — S is a filter for P if P(F(E)UE') = P(EUE) for all E and E'
members of S.

Note that this definition implies that P(F(E)) = P(E). Incidently, we can make
precise the terms faithful and deceitful. A filter I" is faithful provided that F(E) C F
for all £ & S. A filter that fails to be faithful is said to be deceitful. Since the point of
filtration is to reduce the volume of data, wc will generally be interested in filters F' with
the property that |F(E)| < |E|.

It may be worthwhile to consider a simple example. Let P be the connected compo-
nents problem. Let F' be defined so that for all I € S we have that F'(F) is a spanning
forest of I/. Then F' is a filter for P. We leave it to the reader to verify this fact.

Because our algorithms will make use of cascaded filtration, we examine some further
consequences of our dclinition. Suppose that F is a filter for P. We define a binary
operation B : S x S — S by B(E,, E;) = F(E; u E3). It will turn out that B captures
the essence of the fundamental step of our algorithms, namely the operation of combining
two subgrnphs and filtering the result.

By a cascaded filtration, we mean any repeated composition of the function B. We
give the following inductive definition.

Definition 3.2: B : S¥ - S is a cascaded filtration provided that

I'(E,), if k=1;
A B(E,, E3), . ifk =2;
B(Ey,...,Ex)=q B(B(E\,...,En),B2(Emt1,. .., Ex)), for some m if k > 2 and
B, and B, are
cascaded filtrations.

The important property of a cascaded liltration is that it acts as a filter.

Theorem 3.1. Cascaded Filtration: Let B(El,. . ., ) bc a cascaded liltration. Then
P(B(E,,..., Ex) u E) = P(uyc;<B;u E')forall E,,. .., Ey, E' inS.

Proof 3.1: This t]1gorc111 is proved by induction. It is vacuous for the case k = 1.
For k = 2, wc have B(FE,, Ez) = I'(l, U L). Let E = E; U ;. We must show that
P(B(E, E;) U E') = P(EUE). But P(B(F,,E;) U E') = P(F(E) U E') = P(E U E').

If k > 2 then B(Ey,. . .,Ey) = B(By(Ey,... ,En),Bo(EBmyy, - -, Ex)) for some m.
Let I = Uj<;<k s, I = Up<icon 9y and R = U, <<k F;. We have

P(B(E,,.. ., E)uEY=P(B(By(Fi,. .\ Eu), Ba(Buyty - E))UE)

= P(F(By(Ey,. ..\ En)UB2(Epyy,.. ., I5))UE)
=P(}§1 (Ey,.. ., Ep)UBy(Epyy,. .., E)UE)
=P(LURUE) (induction on By, Bg)
=P(EuE).
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Cascaded filtration can be viewed as a general method for organizing parallel divide-
and-conquer computations. Imagine that we wish to compute P(E) given some input
graph E. Let each set E; (for 0 < ¢ < n) consist of the edges in E joining vertex @
to some vertex j where j > 2. Then the Cascaded Filtration theorem guarantees that
we can compute P(E) by computing P(B(EU, C e Enul)). This latter computation of
course could be accomplished by the obvious balanced binary tree of filter units. In the
next section we describe a much more attractive implementation, the funnelled pipeline,
in which each level of the binary tree is replaced by a single filter unit.

3.3 Funnelled-Pipeline Algorithm Structure

We assume, as before, that the graph problem is presented as an n-by-n adjacency (or
edge-weight) matrix A and that, for simplicity, n is a power of two. The algorithm struc-
ture is composed of log n pipelined filter units. Each filter unit implements the filtration
operation B(E,,E;) = F(E, U E;) where F is a filter for the graph problem. Thus, at
each activation, each-Jilter unit receives as input the edge sets E; and Es. It produces as
output the edge set B(E;, E;). This output set serves as one of the input sets in the next
activation of the next filter unit along the pipe. Thus the first filter unit, filter zero, reads
in a stream of n edge sets, namely the sets corresponding to the n rows of the adjacency

. matrix. It outputs a stream of % “filtered” edge sets. With a slight abuse of notation,
we have as its #t* output set, the set B(Ay;, A2i4+1). These % sets are fed to the second

2
filter unit which computes the § sets B(B(A4i, Asit1), B(Adit2, A4,-+3)). These 2 sets of

“doubly filtered” edges arc fed to the third filter unit, etc. Note that cach outht set of
each filter unit is a cascaded filtration. In particular, the output of the last filter unit is a
cascaded filtration of the entire input graph.

The first question that arises is that of representing edge sets. We enforce a strict
convention. ISach edge sct will be represented by an n-element array cq, ¢3, . . ., Cn—1.
Each element c; is itself a set of edges; however its size is bounded by a constant (in

. the following algorithms, that constant is one or two). Furthermore, we insist that if the
edge {u, v} is a member of ¢;, then u = 2 or v = 2. In other words, cach cdge must be
stored at omne of its endpoints; thus c is actually an adjacency-list rcprcsentation. Note
that it is trivial to convert adjacency-matrix rows to this form. Note also that each edge
set contains O(n) edges. It should be admitted that this representation scvercly limits
the types of filters that can bc employed. The advantage of the representation lics in its
suitability for parallel architectures.

Wc will require all filters to be faithful. This implies that the cascaded filtrations are
also faithful. We describe an important consequence. Note that in the adjacency matrix,
all edges in the set corresponding to row 2 are incident to vertex z. In other words, all
edges on a given matrix row have a common endpoint, which we call the leader. Consider
an edge sct output by the first filter unit. Each edge in that sel must be incident to at least
one of the leaders of the two matrix rows from which it was derived. Thus each edge set
output by the first unit has two leaders, namely the single leaders of the two corresponding
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input rows. Similarly, the sets output by the second filter unit have four leaders, etc. The
fact that each edge is incident to at least one leader will make rapid filtration possible.

Wc list below some of the critical properties and terminology of the funnelled-pipeline
structure. Note that vertex indices, filter indices, and activation counts are numbered
beginning with zero. Recall that for convenience we have assumed that n is a power of
two.

« Filter unit k is activated n/2¥*+! times, and thus produces n/2*¥*! output sets.

« Filter k is activated with a period of 2¥*! cycles. (A cycle is defined by the reading
of a single row of the adjacency matrix into the input buffer of filter zero.)

o At activation ¢z, filter k reads two edge sets. Each of these two sets contains 2”
leader vertices. The first set has as its leaders vertices 12%+! through 2k+1 + 27— 1.
The second set has as leaders vertices 12¥+1 + 2k through (¢ + 1)2%+! - 1. Thus at
activation 1, filter k contends with a total of 25+! |eaders, and each edge in the union
of the two input sets is incident to at least one of them.

« During activation ¢, filter k produces one output set. This set contains 25+1 leaders,
namely vertices 72%+! through (¢ + 1)2%+! — 1.

o At activation 7 of filter k, the vertices with index (z + 1)2"‘“1 through n -- 1 are called
gangmembers. -

« During activation s of filter k, the vertices 0 through 2%+ — 1 are called dead vertices.
No edges among the input and output sets are incident to dead vertices.

« The last filter, filter log n — 1, is activated once. Its output is a cascaded filtration of
the entire input graph.

Each filter unit will be built as a linear array of n processors, one processor corre-
sponding to each graph vertex. These processors will be interconnected by an ethernet.
Thus each filter will have width O(n); as will the data streams connecting successive filters.
See Figure 3.1. This architecture permits transferring the edge set output by one filter
stage to the input buffer of the next in O(1) time steps. We will assume that each filter
unit contains a simple input buffer capable of holding two edge sets.

3.4 A Minimum Spanning Forest Algorithm

This section describes a funnelled-pipeline algorithm for computing minimum spanning
forests on undirected weighted graphs. An n vertex graph is rcprescnted by an n-by-n
upper-triangular edge-weight matrix A. Entry A;(xcpresents the weight of the cdge
joining vertices ¢ and j. Tdge weights may, of course, be infinite, but must be specified by
at most O*(l) bits. .

It is convenicent to have a notion of the unique minimum spanning forest. Thus edges
with equal weights will be strictly ordered according to, say, the lexicographic ordering of
their endpoints. It can bc seen (in a variety of ways) that such a scheme induces a strict
ordering on the total wecights of spanning forests.

Our first task is to find a suitable filter. For any sct of edges E, lot MSF(E) denote
their minimum weight spanning forest. Wc present two facts.
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Figure 3.1: Funnelled Pipeline

Lemma 3.1: Let e € E. Then e € MSF(F)ifand only if e is not the edge of maximum
weight in any cycle of /¥ containing e.

Lemma 3.2: If e = {u,v} € E but e ¢ MSF(E) then there is a path in MSF(E) joining u
to v, and cach of that path$ cdges has weight less than the weight of e.

Wc obtain the following corollary.

Corollary 3.1: The function MSI® is itsell a faithful filter for the minimum spanning forest
problem.

Proof 3.2 Wc must establish that MSF*(MSF(E) U E') = MSF(E U E). Let e be any
edge in E U E'. Supposc that e ¢ MS [ (MST () U 1d). Then Lemma 3.2 implies that
there exists a path in MSI'(F) U E’ joining the endpoints of e with the property that all
of the path3 edges have weight less than the weight of e. That path must of course also
licin E U E', and thus Lemma 3.1 implics that e ¢ MSI'( E U E').
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On the other hand, suppose that e ¢ MSI'(E U E). Evidently there is a cycle e, ey,
€2, ..., ex in E U E’ of which e has maximum weight. For each edge e; = {u, v} € E we
can select a path in MSF(E) joining u to v wherein each edge has weight at most that
of e,. Hence e has maximum weight in a cycle in MSIF(E) u I'. Lemma 3.1 then implies
that e ¢ MSF(MSF(E)u E'). |

One further fact about minimum spanning forests will be required to verify our algo-
rithm.

Lemma 3.3: Let (V,E) be a graph. Let H be a subset of V and let C = {e € E |
e joins a vertex in H to a vertex in V — H }. Let f be the edge of least weight in C. Then
f is a member of MST'( E).

We note that our filter has an important property. Its output is a forest, and hence
contains at most n — 1 edges. Furthermore, each tree can be rooted and each edge can
be stored at its child vertex endpoint. This permits adherence to our convention for
representing and transmitting edge sets among the filter units. In each edge set, there will
be stored at most one edge per vertex.

Each filter in our pipeline implements an algorithm that computes the minimum span-
ning forest of the union of two input edge sets. In fact, the same algorithm is employed in
each of the log n filter units. Each activation of filter unit k£ must take at most O(Zk“)
steps. In this regard, the fact that each activation contends with 2¥*! leaders will prove
critical. )

The computation for activation z of filter unit k proceeds as follows. There arc three
major steps. The first is to find, for each gangmember, the minimum weight incident edge
(if any). Such edges arc guarantced by Lemma 3.3 to lie in the minimum spanning forest of
the input edge sets. Because every input edge is incident to at least one Icadcr, each of the
sclected minimum weight edges connects a gangmember to a leader. Thus this first step
can bc viewed as the formation of gangs of gangmember vertices, cach gang being led by
a leader vertex. This gang-formation step must be done with a high degree of parallelism,
since, in general, the number of gangmembers vastly cxcceds the time budget of O(‘Zk'H).
Obscrvc that after thcsc edges have been sclccted, most of the minimum spanning edges
have been found. If [ == 251 js the number of Icadcrs, the minimum spanning forest
consists of at most [ -- 1 additional edges.

- Thus the second step chooses at most [ — 1 more edges to link together the gangs.
There is suflicient time to select these edges sequentially. Indeed, the algorithmm for this
step differs little from the conventional “greedy” algorithm,

The final step consists of rearranging the now-complete minimum spanning forest so
as to obey our convention for rcprecscnting edge sets. This is accomplished by traversing
the forest and storing each edge at its child endpoint. Again a high degree of parallelism
is required. It is obtained by using a graph traversal that never visits lcaf vertices that are
gangmembers. Since there arc 1 leader vertices, any tree, and hence any forest, has at most
21 internal vertices. This is due to the fact that the children of every internal gangmember
vertex must bc Icadcrs.
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We now present a more detailed description of the algorithm. Each proccessor  will

contain a list E; of at most two edges. These edges will be stored in records containing
the following fields.

this-end: One endpoint of the edge.
other-end: Other endpoint of the edge.
weight: Weight of edge.

edge-status: Current status of this edge.
other-status: Status of other-end vertex.

other-leader: Leader associated with vertex other-end.

The field this-end is a notational convenience; if e € E; then e.this—end = i. Each

processor ¢ will contain registers status; and leader,, as well as a few temporary locations.

The main program is as follows.

program f ilterunit (k, n);

begin
co K is the filter number, n is the graph size oc;
for i:=0 to n/2*¥*! do

end

co 1 is the activation number oc;
call initialize;

call join-gang;

call merge-gangs;

call rearrange;

call output
od
jilterunit.

The procedure initialize reads the two input edge sets and initializes status registers.

The edge-status field of each edge is set to standby; initially cach edge is a potential
member of the minimum spanning forest. The status of each vertex is set to ungrabbed,

this

value identifies vertices that have not yet been visited in the traversal of the minimum

spanning forest.

procedure initialize; ’
begin
for all v, 0 < v < n do in parallel

end

status, :=ungrabbed;
leader, := v,
read edges froui input buffer into E,;
for all e ¢ I, do
co notc that there are at most two edges in E, oc;
e.other _status := ungrabbed;
e.edge_status := standby;
e.other _leader := e.other-end
od
od
initialize;
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The procedure join-gang is responsible for linking each gangmember to a leader
via the edge of least weight. Note that an edge joining gangmember g to leader [ is
stored either at g or at 1. Hence, we first broadcast all edges stored at the leaders in
order that the gangmembers bc able to pick their cheapest incident edge. Then we again
sequentially examine the edges stored at the leaders so as to appropriately adjust their
status fields; whenever an edge is determined to lie in the minimum spanning forest the
corresponding edge-status field is set to selected. The entire join-gang procedure takes
at most O(2%+1) steps since there are at most two edges stored at each of the 2*¥*1 leaders.

procedure join-gang;
begin
co find the cheapest edge stored locally at gangmembers oc;
for all gangmembers g do in parallel
if g has any stored edges then
let cheapest, be such that cheapesty.weight = min{f.weight | fe Ey} else
cheapest, := nil fi
od;
co find cheapest edge not locally stored oc;
for all leaders | do
for all e € E; do
if cheapeste.other—_end.weight > eweight then cheapeste.other_ena = € fl
od
od; .
co we now have found cheapest edge incident to each gangmember oc;
co update status of all locally stored cheapest edges oc;
for all gangmembers g do in parallel
| f  cheapedt, € E, then
cheapesty.edge_status = selected;
1 eadery, := cheapest,.other_end fi
od;
co update status of all non-locally stored cheapest edges oc;
for all leaders | do
for all e € E; do
if there exists a gangmember g such that cheapest, = e then
e.edge-status := selected;
leadere other—end := € t hisend fi
od
od;
co update other-leader fields for all edges stored at leaders oc;
for all leaders ! do
for all e € E; do
e.other_leader := leader, other_end
od
od
end join-gang;
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Procedure merge-gangs links together the gangs by a greedy algorithm. It starts
at an arbitrary gang. It then selects the cheapest ‘tandidate” edge joining this gang to
another. The new gang is merged into the first gang and the process is repeated for this
new super-gang. Merging continues until the super-gang is as large as possible. This cntire
process is repeated for each connected component of the graph. The gangs that have not
yet becn merged are identified by leader vertices v for which status,, = ungrabbed. Edges
that join ungrabbed vertices to grubbed vertices are identified by the value candidate in
their edge-status field. Note that at most a total of 2¥*! — 1 gang merges are required to
complete the minimum spanning forest.

procedure merge-gangs;

procedure visit (i, newleader);
begin
co incorporate the gang containing ¢ into the gang of newleader oc;
oldleader := leader;;
co grab everybody who is in oldleader gang oc;
for all v, 0 £ v < n do in parallel
if leader, = ol dleader then
status, := grabbed;
leader, := newleader
fi
od;

co update other-end status fields in edge records oc;
for all v, 0 € v < n do in parallel
for all e € E, do
if e.other_leader = oldleader then
e.ot her-leader := newleader ;
e.other _status := grabbed
A
od
od;
co update edge-status fields oc;
for all v, 0 < v < n do in parallel
for all e € E, do
case
c.edge_slatus = standby =
if status,, # e.other_slatus then e.edge_status := candidate fi;
e.edge_status = candidate —> .
if status,, = e.other-stutus then e.edge_status := useless fi

endcase
od
od
end visit;
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function nestedge;
begin
co select cheapest candidate edge oc;
if there exist any v and e € K, such that eedge-status = candidate then
let f be such that j € {e € E, |0 < v <n}and f.weight = min{e.weight | e € E, and 0 <
v < nj
return f
else return nil fi

end nex tedge;

begin merge-gangs
while there exists a leader r with status, = ungrabbed do
co start a tree rooted at r oc;
call visit(r, r);
while neztedge # nil do
co merge another gang into tree rooted at r oc;
f := nextedge;
f .edge_status ;= selected;
if f.other_status = grabbed then visit(f.this-end,r) else wvisit(f.other—end,r) fi
od
od
. end merge-gangs;

Procedure rearrange rearranges the selected minimum spanning forest edges so as to
store at most one at each vertex. This is accomplished by first computing the degree of
each gangmember in the minimum spanning forest. This identifies gangmember leaves.
Then all internal vertices (and leaf leader vcrtices) are traversed, and all edges arc moved
(if necessary) to their child cudpoints. This procedure takes O( 2¥*1) steps.

procedure rearrange;

procedure mark-leaves;
co decide which vertices arc leaves and which are internal nodes of the forest oc;

co compute the degree of each gangmember vertex oc;
for all gangmembers g do in parallel
degree, := |{e € E, | e.edge-status = selected}|
od;
- for all lecaders [ do
for all ¢ € I, do
if c.edge—status - selected then degree.. other_end := degreee other—eng + 1 i
od
od;

co set vertex type ficlds oc;
for all gangmembers g do in parallel
if degree, < 1 then type, := don’t-visit else type, := do-visit fl od;
for all lcaders [ do in parallel lype; = do-visit ad;
end mark-leaves;
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procedure traverse(i);
begin
co visit vertex & oc;
statusu:flnIShed;
co deal with vertices storing an edge to 7 oc;

for all v, 0 <v <ndo in parallel
if there exists e € E, such that e.other—_end = 7 and e.edge_status = selected then

out, := ¢
e.edge-status := unselected;
if type, = don’t-visit then status,, ::== finished else status, := frontier fi
fi
od;

co deal with any selected edges stored at 2 oc;
for all e € E; do
if e.edge-status = selected then
m := e.other—end;

out, := €
e.edge_status := unselected;
if type, = don't-visit then status,, = finished else satus,, := frontier fi
A ~

od

end traverse;

begin rearrange
co mark the leaves oc}
call mark-leaves;
co set vertex status fields oc;
for all v, 0 < v < n do in parallel* status, := unvisited od;
co traverse the minimum spanning forest oc;
while there exists a leader r with status, = unvisited do
co traverse the tree rooted at r oc;
call traverse(r);
while there exists a vertex v such that status, := frontier do traverse(v) od
od
end rearrange;
Procedure output simply writes the rearranged minimum spanning forest edges to the
output buffer.

procedure output;

begin
for all v, 0< v < n do in parallel write out,, to output port, od
end output,;

A careful examination of the above algorithm reveals that each activation of filter
unit k requires time 0* (2¥) on an cthernet architecture. Since filter unit k is activated
every n/2* cycles, the stages of the pipeline are properly balanced, and we have a when-
and where-determinate minimum spanning forest algorithm requiring O*(n) time and
arca. Obscrve that no postprocessing is required; the output of the last filter unit is the

minimum spanning forest of the input graph.
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3.5 A Funnelled-Pipeline Algorithm for the Biconnected Components Problem

In this section we describe a funnellcd-pipeline algorithm that solves the biconnected
components problem. Let G = (V, E) be a graph. Define a relation % on the edges so that
e1 x ey if ey = eg or if there is a simple cycle (i.e. a cycle without repeated vertices) in G
containing e; and e,. It can be shown that x is an equivalence relation. Let F,,.. ., E} be
the equivalence classes of E under . Let V; be the set of endpoints of edges in E;. Then
the sets V; are the biconnected components or blocks of G. We refer the reader to [AHU]
for further background discussion.

Definition 3.3: Suppose that E is a graph. We say that a graph E’ represents E if the
following three conditions hold.

o E”is a subgraph of E.

o The connected components determined by E”are identical to those dcternrined by E.

« Every pair of vertices z and y lie in a simple cycle of E”if (and only if) they lie in a
simple cycle of E.

Theorem 3.2: If a subgraph E”represents a graph E, then E”and E possess identical
biconnected components.

Proof 3.3: It suffices to show the one non-trivial direction. Suppose that B is the set of
vertices of a biconnectcd component in E, and x and y are members of B. Then there is
a simple cycle in E, and hence a simple cycle in E’, containing x and y. Thus x and'y lie
in one uniquely determined biconnected component of E” (two biconnectcd components
intersect in at most one vertex). Hence all members of B lie in that biconnected component
of E7 |

We next demonstrate that depth-first search can be used to find representing graphs.

Definition 3.4: Let E be a graph. Let T(E) contain the edges of a depth-Grst traversal
of IZ. That is, the forest 7'( I£) consists of the subset of the edges in E traversed by some
depth-first secarch of E. Furthermore, for every vertex v, let H(v) bc the highest incident
back cdge of F (if any) induced by the traversal T'(F). (The highest back edge from x is
the one to the highest ancestor of x (in the forest T(E)) reachable by a back edge (in E)
from x.) Let (E) = U, H, u T(E).

Theorem 3.3: The graph F(E) represents E.

Proof 3.4: Note first that F(1) is a subgraph of . T(F) and E possess identical con-
nected components, as do T'(E) and I’( I£); hence FP(E) and I possess identical connected
components.

Suppose that vertices x and y lie in a simple cycle of E. Assume without loss of
gencrality that x is an ancestor of y in the depth-first traversal T'([7). Note that x and y
lic in the same biconneccted component of E. Therefore no vertex on the path from x
to y in the depth-first traversal is an articulation point. Thus there is a directed path
from y to x consisting only of highest back edges (oricntctl from descendent to a.ncestor)
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and depth-first traversal edges (oriented from ancestor to descendent). A subset of these
edges combined with an appropriate subset of the remaining depth-first traversal edges
yield a simple cycle containing x and y. }

We now show that filtration can be accomplished by finding representations. Wc make
use of the following lemma.

Lemma 3.4: Let E be a graph. Suppose that k£ > 2 and that vg,. . . ,¥x—; iS @ se-
quence of distinct vertices with the property that for all « either {v;, Vitimodk} € E Or
v; and v;4 1medx DOth lie in the same biconnccted component of E. Then all v; lie in a
single biconnected component of E.

Proof 3.5: If the v; fail to lie in a single biconnected component, there would exist in E a
simple cycle of edges passing through more than one biconnected component. This would
contradict the definition of biconnected components. |

Theorem 3.4: Suppose that R represents E. Then R U E’ represents E U E’ for all sets
of edges E~’

Proof 3.6: It suffices to show that whenever two vertices x and y lie in a simple cycle C
of E U E7 then they also lie in a simple cycle of R = RUE” So consider an edge e = {u, v}
that lies in C but not in R. Thus e is in E but is not in R. Since R represents E and
u and v are in the same connected component of E, there must be a simple path in R
. connecting them. Because R is a subgraph of E, this path must also be in E. Hence
u and v lie in a simple cycle of E, and again, since R represents E, they lie in a simple
cycle of R. Thus u and v arc in the vertex set of one biconnected component of R; the
cycle C satisfies the conditions of the previous lemma. Therefore the vertices of C must
lie within a single biconncctcd component of . This ensures that x and y lie on a simple
cycle of R. 1

This theorem establishes that the function F' defined above is a filter for the bi-
connected componcents problem. VW make use of I' in constructing a funnelled-pipeline
biconnected components algorithm. Note that the edge set F(E) can be stored with at
most two cdgcs per vertex. At each vertex we store the depth-first edge from its parent
and the back edge to its highest reachable ancestor. Thus back edges are stored at the tail
vertex; tree cdges at the child.

The algorithm is structured in the same way as the minimum spanning forest algo-
rithm. It consists of a funnelled pipeline of log n filtering stages. Fach stage repeatedly
combines two subgraphs and filters the union. The resulting set of ou tpul edges arc passed
ont o the next stage.

Because of the similarity between the structure of this algorithm and that of the
minimum spanning forest algorithm, wc present only a description of the filtration stages,
and leave it to the reader to fill in the rest.

At activation 2, every stage k in the pipcline receives two input sets. Each sct contains
at most two cdgcs per vertox. The filtration stage forms the union of the two graphs given
by the input sets. It performs a depth-first traversal on this union and discards all edges



3. FUNNELLED-PIPELINE ALGORI THVS 29

which are neither tree nor highest back edges. The remaining edges are shipped to the
next stage.

The filtration depends upon performing a depth-first traversal of the union of the input
graphs. Like the restructuring operation used in the minimum spanning forest algorithm,
the depth-first traversal must avoid making unueccssary visits to leaf vertices. Thus it will
not visit gangmember leaves. Such a traversal can be accomplished in time proportional
to the sum of the number of internal vertices and the number of leaves that are leaders
in the induced depth-first spanning forest. This quantity is bounded by the sum of the
number of leaders and the number of internal gangmember vertices. Because cach internal
gangmember vertex has at least one child, and each such child must be a leader, there
can be no more internal gangmember vertices than there are leaders. Hence at stage k no
more than 2*¥+2 vertices are visited in the depth-first traversal.

In order to avoid visiting gangmember leaf vertices during the depth-first traversal,
each gangmember g keeps a count unvisited-neighbors!, of its as yet unvisited neighbors.
Initially unvisited-neighbors, is the total degree of vertex g in the input graph. Each time
that a neighbor of g is visited during the traversal, the register unvisited_neighborsy is
decremented. If unvisited_neighbors, reaches zero before g is visited, then g has become a
leaf of the depth-first search tree. Otherwise, if g is visited when unvisited_neighbors, > 0,
then g becomes an internal vertex.

Thus the filtering algorithm for every activation consists of the following steps.

(1) The leader vertices sequentially broadcast their names and adjacency lists. Each
gangmember g counts the number of times it hears its own name broadcast. The
degree of g, and hence the initial value of unvisited-neighbors,, is then g% computed
count plus the number of edges stored at the processor corresponding to g.

(2) The depth-first search starts with some leader. When visiting a vertex y, the name y
and y3% adjacency list arc broadcast to the other processors. Any processor (i.e. vertex)
x which is not yet visited, and which recognizes y in its locally-stored adjacency list, or
hears its name in the broadcast list, makes note of y3 name, aud, if x is a gangmember,
decrements unwvisited_neighbors,. An unvisited x need only retain the first and last
names noted. The last name thus noted by a processor x before it is visited (if ever) is,
of course, its parent in the depth-first search tree. This name is retained to specify the
trec edge bctween x and its parent. The first name noted is also retained if different
from x3 parent; it is then the highest ancestor reachable by a back edge from z.

(3) The next vertex to visit in the depth-first scarch is selected arbitrarily from among
the unvisited vertices v adjacent to the current vertex which are not yet gangmember
leaves (i.e. for which unvisited-neighbors, # 0). If there arc no such vertices, the
traversal backs up to the parent of the last visited vertex. If this last vertex was a
root and there arc still unvisited leaders, the traversal of a new tree is started.

Since the time for the depth-first traversal is O*(Z) where [ is the number of internal
nodes, the time for every activation of stage k is O*(2’“). Ilence the overall timing is the
same as for the minimum spanning forest algorithm, as is, for that matter, the space.
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3.6 Conclusion

Our algorithms demonstrate the power of filtration and funnelled pipelining as well as
some of the hidden parallelism intrinsic to many of the classical graph problems. Within
this framework, trade-offs are of course possible between area and time requirements. For
example, the log n filter units used in the funnelled-pipeline algorithms could be combined
into a single unit, thereby reducing area at the expense of a factor of O(log n) in time.

Much more radical departures also present themselves. We discuss this topic in Chap-
ter 5.

The funnelled-pipeline techniques illustrated in this chapter can be applied to a variety
of graph problems to obtain solutions superior to those previously published [L-V]. Such
problems, for which we obtain when- and where-determinate, A = T = O*(n), one-pass
ethernet implementations, include:

o Connected Components

e Spanning Tree

o 2- Colorability

e Has a cycle i

o Has an Eulerian cycle

¢ Minimum Spanning Forest
o Biconnected Components
o Planarity Testing

The minimum spanning forest algorithm can be simplified to yield funnelled-pipeline
algorithms for both the connected components problem and the spanning tree problem.
Funnclled-pipeline algorithms for solving the 2-colorability, cycle detection and Eulerian
cycle detection problems can be obtained by augmenting the spanning tree algorithm.
Planarity testing serves as the motivating problem for the next chapter.



4. Planarity and Representation

4.1 Introduction

This chapter is motivated by the problem of testing whether a given graph is planar.
We assume that the graph is presented as an n-by-n adjacency matrix. The matrix is to
be read row by row (with a when- and where-determinate schedule) into a circuit of area
O*(n) that will be allowed O*(n) time to determine whether the graph is planar.

It will be seen that solving this problem effkiently in the parallel environment of
interest depends upon solving a more fundamental problem of data rearrangement. In this
chapter we develop a solution to that problem. We also briefly discuss its relationship to
several other classic-al graph- theoretic problems.

4.2 Sparse Graphs and Their Representation

We noted that the crux of the problem of testing graph planarity lies in converting
an adjacency-matrix graph representation into something more economical. To this end,
wc develop an algorithm that transforms the n? adjacency-matrix bits into a linear-sized
adjncency-list representation. Once these adjacency lists are stored, any of a variety of
0* (n)-time sequential planarity-testing algorithms can be cmploycd. Thus the problem of
testing graph planarity in the parallel environments discussed here reduces to a problem
of data rearrangement.

Definition 4.1: A graph G = (V, E) is called c-sparse provided that every vertex-induced
subgraph G”= (V7 E') of G satisfies the relation |E’| < ¢[V’|.

Note that every planar graph is 3-sparse (Euler3 rcla.tion), and, for another example,
every tree is 1-sparse.

Definition4. 2. A graph G == (V, ) has a c-representation if it is possible to place its
edges in adjacency lists A, for v € V subject to the following constraints:

« For each edge e = {u, v} in IZ, either e € A, or e € A,.

« For each v € V the relation |4,| < ¢ holds.

Observe that our minimum spanning forest funncllcd-pipclinc algorithm -made use
of I-representations for storing and transmitting edge sets among the filter stages. The
biconnec ted components algorithm used 2-reprcscntations.
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Theorem 4. 1. Every c-sparse graph has a [cl-representation,

Proof 4.1: This lemma is verified by induction on the number of edges in the graph.
Clearly a graph devoid of edges has a [cl-representation. So suppose that G = (V, E) is
c-sparse and that the family A,, for v € V is a [cl-representation for G. Suppose further
that e = {u,v} ¢ E and that G' = (V, E |J{e}) is also c-sparsc. We show that G~has -a [c]-
representation. The argument is reminiscent of the augmenting-path techniques employed
in matching problems; this apparent coincidence is discussed later.

We find it useful to introduce the following definition. Let S be a set of vertices in G.

Then let A(S) contain the new vertices named in adjacency lists associated with vertices
in S. That is,

AS) ={z ¢ S| {s,z} € A, for some s € S}.

We wish to consider a breadth-first traversal starting at the set {u,v}. Thus we define
the sequence of sets V; as follows:

Vi = {u,v}
V,'+1 = V, u A(V,)

There are two cases to consider. First, suppose that there is a vertex w and a least
. integer k > 0 such that w € Vi and |A,| < [c]. In this case there is a path from uor v
to w. That is, there is a sequence of edges €1, ..., ex_; and vertices v; € Vi,...,vx € Vi
such that

o v € {u,v}

e vy =w

e Lach edge e, joins v; to v;4; and ¢; € A,,

Now by “reversing” this path, we can make room for the new edge e. Let

A:u = A, U {g} - {el}
A:,‘,=A,,‘.U{e.-_1}—{e,-}, 1<i<k
A:Jk = Avk U {ek._._l}

AL = A, X ¢ {v; |1 <t <K}

Now |Aj, | = |Ay, | < e] for ¢ < k and |4}, | = |4y, |+ 1 <[c] hence the family A”is a
[c ] -representation for G

If the first case does not hold, let k bc the smallest integer such that A(Vy) = 0. Now
consider the subgraph Il = (Vi, U, ¢y, A,) of G. Evidently 11 contains |Vi| vertices and
[c]|Vi | edges. Hence the subgraph (Vi, (U, ey, A) U{e}) of G~ contains one more edge
and thus fails to bc c-sparse. This contradiction establishes the lemma. |}
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Our use of sparse representations for sparse graphs is motivated by the requirements
of distributed computation. In order to make effective use of parallel environments it is
necessary to distribute the data to be processed uniformly among the available processing
clcments.

The essence of our parallel planarity algorithm is to compute rapidly a sparse rep-
resentation of the input adjacency matrix. As noted before, once this representation has
been obtained, even conventional sequential algorithms will suffice to determine planarity
in 0* (n) time and area.

We have established that if a graph is c-sparse it has a [cl-representation (thus planar
graphs have 3-representations). IHowever, it is far from clear that there exist efficient
parallel algorithms for computing [c] -representations of c-sparse graphs. Discussion of this
topic will be deferred to the end of this section. We will now present instead algorithms
for computing &-representations of c-sparse graphs. Observe that such representations
are equally suitable for the intended application.

4.3 Finding 2c-representations of c-sparse Graphs

In this section we will assume that the input graph is c-sparse. The algorithms may
fail if this condition is not satisfied; however it is easy to augment these algorithms so that
they detect such failure.

The following sequential algorithm finds 2c-representations of c-sparse graphs.
input G.=(V,E);
do until v=¢

Pick some vy € V such that the degree of vy is no more than 2c;
Apy = {{w, v} € E|weV}

E:=E ~ Ay
vi=v -- {v}
od;

end.

The key to the success of this algorithm is the fact that every c-sparse graph (and
hence cvcry subgraph of a c-sparse graph) contains at lcast one vertex of degree at most 2c.

In order to parallelize this approach, wc will employ a funnelled-pipeline construction,
The input to stage k al cach activation will consist of two arrays of adjacency lists. Fach
adjacency list will have al most 2¢ entries; thus cach processor will be presented with
a total of at most 4c edges. Recall that there are 2Kt! leaders and that cvery edge is
incident to at least onc leader vertex. Stage k most recarrange the edges so as to produce
a single array of adjacency lists, each list of length at most 2¢. This computation must be
performed in time O*(2¥).

The major difliculty in adapting the above sequential algorithm lics in the fact that
there may be a large number of vertices with low (i.e. at most 2¢) degree. Thus it would
not do to visit cach scquentially. A less scvere difficulty arises from our desire to produce
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an algorithm suitable for ethernet communication. This restricted model precludes such
operations as computing the degree of leaders by means of an addition census function.
In order to overcome these difficulties, we partition the vertices and edges as follows.
Let the [ = 2%+ leaders form the set L. Partition the gangmembers M according to their
degree:
Mg = {m € M | degree(m) < 2¢}

Mp = {m € M | degree(m) > 2c}.

Let E be the set of input edges. Partition E as follows.

Es ={e€ E|en Mg # 0}
Ep={e€ E|enMp #0}
E,={e€E|ec L}

We would like to bound the number of high-degree gangmembers. Consider the bipar-
tite subgraph (L |J Mp, Ep). By sparseness, |Ep| < ¢|L |J Mp|. However, by the definition
of Mp, the relation |Ep| > 2¢c|Mp| holds. Hence 2¢|Mp| < c(l-+|Mp|) and thus |Mpg| < L.
This fact suggests a two phase algorithm. In the first phase, vertices in Mg axe
identified and their edges (i.e. those in Eg) are disposed of (by being stored in the adjacency
lists associated with the vertices in Ms). The second phase is responsible for allocating the
remaining edges among the remaining vertices. In this phase there are at most 2! vertices,
. namely L |J Mp, and hence at most 2¢l edges. An outline of the algorithm for stage k of
the pipe follows.

(1) Compute. the degree of each gangmember
o This is accomplished by broadcasting all edges stored at leaders. Each gangmem-
ber counts the number of such edges incident to itself and adds this count to the
number of edges stored locally.
« There are at. most 4cl edges to broadcast, hence this step requires O*(cl) time.
(2) Deal with the vertices in Mg and the cdgcs in Eg
« Again broadcast all edges stored at leaders. Each member of Mg (i.e. gang-
members with degree at most 2c) stores each broadcast incident edge locally and
sends a message to the broadcasting leader vertex. That leader deletes the cdge
from its local memory. Thus this stage transfers all edges in Ilg to the processor
corresponding to their endpoint in Mg.
« This step requires O*(cl) time.
(3) Deal with the verticesin My |J L and the edgesin Eg | J 9,
o There arc at most 2 vertices and 2c¢l cdges left
o The following algorithm can bc employed to distribute these edges appropriately:

Make all vertices in Mp |J L awake;
Compute the degree of cach vertex by broadcasting all remaining edges;
do until all vertices are asleep

sclect an awake vertex v with degree(v) < 2¢;

move all cdgces incident to v to v3 local memory;
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put v to sleep;

recompute degree of all awake vertices by broadcasting all edges re-
moved (i.e. all edges now stored at v);

od;

» This step requires O*(cl) time.

Thus wc have an 0"(c2‘“+1)-time algorithm for the kt* stage of the pipeline. Each of
the n vertex processors needs O(c) storage; thus each stage requires O*(n) area. (Note that
all required communications can be handled by an ethernet or bus linking the n processors.)
Hence there is an A = T' = O*(cn) when- and where-determinate algorithm for computing
S-representations of c-sparse graphs.

This establishes the following theorem.

Theorem 4.2: There exists an A = T = 0* (cn) when- and where-determinate funnelled-
pipeline algorithm for testing graph planarity.

4.4 The Complexity of Finding Representations

In this section we discuss the complexity of finding representations of sparse graphs.
We find that both the parallel and sequential complexities of this problem are closely re-
lated to those of the well-known combinatorial problems of finding maximum network flows
and matchings. This relationship suggest that developing a good parallel representation
algorithm is at least as difficult as developing a good parallel bipartite matching algorithm.
Although we are primarily interested in algorithms requiring moderate area and moderate
time, we point out that the preceding observation applies also to extremely fast (poly-log
time) algorithms.

Wc first demonstrate that the c-rcprcscntation problem can be reduced to a network
flow problem. It will bc convenient to restrict ¢ to the domain of the integers. Define a
transformation from the graph G = (V, I) to the graph G*= (V’ ') as follows. Let V~
contain a vertex ¥ corresponding to each vertex v € V, a source vertex s, a sink ¢, and a
vertex € corresponding to cach e € E. Thus |V'| = [V]| 4- | 2] 4 2. The set I2’ contains three
classes of edges. Itach vcrtex in V7 corresponding to a vertex in V is joined by an edge
of capacity c to the sink t. Ilach vertex in V” corresponding to an edge in E is connected
by an edge of capacity onc to the source s. Finally each vertex é in V7’ corresponding
to an edge {u, v} in I is connected by edges of unit capacity to vertices @ and 9. Thus
[ = 3 || + [V]. An example of the transformation is shown in Figure 4.1.

Theorem 4.3: Let f be an integer valued maximum llow function for G? Then the total
flow from s to ¢t under f is |E| if and only if G has a c-rcprcsentation. Furthermore such
maximum flows f arc in one-to-one correspondence with the c-representations of G.

Proof 4.2: Obscrve that since all edge capacities are integer, there is an integer valued
maximum flow. Also note that since the total capacity of the edges incident to s is |E|,
the maximum total flow cannot exceed |E|.
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v

GI

Figure 4. 1. Representation to Network Flow Transformation
(All edges are directed upward.)

- Suppose that the adjacency lists A,, for v € V constitute a c-rcpresentation of G.
Then define the flow f by:
f({s, €})=1forall €€ V”corresponding to e € E;
f({?,t}) = |Ay]| for all € V” corresponding to v € V;
finally, for € € V” corresponding to {u, v} € E, let

1, if {u,v} € A,;

f({é)ﬁ'}) = { 0, if {u,v} € A,
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It is easy to check that f is a legal flow and that f has total flow |E| and hence is
maximum. '

Suppose on the other hand that f is a maximum flow with total flow |E[ Then we
can find adjacency lists A, from f as follows. Let e = {u,v} be in E. Place e in A, if
J({é,4}) = 1. (Note that one of f({€,4}) and f({é,?}) Lras value zero, the other has value

one.) |

Thus we have established that the c-representation problem can be reduced to the
network flow problem. Notice that since we may assume that |V| < |E| < ¢ [V, the size
of the network flow problem exceeds the size of the representation problem by at most a
factor of O(c). Note also that the reduction can be accomplished in log space.

We next demonstrate that the degree-bounded perfect bipartite matching problem
can be reduced to the representation problem. Suppose that G = (U U V, E) is a bipartite
graph of maximum degree ¢, and that we wish to find within it a perfect matching. In
order to reduce this problem to a representation problem, we introduce the notion of an
edge source.

Suppose that a graph H contains as a subgraph K the complete graph on 2¢ + 1
vertices. Note that K is c-sparse and thus by Lemma 4.1 it has a c-representation. But
since K has exactly the maximum number of edges (¢(2¢ + 1)) possessed by any c-sparse
graph on 2¢ + 1 vertices, each adjacency list in any c-representation of K is full. Therefore,
in any c-representation of H, any edge joining a vertex in K to a vertex in H — K must
be stored in the adjacency list corresponding to its endpoint in H — K. For this reason,
we call the complete graph on 2¢ + .l vertices an edge source.

We transform the bipartite graph G into a graph G”as follows. G”will contain as a
subgraph G itself. Now the idea is to arrange things so that in any c-rcprcscntation of G/
the adjacency list for any vertex u € U will have room for exactly one edge from E. For
each vertex v € V, the construction will allow room for exactly d — 1 edges of E, where d
is the degree of v in G. These conditions will ensure that G has a perfect matching if and
only if G”has a c-representation. Indeed, an edge {u, v} will be stored in A, if it is a
matched edge and will bc stored in A, otherwise.

Thus to construct G; wc first add to G an edge source K, i.e. a complete graph
on 2¢ + 1 vertices. For each vertex u € U, wc add ¢ — 1 edges connecting u to any ¢ — 1
vertices of K. (Since in any c-representation of G”these edges cannot be stored at their K
endpoints, they must all be stored at u; this ensures that the adjacency list for u has room
for exactly one edge of I.) Likcwisc, let v be in V and let d be the degree of v in G. Add
cdges connecting v to any ¢ — d -+ 1 vertices of K. This ensures [ullillment of the sccond
requirement, namely that each v ¢ V has room for exactly d --- 1 ctlges of L.

This construction establishes the following theorem.

Theorem 4.4: G has a perfect matching if and only if G’ has a c-representation. ||

Note that G”contains |U| + |[V| + (2¢ + 1) vertices and at most |E| + (¢ — 1) |U| +
C V|- ¢(2¢c 4 1) edge. Thus again the size of G”exceeds that of G by at most a factor of
O(c) aucl the transformation process requires only log space.
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We have established that the sequential time complexity of finding c-representations
lies between that of finding perfect matchings in degree-bounded bipartite graphs and that
of finding maximum flows. Because the above reductions require only log space, the same
statement holds for parallel time complexity in the PRAM model [F-W]. Furthermore,
these reductions can be easily performed at negligible cost in the parallel environments
of concern here, namely those permitting moderate area and moderate time. Thus we
make the somewhat imprecise statement that finding efficient parallel algorithms for the
c-representation problem appears to be as difficult as finding good parallel algorithms for
the bipartite matching problem.

It is perhaps worth observing that the 2c-representation problem can be viewed as
an easily computed approximation to the c-representation problem. In fact it is possible
to construct a poly-log time PRAM algorithm for computing 2c¢-representations. Such an
algorithm can be based upon the idea of repeatedly removing from the graph all vertices
of degree at most 2¢. The following lemma establishes that each such iteration removes
at least a fixed fraction of the remaining vertices, and thus O(log n) iterations suffice.
This idea is exploited (and explained in greater detail) in Chapter 5 to obtain a two-stage
funnelled-pipeline algorithm for computing 2c-representations.

n
2c+1

Lemma 4.1: Every t-sparse graph on n vertices has at least
most 2c.

vertices of degree at

Proof 4.3: Let Vp be the set of vertices of degree greater than 2c; let Vg contain those of

. degree at most 2¢c. Let E'g be the set of edges with both endpoints in Vp, let Es be the set
of edges with both endpoints in Vg, and let Ex contain those edges joining a vertex in Eg to
one in Ep. By the definition of Ep, we have (2¢+1) [Vp | <2 |Ep| + |Ex |. By the definition
of sparseness, | Ep| < c¢ |[Vp|. By the definition of Vg, we have | Ex| < 2¢ |Vs|. Thus
(2¢ + 1) [Vp| < 2¢ [Vp| + 2¢ |Vs| = 2cn. Hence |Vp| < 2en/(2¢ + 1) and |Vs| > n/(2¢ + 1).
I

We remark that the subject of poly-log time PRAM approximation algorithms for
finding solutions to diflicult problems (P-Complctc problems) is explored in [AM]. We

. also note the existence of a probabilistic poly-log time PRAM algorithm for solving the
matching problem [KTJW]. In [CSV]itis demonstrated that the nctwork flow problem
(where the capacities are specified inunary) can be reduced to bipartite perfect matching.
Thus there is a probabilistic poly-log time PRAM algorithm for finding c-representations.
However, wc do not know whether there is a deterministic poly-log time PRAM algorithm
for finding c—rcpres.cn(,uti()lls (or, for that matter, finding Xc-rcprcscntations for any A < 2).

45 Conclusion

Wc have used the funnelled-pipeline paradigm to develop an efficient parallel solution
to the problem of converting the adjacency matrix of a sparse graph into an equivalent set
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of adjacency lists. One application of this data-rearrangement algorithm is to the problem
of determining graph planarity.

We have also shown that the representation problem for sparse graphs is closely related
in complexity and structure to several other well-known graph problems. This relationship
gives rise to a number of open questions. Among those questions are the following.

la. Are there area- and time-efficient parallel algorithms for solving the AC-representation
problem for A < 27

b. Are there fast deterministic PRAM algorithms for solving the Xc-representation prob-
lem for A < 27

2a. Are there area- and time-efficient parallel algorithms for solving the bipartite matching
problem?

b. Are there fast deterministic PRAM algorithms for solving the bipartite matching prob-
lem?

3. Are any of these problems log space complete for the class P?



5. Two-Stage Funnelled Pipelines

5.1 Introduction

Each of the funnelled-pipeline algorithms presented in previous chapters used a row-
by-row input schedule, and an architecture composed of a linear array of processors. In
this chapter, we consider an alternative structure. This structure, the two-stage funnelled
pipeline, makes use of a more powerful architecture and reads its input in a block-by-block
fashion. We attempt to contrast these two methods of pipelined filtration.

5.2 Two.-Stage Architecture

Our previous funnelled-pipeline algorithms required only modest interprocessor com-
munication. This requirement was met by a simple ethernet or bus interconnection net-
work. One advantage of such simple networks is that (in our VLST model) they require
very li ttle arca to implement. Ilowevcr, several other interconnection schemes arc nearly as
space eflicient, but support signilicantly greater communication. We employ two of these
. arrangements, namcly the mesh of processors and the mesh of trees.

In both of these architccturcs, the n processors arc arranged in a y/n-by-/n lattice
pattern. In the mesh of processors, cach unit is connected to its four nearest neighbors.
In ‘the mesh of trees, this pattern is augmented by the addition of row and column trees.
Thus there is a tree is associated with cach row and cach column of the mesh. Each such
tree has as its leaves the processors in the corresponding row or column. It is convenient
to identify the root node of the column-z tree with the root of the row-i tree. Both the
mesh-of-processors and the mesh-of-trees architectures can be implemented in O*(n) area.
We refer the reader to [U] and [F-L] for further detail.

I'ilter stage one will execute on a mesh of trees; filter stage two on a mesh of processors.
The two stages arc connected together by y/n links: the common root of the " row and
column trees of the mesh of trees is connected to processor i of the first column of the
mesh of processors. This O* (n) arca layout is illustrated in I'igure 5.1.
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v/n-by-y/n Mesh of Trees \v/n-by-4/n Mesh of Processors

]
L )
[ ]
L]
°

Stage One Stage Two

Figure 5. 1. Two-Stage Pipeline Architecture.
(Only the tree-root processors are indicated in the mesh of trees)

5.3 A Two-Stage Connected Components Algorithm

We again assume that the connected components problem is input as an n-by-n ad-
jacency matrix A. Instead of reading the matrix row by row, we read it subblock by

subblock. Specifically, we partition the matrix A into —‘é—;-by—%i subblocks B; ; as fol-
lows: B;; (for 0 < i < j < 24/n)contains the entries A,(v) for 532@ <u<(i+1) lé—’_‘
and j%ﬁ <v<(+1) \éi This partitions A into 2n  + 4/n = O(n) subblocks. Each of
these subblocks represents a subgraph of the input containing at most \/n vertices (cach
“diagonal” block Bj; ; contains only lé—’—' distinct vertices; all others contain 4/n vcrticcs).

The stage-one filtration consists of reading a subblock B, ; into the mesh of trees,
computing the connected components of the graph represented by B, ;, and passing the
result to the stage-two processor. WC examine each of these steps in turn.

It is most convenient to read the bits of subblock B; ; into the processors so as to
maintain an adjacency matrix format; wc let row m and column m of the processor array

correspond to vertex 132@ + mif m< ‘ZZE and to vertex ]._¢2_H + (m — \é,@) if m > 32@

(for diagonal blocks, i.e. if i = j, wc ignore all but the first 3/9—’—' rows and columns of

the /n-by- \/n processor array).

The connected components of the graph represented by I3; ; can be computed in 0% (1)
time on the mesh of trecs. Such speed is possible because there arc only /n vertices (but
n processors). The idea is to merge repeatedly groups of vertices belonging to the same
connected components. In cach of O(log n) iterations, cach group selects an adjacent lower-
numbered group (if any exist) and merges with it. Each iteration can be accomplished
in 0* (1) time. A full presentation of the mcthod is given in [U]. At the conclusion of
this process, each vertex v, represented by the root of its row and column trees, knows its
connected component number cc(v). This data is recorded by having each vertex v generate
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an edge from itself to cc(v). It is then possible to transfer in parallel these \/ﬁ edges to
the stage-two filter.

We should note that the algorithm that we are describing is not a faithful filtration.
However, it is not difficult to augment the stage-one filtration so that it finds a spanning
tree. We leave the details to the reader.

The second-stage filter serves partly as a buffer. Each of its processors (u, v) has two
registers: buﬁeru’v and edge,,, . Each is capable of holding an edge; thus the total capacity
of stage two is 2n edges. Each processor uses its buffer register for temporarily holding
stage-one output. After each activation of stage one, the data buffered in each column of
the stage-two filter is shifted right by one column to make room for the next column of
stage-one output. Thus, at least for buffering purposes, the rows of the stage-two filter
array serve as nothing more than shift registers. After 4/n successive activations of stage
one, the stage-two buffer is full.

In order to empty the buffer, a connected components computation is performed on
the graph represented by the edges E = { buffer, ,| 0 < u, v <y/n} U {edge,, |0 < u, v<
4/n}. It should be pointed out that all registers edge,,, are empty the first time that the
buffer becomes full. The stage-two connected components computation results in a set of
at most n — 1 edges representing the connected components of E. These edges arc stored
back in the edge registers. Thus the buffer registers are emptied, and stage two will again
be ready to receive another n edges from stage one.

Note that the set of edges E may comprise a graph on all n vertices. Nevertheless, it is
. possible to compute the connected components of E in O*(nl/z) time. Such an algorithm
can be based on the fact that it is possible to sort O(n) records in O*(nl/"’) time on a mesh
of n processors (refer to [T-K]). Connected components are again computed by repeatedly
merging groups of vertices. Each vertex is represented not by a particular processor, but
by a record. Sorting is used to find the lowest numbered adjacent group. It is also used for
“message routing” (both the one-to-one routing operation and the one-to-many routing
operation are used in the connected components algorithm). We Icave the details of this
connected components algorithm as an interesting cxcrcisc for the reader.

The outline of the two-stage-pipeline connected components algorithm is as follows.
- program components;
begin
Initialize;
for bigcycle := 0 to 2y/n + 1 do
- for littlecycle == 0 to /n ~ 1 do
Read a subblock into stage-one processors;
Compute thé connected components of the subblock;
Shift the resulting connected components output into stage two
od; '
co Note that above loop takes time O*(n'/?);
co Stage-two buffer is now full. Empty it oc;
Find the connected components of the at most 2n stored edges stored in time O‘(nl/z)
od;
Output stage-two edge registers
end components .
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Because the speeds of the two filter stages are properly matched, the entire algorithm
takes time O*(n) to compute the connected components of the input graph. Thus we have
yet another when- and where-determinate 0* (n)—axea—and-time connected components al-
gorithm.

We should note that this algorithm differs from the previous ones in that it requires
input pads to lie in the interior of the circuit. In contrast, the previous algorithms can all
be implemented as ‘boundary layouts™

5.4 Finding Minimum Spanning Trees and 2c-Representations

The organization used to implement our two-stage connected components algorithm
applies equally well to many closely related problems such as finding spanning trees and
minimum spanning -trees. Again we leave the details to the reader.

We illustrate a two-stage funnelled-pipeline 0* (n)-area-and-time algorithm for finding
%-representations of c-sparse graphs. The operation of our algorithm consists of two major
steps. The first step, the read-and-store step, uses a two-stage funnelled-pipeline algorithm
to read and store all edges of the input graph. The second step rearranges these stored
edges so as to produce a valid 2¢c-representation of the entire graph.

The read-and-store step itself makes use of a 2c¢-representation algorithm to ensure
the orderly transfer and storage of input edges. Every time a subblock of the adjacency
matrix is read, its 2c¢c-representation is computed by the stage-one filter. This permits the
stage-one filter to transfer rapidly these edges to the stage-two buffer; cach of the {/n root
processors transfers its at most 2¢ edges to the corrcspondiug row of the stage-two mesh.
After every y/n repetitions of this process, it becomes necessary to ‘tompact” the stage-
two buffer. This requires nothing more than a sorting operation to rearrange the at most
cn stored edges.

Both the stage-one filtration and the final 2c-representation computation are per-
formed by mcans of a “grecetly” algorithm. In Lemma 4.1 we remarked that every c-sparse
gfaph on n vcrticcs has at least —2—‘_';—1 vertices of degree at most 2¢. This observation
suggests a very simple algorithm. The idea is to identify those vertices with degree 2¢ or
less. All such vortices then grab their incident edges and remove them from the graph.
This process, which requires O*(c) time on a mesh of trees, and O*(4/n) time on a mesh

1

of processors, eliminates at least a fraction For1 of the vcrticcs. By repeating this pro-
2¢+1

cess O( log n/ log =) times, a 2c-representation is found. Thus cach first-stage filtration
requires time 0 * (1) and the final 2c-representation computation requires time 0* (y/n).
Note that the final 2c-representation computation is faster than it need be; any O*(n)
time procedure would sulffice.
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5.5 Conclusion

We have seen that many of our graph problems can be solved efficiently with two-stage
funnelled pipelines. Thus there are good algorithms for these problems both with row-by-
row, and with subblock-by-subblock, input schedules. We note several open yucstions.

The two-stage funnelled pipeline seems to provide greater computational power than
that provided by census function architectures. Thus it seems reasonable to expect that
there are natural graph problems that can only be satisfactorily solved in the two-stage
model. On the other hand, our row-by-row algorithms made effective use of the constraint
on the number of “leaders’ appearing in subgraphs. This constraint made possible certain
types of rapid filtration. In particular, it is not clear whether there is an efficient two-stage
funnelled-pipeline algorithm for solving the biconnected components problem. Thus we
leave the reader with the following questions.

1. Is there a two-stage funnelled-pipeline algorithm for solving the biconnectcd compo-
nents problem?

2. Find examples of (uncontrived) graph problems that are solvable with the subblock-
by-subblock input schedule, but are not solvable with row-by-row schedules.



6. Strongly Connected Components

6.1 Introduction

In this section we consider the strongly connected components problem. This problem
is inherently more difficult than those examined in previous chapters. In fact, any when-
and where-determinate circuit that solves the strongly connected components problem
requires Q(nz) area. This is because there is no way to safely discard edges when examining
only a portion of the input. In other words, no filter can significantly reduce the volume
of data. It should be noted that we are requiring the input schedule to be scmelcctive;
that is, the data is read only once. We will mention other classical problems that share
this difficulty.

It is possible however to obtain an efficient strongly connected components algorithm
by relaxing the requirement of when- and where-determinacy. We will develop such an
algorithm, making use of techniques similar to those presented in previous chapters.

6.2 The, Strongly Connected Components Problem

Let G = (V,E) be a directed graph. We define a relation x on V as follows: u * v if
u =V or if there exist directed paths in I/ from u to v and from v to u. It is easy to see that
* is an equivalence relation. The strongly connected components of G are defined to bc the
equivalence classes of x. They arc rcpresented by a function sce @ V —— V where sec(v) is
the lowest-numbered vertex lying in the same strongly connected component as v.

As usual, we will assume that the input is presented as au n-by-n adjacency matrix A.
Entry A;(j) = 1 if there is an edge directed from vertex ¢ to vertex j. We insist that the
circnit nroduce as output the function sce.

6.3 A Lower Bound

We present a lower bound of Q(nz) on the area required for computing strongly con-
nected components. This lower bound depends upon some assumptions regarding input
and output conventions. For our purposes, it would suflice to prove this bound in the case
of when- and where-determinate circuits that read the input data once. However, it is
not much more diflicult to prove that the lower bound applies to a much larger class of
input-output schedules. We show that the bound applics to any circuit in which the inputs
arc rcad in any fixed sequcncc. Wc call such input schedules what-determinate.
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Definition 6.1: A circuit is what-determinate provided that its inputs Iy, Iz, ..., Ix are
read once in some fixed sequence. '

Definition 6.2: Let | = {Iy,..., I} denote the set of input variables of a what-
determinate circuit. Then there exists an input schedule S associated with the circuit,
where S(t) denotes the set of variables read at time t. Note that S(t) N S(t) = § when
t #t' and that |J, S(t) = I.

We prove our bound by means of an adversary argument. In particular, we will
show the existence of a large “fooling set” of subgraphs defined by inputs read early in
the schedule. Because the circuit will have to remember which of these graphs it has
encountered, it will need a large amount of memory, and hence, be large.

Assume that S is the input schedule associated with some what-determinate circuit
computing strongly connected components on n-vertex graphs represented by adjacency
matrices. Thus each set S(t) consists of adjacency-matrix elcmcnts. We may assume that
for all t we have |S(t)| < en? (where € is any small fixed constant). Otherwise, since each
input pad takes constant area, we immediately have Q(n2) area.

Arbitrarily partition the set of vertices into four sets Vi, Vo, V3 and V,, each of
cardinality %. It is convenient to view the input variables in S(t) as a set of potentially
present edges, namely the set {(z, j) | the variable A;(7) is in S(t)}. Thus the statement
that the edge (z, j) is read at time ¢t means that at time t the bit A;(j) of the adjacency
matrix is read, i.e. that the variable A;( j) is in S(t). Let ty be the earliest time by which
half of the edges directed from some V; to some other V;: have been read. That is, let tg

be the minimum such that there exist < and ' With‘UtSto Sty N (Vix V)| >3 |Vix Vir|.
We assume without loss of generality that © = 1 and ¢' = 2. Let E = {J,,, S(t) N (Vi x V)
be the set of “early” cdgcs. Thus |E| > 1 |V, x V5| = n?/32. Our fooling set will consist
of graphs which differ from each other only in their intersection with E.

Let the “late” edges, L, be the set Ut>tu S(t) N (V4 x V3). The adversary will make use

of the cdgcs in L in order to distinguish bctween members of the fooling set. Note that L is
quite large. Because £, was chosen to be minimum, we have that |U,<to S N (Vg x V3)| <
% [Va x V3|. Hence, |Ut2to S(t) N (Vax V3)~ > % |Va x V3| and thus |L| > % |Va x V3| —
en? = (1—¢)n.

We will pair each vertex in V; with a mate in V3. Similarly, ecach vertex in V3 will be
mated with one in V4. Such a pairing will be denoted by a function P which bijectivcly
maps V| to V3 and V,, to V4. Each graph in our fooling set will consist of the set of cdgcs
{(v,P(v)) | v e Va}u{(P(v),v) | v €V} (in addition to some edges in I7). Observe that
no such graph contains any directed cycles, and thus each vertex forms its own strongly
connected component. Suppose, however, that the edge (v, vy) for vy € V; and v, € V;
were present. If the adversary can install the edge (P(’Uz), P(vl)), then a unique cycle is
formed, and the strongly connected component structure is altered accordingly. Of course,
if the edge (vy, v2) were not prescnt, then the edge (P(’Ug), P(vl)) would create no cycle.
So, if the edge (P(v2), P(vy)) lies in L, the adversary can use it to test for the presence of
the edge (vy,v2).



6. STRONGLY CONNECTED COMPONENTS 47

Definition 6.3: Suppose that P is a pairing. The edge (vy, v2) is said to be unconcealed
if (v1,v2) € E and (P(v2), P(v1)) € L.

Our objective is to find a pairing P that results in a large set of unconcealed edges.
Definition 6.4: If P is a pairing, let K(P) = | {e | e is unconcealed under P} |
Lemma 6.1: There exists a P such that K(P) = (n2).

Proof 6. 1: Let K = Zp K(P). Let m be the number of possible pairings; thus
m = ((%)!)2. For e € E let K(e) = |{P | e is unconcealed under P} |. Note that by
interchanging summation order, we also have K = ZeEE J?(e). But for all e € E, we have
f((e) = |L] ((% - 1)!)2 (for a given e”€ L, there are (( § — 1)!‘) 2 pairings under which e~
can be used to test for the presence of ). Thus K = | E|| L| (( 3 — 1)!) ?. Hence there is
a P for which K(P) > £ = |E||L| (2)72 = Q(n?). |

Let P be such that K(P) = (n?) and let E’c E be the set of unconcealed edges.
Let P be the pairing edges derived from P as described above. Then let the fooling set F
consist of all graphs of the form E U P for E c E7 Note that |F| = 20(n?),

We claim that the circuit cannot operate correctly if any two distinct members f;
and f, of F result in the same circuit state at time t¢y. This claim is established by
contradiction; suppose that f; and f; result in the same circuit state at time t;. Choose
some e in the symmetric difference between f; and f,. By construction, e is unconcealed.
Hence the adversary can usc some edge e”of L (which is read only after time to> to test
for e. The strongly connected components of f; U {e} differ from those of f; U {e}. In
particular, the value taken by the function scc on at lcast one endpoint of e depends on
whether the input graph is f; U {e} or fo U {e}. Thercfore the circuit cannot have output
this value before time ty. Furthermore, since by assumption the circuit arrives in the same
state at time ty for both f, and f,, and since the inputs read after t, arc the same in
cither case, the computation scquence after ¢, (and hence the output) is the same in cither
case. The resulting contradiction proves that the circuit must have 2(!(n?) possible states.
Therefore }(n?) is a lower bound on the circuit area.

Theorem 6. 1: Any what-dctcrminate circuit computing strongly connected components
requires (( n?) area. |

6.4 A Strongly Connected Components Algorithm

We now describe the consequences of relaxing our requirement of what-determinacy.
In [L-V] an 0* (n)-area-and-time circuit is presented Chat computes strongly connected
components. Their circuit both reads the input twice and makes usc of a data-depcndent
input schedule. Techniques similar to our filtering methods can be used to improve the
result.
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Our circuit accepts as input an n-by-n matrix A. Entry A,-(j) = 1 if there is an arc
directed from vertex i to vertex 7. The rows are read one at a time, but in ‘an order that
depends on the data. However the data is read once and the timing of successive row reads
is data independent; each row takes O*(l) timne to process.

The architecture consists of n simple processors. They arc interconnected by an eth-
ernet (or a binary tree). As mecntioned in Section 2.4 we make use of the Broadcast,
Maximum and Minimum operations. Each processor corresponds to a vertex of the graph.
The correspondence is permanent; processor 2 is responsible for vertex 1.

The algorithm presented here is, in essence, a parallel implementation of the well
known depth-first search method for determining strongly connected components [AHU].
At each stage, a ‘turrent’ vertex, c, is selected according to a depth-first ordering. The
adjacency matrix row for this vertex (i.e. the row containing the edges departing from c)
is read into the processors. This data is then processed so that the state of the processor
registers correctly reflects both the strongly connected components induced by the rows
so-far rcad, and the information needed for processing the, as yet, unread rows.

Each processor ¢ contains the following registers:

(1) status(i): The possible values and their meanings are as follows:

o unlouched: No edge directed towards vertex z has yet been encountered.

« pending: A “tentacle” edge directed towards vertex ¢+ has been encountered, but
this vertex has yet to be explored.

o closed: Vertex ¢ and its descendants have been explored, and the strongly con-
nected component containing vertex ¢ has been determined.

« open: Vertex ¢ has been explored, but the algorithm is still examining its descen-
dants.

(2) dfno(z): This rcgistcr stores the depth-first number of vertex 1 (i.e. the time at which
vertex ¢ is first visited by the depth-first search). It is of significance only when
status(i) is cither open or closed.

(3) timenc(i): This Geld is used to enforce depth-first search. It has meaning only for
pending vertices. timenc contains the depth-first number of the last encountered vertex
with a “tentacle edge” to vertex .

- (4) scc—dfno(z): This field contains the lowest depth-first number of any vertex known to
be in the same strongly connected component as vertex z. This ficld serves roughly
the same purpose as LOWLINK in the strongly connected components algorithm
presented in [Al 1U].

“ There arc two significant “global” rogistcrs. The rcgistcr time counts the nu mber of
vertices that have been explored. Thus it, contains the depth-first number of the current
vertex. The register ¢ contains the name of the current vertex.

The following facts are central to understanding the algorithm.

(1) A strongly connected component is identified by the lowest depth-first number of any
vertex it contains. The vertex with lowest depth-first number is called the root of the
strongly connected component.

(2) Vertices arc explored in depth-first order. It is important to note that once a depth-first
search explores the first vertcx of a given strongly connected component, it does not
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backtrack from that vertex until it has explored all vertices in that strongly connected
component. '

(3) After each stage (i.e. after a vertex is explored), the fields scc_dfno correctly reflect

(4)

()

the strongly connected components induced by the so-far read edges.

All strongly connected components containing closed vertices, contain only closed ver-
tices. Furthermore, such components are complete even with respect to unexamined
edges (i.e. they contain everything they will ever contain).

All strongly connected components containing open vertices, contain only open vertices
(however such components are not yet necessarily complete).

Note that (4) and (5) justify the use of the terms open and closed components.

(6) The open strongly connected components form a linear chain ordered by ancestry; this

The

order is compatible with the depth-first numbering of the components” roots. Thus if
vertices ¢ and j are open and scc—dfno(z) < scc—dfno(y) then the root of i3 strongly
connected component is an ancestor of the root of j3 strongly connected component.
In particular, the root of every open component is an ancestor of the current vertex.

edges emanating from the current vertex are classified into three categories:

An edge is called a tentacle edge if it is directed from the current vertex c to any
vertex j where status(j) = untouched or status(j) = pending (i.e. if j is unexplored).
If status(j) = untouched, this tentacle edge is ‘“remembered” by storing time (i.e. the
depth-first number, of c) in timenc( j) and setting status(j) to pending. This permits
the algorithm to perform a depth-first search. However, if status(j) = pending there
must have already been encountered a tentacle edge from some vertex r to j. We
claim that this previous tentacle edge to j can be safely forgotten: r must already
have been explored since depth-first search is employed, and by invariant (4), r cannot
be closed. Hence r must be open and invariant (6) guarantces that r is an ancestor
of c. Therefore any path using the tentacle edge from r to j can be rerouted from r
to ¢ and then from c to j by the newly discovered tentacle. Thus the previous tentacle
edge is irrelevant to the determmination of the strongly connected components. So the
algorithm simply sets timenc (j) to time, thereby remembering only the latest tentacle
edge.

An edge (c, j) is a closed cross edge if status(j) = closed. Invariant (4) implies that
closed cross cdges can bc ignored.

- An edge (c, j) is an open edge if status(j) = open. Note that this category includes,

among others, what are called back edges in [AI1U]. Since, by invariant (6), the root of
is strongly connected component is an ancestor of ¢, it must be the case that ¢ and j
belong in the same strongly connected component. In fact, invariant (6) implies that all
open components with depth-first number greater than or equal to scc—dfno(y) must
be merged. Note that at each stage the algorithm need only consider onc open cdge,
namely the open edge which leads to the vertex k with lowest scc—dfno. By merging all
open components with depth-first number greater than or equal Co scc—dfno(k) (into
a single component with depth-first number scc—dfno(k)), the algorithm correctly
disposes of all open edges and maintains invariant (3).
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The subroutine below explores the current vertex c. The routine for selecting the
current vertex is given later.

procedure explore;
begin

co Visit the current vertex c oc;

co read c3% input row and initialize processor registers oc;

for all k, 0 € k< n do in parallel read adjacency matrix bit A,(k) into edge(k) od;
status(c) := open;

dfno(c) := time;

sec—dfno (C) := time;

co Deal with tentacles hanging from vertex c oc;
for all 7, 0 £ ¢+ < n such that status(i) € {untouched,pending} and edge(i) = 1 do in
parallel

status(z) : = pending;

timenc(t) 1= time

od;

co Process open edges oc;

if |{#|0 <1< n and status(i) = open and edge(i) = 1}| > 0 then
let t be such that scc_dfno(t) = min{scc—dfno(%) | status(i) = open and edge(i) = 1};
co merge all open components whose dfs number is at least t oc;
for all 7, 0 < i < n such that status(i) = open and t < scc—dfno(z) do in parallel

see-dfno (z) := t od
fi;
end explore;

Note that this procedure maintains invariants (1), (3), (5) and (6). Note also that it
requires O* (1) time on an cthernet architecture.

The remaining issue is performing the depth-first search and placing vertices in closed
status. Depth first search (invariant (2)) is accomplished by sclecting the new current
vertex m arbitrarily from the set of pending vertices with largest timenc ficlds. (If no
verlices are pending, the algorithm arbitrarily selects an untouched vertex.)

There arc two cases to consider. If timenc(m) -- teme, then m is a descendant of the
current vertex and no special action is required. On the other hand, if tzmenc(m) < time,
the depth-first search is backtracking. In this case it may bc necessary to close some
components (in order to maintain invariants (4), (5) and (6)). Now the latest encountered
tentacle to m comes from some open vertex j and dfno(j) = timenc(m). Thereforc all (if
any) open components with depth-first number strictly greater than scc—dfno(j) must be
closed. By invariant (2) these components cannot be ancestors of m, and all other open
componcnts are ancestors of m. Note that invariant (6) is maintained. The procedure is
given below.
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procedure nextcurrent;
begin
co pick the next current vertex oc;
if |{]0 <7< n and satus(i) = pending}| > 0 then
Pick m so that timenc(m) = max{timenc(z) | 0 < 1 < n and status(i) = pending};
t := timenc(m)
else
co start traversing a new tree oc;
let m be any untouched vertex;
t = -1
fi;
co close components that are now complete oc;
for all 7, 0 <4 < n suchthat status(i) = open and t < scc—dfno(3) do in parallel
status(1) := closed od;

co set current vertex register oc;
time :=time + 1;
c:=m;
end nextcurrent;
Note that this procedure requires O*(I) time. The main program is as follows:

program SCC,;
begin
co initialize oc; L
for all 4,0 <i< n do in parallel status(i):= untouched 0d;
co perform depth-first search oc;
repeat n times
call nextcurrent;
call explore
od,;.
co write the output oc;
for all 2,0 <:<ndo in parallel
write scc—dfno(z) od;
end.

This completes our one-pass, 0* (n)-area-and-time, data-dcpendcnt-input-schedulc,”
strongly connected components algorithm.
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6.5 Other Hard Problems

We have seen that the strongly connected components problem is inherently more
difficult than those examined in previous chapters; any what-determinate circuit for com-
puting strongly connected components rcquires a large amount of memory. A number of
other important graph problems share this unattractive property. We list some of these
below.

(1) Breadth-first search on undirected graphs.
(2) Breadth-first search on directed graphs.
(3) Depth-first search on directed graphs.

(4) Matching.

All of these problems require Q(nz) area if they are to be solved by what-determinate
circuits. Because the formal proofs are somewhat tedious, we merely give the main ideas.

The Q(nz) lower bound is easily established for problems one through three if the
root of the traversal is not data dependent; for instance, if vertex zero is always the first
vertex visited. In this case, (which we call the fixed-root case) 2Un?) _gized fooling sets are
readily constructed. Matters are slightly more complicated when the circuit is allowed to
choose its initial root according to the data. We call this version the floating-root problem.
Perhaps the easiest way to proceed is to observe that a fixed-root problem can be simulated
by a corresponding floating-root problem. The idea for breadth-first search on undirected
. graphs is to make two copies of the fixed-root problem and join them in an appropriate
manner. One satisfactory way to join the copies is to identify the two instances of the
desired root vertex. This will ecnsure that at least one copy is traversed starting at the
desired root. Observe also that directed breadth-first scarch simulates undirected breadth-
first search. The bloating-root depth-first scarch can also be handled by the two-copy idea;
wc leave to the reader the problem of finding a suitable way to join the copies.

The lower bound for matching can bc established in much the same way as that for
strongly connecled components. One must show the cxistcnce of two equal-sized sets of
vertices V; and V,, a pairing P between them, and two “probe” vcrticcs p; and pg with
. the following properties.

o There is a sct E of (n?) cdgessbining vertices in Vi, and all adjacency-matrix bits
corresponding to members of E are read prior to time tg.

« The set of adjacency-matrix bits corresponding to the edges in L = {{z, 7} |+ €

. {p1,p2}andj € V,} arc read after time to.

The fooling set. consists of all graphs of the form /2 U P where £ ¢ I and P = {{z, P(s)} |
1 & V1 }. The adversary probes for an edge {u, v} € I by introducing the edges {p,, Y(U)}
and {pz, P(v)}. Then there is a perfect matching among the vertices in Vy U V, U {py,p2}
if and only if the edge {u, v} is prcsent.

It is a surprising fact that the problem of performing depth-first search on undirected
graphs can bc solved with much less memory than any of the above problems. Richard An-
derson has devcloped an Q* (n%/%)-area when- and where-determinate circuit that performs
depth-first scarch on n-vertex undirected graphs [A].
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