
Report No. STAN-U-84- 1028

Parallel Graph Algorithms

bY

Ycicr Il. 1 lochschild

ICrnst W. Mayr

Alilll It. Sicgcl

Department of Computer Science

SI;mford University
Stanford, CA 04305

._ _ - ..-.a -

I
_ -

--.-. .-.-

Stanford University
Department of Computer Science

Parallel Graph Algorithms

bY

Peter H. Hochschild
Ernst W. Mayr
Alan R. Siegel

Support for this research included an NSI? Graduate I?ellowship and NSF grant MCS-
82-03405 (PHIT), a11 IBM F’aculty Dcvclopment Award (EWM), and NSF grant MCS-82-
03405 and DARPA contract MDA-80-C-0107 (ARS)

DRAFT

TABLEOFCONTENTS

1. Introduction . 1
1.1 Parallel Machines . 1
1.2 Parallel Algorithms . 1

2. Connected Components . 3
2.1 Introduction . 3
2.2 A Divide-and-Conquer Connected Components Algorithm 4
2.3 A Tree-Machine Connected Components Algorithm 7
2.4 Computing Connected Components in Low-Communication Environments . 9
2.5 Conclusion . 15

3. Funnelled-Pipeline Algorithms . 16
3.1 Introduction . 16
3.2 Filtration . 16
3.3 Funnelled-Pipeline Algorithm Structure 18
3.4 A Minimum Spanning Forest Algorithm
3.5 A Funnelled-Pipeline Algorithm for the Bibonnectkd Components Problem

1 9
. 27

3.6 Conclusion
4. Planarity and Representation

4.1 Introduction ‘.
4.2 Sparse Graphs and Their Representation . .
4.3 Finding 2c-representations of c-sparse Graphs
4.4 The Cornplexity of Finding‘ Representations .
4.5 Conclusion

5. Two-Stage Funnelled Pipelines
5.1 Introduction. e
5.2 Two-Stage Architecture

.............. 30

. 31

. 31

. 31

. 33

. 35

. 38

. 40

. 40

. 40
5.3 A Two-Stage Connected Components Algorithm 41

. 5.4 Finding Minimum Spanning Trees and 2c-Representations 43
5 5 Conclusion. 44

6. Strongly Connected Components . 45
6.1 Introduction . 45

. 6.2 The Strongly Conncctctl Components Problem 45
6.3 A Lower Bound . 45
6.4 A Strongly Connected Components Algorithm 47
6.5 Other Hard Problems . 52

7. References . 53

i

1. Introduction

This paper presents new paradigms to solve efficiently a variety of graph problems on
parallel machines. These paradigms make it possible to discover and exploit the “paral-
lelism” inherent in many classical graph problems. We abandon attempts to force sequen-
tial algorithms into parallel environments for such attempts usually result in transforming
a good uniprocessor algorithm into a hopclcssly greecly parallel algorithm. We show that
by employing more local computation (and mild redundance, a variety of problems can be
solved in a resource- <and time-efficient manner on a variety of carchitectures.

1.1 Parallel Machines

There is a great deal of literature concerned with solving graph problems on various
kinds of parallel machines ([A-K], [CLC], [D-S], [HI). 0 ur ara 1p d’gms are applicable to both
VLSI ([L-S],[U]) and-,distributed systems (as well as local networks, e.g. ethernets).

In our model of VLSI computation, the two most important parameters care (area and
time. Detailed features of VLSI technology will not concern us here. For our purposes,
a VLSI circuit is both’synchronous and digital. We make two assumptions of primary
importance. First, we assume that every active component (e.g. gate, flip-flop, etc.)
introduces a unit-time propagation delay. Second, WC assume that every VLSI circuit is
composed of at most some fixed number of layers, and that no two components on any given
layer are separated by less than unit distance (unless they arc connected together). This
~assumption implies that any region stores a quantity of information at most proportional
to its area, and that the quantity of information crossing a boundary in unit time is at
most proportional to the boundary length. Note that in our model, signal propagation
time is indcpendcnt of wire length. A formalization of this model can bc found in [L-S].

1.2 Parallel Algorithms

- To illustrate our techniques, WC dcvclop algorithms for solving such problems <as con-
nected components, minimum spanning forests, biconncctcd components and planarity
testing. Our algorithms accept as input n-by-n matrices (adjacency matrices in the case of
connected compohcnts, edge-weight matrices for minimum spanning forests). The matrices
arc read row by row. The successive rows are read in order, with a fixed time schedule.
Thus the data is read once in a “when- and where-dctcrminatc” fashion (i.e. .thcre is a
fixed input schodri Ic that dctcrnGncs when and whcrc each input value is supplied). VLSI
circuits for thcsc algorithms require time and arca of O(n log’ n) (for some small c), and

i
2 PARALLEL GRAPH ALGORITHMS

thus arc nearly optimal. Hereafter we will not write these powers of log n; instead we write
f(n) = O*(g(n)) if f(n) = O(g(n) log%) for some c.

Lipton and Valdes [L-V] present a circuit for computing connected components in area
and time O*(n) but with a “when-indeterminate” I/O schedule (i.e. with data-dependent
row read timing). We note that the obvious when-determinate implementations of the
graph algorithms in [L-V] would run in O*(n2) time.

In Chapter 2 we show how to remove this indeterminateness without sacrificing effi-
ciency. Central to this task is the idea of filtration. A filter is a device used to discard
irrelevant input data. This mechanism can reduce the storage, time, and communication
requirements of a wide variety of problems. E’iltcr construction demands balancing two
opposing goals. On the one hand, a filter must operate quickly enough to avoid becoming
a bottleneck. On the other hand, it must be thorough enough to discard a significant
portion of the data. Thus, in general, a filter performs a kind of approximation to the
desired computation. This approximation is later refined to yield the correct result,

In Chapter 3 we develop a more refined view of filtration and introduce the generally
applicable concept of a funnelled pipeline. This concept is illustrated with algorithms
for finding minimum spanning forests and biconnected components. Chapter 4 applies the
funnellcd-pipeline paradigm to plamarity testing and related data-rearrangement problems.
In Chapter 5 we present an alternative (and somewhat more powerful) algorithm structure,
the two-stage funnelled pipeline.

In the last chapter WC explore a graph problem of greater parallel computational com-
plexity, namely the strongly connected components problem. Using some of the funnelled-
pipeline techniques, and a more liberal input schedule, we derive a relatively efficient
algorithm. We also present lower bounds on the complexity of several related difficult
graph problems.

2. Connected Components

2.1 Introduction

In this chapter we discuss the problem of finding the connected components of a graph.
WC present a number of algorithms that solve this problem. Each of them demonstrates
imp or tan t principles of const rutting efficient parallel algorithms. The progression of tech-
niques leads to cand motivates our notion of funnelled pipelines, the topic of the next
chapter.

Definition 2.1: Given a graph G = (V, E) where V = (0, 1, . . . ,n--1)) define the function
cc : V --) V by --.

cc(j) = min{Ic E V 1 k = j or Ic is connected to j by a path in G}.

By the connectetl components problem, we mean the problem of computing the func-
tion cc from a graph G.

In all nlgorithtrrs to follow, WC will assume that the graph is prcscntcd Gas an uppcr-
trinngrrlar adjacency matrix. l~urthcrmorc, the matrix will be read row by row in a when-
<and where-determinate fashion.

The first problem to confront is the volume of input data. In order to achieve an
O*(n) arca circuit, most of that data must be discarded. In order for the circuit to bc time

- effrcicnt, discarding must be rapid. We accomplish cfhcicnt data elimination by a Eltration
process.

Jn the algoritllrr~s prcsciltccl iu this chapter, filtr;~tioii will involve a benigh form of
deceit. We note tllikt the exact cclgc structure of the input graph bears little relcvancc to
its connected colnponcnts; in fact there arc a variety of gr;y~li transforxuations that leave
invariant the connected components. I?or example, suppose that the graph G contains
a star-shaped subgraph consisting of a “hub” vortex c, “riul” vertices ~1, ~2, . . . , vk, ‘and
“spoke” edges er, e2,. . . , ek connecting c to VI,. . . , vk rcspcctively. If we replace these
spoke edges by a chain consisting of the edges {c,q}, {q,v2}, {v2,v3}, . . . , {v&l,?&}, we
obtain a now graph that possesses exactly the same connected components as G. Indeed,
any transformation that prescrvcs path connectivity, preserves conncctcd componeuts.

4 PARALLEL GRAPH ALGORITHMS

2.2 A Divide-and-Conquer Connected Components Algorithm

Our first connected components algorithm is bcased on recursive deceitful filtration. We
remark that in designing parallel “divide-and-conquer” algorithms, one must address not
only the logical concerns vital to sequential recursion, but also the geometrical constraints
imposed by data communication requirements. It is often tempting to shuflle data about;
unfortunately this tends to waste a great deal of area or time.

The input to the algorithm is an n-by-n (upper-triangular) matrix A. For simplicity,
assume that n is a power of two. Let the rows of A be denoted A(), . . . ,ATa-l. WC may also
assume that for each i, the jth entry of the jth row, denoted A;(i), is one. (If the input
fails to obey this convention, it can be brought into compliance by the input stage.)

Taken faithfully, each row i represents a star. Vertex i forms the hub, the vertices
j > i for which A;(j) = 1 constitute the rim. However, as previously observed, it does no
harm to pretend that these vertices are linked in a chain. Thus the algorithm will interpret
each row <as a statement indicating that the vertices whose corresponding entries are one
should be linked together in a chain (proceeding from lowest to highest numbered vertex),

The algorithm operates-. in two major phases. The first phase consists of reading
and filtering the adjacency matrix. At the conclusion of this phase, the circuit will have
recorded a set of O(n log n) edges. The graph composed of these edges will have the same
connected components as the original graph. This filtration reduces the number of edges
from as much Gas K!(n”), to O(n log n); it is deceitful by virtue of the fact that it may store
edges that were not originally present. The second phase merely computes the connected
components induced by the stored edges.

The phase-one circuit is a recursive construction of filter units. We first describe the
geometry and the interconnection of these filter units; their dctailcd operation is explained
later. The topmost filter (which performs the outermost level of recursion) is of size n.
It receives <as input the rows of the adjacency matrix. Its output is fed to two filters of
size n/2. Similarly, each of these units feeds two units of size n/4, etc. Each lilter unit
of size Ic is rectangular in shape with a row of k input ports along the top, and k output
ports along the bottom. The recursion ends with filter units of size two; there are a total
of n/2 of these. This arrangcnlent is illustrated in Figure 2.1.

A filter unit of size k accepts <as input a scquencc of bit vectors of length k. Each
vector is proccsscd and results in the output of a similar vector. Each output vector is
cut into halves; one half is directed to each of the suMltcrs of size k/2. The rows of the
adj;Lccncy 1lliLtriX form the scqucnce of vectors input by tbc top filter. At all lcvcls of
recursion, vectors are irttcrprctcd in the si\.rrIe way; vertices corrcspoudirlg to cntrics with
value one are regarded as being conncctcd to each other in a chain.

We now dcscrib’e the function of the topmost filter unit. Let L I= (0,. . . , (n/2) - 1)
denote the first half of the vertices; let R = {n/2,. . . , n - 1) denote the secotrd half. The
top Iilter is rcsponsiblc for recording all information about connections joining vertices in L
to vertices in R. This is its only job; connections between pairs of vertices in L and between
pairs in IZ will bc handled recursively. Thus the gtYL~,ll is cut iu half, information i&bOUt

interconnections between the halves is recorded, ,and finally, the halves are recursively

2. CONNECTEDCOMPONENTS 5

Matrix Inputs

? T t T t T

Input Ports

Filter of Size 16

Output Ports

Filter of Size 4 Filter of Size 4

Output Ports Output Ports
t t t t -.
I / I I

CL d b L
Inputs Inputs Inputs Inputs

Filter of Filter of Filter of
Size 2 Size 2 Size 2

#III 1 III

Input Ports Input Ports

Filter of Size 8 Filter of Size 8

output ports Output Ports
? t ? t t t t t ? t ? t Y 7 t tI I I /I , I \ \ \ I I I I \ \ 1 I
A 4 d / b b A A A d 4 / b L L A ’

lnpu t Ports Input Ports Input Ports Input Ports

Filter of Size 4 Filter of Size 4 Filter of Size 4 Filter of Size 4

Output Ports Output Ports Output Ports
b TL i : 1 / 11, Y.b

Output Ports
t t t t -. ? t t t t tI / I I I I

CL d b L d d 4 d
~ J

Inputs Inputs Inputs Inputs Inputs Inputs Inputs Inputs

Filter of Filter of Filter of Filter of Filter of Filter of Filter of Filter of
Size 2 Size 2 Size 2 Size 2 Size 2 Size 2 Size 2 Size 2

--- -

Figure 2.1: Divide-and-Conquer Architecture

an d separately p roccssed. Thus the filter scparatcs the graph edges into three chasses.
EL contains those edges with both endpoints in L, the set En contains those with both

a endpoints in II, and Ex contains the cross edges. EL and En arc processed recursively;
Ex is processed by the top filter.

The cormcctioh information derived from the edge set EAy is stored in an array link(i)
for 0 < i < n/2. Each clement link(i) is associated with the vertex i (which is a member
o[L). The field link(i) coutains either nothing or the mine of a single vertex in 11 to
Which the vcrtcx i is conucctcd.

.
.Initidly all eidlhcrlts of link are et~pty. Whcncver the top Elter unit reads an input

vector u, it first checks whether u coiitains both a one entry corresponding to a vertex in L
and a one corresponding to a vcrtcx in R. If not, the vector implies no connection bctwcen
L and R; the flltcr need merely transfer it to the output port for recursive processing. In
other words, such vectors may contribute edges either to EI, or to Eli, but not to Ex.
Otherwise let 1 = max{j E L 1 u(j) = l} and r = min(j E R 1 u(j) = l}. 1 is the
rightmost “;xIive” vcrtcx in L while r is the leftmost active vcrtcx irl R. The liltcr must
now so~~~Aow record the fact that 1 is connected to T. No other connections from active

6 PARALLEL GRAPH ALGORITHMS

vertices in L to active vertices in R riced be recorded; recall that the vector a is interpreted
as a chain.

If the filter is lucky, link(Z) will b e empty. In that case, the filter can simply set link(Z)
to r and pass a on to the output for recursive processing; the edge (1, r} is contributed to
Ex, while the other edges in the chain represented by a are placed in EL and En.

Otherwise the filter finds that link(Z) is already set to some vertex k in R. In this
case the filter will set u(k) to one and pass this updated vector to the output. Thus the
filter adds an edge to En instead of placing {I, r} into EX. That deceit is excused by the
following observations:

l Connectivity between the active vertices in L and those in R is preserved by the fact
that the filter has on record a connection from 1 to k and the fact that, recursively, Ic
will be registered as being connected to T.

l Since 1 was connected both to all active nodes in R (by the current input vector a), and
to node k (by some previous input vector), no new path connections are introduced
by setting a(k) to one.

We now describe an implementation of the top filter unit. It consists of a binary
tree of (simple) processors. There are n leaf processors; these are arranged, like the I/O
ports, in a row. Each leaf processor i contains a one-bit cell a(i). Each leaf processor i for
0 _< i < T also contains the log n-bit cell link(i). The interior node processors provide the
ability to perform census functions (c.g. finding in 0* (1) time the maximum of a set of
numbers stored one per leaf); the entire unit is controlled by the root processor (refer to

’ [L-V] for further detail).
The program executed by the root processor for a filter of size k is illustrated below:

procedure filter (k, n);
begin

co grnph size is n; filter size is Ic oc;
for all i, 0 5 i < k/2 do in parallel link(i) := empty od;
for timestep := 0 to n - 1 do

co Itc& the input vector oc;
for all i, 0 5 i < k do in parallel rend CA(;) from input port i od;

- co Check whether there is a connection between halves oc;
if I(aIO<i<k/2 and u(i) = l}] > 0 and I{; 1 k/2 5 i < k and u(i) = 1)) > 0

then
1 :=- rnnx{i 1 0 5 i < k/2 and u(i) = 1);
r := min(i 1 k/2 < i < k and n(i) = 1);

* if link(l) - empty then link(l) := r else n(fink(2)) := 1 fl;
fi;

co Write out the Imssibly nltercd vector oc;
for all i, 0 5 i < k do in parallel write a(;) to output port i od;

od;
end filter .

Observe that the filter units of all sizes carc similar (except that those of size two need
produce no output vectors). Each filter unit of size k is of witl~J~ 0*(/c), height 0*(1)
and rcquircs time 0*(1) J)cr row of input. Each liltcr unit reads n vectors output by the

2. CONNECTEDCOMPONENTS 7

preceding filter (except the topmost, which reads the adjacency matrix); thus they can be
pipelined so that the topmost reads one adjacency row every 0” (1) time units. The entire
assembly of pipelined filters consumes O*(n) area (and total time.

At the conclusion of the above described processing, a set of edges are stored in the
link cells. This set of at most F (log n- 1) edges defines a graph with conncctcd components
identical to the original graph. The second phase, computing these connected components,
can bc accomplished in a variety of ways. The easiest, though not the most elegant, is
to sequentially transfer the stored edges to a standard sequential processor executing a
conventional connected coruponents algorithm (for example [AIIU], [RND]). l3ccause there
<are only O(nlogn) edges, this costs only O*(n) area and time.

We observe that while the above divide-and-conquer approach is conceptually simple,
it suffers a number of shortcomings. Prominent among these is its dependence upon rather
specialized hardware. The next connected components algorithm we examine is based upon
hardware of wider applicability.

2.3 A Tree-Machine Connected Components Algorithm

We develop a connected components algorithm that runs on a tree machine. This
algorithm is in many respects similar to the previous algorithm. Indeed it is possible to

- simulate the divide-and-conquer algorithm on a single tree machine by a form of time
sharing. However, we choose to implement a somewhat more symmetric algdrithm whose
structure rclllains more constant over varying values of n. (Recall the asymmetry in a
divide-and-conquer filter of size k: only the leftmost k/2 processors possess a link cell.)

WC begin wikh a tlcscriptiou of the structure and tcrminolobry of the tree machine.
The machine consists of a minimal depth binary tree having 72 lcavcs (placed as far left
as possibic), which arc called Notlcs. The internal tree vertices nrc called Switches. T’hs
a Switch u has two subtrccs, c;dlctl al,,jt and ariy/Lt. Nodes i and j have a least common
ancestor Switch, denoted by ku(Z, j).a

The graph vertex j is represented in the machine by loaf Node j. Node j can store up
to log TL nan~cs of v&ices belonging to the same conncctcd cotnponcnt as vertex j. The
Switches will be used to communicate connection messages stating that two vertices are
in the sa111c component.

Dcfinikn 2.2: J,(!t m 1)~ a No<10 arid lot s bc its jth ;tIlc(:sCor Switch (i.~. m's first
iUlC<!StOr is its p<arenC; i t s ScCOlld iW.C(!StOr i s i t s grillldparCllt, CtC.) ‘IYlCIl CIlC Set O f ith
corzsins of V& consists of the Nodes c such that Icu(m,~) = s.

Note that the rlog, nl or [log, n] sets of cousins of m form a partition of the other
Nodes. 01Iserve also that if vertex k is an PIL cousin of vcrtcx j and Switch a is j’s jth
ancestor, then either leaf Node k belongs to subtrcc ale/t and j belongs to subtree arig/ht,
or k lxlot~~s to u~+,,~ iknd j ~IC~OII~S to al,/t. For (!xanlple, if Y& = IG, NOC~C 6 has the
following sets of cousins:

{7), v, 51 , {h I,% 31 , (8, % - l l >
15). lncidently, thcrc is a close

8 PARALLEL GRAPHALGORITHMS

relationship between the notion of cousins and the use of link fields in the divide-and-
conquer algorithm.

The tree machine runs in big and little time steps. There are n big time steps, each
composed of log2 7~ little time steps. At the beginning of big step i, each leaf Node j reads
bit Ai of the adjacency matrix. The little time steps are used to restructure the stored
connection information to maintain the following invariant:

At the completion of each big time step, leaf Node j stores the name of at
most one vertex from each of its set of cousins. Furthermore, the vertices whose
names are stored at Node j belong to the same connected component as j, and
the connectivity relation defined by the stored edges is the same as that given by
the adjacency matrix rows so far read.

When row i of the adjacency matrix is read, each Node j for i + I 5 j < n is made
“active” if Ai = 1. Each active Node would like to store the vertex name i. However, an
active Node may discover that it has already stored the name of another cousin from the
set of cousins containing i. If that is not the case, Node j stores the name i. Otherwise, if j
has already stored a competing cousin named h, where h # i, we say that j is a cont;ention
Node. In this case, Node j sends a message up the tree which says, (destination: i, message:
I am already connecCed to somebody else, signed: j). We abbreviate the message by (i, j).
The tree Switches route these messages along the tree to Node i; whenever two messages
collide, one is arbitrarily discarded. Note that any message (i, j) received by Node i, will
rise through the tree to the least common ancestor of Nodes j and i, whence it wili descend

. to Node i. Node i processes only the last message it receives. This message comes from the
le<ast common cancestor of Node i and the contention Nodes. The victorious “maximally
distant” message (i, m) arrives at Node i within 2 log n small time steps.

Notice that i will be in subtree Zcu(i,m)~,/2, Cand m will be in Ica(i, m),.++ When
Node i receives the message (i, m), it examines its storage location corresponding to the
set of its cousins containing Node m. If that location is empty, it is set to m. Whether
formerly empty or not, that storage location now holds SOIUC vertex named z. Node i now
transririts the nlcssage (destination: Icn(i,m), tell all active Nodes h yor~r right srddree
they may collrlcct thcn~selves to s) up the tree to Zca(i, m) (whence lcu(i,m) sends to all

d lcavcs in the subtree Zca(i, m),ight the message (connect yourself to z).
At this point, the following facts hold:

l All contention Nodes are contained in the subtrec rooted at Zca(i,m).
0. Node i has recorded the f<act that i and z arc in the sanie component.
l - x is in lc~~(i,m)~i!,~~~, and i is in lcu(i, m)l+.

In the next little time step, the contention Nodes in Zctr(i, m),.i!,,,,t try to store vertex
nanlc x rather than i, and contention Nodes in lca(i, rn)l,,t try again to store i (ikjld send
messages to i since they fail). The connection scheme can run in parallel on both subtrees
since no messages will reach lcu(i, m). This process must terminate after log n recursions
(i.e. a total of O(log2 n) little time steps).

A big time step is now completed, cand adjacency matrix row i+l can be read. After all
rows have been lY!id, the rclllnining connected components problem CiLll be satisfactorily
solved by any standard sequential algorithm. Morcovcr, it is easy to dcvisc reasonable

2. CONNECTEDCOMPONENTS 9

algorithms that utilize the existing machine structure. The algorithm in [L-V], for example,
suffices.

We note that with simple modifications the algorithm can be pipelined (by traditional
means) to run in O(n log n) little time steps (instead of O(n log2 n) little time steps). That
performance improvement can be obtained at the cost of only a few registers per node; no
other machine structures are needed. This simplicity is due in part to the computational
power of a tree of internal Switches. Such a structure has other uses. It can, for example,
link an arbitrary subset into a linear list in log n time. Moreover, a circular shift (of one
step) can be implemcntcd for such a subset list in O(logn) time.

We also briefly remark on canother possible implementation of the pipelined tree-
machine algorithm. Instead of providing log n storage cells at each Node, one can provide
storage at the Switches. In particular, if C is one of the sets of cousins of a Node j, we
place the corresponding storage cell not at Node j, but at the Switch associated with the
least common ancestor of the set {j} U C. Thus there are n storage cells located at the
root Switch, n/2 at each of its two children, etc. This provides an alternative structure
for implementing an O*(n)- area, O(n log n)-little-time-step pipelined algorithm.

The tree-machine filter makes heavy use of the tree structure. The latter stages of the
divide-and-conquer scheme rely on multiple simultaneous switching in the interconnection
tree; the completion of a big time’ step may require sending n(n) messages. Thus the
entire process may involve R(n2) messages. A simulation by a system of n processors
interconnected by an ethernet [M-B] or a bus (a one-word concurrent-read-prioritized-write

- PRAM [IT-W]) would therefore require fl(n2) time. This observation raises the question
of whether the amount of communication can be reduced sufficiently to permit an efficient
ethernet algorithm. In the following section we find that the answer, perhaps surprisingly,
is yes.

2.4 Computing Connected Components in Low-Communication Environments

We now present a parallel algorithm for computing connected components which re-
quires only minimal intcrprocessor cominunication. As before, this “cthernct” algorithm
rcccives its input in the form of an adjacency matrix, is whcn- and where-determinate,
an7l requires time 0* (n). If implcmcntod in VLSI, it consulates O*(n) area. If imple-
mcntcd xs a tlist~ril~~~tocl systx~~~, n processors, equipped with O(log ~2) J11c111ory words and
interconncctcd by an cthcrnct or bus, suflicc.

We rassun~c thatthc architecture consists of n conventional processors. The processors
arc interconnected suficiently well to iulplement the following operations in at most O*(l)
time.

l Broadcast: Any processor may execute this function to broadcast a message of length
O(log n) to all other processors. At most OTIC processor may be engagcd in the cxecu-
tion of this command at any time.

10 PARALLEL GRAPH ALGORITHMS

l Minimum: Suppose that each processor i has an O(logn)-bit register priority; and a
one bit register awalce;. Execution of the Minimum operation simultaneously informs
all processors of a value m (if ~u1y) such that priorityYn = min{priorityi 1 awakei = 1).

l Maxim11m: Execution of this operation simultaneously informs all processors of a value
m (if any) such that priority, = max(priorityi 1 awakei = I}.

For purposes of exposition, we will assume that the Maxirnzrm and MUmum functions
are provided <as primitive operations. Of course, in practice, they would be implemented
by subroutines using only primitive communication functions. Note that the Maxim~rm
and Minimum operations can be accomplished in O(logn) time with a binary search algo-
rithm executing on a bus or ethernet architecture with collision detection. (The collision
detection provides nothing more than the n-way “OR” function.) Maximum and Mini-
mum operations can be used in order to designate a unique processor for the Broadcast
operation.

As before, each vertex i is represented by processor i. Each processor i contains an
Carray linki, a counter counti, and a few misccllCaneous temporary registers and flags. (All
registers Care of length [log nl.) Each entry Zinki(j) for 0 5 j < counti can be understood
to represent the edge (;, link;(j)}. The value of counti is thus the number of edges in
processor i’s link list.- For simplicity of exposition, we will initialize link; with the single
entry i.

At every time for every vertex i, the list consisting of linki for 0 5 j < counti
contains names of vertices to which i is known to bc connected. The entries of this list

’ will always be distinct and sorted, that is, link;(j) < linki for 0 < j < k <: counti. It
may help the reader to think of the smallest entry, linki(as vertex i’s current estimate
of its conncctcd component number cc(;).

The main difliculty is to keep the link lists from growing too large. This goal is
accomplished by what can best be described as an abasing process. From time to time, a
uniquely designate<1 processor, say processor i, will initintc Can abasing event. This event
will result in giving all na~ncs stored in link; a single new alias b. This is acconiplishcd
by having processor i broadcast its list linki. All processors, including processor i, will
monitor this activity; any processor storing a name that was in linki, dcletcs it, and

a instead remcmbcrs the name b. In this way, the new alias, 6, is made universal; the old
aliases arc forgotten everywhcrc and forever. It may bc that sonic processor’s link list
had contained several of the old names; in that cast the list becomes shorter. Indeed,
the.I)oint of perforiuing aliasing operations is to shorten link lists. The key to choosing
whi-ch vertices to alias, tl~orofo~e, is to pick ones that arc so “popular” that rc-abasing
t~llclll CiLIlSOS lists t0 ContriKt SigllifiCi~I~lly.

For convcnicucc WC let, as before, the adjacency ni;itrix A;(j) be upper triarlgu1a.r with
ones along the main diagonal. The algorithm runs in n big time steps, each composed of
O(logn) Iittlc time steps.

At each big t,imc step i, each processor j reads Ai(j) and sets awakei = A;(j). (Recall
that awakei will thcreforc bc set to one.) Al1 processors j set the temporary register CC~

ccl~~l to link, (0). ‘l’llc Maxir~rut~ operation is 110~ 11sccl LO select an awake processor k
with largest count value. Vertex k will l)lay the role of being “most popular”.

2. CONNECTEDCOMPONENTS 11

Next, processor k iteratively broadcasts each of its link entries. Among the values
transmitted will be cck. During the broadcasts, all processors listen to the transmitted
values. Any processor storing such a value in its link array, deletes it and becomes (or
stays) awake. At the conclusion of the broadcasts, cow& will be zero, k will still be awake,
and cck will still be recorded. Note that all processors awakened by a one in A; remain
awake.

Now a minimum cc value (i.e. alias) is selected from the set of awake processors and
broadcast. All awake processors store that alias in their link array. Note that this alias
will be the smallest name recorded in any awake processor. All names that were broadcast
by the most popular processor k have been globally aliased. Moreover, all processors j
for which A;(j) = 1 have recorded links to the possibly new alias of vertex k. Thus the
connectivity information represented by the adjacency matrix row has been recorded. A
big time step has now been completed.

Our algorithm is presented below. We assume for the moment the existence of the
insertion and deletion subroutines used to manipulate the link lists. These routines are
assumed to maintain sorted order and to update the count registers in the appropriate
manner.
program components(n);
begin

co Initialization oc;
for all j, 0 5 j < n do in parallel

countj := 0 od;
insert j into linki
od;

co Filtra.tion oc;
for i := 0 to n - 1 do

co Start n big time step oc;

co Read adjacency matrix row oc;
for all j, 0 _< j < n do in parallel

awukej := A,(j);
CC~ := linkj(0)

- od;
co Sclcct the most, popular awake processor oc;
let k bc SO that awakek = 1 and countk = n~ax{countj 1 0 5 j < n and awakei = I};

_ co l3romlcnst md tlclctc k’s list oc;
- for nil v E linkk do

1 hwndcczst v;
for all j, 0 < j < n do in parallel

if v is a rncmbcr of linkj then
Delete v from linki;
awakei := 1
A

od;
od;

i
12 PARALLEL GRAPH ALGORITHMS

co Pick the new alias a oc;
a . -. - min{ccj 1 0 < j < n and awake5 = 1);
co Re-alias all awake vertices - make a their new alias oc;
for a.11 j, I) _< j < n do in parallel

if awakei = 1 then Insert a into linki fi
co Note that since a is smallest, a is always stored in Zinkj(O). Thus, during next big time
step, ccj will be equal to a. OC;
od

co End of big time step oc;
od;

end connected.

Our next task is to examine how long each big time step takes. Only one loop causes
much concern, namely that in which the most popular processor’s link entries are itera-
tively broadcast and deleted from all lists. All other operations performed during a big
time step require at most O*(l) time. The time required for the iterative broadcast and
delete loop depends on the length of the link arrays. Let bound denote the maximum value
ever attained by Cany count register. We observe that since the link arrays <are sorted, the
loop can be done in-a number of steps bounded by O(bound(log’ n + log bound) $- bound)
even under the most pessimistic Carchitcctural assumptions. This formula charges log” n
for each Broc~dcast, log bound to cheek whether the broadcast value appears in a list (if
so, the entry is fhggecl), and bound for each processor to delete the flagged entries and
compact the list. There arc, of course, a variety of other efficient ways to implement the
loop; the number of steps can be reduced to O(bound) at the expense of providing each
processor with an additional buffer ‘array of length bound. We will show later that bound
never exceeds [log nl + 1.

Two issues remain to be addressed. First we must establish correctness of the filter; it
must be shown that no connected component information is lost. Second, WC must verify
that bound 5 [log nl .+ 1. This upper bound will guarantee a total running time (and area)
of O*(n).

Correctness of the filter is established by the following invariant.

At the completion of each big time step i, the edges rcprcscnted by the link
entries induce the same connected components ;-zs the edges comprising the first i
adjacency matrix rows.

T5is is easily vcrificd by induction.,
The proof of the rllnnillg tilllc is sor~~ctwhat tccbuical; tlro trusting rcadcr Il\iky wish

to skip over it. In order to est;rbIislk a ~)orlJlci on the icrigth of the link arrays, WC Ilid

examine the conditions under which such a list grows. We make the following observations.

l During each big time step i, only those processors j for which Ai(j) = 1 can increase
the length of their lists. Furthermore, the length of each such list can grow by at most
one.

l If during SONIC big tilnc step Chc list link, grows, it must have Ilad no more entries at
the bcgintGng of the time step than did the processor dcsignatcd “most popular” whose

~.CONNIXTEDCOMPONENTS 13

list was broadcast. We say that the most popular processor “shielded” processor j.
Furthermore, Zinkj must have had no entries in common with the broadcast list.

l All stored edges point to the left; that is, at all times, for all j and k, we have
linki 5 j.

l Suppose that at some big time step the most popular processor, k, broadcasts its list
UP I 4) = link,(p) for 0 5 p < countk}. Then, for all subsequent time, no name in
v, I P 2 11 aPP ears in any link list. In other words, once a vertex is re-aliased, its
old alias becomes extinct. Incidentally, the name lo may or may not become extinct,
depending on whether it is selected as the new alias.

Armed with these observations, we make the following definitions.

Definition 2.3: A growth event of order p, denoted g(j, t,p, a), occurs whenever a big
time step t results in increasing the value of county from p - 1 to p by installing the new
alias a into linkj. (Growth events of order one are denoted g(j, -1,l, j); these occur during
initialization.)

Definition 2.4: An &wing event of order p, denoted m(k, t,p, Z), occurs whenever during
big time step t the--most popular processor k broadcasts the p names Zinkk (0), link&),
’ - - ’ Zinkk (p - 1). The list 1 contains the names thereby made extinct. Thus 1 equals
{linkk(i) 1 0 < i < p} or {Zinkk(i) 1 0 5 i < p} according to whether Zinkk(0) was chosen
as the new alias.

We note that every growth event g(j, t, p, a) is naturally associated with a shield-
ihg aliasirrg event of order p’ 2 p - 1, namely the simultaneously occurring aliasing
event m(k, t,p’,Z) in which the most popular processor k shielded j. It is also natu-
rally associated with a precursor growth event g(j, t’, p - 1, a’) (for the sake of definiteness,
choose the most recent if there were several) in which countj attained the value p - 1.

Similarly, each aliasing event m(k, t, p, 2) has a naturally associated precursor growth
evcrll of order p, namely the growth event g(k, t’,p, a) most rcccntly cxpcricnccd by pro-
cessor k.-

WC now describe a critical cvcut tree. It is a recursively-defined binary tree each of
whose nodes is labeled with a growth cvcnt. If a node has as its label a growth event of
order one, then the node is a leaf. Otherwise suppose that a node n has label g. Then the
l&ft chil(l of 7~ is li~l>ttlcd with g’s precursor growth cvont and the right child of n is labclcd
With tllc prccrlrsor 01’ the slliclcling iIliUi1lg cvcut associated with g.

WC Say tilat a critical cvcnt tree is of orclcr p if the label of its root is of order p.
By the above definition, we see that a critical event tree of order p contains at least 21,-r
leaves. Itccall that each leaf has a label of the form g(j, - 1, 1, j); WC call j the leaf name.
What remains to be shown is that all of these leaf names arc distinct. This fact will <assure
that no tree has order greater than Llog n] + I.

Definition 2.5: 1,cC di;Ls(~, 1) 1c cnotc the alias of vertex v at the end of big time stcl> t.
(Let nlins(v, - 1) = v for all v.)

14 PARALLEL GRAPH ALGORITHMS

That the above definition is meaningful is a consequence of the fact that all aliasing
operations are done globally. Thus, if m(k, t,p, I) is an aliasing event in which a is the new
alias chosen, then for all v we have that

alias(v, t) = alias(v, t - l), if link, n I = 0;
a, if link, n I # 0.

In particular, if t’ > t then alias(alias(v, t), t’) = alias(v, t’).

Lemma 2.1: If at some time t, the list Zinkj contains the name v, then for all times t’ > t,
the name alias(v, t’) is a member of linki.

Proof 2.1: Whenever a name is deleted from a list, its new alias is inserted into the list
during the same time step. 1

This lemma establishes that once a name joins a link list. it is forever represented in
that list by an alias.

Lemma 2.2: Suppose that g = g(j, t,p, a) is a growth event and that the leaf mamed v
is one of its descendants. Then at the end of time step t (and forever after), we have
alias(v, t) in linkj.

Proof 2.2: This is established by induction. Suppose that v is in the left subtree of g
and that g(j, t’,p - 1,~') is the left child of g. By induction, alias(v, t’) appeared in Zinkj
at time t’, hence since t’ < t, we have alins(v, t) in linkj at time t Gas required. If v is in
the right subtree of g and g(k, t’,p’, u’) is the right child of g, we have by induction that
at the end of time t’, the name alias(v, t’) is in linkk. &it then, since k was most popular
at step 1, we have that alias(v, t) = a. IIencc alias(v, t) is in Zinkj at the end of time t. 1

Theorem 2.1: The leaf names appearing in a critical cvcnt tree are all distinct.
-

Proof 2.3: The proof follows by a simple induction. Let g = g(j, t, p, a) be the root
of a critical event tree. Let L be the set of leaf nnnles in the left subtree; let R be the
leaf names in the right subtrcc. We show that L n Ii: - 0. Suppose that v E L n R. Let
g(ji t’, p -- I, CL’) and g(k, t”, p”, a”) h tl IC left and right childrcu of g rcspcctivcly. Now
a t L!IC l,cgintlitlg o f killlo 1 WC ~iir~sl~ II;LVO Inhat li71k':; (1 l i n k k := 0 shx! ohrwisc j could
1101~ 11;~vc growu. 13ut by the 1mvious l<!II1Illit, v is rcyrcscnted ill bolI1 link, iiIl<I linkk at
the bcginniug of time t by alia.s(v, 1 -- 1). This contradiction cstablishcs that L and R are
d is j o in t . 1

This thcorcm establishes the promised upper bound on the length of the link lists:

Corollary 2.1: bound 5 [log nl + 1. 1

2. CONNECTMICOMPONENTS 15

This completes the proof that the filtration is correct and runs in time O*(n). Of
course Cany reasonable sequential algorithm cm be used to find the connected components
of the filtered output since it comprises no more than O(n logn) edges. A more attractive
possibility is to use a postprocessing pass oT the filtration algoritllnl in which the identity
matrix is t,he input. This scheme sequentially causes each processor to broadcast (and
thereby reduce to one entry) its link array. After the last row of the identity matrix has
been processed, each list Zinkj contains only one entry, Cand it is easily seen that for all
j, the entry link&l) is equal to cc(j). (We suggest to the reader the following question.
After row i of the identity matrix is processed, count; = 1. Is link;(O) = cc(i)? We give a. hint: if at some time some processor j has a link entry containing any name other than
j, then no other processor’s list contains the name j.)

An even more attractive possibility is to interlcavc this second pass with the filtration
process. Then no postprocessing is required; after the last big time step, the connected
components problem is solved. It is easy to verify that the interleaving neither affects the
correctness nor the 0* (n) time bound.

We remark that <an analogous, but simpler, algorithm can be designed where the most
popular processor k broadcasts only one name instead of its entire list, and no deletions
from memory occur. In this case, however, the filtering is less efficient; each local memory
may have to hold 0(&) entries; thus O* (n3i2) area is required.

2.5 Conclusion

In this chapter WC have illustrated a progression of successively better parallel con-
ncctcd coxnpoucnts algorithms. The key clemcnts in all of these algorithms are the ideas
of filtration, data distribution, control of communication and the appropriate USC of mild
red undancc.

The unfortunate thing about thcsc algorithms is that they give little guidance for
constructing efficient algorithllls for other problems. Our rcliancc upon deceitful filtration

- is particularly daunting; while dcccit is fine for connected components, it is far from clear
that it can be cmploycd in lnorc dificult graph problems. In the next chapter, we dcvclop
a paracligm, based on faithful filtration, that is readily ad~aptable to a much wider class of
problems.

3. Funnelled-Pipeline Algorithms

3.1 Introduction

In this chapter we explore what we call the funnelled-pipeline paradigm. Circuits
constructed with this paradigm make use of cascaded filtration. Thus such circuits are
composed of a series of pipelined processors. Because each of these stages acts as a filter,
the data flow decreases along the pipeline. The decreasing data flow is essential in that it
allows successive filtration stages to run longer, and hence more thoroughly. This feature is
a marked departure from conventional pipelines; transition times along our pipeline form
an exponentially-increasing sequence.

We begin by examining in greater detail the idea of filtration. Then we present a
general outline of the data flow and hardware carchitecture of the funnelled-pipeline model;
finally we apply the paradigm to several specific graph problems.

3.2 Filtration

In the preceding chapter we exploited the idea of filtration. It is useful to define this
idea in greater detail and formality.

For the sake of exposition, cassumc that we are given a fixed set, V, of vertices. Let S
denote the powcrset of the set of all edges {u,v} for u (and v members of V. Thus S
can be viewed as the family of all graphs on V. By a graph problem, we will mean a
function P with domain S. The range of I-’ depends on the problem. For instance, for the
connected components problem, P maps members of S to functions cc : V --+ V. In the
minimum spanning forest problem, P maps S to S. Perhaps WC should note that some
common problems <are best described <as relations rather than <as functions. An example is

a the problem of finding a spanning forest of a graph; there are often several. However, in
order to keep the notation simple, we restrict ourselves to functions; it is a simple matter
to adapt what follows to relations.

We would likc,to define the properties that make soihcthing a liltcr. In keeping with
our carlicr use of the term, a filter is a ilrap .r;’ : S --) S. (Though, of course, scvcral
gcncralizations arc possible.) The obvious property that It’ should possess is that it should
leave invariant the graph problem. That is, we require that P(F(.E)) = P(E) for all E E S.

That, however, is not quite enough for our purposes. Recall that our aim is to produce
linear sized circuits for solving quadratic sized problems. This implies that our filters will
at any time be operating only on a subgraph of the input graph. Thcrcforc a filter must
summarize each portion of a graph in a manner that permits solving the problem no matter
what the rest of the graph may be. Thercforc WC propose the following definition.

- -__ - - -
3. FUNNELLED-PIPELINE ALGORITHMS 17

Definition 3.1: E‘ : S --+ S is a filter for P if P(F(E)UE’) = P(EUE’) for all E and E’
members of S.

Note that this definition implies that P(F(E)) = P(E). Incidently, we can make
precise the terrns hithfd and dcccitful. A filter F is faithful provided that F(E) C E
for all E E S. A filter that fails to be faithful is said to be deceitful. Since the point of
filtration is to reduce the volume of data, WC will generally be interested in filters F with
the property that IF(5 IEI.

It may be worthwhile to consider a simple example. Let P be the connected compo-
nents problem. Let F be defined so that for all E E S we have that F(E) is a spanning
forest of E. Then F’ is a filter for P. We leave it to the rcacler to verify this fact.

Because our algorithms will make use of cascaded filtration, we examine some further
consequences of our dclinition. Suppose that F is a filter for P. We define a binary
operation 13 : S x S -+ S by B(l&, E2) = F(E1 u &). It will turn out that B captures
the essence of the fundamental step of our algorithms, namely the operation of combining
two subgrnphs and filtering the result.

By a cascaded filtration, we mean any repeated composition of the function B. We
give the following inductive definition.

Definition 3.2: B : Sk -+ S is a cascaded filtration provided thatI;‘(G), if k = 1;

&El,. . . , Ek) =
B(EI, E2),
B(&(El,. . . , E,,),&(Em+lr . . . ,Ek)),

if k = 2;
for some m if k > 2 and

& aud 62 are
cascaded filtrations.

The iukportant property of a cascaded liltration is that it acts <as a filter.

Theorem 3.1. Cascaded Filtration: Let @El,. . .
P(rj(E,, . . . , Ek) u E’) := P(u

, &) bc a cascaded liltration. Then
ls;&i u E’) for all El,. . . , Ek, E’ in S.

Proof 3 .1 : This thcorcm is proved by induction. It is vacuous for the case k = 1.
a For k = 2, WC have b(El, E2) = II’& U E2). Let E = El U E2. We must show that

P(fi(E,, E,) u I?) = P(Eu I;:‘). ht P(6(El,E2) U 13’) =- P(I;‘(E) II E’) == P(E U E’).
If k > 2 then @?Zr,. . . ,&) - .D(&(Er,.. . ,E,,,),&(Enl+~, . ..,Ek)) for some m.

Let E = CJl<d<kEi, L = UI<i<7,iICi and l? - Um<i<kEie WC have- - - - -

P(fi(E,, . . . ,I&) u E’) :- p(u(ljl(l&, . . . , E,,,), fi2(E7,,+ l,. . . , l&)) u Is’)

- P(F(fiI(El,. . . , E,,) II Jj2(Elrrtl,. . . , I&)) u E’)

= P(Ijl(EI,. . . , .I&,) u fi2(13,,,+1, . . . , Ek) u E’)

= P(L u R u E’) (induction on 61, 82)
= P(E u E’).

I

18 PARALLEL GRAPH ALGORITHMS

Ckascaded filtration can be viewed cas a general method for organizing parallel divide-
and-conquer computations. Imagine that we wish to compute P(E) given some input
graph E. Let each set E; (for 0 < i < n) consist of the edges in E joining vertex i
to some vertex j where j > i. Then the Cascaded Ii‘iltration theorem guarantees that
we can compute P(E) by computing P(@(E~~, . . . , En-J). This latter computation of
course could be accomplished by the obvious bakanced binary tree of filter units. In the
next section we describe a much more attractive implementation, the funnelled pipeline,
in which each level of the binary tree is replaced by a single filter unit.

3.3 Funnelled-Pipeline Algorithm Structure

We assume, as before, that the graph problem is presented cas an n-by-n adjacency (or
edge-weight) matrix A and that, for simplicity, n is a power of two. The algorithm struc-
ture is composed of log n pipelined filter units. Each filter unit implements the filtration
operation B(El,Ez) = F(E1 U Ez) where F is a filter for the graph problem. Thus, at
each activation, each-Jilter unit receives as input the edge sets El and E2. It produces as
output the edge set B(El,Ez). This output set serves as one of the input sets in the next
activation of the next filter unit along the pipe. Thus the first filter unit, filter zero, reads
in a stream of n edge sets, namely the sets corresponding to the n rows of the adjacency

. matrix. It outputs a &ream of s “filtered” edge sets. With a slight abuse of notation,
we have as its jth output set, the set B(Azi, Azi+l). These : sets <are fed to the second
filter unit which computes the 2 sets B(B(Adi, Adi+l), B(Adi+z, AJi+s)). These z sets of
“doubly filtercd” edges arc fed to the third filter unit, etc. Note that each output set of
each filter unit is a cascaded filtration. In particular, the output of the last filter unit is a
cascaded filtration of the entire input graph.

The first question that arises is that of representing edge sets. We enforce a strict
convention. Ikh cdgc set will be rcpresentcd by an n-element array co, cl, . . . , ~~-1.
Each clement c; is itself a set of edges; however its size is bounded by a constant (in

_ the following algorithms, that constant is one or two). Furthermore, we insist that if the
edge {u, v} is a member of ci, then u = i or v = i. In other words, each cdgc must be
stored at one of its endpoints; thus c is actually an adjacency-list rcprcsentation. Note
that it is trivial to convert adjacency-matrix rows to this form. Note also that each edge
set contains 0(n) edges. It should be adniitted that this rcprcscntation scvcrcly limits
the types of filters that cau bc employed. The advantage of tlrc rcprescntation lies in its
suitability for ~>ikrilll(!l iwcllilccCllreS.

WC will require all filters to be faithful. This implies that the cascaded filtrations car~
also faithful. We describe an important consequence. Note th,at in the adjacency matrix,
all edges in the set corresponding to row i are incident to vcrtcx i. In other words, all
edges on a given matrix row have a comruon endpoint, which we call the leader. Consider
an edge set output by the first filter unit. Each edge in that set must be incident to at least
one of the leaders of the two nratrix rows from which it was derived. Thus each edge set
output by the lirst unit has two leaders, namely the single leaders of the two corresponding

3. FUNNELLED-PIPELINE ALGORITHMS 19

input rows. Similarly, the sets output by the second filter unit have four leaders, etc. The
fact that each edge is incident to at least one leader will make rapid filtration possible.

WC list below some of the ckitical properties and terminology of the funnelled-pipeline
structure. Note that vertex indices, filter indices, and activation counts are numbered
beginning with zero. Recall that for convenience we have assumed that n is a power of
two.
l Filter unit k is activated n/2 Ic+’ times, and thus produces n/2k+1 output sets.
l Filter k is activated with a period of 2”+l cycles. (A cycle is defined by the reading

of a single row of the adjacency matrix into the input buffer of filter zero.)
l At activation i, filter k reads two edge sets. Each of these two sets contains 2”

leader vertices. The first set has as its leaders vertices i2”“l through i2”+l + 2” - 1.
The second set has <as leaders vertices i2”+’ + 2k through (; + 1)2”+’ -. 1. Thus at
activation i, filter k contends with a total of 2Ic+’ leaders, and each edge in the union
of the two input sets is incident to at leCast one of them.

l During activation i, filter k produces one output set. This set contains 2’+l leaders,
namely vertices i2 k-t1 through (; -+ 1)2”+” - 1.

l At activation i of filter k, the vertices with index (i + 1)2k+1 through n -- 1 are called
gangmembers. --.

l During activation i of filter k, the vertices 0 through i2’“+l- 1 are called dead vertices.
No edges among the input and output sets are incident to dead vertices.

l The last filter, filter log n - 1, is activated once. Its output is a cascaded filtration of
the entire input graph.
Each filter unit will be built as a linear array of n processors, one processor corre-

sponding to each graph vertex. These processors will be iqterconnected by an ethernet.
Thus each filter will have width O(n); as will the data strealns connecting successive filters.
See Figure 3.1. This architecture permits transferring the edge set output by one filter
stage to the input buffer of the next in O(1) time steps. We will cws~~~n~ that each filter
unit contains a simple input buffer capable of holding two edge sets.

3.4 A Minimum Spanning Forest Algorithm

This section dcscribcs a funnellcd-pipeline algorithm for colnputing minimutn spanning
forests on untlirectcd weighted graphs. An n vcrtcx graph is rcprcscntcd by an n-by-n
lr;,l”!r-tri;lngulnr ctlgo-weight m a t r i x A . JCnl,ry Ai 1rc)rcscnts the weight of the edge
joining vcrtkcs i &<I j. ICtlgc weights may, OC course, 1~ inliCk, but 111us1 bc spccificd by
at most O*(I) bits.

It is convcnicnt to have a notion of the ~niqrlc mi&luml spanning forest. TJlus edges
with equal weights will be strictly ordered according to, say, the lexicographic o&ring of
their endpoints. It can bc seen (in a variety of ways) that such a s&me induces a strict
ordering on the total weights of spanning forests.

Our first tiksk is to find a suitable filter. J?or any set of edges E, lot MSF(E) ¬e
their minimum weight spanning forest. WC prcscnt two facts.

20 PARALLEL GRAPH ALGORITHMS
.

Matrix Inputs

t t t f t T 7 T T T T T T T T T
A A I, 1 & 4 4 A 1 4 4 A A 4

Input Ports

Kiter Unit 0

Output Ports

Input Ports

l?iltcr Unit 1

Output Ports

Input Ports

Filter Unit 2

Output Ports

Input Ports

Filter Unit 3

Output Ports
T 7 ? t 7 7 t t ?- 7 ! 7 ? ? ? f
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Pipelinc Outputs

Figure 3.1: Ii’unnelled Pipeline

- Lemma 3.1: Let e‘E E Then e E M%?(E) fi and only if e is not the edge of mCaximum
weight in any cycle of E containing e.

Lemma 3.2: If e = {a,~} E E but e $- MSl?(E) then there is a path in MSF(E) joining u
to -v, and each of that path’s cdgcs has weight less than the weight of e.

WC obtaifr the following corollary.

Corollary 3.1: The function MSF is itself a faithful filter for khc minimum spanning forest
problem.

Proof 3.2: WC must establish that MSV(MSF(E) U E’) = MSF(E U E’). Let e be any
cdgc in E U E”. Suppose that e 4 MS I? (MS17 (E) U Id’). Tl1cn Lcmm,z 3.2 implies that
there exists ;I p;\.th in MSlc(E) U E’ joining the endpoints of e with the property that all
of the path’s ctlgcs have wciglI1 less ~II;LJI the wcigh~, of e. That, I)ath must of course also
lit in E U fi’, ad thus Lcmlna 3.1 implies that e $ MSk’(E U E’).

3. FUNNELLED-PWELINE ALGORITHMS 21

On the other hand, snpposc that e $ MSF(E U E’). Evidently there is a cycle e, el,
* * 1 ek in E U E’ of which e has maximum weight. For each edge e; = {u, v} E E we

:zL*selcct a path in MSF(E) j oining u to v wherein each edge has weight at most that
of e,. TIcnce e has maximum weight in a cycle in MSF(E) U E’. Lemma 3.1 then implies
that e $ MSF(MSF(E) U E’). 1

One further fact about minimum spanning forests will be required to verify our algo-
rithm.

Lemma 3.3: Let (V,E) be a graph. Let H be a subset of V and let C = {e E E 1
e joins a vertex in H to a vertex in V - H >. Let f be the edge of least weight in C. Then
f is a member of MSF(E).

We note that our filter has an important property. Its output is a forest, and hence
contains at most rz - 1 edges. Furthermore, each tree can be rooted and each edge can
be stored at its child vertex endpoint. This permits adherence to our convention for
reprcscnting and transmitting edge sets among the filter units. In each edge set, there will
be stored at most one edge per vertex.

Each filter in otii pipeline implements an algorithm that computes the minimum span-
ning forest of the union of two input edge sets. In fact, the same algorithm is employed in
each of the log n filter units. Each activation of filter unit Ic mrlst take at most O(Zk+‘)
steps. In this regard, the fact that each activation contends with 2’“‘l leaders will prove
critical.

\
.

The computation for activation i of filter unit k proceeds as follows. There arc three
major steps. The first is to find, for each gangmcmbcr, the minimum weight incident edge
(if any). Such cdgcs arc guaranteed by Lcmrna 3.3 to lie in the n~inimum spanning forest of
the input edge sets. Because every input cdgc is incident to at least one lcadcr, each of the
sclcctcd minimum weight edges connects a gangmember to a leader. Thus this first step
can bc vicwcd as tllc formation of gangs of gangmcmber vcrticcs, each gang being led by
a lcadcr vcrtcx. This gang-formation step must bc done with a high degroc of parallelism,
since, in gcncral, the nunibcr of gangmembcrs vastly cxcccds the time budget of 0(2”+l).

- Obscrvc that after thcsc edges have been sclccted, most of the minimum spanning edges
have been found. If I =z 2k’i-i is the nulubcr of lcadcrs, the mininlum spanning forest
consists of at most 1 -- 1 additional edges.

- Thus the second step cl~ooscs at most I - 1 more edges to link togcthcr the gangs.
Tlicrc is srlflicicnC tiruo to sclcct thcsc ctlgcs scqucntially. lntlccd, tlic ;~lgori1lim for this
step clill’crs littlc from Cllc corlvol~tio~id “grco(ly” algorithm.

Tlic ha1 step consists of rcarrnnging the now-complctc iuininium spannirig forest so
as to obey our convention for rcprcscnting cdgc sets. This is accomplished by traversing
the forest and storing each cdgc at its child endpoint. Again a high dcgrec of parallelism
is required. It is obtained by using a graph traversal that ncvcr visits leaf vertices that are
gangmcnibcrs. Since there arc 1 loader vertices, any tree, and hcncc any forest, has at most
21 ifltCrllid vcrticcs. This is duo to the filCt t1lik.t the chiltlrcn of cvcry internal gangl~~cmbcr
vertex must bc lcadcrs.

22 PARALLEL GRAPH ALGORITHMS

We now present a more detailed description of the algorithm. Each processor i will
contain a list E; of at most two edges. These edges will be stored in records containing
the following fields.

l this-end: One endpoint of the edge.
l other-end: Other endpoint of the edge.
l weight: Weight of edge.
l edge-status: Current status of this edge.
l other-status: Status of other-end vertex.
l other-leader: Leader associated with vertex other-end.

The field this-end is a notational convenience; if e E Ei then e.this-end = i. Each
processor i will contain registers statusi and leaderi, as well as a few temporary locations.

The main program is as follows.
program f ilterunit (k, n);
begin

co k is the filter number, TX is the graph size oc;
for i:=O to n/2&+’ do

co i is the activation number oc;
call initialize;
call join-gang;
call merge-gangs;
call rearrange;
call output
od

end jilterunit.

The procedure initialize reads the two input edge sets cand initializes status registers.
The edge-status field of each edge is set to standby; initially each edge is a potential
mcmbcr of the minimum SyiLnning forest. The status of C;U~I vcrtcx is set to ungrubbed;
this value identifies vertices that have not yet been visited in the traversal of the minimum

- spanning forest.
procedure initialize; ’
begin

for all v, 0 5 v < n do in parallel
statusv : = ungrabbed;
leaderv := v;
rend odgca frolli input buffer into E,;
for all e E E,, do

co note that there are at most two edges in Eu ocf
e.other,status := ungrabbed;
e.edge,status := standby;
e.otherJeader := e.other-end
od

od
end initialize;

3. FUNNELLED-PIPELINE ALGORITHMS 23

The procedure join-gang is responsible for linking each gangmembcr to a leader
via the edge of least weight. Note that an edge joining gangmember g to leader I is
stored either at g or at 1. Hence, we first broadcast all edges stored at the leaders in
order that the gangmembers bc able to pick their cheapest incident edge. Then we again
sequentially examine the edges stored at the lcadcrs so Gas to appropriately adjust their
status fields; whenever an edge is determined to lie in the minimum spanning forest the
corresponding edge-status field is set to selected. The entire join-gang procedure takes
at most 0(2l”+l) steps since there are at most two edges stored at each of the 2’+r leaders.
procedure join-gang;
begin

co find the cheapest edge stored locally at gangmembers oc;
for all gangmembers g do in parallel

if g has any stored edges then
let cheapest, be such that cheapest,.wt:ight = min{f.weight 1 f E E,) else
cheapest, := nil fi

od;
CO find cheapest edge not locally stored oe; .
for all leaders I d9

for all e E El do
if cheapest e.ot,,er,er,d.weight > e.weight then cheapest,.,thermend := e f3
od

od; \
co we now have found cheapest edge incident to each gangmember oe;

co update status of all locally stored cheapest edges oe;
for all gangmembers g do in parallel
if cheapest, E Ey then

cheapest,.edge,status := selected;
1 eadery := cheapest,.other-end fi

od;
co update status of all non-locally stored cheapest edges oc;
for all leaders 2 doa

for all e E EL do
if there exists a gangmember g such that cheapest, - e then

e.edge-status := selected;
leader,.,t~,Cr-end := e. t his-end fi

od
od;

co update other-leader fields for all edges stored at leaders oc;
for all leaders I dd

for all e E El do
e.other,leader := leader,.,thevAnd
od

od
end join-gang;

24 PARALLEL GRAPH ALGORITHMS

Procedure merge-gangs links together the gangs by a greedy algorithm. It starts
at an arbitrary gang. It then selects the cheapest “candidate” edge joining this gang to
another. The new gang is merged into the first gang and the process is repeated for this
new super-gang. Merging continues until the super-gang is <as large cas possible. This entire
process is repeated for each connected component of the graph. The gangs that have not
yet been merged are identified by leader v&ices v for which status,, = ungrabbed. Edges
that join ungrabbed vertices to grubbed vertices are identified by the value candidate in
their edge-status &Id. Note that at most a total of Zk+’- 1 gang merges are required to
complete the minimum spanning forest.
procedure merge-gangs;

procedure visit (i, newleader);
begin

co incorporate the gang containing i into the gang of newleader oc;
oldleader := leaderi;
co grab everybody who is in oldleader gang oc;
for all v, 0 2 v < n do in parallel

if leaderv = ol dleader then
status V := grabbed;
leader V := newleader
A

od;

co update other-end status fields in edge records oc;
for all v, 0 5 v < n do in parallel

for all e E E&, do
if e.otherAender = oldleader then

e.ot her-leader := newleader ;
e.other,stntus := grabbed
A

od
od;

co update edge-status fields oc;
for all v, 0 5 v < n do in parallel

for all e E E,, do
case

e.edgc,.s’tntus -= stcmtlby :J
if status,, # e.other-stut’us then e.edgc,stutus := candidate fl;.

e.edge,status = candidate *
if status,, = e.other-stutus then e.edge,status := useless fi

endcase
od

od
end visit;

3. I~UNNELLT~D-I’IPELINE ALG~RITIIMS 25

function nestedge;
begin

co select cheapest candidate edge oc;
if there exist any v and e E E, sucll that e.edge-status = candidate then

let f bc such that j C {e E & 1 0 5 v < n} and f.weight = min{e.weight 1 e c E, and 0 <
v i n};
return f
else return nil fi

end nex tetlge;

begin merge-gangs
while there exists a leader r with St&u+ = ungrabbed do

co start n tree rooted at r oc;
call visil(r, T);
whilt? nextedge # nil do

co merge another gang into tree rooted at r oc;
f :I=: nextedge;

f .edge,status;.= selected;
if f.other,status = grabbed then visit(f.this-end,r) else visit(f.other,end,r) fI
od

od
. end merge-gangs;

Procedure rearrange rearranges the selected minimum spanning forest cdgcs so as to
store at most oue at each vertex. This is acconq~lishcd by first computing the degree of
each gan~nlembcr in the ruiuinlnm spanning forest. This identifies gangmember leaves.
Then all internal vertices (and leaf leader vcrticcs) are trwcrscd, and all edges arc moved
(if necessary) to their clliltl cudpoints. This procedure takes O(2”“) steps.
procedure rearrange;

procedure mark-leaves;
co dccidc which vertices arc leaves and which are internal nodes of the forest oc;

co compute the dcgrce of cnch gnngmcmbcr vertex oc;
for all ganglnembers g do in parallel

degree, := I(e E Eg 1 e.edge-status = selected}1
od;

- for all lenders 1 do
for all e c El do

if e.cdge,status 11 selected then degree,..ot,re,_e,,d :I- degree,.,,t,rC.-cnd + 1 fl
od

od;

co set vertex type fields oc;
for all gnngmembcrs g do in parallel

if degree, 5 1 then type II := don’t-visit else type, := do-visit fi od;
for all lenders 1 do in parallel lyf~cl :== do-visit ad;

end mark-leaves;

i

26 PARALLEL GRAPH ALGORITHMS

procedure traverse(i);
begin

co visit vertex i oc;
status; := finished;
co deal with vertices storing an edge to i oc;
for all v, 0 5 v < n do in parallel

if there exists e E E, such that e.other,end = i and e.edge,status = selected then
outv := e;
e.edge-status := unselected;
if type, I= don’t-visit then status,, :I= finished else statusv := frontier fl
fi

od;
co deal with any selected edges stored at 2” oc;
for all e E E; do

if e.edge-status = selected then
m := e.other,end;
out , := e;
e.edge,status := unselected;
if type, = don’t-visit then status,,, := finished else status,,, := frontier fi
A -.

od
end traverse;

begin rearrange
co mark the leaves oci
call mark-leaves;

co set vertex status fields oc;
for all v, 0 5 v < n do in parallel‘ statusv := unvisited od;
co traverse the minimum spanning forest oc;
while there exists a leader r with status, = unvisited do

co traverse tllc tree rooted at r oc;
call traverse(r); ’
while there exists a vertex v such that s ta tus,, := frontier do traverse(v) od
ode

end rearrange;

Procedure output simply writes the rearranged minimum spanning forest edges to the
output buffer.
praccdure output;
be&n

for all v, 0 5 v < n do in parallel write out,, to output port, od
end output;

A careful exaurination of the above dgorithm reveals that each activation of filter
unit k requires time 0* (2k) on an ethernet ivchitecture. Since filter unit k is activated
every n/2” cycles, the st(zgcs of the pipeline are properly b&nced, (uld we have a when-
and whcro-dct,crlllirlntc minimum spanning forest ~Igorithm requiring O*(n) time ;urd
nrcn. Obscrvc CIGLL no postprocessing is rcquircd; the output of the last filter unit is the
minimum sp,znning forest of the input graph.

3. FUNNELLED-PIPELINE ALGORITHMS 27

3.5 A Funnelled-Pipeline Algorithm for the Biconnected Components Problem

In this section we describe a funnellcd-pipeline algorithm that solves the biconnected
components problem. Let G = (V, J!Z) b e a graph. Define a relation * on the edges so that
ei * e2 if ei = e2 or if there is a simple cycle (i.e. a cycle without repeated vertices) in G
containing el and e2. It can be shown that -k is an equivalence relation. Let El,. . . , Ek be
the equivalence classes of E under *. Let Vi be the set of endpoints of edges in Ei. Then
the sets Vi are the bicomected compo~~ents or blocks of G. We refer the reader to [AHU]
for further background discussion.

Definition 3.3: Suppose that E is a graph. We say that a graph E’ represeds E if the
following three conditions hold.

l E’ is a subgraph of E.
l The connected components determined by E’ are identical to those dcternrined by E.
l Every pair of vertices 5 and y lie in a simple cycle of E’ if (and only if) they lie in a

simple cycle of E.

Theorem 3.2: If .a subgraph E’ represents a graph E, then E’ and E possess identical
biconnected components.

Proof 3.3: It suffices to show the one non-trivial direction. Suppose that B is the set of
vertices of a biconnectcd component in E, ‘and x and y are members of B. Then there is

* a simple cycle in E, and hence a simple cycle in E’, containing x and y. Thus x and’y lie
in one uniquely determined biconnected component of E’ (two biconnectcd components
intersect in at most one vertex). Hence all members of B lie in that biconnected component
of E’. 1

We next demonstrate that depth-first search can be used to find representing graphs.

Definition 3.4: Let E be a graph. Let T(E) contain the cdgcs of a depth-Grst traversal
of K That is, the forest 7’(13) consists of the subset of the edges in E traversed by some

- depth-first search of E. Furthermore, for every vertex v, let 11(v) bc the highest incident
back edge of E (if any) induced by the traversal 7’(K). (The highest back cdgc from x is
the one to the highest ancestor of x (in the forest T(E)) reachable by a back edge (in E)
from x.) Let P’(E) = U,, 1’17, u T(E).

Theorem 3.3: The graph F(E) reprcscnts E.

Proof 3.4: Note Hurst that8 F’(lC) is a subgraph of 1s. T(E) and I$ possess idcutical con-
nected coiilponcnts, as do ‘1’(E) and P(IJ’); hcncc J’(K) <ant1 13 possess identical conncctcd
components.

Suppose that vertices x and y lie in a simple cycle of E. Assume without loss of
generality that x is an ancestor of y in the depth-first traversal 7’(E). Note that x and y
lit in the satnc bicormcctocl component of E. Thcrcfore no vcrtcx on the path from x
to y in the tlq~th-first traversal is an articulation point. Thus there is a directed path
from y to x consisting ouly of highest back edges (oricntctl from descendent to Canccstor)

28 PARALLEL GRAPH ALGORITHMS

and depth-first traversal edges (oriented from <ancestor to descendent). A subset of these
edges combined with an appropriate subset of the remaining depth-first traversal edges
yield a simple cycle containing x and y. 1

We now show that filtration can be accomplished by finding representations. WC make
use of the following lemma.

Lemma 3.4: Let E be a graph. Suppose that k > 2 and that ~0,. . . ,z)k.-1 is a se-
quence of distinct vertices with the property that for all i either {vi, Vi+lmotlk) E E or
vi and vi+hloc~k both lie in the same biconnccted component of E. Then all vi lie in a
single biconnected component of E.

Proof 3.5: If the v; fail to lie in a single biconnected component, there would exist in E a
simple cycle of edges passing through more than one biconnected component. This would
contradict the definition of biconnected components. 1

Theorem 3.4: Suppose that R represents E. Then R U E’ represents E U E’ for all sets
of edges E’.

Proof 3.6: It suff&s to show that whenever two vertices x and y lie in a simple cycle C
of E U E’, then they also lie in a simple cycle of & = RUE’. So consider an edge e = {u, v}
that lies in C but not in fi. Thus e is in E but is not in R. Since R represents E <and
u and v are in the same connected component of E, there must be a simple path in R

. connecting them. Because R is a subgraph of E, this path must also be in E. Hence
u and v lie in a simple cycle of E, and again, since R represents E, they lie in a simple
cycle of R. Thus u ‘and v arc in the vertex set of one biconnected component of fi; the
cycle C satisfies the conditions of the previous lemma. Therefore the vertices of C must
lit within a single biconncctcd component of fi. This ensures that x and y lie on a simple
cycle of ii. 1

This thcorcm establishes that the function I;‘ dcfhcd above is a filter for the bi-
connccttzd components problem. We make use of I;‘ in constructing a funncllctl-pipeline
biconucctcd components algorithm. Note that the edge set F(E) can be stored with ate
most two cdgcs per vcrtcx. At each vcrtcx wc store the depth-first cdgc from its parent
cand the back cdgc to its highest reachable ancestor. Thus back edges <arc stored at the tail
vcrtcx; tree cdgcs at the child.

The algoritlrln is structured in the same way as the minimum spanning forest algo-
rithiu. It consisl,s of a frini~cllcd pil)clinc of log n Gltcring stages. Each stage rcpcalcdly
coillbiilcs t,wo subgraphs arid Liitcrs l,llc rlnioil. The rosultillg set of ou tprlt ctlgcs arc passed
011 t o the 11cxt stage.

l3ecausc of the similarity between the structure of this algorithm and that of the
minimum spanning forest algorithln, WC prcscnt only a description of the filtration stages,
and lcavc it to the reader to fill in the rest.

At activation i, cvcry stage K: in Lhc pipclinc rcceivcs two input sets. Each set contains
at most two cdgcs per vcrtox. The filtration stage forius the union of 1,hc two graphs given
by the input sets. It performs a depth-first traversal on this urlion and discards all eclges

3. FUNNELLED-PWELINE ALGORITHMS 29

which are neither tree nor highest back edges. The remaining edges are shipped to the
next stage.

The filtration depends upon performing a depth-first traversal of the union of the input
graphs. Like the restructuring operation used in the minimum spanning forest algorithm,
the depth-first traversal must avoid making unueccssary visits to leaf vertices. Thus it will
not visit gangmember lcaves. Such a traversal can be accomplished in time proportional
to the sum of the number of internal vertices and the number of leaves that are leaders
in the inducecl depth-first spanning forest. This quantity is bounded by the sum of the
number of leaders and the number of internal gangmember vertices. Because each internal
gangmember vertex has at least one child, and each such child must be a leader, there
can be no more internal gangmember vertices than there are leaders. Hence at stage k no
more than 2k+2 vertices are visited in the depth-first traversal.

In order to avoid visiting gangmembcr leaf vertices during the depth-first traversal,
each gangmember g keeps a count unvisited-neighbors!, of its as yet unvisited neighbors.
Initially unvisited-neighbors, is the total degree of vertex g in the input graph. Each time
that a neighbor of g is visited during the traversal, the register unvisiteLneighborsl, is
decremented. If unvisiteLneighbors, reaches zero before g is visited, then g has become a
leaf of the depth-first search tree. Qtherwise, if g is visited when unvisiteLneighborsy > 0,
then g becomes an internal vertex.

Thus the filtering algorithm for every activation consists of the following steps.

’ (1) The leader vertices sequentially broadcast their names and adjacency lists. Each
gangmember g counts the number of times it hears its own name broadcast. The
degree of g, and hence the initial va111e of unvisited-neighbors,, is then g’s computed
count plus the number of edges stored at the processor corresponding to g.

(2) The depth-first search starts with some leader. When visiting a vertex y, the name y
and y’s adjacency list arc broadcast to the other processors. Any processor (i.e. vertex)
x which is not yet visited, and which recognizes y in its locally-stored adjacency list, or
hears its nanic in the broadcast list, makes note of y’s name, aud, if x is a gangmember,

- decrements unvisiteLneighbors,. An unvisited x need only retain the first and last
names noted. The last name thus noted by a processor x before it is visited (if ever) is,
of course, its parent in the depth-first search tree. This name is retained to specify the
tree edge bctwccn x and its parent. The first name noted is also retained if different

- from x’s parent; it is therl the highest ancestor reachable by a back edge from 5.

(:I) The next vertex to visit in the depth-first searcli is selected arbitrarily frolu among
the unvisited vertices v ad~jacent to the current vcrtcx which are not yet gangrnembcr
lcavcs (i.e. for .which unvisited-neighbors, f 0). If therc arc no such vertices, the
traversal backs up to the parent of the last visited vertex. If this last vertex was a
root and there arc still unvisited leaders, the traversal of a new tree is started.

Since the time for the depth-lirst traversal is O*(Z) where I is the number of internal
nodes, the time for cvory activation of stage k is 0*(2”). 11 ence the OVCridl tithing is the
same as for the minimum spanning forest algorithm, as is, for that matter, the space.

30 PARALLEL GRAPH ALGORITHMS

3.6 Conclusion

Our algorithms demonstrate the power of filtration and funnelled pipelining as well <as
some of the hidden parallelism intrinsic to many of the chassical graph problems. Within
this framework, trade-offs are of course possible between area cand time rcquircments. For
example, the log n filter units used in the funnelled-pipeline algorithms could be combined
into a single unit, thereby reducing area at the expense of a factor of O(log n) in time.

Much more radical departures also present themselves. We discuss this topic in Chap-
ter 5.

The funnelled-pipeline techniques illustrated in this chapter can be applied to a variety
of graph problems to obtain solutions superior to those previously published [L-V]. Such
problems, for which we obtain when- and where-determinate, A = T = O*(n), one-pass
ethernet implementations, include:
l Connected Components
l Spanning Tree
l 2 Colorability
0 Has a cycle -
l Has an Eulerian cycle
l Minimum Spanning Forest
l Biconnected Components
l Planarity Testing

The minimum spanning forest algorithm can be simplified to yield funnelled-pipeline
algorithms for both the connected components problem and the spanning tree problem.
Funnclled-pipeline algorithms for solving the 2-colorability, cycle detection and Eulerian
cycle detection problems can be obtained by augmenting the spanning tree algorithm.
Planarity testing serves *as the motivating problem for the next chapter.

4. Planarity and Representation

4.1 Introduction

This chapter is motivated by the problem of testing whether a given graph is planar.
We assume that the graph is presented as an n-by-n adjacency matrix. The matrix is to
be read row by row (with a when- and where-determinate schedule) into a circuit of area
O*(n) that will be allowed O*(n) time to determine whether the graph is planar.

It will be seen that solving this problem effkiently in the parallel environment of
interest depends upon solving a more fundamental problem of data rearrangement. In this
chapter we develop a solution to that problem. We also briefly discuss its relationship to
several other classic-al graph- theoretic problems.

. 4.2 Sparse Graphs qnd Their Representation

We noted that the crux of the problem of testing graph planarity lies in converting
an ;Idjacency-matrix graph representation into something more economkal. To this end,
WC dcvclop an algorithm that transforms the n” adjacency-matrix bits into a linear-sized
adjncency-list representation. Once these adjacency lists are stored, any of a variety of
0* (n)-time sequential planarity-testing algorithms can be cmploycd. Thus the problem of
testing graph planarity in the parallel environments discussed here reduces to a problem
of data rearrangement.

e
Definition 4.1: A graph G = (V,E) is called c-sparse provided that cvcry vertex-induced
subgraph G’= (V’, LP) of G satisfies the relation IE’I < clV’(.-

_ Note that every planar graph is 3-sparse (Euler’s relation), and, for another example,
every tree is 1-sparse.

Definition 4.2: A graph G == (V, E) has a c-rc~rcschklion if it is possible to place its
edges in adjacency lists A, for v E V subject to the following constraints:

l For each edge e = {u, v} in E, either e E A, or e E A,.
l For each v E V the relation I&l < c holds.

Observe that our minimum spanning forest funncllcd-pipclinc algorithm ‘made use
of l-rcprcscntations for storing and transmitting cdgc sets among the filter stages. The
biconnec ted components algorithm used 2-reprcscntations.

32 PARALLEL GRAPZIALGORITHMS

Theorem 4.1: Every c-sparse graph has a [cl-representation,

Proof 4.1: This lemma is verified by induction on the number of edges in the graph.
Clearly a graph devoid of edges has a [cl-representation. So suppose that G = (V, E) is
c-sparse and that the family A,, for v E V is a [cl-representation for G. Suppose further
that e = (u,v> $ l3 and that G’ = (V, E U(e)) is a so c-sparse. We show that G’ has ‘a [cl-1
representation. The argument is reminiscent of the augmenting-path techniques employed
in matching problems; this apparent coincidence is discussed later.

We find it useful to introduce the following definition. Let S be a set of vertices in G.
Then let A(S) contain the new vertices named in adjacency lists associated with vertices
in S. That is,

A(S) = {z 4 S 1 {s,z} E A, for some s E S}.

We wish to consider a breadth-first traversal starting at the set {u,v}. Thus we define
the sequence of sets Vi <as follows:

h = {%V)--.
Vi+l = K u A(v,).

There are two cases to consider. First, suppose that there is a vertex 20 cand a least
. integer k > 0 such that w E V,+ and IA,,)1 < [cl. In this case there is a path from u-or v

to w. That is, there is a sequence of edges er, . . . , ek-r and vertices VI E VI,. . . ,211, E Vk
such that

l v1E{u,vI

l Each edge ei joins v; to v;+l (and ei E A,i

Now by “rcvcrsing” this path, we can make room for the new edge e. Let

4, = A,), u {e} - {el)
A& = At,, u {cd - {ei}, l<i<k

A:* = Avk u {ek-1)

n; = A,, x Q! (vi 1 1 5 i < k}.

Now IA:, 1 = I&, 1 I [cl for i < k and IAL, 1 = I&, I+ 1 < [cl hcncc the family A’ is a
[c 1 -representation for G’.

If the lirst case does not hold, let k bc the sniallcst integer such that A&) = 8. Now
consider the subgraph Jr = (vk, UV,EVk A,,) of G. Evidently II contains l&l vertices and
[cl Ivk 1 dg~s. Ilcncc the subgr;\l)ll (Vk, (Ue,,C;Vk A,,,,) U(e)) of G’ contains one more edge
,and thus fails to bc c-sparse. This contradiction establishes the lcmnla. 1

4. PLANARITY AND REPRESENTATION 33

Our use of sparse representations for sparse graphs is motivated by the requirements
of distributed computation. In order to make effective use of parallel environments it is
necessary to distribute the data to be processed uniformly among the available processing
clcments.

The essence of our parallel planarity algorithm is to compute rapidly a sparse rep-
resentation of the input adjacency matrix. As noted before, once this representation has
been obtained, even conventional sequential algorithms will suffice to determine planarity
in 0* (n) time and area.

We have established that if a graph is c-sparse it has a [cl-representation (thus planar
graphs have 3-representations). IIowever, it is far from clear that there exist efficient
parallel algorithms for computing fcl -representations of c-sparse graphs. Discussion of this
topic will be dcferrcd to the end of this section. We will now present instead algorithms
for computing &-representations of c-sparse graphs. Observe that such representations
are equally suitable for the intended application.

4.3 Finding 2c-representations of c-sparse Graphs

In this section we will Cassume that the input graph is c-sparse. The algorithms may
fail if this condition is not satisfied; however it is easy to augment these algorithms so that
they detect such failure.

The following sequential algorithm finds 2c-representations of c-sparse graphs.
input G q = (V, E);
do until V = (3

Pick some ~0 E V such that the degree of 2ro is no more than 2c;
A 7’0 := ((w, WI} E Jfc 1 w E V};
E := IS - &;
v := v -- {q)};
od;

a end.

The key to the success of this algorithm is the fact that every c-sparse graph (and
hence cvcry subgraph of a c-sparse graph) contains at ICast one vertex of degree at most 2~.

- Tn order to parallclizc this iL~)j)rOiXh, wc will employ a fltllncllctl-l)ipcline construction,
TIIC iupllt to stage k ;d CX~I ;tctiv;kCion will consist of IWO ikrrikys of iuljaccncy lists. Each
aXljilCClICy list will IlilVC ikt JllOSt 2C ontrics; thus each processor will 1~ prcsclltctl with
a COtiLl of at J71OSt 4~ C~~CS. I<.CciLll I,Ili~t thcrc iwe 2 k-+J Icadcrs il.Ild tllikt cvcry ctige is
incident to at least one lcadcr vcrtcx. Stage k most rcarrangc the cdgcs so as to produce
a single array of adjacency lists, each list of length at most 2~. This computation must be
performed in time 0*(2”).

The major dificul~y in adapting the above sequential algorithm lies in the fact that
there Illiy bc i\, large nu~~bcr of vcrticcs with low (i.e. at nlost 2~) clogroe. Thus it, would
not do to visit each scqucntially. A less scvcrc difiiculty arises from our desire to produce

34 PARALLEL GRAPH ALGORITHMS

an algorithm suitable for ethernet communication. This restricted model precludes such
operations <as computing the degree of leaders by means of an addition census function.

In order to overcome these difficulties, we partition the vertices and edges as follows.
Let the I- 2 Ic+i leaders form the set L. Partition the gangmembers 1M according to their
degree:

MS = (m E M 1 degree(m) 5 2c)
MB= {m E M 1 degree(m) > 2~).

Let E be the set of input edges. Partition E as follows.

E~={e~EIe~Ms#0}

EB={eEEIenM&8)
EL = {e E E 1 e C L}.

We would like to bound the number of high-degree gangmembers. Consider the bipar-
tite subgraph (L U MB, ED). By sparseness, (EDI -5 cIL U MBI. However, by the definition
of &, the relation lEDI > 2clM~I holds. Hence 24&I < c(Z+IMBl) and thus IMBl < 1.

This fact suggests a two phase algorithm. In the first phase, vertices in MS axe
identified and their edges (i.e. those in Es) <are disposed of (by being stored in the adjacency
lists associated with the vertices in MS). The second phase is responsible for allocating the
remaining edges among the remaining vertices. In this phase there are at most 22 vertices,

. namely L u MD, and hence at most 2cl edges. An outline of the algorithm for stage Ic of
the pipe follows. .

(1) Compute. the degree of each gangmember
l This is accomplished by broadcasting all edges stored at leaders. Each gangmcm-

ber counts the number of such edges incident to itself and adds this count to the
number of edges stored locally.

l There are at. most lick edges to broadc<ast, hence this step requires O*(cl) time
(2) Deal with the vcrticcs in MS and the cdgcs in Es

l Again broadcast all edges stored at leaders. Each member of MS (i.e. gang-
members with degree at most 2c) stores each broadcast incident edge locally cand
sends a message to the broadcasting leader vertex. That leader deletes the edge
from its local memory. Thus this stage transfers all edges in ES to the processor
corresponding to their endpoint in MS.

l This step rcquircs O*(cl) time.
(3) Dcd will1 tllc vcrticos itt M,j U I4 and lhc cdgcs in I;:u U I+&

l There arc at ulost 21 vertices and 2~2 edges left
l The following algorithm can bc employed to distribute these edges appropriately:

Make all vertices in MB U L awake;
Compute the degree of each vertex by broadcasting all remaining edges;
do until all vertices are casleep

sclcct an awake vertex v with ciegree(v) < 2c;
move all cdgcs incident to v to v’s local memory;

4. PLANARITYANDREPRESENTATION 35

put v to sleep;
recompute degree of all awake vertices by broadcasting all edges re-
moved (i.e. all edges now stored at v);
od;

a This step requires O*(cl) time.
Thus WC have an 0” (c2 “+I)-time algorithm for the lath stage of the pipeline. Each of

the n vertex processors needs O(c) storage; thus each stage requires O*(n) area. (Note that
all required communications can be handled by an ethernet or bus linking the n processors.)
Hence there is Can A = T = O*(cn) when- and where-determinate algorithm for computing
S-representations of c-sparse graphs.

This establishes the following theorem.

Theorem 4.2: There exists an A = T = 0* (cn) when- cand where-determinate funnelled-
pipeline algorithm for testing graph planarity.

4.4 The Complex-i!y of Finding Representations

In this section we discuss the complexity of finding representations of sparse graphs.
We find that both the parallel and sequential complexities of this problem are closely re-

. latcd to those of the well-known combinatorial problems of finding maximum network flows
and matchings. This relationship suggest that developing a good parallel representation
algorithm is at least Gas difficult <as developing a good parallel bipartite matching algorithm.
Although we are primarily interested in algorithms requiring moderate area <and moderate
time, we point out that the prcccding observation applies also to extremely fast (poly-log
time) algorithms.

WC first demonstrate that the c-rcprcscntation problem can be reduced to a network
flow problem. It will bc convenient to restrict c to the domain of the integers. Dcfinc a
transformation from the graph G = (V, 1.) to the graph G’ = (V’, 13’) ras follows. Let V’

_ contain a vertex 6 corresponding to each vertex v E V, a source vertex s, a sink t, and a
vcrtcx 2 corresponding to each e E E. Thus IV’1 = IV1 -/- IEI + 2. The set E’ contains three
chasses of edges. Each vcrtcx in V’ corresponding to a vertex in V is joined by an edge
of capacity c to the sink t. loach vertex in V’ corrcspotiding to an cdgc in l3 is connected
by ah edge of capacily one to the source s. Finally each vertex e^ in V’ corresponding
to an cxlgc {u, v} in 13 is corlucctctl by cdgcts of unit capacity to vertices 6 and 6. Thus
pq =- 3 p[-1 Ivy. .A n CXillll~)lC of the transformation is shown in I’igurc 4.1.

Theorem 4.3: Let f be au integer valued maximum ilow function for G’. Then the total
flow from s to t under f is IEl if and only if G has a c-rcprcscntation. I?urthermorc such
maximum flows f arc in one-to-one correspondence with the c-representations of G.

Proof 4.2: Observe that since all cdgc capacities ,are integer, thcrc is <an integer valued
m~ximwn flow. Also note that since the total capacity of the ctlgcs incident to s is I&$
the maximum totd flow cannot cxcecd IJYI.

36 PARALLEL GRAPH ALGORITHMS

‘v2 v3
e2

G’

Figure 4.1: Rcprcsentation to Network l?low Transforndion
(All edges are directed upward.)

- Snpposc that the djaccncy lists A,, for v E V constitute (z c-rcprcscntation of G.
‘i’hc~r ddino the llow f by:

f({ s, f?}) = 1 for all g E V’ corresponding to e E E;

f(iW> = I&l for all 6 E V’ corrcsponcling to v E V;

finally, for e^ E V’ corresponding to (21, v} E E, let

S(W>) == {
1, if {qv} E A,,;
0, if {u,v} E A,.

4. PLANARITYANDREPRESENTATION 37

It is easy to check that f is a legal flow and that f has total flow IEI and hence is
mCaximum.

f

Suppose on the other hand that f is a maximum flow with total flow IEi. Then we
can find adjacency lists A, from f as follows. Let e = {u,v} be in E. Place e in A, if
f({a,C}) = 1. (Note that one of f({e^$}) and f({Q}) 1ras value zero, the other has value
o n e .) 1

Thus we have established that the c-representation problem can be reduced to the
network flow problem. Notice that since we may assume that IV(< IEI 5 c [VI, the size
of the network flow problem exceeds the size of the representation problem by at most a
factor of O(c). Note also that the reduction can be accomplished in log space.

We next demonstrate that the degree-bounded perfect bipartite matching problem
can be reduced to the representation problem. Suppose that G = (U U V, E) is a bipartite
graph of maximum degree c, and that we wish to find within it a perfect matching. In
order to reduce this problem to a representation problem, we introduce the notion of an
edge source.

Suppose that a graph H contains as a subgraph K the complete graph on 2c + 1
vertices. Note that K is c-sparse and thus by Lemma 4.1 it has a c-representation. But
since K has exactly ‘the maximum number of edges (c(2c + 1)) possessed by any c-sparse
graph on 2c + 1 vertices, each adjacency list in any c-representation of K is full. Therefore,
in any c-representation of H, any edge joining a vertex in K to a vertex in N - K must
be stored in the adjacc\ncy list corresponding to its endpoint in H - K. For this reason,
we call the complete graph on 2c + .l vertices an edge source.

We transform the bipartite graph G into a graph G’ as follows. G’ will contain as a
subgraph G itself. Now the idea is to arrange things so that in any c-rcprcscntation of G’
the adjacency list for any vertex u E U will have room for exactly one edge from E. For
each vertex v E V, the constructiou will allow room for exactly d - 1 edges of E, where d
is the degree of v in G. These conditions will ensure that G has a perfect matching if and
only if G’ has a c-representation. Indeed, an edge {u, v} will be stored in A, if it is a
matched edge and will bc stored in A, otherwise.

a Thus to construct G’, WC first add to G an edge source K, i.e. a complctc graph
on 2c + 1 vertices. For each vcrtcx u E I/, WC add c - 1 edges connecting u to any c - 1
vertices of K. (Since in any c-reprcscntation of G’ these edges cannot be stored at their K
endpoints, they must all be stored at U; this cnsurcs that the adjacency list for u has room
for exactly one edge of E.) Likcwisc, let v bc in V ad let cl be the dcgrcc of v in G. Add
ctlgcs corrnccting v to any c - d -1 1 vertices of K. This c~~sm-cs Crlllilhucut of the second
rcquircmcnt, uauioly that each v C V hs ro011~ for exactly ct --- 1 ctlgcs of E.

This construction cstablishcs the following theorem.

Theorem 4.4: G has a pcrfcct matching if and only if G’ has a c-representation. 1

Note that G’ contains Ir/l + IV1 + (2c $- 1)
c Iv1 -I- c(2c -f- 1)

vcrticcs and at most IEl + (c - 1) IUI +
cc cs. Thus spin the size of G’ cxcocds that of G by at most a factor oflg’

O(c) aucl the transformation process requires only log space.

38 PARALLEL GRAPH ALGORITHMS

We have established that the sequential time complexity of finding c-representations
lies between that of finding perfect matchings in degree-bounded bipartite graphs and that
of finding maximum flows. Because the above reductions require only log space, the same
statement holds for parallel time complexity in the PRAM model [F-W]. Furthermore,
these reductions can be easily performed at negligible cost in the parallel environments
of concern here, namely those permitting moderate area and moderate time. Thus we
make the somewhat imprecise statement that finding efficient parallel algorithms for the
c-representation problem appears to be as difficult as finding good parallel algorithms for
the bipartite matching problem.

It is perhaps worth observing that the 2c-representation problem can be viewed as
an easily computed approximation to the c-representation problem. In fact it is possible
to construct a poly-log time PRAM algorithm for computing 2c-representations. Such an
algorithm can be based upon the idea of repeatedly removing from the graph all vertices
of degree at most 2c. The following lemma establishes that each such iteration removes
at least a fixed fraction of the remaining vertices, and thus O(log n) iterations suffice.
This idea is exploited (and explained in greater detail) in Chapter 5 to obtain a two-stage
funnelled-pipeline algorithm for computing 2c-representations.

Lemma 4.1: Every ‘c-sparse graph on n vertices has at least e vertices of degree at
most 2c.

Proof 4.3: Let VB be the set of vertices of degree greater than 2c; let VS contain those of
. degree at most 2c. Let EB be the set of edges with both endpoints in VB, let Es be the set

of edges with both endpoints in VS, and let Ex contain those edges joining a vertex in Es to
one in ED. By the definition of ED, we have (2c+l) IVB I 5 2 IEBI + IEx I. By the definition
of sparseness,] EDI 5 c IVol. By the definition of Vs, wi have] Exl 5 2c I&l. Thus
(2c + 1) IVuI 5 2c lV,pl + 2c IVsl = 2cn. Hence IVnl 5 2cn/(2c + 1) and IVsl 2 n/(2c + 1).
I

We remark that the subject of poly-log time PRAM approximation algorithms for
finding solutions to dillicult problems (P-Complctc problems) is cxplorcd in [AM]. We

- also note the cxistcnce of a probabilistic poly-log time PRAM algorithm for solving the
matching problem [KTJW]. 1~1 [CSV] Ci is demonstrated that the network flow problem
(where the capacities are specified in’unary) can be reduced to bipartite pcrfcct matching.
Thus thcrc is a probabilistic poly-log time PRAM algorithm for finding c-representations.
Ilowcvcr, WC do not know whcthcr there is a dctcrministic poly-log time PRAM algorithm
fo; liilding c-rol)rcs(!J~t;ltiol~s (or, for that matter, finding Xc-rcprcscntations for any X < 2).*

4.5 Conclusion

WC have used the funncllcd-pipclinc paradigm to dcvclop an cflicicnt parallel solution
to the problem of converting the adjacency matrix of a sparse graph into an cquivalcnt set

4. PLANARITYANDREPRESENTATION 39

of adjacency lists. One application of this data-rearrangement algorithm is to the problem
of determining graph planarity.

We have also shown that the representation problem for sparse graphs is closely related
in complexity and structure to several other well-known graph problems. This relationship
gives rise to a number of open questions. Among those questions are the following.

la. Are there area- and time-efficient parallel algorithms for solving the AC-representation
problem for X < 2?

b. Are there fast deterministic PRAM algorithms for solving the Xc-representation prob-
lem for X < 2?

2a. Are there area- and time-efficient parallel algorithms for solving the bipartite matching
problem?

b. Are there fast deterministic PRAM algorithms for solving the bipartite matching prob-
lem?

3. Are any of these problems log space complete for the class P?

5. Two-Stage Funnelled Pipelines

5.1 Introduction

Each of the funnelled-pipeline algorithms presented in previous chapters used a row-
by-row input schedule, and an architecture composed of a linear array of processors. In
this chapter, we consider an alternative structure. This structure, the two-stage funnelled
pipeline, makes use of a more powerful architecture and reads its input in a block-by-block
fashion. We attempt to contrast these two methods of pipelined filtration.

5.2 Two.-Stage Architecture

Our previous filnnellcd-pil’“line algorithms required only modest interprocessor com-
munication. This rcquiremcnt was met by a simple cthernct or bus interconnection net-
work. One advantage of such simple networks is that (in our VLST model) they require
very li ttlc arca to implcmcnt. Ilowevcr, scvcral other intcrconncctiori schemes arc nearly as
space cflicient, but support siguilicantly grcatcr commuuication. We employ two of these

_ arrangements, namely the mesh of processors and the mesh of trees.

In both of thcsc architccturcs, the n processors arc arranged in a &-by-+ lattice
pattern. In the nrcsh of processors, each unit is conr~ected to its four nearest neighbors.
In -the mesh of trees, this pattern is augmcntcd by the addition of row and column trees.
Thus thcrc is a tree is associated with each row and each column of the nicsh. Each such
tJW! IliW iIS h,S k!aV(!S tflC J~rOCCSSOrs iJl th<! (~(~rr(!Sl)<)Jl(lif~~ TOW Or COlUlJlJl. It is CoilV(!lliCllt

t o idcrltify the r o o t JIO~C o f the colmlm-i tree w i t h the r o o t o f the r o w - i tree. B o t h t h e
mesh-of-processors and the mesh-of-trees Carcliitcctures can be implcmcntcd in O*(n) area.
We rcfcr the reader to [U] and [F-L] for further detail.

E’ilter stage one will cxccute on a mesh of trees; filter stage two on a mesh of processors.
The two stages arc connected togcthcr by & links: the co11m~o11 root of the it’& row <and
coluiiin trees of the ~ucsh of trees is conncctcd to processor i of the first colunln of the
mesh of processors. This 0* (n) MC;1 layout is illustrated in Figure 5.1.

5. TWO-WAGE FUNNELLED PIPELINES 41

,/ii-by-~ Mesh of Trees &i-by-&i Mesh of Processors.
0 0 0 0 l 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 l 0 0 0 0 0

0 0 0 0 0 0 0 0 0

e 0 0 l l 0 0 0 0

0 4 0 0 0 0 0 0 0

* 0 0 0 l 0 0 0 0

0 p -4 0 0 l 0 0 0 0
.

Stage One Stage Two

Figure 5.1: Two-Stage Pipeline Architecture.
(Only the tree-root processors are indicated in the mesh of trees)

5.3 A Two-Stage--Connected Components Algorithm

We again assume that the connected components problem is input ras an n-by-n ad-
jacency Jnatrix A. Instead of reading the matrix row by row, we read it subblock by
subblock. Specifically, we partition the matrix A into $-by-q subblocks Bi,i as fol-
IOWS: Bi,j (for 0 5 i 5 j < 2J)n contains the entries A,(v) for i$ 5 u < (i + 1) $
and j$ 5 v < (j + 1) -$. This partitions A into 272 + fi L- O(n) subblocks. Each of
these subblocks rcprcscnts a subgraph of the input containing at JJJost fi vertices (each
“diagonal” block Bi,j contains only $ distinct vertices; all others contain fi vcrticcs).

The stage-one filtration consists of reading a subblock Bi,i into the nJcsh of trees,
CoJJJputiJtg the connected components of the graph represcntcd by Ui,j) and passiJJg the
result to the stage-two processor. WC examine each of these steps in turn.

It is most convenient to read the bits of subblock I3i.j into the processors so cas to
maintain au adjacency matrix format; wc let row m arid coluinu m of the processor array
correspond to vertex z‘$ + m if m < -9 and to vertex j$ + (m - -9) if m 2 9-
(for diagonal blocks, i.e. if i = j, WC ignore all but the first e rows and columns of
the fi-by- fi processor array).

T11c cotlrlcctcc! c~JJJ~~J~CJJ~S of the graph represented by II;,, CaJ1
tiJnc 0~1 the mesh of trees. Such speed is yossiblc bccausc there arc
12 processors). The idea is to Jncrgc rcpeatcdly groups of vertices

be COIH~III ted in 0* (1)
only fi vcrticcs (but
)elonging to the same

connected coJnponcnts. In each of O(log n) iterations, each group selects an idjaccnt lower-
numbered group (if any exist) and JJJcrges with it. Each iteration can be accomplished
in 0* (1) time. A full presentation of the method is given in [U]. At the conclusion of
this process, each vertex v, rcprcseJJtec1 by the root of its row and column trees, kJJows its
councctcd coJuponcJJt JmJJJbcr cc(v). This data is rccortlcd by having each vertex v generate

42 PARALLEL GRAPH ALGORITHMS

an edge from itself to CC(V). It is then possible to transfer in parallel these fi edges to
the stage-two filter.

We should note that the algorithm that we are describing is not a faithful filtration.
However, it is not difficult to augment the stage-one filtration so that it finds a spanning
tree. We leave the details to the reader.

The second-stage filter serves partly cas a buffer. Each of its processors (u, v) has two
registers: bufler,,, and edge,,, . Each is capable of holding an edge; thus the total capacity
of stage two is 2n edges. Each processor uses its buffer register for temporarily holding
stage-one output. After each activation of stage one, the data buffered in each column of
the stage-two filter is shifted right by one column to make room for the next column of
stage-one output. Thus, at le<ast for buffering purposes, the rows of the stage-two filter
array serve as nothing more than shift registers. After fi successive activations of stage
one, the stage-two buffer is full.

In order to empty the buffer, a connected components computation is performed on
the graph represented by the edges l3 = { bu#‘er,,v 1 0 5 u, v < fi} U {edge,,, 1 0 5 u, v <
fi}. It should be pointed out that all registers edge,,, are empty the first time that the
buffer becomes full. The stage-two connected components computation results in a set of
at most n - 1 edges representing the connected components of E. These edges arc stored
back in the edge registers. Thus the buffer registers are emptied, and stage two will again
be ready to receive another n edges from stage one.

Note that the set of edges E may comprise a graph on all n vertices. Nevertheless, it is
. possible to compute the connected components of J5’ in 0*(n112) time. Such in algorithm

can be based on the fact that it is possible to sort O(n) records in O*(n’/2) time on a mesh
of n processors (refer to [T-K]). Connected components are again computed by repeatedly
merging groups of vertices. Each vertex is represented not by a particular processor, but
by a record. Sorting is used to find the lowest numbered adjacent group. It is also used for
“message routing” (both the one-to-one routing operation and the one-to-many routing
operation are used in the connected components algorithm). We lcave the details of this
connected components algorithm cas an interesting cxcrcisc for the reader.

The outline of the two-stage-pipeline connected components algorithm is as follows.
- program components;

begin
Initialize;
for bigcycle := 0 to 2fi + 1 do

- for liMecycle := 0 to fi - 1 do
Rend a subblock into stngc-one processors;
Compute the’ co~~~~~tc<l con~poncnta of the subblock;
Shift the resulting conncctcd col>lponcnts output into stage two.
od;

co Note that above loop takes time O*(n’l’);
co Stage-two buffer is now full. Empty it oc;
Find the connected components of the at most 2n stored edges stored in time O’(n’12)
od;

Output stage-two edge rcgistcrs
end components .

5. TWO-STAGE FUNNELLED PIPELINES 43

Because the speeds of the two filter stages are properly matched, the cntirc algorithm
takes time O*(n) to compute the connected components of the input graph. Thus we have
yet another when- and where-determinate 0* (n)-czrea-and-time connected components al-
gorithm.

We should note that this algorithm differs from the previous ones in that it requires
input pads to lie in the interior of the circuit. In contrast, the previous algorithms can all
be implemented as “boundary layouts”.

5.4 Finding Minimum Spanning Trees and 2c-Representations

The organization used to implement our two-stage connected components algorithm
applies equally well to many closely related problems such as finding spanning trees and
minimum spanning -trees. Again we leave the details to the reader.

We illustrate a two-stage funnelled-pipeline 0* (n)-area-and-time algorithm for finding
%-representations of c-sparse graphs. The operation of our algorithm consists of two major

. steps. The first step, the read-and-store step, uses a two-stage funnelled-pipeline algorithm
to read and store all edges of the input graph. The second step rearranges these stored
edges so as to produce a valid 2c-representation of the entire graph.

The read-and-store step itself makes use of a 2c-representation algorithm to ensure
the orderly transfer and storage of input edges. Every time a subblock of the adjacency
matrix is read, its 2c-rcprcsentation is computed by the stage-one filter. This permits the
stage-one filter to transfer rapidly these cdgcs to the stage-two buffer; each of the fi root
processors transfers its at most 2c edges to the corrcspondiug row of the stage-two mesh.
After every fi repetitions of this process, it becomes necessary to “compact” the stage-

- two buffer. This requires nothing more than a sorting operation to rearrange the at most
cn stored edges.

Both the stage-one filtration and tlhe final 2c-rcprcscntation computation care pcr-
formed by mcans of a “grcctly” algorithlu. In Lemma 4.1 we remarked that every c-sparse
graph on n vcrticcs has at least St% vcrticcs of clcgrcc at most 2c. This observation
suggscs!s a very siniplc algoritlinl. The icloa is to identify those vcrlicos witli clogrcc 2c or
less. All such vortices lhcn grab their ihcidcnt edges and remove them frown the gra,ph.
This process, which requires O*(c) time ou a mesh of trees, and O*(fi) time on a mesh
of processors, eliminates at least a fraction & of the vcrticcs. By repeating this pro-
cess O(log n/ log F) times, a 2c-rcprcscntation is found. Thus each first-stage filtration
requires time 0 * (1) and the final 2c-representation computation rcquircs time 0* (fi).
Note that the final ‘Lc-rcprcscntntion computation is fasbcr than it need be; any O*(n)
time procedure would sullice.

44 PARALLEL GRAPH ALGORITHMS

5.5 Conclusion

We have seen that many of our graph problems can be solved efficiently with two-stage
funnelled pipelines. Thus there are good algorithms for these problems both with row-by-
row, and with subblock-by-subblock, input schedules. We note several open yucstions.

The two-stage funnelled pipeline seems to provide greater computational power than
that provided by census function architectures. Thus it seems reasonable to expect that
there are natural graph problems that can only be satisfactorily solved in the two-stage
model. On the other hand, our row-by-row algorithms made effective use of the constraint
on the number of “leaders” appearing in subgraphs. This constraint made possible certain
types of rapid filtration. In particular, it is not clear whether there is an efficient two-stage
funnelled-pipeline algorithm for solving the biconnected components problem. Thus we
leave the reader with the following questions.

I. Is there a two-stage funnelled-pipeline algorithm for solving the biconnectcd compo-
nents problem?

2. Find examples of (uncontrived) graph problems that are solvable with the subblock-
by-subblock input schedule, but are not solvable with row-by-row schedules.--.

6. Strongly Connected CompQnents

6.1 Introduction

In this section we consider the strongly connected components problem. This problem
is inherently more difficult than those examined in previous chapters. In fact, any when-
and where-determinate circuit that solves the strongly connected components problem
requires Q(n”) area. This is because there is no way to safely discard edges when examining
only a portion of the input. In other words, no filter can significantly reduce the volume
of data. It should be noted that we are requiring the input schedule to be scmelcctive;
that is, the data is read only once. We will mention other classical problems that share
this difficulty.

It is possible however to obtain <an efficient strongly connected components algorithm
by relaxing the requirement of when- and where-determinacy. We will develop such an
algorithm, making use of techniques similar to those presented in previous chapters.

6.2 The, Strongly Connected Components Problem

Let G = (V,E) b e a directed graph. We dcfinc a relation -k on V as follows: u * v if
u = v or if there exist directed paths in E from u to v and from v to u. It is easy to set that
* is an equivalence relation. The strongly conrrectcd components of G are defined to bc the
equivalence classes of *. They arc rcprcscntcd by a function see : V ---+ V where see(v) is
the lowest-numbered vcrtcx lying in the same strongly connected component as v.

As usual, we will assume that the input is presented <as au n-by-n adjacency matrix A.
- Entry Ai = 1 if there is an edge directed from vertex i to vertex j. We insist that the

circliil, m-o~li~c~ as output the function see.

6:3 A Lower I3ound

We present a lower bound of il(n2) on the <area rcquircd for computing strongly con-
nected components. This lower bound depends upon some assmnptions rcgarcling input
and output conventions. For our purposes, it would sufhcc to prove this bound in the case
of when- <and whcrc-dctcrminate circuits that read the input data once. However, it is
not much more diflicult to prove that the lower bound applies to a much larger chass of
inp[rt-output scl~odulcs. We show that the bound applies t,o any circuit in which the inputs
arc read in any fixed sequcncc. WC call such input scl~etlulcs wllat-<letcrlllinatc.

46 PARALLEL GRAPHALGORITHMS

Definition 6.1: A circuit is what-determinate provided that
read once in some tied sequence.

.

Definition 6.2: L e t I = {II,.. . , ICC} denote the set of
determinate circuit. Then there exists an input schedule S
where S(t> d enotes the set of variables read at time t. Note
t # t’ and that Ut S(t) = I.

its inputs 1.1, 12, . . . , Ik are

input variables of a what-
associated with the circuit,
that S(t> n S(t’) = 8 when

We prove our bound by means of Can adversary argument. In particular, we will
show the existence of a large “fooling set” of subgraphs dcfrned by inputs read early in
the schedule. Because the circuit will have to remember which of these graphs it has
encountered, it will need a large amount of memory, and hence, be large.

Assume that S is the input schedule associated with some what-determinate circuit
computing strongly connected components on n-vertex graphs represented by adjacency
matrices. Thus each set S(t) consists of adjacency-matrix elcmcnts. We may cassume that
for all t we have IS(t)1 < en2 (where c is any small fixed constant). Otherwise, since each
input pad takes constant area, we immediately have fl(n2) area.

Arbitrarily partition the set of vertices into four sets VI, V& Vs and Vi, each of
cardinality z. It is convenient to view the input variables in S(t) as a set of potentially
present edges, namely the set {(i, j) 1 the variable Ai is in S(t)}. Thus the statement
that the edge (i, j) is read at time t means that at time t the bit A;(j) of the adjacency
matrix is read, i.e. that the variable Ai(j) is in S(t). Let to be the earliest time by which
half of the edges directed from some Vi to some other Vi, have been read. That is, let to

be the minimum such that there exist i and i’ with Utst, S(t) n (Vi x Vii) 1 2 f IVi x Vi/ 1.
We assume without loss of generality that i = 1 and i’ = 2. Let E = Utlto S(t) n (VI x V-2)
be the set of ‘(early” cdgcs. Thus IEI > i IV1 x l-51 = n2/32. Our fooling set will consist
of graphs which differ from each other only in their intersection with E.

Let the “late” edges, L, be the set Ut,tu S(t) n (V’ x Vs). The adversary will make use
of the cdgcs in L in order to distinguish bctwccn members of the fooling set. Note that L is
quite large. Because to was chosen to be minimum, we have that IUICta S(t) n (Vd x V3)1 <

; IV4 x V3l* Hence, Ut>t, S(t) f-l (V4 x v3)i 2 5 IV4 x V,I Land thus IL1 2 ; IV.4 x V3(-
’en2 = (1 -d)g.

We will pair each vertex in VI with a mate in V3. Similarly, each vertex in V2 will be
mated with one in Vd. Such a pairing will be denoted by a function P which bijectivcly
mnps V] to v3 and v, to vij. ICach graph in our fooling set will cohsist of tlro set of cdgcs
{(V(v)) I v c w u {(l’(v),v) I v C VI} (in ruldiliom to SOIIIC’ ctlgcs in 13). Observe that
no such graph cont+ns any directed cycles, and thus each vcrtcx forms its own strongly
conncctcd component. Suppose, however, that the edge (vr, ~2) for vr E VJ, and 212 E V2
were present. If the adversary can install the edge (P(vz), P(Q)), then a unique cycle is
formed, and the strongly connected component structure is altered accordingly. Of course,
if the edge (vr, 212) wcrc not prcscnt, then the edge (P(vz), P(vr)) would create no cycle.
So, if the ctlgc (P(v2),P(vr)) 1 its in L, the adversary can use it to test for the prcsencc of
the edge (vr,vz).

6. STRONGLYCONNECTEDCOMPONENTS 47

Definition 6.3: Suppose that P is a pairing. The edge (VI, va) is said to be unconcealed
if (q,v2) E E and (P(vz),P(v~)) E L.

Our objective is to find a pairing P that results in a large set of unconcealed edges.

Definition 6.4: If P is a pairing, let K(P) = 1 {e 1 e is unconcealed under P} I.

Lemma 6.1: There exists a P such that K(P) = n(n”).

Proof 6.1: L e t K = &,K(P). L te m be the number of possible pairings; thus
m = ((z)!)“. For e E E let k(e) = I(P I e is unconcealed under P} I. Note that by
interchanging summation order, we also have K = xeEE J?(e). But for all e E E, we have
it(e) = IL1 ((a - 1)!)2 (for a given e’ E L, there are ((2 - l)!) 2 pairings under which e’
can be used to test for the presence of e). Thus K = I E(I LI ((: - l)!) 2. Hence there is
a P for which K(P) 2 g = IEI IL1 (z)-” = fl(n2). 1

Let P be such that K(P) = n(n”) and let E’ c E be the set of unconccalcd edges.
Let ? be the pairing edges derived from P as described above. Then let the fooling set F
consist of all graphs. of the form J?? U i) for & c E’. Note that IFI = 2”tn2).

We claim that the circuit cannot operate correctly if any two distinct members fi
and f2 of F result in the same circuit state at time to. This claim is established by
contradiction; suppose that SJ. and f2 result in the same circuit state at tim.e to. Choose
some e in the symmetric difference between fr and f2. By construction, e is unconcealed.
Hence the adversary can USC some edge e’ of L (which is read only after time to> to test
for e. The strongly connected components of fr U {e’} differ from those of f;! U {e’}. In
particular, the value taken by the function see on at lcast one endpoint of e depends on
whether the input graph is fi U {e’} or f:! U {e’}. Thercfore the circuit cannot have output
this value before time t u. Furthermore, since by assumption the circuit arrives in the same
state at time tu for both fk and f2, and since the inputs read <after to arc the same in
either case, the computation scyuence after to (and hcncc the output) is the same in tither
case. The resulting contradiction proves that the circuit must have 2L’(7’2) possible states.

- Therefore K+-z”) is a lower bound on the circuit area.

Theorem 6. I: Any what-dctcrminate circuit computing strongly connected components
requires 0(n2) area. 1

6.4 A Strongly Connected Components Algorithm

We now describe the consequences of relaxing our rcquiremcnt of what-determinacy.
In [L-V] an 0* (n)-area-and-time circuit is presented Chat computes strongly connected
components. Their circuit both reads the input twice and makes USC of a data-dcpcndent
input schedule. Tcchniqucs sinlilar to our filtering methods can be used to improve the
result .

48 PARALLEL GRAPH ALGORITHMS-

Our circuit accepts as input an n-by-n matrix A. Entry Ai = 1 if there is an arc
directed from vertex i to vertex j. The rows are read one at a time, but in .an order that
depends on the data. However the data is read once and the timing of successive row reads
is data independent; each row takes O*(l) time to process.

The Carchitecturc consists of n simple processors. They arc interconnected by an eth-
ernet (or a binary tree). As mentioned in Section 2.4 we mcake use of the Broadcrzst,
Maximum and Minimum operations. Each processor corresponds to a vertex of the graph.
The correspondence is permanent; processor i is responsible for vertex i.

The algorithm presented here is, in essence, a parallel implementation of the well
known depth-first search method for determining strongly connected components [AHU].
At each stage, a “current” vertex, c, is selected according to a depth-first ordering. The
adjacency matrix row for this vertex (i.e. the row containing the edges departing from c)
is read into the processors. This data is then processed so that the state of the processor
registers correctly reflects both the strongly connected components induced by the rows
so-far read, cand the information needed for processing the, Gas yet, unread rows.

Each processor i contains the following registers:

(1) status(i): The possible values and their meanings are as follows:
l unlouched: No edge directed towards vertex i has yet been encountered.
l pending: A “tentacle” edge directed towards vertex i has been encountered, but

this vertex has yet to be explored.
l closed: Vertex i and its descendants have been explored, and the strongly con-

nected component containing vertex i has been determined.
l open: Vertex i has been explored, but the algorithm is still exanlining its descen-

dants.
(2) dj-no(i): This rcgistcr stores the depth-first number of vertex i (i.e. the time at which

vcrtcx i is first visited by the depth-first starch). It is of significance only when
status(i) is tither open or closed.

(3) timenc(i): This Geld is used to enforce depth-first starch. It has Iwaning only for
pending vertices. timenc contains the depth-first number of the last encountcrcd vertex
with a “tent&c ctlgc” to vertex i.

e (4) scc,dfno(i): This field contains the lowest depth-first number of any vertex known to
be in the sanle strongly connected component <as vertex i. This field scrvcs roughly
the same purpose as LOWLINK in the strongly connected components algorithm
prescntcd in [AI IU].

* There arc two significant “globnl” rogistcrs. The rcgistcr time corlnts the nu Inbcr of
vcrticcs t11iIC JliLVC bCCil c9q)lored. ‘I’hus it, COJltilillS lhc depth-first nrlrllhr of the currcllt

vertex. The register c contains the II;WC of the current vertex.
The following facts are central to understanding the algorithm.

(1) A strongly conncctcd component is identified by the lowest depth-first number of <any
vertex it contains. The vertex with lowest depth-first number is called the root of the
strongly connected component.

(2) Vcrliccs arc cxplorcd irl tlcpIh-first order. It is iinportant to note that once iI tlcpth-lirst
search explores tllc first vcrtcx of a given strongly conncctctl component, it does not

6. STRONGLYCONNECTEDCOMPONENTS 49

backtrack from that vertex until it hCas explored all vertices in that strongly connected
component.

.

(3) After each stage (i.e. after a vertex is explored), the fields see-dfno correctly reflect
the strongly connected components induced by the so-far read edges.

(4) All strongly connected components containing closed vertices, contain only closed ver-
tices. Furthermore, such components are complete even with respect to unexamined
edges (i.e. they contain everything they will ever contain).

(5) All strongly connected components containing open vertices, contain only open vertices
(however such components rare not yet necessarily complete).

Note that (4) and (5) justify the use of the terms open and closed components.

(6) The open strongly connected components form a linear chain ordered by ancestry; this
order is compatible with the depth-first numbering of the components’ roots. Thus if
vertices i <and j are open and see-dfno(i) < see-dfno(j) then the root of i’s strongly
connected component is Can ancestor of the root of j’s strongly connected component.
In particular, the root of every open component is an ancestor of the current vertex.

The edges emanating from the current vertex are classified into three categories:

l An edge is called a tentacle edge if it is directed from the current vertex c to any
vertex j where status(j) =
If status(j) =

untouched or status(j) = pending (i.e. if j is unexplored).
untouched, this tentacle edge is “remembered” by storing time (i.e. the

depth-first number, of c) in timenc(j) and setting status(j) to pending. This permits
the algorithm to perform a depth-first search. However, if status(j) = pending there
must have already been encountered a tentacle edge from some vertex r to j. We
claim that this previous tentacle edge to j can be safely forgotten: r must already
have been explored since depth-first search is employed, and by invariant (4), T cannot
be closed. IIence r must be open and invariant (6) guarantces that r is an canccstor
of c. Therefore any path using the tentacle edge from r to j can be rcroutcd from r
to c and then from c to j by the newly discovcrcd tentacle. Thus the previous tentacle
edge is irrelevant to the determination of the strongly connected components. So the
algorithm simply sets timenc (j) to time, thereby remembering only the latest tentacle
edge.

l An edge (c, j) is a closed cross edge if status(j) = closed. Invariant (4) implies that
closed cross edges can bc ignored.

-0 An edge (c, j) is ZI,II o~xxl cdgc if status(j) = oIlen. Note that this category includes,
a~nong others, what are c;~llctl back edges in]AJlU]. S’mcc, by i n v a r i a n t (G), the root of
j’s strorlgly corl~loctcd colllponcnt is an ~~r~c~StOr of c, it lllust bc! the cast that c and j
belong in the same strongly conncctcd component. In fact, invariant (6) implies that all
open components with depth&St number greater than or equal to see-t&o(j) must
be merged. Note that at each stage the algorithm need only consider one open edge,
namely the open edge which leads to the vertex k with lowest see-djno. By merging all
open components with depth-first number greater than or equal Co see-dfno(k) (into
a single component with depth-first nurnbcr see-d]no(k)), the algorithm correctly
disposes of all open ctlgcs and maintains invariant (3).

50 PARALLEL GRAPH ALGORITHMS

The subroutine below explores the current vertex c. The routine for selecting the
current vertex is given later.
procedure explore;

begin
co Visit the current vertex c oc;

co read c’s input row and initialize processor registers oc;

for all k, 0 5 k < n do in parallel read adjacency matrix bit A,(k) into edge(k) od;
status(c) := open;

4f no(c) := time;

see,dfno (c) := time;

co Deal with tentacles hanging from vertex c oc;

for all i, 0 < i < n such that status(i) E {untouched,pending} and edge(i) = 1 do in
parallel

status(i) : = pending;

timenc(i) := time

od; --.

CO Process open edges oc;

if I{ilO<i< n and status(i) = open and edge(i) = 1}1 > 0 then
let t be such that scc,dfno(t) = min{scc,dfno(i) 1 status(i) = open and edge(i) = 1);
co merge all open components whose dfs number is at least t oc;

for all i, 0 5 i < n such that status(i) = open and t < scc,dfno(i) do in parallel
see-dfno (i) := t od

Ai
end explore;

Note that this procedure nlaintains invariants (1), (3), (5) and (6). Note also that it
requires 0* (1) tinle- on an cthcrnet Carchitccture.a

The renl;kining issue is pcrforrning the depth-first starch and placing vertices in closed
status. Depth first search (invariant (2)) is acconlplishcd by selecting the new current
vertex m arbitrarily front the set of pending vertices with largest timenc fields. (If no
vcrticcs are pending, the algorithnl arbitrarily selects an untouched vertex;)

Thcrc arc l,wo casts to consider. If limenc(m) -- time, t,hcn m is a descendant of the
current vcrtcx and no SlJCCiiLl iKI,iOI1 is required. On the other lli111C1, if timenc(m) < time,
the depth-first scar& is backtracking. In this cast it niay bc necessary to close sonle
conlponcnts (in order to nncintain invariants (4), (5) and (6)). Now the latest encountered
tentacle to m conies front sollle open vertex j and dlno(j) = timenc(m). Thcreforc all (if
any) Qpen conlponents with depth-first nun~ber strictly greater than scc,dfno(j) must be
closed. By invariant (2) these conlponcnts cannot be ancestors of m, <and all other open
coniponcnts are ancestors of m. Note that invariant (6) is n~aintaincd. The proccclure is
given below.

6. STRONGLY CONNECTED COMPONENTS 51

procedure nextcurrent;
begin

co pick the next current vertex oc;
if I{; 1 0 5 i < n and status(i) = pending}1 > 0 then

Pick m so that timenc(m) = max{t;menc(;) 1 0 5 i < n and status(i) = pending};
t := timenc(m)

else
co start traversing a new tree oc;
let m be any untouched vertex;
t := -1

fi;

co close components that are now complete oc;
for all i, 0 2 i < n such’that status(i) = open and t < see-dfno(i) do in parallel

status(i) := closed od;
co set current vertex register oc;
t ime := time + 1;
c := m;

end nextcurrent; __

Note that this procedure requires O*(l) time. The main program is as follows:
program SCC;

begin
co initialize oc;
for all i, 0 5 i < n do in parallel status(i) :=‘untouched od;
co perform depth-first search oc;
repeat n times

call nextcurrent;
call explore
od;.

co write the output oc;
for all i, 0 5 i < n do in parallel

write see-dfno(i) od;
end.

This completes our one-pass, 0* (n)-area-and-time, data-dcpendcnt-input-schcdulc,’
stzon$y conncctctl conlponents algorithm.

52 PARALLEL GRAPH ALGORITHMS

6.5 Other Hard Problems

We have seen that the strongly connected components problem is inhcrcntly more
difficult than those examined in previous chapters; any what-determinate circuit for com-
puting strongly connected components requires a large amount of memory. A number of
other important graph problems share this unattractive property. We list some of these
below.

(1) Breadth-first search on undirected graphs.
(2) Breadth-first search on directed graphs.
(3) Depth-first search on directed graphs.
(4) Matching.

All of these problems require n(n”) area if they are to be solved by what-determinate
circuits. Because the formal proofs are somewhat tedious, we merely give the main ideas.

The Sl(n2) lower bound is easily established for problems one through three if the
root of the traversal is not data dependent; for instCance, if vertex zero is always the first
vertex visited. In this case, (which we call the fixed-root case) 2L’(“2)-sized fooling sets are
readily constructed. Matters are slightly more complicated when the circuit is allowed to
choose its initial root according to the data. We call this version the floating-root problem.
Perhaps the easiest way to proceed is to observe that a fixed-root problem can be simulated
by a corresponding floating-root problem. The idea for breadth-first search on undirected

. graphs is to make two copies of the f&d-root problem ‘and join them in an appropriate
manner. One satisfactory way to join the copies is to identify the two instances of the
desired root vertex. This will ensure that at least one copy is traversed starting at the
dcsircd root. Observe also that directed breadth-first starch simulates undirected breadth-
first search. The bloating-root depth-first starch can also be handled by the two-copy idea;
WC leave to the reader the problem of finding a suitable way to join the copies.

The lower bound for matching can bc cstablishcd in much the same way Gas that for
strongly connected components. One must show the cxistcncc of two equal-sized sets of
vertices VI mid V2, a pairing I’ between thcrn, and two “probe” vcrticcs pl cand p2 with

_ the following properties.

l There is a set E of n(n”) cdges ‘oining vertices in VI, ‘and all adjacency-matrix bitsJ

corresponding to members of E are read prior to time to.
l The scc of adjacency-matrix bits corresponding to the edges in L = {{i, j}] i E
. (~1, pa} and j E Vx} arc read after time to.

‘.~‘IIo fooli~~g set con’sists of it.11 Rr;tphs of l,llo forrii fi tJ r^) whcrc fi (I li: ;uid P =- ((i, l’(i)}]
i E VI}. Tlrc adversary probes for an ctlgc {u, v} E I!: by inlroducin~ the cdgcs {FJr, Y(U)}
and (~2, P(7))). Tlicn thcrc is a pcrfcct matching amoiig the vcrticcs in VI U Vz U {pl,pz}
if and only if the cdgc {u, v} is prcscnt.

It is a surprising fact that, the problem of performing depth-first search on undirected
graphs can bc solved with much less memory than any of the above problems. Richard An-
dcrson has dcvclopcd an O* (~L’~‘)-arca when- and whcrc-dctcrminatc circuit that performs
clcpth-Erst starch on n-vcrtcx undircctctl graphs [A].

7. References

c

[A] R. Anderson, A Horrendously Complicated Depth-First Search Algorithm, unpub-
lished memorandum, 1984.

[AHU] A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The Design and Analysis of Computer
Algorithms, Addison- Wesley, 1974.

[A-K] M.J. Atallah and S.R. Kosaraju, Graph Problems on a Mesh-Connected Processor
Array, Proceedings of the 14th ACM Symposium on Theory of Computation,
pp.345-353 (1982).

[A-M] R. Anderson and E.W. Mayr, A P-complete Problem and Approximations to It,
Stanford Computer Science Department Technical Report No. STAN-CS-84-1014,
1984.

[CLC] F.Y. Chin, J. Lam, and I. Chen, Eficient Parallel Algorithms for some Graph
Problems, Comm. of the ACM, ~01.25, pp.659-665 (1982).

[CSV] A.K. CIiandra, L.J. Stockmeyer and U. Vishkin, Constant Depth Reducibility,
IBM Research Report No. RC9548, August 1982.

[D-S] E. Dekel and S. Sahni, Binary Trees and Parallel Scheduling Algorithms, IEEE
Trans. on Computing, vol.C-32, pp.307-315, (1983).

[FL] F.T. Leighton, New Lower Bound Techniques for VLSI, Proceedings 22nd IEEE
Symp. on Foundations of Computer Science, pp.l-12 (1981).

[F-W] S. Fortune <and J. Wyllic, Parallelism in Random Access Machines, Proceedings of
the 10th ACM Symposium on Theory of Computing, pp.114-118 (1978).

[I-I] S.E. IIambrusch, VLSl Algorithms for the Corrnccted Components Problem, Penn.
State Department of Computer Scicncc Report CS-81-9, 1981.

[KUW] R.M. Karp, E. Upfal and A. Wigdcrson, Constructing n Pcrfcct khtchiflg is in
Random NC, to appear, 1984.

- [L-S] R.J. Lipton and R. Sedgewick, Lower Bounds for VLSI, Proceedings of the 13th
ACM Symposium on Theory of Computing, pp.300-308 (1981).

[L-V] R. J. Lipton and J. Valdcs, Census Functions: an Approach to VLSI Upper Dounds,
Proceedings ‘Land IEEE Symp. on Foundations of Computer Science, pp. 13-22
(1981).

[M-B] 1~. M Bt * lfc CJ c and D. 11oggs, Ethrnck Iliskribrzkxf I’xkct Switklhg f’or Local Coul-
puter Networks, Con~n~. of the ACM, ~01.19, pp.395404 (1976).

[RND] E.M. Rcingold, J. Nicvcrgclt, and N. DCO, Corribiriatorial A!goritlrms: Theory and
Practice, Prentice-IIall, 1977.

[T-K] C.D. Tl10111 pson and HT. Kung, Sorting on n Mesh Collnectcd P,zraIlel Computer,
Comm. of the ACM, ~01.20, pp.263-271 (1977).

[U] J.D. Ullman, Corrlputatiollaf Aspects of VLSI, Coniputcr Scicncc Press, 1984.

