
January I985 Hcport No. STAN-CS-85- 1035
Also tum~bered: HI’P-85 I

RESIDUE
A Deductive Approach to Design Synthesis

bY

.J. .J. Finger

Midlilcl 11. Ccncscrcth

Department of Computer Science

St;~uford llllivcrsily
Sl~~nfwd, CA 94305

Stanford Heuristic Programming Project
Memo HPP-85-l

J a n u a r y , 1985

RESIDUE

A Deductive Approach to Design Synthesis

J. J. Finger
Michael R. Genesereth

Submitted to IJCAI-85

COMPIJTER SCIENCE .DIWARTMENT
Stanford University

Stanford, California 94305

Contents

1 Introduction 1

2 The Residue Procedure 3
2.1 Preliminary Definitions . 3
2.2 The Procedure . 4
2.3 Consistency Checking . 6
2.4 Constraint Propagation in Residue 6

3 Example of Residue 8

4 Motivation for the Residue Approach 10

5 Related Research 13
5.1 Default Logic . 13
5.2 Assumption-B<ased Truth Maintenance 14

6 Summary 15

i

-

Abstract

We present a new approach to deductive design synthesis, the Residue Ap-
proach, in which designs arc represented as sets of constraints. Previous
approaches, such as PROLOG [18] or the work of Manna and W&linger
[111, express designs as bindings ol-1 single terms. We give a complete and
sound proccdurc for finding sets of propositions constituting a legal design.
The size of the search space of the procedure and the advantages and dis-
advantages of the Residue Approach are analysed. In particular we show

how Residue can avoid backtracking caused by making design decisions of
overly coarse granularity. In contrast, it is awkw<ard for the single term
approaches to do the mme. In addition we give a rule for constraint propa-
gation in deductive synthesis, and show its use in pruning the design space.
Finally, Residue is related to other work, in particular, to Default Logic
[16] and to Assumption-Based Truth Maintenance [l].

I Introduction

In this paper we describe the “Residue Approach” to deductive synthesis
of solutions to design problems such as finding robot plans, designing dig-
ital circuits, picking circuit parameter values, and synthesizing computer
programs. By a legal design, we mean an arrangement of the world which
achieves the desired goals for known reasons. In the Residue Approach,
we solve design problems by finding a residue for a given design goal. We
define a residue as follows:

Definition 1.1 (Residue) Suppose that W is the initial world model and
G the design goal, a set of facts R is a residue if it has the following three
properties:

RI. (Achieves Goal) W U R I- G
R2. (Consistent) W U R is consistent.
R3. (Realizable) Th e executor of the design can make R true.’

R1 means that the goal G is true of the world obtained by adding facts
R to the world W. However, we cannot add just ‘any facts to obtain a
legal design. As specified by R2 they must be consistent with the initial
description W . For example, a serial computer program which specifies
that two actions happen simultaneously is in contradiction with the world
W. Secondly, as stat4 in It3 the facts R specifying the design must be
such that we can implement them. A circuit specified <as a VLSI layout may
meet rcquircmcnts Rl and R2, but is not the desired design if the executing
qcnt has only discrete transistors at its disposal.

R2 also means that one ‘call express a priori constraints on designs
generated by Residue by asserting such constraints in W prior to design

L gcncration. This has proven difficult in other approaches.
As an cxallll,lc of a rcsiduc, consider (7, program for Sw;Y~~~i~lg the con-

tcrits of two registers. Il~iMly rcgistcr IC,, contains the vicluc A and register

1 I N T R O D U C T I O N 2

Rb contains the value B. The goal G is that at some future time tf the
contents have been switched, i.e.,

Contains(Ra, B, tf) A Contains(R1, A, tf) A tf 2 1.

Let M(x, y) be an action of the target machine for moving the contents of
register x to register y. The set of propositions

execution(M(R,, R,), 1) .
execution(M(Rb, R&2)
execution(M(R,, Rb), 3)

satifies requirements Rl, R2, and R3 is thus a residue.
In Section 2 we present the Residue Procedure, a complete and sound

procedure for finding residues in first order logic. Consistency checking, by
means of which Residue gains many advantages, is potentially unsolvable.
However, consistency checking need not always be computationally diffi-
cult, as will be discussed. We also add constraint propagation [20,21,22] to
Residue. Though not necessary for completeness, constraint propagation
can greatly speed up the search for a design. To date, however, constraint
propagation has not been part of deductive design systems. Here, we give
a’rule for constraint propagation cand show how it fits into deductive design
synthesis.

Section 3 is an example of use of Residue With Constraint Propagation
to find inputs values for a circuit with known outputs.

’ Section 4 discusses the motivaiion for the Residue Apprdach. Whereas
Residue represents ,an evolving design as a set of propositions, the tracli-
tional approach to deductive synthesis has been to reprcscnt the evolving
design <as a single term of a language. Reprcscntion of can evolving design as
a set of propositions gives Residue very fine gr,ululnrity in making design
decisions. As a result, Residue can avoid making unwanted design decisions
cas inscparnble parts of other design decisions. In the single term approach

L unnecessary backtracking is caused by the inability to specify design deci-
sions ibt a sufTicicul,ly tlctailcd lcvcl. Frirthcrillorc, adding new vocabulary
to bc able to specify more detail in decision lllaking proves to be ditlicult.

Section 5 compares Residue to related research, in particular with Ray
Reitcr’s Default Logic [16] and Johan de Klecr’s Assumption-Based Truth
Maintenence [11.

2 THE RESIDUE PROCEDURE 3

Finally, Section 6 summarizes the results of our work.

2 The Residue Procedure

In this section we present the Residue procedure. To simplify the presen-
tation, we have used standard clausal resolution [17]. However, there is no
dependence on using clausal resolution, and non-clausal resolution [14,1 l]
would have worked just as well. In fact, the principles of Residue work with
any complete deduction system.

2.1 Preliminary Definitions

Recall from Section 1 that W is the set of propositions comprising our world
model. G is the goal we aim to achieve. We will refer to W and G as the
set of clauses in the conjunctive normal forms of W and lG, respectively.
WC refer to an indexed cluuse as a pair (c 1 r), where c is a clause and r is
a set of propositions. We say that q is a literal of clause c if clause c is the
disjunction of q with zero or more other literals. WC refer to two clauses
A cand B being resolved via unifier ‘a to yield C if A = A’ V a,B = 13’ V b,
0 is a unifier for the literals a and -16 and C = A’a V B’o, where Pa is the
result of applying the substitution a to P. U is the current set of indexed
clauses in the system, A is the literal false, and 0 is the null set.

Let us now make more precise the Realizability Condition R3 of Dcfi-
nition 1.1. First WC define the notion of nssumabifity.

Definition 2.1 (Assumable) A proposition p is <assumable ij the executor
can jorce p to be true.

As illustrated in the example residue of Section 1, example assumablcs in
a planning domain might bc that ‘a given action will take place at some

L time t3 or that time t3 is bcforc some time tf . R,csiduc requires a user-
supplicci proccdrtre for clcciclhg whct,hor a given proposition is in the class
of assumu6lcs. 111 addition, combinations of cassulllablcs which cannot si-
multaneously bc made true must be inconsistent with W. For example, for
a serial machine, W must contradict two simultaneous actions. Let us now
define realizable as follows:

2 THE RESIDUE PROCEDURE 4

Definition 2.2 (Realizable) A set of propositions is realizable if it con-
sists only of assumable propositions.

2.2 The Procedure

We now present the Residue Procedure (See Figure 1 on page 5). We are
building a dababase U of indexed clauses (c 1 r). The first member c of
each indexed clause is simply a clause as in normal resolution. The second
member r is the candidate residue, that is, the set of assumptions made to
date in deriving c. We initialize U in Step 1 so that U is the set of indexed
clauses comprising W U 4. The second member of each is 0, indicating
that no assunlptions have been made in deriving any one of these clauses.
Step 3a allows us to assume any primitively ,assumablc proposition resolving
with a clause to be refuted. Steps 3b, 3c, and 3d are a modified resolution
rules in which we keep track (in the second member of each indexed clause)
of the assumptions we have made to date in deriving the clause. The exit-
condition is that (1) tlle resolution has succeeded, i.e., we have.derived the
null-clause A, and (2) we know of a binding o for all of the variables in the
candidate residue R such that the candidate design Ra is consistent with
the world model IV.

Let us illustrate use of the Residue Algorithm with gan example in propo-
sitional logic. Suppose we have a goal I-I, assumablcs B, lD, and I, and
the following rules A A I!? 3 H and 1D A E 3 A. We would then start out
with inclcxed clauses

Wf I@> (1)
(lAvlBvH)@) (2)

(DvlBvAlQ)) (3)

.
By Clause-Clause Resolution o f (1) and (2) we get the indexed clause
(-d/4? 10). Th is clause may bc used with “Make Assumption” to
yicltl Chc indcxcd clause (--l/t 1 {I?}), w lit* 11 ,l is in turn rcsolvctl by Clause-
Clause Itcsolution against (3) to yield (I)V-1Jj 1 { U}). Assunlption-Clause
Resolution is then used to derive (D I {l?}). E‘inally “Make Assumption”
is used again to derive (A I (B, -1D)) . T1PUS, if consistent, the set (70, B}
is the desired residue.

.

l ,

Procedure 2.1 (Residue)

1. (Initialize) U +- {(c I 0) I c E (W UC)}.

5

2. (If Finished, Consistency Check) If for some R, (A I R) E U, cand
there exists a ground substitution 0 such that W U (Ro) is satisfiable, then
R is the desired residue.

3. Execute one of 3a, 3b, 3c, or 3d. If uonc of these can be executed, then
fail.

(a) (Make Assumption) If (C I D) E U and proposition S is as-
sumable and C and S can be resolved via unifier CT to yield C’, then
U + U u {(C’ 1 (Du {S})a)}.

(b) (Clause-Clause Resolution) For (Ci 1 D;), (Ci 1 Di) E U, if C;
and Cj can be resolved via the unifier 0 to give the rcsolvent Ck, then
U+UU{(Ck I (D;eDj)a)).

(c) (Assumption-Assumption Resolution) For (C 1 D) E U,
dl, d:! E D, if dl and & can be resolved via unifier Q to yield da,
then U’+ U U {(Ca 1 (D 1J {d,})a)}.

(d) (Assumption-Clause Resolution) For (C I D) E U, d E D <and
d ‘and C can be resolved via, unifier 0 to give the rcsolvent C’, then
U+Uu{(C’I D o) } .

I

4. Go to 2.

Figure 1: The llcsiduc Procedure

2 THE RESIDUE PROCEDURE 6

In [5] we show completeness and soundness of the procedure. By com-
pleteness we mean that ge’ven W, G, and the class of assumables, if there
exists a residue R, the procedure will eventually find it. Soundness says that
any residue the procedure iinds is indeed a residue, i.e., it meets conditions
Rl, R2, and R3 for being a residue.

2.3 Consistency Checking

Checking satisfiability of a set of first order W#S is undecidable, Land more
precisely, not semi-decidable. This means that no algorithm is guaranteed
to give us an canswer (in a finite amount of time) <as to whether or not a
set of wffs is consistent. This would seem to make Residue entirely useless,
but in practice it does not. First of all, the world model W cand set of
assumables may be known to be such that it can bc inconsistent in only
known ways. For example, in designing circuits WC need to avoid loops in
the circuit, but we know that cany combination of cassun~ables not containing
a loop is consistent. Checking for loops can easily be done in polynomial
time. Similarly, we might know a set number of ways in which actions in
a plan might interfere with each other. Secondly, we may bc able to live
with approximations to consistency checking. If after a certain outlay of
resources we have not proven a residue to be inconsistent, we assume it to
be consistent.

2.4 Constraint Propagation in Residue

By constraint propagation WC mean deducing further constraints upon the
solution from constraints already known. Constraint propagation has been
been thoroughly discussed in the litcrntrtrc [20,21,22,1,2], and WC show hcrc
how it fits into deduction. Propagated constraints are necessary rather
than suficicnt conditions for finding a solution on a given path. Thus, the
propagated constraints arc not ncedcd for complctc~~ss, and can indeed be
Wq~tCflll. A I,IWp.ph,!tl consllraiJlt Gi.11 Oflly scrvc iW itI1 CiWly warning Of Zb

conllict that would bc cvcntually discovered arlywiky. On the oChcr hand,
if the constraint propagation is simple, it can be well worth the eaort to
avoid paths which must eventually fail.

2 THE RESIDUE PROCEDURE 7

Example: Suppose that we must refute 2a-t-b # 14 (Eyuivalcntly, one can
think of needing to prove 2a + b = 14.) S ince b must be even if this literal
is to be refuted, then by noting this fact we can avoid generating starch
paths where b will be odd. Because even(b) is a necessary, but not suficient,
condition for finding a solution, we cannot derive even(b) by applying a rule

2a + 6 = c A even(c) =+ even(b)

to 2a + b # 14; its polarity is wrong.
Because a propagated constraint is a necessary, but not necessarily suf-

ficient condition for proving a goal, standard deduction techniques such as
resolution do not perform constraint propagation. Instead we need an addi-
tional rule to perform constraint propagation. The derived constraints are
added (in negated form) to the set of literals which must be contradicted.

Constraint propagation may be intuitively expressed <as follows:
For(C]A)EU,c is the set of clauses in lC, ai E {c U A}.

if ar A... A a, + B,then B +- C U {B}. (4

However, we have no guarantee that B will be an assumable, so we are
forced to add 1B to C. Furthermore, if B is a conjunction of n literals,
then 113 will contain n clauses. Rather than give the entire rule here, we
give the rule for U being a single literal. This will suficc for the Example
of Section 3. See [5] for the conrplcte rule.

WC add the following rule to the Residue Procedure (l’rocedurc 2.1):

3. (e) (Constraint Propagation) Let (Ci 1 ni), (C2] R2) E
U and let cl,*** c, be the the l iterals of Cl. If there is
a clause A = ai V * l * V a, where ai E (nr U {lci}}, and
A and Cz resolve via unifier o to yield a literal c’, then
Ut-Uu(&rv~c] (R,uR,)a>.

I I?xamplc: Suppose (C] R) E U and 2a + b f 14 is a literal of C. Suppose
also (a2 = 2tr+ b# 14 v seven V even(b) I 0) E U. Let A = ai V ax,
whcrc ~11 = 2u -I- b -1: 14, that is, the ncgntion of the disjunct of C. Then,
A and C2 can be resolved to give the literal even(b). ~lhs, we cau add
(CVleven(b) I R) . I f even(b) is assumable, our constraint propagation
gives us U +- U U (C] R U {even(b)}) as desired.

3 EXAMPLE OF RESIDUE

3 Example of Residue

Consider the circuit below:

8

We will attempt to find values for A and B such that E = 14 AD = l.2
The initial database W contains the following rules:

A = zl A B -- z2 A xl +z2 =x3 + C =x3
A II= x1 A C = x2 A zl +x2 =x3 => E = x3

B=xl A x353+D=l
2x + y = z A even(z) + even(y)

w
w
WI
(c7)
w

The assumable clauses are any clamscs matching the patterns below (the
boldface nan~cs match any variable or constant).

x -2 y
a<b

even(x)

We start with can indexed clause reprcscnting the negation of the goal:

(E-f14 k D#l 1 {}) wut

NCXC WC al)I)Iy Clatlsc-Clartsc Itcsolrltiorl (CClt) to (1’1’1) atltl (CS) to obtain:

(A+z v C#b v a+b$l4 v D#l I {}) uw

30~~r sayink’ that “E = 14” is mcms that the value of the lim at point I!3 is 14.

3 EXAMPLE OF RESIDUE 9

Again we apply CCR. to (Cl) and (E2):

(A#d vB#e vd+e#b VAf ava+bfl4VD#l~{})(E3)

Make Assumption (MA) A = d on (E3) yields:

(B # e v d+e-;fb VAfa Va+b#M V Dfl 1 { A = d }) (E4)

Assumption- Clause Resolution (ACR) of (E4) yields:

(Bfe V d+e#b V d+b#l4 V D#l 1 { A = d })

Make Assumption of B = e on (E5) yields:

(d+efb V d+b$l4 V D#l 1 { A = d , B = e })

CCR on the first two literals of (EG) yields?

(2d+e#l4 V D#l 1 { A = d , B = e })

Via Constraint Propagation on (C7) <and (E7) we get:

(2d+e#14 V D#l 1 { A = d , B = e , e v e n (e) })

CCR on (E8) and (CG) yields:

(2d+e#l4 V B#f V fg3 1 {A=d,B-e,even(e)})

ACR on (E9) yields:

(2d+e#I4 V e$3 I { A = d , B = e , e v e n (e) })

We ~assunle e 5 3 in (ElO) to get:
(2d-+e#14 I {A=d,B=e,even(e),e<3})

Here WC nlakc an arbitrary choice of B - 2 in (Eli) to get:

(2d+2 # 14 1 { A = d , B = 2,even(2),2 < 3))
L

(l312) is sirnplificd and d = G to yield:

(A 1 {A =G 0,B - 2,even(2),2 5 3))

CE5)

wo

m

Pw

VW

(r-10)!4

(Eli)

(E12)

(E13)

4 MOTIVATION FOR THE RES1VUE APPROACH 10

4 Motivation for the Residue Approach

It is desirable that a design be output in such a manner as to be easily
understood and executed. However, in arriving at the final program de-
sign, the design goes through numerous intermediate stages which may not
resemble the final design. It is emphatically not the case that the
intermediate states of an evolving design are necessarily best ex-
pressed as they will be in the final design. The space of intermediate
designs not only contains the space of final designs, but is considerably
larger.

The above observation has motivated development of the Residue Ap-
proach. In this section WC explain what sort of additional information is
ideally present in intermediate design states cand why, how the Residue Ap-
proach allows for ease of its representation, and why the traditional design
synthesis approach has difficulty with such information. As we shall see,
representation of the proper information at intermediate design stages can
decrease backtracking required in design synthesis. If Residue is to be bet-
ter than the traditional approach, the speed-up here must more than offset
the additional overhead of consistency checking.

Size of the Search Generated by the Residue Procedure Residue,
as well cas the system to which we will compare it, fall loosely into the class
we call goal-directed enumeration. Before looking at this ckass let us look
at perhaps the simplest way Co gcncratc designs:

Blind enunlcration is a trivial and complete procedure for design gen-
eration. One can simply enumerate candidate designs, starting with the
shortest and proceeding to longer designs. Interleaved with their gencra-
tion, the candidate designs are tested by a theorem prover to see if Rl (see
Section 1) holds. Unfortunately, however, this procedure is very slow. For
a systcln with Ic operators, one will have to gencratc O(k”) &signs, to find
a design consisting of 72 operations.’

Rather C11a.n us0 blilltl cnumeratiou, a goal-dircctccl cnunlcratior1 is gcn-

4 MOTIVAY’ION FOR THE RESIMJE APPROACH 11

ernlly used. Instead of blindly enumerating designs, one starts with the
goal and adds operations to the design only if the operation is applicable,
i.e., only if application of the operator achieves some subgoal. Most of the
planning systems from Green’s [8] in the late 1960% through the 1970’s
used this approach. In Chapter 7 of [15] Nils Nilsson very clearly char-
actcrizcd this approach to plan generation. It is difficult to say precisely
what the complexity is in such a search. If all operators are everywhere
applicable, we still have a search space which is O(F). On the other hand
it is almost never the case that all operators are applicable at every point.
If on the average there are Ice operators applicable at every decision point,
then the search space will be O&z), w here Ice < k. Because Residue allows
resolutions of two clauses from W it, is not strictly a goal-directed cnumer-
ation. On the other hand, we can easily reduce Residue to a goal-directed
enumeration; by using a set of support resolution search strategy. [15], for
instance, Residue becomes goal-directed.

Contrast with the Single Term Approach By the Residue Approach
we mean describing intermediate design states via sets of propositions. One
may state both what is to be in the Enal design and what is not to be in the
final design. In using propositions to constrain a design, one achieves great
power of expression. Firstly, ufl designs consistent with the constraints care
considered to be candidate designs without the set of candidate designs
being enumerated.” Secondly, the preexisting vocabulary of logic, namely,
ordering relations, arithmetic relations, and set operations enable us to say
virtually anything WC want to say about an evolving design.

In constrast to the Residue Approach, previous work in deductive design
synthesis has rcprcscnted both intermediate and final stages of a design <as a
single term of the language. This approach, to which we rcfcr <as the Single
term approach, is excmplilicd by the work of Grecn[8], PROLOG[18,23]

a. or by the work of Zohar Manna and Richard Waldinger [l&12,13]. ‘I’o
illustrate the Single ‘I’crm Approach, we look at M~IIIKL and Waltlingcr’s
yrogralil synllwsis syslcm. .Hcrc, wk arc givw a.11 hprll condition I’ ot1 lhc
input CL, ,and a dcsircd output condition R. The system attempts to prove

5Tl& is the notion callcvl partid programs it1 Ccnosc:rcth [G]. IIis paper contains a dis-
cnssiou of the theory LcGnd rcprcacnting proccdurcs a.3 sets of coMmints.

4 MOTIVATION FOR THE RESIDUE APPROACH 12

the goal
P(a) + R(a,z), (1) .

where x is the desired program. Note that the desired design has been
reified as the term z. Rather than simply keeping track of the binding of
z, Manna and Wnldingcr work with pairs (c, z), where c is a clause to be
refuted and z is the evolving design ‘. Their inference rules specify how to
combine both the clauses c and the design terms z of two such pairs. For
example, the following rule of inference introduces an IF-THEN-ELSE into
a design:

(FvPm), (Gv+z,a)
CFO V GO , if PI0 then q0 else z&J) ’ (2)

where 0 is a most general unifier of PI and 1‘2. Note that the second member
of the pair is a program segment in some programming language (which may
contain free variables which will be bound later as the deduction continues).
Another rule about mathematical induction on well-founded set,s introduces
recursive program calls into their output programs.

.

Difficulties in the Single Term Approach In searching for a design
it is desirable to represent partial information about the design. For exam-
ple, we might know that two actions A and B need to be exccutcd without
knowing their ordering. Idc;~lly we should note the constraints that A <and
B will be in the plan and await nlorc information before deciding upon
an ordering. ‘This is known iw the leust commitment approach [20,21]. In
the Residue Approach, WC niay state! czeczllion(A, tA) A execution(B, t?~)
without further inforniation on tA and 1 u. In the single term approach, we
usually have no way of stating these constraints without also specifying a
temporal ordering. Instead of waiting for more information, the reprcsen-
tation niiy force us to make an <arbitrary decision, that is, a problem of
inseparable design decisions.

111 order to itv(ji<l the ad tl i tion al I)acktracki ng cai tscd by i nscpnrablc de-
sign decisions, WC inigh wish CO lY?fO~.lllIlIi~C~! our il.XiOlllS with llcw terms
expressing weaker design commitrncnts. For exn~nple, wc might invent an

.

5 RELATED RESEARCi 13

ND-PROGN(q, . . . , zn) function, the arguments of which are executed
in any order. Doing so leads to other difficulties. First, we have an
explosion of ad hoc vocabulary. Suppose we discover that B can-
not be executed in a window between 3 and 6 seconds after A is exc-
cuted. Do we really w<ant to reformulate our axioms to include a NOT-
IN-WINDOW(tac ionI, actionz, timq, timez) function, when adding the con-
straint tA + 3 > tb V tB > tA + G would suffice? Secondly, even if we do add
vocabulary to express partial information, there is no easy way to manip-
ulate it. If we have noted ND-PROGN(A,B,C) and later discover tA < tc,
further binding the design term or composing it with another term does
not give us the desired result. Instead, we must eliminate the ND-PROGN
and rebuild the design term more or less from scratch, that is, a problem
of discontinuity of representation.

As we stated in Section 1, in the Residue Approach one can easily state
a priori constraints on designs generated by including the constraints
either in MJ’ or in G. In the Single Term Approach, there is no consistency
check. Thus, in order to guarantee such constraints, we must start out with
the output speciGcation R(u, z) already containing the necessary informa-
tion. Again we have all the same problems as above of being able to express
the dcsircd constraints.

To avoid all these problems, one might choose to leave the design con-
straints <as conjuncts of the goal. When enough information is present to
rcprescnt a decision in the final design language, one can bind the design
terns. Tn that fashion sentences of ‘logic rather than a single term <arc used
to represent design constraints. The system uses thcsc constraints (that is,
goal conjuncts) by generating choices consistent with them. But, this is
canotllcr way of describing the Itesiduc Approach!

5 Related Research

5.1 Default Logic

Ray Rciter [$[4] 1c eve o 1s what he calls a “Logic for Default Reasoning”.1 1
His goal is to develop a logic for drawing plausible conclusions which are
unprovable, but consistent with the i.nitial world model. For example, if

5 R E L A T E D R E S E A R C H 14

Fred is known to be a bird, Reiter’s system will conclude that Fred can fly
unless it can prove otherwise. In [5] we explain in detail the close connec-
tion between Default Logic and Residue. However, we present the results
here without explanation. Our assumables correspond to Reitcr’s normal
defaults. The set of assumptions in a residue corresponds Reiter’s default
support, and the Residue Procedure is virtually identical to Reiter’s Top
Down Default Proofs. The correspondence of designs to Reiter’s exten-
sions is a bit trickier. If two difl’erent designs carc inconsistent, then they
cannot both belong to the same extension. On the other hand, there will
in general be numerous extensions of which a given design is a member.
The reason for this is that a design only specifies part of the world. What
happens outside of the design is irrelevant to the design, but changes the ex-
tension. For example, a plan might specify all the actions in the world from
time=0 until time=lO, but says nothing about events after time=lO. For
every inconsistent course of events after time=10 there will be a separate
extension.

5.2 Assumption-Based Truth Maintenance

The database U of Residue contains numerous indexed clauses, not all of
which are consistent. Instead, each indexed clause (c, r) explicitly repre-
sents the set of assumptions it has made such that W U r U c I- G. In
[l], Johan de Klecr has suggostcd a very similar idea. Rather than trying
to keep a single consistent of ,xssumptions and ramifications <as in Doyle’s
Justification-13ased Truth Maintenance [3], dc Klecr suggests keeping nu-
merous interpretations (set of <assumptions) at the same time. One partic-
ular advantage is that contradictory interpretations can sometimes still use
each other’s work. For example, suppose that in trying to reach a goal in
interpretation 1, a proposition p can be derived from nssumptions RI’ C Il.
Then another intcrprctation I:! such that I11 C]2 could use p without fur-,. tlrcr deduction on its part cvcI1 if II and I: arc in &CriUliction. TLeGduc,
iu it currently stantls, ~JOCS 110t hitkc ;ulviklttitg(! of SLICJI c;~cllit~g of i~sslllllp-
tions. Howcvcr, given that the assumptions are alre;uly present, it would
bc an easy task to do so.

6 SUMMARY 15

6 S u m m a r y

The approach of Residue makes a major change to the standard approach to
deductive design synthesis. Rather than use a single term in which to build
up a design, it builds a set of constraints which describe the design. As a
result, Residue must check that the set of constraints describing the design
is consistent with the original database, and that the set of facts must be
at the proper level such that the design is realizable. A very beneficial side
effect of the Residue Approach is the ability for the user to express a priori
constraints upon the generator simply by asserting the constraints into the
database.

We have stressed that the space of evolving designs is bigger than that
of final designs. In particular, one wants to represent partial information
about the design rather than individually consider all possible cases. De-
duction systems in which the evolving design is represented as a single term
have great difficulty in representing such partial information.

By representing evolving designs as sets of facts, we avoid several pitfalls
of single term systems. First, because single term systems often cannot
represent partial information they must do a cast analysis for each possible
case. By being able to easily represent partial information we avoid the
need for such backtracking. Secondly, we avoid proliferation of special
vocabulary in the attempt to make the single term handle certain special
cases of partial information. In *addition WC need not build the logical
machinery for handling the manipulation of the above ad hoc vocabulary.

On the other hand, a single term system has design consistency built
into it. The rules <arc stated such that the single term always remains a legal
design. The Residue Approach must pay the price of (I) stating raxioms
for what constitutes a legal design, (2) stating preexisting vocabulary for
the set of facts which the system is willing to try to execute, (3) proving
that any &sign found is consistent with (1) and (2). While the consistency

a. check is in theory undcciclable, in practice it need not be terribly difIicult.

16

References

PI

PI

PI

[14

PI

PI

PI

PI

PI

1 011

Pll
A

6PI

de Kleer, Johan, Choices Without Backtracking, Proc. of the AAAI-84
Nat’1 Conf. (August, 1984).

Dietterich, Thomas G., Learning About Systems That Contain State
Variables, Proc. of the AAAI-84 Nat ‘1 Conf. (August, 1984).

Doyle, John,, A Truth Maintenance System, Artificial Intelligence 12
(1979) 231-272.

Etherington, David and Reiter, Raymond, On Inheritance Hiercarchies
With Exceptions, AAAI-83 (August, 1983) 104-108.

Finger, J. J. and Michael R. Gcnesereth, RESIDUE: A Deductive Ap-
proach to Synthesis of Designs, Tech. Rcpt. IIPP-84-47, Stanford Uni-
versity (December, 1984)) (in preparation).

Genesereth, Michael, Partial Programs, Heuristic Programming Project
Memo I-IPP-84-2, Stanford University (November, 1984).

Green, Cordell C., Theorem Proving by Resolution as a basis for
question-answering systems, in: Meltzer and Michie (Ed.), Machine
Intelligence 4 (Edinburgh University Press, Edinburgh, 1969).

Green, Cordell C., Application of Thcorcm Proving to Problem Solv-
ing, IJCAI-1 (1969) 219-239.

Loveland, D. W., A linear format for resolution, Proc. IRIA Symp.
Automatic Demonstration (1968).

Luckham, D., Refinements in resolution theory, Proc. IRIA Symp. Au-
tomatic Demonstration (1968).

Manna, Zohar and Waldinger, Richard, A Deductive Approach to Pro-
gram Synthesis, ACM Transactions on Programming Languages and
Systems 2 (1) (1980) 90-121.

Manna, Zohar and Waldingcr, Richard, Problcnlalic Fcaturcs of Pro-
granmlipg Languages: A Situational-Calculus Approach, Acta Infor-
matica 1.6 (1981) 371-426.

[131 Manna, Zohar , and Waldinger, Richard, Special Relations in the Program-
Synthetic Deduction, Tech. Rept. STAN-CS-82-902, Stanford Univer-
sity (March, 1982).

[14] Murray, N.V., Completely Non-Clausal Theorem Proving, AI 18 (1)
(January, 1982) 67-85.

[15] Nilsson, N. J., Principles of Artijkiul Intelligence (Tioga Publishing
Co., Palo Alto, 1980).

[16] Reiter, It., A Logic for Default Reasoning, Artificial Intelligence 13
(1980) 81-132.

[17] Robinson, J. A., A tnachinc-oriented logic based on the resolution prin-
ciple, Journal of the ACM 12 (1) (1965) 23-41.

[18] Roussel, P., Prolog: Manual de reference et d’utilisation (1975), Groupe
d’Intelligence Artificielle, Marseille-Luminy; September.

[IO] Saccrdoti, Earl D., A Structure for Plans and Behavior, Tech. Rept.
Technical Note 109, SRI (August, 1975).

[20] Stallman, Richard M. ,a.nd Sussman, Gerald J., Forward Reasoning and
Dependency-Directed Backtracking in a Systcql for Computer-Aided
Circuit Analysis, Artificial Intelligence 9 (2) (October, 1977) 135-196,
Reprint in “AI-MIT”, vol. 1, pp.31-91. Also MIT AI Memo 380,‘76.

[21] StcGk, M., PI anuing wit,h Constraints (MOLGEN: Part 1)) Artificial
Intelligence IG (2) (1981) 111-140.

[22] Sussman, Gerald Jay and Stcclc, Guy Lewis Jr., Constraints - A Lan-
guagc for Expressing Almost-TIicrarchicall4 (1) (1980) l-39.

[23] Warren, D.II.D., and L.M. l’ercira, PROLOG - The Langwgc and
its implcmcntation compared with LISP, SIGPLAN Notices, H(8);
and SIGAIU’ Newsletter, no. 64, pp. 109-l I5 (,W77), Also Proc. of the
Syatp. on AI ant1 T’rogram mirlg T,at\gIliLg(!s (ACM). ’

