January 1985

RESIDUE
A Deductive Approach to Design

by

J. J. Finger

Michael R. Ccncscrcth

Department of Computer Science

Stanford University
Stanford, CA 94305

{D’J—U\%‘ RN
EEIERE AN

Report No. STAN-CS-85- 1035
Also numbered: HPP-85- 1

Synthesis

Stanford Heuristic Programming Project January, 1985
Memo HPP-85-

RESIDUE

A Deductive Approach to Design Synthesis

J. J. Finger
Michael R. Genesereth

Submitted to 1JCAI-85

COMPUTIER SCIENCE DEPARTMENT
Stanford University
Stanford, California 94305

Contents

1 Introduction

2 The Residue Procedure
2.1 Preliminary Definitions

2.2 The Procedure

2.3 Consistency Checking
2.4 Constraint Propagation in Residue - .

3 Example of Residue
4 Motivation for the Residue Approach

5 Related Research
5.1 Default Logic
5.2 Assumption-Based Truth Maintenance

6 Summary

o o b W W

10

13
13
14

15

Abstract

We present a new approach to deductive design synthesis, the Residue Ap-
proach, in which designs arc represented as sets of constraints. Previous
approaches, such as PROLOG [18] or the work of Manna and Waldinger
[11], express designs as bindings on single terms. We give a complete and
sound procedure for finding sets of propositions constituting a legal design.
The size of the search space of the procedure and the advantages and dis-
advantages of the Residue Approach are analysed. In particular we show
how Residue can avoid backtracking caused by making design decisions of
overly coarse granularity. In contrast, it is awkward for the single term
approaches to do the same. In addition we give a rulc for constraint propa-
gation in deductive synthesis, and show its use in pruning the design space.
Finally, Residue is related to other work, in particular, to Default Logic
[16] and to Assumption-Based Truth Maintenance [1].

1 INTRODUCTION | 1

1 Introduction

In this paper we describe the ““Residue Approach” to deductive synthesis
of solutions to design problems such as finding robot plans, designing dig-
ital circuits, picking circuit parameter values, and synthesizing computer
programs. By a legal design, we mean an arrangement of the world which
achieves the desired goals for known reasons. In the Residue Approach,
we solve design problems by finding a residue for a given design goal. We
define a residue as follows:

Definition 1.1 (Residue) Suppose that W is the initial world model and
G the design goal, a set of facts R is a residue #f it has the following three
properties:

RI. (Achieves Goal) W U R I- G
R2. (Consistent) W U R is consistent.

R3. (Realizable) The executor of the design can make R true.”

R1 means that the goal G is true of the world obtained by adding facts
R to the world W. However, we cannot add just ‘any facts to obtain a
legal design. As specified by R2 they must be consistent with the initial
description W. Tor example, a serial computer program which specifies
that two actions happen simultaneously is in contradiction with the world
W. Secondly, as stated in It3 the facts R specifying the design must be
such that we can implement them. A circuit specified as a VLSI layout may
meet requirements Rl and R2, but is not the desired design if the executing
agent has only discrete transistors at its disposal.

R2 also means that one can express a priori constraints on designs
gencrated by Residue by asserting such constraints in W prior to design
generation. This has proven difficult in other approaches.

As an example of a residue, consider a program for swapping the con-
tents of two registers. Initially register 12, contains the value A and register

1n Definition 2.2 we make condition R3 more precise.

1 INTRODUCTION 2

R, contains the value B. The goal G is that at some future time t; the
contents have been switched, i.e.,

Contains(R,, B, t;) A Contains(Ry, A, t;) Aty > 1.

Let M(z, y) be an action of the target machine for moving the contents of
register x to register y. The set of propositions

ezecution(M(R,, R), 1)
ezecution(M (R, R,),2)
ezecution(M (R, R,), 3)

satifies requirements R1, R2, and R3 is thus a residue.

In Section 2 we present the Residue Procedure, a complete and sound
procedure for finding residues in first order logic. Consistency checking, by
means of which Residue gains many advantages, is potentially unsolvable.
However, consistency checking need not always be computationally diffi-
cult, as will be discussed. We also add constraint propagation [20,21,22] to
Residue. Though not necessary for completeness, constraint propagation
can greatly speed up the search for a design. To date, however, constraint
propagation has not been part of deductive design systems. Here, we give
a'‘rule for constraint propagation and show how it fits into deductive design
synthesis.

Section 3 is an example of use of Residue With Constraint Propagation
to find inputs values for a circuit with known outputs.

" Section 4 discusses the motivation for the Residue Approach. Whereas
Residue represents an evolving design as a set of propositions, the tradi-
tional approach to deductive synthesis has been to represent the evolving
design as a single term of a language. Reprcscntion of an evolving design as
a set of propositions gives Residue very fine granularity in making design
decisions. As a result, Residue can avoid making unwanted design decisions
as inscparnble parts of other design decisions. In the single term approach
unnecessary backtracking is caused by the inability to specify design deci-
sions at a sufliciently detailed lcvcl. Furthermore, adding new vocabulary
to be able to specily more detail in decision making proves to be diflicult.

Section 5 compares Residue to related research, in particular with Ray
Reitcrs Default Logic [16] and Johan de Klecrs Assumption-Based Truth
Maintenence [1].

2 THE RESIDUE PROCEDURE 3

Finally, Section 6 summarizes the results of our work.

2 The Residue Procedure

In this section we present the Residue procedure. To simplify the presen-
tation, we have used standard clausal resolution [17]. However, there is no
dependence on using clausal resolution, and non-clausal resolution [14,1 1]
would have worked just as well. In fact, the principles of Residue work with
any complete deduction system.

2.1 Preliminary Definitions

Recall from Section 1 that W is the set of propositions comprising our world
model. G is the goal we aim to achieve. We will refer to W and G as the
set of clauses in the conjunctive normal forms of W and -G, respectively.
Wc refer to an indexed clause as a pair (¢ |r), where ¢ is a clause and r is
a set of propositions. We say that ¢ is a literal of clause c if clause c is the
disjunction of ¢ with zero or more other literals. Wc refer to two clauses
A and B being resolved via unifier o to yield Cif A= A"V a,B=DB'V b,
o is a unifier for the literals a and - and C = Aa Vv B's, where Pa is the
result of applying the substitution ¢ to P. U is the current set of indexed
clauses in the system, A is the literal false, and @ is the null set.

Let us now make more precise the Realizability Condition R3 of Defi-
nition 1.1. First wc define the notion of nssumabifity.

Definition 2.1 (Assumable) A proposition p is assumable ij the executor
can force p to be true.

As illustrated in the example residue of Section 1, example assumables in
a planning domain might bc that % given action will take place at some
time ¢3 or that time t3 is before some time ¢; . Residue requires a user-
supplied procedure for deciding whether a given proposition is in the class
of assumables. In addition, combinations of assumables which cannot si-
multaneously bc made true must be inconsistent with W. For example, for
a serial machine, W must contradict two simultaneous actions. Let us now
dcfine realizable as follows:

2 THE RESIDUE PROCEDURE 4

Definition 2.2 (Realizable) A set of propositions is realizable if it con-
sists only of assumable propositions.

2.2 The Procedure

We now present the Residue Procedure (See Figure 1 on page 5). We are
building a dababase U of indexed clauses (¢ | r). The first member ¢ of
each indexed clause is simply a clause as in normal resolution. The second
member r is the candidate residue, that is, the set of assumptions made to
date in deriving c¢. We initialize U in Step 1 so that U is the set of indexed
clauses comprising W U —G. The second member of each is @, indicating
that no assumptions have been made in deriving any one of these clauses.
Step 3a allows us to assume any primitively assumable proposition resolving
with a clause to be refuted. Steps 3b, 3c, and 3d are a modified resolution
rules in which we keep track (in the second member of each indexed clause)
of the assumptions we have made to date in deriving the clause. The exit-
condition is that (1) the resolution has succeeded, i.e., we have derived the
null-clause A, and (2) we know of a binding o for all of the variables in the
candidate residue R such that the candidate design Ro is consistent with
the world model W.

Let us illustrate use of the Residue Algorithm with an example in propo-
sitional logic. Suppose we have a goal I, assumablcs B, -D, and |, and
the following rules A A B = H and -D A I = A. We would then start out
with indexed clauses

(~H | D) (1)
(~AV-BVH|@) (2)
(DV-BVA|®) (3)

By Clause-Clause Resolution of (1) and (2) we get the indexed clause
(=AV =B | @). This clause may bc used with “Make Assumption” to
yield the indexed clause (~A | {17}), which is in turn resolved by Clause-
Clause Resolution against (3) to yield (DV B | { B}). Assumption-Clause
Resolution is then used to derive (D | {B}). Finally “Make Assumption”
is used again to derive (A | (B, =D}). Thus, if consistent, the set {-D, B}
is the desired residue.

2 THE RESIDUE PROCEDURE 5

Procedure 2.1 (Residue)

1. (Initialize) U « {(c | @) | c € (W UG)}.

2. (If Finished, Consistency Check) If for some R, (A | R) € U, and
there exists a ground substitution ¢ such that W U (Ro) is satisfiable, then
R is the desired residue.

3. Execute one of 3a, 3b, 3¢, or 3d. If none of these can be executed, then
fail.

(a) (Make Assumption) If (C' | D) € U and proposition S is as-
sumable and C and S can be resolved via unifier ¢ to yield C7 then
U« Uu {(C’] Du{S})s)}.

(b) (Clause-Clause Resolution) For (C; | D;), (C; | D;) € U, if C;
and C; can be resolved via the unifier o to give the rcsolvent Cj, then
U —UU{(C | (D:U Dj)o)}.

(c) (Assumption-Assumption Resolution) For (C | D) € U,
dy, d» € D, if d; and d, can be resolved via unilier ¢ to yield ds,
then U~ Uu {(Co | (DU{ds})o)}.

(d) (Assumption-Clause Resolution) For (C | D) € U, d € D and
d and C can be resolved via, unificr ¢ to give the rcsolvent C” then
U—~Uu{(C']| Do)}.

" 4.Goto 2.

Iigure 1: The Residue Procedure

2 THE RESIDUE PROCEDURE 6

In [5] we show completeness and soundness of the procedure. By com-
pleteness we mean that given W, G, and the class of assumables, If there
exists a residue R, the procedure will eventually find it. Soundness says that
any residue the procedure finds is indeed a residue, i.e., it meets conditions
R1, R2, and R3 for being a residue.

2.3 Consistency Checking

Checking satisfiability of a set of first order wffs is undecidable, and more
precisely, not semi-decidable. This means that no algorithm is guaranteed
to give us an answer (in a finite amount of time) as to whether or not a
set of wffs is consistent. This would seem to make Residue entirely useless,
but in practice it does not. First of all, the world model W and set of
assumables may be known to be such that it can bc inconsistent in only
known ways. For example, in designing circuits wc need to avoid loops in
the circuit, but we know that any combination of assumables not containing
a loop is consistent. Checking for loops can easily be done in polynomial
time. Similarly, we might know a set number of ways in which actions in
a plan might interfere with each other. Secondly, we may bc able to live
with approximations to consistency checking. If after a certain outlay of
resources we have not proven a residue to be inconsistent, we assume it to
be consistent.

2.4 Constraint Propagation in Residue

By constraint propagation wc mean deducing further constraints upon the
solution from constraints already known. Constraint propagation has been
been thoroughly discussed in the literature [20,21,22,1,2], and wc show here
how it fits into deduction. Propagated constraints are necessary rather
than suffictent conditions for finding a solution on a given path. Thus, the
propagated constraints arc not needed for completeness, and can indeed be
wasteful. A propagated constraint can only serve as an carly warning o a
conllict that would be eventually discovered anyway. On the other hand,
if the constraint propagation is simple, it can be well worth the effort to
avoid paths which must eventually fail.

2 THE RESIDUE PROCEDURE 7

Example: Suppose that we must refute 2a-+b # 14 (Eyuivalcntly, one can
think of needing to prove 2a + b = 14.) Since b must be even if this literal
is to be refuted, then by noting this fact we can avoid generating search
paths where b will be odd. Because even(b) is a necessary, but not sufficient,
condition for finding a solution, we cannot derive even(b) by applying a rule

2a + b = ¢ A even(c) = even(b)

to 2a + b # 14; its polarity is wrong.

Because a propagated constraint is a necessary, but not necessarily suf-
fictent condition for proving a goal, standard deduction techniques such as
resolution do not perform constraint propagation. Instead we need an addi-
tional rule to perform constraint propagation. The derived constraints are
added (in negated form) to the set of literals which must be contradicted.

Constraint propagation may be intuitively expressed as follows:

For (C | A) € U, C is the set of clauses in =C, a; € {C U A}.

if ag A---A a, = B,then B «— C U {B}. (4)

However, we have no guarantee that B will be an assumable, so we are
forced to add —B to C. Furthermore, if B is a conjunction of n literals,
then =B will contain n clauses. Rather than give the entire rule here, we
give the rule for B being a single literal. This will suffice for the Example
of Section 3. See [5] for the complete rule.

Wc add the following rule to the Residue Procedure (Procedure 2.1):

3. (e) (Constraint Propagation) Let (C,| Ry), (Ce| Ry) €
U and let ¢, --¢, be the the literals of C,. If there is
aclause A =aq; V-.-V a where g; € {R; U {~¢;}}, and
A and C, resolve via unifier o to yield a literal ¢’ then
U«—UU(CioV~c | (RiURy)a).

Example: Supposc (C | R) € U and 2a + b # 14 is a literal of C. Suppose
also (ay = 2a + b # 14 v —even(c) V even(b) | @) € U. Let A = a; V ay,
where a; = 2a + b == 14, that is, the negation of the disjunct of C. Then,
A and C, can be resolved to give the literal even(b). Thus, we can add
(C V —even(b) | R). If even(b) is assumable, our constraint propagation
gives us U «— U U (C | R U {even(b)}) as desired.

3 EXAMPLE OF RESIDUE 8

3 Example of Residue

Consider the circuit below:

'w>

< D

©

We will attempt to find values for A and B such that E = 14 aD = 1.2
The initial database W contains the following rules:

A=z AB -2 Az +29 =23 =>C =13 (C4)
A=z AC =2y Az +29 =23 =>E = x5 (05)
B=z A 23<3=>D=1 (06)

2z + y = z A even(z) => even(y) (C7)

(C8)

The assumable clauses are any clauses matching the patterns below (the
boldface names match any variable or constant).

X =y (A1)
a<b (A2)
even(x) (A3)

We start with an indexed clause representing the negation of the goal:
(E#14 V D#1 | {}) (E1)
Next we apply Clause-Clause Resolution (CCR) to (I21) and (C5) to obtain:

(A#£aV C#bv a+b#14v D#1[{}) (E2)

2Qur saying that “E = 14” is mcans that the value of the line at point F is 14.

3 EXAMPLE OF RESIDUE 9

Again we apply CCR. to (C4) and (E2):
(A#2d VB#eVdteZbVA#£a Vatb#14 VD #1 | {}) (E3)
Make Assumption (MA) A = d on (E3) yields:
(B#e Vd+e#ZbV A7 Va+b#14 Vv D#1|{A=d}) (E4)
Assumption- Clause Resolution (ACR) of (E4) yields:
(B#eV dte#bv d+b#14v D#1|{A=d}) (E5)
Make Assumption of B = e on (E5) yields:

(d+e#bVv d+b#14V D#1|{A=d,B=¢e}) (Es)
CCR on the first two literals of (EG) yields?
(2d+e#14V D#1|{A=d,B=¢e}) (ET)

Via Constraint Propagation on (C7) and (E7) we get:
(2d+e#14V D#1|{A=d,B=e,even(e)}) (EB)
CCR on (E8) and (C6) yields:
(2d+e#14Vv B#fv [£3|{A=d,B=eceven(e)}) (EI)
ACR on (E9) yields:
(2d+e#£14V e£3|{A=d B=e,even(e)}) (E10)
We assume e < 3 in (E10) to get:
(2d+e#14 | {A=d,B = e,even(e),e < 3}) (E11)
Here wc make an arbitrary choice of B = 2 in (IE11) to get:
(2d+2 # 14| {A =d,B = 2,even(2),2 < 3)) (E12)
(E12) is simplified and d = 6 to yield:
(A | {A = 6,B = 2,even(2),2 < 3)) (£13)

$We are assuming a manipulator for these algebraic cquations.

4 MOTIVATION FOR THE RESIDUE APPROACH 10

4 Motivation for the Residue Approach

It is desirable that a design be output in such a manner as to be easily
understood and executed. However, in arriving at the final program de-
sign, the design goes through numerous intermediate stages which may not
resemble the final design. It is emphatically not the case that the
intermediate states of an evolving design are necessarily best ex-
pressed as they will be in the final design. The space of intermediate
designs not only contains the space of final designs, but is considerably
larger.

The above observation has motivated development of the Residue Ap-
proach. In this section wc explain what sort of additional information is
ideally present in intermediate design states and why, how the Residue Ap-
proach allows for ease of its representation, and why the traditional design
synthesis approach has difficulty with such information. As we shall see,
representation of the proper information at intermediate design stages can
decrease backtracking required in design synthesis. If Residue is to be bet-
ter than the traditional approach, the speed-up here must more than offset
the additional overhead of consistency checking.

Size of the Search Generated by the Residue Procedure Residue,
as well as the system to which we will compare it, fall loosely into the class
we call goal-directed enumeration. Before looking at this class let us look
at perhaps the simplest way to generate designs:

Blind enumeration is a trivial and complete procedure for design gen-
eration. One can simply enumerate candidate designs, starting with the
shortest and proceeding to longer designs. Interleaved with their genera-
tion, the candidate designs are tested by a theorem prover to sec if Rl (see
Section 1) holds. Unfortunately, however, this procedure is very slow. For
a system with k operators, one will have to gencrate O(k™) designs’ to find
a design consisting of n operations.*

Rather than use blind enumeration, a goal-dircctccl enumeration is gen-

4Note that by operator we are referring to the operator itself as well as any arguments it
may have. We arc assuming that these are finite in cardinality. If countably infinite we
can still write an cnumerator for such designs, but the O(k"™) no longer makes sense.

4 MOTIVATION FOR THE RESIDUE APPROACH 11

ernlly used. Instead of blindly enumerating designs, one starts with the
goal and adds operations to the design only if the operation is applicable,
i.e., only if application of the operator achieves some subgoal. Most of the
planning systems from Green [8] in the late 1960’s through the 1970’
used this approach. In Chapter 7 of [15] Nils Nilsson very clearly char-
actcrized this approach to plan generation. It is difficult to say precisely
what the complexity is in such a search. If all operators are everywhere
applicable, we still have a search space which is O(k"). On the other hand
it is almost never the case that all operators are applicable at every point.
If on the average there are k, operators applicable at every decision point,
then the search space will be O(kg), where ky < k. Because Residue allows
resolutions of two clauses from W it is not strictly a goal-directed enumer-
ation. On the other hand, we can easily reduce Residue to a goal-directed
enumeration; by using a set of support resolution search strategy. [15], for
instance, Residue becomes goal-directed.

Contrast with the Single Term Approach By the Residue Approach
we mean describing intermediate design states via sets of propositions. One
may state both what is to be in the final design and what is not to be in the
final design. In using propositions to constrain a design, one achieves great
power of expression. Firstly, all designs consistent with the constraints are
considered to be candidate designs without the set of candidate designs
being enumerated.” Secondly, the preexisting vocabulary of logic, namely,
ordering relations, arithmetic relations, and set operations enable us to say
virtually anything wc want to say about an evolving design.

In constrast to the Residue Approach, previous work in deductive design
synthesis has rcprcscnted both intermediate and final stages of a design as a
single term of the language. This approach, to which we refer as the Single
term approach, is exemplified by the work of Green[8], PROLOG]18,23]
or by the work of Zohar Manna and Richard Waldinger [11,12,13]. To
illustrate the Single Term Approach, we look at Manna and Waldinger’s
program synthesis system. Iere, we are given an input condition I’ on Ihc
input cL, and a desired output condition R. The system attempts to prove

SThis is the notion called partial programs in Genesereth [G]. His paper contains a dis-
cussion of the theory behind representing procedures as sets of constraints,

4 MOTIVATION FOR THE RESIDUE APPROACH 12

the goal
P(a) => R(a,z2), (1)

where z is the desired program. Note that the desired design has been
reified as the term 2z. Rather than simply keeping track of the binding of
z, Manna and Wnldinger work with pairs (c, z), where ¢ is a clause to be
refuted and z is the evolving design®. Their inference rules specify how to
combine both the clauses ¢ and the design terms z of two such pairs. For
example, the following rule of inference introduces an IF-THEN-ELSE into
a design:

(FV Pl,Zl_)v-,_(GV—'.Pg,Zﬂ (2)

(F0 v GO, if P,0then 20 else z,6)’

where @ is a most general unifier of P; and P,. Note that the second member
of the pair is a program segment in some programming language (which may
contain free variables which will be bound later as the deduction continues).
Another rule about mathematical induction on well-founded sets introduces
recursive program calls into their output programs.

Difficulties in the Single Term Approach In searching for a design
it is desirable to represent partial information about the design. For exam-
ple, we might know that two actions A and B need to be exccuted without
knowing their ordering. Ideally we should note the constraints that A and
B will be in the plan and await morc information before deciding upon
an ordering. This is known as the least commitment approach [20,21]. In
the Residue Approach, wc may state execution(A, t4) A execution(B, tp)
without further information on t,4 and ty. In the single term approach, we
usually have no way of stating these constraints without also specifying a
temporal ordering. Instead of waiting for more information, the represen-
tation may force us to make an arbitrary decision, that is, a problem of
inseparable design decisions.

In order to avoid the ad d i tion gl backtracking caised by inseparable de-
sign decisions, wc might wish to reformulate our axioms with new terms
expressing weaker design commitments. IFor example, we might invent an

% Actually Manna and Waldinger use non-clausal resolution rules, allowing them to leave
wffs in non-clausal form and to work with non-negates goal wffs.

5 RELATED RESEARCH 13

ND-PROGN(zy, . . ., z,) function, the arguments of which are executed
in any order. Doing so leads to other difficulties. First, we have an
explosion of ad hoc vocabulary. Suppose we discover that B can-
not be executed in a window between 3 and 6 seconds after A is exe-
cuted. Do we really want to reformulate our axioms to include a NOT-
IN-WINDOW (action,, actiong, time;, time,) function, when adding the con-
straint t4 + 3> t, V tg > t4 + 6 would suffice? Secondly, even if we do add
vocabulary to express partial information, there is no easy way to manip-
ulate it. If we have noted ND-PROGN(A,B,C) and later discover {4 < ic,
further binding the design term or composing it with another term does
not give us the desired result. Instead, we must climinate the ND-PROGN
and rebuild the design term more or less from scratch, that is, a problem
of discontinuity of representation.

As we stated in Section 1, in the Residue Approach one can easily state
a priori constraints on designs generated by including the constraints
either in W or in G. In the Single Term Approach, there is no consistency
check. Thus, in order to guarantee such constraints, we must start out with
the output specification R(a, z) already containing the necessary informa-
tion. Again we have all the same problems as above of being able to express
the desired constraints.

To avoid all these problems, one might choose to leave the design con-
straints as conjuncts of the goal. When enough information is present to
represent a decision in the final design language, onc can bind the design
term. In that fashion sentences of 4ogic rather than a single term are used
to represent design constraints. The system uses thesc constraints (that is,
goal conjuncts) by generating choices consistent with them. But, this is
another way of describing the Residue Approach!

5 Related Research

5.1 Default Logic

Ray Reiter [16],{4] d evelgyrs what he calls a “Logic for Default Reasoning™.
His goal is to develop a logic for drawing plausible conclusions which are
unprovable, but consistent with the initial world model. For example, if

5 RELATED RESEARCH 14

Fred is known to be a bird, Reiters system will conclude that Fred can fly
unless it can prove otherwise. In [5] we explain in detail the close connec-
tion between Default Logic and Residue. However, we present the results
here without explanation. Our assumables correspond to Reitcrs normal
defaults. The set of assumptions in a residue corresponds Reiters default
support, and the Residue Procedure is virtually identical to Reiters Top
Down Default Proofs. The correspondence of designs to Reiters exten-
sions is a bit trickier. If two different designs are inconsistent, then they
cannot both belong to the same extension. On the other hand, there will
in general be numerous extensions of which a given design is a member.
The reason for this is that a design only specifies part of the world. What
happens outside of the design is irrelevant to the design, but changes the ex-
tension. For example, a plan might specify all the actions in the world from
time=0 until time=10, but says nothing about events after time=10. For
every inconsistent course of events after time=10 there will be a separate
extension.

5.2 Assumption-Based Truth Maintenance

The database U of Residue contains numerous indexed clauses, not all of
which are consistent. Instead, each indexed clause (c, r) explicitly repre-
sents the set of assumptions it has made such that W U r U c I- G. In
[1], Johan de Klecr has suggostcd a very similar idea. Rather than trying
to keep a single consistent of assumptions and ramifications as in Doyle%
Justification-13ased Truth Maintenance (3], de Klecr suggests keeping nu-
merous interpretations (sct of assumptions) at the same time. One partic-
ular advantage is that contradictory interpretations can somectimes still use
each other work. For example, supposec that in trying to reach a goal in
interpretation I; a proposition p can be derived from assumptions ;' C I;.
Then another interpretation I, such that 12, C I, could use p without fur-
ther deduction on its part even if I} and I» arc in contradiction. Residue,
as it currently stands, doces not take advantage of such caching of assump-
tions. Ilowever, given that the assumptions are alrcady present, it would
bc an easy task to do so.

6 SUMMARY 15

6 Summary

The approach of Residue makes a major change to the standard approach to
deductive design synthesis. Rather than use a single term in which to build
up a design, it builds a set of constraints which describe the design. As a
result, Residue must check that the set of constraints describing the design
is consistent with the original database, and that the set of facts must be
at the proper level such that the design is realizable. A very beneficial side
effect of the Residue Approach is the ability for the user to express a priori
constraints upon the generator simply by asscrting the constraints into the
database.

We have stressed that the space of evolving designs is bigger than that
of final designs. In particular, one wants to represent partial information
about the design rather than individually consider all possible cases. De-
duction systems in which the evolving design is represented as a single term
have great difficulty in representing such partial information.

By representing evolving designs as sets of facts, we avoid several pitfalls
of single term systems. First, because single term systems often cannot
represent partial information they must do a case analysis for each possible
case. By being able to easily represent partial information we avoid the
need for such backtracking. Secondly, we avoid proliferation of special
vocabulary in the attempt to make the single term handle certain special
cases of partial information. In .addition wc necd not build the logical
machinery for handling the manipulation of the above ad hoc vocabulary.

On the other hand, a single term system has design consistency built
into it. The rules arc stated such that the single term always remains a legal
design. The Residue Approach must pay the price of (I) stating axioms
for what constitutes a legal design, (2) stating preexisting vocabulary for
the set of facts which the system is willing to try to execute, (3) proving
that any design found is consistent with (1) and (2). While the consistency
check is in theory undecidable, in practice it nced not be terribly difficult.

REFERENCES 16

References

1]

[5]

[6]
[7]

8]
[9]
[L0]

[11]

[12]

de Kleer, Johan, Choices Without Backtracking, Proc. of the AAAI-84
Nat’l Conf. (August, 1984).

Dietterich, Thomas G., Learning About Systems That Contain State
Variables, Proc. of the AAAI-84 Nat ’l Conf. (August, 1984).

Doyle, John,, A Truth Maintenance System, Artificial Intelligence 12
(1979) 231-272.

Etherington, David and Reiter, Raymond, On Inheritance Hierarchies
With Exceptions, AAAI-88 (August, 1983) 104-108.

Finger, J. J. and Michael R. Genesereth, RESIDUE: A Deductive Ap-
proach to Synthesis of Designs, Tech. Rept. IIPP-84-47, Stanford Uni-
versity (December, 1984), (in preparation).

Genesereth, Michael, Partial Programs, Heuristic Programming Project
Memo HPP-84-2, Stanford University (November, 1984).

Green, Cordell C., Theorem Proving by Resolution as a basis for
question-answering systems, in: Meltzer and Michie (Ed.), Machine
Intelligence 4 (Edinburgh University Press, Edinburgh, 1969).

Green, Cordell C., Application of Theorem Proving to Problem Solv-
ing, IJCAI-1(1969) 219-239.

Loveland, D. W., A linear format for resolution, Proc. IRIA Symp.
Automatic Demonstration (1968).

Luckham, D., Refinements in resolution theory, Proc. IRIA Symp. Au-
tomatic Demonstration (1968).

Manna, Zohar and Waldinger, Richard, A Deductive Approach to Pro-
gram Synthesis, ACM Transactions on Programming Languages and
Systems 2 (1) (1980) 90-121.

Manna, Zohar and Waldinger, Richard, Problematic IFFeatures of Pro-
gramming Languages: A Situational-Calculus Approach, Acta Infor-
matica 1.6 (1981) 371-426.

REFERENCES

[13]

[14]
15)
[16]
17]
18]
[19]

[20]

21]

17

Manna, Zohar , and Waldinger, Richard, Special Relations in the Program-

Synthetic Deduction, Tech. Rept. STAN-CS-82-902, Stanford Univer-
sity (March, 1982).

Murray, N.V., Completely Non-Clausal Theorem Proving, Al 18 (1)
(January, 1982) 67-85.

Nilsson, N. J., Principles of Artificial Intelligence (Tioga Publishing
Co., Palo Alto, 1980).

Reiter, R., A Logic for Default Reasoning, Artificial Intelligence 13
(1980) 81-132.

Robinson, J. A., A tnachinc-oriented logic based on the resolution prin-
ciple, Journal of the ACM 12 (1) (1965) 23-41.

Roussel, P., Prolog: Manual de reference et dutilisation (1975), Groupe
d’Intelligence Artificielle, Marseille-Luminy; September.

Saccrdoti, Earl D., A Structure for Plans and Behavior, Tech. Rept.
Technical Note 109, SRI (August, 1975).

Stallman, Richard M. and Sussman, Gerald J., Forward Reasoning and
Dependency-Directed Backtracking in a System for Computer-Aided
Circuit Analysis, Artificial Intelligence 9 (2) (October, 1977) 135-196,
Reprint in “Al-MIT”, vol. 1, pp.31-91. Also MIT Al Memo 380,’76.

Stelik, M., Planning with Constraints (MOLGEN: Part 1), Artificial
Intelligence 16 (2) (1981) 111-140.

[22] Sussman, Gerald Jay and Stccle, Guy Lewis Jr., Constraints - A Lan-

(23]

guagc for Expressing Almost-Tlicrarchicall4 (1) (1980) 1-39.

Warren, D.II.D., and L.M. Perecira, PROLOG - The Language and
its implementation compared with LISP, SIGPLAN Notices, 12{8),’
and SIGART Newsletter, no. 64, pp. 109-1 15 (1977), Also Proc. of the
Symp. on Al and Program ming Languages (ACM).

