
./mu- - -

January 1985 Hcport No. STAN-CS-85-1036
Also rumbcred: HI’P-85-2

Learning Control Heuristics in BBI

bY

I%ilrl)ariI I-laycs-Roth ;Ind Michctll I Icwctt

Department of Computer Science

Sk111f0rd Urlivcrsity
Stil11fOld, CA 94305

Heuristic Programming Project
Report No. 85-2

Leariling Control Heuristics in BBl ’

Barbara Hayes-Roth and Micheal Hewett

January. 1985

1
This work was supported by a DARPA grant to the Heuristic Programming Project

January 7, 1985

1

Abstract

BBl, a blackboard system building architecture, ameliorates the knowledge acquisition bottleneck

with generic knowledge sources that learn control heuristics. Some learning knowledge sources

replace the knowledge engineer, interacting directly with domain experts. Others operate

autonomously. The paper presents a trace from the illustrative knowledge source, Understand-

Preference, running in PROTEAN, a blackboard system for elucidating protein structure.

Understand-Preference is triggered when a domain expert overrides one of BBl’s scheduling

recommendations. It identifies and encodes the heuristic underlying the experts scheduling decision.

The trace illustrates how learning knowledge sources exploit BBl ‘s rich representation of domain and

control knowledge, actions, and results.

2

1. The Problem: Learning Control Heuristics

Knowledge acquisition is widely recogmzed as a major bottleneck in knowledge engineering [l].

Articulating and coding domain knowledge is time-consuming for both the domain expert and the

knowledge engineer. Acquiring control knowledge poses additional problems [4, 51. Control

knowledge appears to be more difficult for experts to retrieve than domain knowledge and they have

difficulty distinguishing domain and control knowledge. Experts produce general heuristics during

questioning. but use more specific heuristics during problem-solving. Stimulating experts’ retrieval of

a comprehensive set of heuristics may require analysis of many example problems that produce no

new domain knowledge.

This paper discusses automatic learning of control heuristics in BBl, a blackboard system-burlding

architecture [6]. Section 2 briefly overviews BBl. Section 3 discusses BBl’s approach to learning.

Section 4 presents a program trace from an illustrative learning knowledge source, Understand-

Preference. Section 5 presents conclusions.

All examples are drawn from PROTEAN [2], a BBl system that attacks the following problem:

Given a test protein’s primary structure sequencing individual amino acids;
its secondary structure locating alpha helices, beta sheets, and random

coils; NOES indicating proximate pairs of constituent atoms; vanderwaals
radii indicating minimum distances between pairs of structures; indication

of which atoms lie on the protein’s surface; description of the general
shape of the protein; and specification of the structures of individual

amino acids:

Determine the (possibly dynamic) locations of all constituent atoms in
three-dimensional space.

3

2. Background: Overview of BBl

BBl is a domain-independent architecture for building Al systems that control their own problem-

solving behavior, explain their problem-solving behavior in terms of an underlying control plan, and

learn new control heuristics from experience. The “blackboard control architecture” [7) underlying

BBl extends the standard blackboard architecture [3] in three ways.

1 . T h e b l a c k b o a r d c o n t r o l a r c h i t e c t u r e d e f i n e s e x p l i c i t d o m a i n a n d c o n t r o l
b lackboards .

As in the standard architecture, the blackboard records all solution elements generated during

problem-solving and organizes them in different levels and solution intervals. The domain blackboard

records solution elements for a domain problem. Its levels, solution intervals. and vocabulary are

domain-specific and determined by the application system designer. The control blackboard records

solution elements for the control problem: which potential action should the system execute on each

problem-solving cycle? These solution elements are decisions about the system’s own behavior.

Different levels of the control blackboard represent: the Problem the system must solve. sequential

problem-solving Strategies, local attentional Foci, general scheduling Policies, the To-Do-Set of

feasible actions, and Chosen-Actions scheduled for execution. Its solution intervals distinguish

different problem-solving time intervals.

. The architecture also provides a vocabulary for control decisions. For example, the heuristic in

Figure 1 favors actions whose knowledge sources have the KS-Type “Anchor” until every element at

the Secondary-Anchor level has been anchored in at least one partial solution. As illustrated. a

heuristic’s Goal is a function that returns a numerical measure (O-100) of a potential action’s

desirability. The Criterion is a predicate that tests for the occurrence of Goal expiration conditions.

The Rationale justifies the Goal. The Weight indicates its importance (O-10). The Status indicates

whether the Goal is operative in affecting scheduling decisions. The Source and Creator are the

triggering information and knowledge source that generated the decision. The First-Cycle and Last-

Cycle are the first and last problem-solving cycles on which it is operative.

4

D e s c r i p t i o n “Favor Anchor ing Ac t ions”
t o a t l e a s t o n e o t h e r o n e ”

Goal (I f (Eq KS-Type ‘Anchor) Then 100)
C r i t e r i o n (fo r E lemen t i n (SLevelnodes ‘Secondary -Anchor) a lways

(SFind-One ((L e v e l - I s ‘Secondary) (Cop ies E lement))))
Ra t iona le “D e v e l o p a c o m p r e h e n s i v e s e t o f p a r t i a l s o l u t i o n s ”
Weight 8
Sta tus ‘O p e r a t i v e
Source Problem1
Crea to r Anchor-F i rst
F i r s t - C y c l e 9
L a s t - C y c l e 1 8

F igure 1 . A n I l l u s t r a t i v e C o n t r o l H e u r i s t i c

2 . T h e b l a c k b o a r d c o n t r o l a r c h i t e c t u r e d e f i n e s e x p l i c i t d o m a i n a n d c o n t r o l
knowledge sources.

As in the standard blackboard architecture, independent condition-action knowledge sources

generate solution elements during problem-solving and record them on the blackboard. Satisfying a

knowledge source’s condition produces a knowledge source activation record (KSAR), available for

scheduling. Domain knowledge sources operate primarily on the domain blackboard. They are

domain-specific and determined by the application system designer. Control knowledge sources

operate primarily on the control blackboard. They interpret and modify representations of the

system’s own knowledge and behavior. Some control knowledge sources are domain-specific; others

are domain-independent. All knowledge sources are represented as data structures that are,

themselves, available for interpretation and modification. Their attributes are defined by the

architecture.

3 . A s imp le , adapt ive schedu ler chooses a KSAR to execute i t s ac t ion
on each p rob lem-so lv ing cyc le .

Three “basic” control knowledge sources iterate a three-step problem-solving cycle: (1) enumerate

pending KSARs: (2) schedule one KSAR: (3) execute the action of the chosen KSAR. These

knowledge sources have no control knowledge but simply adapt to dynamic solution state

information recorded on the blackboard. They schedule whichever KSAR best satisfies currently

operative control heuristics.

Systems developed in BBl control their own behavior by dynamically generating, modifying, and

5

executing control plans on the control blackboard while working to solve particular domain problems.

They explain their problem-solving behavior by showing the relationships between individual

problem-solving actions or sequences of actions and the dynamic control plan (see [6]).

6

3. Learning Control Heuristics in BBl

BBl learns new control heuristics through the actions of generic learning knowledge sources. Like

other knowledge sources, they are triggered by blackboard events and generate KSARs that compete

for scheduling priority. Their learning actions exploit knowledge of the BBI environment, including:

the structure, vocabulary, and semantics of the control blackboard, the current contents of the

control blackboard, the structure and semantics of knowledge sources, the current repertoire of

knowledge sources, and prototypical functions and forms for control heuristics.

Learning knowledge sources can learn new control heuristics, more general or more specific forms

of known heuristics, or expansions or restrictions on the applicability of known heuristics. Some

learning knowledge sources interact with domain experts. For example, the knowledge source

Understand-Preference is triggered when a domain expert overrides BBl’s scheduling

recommendation. Its action determines the reason for the user’s preference and encodes it as a new

heuristic. Other learning knowledge sources operate autonomously. For example, the knowledge

source Attribute-Results is triggered by dramatic improvement (or deterioration) in the current

solution to the domain problem. Its action attributes &&change in solution rating to preceding

actions and encodes a heuristic favoring such actions. Evaluate-Heuristic, another autonomous

knowledge source, is triggered when a new control knowledge source is executed. Its action

evaluates subsequent changes in solution rating and adjusts the knowledge source’s assumed utility

and reliability accordingly.

7

4. Understand-Preference: An Illustration of
Learning in BBl /PROTEAN

This section presents a trace of the knowledge source Understand-Preference learning a new

heuristic during a run of the PROTEAN system. BBl’s menu-driven interface is self-explanatory.

Aspects of the trace not directly related to Understand-Preference’s behavior are discussed in [S].

The trace begins on problem-solving cycle 6. BBl displays all invocable KSARs and recommends

KSAR 6 for execution, recording the recommendation on the control blackboard in node Chosen-

Action6. It explains its recommendation in terms of the current control plan, including scheduling and

integration rules, operative control heuristics, associated ratings for KSAR 6. and KSAR 6’s priority. It

reports three other KSARs with the same priority. When the expert overrides BBl’s recommendation,

it modifies Chosen-Action6 accordingly, executes the preferred KSAR 7, and and reports the resulting

blackboard event.

Cycle 6
T o - D o - S e t - - T / I / A / N : I

Invocable KSARs:
K S A R 6 A n c h o r - H e l i x t r iggered by (Supersede Secondary -Anchor4)
K S A R 7 A n c h o r - H e l i x t r i g g e r e d b y (S u p e r s e d e Secondary-Anchor5)
[Other KSARs]

Display/Execute/Recommend/Charge-Ahead: R

.
I h a v e c r e a t e d e v e n t (A d d Chosen-Action6)
I recommend KSAR 6
OK/Why/KSAR#: W

KSAR 6 Anchor -He l i x t r iggered by (Mod i fy Secondary -Anchor4)
C o n t r o l P l a n :

Schedul ing Rule: H i g h e s t P r i o r i t y K S A R
I n t e g r a t i o n R u l e : Sum of Weighted Ratings
St ra tegy1 Anchor-Then-Ref ine

R a t i o n a l e : D e v e l o p a c o m p r e h e n s i v e s e t o f p a r t i a l s o l u t i o n s b e f o r e
L d e c i d i n g w h i c h o n e s t o r e f i n e a t t h e b l o b l e v e l

F o c u s 1 (E q KS-Type ' A n c h o r) W e i g h t 8 R a t i n g 1 0 0
P o l i c y 2 (E q To-BB ' C o n t r o l) W e i g h t 1 0 R a t i n g 0

P r i o r i t y : 8 0 0
KSARs wi th the same Pr io r i ty : KSAR 7 KSAR 8 KSAR 9

OK/Why/KSAR#: 7

I have c rea ted the event (Supersede Chosen-Action6)
I am executing KSAR 7
I h a v e c r e a t e d t h e e v e n t (A d d Secondaryl)

8

On cycle 7, BBl displays the invocable KSARs and recommends and executes KSAR 15,

Understand-Preference triggered by the expert’s scheduling override on cycle 6.

Cycle 7
To-Do-Set--T/I/A/N: I

KSAR 6 Anchor-Helix t r i ggered by (Supersede Secondary -Anchor4)
[Other KSARs]
KSAR 15 Understand-Preference t r i g g e r e d b y (S u p e r s e d e Chosen-Action6)

Display/Execute/Recommend/Charge-Ahead: R

I have c rea ted the event (Add Chosen-Ac t ion7)
I recommend KSAR 15
OK/Why/KSAR#: OK

I am executing KSAR 15

Understand-Preference searches for the difference between KSAR 6 and KSAR 7 underlying the

expert’s preference for KSAR 7. Observing that both KSARs use the same knowledge source,

Understand-Preference determines that the expert’s preference for KSAR 7 lies in its triggering node,

not its triggering event.

I would l ike to understand why you preferred KSAR 7 over KSAR 6.

Both KSARs involve the knowledge source Anchor-Hel ix.
Do you p re fe r KSAR 7 because o f a d i f fe rence in :

Events or Nodes: N

Understand-Preference reports all differences between the two nodes, using appropriate

comparative terms for different data types, and determines that the user’s preference reflects a

difference in values for the attribute Constraints-To-Other-Structures.

KSAR 6’s Node is Secondary-Anchor4
KSAR 7's Node is Secondary-Anchor5
Do you prefer KSAR 7 because Secondary-Anchor5 has:
(A) Type = Alpha-Helix. ra ther than Be ta -Sheet?
(6) a h igher Number?
(C) a d i f fe ren t Sequence?
(D) d i f f e r e n t E x t e r n a l - C o n s t r a i n t s ?
(E) a higher Number-External-Constraints?
(F) d i f f e r e n t C o n s t r a i n t s - T o - O t h e r - S t r u c t u r e s ?
(G) d i f fe ren t Paramete rs?
Choose A/B/C/D/E: F

Each node’s Constraints-To-Other-Structures specifies a list of lists:

9

Secondary-Anchor4
C o n s t r a i n t s - T o - O t h e r - S t r u c t u r e s

((Secondary-Anchor5 1 (7)) (Secondary-Anchor3 0 N i 1)
(Secondary-Anchor2 0 Nil) (Secondary-Anchor1 0 Nil))

Secondary-Anchor5
C o n s t r a i n t s - T o - O t h e r - S t r u c t u r e s

((Secondary -Anchor4 1 (7)) (Secondary -Anchor3 0 N i l)
(Secondary -Anchor2 2 (5 6)) (Secondary -Anchor1 1 (1)))

Therefore, Understand-Preference computes several statistics that summarize lists of lists and reports

all statistics that distinguish the two values of Constraints-To-Other-Structures.

D o y o u p r e f e r Secondary-AnchorS’s C o n s t r a i n t s - T o - O t h e r - S t r u c t u r e s
because i t has :

(A) more non-zero element2s?
(6) a b igger range o f element2s (O-2 , ra ther than O-l)?
(C) more non -nu l l element3s?
(0) a b i g g e r r a n g e o f l e n g t h s o f element3s (O - 2 , r a t h e r t h a n O - l) ?
Choose A/B/C/D: A

Having determined that the user prefers KSAR 7 because more of its Constraints-To-Other-Structures

have non-zero values in the second list position, Understand-Preference begins constructing a new

control heuristic with the prototypical function:

(Prefermore (Var iable Maxnumber)
(Itimes V a r i a b l e (I q u o t i e n t 1 0 0 M a x n u m b e r))) .

It determines the maximum value of the targetted statistic to provide a scaling parameter. It also

. obtains a rationale and weight for the heuristic.

What i s the g rea tes t poss ib le number o f non-zero element2s? 5
Why do you prefer more non-zero element2s? Can anchor more structures
How important is your preference (l-lo)? 8

Understand-Preference records the new heuristic at the Policy level of the control blackboard

where it will influence all subsequent scheduling decisions. It also creates a new control knowledge

SOUrCe to generate the new heuristic during subsequent problem-solving sessions, It determines that

the expert wishes to name the knowledge source Maximize-Constraint and obtains a brief description

of it.

10

I am recording Policy3
(Goal ‘(If (Focus-Level-Is Secondary)

Then (Prefermore (for X in
@Value Focus-Node Constraints-To-Other-Structures)
count (Greaterp (Elementno 3 X) 0)) 5)))

(Rationale "Can anchor more structures")
(Weight 8)

OK/No:OK

I am creating a new control knowledge source:
Trigger: (E vent-Level-Is Problem)

(Change-Type-Is Add)
(Eq ($Value Event-Node Type) 'Protein-Analysis)

Pre-Condition: T
Action:

Rule1
LHS T
RHS (Propose changetype Add level Policy attributes

(Goal '(If (Event-Level-Is Secondary)
Then (Prefermore (for element2 in

($Value Focus-Node Constraints-To-Other-Structures)
count (Greaterp (Elementno 3 X) 0)) 5))

(Rationale "Can anchor more structures")
(Weight 8)

OK/No: OK

What would you like to call this KS: Maximize-Constraint
Please describe it: This KS generates a Policy favoring actions that
operate on structures that have NOES to many other structures.

11

5. Conclusions

881 ameliorates the knowledge acquisition bottleneck with knowledge sources that learn control

heuristics. The illustrative knowledge source Understand-Preference relieves the domain expert by:

(a) focusing on observed discrepancies between the expert’s and the system’s scheduling decisions:

and (b) hierarchically searching the space of differences between their preferred actions.

Understand-Preference eliminates the knowledge engineer entirely, assuming all responsibility for

coding heuristics and knowledge sources. In principle, Understand-Preference could acquire all of

the domain expert’s heuristics. However, it currently learns only a subset of the several types of

control heuristics understood by BBl. For example, it cannot learn strategic heuristics such as: First

anchor pieces of secondary structure to one another in partial solutions until each piece of secondary

structure is anchored to at least one partial solution: Then refine the largest. most constrained partial

solutions. Research in progress aims to develop knowledge sources that learn other kinds of

heuristics and knowledge sources that operate autonomously, without expert intervention.

BBl’s learning knowledge sources derive their power from simple comparison operations

performed on rich representations of problem-solving knowledge, actions, and results (see also [8]).

These include syntactic representations of domain-specific information and semantic representations

of control information.

12

References

PI

PI

PI

EdI

[51

@I

VI

181

Barr, A., and Feigenbaum, E. A.
The handbook of artificial intelligence.

Los Altos. Ca.: William Kaufmann. Inc.. 1981.

Buchanan, B., Jardetzky, O., Lichtarge, O., Hayes-Roth. B. Altman, R., and Hewett, M.

PROTEAN.
Technical Report, Stanford, Ca.: Stanford University, 1984.

Erman. L.D.. Hayes-Roth, F., Lesser, V.R.. and Reddy, D.R.

The Hearsay-II speech-understanding system: Integrating knowledge to resoive uncertainty.
Computing Surveys 12:213-253, 1980.

Goldin, S. E.. and Hayes-Roth. B.
Individual differences in planning processes.

Technical Report N-1488-ONR. Santa Monica, Ca.: Rand Corporation, 1980.

Hayes-Roth, B.
Flexibility in executive processes.
Technical Report N-l 170-ONR, Santa Monica. Ca.: Rand Corporation. 1980.

Hayes-Roth, B.
BB 7: An architecture for blackboard systems that control. explain, and /earn about their own

behavior.

Technical Report HPP-84-16, Stanford, Ca.: Stanford University, 1984.

Hayes-Roth, B.
A blackboard architecture for control.
Artificial Intelligence Journal in press, 1985.

Lenat, D.B., and Brown, J.S.
Why AM and EURISKO appear to work.

ArtificaI intelligence 23:269-294, 1964.

