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WL’ show Hal the problem  of conslrucling  ;I pcrfccl  matching  in a graph is in the complexily  class Random NC:

. i.e.. the problem  is st)lvilblt!  in polylog  time by a randonkcd  pilrallcl  algorithm using i\ polyllonlial-boutld~d  number of

processors. WC itIS SIIOW Ihilt scvcrill  rclalcd  problems  lit in lii~ndom  NC. ‘I’hcsc include:
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(ii)

(iii)

Construcling ;I perfccl  makhing  of maximum wcighl  in a graph whose edge weighk are given in unary notation;

Constructing a nlaxirnulll-cardinalily  matching:

Constructing a matching covering a set of vertices of maximum weight in a graph whose vertex weights are given

in binary:

(iv) Conslrucling  il I1liIXiIlllllll  S - I llow in iI dircctcd graph whose cdgc  weighls  arc given in unary.
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La this paper we show that the problem of constructing a perfect maiching  in a graph is in the complexity class

Random NC: i.e.. Lhe problem is solvable in polylog  time by a wndomized parallel algorithm using a polynomial-bounded

number of processors. We also show [hat several related  problems lie in Random NC. These include:

(ii)

Constructing ;I perfccl  matching of maximum weight in a graph whose edge wcighls  arc given in unary. nolation;

Constructing a maximum-cardinality matching;

(iii) Constructing a matching covering a set of vertices of maximum weight in a graph whose vertex weights are given

in binary:

(iv) Constructing a maximum s -f flow in a djrecled  graph whose edge weights are given in unary.

Our results are based on a theorem  of Tutle [Tu] showing that a graph has a perfect matching if ;lncl  only if the

determinant of a certain  skcw-symmelric  malrix  with indeterminates  as elements is not identically zero. Around 1979

Lovnsz suggested that  Tulle’s Theorem, combined with a fundoment.al  randomized  technique for testing whether a matrix

with polynomial entries  has a nonzero delerrninanl  [SC]. provides  a simple polynomial-time  randomized algorilhm  for tesl-

ing whether a gmph  has a perfect matching. In 1982 Borodin,  von zur Gathcn  and Hopcroft  (f3Gf-I]  observed that, since

the problem of compuling  the determinant of a numerical matrix lies in NC, a parallel algorilhm  can be constructed  based

on Lovasz’s approach. This algorithm establishes that the problem of deciding whether a graph contains a pcrfecl  match-

ing lies in the complexity class Random NC, but leaves open the question of whelher a parallel algorithm of companlb)e

efficiency exists for consmcring  a perfect  matchin&  in a graph that  is known to have such a matching. In 1984 Rabin and

Vazirani [RV].  using clcvcr algebraic  techniques r.elalcd  lo Tulle’s  Thcorcm.  gave an allraclivc  randomized  polynomial-

. time  wquentiui  algorithm for conslrucling  a maximum matching.  They illso observed that  if a graph has a unique  pcrfecl

matching then the problcnl  of finding il lies in NC. The special CASC  of finding (1 perf’cct  tn;ICchillg  in an interval graph

was  shown lo t_ic in Rillldom-NC  by KOXIL  Vazirani  LtIld  V;tzir;lni (KVV].

The additional iugrcclicnl  thal  allowed  us 1o oblain iI Random-NC parallel  algorilhm  for constructing a pcrfecl

matching in an arbitrary graph was the introduction of 11 useful set funclion  called Rank. Our result is based on a

Random-NC reduction of the matching problem lo the problem of compuling  the Rank function, and on a Random-NC

algorithm for computing the Rank of sets.

~ 2. ‘i-Ill’ l’i’l~l’lXT  MA’I’CIIINC hl,C;OI~I’I’II~M

We present the pcrfcct  matching algorithm in three slagcs. First we rcducc  Ihc problem of finding a pcrfccl  match-

ing lo the problcrn  of identifying a large set of redundant  edges in a graph that has a perfect matching and is not very

spalsc.  We say Ihat a set of edges in a graph that has a perfect mi\tching is redundant if the removal of these edges

resulls in a graph that still has a perfect matching. We then show that a random-NC procedure can co~isl~~cl  a large set

of redundant edges proviclcd  that  a ccrtirin  intcgcr-valued  fimction,  called the rank. which is dcfincd  over alI subsets of

edges in the graph, is computi~blc in rand.om-NC.  Finally we give a random-NC algorithm for computing lhe rank.
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2.1. A IilC;H LEVEL DESCRIPTION OF TliE ALWRITHM

Let IG = (IYJE) denote the input gtJph.  The procedure  Find-Perfcct-Matching  uses Lhrcc  main variables M,

V and E.

The set variable  M collects Ihe edges that the procedure designaks  for the output matching. In contfasl  with the

classical matching algorithms, our procedure never  retreats from partial solutions. Once an edge is added to the se1  M it

remains there until  the procedure lerminates,  and il appears in llui final oulput.

Throughout the execution of lhe procedure:  the variable Y stores the set of vertices that are not yet covered by tie

matching M . The set E stores a subset of the set of edges knnecting verlices  in V; lhese are Ihe cdgcs lhat are still can-

didiltcs for inclusion in the matching.

We start  lhe procedure with M = 0, V = IV, and E = IE. If the input graph IG has a perfect  matching then

wilh probabiliCy 1 - o(l) the following property hold throughout the execution of lhe pmccdure: ’

The graph G = ( V, E) has a perfect matching.

If this condition is ever violated the procedure will fail to produce a perfect matching in IG. On the other hand, if the

condilion  remains Lrue then it suffkes for the algorilhm  to consider  edges in the set E, since the scl M logelhcr wilh a

perfect matching in G is clearly a perfect matching in the input graph IG.

Procedure Find.-Perfect-Matching(  V.E,M):

while 1 E 1 > 0 do
.

if 1 E 1 < -‘i- I V I then [G is sparse]

find ii scl NM, I NM I 2 $ I V 1, of edges lhal lie in every perfect  malching:

McMUNM;

V + V -- ( vertices covered  by NM );

E +- ((w)I(w)~E,  v&V):.
else [G is ~IOC  sparse]

L Fit~d._R~~l~tnd~,t~t_.Sei(RE  j;
[wilh probability j? > 0, I KE I > CrlS I]

Et-E - N E ;

end.

The main while loop of the procedure is executed until the set E is empty. Assuming that the graph (V,E)

always has pcrfccl  matching, [his implies that the scl V is also empty,  thus, that the variable M stores a perfect matching

in IG.



Each iieralion  of [he while loop tries to dccrcosc  lhc size of lhc set E by a constant factor. The execution distin-

guishcs between two cases:

Case a: 1 E 1 < t 1 VI, (the graph G = (Y,E) is sparse). Since G has a perfect  matching, the degrees of all its

3vertices are at leas1 1. 1 lowever,  I E I < 4 1 V 1, thus al ICaSl i I V I vertices have degree Cxactly 1. If an edge is incident

to ;I vertex with degree I [his edge is included in any pcrfecl  matching in this graph. Thus we can identify at leas1 +I

edges ihat can be added to the set M and the remaining graph (V’,E’);  defined by the vertices in V that are not covered

by the new matching edges, has a pcrfcct matching. Furthermore, I E’I * < I E I - $ I Y 1 5 f I E 1, and the computa-

tion cm be done in O(1) sleps using 0( I E 1) processors.

Case b: I E 1 2 i- I V I. This cast.  which is the novel part of the algorithm, is solved by the probabilistic pro-

cedure Find-mHcdundant-Set  . With probability 1 - o(--!+-)  the procedure produces a seC  RE such that the graph
II: 12

(Y,E - KE) has a perfect m;lkhing.  With probability p > 0 I RE I &x 16 I for some a > 0. Thus with probability p > 0

the procedure reduces the size of our problem by a conslant  fkbr.

The analysis of the number of iterations of the while loop required lo create a perfect matching requires a fact from

probability theory.
.

FACT 1 [AV] Ler X be a random variable  distributed as the number of successes in n independent I3ernoulli  trials

with probability of success p. If 0 < a < 1 Lhen I’[ X 2 (1 -- a) np ] < exp ( - i a* np ).

. IXM M A 2. I : If there are cortsturlts  cu,p  >.O arch that with probabiliry  al kast fi a call 10 the procedure

Find _ Rctlundant-.Sct  idenrijks  at leasl a Jkliort  a of lhe  edges  ill 6 as redmian/.  rhen.  un~orrnly  for u!! problem instances

lhe c*xpcctt*d  nmbu  of ilerulions  of ~hta  whik!  loop  wilhin  (his  proccdurc  is O(log  E). ami,  moreover. for sme c > 0 and

d > 0 rhe nurpber o$ ilerations  of rhe whife  loop is bountkd  ubove by d log  E wirh probability 1 -0 (E . c).

f’root We may assume withoul loss of generalily Ihal (Y ,< f-. Cull an iteration of the while loop iI success if it

disposes of at leas1  a f? edges, either by determining  that they lie in every pcrfcct matching (Cast  a) or dctcrmining  that

they arc rcdundanl  (Crw b). Then cvcry itcmtiori  in which Case a occurs is neccssaiily  a success,  and every iteration ‘in

whizI; CilSC  b occurs  is a success  wilh l~rohabilily al Icasl /I. Lx1 q =I (1 - 0) I. The number  of successes rcquircd  to

rcducc lhc number  of cdgcs  lo 1, skirting from an inili;ll ctlgc se1 E, is iit JWS(. log,, I E I , :IIIJ hence the number of

SUCCCS~CS  required  10 complcle  lhc enlirc computalion  is al most 1 + log, I I:’ I , Since each iteration has probability of

success al least p, indcpendcnlly  of the 0~11co~11es  of aII previous iteralions, the expected number  of ilerations is al most

p ’ 0 + log,, I E I h Morcovcr,  the number of SU~~~SSCS  in the first 2p ’ log1 I E I iterations is a random variable that

stochastically  dominates lhc number of succcsscs in 2p ’ log,, I E I independent  I3crnoulli  trials with probability of suc-

ccss p. Applying Facl 1, WC find lhl lhc probability 01’ halving  lo&,, I E I or fcwcr  succcsscs in the first 2/3 1 log,, 1 E 1



itcralions  is al most exp( - ilog,, IE I ) =  IEI -c;where.c 1= -- > 0. Ifcnce,  with probabilily 1 - 1 E 1 -’ pro-
4ln q

cedure Find-Perfect-Matching temlinales  within 2/? ml log,, 1 E 1 iterations.

As WC have mentioned  before. the probability Chat a call LO the procedure Find-Perfect-Matching  fails lo find a

perfect malchins  is o(l). Since this bound on the fililure  probability is independent  of the input, and since we can check

at the end of the procedure whelhcr  AI is a perfect  matchin,.0 we can simply repeat the procedure until a perfect matching

is found. This leads to the following randomized algorithm, which finds a perfect m;ltching  in polylog  expected time in

any graph in which such a matching exists.

Perfect Matching Algorithm

M + 0 ;

while I&I I ‘9

v + IV:

E + IE;

M +0

Find-Perf’cct-Matching(  Y,E.M);
.

end.

2.2. IDENTIFYING A LARGE SET OF IIEDUN’DANT  EDGES

Given 21 grilph G = (V.E) such that ’ .

1. G has a perfect matching,

and

we need to find ;I set RE Cfi’ such Ihat

1. IR/‘rl  >alEl forsomear>O

and

2. (V-E - RE) has a pcrfcct  matching.

L Our illgorithm  uses iI powerful  intcgcr-valued  function dcli~~~l  over ;111 SU~SCIS  of edges in G.

Definition  2.1: Lel PM denole  the set of pcrf2ccl  marchings  in the graph G. For uny  sel S E E deJine

Rank(S)  = ~alSf-U  I.

Jn words Rank(S) is an integer giving the maximum number of edges from S thal  occur together in a perfect

matching of G.



We use Ihc  Rarrk function in the following way:

LEMMA 2.2: For a fixed  S c E, let RE = (efE-S  l.Rank(SU(e})  = Rank(S)). IiG = (V,E) hasapeflect

matching then so does G’ = ( V, E - RE)

Proof: 1 f Rank(S) = k than there is e a perfect matching A in G such that IS flA I = k. If

Rank(SU( e)) = Rank(S) then (SU{e})nA  = Sf”lA and e’is not in A. This argument holds simultaneously for all

the edges in RE: therefore removing the set RE leaves the graph with at least one perfect matching, the set A.

Example: Suppose the graph G is a cycle consisting of the successive edges 1.2,3.4,5,6.  Then PM consists of the

two sets { 1.35) and { 2.4.6).  Hence, for any set S, Rank (S) =’Max ( I S n (1.35) 1, 1 S n {2,4,6)  I ). Consider the

set S = { 1,2.3).  Then Rank (S) = 2 and R E = (4.6).  Note that the deletion of edges 4 and 6 does no1 destroy the

perfect matching (L3.5).

To guarantee  a uniform lower bound on the probability that the set RE is large enough, we use the following pro-

cedure:

Procedure Find-Redundant-Set:

begin

choose a random number i, from the uniform

distribution over the range

{le....; WI};
choose a SCE from the uniform distribution over

lhe i - elcmcnt  subsets of E ;.
RB+(e EL -S I Runk(SU(e))  = Rank(S))

end.

LEMMA 2.3: There are constants a.P > 0 such that Prob  { I R E I 2 a I E I } 2 8.

Prook Let IV1 =  n ,  IEI ,= m. and let p, denote the probiibility that for a set S drawn at random from the

i-element subsets of E, and for an edge drawn at random from E - S. Rank(SU{e))  =. Rank(S) + 1.

We can think of a random set S ;IS being cwnstructcd  by a sequcncx of i nndom choices (without repclitions) from

the s’cl  L’. Hunk(S) is then equal  to lhc number  of limes I.Ix Rank W;IS  incrcoscd WI~~II i\ IICW ri~~~h~~~  C&C WiIS added lo

the set S. Thus, .

,$- ,WnkWl = #)I~=

Obviously Rank(E) = T, since the graph has II perfect  matching, so we can write
I
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Using this upper bound on cp, we can compute a lower bound for the average size of the set HE produced by

our procedure. The size i of the set S is chosen uniformly from the range 1, . . . , 2,. When a random set S of size i
6

1is chosen, the probability Hal a random edge e E E-S is added to the set RE is I - pi. There are always at Icast --+I
6

edges in E -S, therefore

Let p = iii, then

Ll
kpi) > “t?f.
i&L - 5 6

2pm =  E[jREl) = 5 j(Prob( 1 RE I= j)) 5
j-1

p(Prob(  I RE I<pm})  + m(Prob(  I RE 1 &n)),

which implies that

2pm <pm  + mProb(lREl>_lun),

LEMMA 2.4: If Rank(S) is compulublu  in f I( 1 E I) steps  dug h ,( I E I) processors  where  f, and h, at-e mowlone
nondecreasing  functions  then Find_~ctlund:~nt_Sct is comprrtubke  in f ,( I E I) + O(1) srcps  using  1 E 1 hl(  I E I) processors.

Prod The simultaneous computation of Runk (S) and of Rank (5’ U (e }) for all e in E - S requires f1 ( I E I )

steps using I E I hl ( I E I ) processors. The determination of RE once these Rank computations have been done

requires  O(1) steps using 0 ( I E I ) processors. .

2.3. COMI’U’I’ING  ‘l’lll;, ItANK I’UNC’I’ION

For simplicity of prcscntation  we firs1  give a solution for the case where the input graph is bipartite. We then

explain how the general case is handled.

L,et G = (U,V,E)  denote a bipartite graph with edge set E and n vertices in each part. Let U = (u~,u~,...,u,,}  be

the verlex set of one piKl and V = (V~.IQ . . . ..v.}. the vertex set of the other part. Associate with ench edge (u,, v,} an

indetcrminatc  x,, and kl H = (b,,)  be a n X n matrix of indctcrkinates  defined  by the following rule:
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bij  =
*Xi) i f  (~1,  Vi}  EE

0 if (Ui,  Vj}  Et??.

Edmonds [Ed] hns observed that G has a perfect matching if and only if det(B)#.  This is true because each of

the n ! terms in the sum 2 sign(a)llb,,,,(IJ  is A product of n entries in B that correspond lo the edges of one of the n !
OCS,

per&t nl;ltchings  in the complete bipartibe graph. If all the edges of a pcrfccl  matching exisl in G than the cdrresponding

term in &r(B) is not identically zero: otherwise qnc of the cnlries is zero and nbi.o(,) = 0. It is easy to verify that mono-

mials can not cancel each other in this summation. and therefore der(B)  S 0 if and only if G has a perfect matching.

To compute the Rank of a given se1 SEE we refine this argument. Define the matrix B(S] = [bz]  as follows:

,
.YX/j if (4, v/l Es

b;T = s x/j if‘ (ui, v,) EE -S
0 i f  (Ui, V,) 6 % .

‘

1.e B(S] is derived from the matrix R by tagging ail cnlrics thal  correspond to edges in S with a new variable y.

Each non-zero monomial in dcr(U[S]) corresponds to a pcrfcct  matching in G. The degree in y of a monomial is

equal  to the number  of elements from S Ihat participate in the corresponding perfect matching. Again monomials can
.

not cancel each other,  hence the degree in y of der(B[S])  is equal to that of the monomial with the maximum degree in

y, which in turn is equal to the maximum number of elements from S that participate in a perfect matching in G, i.e., to

Rank(S).

So in order to compute Rank(S) we have ‘to compute the degree in y of the multivariatc  polynomial de/(B(Sl).
.
Rewriting dcf(R[S])  as a polynomial in y, we get def(S) = iQ,[{X,j}b’. and Rank(S) = Max(f I Q,%O). Unfor-

I 0

Luniltcly. we &I IIO~ lcyjl directly whcthcr  Q,, which is 21 polynomial in up to I fi I indctcrminatcs, is identically zero.

Instead. we CISC  :I well-known probabilistic method.

TI IEORKM 2.1: (Schwartz) [SC] Let ol denore  the vulue  01 the polynomial Q, when each indelerminate  in Q, is

repluced  by a random inleger  in the  range 1. . . . , J. If Q, &O then Prob {d, = 0) s y-.

Let E[S] dcnotc  the m&ix /I[S] alIer  all its indeterminates,  except  y, have been replaced by random integers. To

coll&lc  1lC (3,'s WC llw! lo a~lnplllc ~/P~(li[S]) ilS ;I polynomi:il  in one Vill%ll>l~  y.

‘I’IIEOREM 2.2: (IIorodin,  Cook, Pippengcr)  [IKY],  ?he dcterminanf  of an n X n muMx of polynomials wirh  a

cons&ml  number of variables  and the degree of each malt+  clement bounded by n cun  be compured  in O(log2n)  steps  using

0 (n4es)  processors

We can now summarize the algoI:ithm  for computing Ihc Rank function in the bipartilc case.



-9-

Procedure  Rank(S);

conslruct  the matrix R[S] = [bt]:

replace each indeterminate xi, by a random integer in

the range 1.. . . , 1 [E 14; .

compule  &r (E[S]) = C&J’:

Rank(S) = Max(t  10, + 0);

end.
.

In lhe casl:  of a general graph our method of computiag the rank function relies on the following theorem  ofTutte.

TIjEOREM  2.3 (Tulle) [Tu] Let G = (V,E) denote a general graph wilh vertex set V = (1,2,...;n ) and de3.e the

skew-symmerric matrix B = b,, as follows:I 1
bij =

Xij if {i.j) EE and i<j *
-xl]  i f  {i,j} EE a n d  i>j

0 i f  (i,j) 4%.

Then G has a perfect  matching if and only vdet (B) & 0.

Tulle’s theorem can be extended lo yield an algorithm for compuling lhe Runk function in geneml  grdphs.

TIIISOREM  2.4: Ler G = (V,E). SCE. and define rhe m&ix B[S] = I 1t$ as follows:

b; =

Y-Q if (i.j) ES and i<j
- YXI, if (i.j} &S and i>j

XlJ if {i-j}  EE -S and i</
-x/j i f  (i.j) EE-S and i>j
0 i f  {iJ} f&l

Then Kunk (S) is equal to half01  lhe degree in y of der  (B [S]).

ProoT:  Lcl I’ be the se1 of all permutalions  u of (1.2 ,,.., n ) such thal,  for all i, b,,,(,)  f 0. We classify lhese permu-
lalions ;Iccortling  IO their cycle  slructurcs. Since alI clctwn~s  WI the m;lin  di;lgo~li~l  ilrc 0, no pcrmutolion  in P contilins a

cycle  ol’ lcnglh  1. 1x1 01’ bc lhc sc1 of’ all pcnllulAons  in I’ which conlrlin  al Icasl one odd cycle and lel E/’ bc the set

of iIll pcrmulalions in S in which all cycles arc of cvcn length. ‘l’hcn 1’ is the disjoint union of OP and EP. Let M be

the se1 of all  pcrmulalions in I’ stich Hal every cycle is of length 2. Then M C EP, and lhe pemlutalions  in M are in

one-lo-one corrcspondencc  wilh lhe perfecl  matchings in G.

WC have dcl (B(S]) = c sign (a) n b,,,(+ WC shall  show lhal  lhc conlribulion  of the pcrmulalions conlaining
OCP i

odd cycles lo dct (D[S]) is cqt~al  lo zero: i.e., Ihilt 2 sign (a) n b,,,(,)  =
’ 0COP

0. We shall partilion  the pcrmutiilions
1
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contilining  odd cycles into pairs, such thut the two pcmlutations in ench pair make A net contribution of zero to the deter-

minant. Let u be a permutation containing at least one odd cycle. Let i be the least element of (1,2,,..,n ) occurring in

an odd cycle of u, and let C be the odd cycle containing f . Then Q is poked with a permutation 5 which is the same as

u except that the cycle C is reversed.  Thus 5 is defined as follows: if / E C then 5 (j)  = u(j);  if 1 E C then

G(/) = 0-l (/). It is easy to verify that this rule partitions OP into pairs, and that each &.ir makes a net contribution of

zero to the determinant.

Call  an ordered pair <i,j> an S -pair if (i,j} is an edge in S. Then the S -pail> correspond lo the enlries in the
matrix B[S] which involve th6 variable y. Associated  with each permutation  u in EP is the term sign (0) n l~,~(,).

I
This term is a nonzero  monomial in the variables Ix,,,) ‘and  y. Define the y-degree of u as the degree of y in this

monomial. Then the y -degrbe  of u is just the number of S -pairs in Q, i.e. the number of S -pairs <i&l)>.

WC shall show that, for every permutation u f EI’ there exists a permutation 7 c M such that the y -degree of T

is greater than or equal to the y -degree  of u. To construct T, partilion  the pairs <i, u(i)>, i = 1,2,...,n  into two sets,

called the odd pairs and the even pairs, in such a way that, <I’, u(i)> is an odd pair if and only if <u(i), u(u(i))> is an

even pair. In other words, the partition is chosen so Chill,  in the traversal of any cycle of (J, odd pairs and even pairs alter-

nate, Such a partition is possible because all the cycles in u are even. Assume without loss of generality that the set of

odd pairs in u contains at least as many S -pairs as dots the set of even pails in u. If the y -degree of u is d, then the

set of odd pairs contains at least 4 S -pairs. Now def&e +r by the following rule: if <i, u(i)> is an odd pair then

7 ( i )  = a(i) and ~(u(j))  = i. Then T l&s in M and the y-degree of 7 is at least d.

Each permutation in M corresponds to a perfect matching in G, and the y-degree of this pcmutiltion  is twice the

number of edges from S in this perfect matching. Hence, using the result proven in the last paragraph, the maximum

y -dcgrcc of imy permutation  is just twice the rank of S.’ To show that the dcgrce  of y in dct (S[S]) is twice the rank of

S, WC need lo show thiIL the pcrmutalions  of maximum y -dcgrcc make  a nonzero  net contribution to det (B[S]). i3ut

this is clear. since there exists a permutation  in M among those of maximum y -degree, and its monomial is not can-

celled by the monomial of any other permutation.

Thus, using the probabilistic method  of Schwartz and the algorithm of Borodin, Cook and Pippengcr, we have a

Random-NC algorithm for computing the rank of a scl of verlices  in iI gcncral  graph.
L

LEMMA 2.5:

.

1.

2.

The procedure Rilnk  is executed in O(Iog*  1 V 1) slcps using O( 1 Y I’*‘) professors.

The probability that the procedure Rank fails to compute the correct value of Rank(S)  is bounded by 0( I IE I --“),  and

this event does not depend on the inpur

Combining now the results of lemmas  2.1-2.5  We have
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For any input graph  IG = (IVJE):

1. The procedure Find-Perfect-Matching uses 0( 1 IV 16.‘) processors and terminates within O(log3  1 IE 1) steps with

probability 1 for some c>O. .

2. The probability that the procedure jai/s  to produce a perfect matching when applied to a gmph that possesses one is

bounded by , & , .

3. FURTlWR RESULTS

In this section we derive Random-NC algorithms for several further problems related to matching and network

flows. We begin by giving such an algorithm for finding a perfect matching of maximum weight in an edge-weighted

graph G = (lV,lE ,w), when the edge-weights o((i,j})  are given in unary.

Definition 3.1: Let M W denote the set of perfect matchings of maximum weight in the weighted  graph

G = ( V,E ,w). For any set S GE define

Rank&S) = MaxISfIA  I.ACMCV

In words Rank&S) is an integer giving the maximum number of edges from S that participate in a perfect match-

ing of m‘aximum weight in G. .

It is easy to verify that running the procedure  Find-Perfect-Matching with the new rank function computes the

desired perfect matching in an expected number of iterations of order log 1 E 1, The only dificulty  is to show that the

new Rankw funclion  is compuulblc  in Radon1 NC. The following theorem,  in mmbin;ltion  wilh ‘l3mrenl  2.2,  aklb-

lishes this fact.

THEOREM 3.1: Let G = (V,E,o),  SCE, and define the mutrix  U[S] asfollows:

YZ w X/j if (i.j) ES, i<j. and w((i,j))=w
-YZwXlj  if (i,j) ES, i>j. and o((i.j})=w

b,+ ZwXii i f  {i.j} EE -S. i<j. a n d  o((i,j))=w .
-ZwXlj if {i.j} fE -S. i>j. and o((  i,j})=  w

L 0 i f  (i,j) CE.
\

Let det(B[S])  = xQ,z’. andlet  L = Mpx{t IQ,#)}..
1

I. The the maximum weight of a perfect matching in G is $.

2. Rank&S) is equal to hav  the degree in y of QL, the coeflcient  of zL .
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The proof of Theorem 3.1 is quite similar to that of Theorem 2.4. First it is shown that the permutations containing

odd cycles make H net contribution of zero to det (R[S]).  Then attention is restricted to EP, the set of permutations with

all cycles even that make a nonzero  contribution to det (R(S]). Let t be the highest degree to which z occurs in the

monomial associated with such a permutation, and let d be the highest degree of y that occurs in a monomial that is of

degree L in z. It is shown that, among the permutations whose monomials are of degree L in z and of degree d in y ,

there is at least one whose cycles are all of length 2. Such a permutation is shown to correspond to a matching of weight

L containing -d
2 2

edges from S; moreover, it is shown thal  this matching is of maximum weight and, among matchings of

maximum weight, has a maximum number of edges from S. Finally, it is shown that the monomials of degree L in z

and d in y associated with permutations in EP make a nonzero  net contribution to det (B[S]), so that the polynomial

det (B[S])  is of degree L in z , and the coefficient  of z in this polynomial is of degree d in y.

In the following paragraphs we use the technique of reducibility to show that further  matching and flow problems

lie in Random NC. All the reductions mentioned below can be performed in logspace.

1. Maxinlum  cardinality matching: The problem of constructing ;1 maximum cardinality maiching in a graph  G

with vertex set c/ and edge set E is easily reduced to the problem of constructing a perfect matching of maximum weight

in a graph G’ with vertex set V in which each edge has weight zero or one. We can assume that 1 Y 1 is even. In this

reduction G’ is the complete graph on vertex set V; edge (i,j} of the complete graph receives weight one if {i,j} lies in

E, and weight LC~O  otherwise.  This rcdudion shows that the maximum cardinality matching problem lies in Random-NC

(A different reduction for this problem  is given in [RVE).

2. Vertex weighted matching: The vertex-weighted matching problem  is in Random NC even when the weights of.
. the vertices are given in binary notation. In this problem we are given a graph G with vertex se1 V in which each veiex

v has a positive weight w(v). We seek  a matching that covets a set of vertices of maximum total weight.

This problem can by approachccl  with the help  of matroid theory. The results from matroid theory that we require

ciln bc found in the comprehcnsivc  rcfcrcnce  [We]. Call a set of vertices S indeptwdenr  if there is il matching that covers

all the vertices in S; then our goal is to construct an independent set of maximum weight. Let f be lhe filmily of all

indepcndcnt  sets. The structure (c/;I) is a matroid. In this matmid,  the rank of a set of vertices S is just the maximum

number  of vertices from S that are cbvcred  by a matching. A maximum-weight indcpendcnt  scl T in a matroid can be

conslruclcd  b y  the Howing rule:  Icl t h e  elcmenls  bc VI.V~....,V~ ~1 in order of decreasing weight: then, fors
i = I.2 ,.,.,  1 V 1, v, lies in 7’ if illld ollly  il’ IJunk (( v1.v~ ,..., vi}) > Itctnk (( V1.v~  . . . . . v1 ])). Once T is known, the desired

matching is constructed  by finding *;I pcrl’cct  matching in the subgraph of G induced by T, using the main algorithm of

this paper.

Thus, a Random-NC algorithm for the vcrtcx-weighted matching problem is at hand provided we can give a

Random-NC algorithm for computing the rank of -11 set of vertices in this matroid. But the problem  of computing

Rank (5’) is easily rcduccd  to that of dctcrmining  a maximum-weight  pcrfccl  matching in a graph K with vertex set Y

whose edges arc of weigh1 0,l and 3.. WC ciln ~SSUIIIC  without loss of gcncrillity  that the given graph G = (VJ.5’) has an



- 13 -

even number of vertices. The graph K is the complete graph on vertex set V. If edge (i,j}  does not lie in E then {i,j}

is given weight 0; if (i,j} lies in E, then the weight of {i,j} is 1 S f-l (i,j} I. Clearly, the maximum weight of a perfect

matching in K is the rank of S. Thus we have shown that the vertex-weighted matching problem lies in Random NC.

3. Network flow: First, consider the problem of constructing a maximum s -t flow in a directed graph in which

each edge has capacity 1. There is a classical reduction of this problem to the problem of constructing a maximum match-

ing in a bipartite graph, as follows. Let the flow network be G = (V,E),  with source s and sink t. We may assume that

s has in-degree 0 and I has out-degree 0. The reduction constructs a .bipartite graph H with bipartition ( VL V2). Each

part of the bipartition is a copy of the edge set of G. Thus, Y, = {(e,l) I e E E) and Y2 = {(e,2) I e E E). If the

head of edge e is also the tail of edge f (i.e., e = (i,j) and f = (j,k) for some i,j and k) then H contains and edge

between (e,l) and (f,2).  If an edge e in G is incident with neilher  s nor t, then H has an edge from (e,l)  to (e,2).

Then a maximum matching in H yields a maximum flow in G according to the following rule: edge e ‘carries a flow of 1

if and only if (e,l) is matched with some vertex (f,2), where e f f, or (e.2) is matched with some vertex u,l), where

e f f. The reduction just given extends easily to the case in which the flow network has edges with integer capacities,

provided these capacities are given in unary. The idea is to replace each edge {iJ}, of capacity c, with c parallel edges

from i to j, each of capacity 1. All capacities in the resulting network are 1, and thus the reduction to bipartite matching

applies. Thus, we have shown that the following problem is in Random NC: construct a maximum s---t flow in a

directed flow netwdrk whose edge capacities are given in unary.

We summarize the constructions and reductions given in this section by a theorem.

TIIEOREM 3.2: The following problems lie in Random-NC:

(8 Constructing a perfect matching of maximum weight in a graph whose edge weights are given in unary.
.

(ii) Constnrcting  a maximum matching:

(iii)

(iv)

Constructing a matching covering a set of vertices nf maximum weight in a graph whose vertex weights are given in

binav;

Constructing a maximum s - t flow  in a directed gruph whose edge weights are given in unary.

Our result about network flows stands in interesting contrast lo the following result due to Goldschlager,  Shaw and

Staples [GSS]: the problem of constructing iI maximum  s - f flow in a dircctcd  flow network with edge capacities given. in

binaly  is umpklc in P with rcspccl lo logspacc  reductions.  Since it is gcncrally  bclicvcd thal SWII complcle  problems  do

not lit in I~:IIK~O~I NC, il ;~ppcars  1h;il  111~  p;tr;Acl complexity 01’ lhc max-llow  prolAm dcpcnds  critically on whcthcr  the

capacities arc given in unary or in binary. Ncvcrthclcss.  the following result can bc given:

?‘I IKOREM 3.3: There is a randomized  parallel algorithm to construct a maximum s - t jIow  in a directed network

whose edge weights are given in binary. such thut  the number of processors used is bounded by a polynomial in the number of

vertices.  und the time used is O((log  Vjk  log C), wh& C is the largest capacity of any edge and k is a constant.



This result is proved by combining the methods of the present paper with the Edmonds-Karp scitling technique

[EK]. Of course the result does not place the problem in Random NC, since log C is a linear, rather than polyloga

rithmic, function of the number of bits needed to express C in binary.

4. DISCUSSION
.

Each of the randomized algorithms given in this paper has a small probability of giving an erroneous result; for

example, procedure Find-Perfect-Matching may fail to produce a perfect matching in a graph that possesses one, and

therefore its failure does not indicate with certainty that no perfect matching exists. Running the algorithm many times in

parallel  can reduce the probability of error to an exponentially low level, but can never eradicate it entirely. Howard

Karloff [Karl  has given a Random NC algorithm for the odd-set cover problem, which is the “dual” of the matching prob-

lem. As Karloff points out, this result can be combined with our algorithms to yield algorithms for the perfect matching

problem and the maximum matching problem which run in polylog expected time and always give the correct result; i.e.,

Las Vegas algorithms rather than Monte Carlo algorithms.

It remains an open question whether randomization can be dispensed with entirely in these problems.  It would be

very nice to show that the problem of deciding whether a graph has a perfect matching lies in NC, and even nicer to show

that the problem of constructing a perfect matching lies in NC..
Finally, the investigations reported here have led us into a broader study of the relation between decision problems

and search problems; the results of that study are reported in the companion paper [KUW].



- 15 -

REFERENCES

Lw

WV

[ BGH]

Dl

[EdI

[EKI

[GSSI

WV1

WI

NJ1

[Tu] L

WI

D. Angluin and L.G. Valiant, Fast probabilistic algorithms for H,amiltonian  circuits and matchings. J. of

Comp. Syst.  Sci 18, (1979) pp. 155-193.

A. Borodin, S.A. Cook, and N. Pippenger. Parallel computation for well-endowed rings and space bounded

probabilistic machines. Information and Control 58 1-3 (1983) pp. 113-136.

A. Borodin, J. von zur Gathen, and J. Hopcroft.,  Fast parallel matrix and GCD computations. Proc. 23d

STOC (1982) pp. 65-7L
.

S.A. Cook, An’ overview of computation complexity. CXM 26 (1983) pp. 400-408.

J. E&nonds, Syslems of distinct representatives and linear algebra. J of Res.  Nat. Bureau of Standard4  71A

(1967) pp. 241-245.

J. Edmonds and R.M. Karp,  Theoretical improvements in algorithmic efficiency for network flow problems. J.

of ACM 19 (1972) pp. 248-264.

L.M. Goldschlager,  R.A. Shaw and J. Staples, The maximum flow problem is logspace  complete for P.

Theoretical Computer Science 21(1982)  pp. 105-111.

H.J. Karloff,  A randomized parallel algorithm for the odd-set cover problem. Submitted, 1985.

R.M. Karp, E. Uphl and A. Wigderson.  Are search and decision problems compuurtionally  equivalent?  STOC

1985.

D. Kozen, U.V. Vazirani and V.V. Vazirani, The two-processors scheduling problem is in R-NC. STOC 1985.

M.O. Rabin and V.V. Vazirani, Maximum matchings in gcncral  graphs through randomization. TR-15-84,

Harvard University Center for Research in Computing Technology, 1984.

J.T.  Schwartz, Fast probabilistic algorithms for verification  of polynomial identities. J. of ACM, 27 4 (1980)

pp. 701-717.

E. Shamir and E. Upf’al,  N-processors graphs distributively achieve perfect matching in O(log*N)  beats.

Proceeding of the First ACM SIGACT-SIGMOD  Symp. on Principles of Distributed Computing. O~wa,  1982,

pp. 238-241.

W.T. l‘uttc.  The fkkm of gmphs.  Cunad  .I. Math. 4 (1952) pp. 314-328. ’

D.J.A. Welsh, Matroid T’heory. Acadcnric  PIXSS (1976).




