March1985 Report No. STAN-CS-85- 1043

Const ructing a Perfect Matching
Is in Random NC

by

Richard M. Karp
Eli Upfal

Avi Wigderson

Department of Computer Science

Stanford University
Stanford, CA 94305

CONSTRUCTING A PERFECT MATCHING IS IN RANDOM NC

Richard M. Karp}

Computer Science Division
University of Californiaat Berkeley

I'li Upfalt

Computer Scicncc Department .
Stanford University

Avi Wigderson ¥

IBM San Josc Rescarch Laboratory

ABSTRACT
We show that the problem of constructing a perfect matching in a graph is in the complexity class Random NC:

. e, the problem is solvable in polylog time by arandomized parallel algorithm using a polynomial-bounded number of

processors. WC also show that several related problems lic in Random NC. These include:
(i) Constructing ; perfect matching of maximum weight in agraph whose edge weights are given in unary notation;
(i) Constructing amaximum-cardinality matching:

(iii) Constructing a matching covering a set of vertices of maximum weight in a graph whose vertex weights are given

in binary;

(iv) Constructing a maximum s — 1 flow in a dirceted graph whose cdge weights arc given in unary.

1 Rescarch supported by NSF Grant # DCR-8411954.
¥ Rescarch supported by a Weizmann Post-Daoctorl fellowship, and by DARPA Grant N00039-83-C-1036.
41 Rescarch supported in part by DARPA Grant N00039-82-C-0235.

1 . INTRODUCTION

In this paper we show that the problem of constructing a perfect matching in a graph is in the complexity class
Random NC: i.e.. the problem is solvablc in polylog time by a wndomized parallel algorithm using a polynomial-bounded

number of processors. We also show that several related problems lie in Random NC. These include:
()] Constructing a perfect matching of maximum weight in a graph whose edge weights arc given in unary notation;
(i) Constructing a maximum-cardinality matching;

(iii) Constructing a matching covering a set of vertices of maximum weight in a graph whose vertex weights are given

in binary:
(iv) Constructing a maximum s —¢ flow in a directed graph whose edge weights are given in unary.

Our results are based on a theorem of Tutte [Tu] showing that a graph has a perfect matching if und only if the
determinant of a certain skew-symmetric matrix with indetcrminates as elements is not identically zero. Around 1979
Lovasz suggested that Tulle’s Theorem, combined with a fundamental randomized technique for testing whether a matrix
with polynomial entrics has a nonzero determinant [Sc]. provides a simple polynomial-time randomized algorithm for test-
ing whether a graph has a perfect matching. In 1982 Borodin, von zur Gathen and Hoperoft [BGH] observed that, since
the problem of computing the determinant of a numerical matrix lies in NC, a parallel algorithm can be constructed bascd
on Lovasz’s approach. This algorithm establishes that the problem of deciding whether a graph contains aperfect match-
ing lies in the complexity class Random NC, but leaves open the question of whether a parallel algorithm of comparable
efficiency cxists for constructing a perfect matching in a graph that is known to have such a matching. In 1984 Rabin and
Vazirani [R V], using clever algebraic techniques related lo Tutle’s Theorem, gave an attractive randomized polynomial-
time sequential algorithm for constructing a maximum matching. They also observed that if a graph has a unique pcrfecl
matching then the problem of finding it lics in NC. The special case of finding a perfect matching in aninterval graph
was shown (0 be in Random-NC by Kozen. Vazirani and Vazirani [KVV].

The additional ingredicnt that allowed us Lo obtain a Random-NC parallel algorithm for constructing a pcrfecl
matching in an arbitrary graph was the introduction of a uscful set function called Rank. Our result is based on a

Random-NC reduction of the matching problem to the problem of computing the Rank function, and on a Random-NC

algorithm for computing the Rank of sets.

2. THE PFRFECT MATCHING ALGORITIIM

We present the perfect matching algorithm in three stages. First we reduce the problem of finding a perfect match-
ing to the problem of identifying a large set of redundant edges in a graph that has a perfect matching and is not very
sparse. We say that a set of edges in a graph that has a perfect matching is redundant if the removal of these edges
results in a graph that still has a perfect matching. We then show that a random-NC procedure can construct a large set
of redundant edges provided that a certain integer-valued function, called the rank. which is defined over all subsets of

edges in the graph, is computable in random-NC, Finally we give a random-NC algorithm for computing the rank

. function.

2.1. A HIGH LEVEL DESCRIPTION OF THE ALGORITHM

Let /G = (/V,IE) denote the input graph. The procedure Find_Perfect_Matching uses threce main variables M,
V and E.

The set variable M collects the edges that the procedure designaltes for the output matching. In contrast with the

classical matching algorithms, our procedure never retreats from partial solutions. Once an edge is added to the set M it

remains there until the procedure terminates. and it appears in thé final output.

Throughout the execution of the procedure the variable ¥ stores the set of vertices that are not yet covered by tie

matching M . The set E stores a subset of the set of edges connecting vertices in ¥ ; these are the edges that are still can-
didates for inclusion in the matching.

We start the procedure with M = @,V = IV, and E = IE. If the input graph /G has a perfect matching then
with probability 1 — o(l) the following property hold throughout the execution of the procedure:
The graph G = (V. E) has a perfect matching.
If this condition is ever violated the procedure will fail to produce a perfect matching in IG. On the other hand, if the
condition remains true then it suffices for the algorithm to consider edges in the set £, since the scl M together with a

perfect matching in G is clearly a perfect matching in the input graph /G.

Procedure Find_Perfect_Matching(¥ .E M),
while | E | 2 0 do

iflE|< 1 | V| then [G is sparse]

find a set NM, | NM | > % | V1. of edges that lie in every perfect matching;
MeMUNM,
V «V -- { vertices covcred by NM };
E « {(vu)l(vu)EE, vu€V};
else [G is not sparse]
- Find_Redundant_Sel(RE];
[wilh probability 8> 0, | RE |2 o E |}
E «FE -NE;

end.

The main while loop of the procedure is executed until the set E is empty. Assuming that the graph (V,E)

always has perfect matching, this implies that the sct V is also empty, thus, that the variable M stores a perfect matching
in IG.

-4-

Each iteration of the while loop tries to decrease Ihe size of the set E by a constant factor. The execution distin-

guishcs between two cases:

Case a: ||« % | VI, (the graph G =(V,E) is sparse). Since G has a perfect matching, the degrees of all its
vertices are at leasl 1. 1 lowever, | E|< %4— {V |, thus a lcast %-IV | vertices have degree éxactly 1. If an edge is incident

to » vertex with degree | this edge is included in any perfect matching in this graph. Thus we can identify at leas1 %l 4

edges that can be added to the set M and the remaining graph (¥'.E), defined by the vertices in V that are not covered

by the new matching cdges, has a perfect matching. Furthermore, | E'|- < E] - % Vi< %— | E |, and the computa-
tion canve done in O (1) steps using O(| £]) processors.

Caseb: |E| 2> g | V'|. This casc, which is the novel part of the algorithm, is solved by the probabilistic pro-

cedure Find_Redundant_Set . With probability 1 — o(-I—I},—I—Z) the procedure produces a set RE such that the graph

(V.E - RE) has a perfect matching. With probability 8> 0 | RE | >a| £ | for some a > 0. Thus with probability 8> 0

the procedure reduces the size of our problem by a constant factor.

The analysis of the number of iterations of the while loop required lo create a perfect matching requires a fact from

probability theory.
FACT 1 [AV] Ler X be a random variable distributed as the number of successes in n independent Bernoulli trials

with probability of success p. IfO<a<1thenP[X < (1--a)np]<exp(— % a*np).

LEM M A 2. 1: If there are constants a8 >-0 arch that with probability at least B a call to the procedure
Find . Redundant_Sct identifies at least a fraction a of the edges in E as redundant, then, uniformly for all problem instances
the expected number of iterations of the while loop within this procedure is O(log E), and, moreover. for some ¢ > 0 and

d > 0 the number of iterations of the while loop is bounded ubove by d log £ with probability 1-0 (E . €).

Proof: We may assume withoul loss of generalily that « < -, Cull aniteration of the while loop a success if it

disposes of at least a £ edges, either by determining that they lie in every pcrfcct matching (Case a) or determining that
they arc redundant (Case b). Then every iteration in which Case a occurs is necessarily a success, and every iteration ‘in
which Case b occurs is a success with probability al least 8. Let 7= (1 = @) . The number of successes required to
reduce the number of edges to 1, skirting from an initial edge set £, is at most log,, | £], and hence the number of
successes required 10 complete Ihe entire computation is at most 1 + log, | £ |, Since each iteration has probability of
success al least B, independently of the outcomes of all previous iterations, the expected number of ilerations is al most
pra+ log, | E |). Morcover, the number of successes in the first 2 8 ! log, | £ | iterations is a random variable that
stochastically dominates the number of successes in 28 ' log,, | E | independent Bernoulli trials with probability of suc-

cess . Applying Fact 1, wc find that the probability of having log, | £ | or fewer successes in the first 28 'log,, | E |

-5-

itcrations is al most exp(- i—'log,, |E 1)Y= | E| ¢ wherec= -4-h]1>n0. Hence, with probability 1 — | E | ¢ pro-
cedure Find-Perfect-Matching terminates within 2 8 “! log,, | E | iterations.

As wc have mentioned before. the probability that a call Lo the procedure Find_Perfect_Matching fails lo find a
perfect matching is o(1). Since this bound on the failure probability is independent of the input, and since we can check
at the end of the procedure whether M is a perfect matching. we can simply repeat the procedure until a perfect matching
is found. This leads to the following randomized algorithm, which finds a perfect matching in polylog expected time in

any graph in which such a matching exists.

Perfect Matching Algorithm

M«0;

while | M | (J_Iiy_l_
v « [V;
E « IE;
M3

Find_Perfect_Matching(V .E .M);

end.

2.2. IDENTIFYING A LARGE SET OF REDUNDANT EDGES
Given agraph G = (V.E’) such that
1. G has a perfect matching,
and
.03
2. F =Vl
>3y
we necd to find ;1 set RE CE such that
1. |RE| 2 alE| for some a >0
and
2.(V,E - RE) has a perfect matching.
* Our algorithm uses a powerful integer-valued function defined over all subscts of edges in G.
Definition 2.1: Let PM denote the set of perfect matchings in the graph . For any set S C E define
Rank(S) = Max|SNA].
ACPM

Jn words Rank(S) is an integer giving the maximum number of edges from S that occur together in a perfect

matching of G.

We use the Rarrk function in the following way:

LEMMA 2.2: For a fixed S CE, let RE = {e€E-S [Rank(SU{e}) = Rank(S)). If G = (V,E) has a perfect
matching then so does G*=(V, E — RE)

Proof: 1 f Rank(S) = k than there is - a perfect matching A in G such that |S N4 | = k. If
Rank(SU{ e)) = Rank(S) then (SU{e})NA = SNA and e’is not in A. This argument holds simultaneously for all
the edges in RE: therefore removing the set RE leaves the graph with at least one perfect matching, the set A.

Example: Suppose the graph G is a cycle consisting of the successive edges 1.2,3.4,5.6. Then PM consists of the
two sets {1.3,5} and {2.4,6}. Hence, for any set S, Rank (S) = Max (| $ N {1.3,5}].]S N {2.4,6} |). Consider the
set S ={1,23}. Then Rank (S) =2 and R E = {4,6}. Note that the deletion of edges 4 and 6 does not destroy the
perfect matching {1,3,5}.

To guarantec a uniform lower bound on the probability that the set RE is large enough, we use the following pro-

cedure:

Procedure Find-Redundant-Set:
begin
choose a random number i from the uniform

distribution over the range
S 1 mine
{L.... 3 |E|}:

choose a S CE from the uniform distribution over
the i — element subsets of E;
RE «{e €E —S | Runk(SU{e}) = Rank(S))

end.

LEMMA 2.3: There are constants a.8 > 0 such that Prob {|RE |2 a|E|}2 8.

Proof: Let | V| = n, |E| =m.and let p; denote the probability that for a set § drawn at random from the

i-element subsets of E, and for an edge drawn at random from £ ~ S. Rank(S\U{e}) = Rank(S) + L.
We can think of a random set § as being constructed by a sequence of ¢ random choices (without repclitions) from

the sct £. Hunk(S) is then equal to Ihc number of times the Rank was increased when a new random edge was added lo

the set S. Thus,

i-1
'SIE'IJRank(S)] = E)p,.

Obviously Rank(E) = -g- since the graph has a perfect matching, so we can write

S.m

6 m--1 .
>0 < 2 p = Rank(E) = -;L <-=m
= j=v'

e

-7-

Using this upper bound on Y p; we can compute a lower bound for the average size of the set HE produced by

our procedure. The size i of the set § is chosen uniformly from the range 1, . . . , %m_ When a random set S of size i

is chosen, the probability that a random edge e € E-S is added to the set RE is 1 — p;. There are always at lcast —ém

edges in E — .S, therefore

Sm
6
EIRE|) 2 5—3(- p)gm >

_6_mir.l
%m
1Em-spyy>11
5(6m 2:{[’1)?5‘6m
Let u= ;—%% then

2pm = ELIRE|] = 3, j(Prob{IRE|=])) S
I:.

pm(Prob{ | RE |[<pm}) + m(Prob{| RE | >pm}),
which implies that
2um < pm + mProb{|RE | >pm},
or

1 1 1
I’rob{IRElAZKam} 236-

LEMMA 2.4: If Rank(S) is computable in f (| E |) steps using h (| £ |) processors, where f1 and h, are monotone
nondecreasing functions,then Find_Redundant_Set is computable in T\(| E |) + O(1) steps using | E | hi(| E}) processors.
Proof: The simultaneous computation of Runk (S) and of Rank (S U {e}) for all e in E — S requires £, (| E])
steps using | E | h; (| E|) processors. The determination of RE once these Rank computations have been done

requires O(1) steps using 0 (] £) processors.

2.3. COMPUTING THE RANK FUNCTION

For simplicity of presentation we first give a solution for the case wherc the input graph is bipartite. We then
explain how the general case is handled.

Let G = (U,V ,E) denote a bipartite graph with edge set E and n vertices in each part. Let U = {u),uj,...,u, } be

the verlex set of onc partand ¥ = {v.v,....,%}, the vertex sct of the other part. Associate with each edge {u,, v;} an

indetcrminate x,, and let B = (b;) be a n X n matrix of indctcrminates defined by the following rule:

-8 -

*Xij i f {U[, Vj} €E
by=1 0 if {w, v} €E

Edmonds [Ed] has observed that G has a perfect matching if and only if det(B)=0. This is true because each of

the n ! terms in the sum 3, sign(0)I1b; () is a product of n entries in B that correspond Io the edges of one of the n !
o€S,

perfect matchings in the complete bipartite graph. If all the edges of a perfect matching exisl in G than the corresponding
term in det(B) is not identically zero: otherwise one of the cntries is zero and T14; .y = 0. It is easy to verify that mono-

mials can not cancel each other in this summation. and therefore det(8) = 0 if and only if G has a perfect matching.

To compute the Rank of a given set S €E we refine this argument. Define the matrix B[S] = [b,i] as follows:

yxy if {w, v} €S
b,s = | Xy if! {ul. Vj} EE -5
0 if {u,-,vj} 6%.
L.c B[S)is derived from the matrix B by tagging ail entrics that correspond to edges in S with a new variable y.

Each non-zero monomial in det(B[S]) corresponds to a perfect matching in G. The degree in y of a monomial is
equal to the number of elements from S that participate in the corresponding perfect matching. Again monomials can
not cancel each other, hénce the degree in y of det(B[S])) is equal to that of the monomial with the maximum degree in
y, which in turn is equal to the maximum number of elements from .§' that participate in a perfect matching in G, i.e., to
Rank(S).

So in order to compute Rank(S) we have ‘to compute the degree in y of the mullivariate polynomial det{(B[S]).
! n
Rewriting det(B[S]) as a polynomial in y, we get det(S) = zQ,[{x,,- Iy'. and Rank(S) = Max{t | Q,0}. Unfor-
0

tunately. we can not test directly whether Q,. which is a polynomial in up to | £ | indctcrminatcs, is identically zero.
Instead. we use a well-known probabilistic method.

TI HEOREM 2.1: (Schwartz) [Sc] Let , denote the value of the polynomial Q, when each indeterminate in Q, is
replaced by a random integer in therange1....,J. 1T Q#0thenProb{Q,= 0} < -L{",;L.

Let I;’[S] denote the matrix B[S] afer all its indeterminates, except y, have been replaced by random integers. To
compute the §,s we have 1o compute det(BS]) as a polynomial in one variable .

THEOREM 2.2: (Borodin, Cook, Pippenger) [BCP), The determinant of an n X n matrix of polynomials with a
constant number of variables and the degree of each matrix clement bounded by n can be computed in O(logn) steps using

0 (n**) processors

We can now summarize the algorithm for computing the Rank function in the bipartite case.

Procedurc Rank(S);
begin
construct the matrix B[S] = [b;f]
replace each indeterminate x;; by a random integer in
the range 1.. . ., | IE |4
compute det (B[SD = 3 0,y";
Rank(S) = Max{t|Q, % 0);
end. '
In the case of a general graph our method of computing the rank function relies on the following theorem of Tutte.
THEOREM 2.3 (Tulle) [Tu] Let G = (V,E) denote a general graph with vertex set V = {1,2,...n } and define the
skew-symmerric matrix B :|b,1as follows:
x; if {ij} €E and i<j
b,‘j = —x,-j if {(,j} €E and i)j
0 if {i.j} €E.
Then G has a perfect matching if and only if det (B) = 0.

Tulle’s theorem can be extended lo yield an algorithm for compuling the Rank function in general grdphs.

THEOREM 2.4: Let G = (V,E). SCE, and define the matrix B[S] = b;f as follows:
ke

yxy if {ij} €S and i<y
—yx;, if {ij} €S and if
bS=| x, if{ij} €E ~S and i<y
—xy if {i.j} €E—-S and i>j
0 if {ij} €E.

Then Kunk (S) is equal to half of the degree iny of det (B [S]).

Proof: Lcl P be the set of all permutations ¢ of (1.2 ..., n} such that, for all i, by #0. e classify these permu-
tations according 10 their cycle structures. Since all elements on the main diagonal are 0, no permutation in P contains a
cycle of length 1. Let OP be the set of all permutations in P which contain al lcast one odd cycle and let EP be the set
of all pcrmulalions in S in which all cycles are of even length. ‘'hcn P is the disjoint union of OP and EP. Let M be
the set of all pcrmulalions in P such that every cycle is of length 2. Then M C EP, and the permutations in M are in

one-lo-one correspondence wilh lhe perfect matchings in G.
Wc have dcl (B[S] = 3, sign (@) TT bi.) Wc shall show that Ihc contribution of the pcrmulalions containing
o(P i

odd cycles lo det (B[S] is cqual lo zero: i.c., that Y sign (@) [T biewy = 0. We shall partition the permutations
eCOP [}

-10-

containing odd cycles into pairs, Such that the two permutations in each pair make A net contribution of zero to the deter-
minant. Let @ be a permutation containing at least one odd cycle. Let i be the least element of {1,2,...,n } occurring in
an odd cycle of @, and let C be the odd cycle containing { . Then @ is paired with a permutation & which is the same as
¢ except that the cycle C is reversed, Thus @ is defined as follows: if j € C then @ (j) = o()); if j € C then

(/) = a1 (). Itis easy to verify that this rule partitions OP into pairs, and that each pair makes a net contribution of

zero to the determinant.

Call an ordered pair <{,j> an S -pair if {{,/} is an edge in S. Then the S —pairs correspond |0 the entries in the
matrix B[S] which involve the variable y. Associated with each permutation ¢ in EP is the term sign (6) TT bi.0q).
!

This term is a nonzero monomial in the variables {x;} and y. Define the y-degree of ¢ as the degree of y in this

monomial. Then the y —degree of ¢ is just the number of S -pairs in @, i.e. the number of S -pairs <i,o(i)>.

WC shall show that, for every permutation @ € EP there exists a permutation 7 € M such that the y -degree of 7
is greater than or equal to the y —degree of ¢. To construct 7, partition the pairs <7, u(i)>, i =1,2,...,n into two sets,
called the odd pairs and the even pairs, in such a way that, <i, u(i)> is an odd pair if and only if <u(i), o (o (/))> is an
even pair. In other words, the partition is chosen so that, in the traversal of any cycle of @, odd pairs and even pairs alter-
nate, Such a partition is possible because all the cycles in o are even. Assume without loss of generality that the set of

odd pairs in g contains at least as many S -pairs as does the set of even pails in @. If the y -degree of ¢ is d, then the

set of odd pairs contains at least —‘2!- S -pairs. Now define T by the following rule: if <i, u(i)> is an odd pair then

7(i) = a(i)and r(e(i) =i. Thenr Iiés in M and the y-degree of 7 is at least d.

Each permutation in M corresponds to a perfect matching in G, and the y-degree of this permutation is twice the
number of edges from § in this perfect matching. Hence, using the result proven in the 1 ast paragraph, the maximum
y —dcgree of any permutation is just twice the rank of S.” To show that the degree of y in dct (B[S)) is twice the rank of
S. wc need lo show that the permutations of maximum y -dcgrcc make a nonzero net contribution to det (B[S]). But
this is clear. since there exists a permutation in M among those of maximum y —degree, and its monomial is not can-

celled by the monomial of any other permutation.

Thus, using the probabilistic method of Schwartz and the algorithm of Borodin, Cook and Pippengcr, we have a

Random-NC algorithm for computing the rank of a sct of vertices in a gencral graph.

-

LEMMA 2.5:

1. The procedure Rank is executed in O(log? |V |) steps using O(]V |**) processors.

2, The probability that the procedure Rank fails to compute the correct value of Rank(S) is bounded by 0(| /E | %), and

this event does not depend on the input.

Combining now the results of lemmas 2.1-2.5 we have

-11 -

THEOREM 2.5:
For any input graph IG = (IV,IE):
L The procedure Find-Perfect-Matching uses 0(| IV |%) processors and terminates within O(log? | IE |) steps with

probability 1 — for some ¢>0. .

1
|IE|°
2. The probability that the procedure fails to produce a perfect matching when applied to a gmph that possesses one is

bounded by—IIET.

3. FURTHER RESULTS

In this section we derive Random-NC algorithms for several further problems related to matching and network
flows. We begin by giving such an algorithm for finding a perfect matching of maximum weight in an edge-weighted

graph G = (/V.IE ,w), when the edge-weights «X{i,j}) are given in unary.

Definition 3.1: Let M W denote the set of perfect matchings of maximum weight in the weighted graph
G = (V,E .w). Forany set S CEF define
Rank&S) = Max|SNA4]|.
ACMW

In words Rank&S) is an integer giving the maximum number of edges from § that participate in a perfect match-

ing of maximum weight in G.

It is easy to verify that running the procedure Find-Perfect-Matching with the new rank function computes the
desired perfect matching in an expected number of iterations of order log | E |. The only difficulty is to show that the
new Ranky funclion is computable in Random NC. The following theorem, in combination with Theorem 2.2, estab-

lishes this fact.

THEOREM 3.1: Let G = (V.E,w). SCE, and define the matrix B{S] asfollows:

yz"x; if {i.j} ES, i<j, and «({i,jP=w
-yz¥xy if {ij} ES,). and o{{i,j})=w

b =1 z¥x; if {i.j} €E —=S.i<j, and «({ijh=w
—z%x; if {ij} €£ —=S.>j, and ({i,j})=w

0 if {ij} €L

Let det(BISD = D.Q,7'. and let L = Mlax{l |1 Q, 20}
{

1l The the maximum weight of a perfect matching in G is %

2. Ranky(S) is equal to half the degree in'y of Qy, the coefficient of z& .

w12«

The proof of Theorem 3.1 is quite similar to that of Theorem 2.4. First it is shown that the permutations containing
odd cycles make a net contribution of zero to det (B[S]). Then attention is restricted to EP, the set of permutations with
all cycles even that make a nonzero contribution to det (B[S]). Let L be the highest degree to which z occurs in the
monomial associated with such a permutation, and let d be the highest degree of y that occurs in a monomial that is of
degree L in z. Itis shown that, among the permutations whose monomials are of degree L in z and of degreediny,

there is at least one whose cycles are all of length 2. Such a permutation is shown to correspond to a matching of weight

—211 containing g edges from §'; moreover, it is shown that this matching is of maximum weight and, among matchings of

maximum weight, has a maximum number of edges from S. Finally, it is shown that the monomials of degree L in z
and d in y associated with permutations in EP make a nonzero net contribution to det (B[S]), so that the polynomial

det (B[S]) is of degree L in z , and the coefficient of z in this polynomial is of degree d in y.

In the following paragraphs we use the technique of reducibility to show that further matching and flow problems

lie in Random NC. All the reductions mentioned below can be performed in logspace.

1. Maximum cardinality matching: The problem of constructing @ maximum cardinality maiching in a graph G
with vertex set ¥ and edge set E is easily reduced to the problem of constructing a perfect matching of maximum weight
in a graph G’ with vertex set ¥ in which each edge has weight zero or one. We can assume that |V | is even. In this
reduction G’ is the complete graph on vertex set V'; edge {i,;j} of the complete graph receives weight one if {i,/} lics in
E, and weight zcro otherwise. This reduction shows that the maximum cardinality matching problem lies in Random-NC

(A different reduction for this problem is given in iRV]).

2. Vertex weighted matching: The vertex-weighted matching problem is in Random NC even when the weights of
. the vertices are given in binary notation. In this problem we are given a graph G with vertex set ¥ in which each vertex

v has a positive weight w(v). We seek a matching that covets a set of vertices of maximum total weight.

This problem can by approached with the help of matroid theory. The results from matroid theory that we require
can bc found in the comprehensive reference [We). Call a set of vertices S independent if there is a matching that covers
all the vertices in .S'; then our goal is to construct an independent set of maximum weight. Let / be Ihe filmily of all
indepcndent sets. The structure (¥;1) is a matroid. In this matroid, the rank of a set of vertices S is just the maximum
number of vertices from S that are covered by a matching. A maximum-weight independent scl 7 in a matroid can be
constructed by the following rule: let th e elements be vi.va...v) vy in order of decreasing weight, then, for
i =12 . V1., dics in 7-if and only it Rank ({vivy weo v} > Rank({vivy.....v; 1}). Once T is known, the desired
matching is constructed by finding “a perfect matching in the subgraph of G induced by T', using the main algorithm of
this paper.

Thus, a Random-NC algorithm for the vcrtcx-weighted matching problem is at hand provided we can give a
Random-NC algorithm for computing the rank of a set of vertices in this matroid. But the problem of computing
Rank (S) is easily reduced to that of determining a maximum-weight perfect matching in a graph K with vertex sct V

whose cdges arc of weight 0,1 and 2. Wc can assume without loss of gencrality that the given graph G = (¥ ,E) has an

-13-

even number of vertices. The graph K is the complete graph on vertex sct V. If edge {i,/} does not lie in E then {i,/}
is given weight 0; if {/,/} lies in E, then the weight of {i,j} is] S M {i,j}|. Clearly, the maximum weight of a perfect

matching in K is the rank of S. Thus we have shown that the vertex-weighted matching problem lies in Random NC.

3. Network flow: First, consider the problem of constructing a maximum s —¢ flow in a directed graph in which
each edge has capacity 1. There is a classical reduction of this problem to the problem of constructing a maximum match-
ing in a bipartite graph, as follows. Let the flow network be G = (¥ ,E), with source s and sink ¢. We may assume that
s has in-degree 0 and ¢ has out-degree 0. The reduction constructs a .bipartite graph H with bipartition (¥, ¥,). Each
part of the bipartition is a copy of the edge set of G. Thus, ¥, = {(e,}) | e € E}and ¥, = {(¢,2) | e € E}. If the
head of edge e is also the tail of edge f (i.e., e =(i,j)and f = (j,k) for some i,j and k) then H contains and edge
between (e,1) and (f,2). If an edge e in G is incident with ncither s nor ¢, then H has an edge from {e,1) to (e,2).
Then a maximum matching in H yields a maximum flow in G according to the following rule: edge e ‘carries a flow of 1
if and only if (e,1) is matched with some vertex (/,2), where e # f, or (e.2) is matched with some vertex (f,1), where
e # f. The reduction just given extends easily to the case in which the flow network has edges with integer capacities,
provided these capacities are given in unary. The idea is to replace each edge {i,/}, of capacity c, with ¢ parallel edges
from i to j, each of capacity 1. All capacities in the resulting network are 1, and wus the reduction to bipartite matching
applies. Thus, we have shown that the following problem is in Random NC: construct a maximum s —¢ flow in a

directed flow netwdrk whose edge capacities are given in unary.
We summarize the constructions and reductions given in this section by a theorem.
TIIEOREM 3.2: The following problems lie in Random-NC:
() Constructing a perfect matching of maximum weight in a graph whose edge weights are given in unary.
(ii) Constructing a maximum matching:
(iii) Constructing a matching covering a set of vertices off maximum weight in a graph whose vertex weights are given in
binary;
(iv) Constructing a maximum s —1¢ flow in a directed graph whose edge weights are given in unary.

Our result about network flows stands in interesting contrast lo the following result duc to Goldschlager, Shaw and
staples [GSS]: the problem of constructing a maximum s = ¢ flow in a dirccted flow network with edge capacities given. in
binary is complete in P with rcspecl lo logspace reductions. Sinee it is generally belicved that such complete problems do
not lic in Random NC, it appcars that the parallel complexity of the max-flow problem depends critically on whether the

capacities arc given in unary or in binary. Nevertheless, the following result can be given:

THICOREM 3.3: There is a randomized parallel algorithm to construct a maximum s —¢ flow in a directed network
whose edge weights are given in binary. such that the number of processors used is bounded by a polynomial in the number of

vertices, und the time used is O((log ¥V)*log C), where C is the largest capacity of any edge and k is a constant.

<14 -

This result is proved by combining the methods of the present paper with the Edmonds-Karp scaling technique
[EK]. Of course the result does not place the problem in Random NC, since log C is alinear, rather than polyloga
rithmic, function of the number of bits needed to express C in binary.

4. DISCUSSION

Each of the randomized algorithms given in this paper has a small probability of giving an erroneods result; for
example, procedure Find-Perfect-Matching may fail to produce a perfect matching in a graph that possesses one, and
therefore its failure does not indicate with certainty that no perfect matching exists. Running the algorithm many times in
parallel can reduce the probability of error to an exponentially low level, but can never eradicate it entirely. Howard
Karloff [Kar] has given aRandom NC a gorithm for the odd-set cover problem, which isthe“dual” of the matching prob-
lem. AsKarloff points out, this result can be combined with our algorithms to yield algorithms for the perfect matching
problem and the maximum matching problem which run in polylog expected time and always give the correct result; i.e.,
Las Vegas agorithms rather than Monte Carlo agorithms.

It remains an open question whether randomization can be dispensed with entirely in these problems. It would be
very nice to show that the problem of deciding whether a graph has a perfect matching liesin NC, and even nicer to show
that the problem of constructing a perfect matching lies in NC.

Finally, theinvestigations reported here have led usinto abroader study of the relation between decision problems
and search problems; the results of that study are reported in the companion paper [KUW].

-15-

REFERENCES

[AV]

[BCP]

[BGH]

[Co]
(Ed]

(EK]

[GSS]

[Kar]

[KUW]

[KVV]
[RV]

(S¢]

(su]

(Tu] -
[We

D. Angluin and L.G. Valiant, Fast probabilistic algorithms for Hamiltonian circuits and matchings. J, of

Comp. Syst. Sci. 18, (1979) pp. 155-193.

A. Borodin, S.A. Cook, and N. Pippenger. Parallel computation for well-endowed rings and space bounded

probabilistic machines. Information and Control 58 1-3 (1983) pp. 113-136.

A. Borodin, J. von zur Gathen, and J. Hopcrofl, Fast parallel matrix and GCD computations. Proc, 23d

STOC (1982) pp. 65-71.
S.A. Cook, An’ overview of computation complexity. CACM 26 (1983) pp. 400-408.

J. Edmonds, Syslems of distinct representatives and linear algebra. J. of Res. Nat. Bureau of Standards, 71A

(1967) pp. 241-245.

J. Edmonds and R.M. Karp, Theoretical improvements in algorithmic efficiency for network flow problems. J,

of ACM 19 (1972) pp. 248-264.

L.M. Goldschlager, R.A. Shaw and J. Staples, The maximum flow problem is logspace complete for P.
Theoretical Computer Science 2/ (1982) pp. 105-111.

H.J. Karloff, A randomized parallel algorithm for the odd-set cover problem. Submitted, 1985.

R.M. Karp, E. Upfal and A. Wigdemdn, Are search and decision problems computationally equivalent? STOC
1985.

D. Kozen, U.V. Vazirani and V.V. Vazirani, The two-processors scheduling problem is in R-NC. STOC 1985.

M.O. Rabin and V.V. Vazirani, Maximum matchings in gencral graphs through randomization. TR-15-84,

Harvard University Center for Research in Computing Technology, 1984.

J.'T. Schwartz, Fast probabilistic algorithms for verification of polynomial identities. J. of ACM, 27 4 (1980)
pp. 701-717.

E. Shamir and E. Upfal, N-processors graphs distributively achieve perfect matching in O(log?N) beats.
Proceeding of the First ACM SIGACT-SIGMOD Symp. on Principles of Distributed Computing. Ouawa, 1982,
pp. 238-241.

W.T. Tutte, The factors of graphs. Canad. J. Math. 4 (1952) pp. 314-328.

D.J.A. Welsh, Matroid Theory. Academic Press (1976).

