
March 1985 Report No. STAN-G-85-1048

Some Const ructionk for
Order-Theoretic Models of Concurrency

bY

Vaughan Pratt

Department of Computer Science

Stanford University
Stanford, CA 94305

Some Constructions for -
@rticr-Tlicorctic Yodels of Concurrency

Vaughn Pratt
Stan fort! University
Stanford, CA 94305

Abstract

We give “tight” and “loose” constructions suitable for specifying processes represented as sets of
pomsets (partially ordered multisets). The tight construction is suitable for specifying “primitive”
processes; it introduces the dual notions of concurrence and orthocurrence. The loose construc-
tion specifies a process in terms of a net of communicating subprocesses; it introduces the notion
of a utilization embedding a process in a net.

1. Introduction

1.1. An Application

In September 1983 STL (Standard Telecommunications Laboratories Ltd) and SERC (Science
and Engineering Research Council) jointly sponsored a workshop on the analysis of concurrent
systems [DH]. The workshop was organized around ten problems for solution by the attendees.
Each problem informally described a concurrent system to bc formally specified.

The first problem was probably the easiest. For whatever reasons, it also attracted the lion’s share
of the attention, The formal solutions prcscnted v&-icd in Icngth from scvcn axioms of one line
each (Koymans-dc Rocver) to two pages. The rollowing paragraph -rcprocluccs verbatim the state-
men t of the problem.

The “ch‘annel” between endpoints “a” and “b” ccan pass messages in both directions simultane-
ously, until it receives a “disconnect” mcssagc from one end, after which it neither delivets nor
accepts mcsages at that end. 11 continues to deliver and accept mcssagcs at the other end until
the “disconnect” message arrives, alIer which it can do nothing. The order of mcssagcs sent in a
given direction is prcscrved.

-2-

Intuitively, the complexity of the presented solutions is out of proportion to the complexity of the
concept of a two-way channel with disconnect. The “tight” construction of this paper yields a
sufficiently short solution that we can conveniently preview it here:

(Z*XTRX{C,D}) n -*a

In English this reads “(Message sequence, Transmitted then Received, on channels C and D) with
no prior disconnect”. It specifies essentially the same mathematical object that we required 13
lines of detail to specify in [Pr83] (our contribution to the workshop). A key construct here is the
operation X of orfhocurrence which provides the interpretation of the commas in the English.

1.2 The Significance of Pomsets -

Strings arise naturally in modelling ongoipg sequential computation, whether their elements
correspond to states, state transitions, or me&age transmission-receipt events. Thinking of a string
as a linearly ordered multiset, a mathematically natural generalization is to relax the linear order
to a partial order. If the resulting objects are used for modelling computation, the me‘aning of

’ incomparability between elements may be interpreted as concurrency of events.

We abbreviate partially ordered multiset to pomset.

The almost universal practice in modclling concurrency is to represent concurrency as ‘choice of
order in scqucntial computation. The two arguments supporting this approach arc that partial
orders are no more expressive than linear, and arc not as convcnicnt to work with,

We refute both these arguments. The first is correct for poscts but not for pomscts, as dcmon-
strated in [Gis] with the counterexample abllab, which in a linear model is indistinguishable from
N(a,a.b.b) where N(1.2.3.4) schedules 1<3, 2<4, 1<4. ‘I’hc second is only true in that relatively lit-
tic work has been done on partial orders fi)r motlcllir~g colllputali~,)n. In I~KC llic opposite scenis
to bc the case - total orders turn out to be very incdnvcnient to work with for some basic con-
currency applications, so much so that we spcculatc that this is one of the major rc:sons why the
formal modclling of concurrency remains an arcane topic today.

In earlier papers [Pr82,Pr84] we showed how JO dcrivc event-order models as homomorphic
images of real time models. For this to bc possible the former must have a structure similar lo

that of the Iattcr. Only partial orders on events meet this requirement.

-3-

In this paper we exhibit two dual operations and show various applications for them. We see
these operations as being fundamental to concurrency. The only w’ay we see to define them for a
linearly ordered model is to define them for a partially ordered model and at the last step com-
plete the partial orders to linear orders. The analog of this in astronomy would be to use
Newtonian mechanics to derive the motions of the planets and at the last step convert all the
results to epicycles.

1.3 Why Catcgorics

Given “all” sets, ordered by inclusion, union and intersection are the operations of least upper
and greatest lower bound respectively. This definition is popular, whether for its elegance, con-
venience, or algebraic flavor. It certainly makes it obvious that union and intersection are dual
notions.

Another commonly encountered dual pair arc disjoint union and Cartesian product. These too
can be described as the operations of le,ast upper and greatest lower bound, if we generalize from
inclusions to all functions between sets and define “lcCast upper bound” and “greatest lower
bound” appropriately so that they continue to make sense, and are willing to settle for uniqueness
up to isomorphism.

A category is a collection of objects such as these sets together with some morphisms between
them such as inclusions or functions, viewed at the right distance for seeing the commonality of
thcsc dclinitions. At this distance least upper and grcatcst lower bounds on a set X of objects are
coproducts and products rcspectivcly, while the upper and lower bounds, whether or not least or
greatest, are the vertices of cones from or to X. (A minimal account of cones and products is pro-
vidcd for cvnvcnicnce as an appendix.)

111 our case WC want to dcfinc two basic operations of concurrency for pomscts that turn out to be
~oproducts ;u~t products in the c;itcgory of pomscts with morphisms all pornsct hotnollloi.phisilIs.
IIoth the duality of these ‘operations and their Unity with the important cases above arc made
clearly visible with a categorical treatment.

Winskcl [W844 dcscribcs a morphism of Petri nets, having in mind just these sorts of applica-
tiorls: dcfining coproducts ;rncl products. This is then cxtcndcd [W84b] to a number of mor-
phisms appropriaic to various models of concurrency, whose relationships to each other arc
exprcsscd via adjunctions. With luck there will turn out to be either a straightforward or an

-4-

interesting connection between his morphisms and ours

2. Definitions

2.1 Pomsets

The setting is order-theoretic models of concurrency. We take the central concept to be the pom-
set or partially ordered multiset. Informally, a pomset is to a string cas a partial order is to a total
order; a string is not a totally ordered set but rather a totally ordered multiset. Pomsets are
intended to model behaviors (synonyms: trace, computations) of some process. The process itself
is identified with the set of all its possible behaviors.

Pomsets may be defined in elementary language as labelled partial orders up to isomorphism. In
the context of dealing with pomsets as objects of a category the obvious way (in hindsight) is to
treat them as functors from a category of events to a category of actions. To keep the material
reasonably accessible we do both here. More detailed elementary treatments may be found else-
where [Gis,Pr84].

A IubeUed partial order (lpo) is a 4-tuple (V,I&p,<) consisting of

‘(i) a set V of events,

(ii) an alphabet C of actions, c.g. the arrival of integer 3 at port Q, the transition of pin 13 of K-7
to 4.5 volts, or the disappearance of the 14.3 MHz component of a signal,

(iii) a labclling function p:E-)C ‘assigning actions to events, c;rch Iabcllcd cvcnt representing an I
occurrence of the action labclling it, with the same action possibly having muttiplc occurrences,
and *

(iv) a partial order < on E, with the intcndcd intcrprctation of c<f being that e precedes f in-
time.

A pomset (partially ordcrccl muttisct) is then the isomorphism cl;~ss of an lpo. dcnotcd [V.I%p,<l.
By taking 1~0’s up to isomorphism WC confer on pomscts a dcgrcc of abstractness cquivalcnt to
that enjoyed by each of strings (regarded as finite linearly ordered labcllcd sets up to

-5-

isomorphism), ordinals (regarded as well-brdered sets up to isomorphism), and cardinals (regarded
as sets up to isomorphism).

(Cryptic remark: the reason isomorphism appears in our definition of pomsets but not in the
usual definitions bf string, ordinal, or cardinal, is that partial orders, unlike well-ordered sets, have
nontrivial automorphisms. This complicates finding a canonical representative of the isomorphism
class.)

No assumption is made about atomicity of events; in fact our tight construction of processes
. depends on events having structure.

2.2 Types of Poms@s

It will be convenient to regard all of the following structures as kinds of pornsets.

Multiset Pomset with a minimal (i.e. empty) order
Tomset Pomset with a maximal (i.e. total) order
String Finite tomset
Poset Pomset with an injective labelling
Set Poset that is also a multiset

. Atom A singleton pomset (both a set and a string)
Unit The empty pomsct (hence the empty string, and empty set)

A process is a set of pomscts. Close analogs are bimuy relations, which are sets of pairs, and
languages, which are sets of strings. In all cases the set structure can bc regarded as modclling
variety of one or another kind of behavior. A language is a process all of whose behaviors are
strings. The language of a process is the set of strings in that process.

. *WC write C-1 for the set of ;tII linitc pomscts with alphabet 2, by analogy with X* tor the set of
all strings with alphabet C, which happen to bc all strings in Zt.

implicit in this two-layered notion of process (sets of pomscts of events) is a two-sided distribu-
tivity axiom; that order may bc distributed over choice, i.c. concatenation over union. This axiom
is appropriate for partial corrcctncss but not always for termination and deadlock. WC impose
this axiom on our notion of proccsscs for now in the intcrcst of understanding the basic pomset
model better, with a minimum of distracting clctail. Note that this is a limitation only of our

-6-

notion of processes, not of the pomsets themselves.

2.3 Pomsct I homomorphisms and the Category POM

We now wish to define homomorphism between pornsets, to facilitate the definitions of con-
currcnce (disjoint union) and orthocurrence (direct product).

We take a pomset homomorphism to be a consistently-relabelling monotonic function between
the underlying sets of the two pornsets. Consistent relabelling mecans that if two events have the
same label so do their images under the homomorphism. Monotonicity is defined in the usual
way with respect to the partial order.

The category POM consists of ail pomsets together with all their homomorphisms.

We call coproduct ‘and product (see appendix) in this category respectively concurrence and ortho-
currence. Concurrence takes the disjoint union of pomsets while orthocurrcnce takes their direct
product. Events accumulate under concurrence but combine orthogonally under orthocurrence,
ras will become clearer below. We write pllq for the concurrence of p and q (p+ q is a plausible
alternative notation), and pXq for their orthocurrence.

Jf the string ab, a linearly ordered muitisct and hence pomset, is thought of as two events a fol-
lowed by b, then the concurrence of ab and cd contains four events, a followed by b, together
with c followed by d, with no additional temporal rclationships bctwecn ab and cd.

The orthocurrence of ab with cd contains four cvcnts, <a,&, <ad>, <b,c>, and <b,d>, with <a,&
< <a,d> < < b,d> and <a,c> < <b,c> < <b,d>.- - -

If WC write 2 for the multiset (0.0) and 00 for the result of linearly ordering 2, 2 and 00 both
being-pomscts, then pX2 = p11p (ignoring the extra 0 on c;tch I;rbct) whcrc;ts pXO0 = p.p. This
second operation is conc;ttcnation, in this case of p with itscif. Like concurrcncc, the concatena-
tion p.q is an “upper bound” on (the vertex of a cone from, see appendix) p and q. This makes
it cicar that concatcmltion is not the dual of concurrence but rather is a bound on {p,q} superior
to pi/q (since concurrcncc is the least upper bound) - indeed concatenation lies on the opposite
side of concurrcncc from orthocurrcnce.

Bctwccn the concurrcncc and the concatenation of p and q lies a complete lattice of intermediate

-7-

upper bounds on p and q, each consisting of pllq with some additional ordering information run-
ning from p to q, an arbitrary subset of the concatenation ordering in p.q. We will find some of
these intermediate bounds of importance below.

All these intermediate bounds are representable as quotients of a concurrence, the quotients
modifying only the order and otherwise constituting label-preserving bijections. We may call
quotients of this form serializations.

3. The Tight Construction

3.1 The Cons Process

By way of motivation consider the Cons process. This process has two input ports A and R and
one output port 0. The first value output from 0 is the first value input from A; thereafter all
outputs on 0 are taken in order from B. Further inputs on A’ are not accepted and therefore do
not appear at all in the behaviors of Cons.

The typical behavior of this process can be diagmmmcd as in Figure 1.

0 B

‘he Cons Process and its Typical I3chaviorFigure 1. ‘T

we may relxcscnt this process as a sum of products. There arc two products. corresponding to
two ch;rnncls, from A to 0 ;~nci from I) to 0 rcspcctivciy. ‘I’iw A0 cii;~nilct p;ws ody o n e
datum, the 110 than ncl is an ordinary orticr-prcscrvillg channel. ‘I’hc sum is constrained so as to
force the one 0 output from A (and hcncc all of the A0 channel) to precede all the 0 outputs
from B; thus it is intcrmctliatc bctwcen concurrence and concatenation. We adopt the ad hoc
notation A.0 for this operation: p A.0 q indicates partial concatenation in which the A com-
ponent of p prcccdcs the 0 component of q. Omission of either subscript dcnotcs no restriction,
so p.q nicans concatenation. When p and q arc strings p.q is string concatcnatiorl; more gcncrally
it means that every elcmcnt of p prccedcs every elcmcnt of q.

8-

Now consider the individual products. A channel is a set of behaviors, each which in turn is a
sequence of message transitions. Such a sequence has two orthogonal components: a string g of
messages, and a string A0 or BO consisting of a transmission action A or B followed by a receipt
action 0 and constituting a “transition schema.” The orthocurrence of u with A0 yields the
pomset of Figure 2; BO is similar.

.

Figure 2. Orthocurrence of a Message String with the Transition Schema

Letting C* denote the set of all message sequences, the set of all possible behaviors for the BO
channel is then C*XXO (with orthoccurrence being distributed over union).

We may now define the Cons process:

Cons = CXAO .. C*XBO.
.

3.2 Rchtcd Processes

.
The dual of Cons is CaltCdr, a process with one input I and two outputs A and B, which feeds its
first input to A and the rest to B. Like Cons CalCdr is a sum of products. We leave it to the
reader to interpret:

CarCdr =I CXIA 1. Z*XIB.
.

The duality of Cons and CarCdr is made quite clear from the form&x.

A somewhat din’crcnt example is given by Merge, which has inputs A and B and output 0 and
merges its two stream inputs arbitrarily. Similarly to Cons, Merge is a sum of two products, in
this cast C*XAO and C*XBO. The sum howrxr differs from that for Cons in that instead of
specifying a particular order we impost the wcxkcr rcquircnlcnt that the 0 channel mcrcly be
linearly ordered. Again adopting an ad hoc notation WC write [p]A to indicate the set of all

-9-

augmentations of the order of p in which the A component of p is linearly ordered, with omission
of the subscript again denoting no restriction. This yields: ’

Merge = [C*XAO 11 ~*XBO]o

We might call the dual of Merge Spray. Spray has input I and outputs A and B, and sends each
of its inputs to an arbitrarily chosen output. It is given by

.
SPraY = [C*XIA 11 Z*XIB]I

A functional process F which computes the function f repeatedly has one input I and one output
0, and for each input o outputs qa). It may be defined as

F = @*x10)

where v is a pomset morphism which replaces each label <a,O> with <f(a),O> and leaves the rest
of the pomset unchanged.

.

WC take for our concluding example the two-way channel with disconnect described in our open-
ing remarks, which was

(c*XTRX(C,D}) n -+6

This has some features in common with the previous examples. However there are a couple of
new ideas requiring explication here. We have remarked earlier that orthocurrcnce of p with a
set such as (C,D) products essentially the concurrence of p with itself, except that the events are
m;\rked with one of C or D according to which copy of p they are in. Hcncc this construction
yields two concurrently opcr:lting one-way channels C and D. Each action in this system is a tri-*
plc of the form <nlsg.typc.ch~ulncl> whcrc type is ‘I’ or I< and ch;~~ncl is C or D, with
<type,channcl> providing ihc location of the action and msg its value.

The part about disconnection breaks newer ground. It is the one example in which temporal
logic [Pn] is used. 6 is a predicate on mcssagcs, and hcncc on actions and hence on events,
dclining which messages say to disconnect. + (a solid diamond, Koymans-de Rocvcr [DH]) is a
temporal modality, an cxistcnti;ll prcdicatc transformer yielding prcdicatcs on cvcnts. l projects
out or smears its argument forwards in time. In our cast it smearS 6 forwards so that it holds for

- 10 -

any event f for which there exists an event e<f satisfying 6(e); hence +6 asserts that a disconnect
request has happened in the past. We wish to forbid or eliminate all such events, so we change
the sign to yield “+a.

If we regard *I)8 as the set of all processes all of whose events meet this condition then intersec-
tion with it forbids such events, an operation of a logical character. If we regard it as an operation
on pomsets that shrinks them by removing unwanted events then application of it to each
behavior in the process eliminates such events, an operation of an algebraic character. Either
approach will work; in the formula above we used the former,

There is one detail in which the process named by this expression differs from the process named
in [Pr83], namely that in the latter the events at each “endpoint” of the two-way channel were
linearly ordered. The informal specification does not raise this as an issue, so the process n‘amed
in our present solution is adequate. On the other hand one might object that our two channels
are completely independent of each other. The linearization introduces at least a small degree of
coupling. We may bring it into coincidence with the process named in our previous solution by
use of the linearization operator [p]A introduced above. The two endpoints may then be incor-
porated into the solution by considering them as the names “a” for {TC,RD} (Transmit on C and
Receive on D) and “b” for {TD,RC} respectively. This leads to our final solution:

I . [[Z*XTRX{C,D)] {TC,RDJ1(TD,RC} ’ -+’

Thcsc varied cxanlplcs suggest that the notions of concurrcnce’ancl orthocurrcncc, and associated
serializations, may prove to be useful tools for the specification of processes.

4. Tlrc Loose Construction

.
In this section WC give a construction of proccsscs in terms of networks of constituent processes.
111 tl& manner of combining prwcsscs the constituent proccsscs may bc rccognizcd nlcrcly by
intcrccpting the flow of dat;l along network channels. When wires implcmcnt channels the cou-
pling can bc adjusted mcrcly by adjusting the connections of the wires. This seems to be a looser
kind of coupling of processes than that of the last section, where lhc components of an ;lsscnlbled
process were not iclcntifiable mcrcly by watching data flowing on channels, and where the cou-
pling was of a more logical than physical ch;lractcr.

The general idea here is to dcfinc the notions of translation, projection, and utilization, each in

- 11 -

terms of its predecessor, with translation being .a particularly simple-minded notion. Then a net
process may be defined as the intersection of utilizations of its constituent processes, and a process
implemented by a net may be defined as a projection of a net process.

The main difference between this account of composition and that of [Pr84] is the explicit notion
of a utilization as an operation determined solely by an insertion, with utilizations combining via
intersection.

4.1 Substitutiys

A pomset algebra is a collection of pomsets closed under the pomset-definable operations [Gis],
described below. 4 substifution is <an cndomorphism of a pomset algebra that replaces each event
e of a pomset by a pomset p, such that if elf (f<e) before the substitution then after the substi-
tution c’<f (fse’) for every event e’ in p, and such that the same pomset is substituted for events
with the same label.

A substitution is determined by its behavior on atoms (singleton pomsets). As such it has the
character of a homomorphism on a free algebra, which is determined by its behavior on genera-
tors. Pomsct substitutions are the natural generalization of string homomorphisms.

The algebraic structure of strings is straightforward: they combine under the single binary opera-
tion of concatenation. It can be shown [Gis] that there is no corresponding finite set of operations
for building all finite pomsets from atoms. However the pomscts themselves can bc used to
define an inhnitc set of operations using which all pomscts may bc built from atoms, the pomsef-
deJnabIe opercrtions [Gis]. Such an algebra is free, freely gcncratcd by its atoms, and substitution
is a homomorphism on it. That is the scnsc in which substitution is a morphism of pomsct alge-
bras.

1

4.2 ‘I’ranslations

We shall rcfcr to a function F:C+C’ between two alphabets C and C‘ as a trcmdufion. This
extends in the usual way to a length-prcscrving homomorphism of strings. In the same way it
also extends to a size-and-structure prcscrving homomorphism of pomscts, as introduced in [Gis]
and rccountcd below in the section on substitutions.

43 Insertion

- 12 -

Consider an alphabet of the form CXD, where C is to be thought of as denoting a set of chan-
nels or locations and D a set of data or values. In this context an insertion. is a data-preserving
translation, one that affects only the location.

The example that gives rise to the name “insertion” is the insertion of a component (say an
integrated circuit) into a net (say a printed circuit board). Each pin of the IC connects to some
wire on the PC board. We assume two asymmetries: every pin connects to some wire, but not
conversely, and a wire may short (connect) two pins but a pin may not short two wires (certainly
true for socketed IC’s, and more generally we may define “wire” to make it always true). It fol-
lows that the connection relation between pins and wires is actually a connection function map-
ping pins to wires. Not being injective corresponds to shorting pins, and not being surjective
corresponds to some wires not being connected to any pin. (On the other h‘and, if insertion were
a relation it would not compromise the development.)

An insertion is then a translation mapping (c,d) to (f(c),d) where f is a connection function.

4.4 Projection

. A projection is the extension to a substitution of the inverse of a translation. The name is
motivated by the case when the translation is an insertion, as will become apparent.

The inverse of a translation t:C+C’ is t- : 2’42 c, defined as usual as t-(a) = {aIt = a’}.
In this context we take a set of actions to be a pomset that is a poset with the empty order; thus
the inverse maps actions, i.e. atoms, to pornsets. This inverse t- then cxtcnds homomorphically,

/ as described above for substitutions, to a substitution t - + from ponisets to pomsets.

The irivcrsc of an inscrlion anioi~nts to a coortlin;rlc ti-;lnsli)rlll;ilioII for xAions. going from the net
coorclinatcs (wires) to the component coordinates (pins). In addition to renaming locations it
t;lkes cart of whether a particular net action is rclcvant to this component, deleting it if not, and
also whether it must occur simultaneously on more than one channel of the component, duplicat-
ing it if necessary. Duplicated events arc unordcrcd, which is as close as we can come in this
model to saying that they occur sirnultancously.

For example consider a componenthaving channels C and D and a net having channels E and F.

- 13 -

Insert the component into the net via the connection mapping C and D to E, thus connecting C
and D together. Let the data domain be {O,lj. Then the inverse insertion maps action (E,l) to
the set ((C,l)9(Ql)l (meaning that event (EJ) can only occur in the net when events (C,l) and
(D,l) both occur in the component) and action (FJ) to the empty set (meaning that this action is
irrelevant to the component). More generally, if in a pomset (net behavior), (EJ) precedes (E,O)
precedes (F,l), then the projection of that pomset onto the component has four events (C,l),
(D,l), (C,O), (D,O), with each of the first two preceding each of the second two.

4.5 Utilization

A utilization is the union of the pointwise extension (to a function on processes) of the inverse of
a projection. Let us hke this one step at a time.

-:n:Zt+2’t m
Begin with n:Z’t-+IZt, a projection from

pomsets to pomsets Its inverse n aps the pomset p to the set 0; those pomsets
whose projection under n is p; we interpret that set <as a process. For a process P, n-(P) is then
a set (n-(p)lpEP} of processes, the pointwise extension of &- to a function from processes to
sets of processes. Finally we write n -“(P) fm U{ n-(p)lpEP}, the union of that set.

The intended application for utilization is to embed a process’s behavior into a net in such a way
that, on the one hand the behavior contains information only about that process’s behavior in
terms of the topology of that net, yet on the other the behavior of the whole net reduces to the
intersection of the utilizations of its components, as explained in the next section. .

4.6 Composition

Given a family Pi of processes, each on an alphabet CiXD, and their associated connections
Ci:Ci-*c into a common net having connection set C, we may now express the process P consist-
ing of the set of all possible behaviors of the net via. the following formula.

L

P = rlicciXld- + -“(Pi).

Each function CiXID is the insertion induced by Ci* ID being the identity function on D. The
superscripts then promote each insertion to a utilization. Finally the product of the resulting
processes is formed, the product operator being ordinary intelsection for the case of processes as
sets of behaviors.

This rule is very f‘ar-reaching. It can model composition of binary relations, composition of

- 14 -

processes via arbitrary nets, connection via a bus or ethernet where messages may be broadcast by
any process attached to the bus or ethernet to any other such process, and analog circuits such as
a net of resistors. The rule handles these -diverse systems by being defined independently of
whether behaviors are discrete orders (as associated with conventional models of computation) or
dense orders (as associated with analog circuitry), and also independently of “direction” of flow of
data on channels.

In the case of resistive nets, Ohm’s law shows up as a local property of the constituent resistors
and Thevenin’s Theorem (including the special cases in which series resistances sum and parallel
resistances sum harmonically) shows up as a global property of the net. This is all accomplished
using resistor behaviors each consisting just of two events (e,i,p) giving the voltage e and current i
at each of two ports p = 0 and 1, with the sum over the ports of the i’s vanishing and the sum of
the e/i’s being the resistance; utilization then does all the remaining work of predicting the
behavior of an arbitrary net of resistors. W.e hope to get into more depth with analog processes
in future papers.

4.7 Evolution of the Utilization-Intersection Approach

Our approach to process composition evolved in small steps from Gilles Kahn’s original rule for
composing processes. The steps are:

1. [K,KM] Define a component to be a continuous function from n-tuplcs of sequences to
scqucnces. Continuity is defined relative to the prefix order on scqucnccs. Dcline :t net to be a
system of equations each of the form x = f(y,...,z) where each variable x,y,z denotes a connection
in the net and each equation a component. Express the behavior of the net <as the least solution
(under prefix ordering) to this system.

2. [BA] Instead of a total order on cvcnts within each channel. have a partial order on all events,
pcrm/tting bctwccn-chrnnci ordering as well. This is to cxtcnd Kahn composition to deal with
nondctcrministic processes, which Brock and Ackerman showed could not work merely by using
relations on scqucnces instead of functions.

3. [Pr82] lhtrodim the pbmsct as the underlying abstraction for Brock-Ackerman semantics.
Scparatc the Brock-Ackerman composition rule into two steps: composition of component
behaviors to form the maximal net behavior whose restrictions to those components are those
components, then restriction of that behavior to the external ports of the net, itself modclled as a

15 -

component of the net. Take all solutions, not just the least,

4. [pr84] Recast the above using only standard constructions: inverse, homomorphic extension,
pointwise extension, union. Remove the distinction between input and output ports. Remove all
finiteness and discreteness requirements to admit analog circuits.

5. [this paper] Introduce the concept of a utilization. Separate the rule for forming net behavior
into utilizations followed by intersection.

Appendix - Pure Categories *

The many categorically innocent readels seeking relief in a comprehensive text [ML] have the
dual burden of extracting just the relevant material and massaging it to fit our viewpoint. We
address this here by listing all the definitions we need for this and the next paper, slanted
appropriately. This is probably misguided; your indulgence is begged.

An edge-labelled graph, or multigraph, is one with a set of edges between any two vertices, as
opposed to zero or one edges. A free category is an algebra consisting of all paths of some
directed multigraph. This algebra has only one operation, path concatenation g;f. Paths deter-
mine their endpoints, whence to each object corresponds a distinct empty path and g;f is only

. defined if g starts where f ends. By convention vertices are called objects, paths morphisms, loops
endomorph&u, concatenation composifion, the empty path at b the identify lb, and the two’ end-
points of a path its domain and codomuin rcspcctively.

A category is a quotient (homomorphic image) of a free category. (This just means that some
paths are collapsed togcthcr by an equivalence relation that is furthermore a congruence with
respect to concatenation,) A discrefe category has only identity morphisms. Two morphisms
f:a+b, g:b+a satisfying g:f = 1, and f:g = lb arc c;~kd isomorphisms and a and b are said to
be isomorphic. An aufomorphism is both an isomorphism and an c~~~lomorl~hisnl. A preorder is a
category with at most on6 morphism bctwcen any two objects (in each direction). A cfique is a
maximal preorder. A posef is a preorder with only trivial (identity) isornorphisms. (Contrast:
cliques and posets are prcorders with respectively a maximal and a minimal set of isomorphisms.)

A finctor is a homomorphism bctwccn two catcgorics (c.g. the aforcmcntioncd quotient). A
nafuraL trurtsfotmcction 7 of functors S,l’:C+B is a function 7 which maps each object c in C to a
morphism x:SC+Tc in B such that the disjoint union of S(C) and T(C) together with the

I - 16 -

morphisms of 7(C) form a category (i.e. the set of all those morphisms is closed under the compo-
sition defined on those morphisms in C). Natural transformations compose, according to (~;o)c
= 7c;ac to yield a natural transformation (!). Hence the collection of all functors between two
categories itself forms a category whose morphisms are the natural transformations of those func-
tots

An object is initial (final) in a category C when there is exactly one morphism in C from it to (to
it from) each object in C. Initial (final) objects are isomorphic (!).

Given a functor F:C*B, define C+ to be C augmented with a final object (and hence with the
additional morphisms required to make it final). A cone from F is any functor F+ :C+ -+B
extending F; its vertex is the image under F+ of the final object of C+. The category of cones
from F has as objects those cones and as morphisms those natural transfomlations of cones which
assign lFc to each object c of C.

A colimit of F is the vertex of an initial object of the category of cones from F. A coproduct is a
colimit of a functor with a discrete domain. The respective dual notions are cone fo F, limit, and
product. .

Acknowledgments
.

I thank Jose Meseguer for helpful discussions and hints.

/ 13ibliography

[B] Brauer, W., Net Theory and Applications, Springer-Verlag LNCS 84, 1980.

[BA] Brock, J.D. and W.B. Ackerman, Scenarios: A Model of Non-Dctcrminate Computation,
111 LNCS 107: Fonn;~lizntion of Programming Concepts, J. Diaz and 1. Rarnos, Eds., Springer-
Verlag, New York, 1981, 252-259.

[Dl-l] Denvir, T., W. Harwood, M. Jackson, and M. Ray, The Analysis of Concurrent Systems,
Proceedings of a Tutorial and Workshop, Cambridge University, Sept.- 1983, LNCS, Springer-
Vcrlag, to appear.

[Gis] G&her, J., Partial Orllcrs and the Axiomatic Theory of SlurfIle, Ph.D. Thesis, Computer

- 17 -

Science Dept. Stanford University, Dec. i9sC +

[H] Hoare, C;A.R., Communicating Sequential Processes, CACM, 21, 8,6&j-672, August, 1978,

[K] Kahn, G., The Semantics of a Simple Language for Parallel Programming, IFIP 74, North-
Holland, Amsterdam, 1974.

. [KM] Kahn, G. and D.B. MacQueen, Coroutines and Networks of Parallel Processes, IFIP 77,
993-998, North-Holland, Amsterdam, 1977.

[ML] Mac Lane, S., Categories for the Working Mathematician, Springer-Verlag, NY, 1971.
.

[M] Milner, R., A Calculus of Communicating Behavior, Springer-Verlag LNCS 92, 1980.

[Pn] PnueIi, A., The Temporal Logic of Programs, 18th IEEE Symposium on Foundations of
Computer Science, 46-57. Ott 1977. -

[Pr82] Pratt, V.R., On the Composition of Processes, Proceedings of the Ninth Annual ACM
Symposium on Principles of Programming Languages, Jan. 1982.

. (Pr83) Pratt, V.R., Two-Way Channel with Disconnect, in [DH], section 3.1.3.

[Pr84] Pratt, V.R., The Pomsct Mocicl of Parallel Proccsscs: Unifying the. Temporal and the Spa-
tial, Proc. CM U/SERC Workshop on Logics of Programs, to appear in Springer Lecture Notes in
Computer Science series, Pittsburgh, 1984.

[w84a] Winskel, G., A New Definition of Morphism on Petri Nets, Springer Lecture Notes in
Computer Science, 166, 1984.

[W84b] Winskel, G., Catcgorics of Models for Concurrency, Technical Report no. 58, University
of Cambridge, England, undated (rec’d Dec. 1984).

