March 1985 Report No. STAN-G-85-1048

Some Const ructions for
Order-Theoretic Models of Concurrency

by

Vaughan Pratt

Department of Computer Science

Stanfor dUniversity
Stanford, CA 94305

Some Constructions for
Order-Theoretic Models of Concurrency

Vaughan Pratt
Stan ford University
Stanford, CA 94305

Abstract

We give “tight” and “loose” constructions suitable for specifying processes represented as sets of
pomsets (partialy ordered multiscts). The tight construction is suitable for specifying “primitive”
processes; it introduces the dua notions of concurrence and orthocurrence. The loose construc-
tion specifies a process in terms of a net of communicating subprocesses; it introduces the notion
of autilization embedding aprocessin anet.

1. Introduction

1.1. An Application

In September 1983 STL. (Standard Telecommunications Laboratories Ltd) and SERC (Science
and Engineering Research Council) jointly sponsored aworkshop onthe analysis of concurrent
systems [DH]. The workshop was organized around ten problems for solution by the attendees.
Each problem informally described aconcurrent systemto be formally specified.

Thefirst problem was probably the easiest. For whatever reasons, it also attracted the lion’s share
of the attention, The formal solutions presented varied in length from seven axioms of onc line
cach (Koymans-de Roever) to two pages. The lollowing paragraph reproducces verbatim the state-
ment of the problem.

The "channel" between endpoints “a@’ and "b" can pass messages in both directions simultane-
oudly, until it reccives a"disconnect” message from one end, after which it neither delivers nor
accepts mcsages at that end. It continues to dceliver and accept messages at the other cnd until
the “disconnect” message arrives, after which it can do nothing. The order of messages sent in a
given direction is prescrved.

-2-

Intuitively, the complexity of the presented solutionsis out of proportion to the complexity of the
concept of atwo-way channel with disconnect. The “tight” construction of this paper yields a
sufficiently short solution that we can conveniently preview it here:

(Z*XTRX{C,D}) N "@®s

In English this reads “(Message sequence, Transmitted then Received, on channels C and D) with
no prior disconnect”. It specifies essentially the same mathematical object that we required 13
lines of detail to specify in [Pr83] (our contribution to the workshop). A key construct hereis the
operation X of orthocurrence which provides the interpretation of the commasin the English.

1.2 The Significance of Pomsets

Strings arise naturally in modelling ongoing sequential computation, whether their elements

correspond to states, state transitions, or message transmission-receipt events. Thinking of astring

as alinearly ordered multiset, a mathematically natural generalization isto relax the linear order

to a partia order. If the resulting objects are used for modelling computation, the meaning of
‘incomparability between elements may be interpreted as concurrency of events.

Weabbreviate partially ordered multiset topomset.

The amost universal practice in modclling concurrency isto represent concurrency as ‘ choice of
order in scquential computation. The two arguments supporting this approach arc that partial
orders are no moreexpressive than tincar, and arc not as convenient to work with,

We refute both these arguments. The first is correct for poscts but not for pomscts, as demon-
strated in [Gis] withthe counterexampleabjab, which in alinear modet isindistinguishable from
N(a,a.b,b) where N(1,2,3,4) schedules 143, 2<4, 1<4. The sccond is only true in that relatively lit-
tle work has been done on partial orders for modelling computation. In fact the opposite scems
to bc the case - total orders turn out to be very incdnvenient to work with for some basic con-
currency applications, so much so that we speculate that thisisone of the major reasons why the
formal modclling of concurrency remains an arcane topic today.

In earlier papers [Pr82.Pr84] we showed how .to derive event-order models as homomorphic
images of rcal time modecls. For this to bc possible the former must have a structure Smilar o
that of thelatter. Only partial orders onevents mect this requirement.

-3-

In this paper we exhibit two dual operations and show various applications for them. We see
these operations as being fundamental to concurrency. The only way we see to define them for a
linearly ordered model is to define them for a partially ordered model and at the last step com-
plete the partial orders to linear orders. The analog of this in astronomy would be to use
Newtonian mechanics to derive the motions of the planets and at the last step convert all the
resultsto epicycles.

1.3Why Categories

Given “all” sets, ordered by inclusion, union and intersection are the operations of least upper
and greatest lower bound respectively. This definition is popular, whether for its elegance, con-
venience, or algebraic flavor. It certainly makes it obvious that union and intersection are dual
notions.

Another commonly encountered dual pair arc digoint union and Cartesian product. These too
can be described as the operations of least upper and greatest lower bound, if we generalize from
inclusions to al functions between sets and define "lcast upper bound” and “greatest lower
bound” appropriately so that they continue to make sense, and are willing to settle for uniqueness
up to isomorphism.

A category isacollection of objects such as these sets together with some morphisims between

them such asinclusions or functions, viewed at the right distance for sccing the commonality of
these definitions. At this distance least upper and greatest lower bounds on a set X of objects are
coproducts and products rcspectivcly, while the upper and lower bounds, whether or not least or
greatest, are the vertices of cones from or to X. (A minimal account of cones and productsis pro-

vided for convenience as an appendix.)

In our case WC want to define two basic operations of concurrency for pomscts that turn out to be
coproducts and products in the category of pomsets With morphisms all pomset homomorphisms,

Both the duality of these ‘operations and their affinity with the important cases above arc made
clearly visible with a categorical treatment.

Winskcl [W84a] describes a morphism of Petri nets, having in mind just these sorts of applica-
tions: dchining coproducts and products. This is then cxtcnded [W84b] to a number of mor-
phisms appropriate to various models of concurrency, whose relationships to each other arc
expressed viaadjunctions. With luck there will turn out to be either a straightforward or an

-4 -
interesting connection between his morphisms and ours.

2. Definitions

2.1 Pomsets

The setting is order-theoretic models of concurrency. We take the central concept to be the pom-
set or partially ordered multiset. Informally, a pomset is to a string as a partial order isto atotal
order; a string is not a totally ordered set but rather a totally ordered multiset. Pomsets are
intended to model behaviors (Synonyms: trace, computations) of some process. The process itself
is identified with the set of al its possible behaviors.

Pomsets may bedefined in elementary language aslabelled partial orders up to isomorphism. In
the context of dealing with pomsets as objects of a category the obvious way (in hindsight) is to
treat them as functors from a category of events to a category of actions. To keep the material
reasonably accessible we do both here. More detailed elementary treatments may be found else-
where[Gis,Pr34].

A labelled partial order (Ipo) is a4-tuple (V, Z.u, <) consisting of
‘(i) asct V of events,

(i1) an alphabet X of actions, ¢.g. the arrival of integer 3 at port Q, the transition of pin 13 of 1C-7
to 4.5 volts, or the disappearance of the 14.3 MHz component of asignal,

(iii) alabclling function w:E—Z2 ‘assigning actions to events, cach labelled cvent representing an
occurrence of the action labclling it, with the same action possibly having multiple occurrences,
and ”

(iv) apartial order < on E, with the intended interpretation of ¢ <f being that ¢ precedesf in
time.

A pomset (partially ordcrecl multisct) isthen the isomorphism class of an Ipo. denoted [V, 2., <].
By taking Ipo’s up to isomorphism WC confer on pomscts a dcgrec of abstractness cquivalent to
that enjoyed by each of strings (regarded as finitc linearly ordered labcllcd sets up to

-5-

isomorphism), ordinals (regarded as well-brdered sets up to isomorphism), and cardinal's (regarded
as sets up to isomorphism).

(Cryptic remark: the reason isomorphism appears in our definition of pomsets but not in the
usua definitions’of string, ordinal, or cardinal, isthat partial orders, unlike well-ordered sets, have

nontrivial automorphisms. This complicates finding acanonical representative of theisomorphism
class)

No assumption is made about atomicity of events; in fact our tight construction of processes
depends on events having structure.

2.2 Typesof Pomsets

It will be convenient to regard all of the following structures as kinds of pomsets.

Multiset Pomset with aminimal (i.e. empty) order

Tomset Pomset witha maximal (i.e. total) order

String Finitetomset

Poset Pomset with aninjective labelling

Set Poset that is also amultiset

Atom A singleton pomset (both a set and a string)

Unit The empty pomsct (hence the empty string, and empty set)

A process is a set of pomscts. Close analogs are binary relations, which are sets of pairs, and
languages, which are sets of strings. In al casesthe set structure can bc regarded as modclling
variety of one or another kind of behavior. A language iSsa process all of whose behaviors are
strings. The language of a processis the set of stringsin that process.

‘We write 2 for the set of allfinitc pomscts with alphabet 2, by analogy with Z* for the sct of
all strings with alphabet X, which happen to bc dl stringsin Z7.

Implicit in this two-layered notion of process (sets of pomscts of events) is atwo-sided distribu-
tivity axiom; that order may bc distributed over choice, i.c. concatenation over union. This axiom
is appropriate for partial correctness but not always for termination and deadlock. WC impose
this axiom on our notion of processes for now in the interest of understanding the basic pomset
model better, with a minimum of distracting clctail. Notc that thisis alimitation only of our

-6-
notion of processes, not of the pomsets themselves.

2.3 Pomsct | homomor phisms and the Category POM

We now wish to define homomorphism between pomsets, to facilitate the definitions of con-
currcnce (digjoint union) and orthocurrence (direct product).

We take a pomset homomorphism to be a consistently-relabelling monotonic function between
the underlying sets of the two pomsets. Consistent relabelling means that if two events have the
same label so do their images under the homomorphism. Monotonicity is defined in the usual
way with respect to the partia order.

The category POM consists of ail pomsets together with all their homomorphisms.

We call coproduct and product (see appendix) in this category respectively concurrence and ortho-
currence. Concurrence takes the digoint union of pomsets while orthocurrcnce takes their direct
product. Events accumulate under concurrence but combine orthogonally under orthocurrence,
as Will become clearer below. We write p||q for the concurrence of p and g (p+ g isaplausible
aternative notation), and pXq for their orthocurrence.

If the string ab, a lincarly ordered multisct and hence pomset, is thought of as two events a fol-
lowed by b, then the concurrence of ab and cd contains four events, a followed by b, togcther
with c followed by d, with no additional temporal rclutionships between ab and cd.

The orthocurrence of ab with cd contains four events, <a,c>, <a,d>, <b,c>, and <b.,d>, with <a,c>
< <a,d> < <b,d> and <a,c>_< <b,e> <<b,d.

If wC write 2 for the multiset (0.0) and 00 for the result of lincarly ordering 2, 2 and 00 both
being pomsets, then pX2 = pllp (ignoring the extra 0 on cach label) whereas pX00 = p.p. This
sccond operation 1S concatenation, in this case of p withiitself. Like concurrcncce, the concatena-
tion p.g is an "upper bound” on (the vertex of acone from, sce appendix) p and g. This makes
it clear that concatcnation is not the dual of concurrence but rather is abound on {p,q} superior
to pllq (since concurrencc is the least upper bound) - indeced concatenation lies on the opposite
side of concurrcncc from orthocurrcnce.

Bctween the concurrence and the concatenation of p and q lies a complete lattice of intermediate

-7 -

upper bounds on p and g, each consisting of p||q with some additional ordering information run-
ning from p to g, an arbitrary subset of the concatenation ordering in p.q. We will find some of
these intermediate bounds of importance below.

All these intermediate bounds are representable as quotients of a concurrence, the quotients
modifying only the order and otherwise constituting label-preserving bijections. We may call

quotients of thisform serializations.

3. The Tight Construction

3.1 The Cons Process

By way of motivation consider the Cons process. This process has two input ports A and B and
one output port 0. The first value output from O is the first value input from A; thereafter al

outputs on O are taken in order from B. Further inputson A’ are not accepted and therefore do

not appear a al in the behaviors of Cons.

Thetypical behavior of this process can be diagrammed asin Figure 1.

A B A aA
- - bn-io Eno
O
o B b5 "TT"g® LB

Figure 1. The ConsProcess and its Typical Behavior

We may represent this process as a sum of products. There arc two products. corresponding to
two channcls, from A o 0 and from B to O respectively. The AO channcl passcs only 0 n e
datum, the BO chan nclisan ordinary order-preserving channel. 'The sum is constrained so asto
force the onc O output from A (and hence al of the AO channcl) to precede all the O outputs
from B; thus it isintermediate between concurrence and concatenation. We adopt the ad hoc
notation A.O for this opcration: p A.O ¢ indicates partial concatenation in which the A com-
ponent of p prccedes the O component of g. Omission of either subscript denotes NO restriction,
SO p.q mcans concatcnation. When p and ¢ are Strings p.q IS string concatenation; more gencrally
it meansthat every element of p precedes every element of g.

8-

Now consider the individual products. A channel is aset of behaviors, each which in turnis a
seguence of message transitions. Such a sequence has two orthogonal components: a string o of
messages, and a string AO or BO consisting of atransmission action A or B followed by areceipt
action 0 and constituting a “transition schema.” The orthocurrence of o with AO yields the
pomset of Figure 2; BO is similar.
oA A ZA

&0 50 50 %20 %.,0 %0
Figure 2. Orthocurrence of a Message String with the Transition Schema

L etting 2* denote the set of all message sequences, the set of al possible behaviorsfor the BO
channel isthen Z*XBO (with orthoccurrence being distributed over union).

We may now define the Cons process.
Cons = CXAO .4 2*XBO.
3.2 Related Processes

The dual of ConsisCarCdr, aprocess with onei nput | and two outputs A and B, which feeds its
first input to A and the rest to B. Like Cons CarCdr is a sum of products. We leave it to the
reader to interpret:

CarCdr = ZXIA . 2*XIB,
The duality of Cons and CarCdr is made quite clear from the formulas,

A somewhat different example is given by Merge, which has inputs A and B and output 0 and
merges its two stream inputs arbitrarily. Similarly to Cons, Merge is asum of two products, in
this casc 2*XA0 and 3*XBO. The sum howgver differs from that for Cons in that instcad of
specifying a particular order we imposce the weaker requirement that the O channel mercly be
linearly ordered. Again adopting an ad hoc notation wc write [p], to indicate the set of all

-9-

augmentations of the order of p in which the A component of pislinearly ordered, with omission
of the subscript again denoting no restriction. Thisyields:

Merge = [Z*XAO || E"‘)(BO]O

We might call the dual of Merge Spray. Spray has input | and outputs A and B, and sends each
of itsinputsto an arbitrarily chosen output. It is given by

Spray = [2*XIA || Z*X[B][

A functional process F which computes the function f repeatedly has one input | and one output
0, and for each input o outputs (o). It may be defined as

F = ¢(S*XIO)

where g is a pomset morphism which replaces each label <g,0> with <f{¢),0> and |eaves the rest
of the pomset unchanged.

Woc take for our concluding example the two-way channel with disconnect described in our open-
ing remarks, which was

(S*XTRX{C,D}) N "@d

This has some features in common with the previous examples. However there are a couple of
new ideas requiring explication here. We have remarked carlier that orthocurrcnce of p with a
sct such as {C,D} produces essentially the concurrence of p with itsclf, except that the events are
marked with onc of C or D according to which copy of p they are in. Henec this construction

_yields two concurrently operating one-way channels C and D. Each action in this system is atri-
ple of the form <msg.typc.channcl> where type is ‘I’ or R and channel is C or D, with
<type,channcl> providing ihc location of the action and msg itsvalue.

The part about disconnection breaks newer ground. It is the one example in which temporal
logic [Pn] isused. § is a predicate on messages, and hence on actions and hence on events,
defining which messages say to disconnect. € (a solid diamond, Koymans-de Rocver [DH]) isa
temporal modality, an existential predicate transformer yiclding predicates on cvents. @ projects
out or smears its argument forwardsin time. 1nour casc it smears § forwards so that it holds for

-10-

any event f for which there exists an event e<f satisfying 6(€); hence 4§ asserts that a disconnect
request has happened in the past. We wish to forbid or eliminate all such events, so we change
thesigntoyield ~ 4.

If we regard "8 asthe set of all processes all of whose events meet this condition then intersec-
tion with it forbids such events, an operation of alogical character. If we regard it as an operation
on pomsets that shrinks them by removing unwanted events then application of it to each
behavior in the process eliminates such events, an operation of an algebraic character. Either
approach will work; in the formula above we used the former,

Thereisonedetail in which the process named by this expression differs from the process named
in [Pr83], namely that in the latter the events at each “endpoint” of the two-way channel were
linearly ordered. The informal specification does not raise this as an issue, so the process named
in our present solution is adequate. On the other hand one might object that our two channels
are completely independent of each other. The linearization introduces at least a small degree of
coupling. We may bring it into coincidence with the process named in our previous solution by
use of the linearization operator [p], introduced above. The two endpoints may then be incor-
porated into the solution by considering them as the names “a’ for { TC,RD} (Transmit on C and
Receive on D) and "b" for { TD,RC} respectively. This leads to our final solution:

[=*XTRX{C.DH¢rc rp}iTDRC) N " ®0

Thesc varied cxamples suggest that the notions of concurrence and orthocurrence, and associated
serializations, may prove to be useful toolsfor the specification of processes.

4. The Loose Construction

I n this section wc give a construction of proccsscs in terms of nctworks Of constituent processes.
In this manner of combini Nng processes the constituent processes may be recognized merely by
intcreepting the flow of data along network channcls. When wires implement channcls the Cou-
pling can bc adjusted merely by adjusting the connections of the wires. Thissecms to be alooser
kind of coupling of processes than that of the last scction, where the components of an assembled
process were Not identifiable mercly by watching data flowing on channcls, and where the cou-
pling was of amore logical than physical character.

The general idea here isto define the notions of trangdlation, projection, and utilization, each in

-11-

terms of its predecessor, with trangdation being -a particularly simple-minded notion. Then a net
process may be defined as the intersection of utilizations of its constituent processes, and a process
implemented by anet may be defined as a projection of anet process.

The main difference between this account of composition and that of [Pr84] is the explicit notion

of autilization as an operation determined solely by an insertion, with utilizations combining via
intersection.

4.1 Substitutions

A pomset algebrais a collection of pomsets closed under the pomset-definable operations [Gig],
described below. A substitution is an cndomorphism of a pomset algebra that replaces each event
e of apomset by a pomset p, such that if e<f (f<e) before the substitution then after the substi-
tution ¢’ <f (f<e’) for every event € inp, and such that the same pomset is substituted for events
with the same label.

A substitution is determined by its behavior on atoms (singleton pomsets). As such it has the
character of a homomorphism on a free algebra, which is determined by its behavior on genera-
tors. Pomsct substitutions are the natural generalization of string homomorphisms.

The agebraic structure of strings is straightforward: they combine under the single binary opera-
tion of concatenation. It can be shown [Gis] that there is no corresponding finite set of operations
for building all finitc pomsets from atoms. However the pomscts themselves can bc used to
define aninfinite sct of operations using which all pomscts may bc built from atoms, the pomset-
definable operations [Gis]. Such an algebraisfree, frecly gcnerated by its atoms, and substitution
is @ homomorphism on it. That is the sense in which substitution is a morphism of pomsct age-

bras.

4.2 Translations

We shall refer to a function f:Z—>3" between two alphabets 3 and 2 as a translation. This
extends in the usual way to alength-prcscrving homomorphism of strings. In the same way it
alsoextends to a size-and-structureprescrving homomorphism of pomscts, asintroduced in [Gis]
and recounted below in the section on substitutions.

- 12.
43 Insertion

Consider an aphabet of the form CXD, where C isto be thought of as denoting a set of chan-
nels or locations and D a set of data or values. In this context aninsertion. is adata-preserving
trandation, one that affects only the location.

The example that gives rise to the name “insertion” is the insertion of a component (say an
integrated circuit) into anet (say a printed circuit board). Each pin of the IC connects to some
wire on the PC board. We assume two asymmetries: every pin connects to some wire, but not
conversely, and awire may short (connect) two pins but a pin may not short two wires (certainly
true for socketed IC’s, and more generally we may define “ wire” to make it aways true). It fol-
lows that the connection relation between pins and wires is actually a connection function map-
ping pins to wires. Not being injective corresponds to shorting pins, and not being surjective
corresponds to some wires not being connected to any pin. (On the other hand, if insertion were
arelation it would not compromise the devel opment.)

An insertion isthen atranglation mapping (c,d) to (f(c),d) where f is a connection function.
4.4 Projection

. A projection is the extension to a substitution of the inverse of atrandation. The nameis
motivated by the case when the trandlation is an insertion, aswill become apparent.

Theinverse of atrandation t: ==X’ ist™ : 2‘—*22, defined asusual ast™ (¢’) = {o]t(c) = a'}.
Inthis context we takce a set of actions to be a pomset that is a poset with the empty order; thus
the inverse maps actions, i.e. aloms, to pornsets. Thisinverset™ then cxtends homomorphically,
as described above for substitutions, to asubstitutiont™ + from pomsets t0 pomsets.

The inverse of an inscrtion amounts t0 a coordinate transformation for actions, going from the net
coordinates (wires) to the componcent coordinates (pins). In addition to renaming locations it
takes carc of whether a particular net action isrclevant to this component, deleting it if not, and
also whether it must occur simultaneously on more than one channel of the component, duplicat-
ing itif necessary. Duplicated events arc unordcred, which is as close as we can comein this
model to saying thatthey occur simultancously.

For example consider a componenthaving channels C and D and a net having channels E and F.

-13-

Insert the component into the net via the connection mapping C and D to E, thus connecting C

and D together. Let the data domain be {0,1}. Then the inverse insertion maps action (E,1) to

the set {(C,1),(D,1)} (meaning that event (E,1) can only occur in the net when events(C,1) and

(D,1) both occur in the component) and action (F,1) to the empty set (meaning that this action is

irrelevant to the component). More generaly, if in a pomset (net behavior), (E,1) precedes (E,O)
precedes (F,1), then the projection of that pomset onto the component has four events (C,1),
(D,1), (C,0), (D,0), with each of the first two preceding each of the second two.

45 Utilization

A utilization is the union of the pointwise extension (to a function on processes) of the inverse of
a projection. Let ustake thisone step at atime. Begin with «: 23, a projection from
pomsetsto pomsets Itsinverse s :ar: ZT*ZZT maps the pomset p to the set of those pomsets
whose projection under # is p; we interpret that set as aprocess. For a process P, n-(P) is then
aset{# ~ (p)|pEP} of processes, the pointwise extension of #~ to afunction from processes to
sets of processes. Finally wewrite ™~ U(P) for U{ 7~ (p)|p€P}, the union of that set.

The intended application for utilization isto embed a process's behavior into a net in such away

that, on the one hand the behavior contains information only about that process's behavior in

terms of the topology of that net, yet on the other the behavior of the whole net reduces to the
intersection of the utilizations of its components, as explained in the next section.

4.6 Composition

Given afamily Pi of processes, each on an alphabet C;XD, and their associated connections
¢;:C,—~>C into a common net having connection set C, we may now express the process P consist-
ing of the set of all possible behaviors of the net via_ the following formula

— (e -+-UY
P=Tl¢XIp) ™ + (Pi)'
Each function ¢ Xl is the insertion induced by ¢, I being the identity function on D. The
superscripts then promote each insertion to a utilization. Finally the product of the resulting

processes isformed, the product operator being ordinary intersection for the case of processes as
sets of behaviors.

This rule is very far-reaching. It can model composition of binary relations, composition of

-14 -

processes viaarhitrary nets, connection viaabus or ethernet where messages may be broadcast by
any process attached to the bus or ethernet to any other such process, and analog circuits such as
anet of resistors. The rule handles these -diverse systems by being defined independently of
whether behaviors are discrete orders (as associated with conventional models of computation) or
dense orders (as associated with analog circuitry), and also independently of “direction” of flow of
data on channels.

In the case of resistive nets, Ohm’s law shows up as a local property of the constituent resistors
and Thevenin’s Theorem (including the special cases in which series resistances sum and parallel
resistances sum harmonically) shows up as a global property of the net. Thisis all accomplished
using resistor behaviors each consisting just of two events(e,i.p) giving the voltage e and current i
at each of two ports p = 0and 1, with the sum over the ports of thei’s vanishing and the sum of
the e/i’s being the resistance; utilization then does al the remaining work of predicting the
behavior of an arbitrary net of resistors. We hope to get into more depth with analog processes
in future papers.

4.7 Evolution of the Utilization-Intersection Approach

Our approach to process composition evolved in small steps from Gilles Kahn's original rule for
composing processes. The steps are:

1. [K.KM] Dcfine a component to be a continuous function from n-tuplcs of scquences to
scqucnces. Continuity is defined relative to the prefix order on scquencces. Define a net to be a
system of equations each of the form x = Ry,...,z) where each variable x.y.z denotes a connection
in the net and each equation a component. Express the behavior of the net as the least solution
(under prefix ordering) to this system.

2. [BA] Instead of atota order on cvents within each channcl, havea partial order on all events,
permitting between-channel ordering as well. This. is to extend Kahn composition to deal with
nondeterministic processes, which Brock and Ackerman showed could not work merely by using
relations on scquences instead of functions.

3. [Pr82] Introduce the pbmsct as the underlying abstraction for Brock-Ackerman semantics.
Scparate the Brock-Ackerman composition rujc into two steps: composition of component
behaviors to form the maximal net behavior whose restrictions to those components are those
components, then restriction of that behavior to the external ports of the net, itself modelled as a

15-

component of thenet. Take al solutions, not just the least,

4. [Pr84] Recast the above using only standard constructions. inverse, homomorphic extension,
pointwise extension, union. Remove the distinction between input and output ports. Remove all
finiteness and discreteness requirements to admit analog circuits.

5. [this paper] Introduce the concept of a utilization. Separate the rule for forming net behavior
into utilizations followed by intersection.

Appendix - Pure Categories

The many categorically innocent readers seeking relief in acomprehensive text [ML] have the
dual burden of extracting just the relevant material and massaging it to fit our viewpoint. We
address this here by listing al the definitions we need for this and the next paper, slanted
appropriately. Thisis probably misguided; your indulgence is begged.

An edge-labelled graph, or multigraph, is one with a set of edges between any two vertices, as
opposed to zero or one edges. A free category is an algebra consisting of all paths of some
directed multigraph. This algebra has only one operation, path concatenation g;f. Paths deter-
mine their endpoints, whence to each object corresponds a distinct empty path and g;f isonly
defined if g starts where f ends. By convention vertices arecalled objects, paths morphisms, loops
endomorph&u, concatenation composition, the empty path at b the identify Ib, and the two’ end-
points of a path its domain and codomain rcspectively.

A category is a quotient (homomorphic image) of afree category. (This just means that some
paths are collapsed togcether by an cquivalence relation that is furthermore a congruence with
respect to concatenation,) A discrete category has only identity morphisms. Two morphisms
f:a—b, g:b—>a satisfying g:f = 1, and fig = 1,, arc called isomorphisms and aand b are said to
bc isomorphic. An automorphism is both an isomorphism and an endomorphism. A preorder is a
category with at most oné morphism between any two objects (in each dircction). A clique is a
maximal preorder. A poset is a preorder with only trivial (identity) isornorphisms. (Contrast:

cligues and posets are prcorders with respectively amaximal and aminimal set of isomorphisms.)

A functor is a homomorphism bctwcen two categories (c.g. the aforementioned quoticnt). A
natural transformation 7 of functors S,T:C—B isa function T which maps each object cin Cto a
morphism rc:Sc—Tc in B such that the digoint union of S(C) and T(C) together with the

~-16 -

morphisms of ®(C) form a category (i.e. the set of all those morphismsis closed under the compo-
sition defined on those morphismsin C). Natural transformations compose, according to (7;o)c
= r¢;oc to yield anatural transformation (!). Hence the collection of all functors between two
categories itsclf forms a category whose morphisms are the natural transformations of those func-

tors,

An object is initial (final) in a category C when there is exactly one morphism in C from it to (to
it from) each objectin C. Initia (final) objects are isomorphic (!).

Given afunctor F:C—B, defineC tobe C augmented with afinal object (and hence with the
additional morphisms required to make it final). A cone from F is any functor F*:Ct —B
extending F; itsvertex is the image under F* of thefinal object of C*. The category of cones
from F has as objects those cones and as morphisms those natural transformations of cones which
assign 1. to each object c of C.

A colimit of F isthe vertex of an initial object of the category of conesfrom F. A coproduct isa
colimit of afunctor with a discrete domain. The respective dual notions are cone o F, limit, and
product.
Acknowlcdgments

| thank Jose Meseguer for helpful discussions and hints.
Bibliography
[B] Brauer, W., Net Theory and Applications, Springer-Verlag LNCS 84, 1980.
[BA] Brock, J.D. and W.B. Ackerman, Scenarios. A Modcl of Non-Dctcrminate Computation,
In LNCS 107: Formalization of Programming Concepts, J. Diaz and 1. Ramos, Eds., Springer-

Verlag, New York, 1981, 252-259.

[DI-I] Denvir, T., W. Harwood, M. Jackson, and M. Ray, The Analysis of Concurrent Systems,
Proceedings of a Tutorial and Workshop, Cambridge University, Sept. 1983, LNCS, Springer-
Verlag, to appear.

[Gis] Gischer, J., Partial Orders and the Axiomatic Theory of Shuffle, Ph.D. Thesis, Computer

- 17 -
Science Dept. Stanford University, Dec. 1984,
[H] Hoare, C.A.R., Communicating Sequential Processes, CACM, 21,8, 666-672, August, 1978,

[K] Kahn, G., The Semantics of a Simple Language for Parallel Programming, IFIP 74, North-
Holland, Amsterdam, 1974,

[KM] Kahn, G. and D.B. MacQueen, Coroutines and Networks of Parallel Processes, IFIP 77,
993-998, North-Holland, Amsterdam, 1977.

[ML] Mac Lane, S, Categories for the Working Mathematician, Springer-Verlag, NY, 1971.
[M] Milner, R., A Calculus of Communicating Behavior, Springer-Verlag LNCS 92, 1980.

[Pn] Pnueli, A., The Temporal Logic of Programs, 18th IEEE Symposium on Foundations of
Computer Science, 46-57. Oct 1977."

[Pr82] Pratt, V.R., On the Composition of Processes, Proceedings of the Ninth Annual ACM
Symposium on Principles of Programming Languages, Jan. 1982.

[Pr83] Pratt, V.R., Two-Way Channel with Disconnect, in [DH], section 3.1.3.
[Pr84] Pratt, V.R., The Pomsct Modcl of Paralicl Processes: Unifying the. Temporal and the Spa-

tial, Proc. CM U/SERC Workshop onLogics of Programs, to appear inSpringer LectureNotcs in
Computer Science series, Pittsburgh, 1984.

[W84a] Winskel, G., A New Definition of Morphism on Petri Nets, Springer Lecture Notesin
Computer Science, 166, 1984.

[W84b] Winskel, G., Catcgorics of Models for Concurrency, Technical Report no. 58, University
of Cambridge, England, undated (rec’ d Dec. 1984).

