
January 1985 Report No. STAN-CS-85= 1049

The Pomset Model of Parallel Processes:
Unifying the Temporal and the Spatial

bY

Vaughan Pratt

Department of Computer Science

Stmford University
Stanford, CA 94305

The Pomset Model of Parallel Processes:
Unifying the Temporal ancl the Spatial

Vaughan Pratt
Stanford University
Stanford, CA 94305

l/28/85

1. Temporal Theory - Qualitative Scheduling

1.1. Background

.

The progenitor of our pomset model is Kahn’s history-transformer model of nets [Kah74,
KaM77], in which a process is viewed as a function from n-tuples of histories to histories, where a
history is a sequence of values. Each connection or channel of the net is associated with such a
history. Kahn’s model, being functional rather than relational, only caters for dctcmlinate
p recesses. This has the advantage of permitting a straightforward least-fixed-point analysis, and
the disadvantage of excluding such basic processes as the merge process. The Brock-Ackerman
anomaly [BA81] demonstrates the need for something more than histories in extending Kahn’s
model to treat nondeterminate processes. Brock and Ackerman show how to extend Kahn’s
model by+ inclusion of ordering information between events on different channels.

. The pomsct model wcas introduced by the present author [PraS2]. It is intended as a theoretical

.

framework for the Brock-Ackerman extension of Kahn’s model. However the topic of models of
concurrency has been particularly active in recent years, with the inevitable conscyuence that any
given viewpoint ages rapidly,. Thus the present paper describes our original model but from a
more current perspective.

L

The basic idea of the model remains unchanged: a process is a set of pomscts, networks are
defined in terms of events as channel-daut pairs, and real-time is modellcd by extending partial
orders to more general scmirings (only hinted at near the end of the paper [Pra82]).

A major change is the symmctrization of input and output. Our channels arc no longer directed;
instead they arc just places to share information. Communication is by consensus: information is
shared simply when the communicating partics agree to share it. This both simplifies the model
and m,akes it more useful and less oriented to any particular communication protocol, a goal of

-2-

our original paper that was not as well met as now,

With this improvement to our model has come the ability to model bus communication, in which
several processes all have both read and write access to a single channel. We can model quite
complex bus protocols on cvcn a single wire on which handshakes and data in both directions are
represented simultaneously by appropriate combinations of say voltages and impedances. We also
can model continuous as well as discrete systems. Indeed coopcrating physical laws like F = ma
and E = mv2/2 may be modelled as continuous communicating processes, permitting physical
and information systems to be modelled not only in the same style but even in the same model.
This opens up the possibility of proving correct a discrete flip-flop starting from the continuous
equivalent-circuit model of its constituent trant;istors, an exercise we hope to engage in on some
future occasion.

By far the most extensive work on pomsets to date is Jay Gischer’s thesis [Gis84]. Although his
thesis concentrates on axiomatizability questions for theories of pomsets under several direrent
combinations of pomset operations, it also makes a number of other contributions to the subject
of pomsets and their algebras. The material in this first section on pomsets is within the scope of
G&her’s thesis, and we take the opportunity to advertise some of his results. The two following
sections, on spatial processes and real time, are topics not addressed in the thesis. We adopt
G&her’s notation throughout.

There are strong connections between our pomsets and Glynn Winskel’s event structures [W84].
One difl’crcnce is in the conflict rckltion th;lt is a part of event structures but is absent from the
pomsct model.

I .2. Variety, Scquencc, and Concurrency

In this section we build up to the pomset model by starting with what we feel arc quite basicA
nolions li>r ;rny process-oricntcd model of computation. By “process” WC have in mind cithcr
cvcnt-oricntcd or state-oricntcd computation. with a contrast being intcndcd with say the applica-
tive style of functional programming, whcrc one cmphasizcs functions, their application, and their
types. On the other hand we set less of a contrast with some mod& of imperative programs - we
view the binary-rclrltion-on-states model advocated by de Bakkcr [d&72] and used for dynamic
logic as a spccinl cast of the current study.

A fundamental concept in a process-oriented model of computation is variety of behavior, A

.

.

-3-

popular way to model variety is with sets: ‘a program or process is modcllcd as the set of its possi-
ble behaviors.

If the program exhibits only stimulus-response behavior, as with the binary-r&ion-on-states
model, each behavior may consist of a stimulus-response pair. In this case a program consisting
of a set of such pairs may be considered a binary relation from stimuli to responses. If the pro-
gram is determinate (same stimulus yields same response every time) and total (cvcry stimulus
yields a response), this relation will then be a function from stimuli to responses. Stimuli and
responses may be either events or states - we will not attempt here to distinguish these two con-
cepts.

A second fundamental concept is course of events, or thread of control, a concept that is impor-
tant in the context of “ongoing” processes. The stimulus-response model admits only a limited
notion of course of events, namely an initial event followed by a final event, A richer model
would include intermediate events as well, generalizing behaviors from pairs of events to
sequences of events. The concept of variety of behavior continues however to be modelled as a
set of alternative such behaviors, making variety of behavior a notion more basic than, or at least
independent of, course of events. .

Whereas a set of pairs is a binary relation, a set of sequences is a language (possibly with infinite
strings), and so languages constitute an appropriate model for ongoing processes. The language
model is made particularly attractive by the extensive work done on formal languages over the
past two dccadcs in rcsponsc to the needs of both programming and natural languages. The word
“trace” is used by some authors to denote a sequence used in this application.

A third fundamental concept is concurrency: two events happening at the same time, or overlap-
ping in time, or in the weakest sense of “concurrency,” just having no specific temporal rclation-
ship to each other. One approach to modelling concurrency is to treat it in terms of variety inL
course of cvcnds, Ul;lt is, as a dcrivcd concept utilizing both variety ol‘ bch:G)r ;lnd course of
cvcnls. A basic cxamplc of this is to rcprcscnt the concurrent execution of two processes,
modcllcd as languages L and M, as the language LllM consisting of all intcrlcavings or shullles of
strings one from each of L and M. This is the approach adopted in language or tract modcts.

An alternative approach to modclling concurrency is to consider it a primitive notion in its own
right, indcpcndcnt of both of the notions of variety of behavior and couIsc of cvcnts. One argu-
mcnt for this goes as follows.

4-

For two atomic (indivisible) processes L and M, modelled as languages each consisting of one
unit-length string, their concurrent execution LllM is simply LMUML. For arbitrary languages
however there is no such convenient expression for LllM in terms of course of events (concatena-
tion) and variety of behavior (union). If L and M are given as built up with concatenation and
union (and possibly other operations, e.g. Kleene star) from atomic processes then one may derive
an expression for LllM in terms of the atoms and the other operations. However to require this
decomposition into atoms represents a serious handicap for a model or logic of concurrent pro-
grams.

Consider for example the situation where a software engineer needs to verify the operation of a
system containing two concurrently executing programs. He is provided with specifications of the
behavior of the programs, but not to a sufficient level of detail that he can say what the interleav-
ings of the atomic commands are. This situation can arise either because the atomic behavior is
far too complex to be reckoned with, or because the supplier of the programs does not want the
user depending on implementation details that go beyond the specifications, in order to preserve
the suppiicr’s flexibility in subsequently improving the software, or because the granularity of
interleaving varies between applications.

1.3. Pomsets

*If sets primitively model variety and strings primitively model scquentiality, what primitively
models concurrency? We propose the pomset, or partially ordered multiset.

A string s of length n on alphabet C is commonly defined as a function s:{O.l,2,....n-1)+X. In
order to lead up to pomscts we shalt adopt a different definition: s is a totally ordered multiset of
n elements drawn from C. To be a muitisct means that the drawing is pcrformcd with rcplace-
ment. If sets were used rather than multisets, the alphabet (OJ) would yield only five strings,
namely the empty string, 0, 1, 01, and 10. The distinction bctwcen multisct and set is whether
sampling is with or without rcpiaccmcnt. The distinction remains when the set or multisct is
equipped with an order to make it a pomsct or posct rcspcctively.

Informally, a partially ordcrcd multisct is a string with the rcquircmcnt removed that its order be
total. The phrase “partially ordered set” abbreviates to “poset”, so by analogy WC shall abbrevi-
ate “totally ordcrcd muitisct” to “tomsct” and “partially ordered multisct” to “pornset.” We now
formaiizc the notion of pornset.

A partiaZ order is a set (V,<) where < is an irreflexive transitive binary relation on a vertex set V.
A labelled partial order or lpo is a 4-tuple (V,&L,<) where (V,<) is a partial order and p:V+X
labels the vertices of V with symbols from an alphabet C.

Two 1~0’s [V, C,<,~] and [V’, C,<‘&] are isomorphic when there exists a bijection ?:V*V’ such
that for all u in V, p(u) = $(7(u)), and for all u,v in V, u<v just when T(U) <’ 7(v).

A pomset [V,C,+] is the isomorphism class of the lpo (V,X,<,$.

The reason for defining pomsets only up to is3morphism is to suppress the identities of the ele-
ments of V, so that only the cardinality of V counts, leaving C as the only important set underly-
ing a pomset. just as the alphabet is the only important set underlying a string. The motivation is
the same as in graph theory, where the identity of graphs is normally defined only up to isomor-
phism. See the appendix for further discussion of isomorphism.

The carrier V may be considered the events of a behavior. The symbols of the alphabet C are
the actions associated with those events. In the context of operating systems the distinction is that
between job and program: the job is an execution of the program and the program controls the
job. A job is a particular event, and the program controlling the job determines the action taking
place. One job executes only one program, but one program may control many jobs, even con-
currently. in the context of communication the distinction is that between message and contents:
a message contains its contents and its contents appear in the message. One message has only one
contents, but the same contents may appear in many mcssagcs. The word “event” is intended to
be interpreted broadly to cover jobs, messages, experimental observations, etc.

Applications. We make no assumptions concerning the atomicity, temporal extent, or spatial
extent of events. Events may be atomic, or may have a structure that can itself be rcprescnted as
a pomsct. An event may rcprescnt a point in time, or an interval of time. An cvcnt may
rcprcscnt the momcnt;rry occurrcncc of a voitngc at a point in an intcgratcd circuil, or the forma-
tion of the Rocky Mountains. Our emphasis is on keeping the modci simpic rather than forcing
attributes of certain types of events on it. Applications are to be fitted to the model, not the
model to any particular application,

Related structures. Muitiscts, sets, tomscts, strings, n-tuplcs, and poscts may be considcrcd partic-
ular kinds of pomscts. A muitisct is a pomsct with the empty order, that is, an unordcrcd pomset.
A poset (partially ordered set) is a pomset with an injectivc labclling. A set is a multiset that is

-6-

also a poset (unordered, injective labclling). A tomset is at the other extreme from a multiset: it
is totally ordered. A string is a finite tomset. An n-tuple is a string of length n. An ordered pair
is a 2-tuple, written either ab or (a,b) depending on context.

In the case of a set (and hence also poset), the labels uniquely determine the elements of V. In
this case it is sometimes convenient to identify V with the range of p and to consider < to par-
tially order that range rather than V itself. Sets and poscts may then bc treatcci merciy as subsets
and posets of C, and V and ~1, dispensed with. The ordered sets I, and R of integers and reals
respectively are particularly useful pomsets; they provide a basis for discrete and dense time. In
the case of R time forms an ordered set of points, but without a metric for distance.

The (unique) empty or unit pomset, denoted e, meets our definition of string and therefore must
be our old friend the empty string. It is also a multiset, a set (the empty set), and a poset.

An atom, or atomic pomset, has just one element. Atoms also satisfy our definitions of string,
multiset, set, and poset. The atoms are in one-to-one correspondence with C, and so just as in
language theory we shall feel free to make the usual identification between atoms and symbols.

1.4. Algcl~ras of Pomsets

Like most mathematical objects, pomscts do not make good hermits, but thrive when allowed to
gather together into aigcbras. As in any society a certain degree of conformity is dcmandcd of its
mcmbcrs: m algebra of pomscts has a base consisting of an ordinal p, and an aiphabct C consist-
ing of an arbitrary set, Only PX-pornsets may join such an algebra, namely those having the
form [V.C,<+] where V is an element of p, (As usual we identify each ordinal with the set of
those ordinals less than it.)

The finite pomsets arc those with base a), the countable ones those with base o1 (the (castb
ur~cow~~;hic ordin;tl. which consists of cxaclly the countable ordinals). The binary pomscts are
those with aiphabct 2 = (OJ}. the finite decimal tomscts arc decimal nun~crals.

Algebras come with operations. Among the more clcmentary operations are shufllc and concate-
nation. (Since no actual shuffling takes place one might prefer in place of shufllc a more neutral
name; “co” for concurrency suggests itself, as in the pronunciation of a]]b as “a co b.“)

Definition. Let p = [V,X,<,y] and p* = [V’, I&<‘,@] be pomscts with V and V‘ disjoint. Then

their shufJ2e pllp’ is [VUV’,C,<U<‘,Jj and their concatenation p.p’, or just pp’, is
[VUV’, c,<u<‘u(vxv’),yup’].

No loss of generality is entaiicd by the assumption of disjointness since pomscts are only defined
up to isomorpli ism. If we regard pomsets as graphs then shuming merely juxtaposes them, plac-
ing them side by side to form one graph, white concatenation not only juxtaposes them but adds
additional edges to the order, one from each element of V to each element of V’. Tt is easily
verified that the ordering relation remains irreflcxive and transitive even with the additional edges
introduced by concatenation. Roth operations generalize to more arguments; any string of pom-
sets may be concatenated, while any multiset of pomsets may be shuflkd.

Roth concatenation and shume are associative, and shuffle is commutative. Neither distributes
over the other. The unit pomset E serves as a two-sided identity for both concatenation and
hdlle: PC = ep = ~11~ = p. These laws completely axiomatize the equational theory of pom-
sets under concatenation and shuflle [Gis84].

Concatenation preserves strings, and indeed is just what is normally meant by concatenation of
strings in ~formal language theory. Shuflle on the other hand does not preserve strings. Gischer
defines a function from pomscts to languages that amounts to the compiction of a pomset to a set
of tomsets. This function, or functor if we were describing all this categorically, maps shullle to
the usual notion of langwage shuflle.

One might ask what is spcciai about concatenation and shuflle as po~nset operations. tlcre they
fi>rm a natural introduction to a more general class of operations, the pomset-dejnub!e operations.
Gischcr [Gis84] defines both these and the notion of substitution or pornsct homomorphism at the
same time as follows, with ~II operation that WC shalt call expansion.

1.5. Kxpansion: Ponrsct-dcfinablc Operations and Substitution I loniomorpl~ismsL

Let f’,P’ bc algebras of pomscts with rcspcctivc alphubcts X:, C‘, Ict p =: [V,C,<+] bc a pomsct of
P, and let cy: C+P‘ be a “C-tuplc” of pomsets of P’. Informally the expansion of p via a
transforms p into a pomset p’ in P’ by expanding each v in p into a whole pomset p, = a@(v)),
prcscrving order both within and between the p,‘s.

Marc formally, let p” = [V’,X,<“,@] bc the shufllc Guxtaposition, or disjoint union) of the pom-
SC& p, = a@(v)) for v in V. Let <* partially order V’ such that for each pair u’,v’ in V’ drawn

-8-

from pu,pv respectively, u’<*v’ just when u<v in p. Let <’ be the union of <” and <*. Then the
expansion of p via QI is just p’ = [V’,X’,<‘,$].

Thus in an expansion p’ two elements of V’ may be comparable for one of two reasons: they
came from a common element v of V, in which case they were comparable in the pomset p, that
replaced v, or they came from dimerent elements u and v which were comparable in p.

For example let 2 = 2 = {O,l}, let C = 01, S = 0111 be two-element pomscts (taking 0 and 1
as atoms as explained above), and let <C,C> and <S,S> be pairs (2-tuples, i.e. functions with
domain 2). Then the expansion of one of C or S via one of <C,C> or <S,S> leads to one of four
pomsets: C and <C,C> yield the string 0101, C and <S,S> yield (0]]1)(01]1), S and <C,C> yield
(Ol)]](Ol)~ and S and <S,S> yield O]]l]]O]]l.

The expansion of C via a pair (p,q) is just pq, the concatenation of the pair. Thus the pomset C
defines the binary operation of pomset concatenation. Similarly the expansion of S via (p,q) is
p]]q, so the pomset S defines the binary shufne operation. More generally, any pomset with
alphabet n = {0,1,2,...,n -1) defines some n-ary operation in an algebra of pomsets on some
(other) alphabet C’ mapping n-tuples of pomsets to pomsets. When the defining pomset is
infinite the significance of such operations is not clear, so it is natural to consider the pomset-
definable operations to be restricted to those defined by finite pomsets.

If we regard a ‘C-tuple a as a function from atomic potnscts to pomscts, then the pomsct function
mapping p to the expansion of p via Q[may bc rcgardcd as the natural extension of cy to pomscts.
This situation is very common in algebra. Suppose WC are given some set of free generators, say
the variables in some term language, or the symbols of an alphabet used to form strings. Then a
function f from the generator set to some algebra has a unique cxtcnsion f+ to a homorphism
from the algebra that the generators generate. In the case of variables occurring in terms, such a
homomorphism is called a substitution. In the cast of symbols in strings it is the notion of string
homolnol-phisrn cncoun tcrcd in language theory. (Thcrc also exist language homomorpllisn~s,
which further extend string homomorphisms to homomorphisms on sets of strings.) As with
terms and strings, pomscts are freely generated by their atomic constituents.

It is natural to identify the homotnotphism itself with the generator-mapping function that it
extends, since the extension always exists and is unique. Thus we may consider a C-tuple to
dcfinc, or tnore simply to be, a pomset homomorphism, We shall follow the tcrniinology that
goes with terms and call such homomorphisms subsfifutions.

-9-

To summarize: expansion takes one .pornsCt from an algebra P with alphabet C and a E-tuple of
potnsets from an algebra P’ with alphabet c’, and yields a pomset from P’. Fixing the one pom-
set determines a C-ary operation on the algebra P’; when C is the ordinal n and P is finite, this
operation is an n-ary pomset-definable operation. Fixing the C-tuple of pomsets yields a function
f that in turn determines a substitution f+ from P to P’.

1.6. Applications of the Temporal Theory

The notion of tomsct is a potentially usefil generalization of the notion of string. The concatena-
tion of two tomsets is defined and a tomsct, even when the tomsets are uncountable.

The operations of concatenation and shuffle arc obviously of considerable interest. One may ask
whether any of the other operations are of interest, or even whether any of them are not already
expressible directly in terms of concatenation and shut&. The latter question is answered posi-
tivcly in Gischer’s thesis - concatenation and shu file do not constitute a basis for alI the finitary
pomsct-definable operations. Gischer proves the much stronger result that those operations have
no finite basis - no finite set of operations forms a b‘asis. This is in contrast say to the set of
finitary Boolean operations, for which a single operation may serve as a basis.

One operation that is of some interest is the quatcrnary opcntion N(p,q,r,s). This is the opera-
tion defined by the poset (0.1,2,3) with 0<2, 1<2, and 1<3. This operation is not expressible using
sh u fllc and concatenation.

Substitutions arc of interest whcrcvcr thcrc is structure. In the purely temporal theory of this sec-
tion, as opposed to the spatial theory bciow, the structure is in the events. What may be an
atomic event from one petspectivc may be rcvcalcd as a more complex event closer up. A substi-
tution may expand a point into a hive of scheduled activity.

WC will also fmd substitutions uscfd in dcvcloping the spatial theory, whcrc they ;~llow us to
describe the cIl&t on behavior of connecting a component into a system.

I .7. Discrctc vs. Continuous Pomscts

Functions may map reals to intcgcrs or intcgcrs to reals or reals to reals just as readily as intcgcrs
to intcgcrs. By ~hc same token WC may have pomscts with cithcr the base or the alphabet or both
being a continuum.

- 10 -

In the pomset model time appears only as an order: there is no measure. For a discrete order
(every element but the last has a well-defined successor) one may use the successor relation to
infer a measure: each element follows its predecessor one unit later. But in a dense order there is
no such obvious measure. Thus if’ we take (V,<) to be the set of reals with its standard order, we
have an unmeasured time dimension in which there is no way to detect the speeding up or slow-
ing down of time, either locally or globally.

1.8. Example: Modelling the Two-way Channel with Disconnect

At an STIJSERC workshop on the analysis of concurrent systems, held in Cambridge, UK, in
August 1983, the participants were asked to specify each of ten information systems. The first
system, a two-way channel with disconnect, was probably the simplest; it also got the lion’s share
of the participants’ attention. It was presented thus. “The ‘channel’ between endpoints ‘a’ and
‘b’ can pass messages in both directions simultaneously, until it receives a ‘disconnect’ message
from one end, after which it neither delivers nor accepts messages at that end. It continues to
deliver and accept messages at the other end until the ‘disconnect’ message arrives, after which it

. can do nothing. The order of messages sent in a given direction is preserved.”

Here is a solution to this problem within the pomset framework. The solution emphasizes formal-
ity at the expense of succinctness: we have an approach to achieving both at once that we shall

‘dcscri be elsewhere.

The dcsircd channel is the set of a11 its possihlc behaviors. Each such behavior is a pomsct which
is constructed, in a way spccificd below, from a structure (V.<,m,port,contcnts.crase) satisfying
conditions l-8 below. V is a finite set of events (cithcr transmissions or receipts of messages), < is
a partial ordering of V indicating necessary temporal preccdcnccs, m:V+V is a function giving,
for each transmission or receipt. its matching receipt or transmission, port:V*(O,l} is a function
giving for each event v the port (0 or 1) at which v occurs, erase is a prcdicatc holding for those
cvcnts to bc crascd by the construction, and contcnts:V+M m;lps cnch cvcnt to its contents,
drawn from the set M of possible mcssagc contcnls, among which is the mcssagc [I for discon-
nect. WC write u<>v to denote comparability of u and v, namely u<v or v<u.

- 11 -

For all u and v:
1. u = mh(uN m is a pairing function
2. u<>m(u) transmission-receipt pairs linearly ordered
3. (port(u) = port(v)) + u=v or u<>v ports linearly ordered
4. port(u) + porl(m(u)) = 1 matching spans ports
5. u<m(u) & u<v & v<m(v) --+ m(u)<m(v) channel is order preserving
6. contents(u) = contents(m(u)) channel is noiseless
7. u<v & erase(u) --) erase(v) erasure is suffix-closed
8. contents(u) = D & u<v --) erase(v) D forces er‘asure of all subsequent events

Events come in matched pairs u,m(u) (l), with one preceding the other (2). Whichever comes
first is the transmission event, the other is therl the matching receipt. The set of events at each
port is linearly ordered in time (3). Transmission and receipt occur at opposite ports (4). Mes-
sages are received in the order transmitted (5). Message contents are received as transmitted (no
noise on the channel) (6). The predicate “erase” specifying which events did not really happen is
suffix-closed: any event following a non-happening is itself a non-happening (7). Nothing hap-
pens after transmission of a disconnect message (including the matching receipt of that disconnect
message) (8). Note that this dots not preclude two nonerased concurrent transmissions of discon-
nect messages from the two ports.

. Now from each structure satisfying these conditions construct a pomset (H,Z,<‘,$ where H is that
subset of V for which erase does not hold, <‘ is the restriction of < to H, C = (2X2)XM (where
2= (OJ)), and p(u) = ((port(u).m(u)<u),contcnts(u)) whcrc m(u)<u is 0 or 1 dcpcnding on
whether that predicate fails or holds rcspectivcly. Then the process consisting of all possible such
pomsets is the desired two-way channel with disconnect.

The label ((p,t),x) on each event in each such pomsct indicates the port p at which that event
I occurred, the type of event - 0 is transmission, 1 is rcccipt - and the message x rcccived or

transmitted,

It will be noted that the function m that pairs up events is absent from the label. The idea is that
this information, though visible during our construction of the process, should not bc visible in
the finished process on the ground that it is not an “obscrvablc” of that process. We can see
messages being transmitted and others being rcccivcd. but the problem did not rcquirc that we be
able to keep track of the cormcction between transmissions and rcccipts. Accordingly the connec-
tion is dclctcd from the final specification.

- 12 -

The construction of the pomsets may be viewed as their implementation, and the connection
between transmissions and receipts as an implementition detail. The implementation style of
specifying things, where a structure is built up and then partially discarded, is widely used in
mathematics. Consider for cxamplc the construction of the integers as the quotient of sets of
pairs (a.b) of natural numbers with the equivalence relation (a,b) z(a+c,a+c), interpreting each
equivalence &ass [(a.b)] as the integer a- b; the rationals may be constructed similarly as pairs
(a.b). reduced module the relation (a,b) &c,bc).

2. Spatial ‘Theory - Communication in Nets

2.1. Projection and Net Behaviors

We have viewed a process behavior thus far as a collection of events distributed only in time,
with the distribution being determined by the order. The term “endogenous,” npplied by A.
Pnueli to distinguish temporal logic from an “exogenous” logic like dynamic logic, seems to be
equally applicable to this purely temporal notion of process. In an endogenous model the
universe is vicwcd as a single process, An exogenous model has distinct proccsscs each with its
o.wn identity indcpcndcnt of other processes, yet able to coexist and communicate with other
p rocesscs. WC now wish to be more exogenous. that is, to distinguish between independent com-
municating processes.

Definition. A translation is a function t:C*C’ between two alphabets.

As an example of translation, suppose WC are given a module with two channels (ports) 0 and 1
on each of which may appear values from a set D, and suppose we wish to USC this module in a
contcx~ having connections 2.3.4 by att;rching 0 to 3 ;rnd 1 to 4. ‘I’hcn t hc cvcnt (0.d) denoting
the appcar;mcc of value LIED on channel 0 is transl;ttcd to the cvcnt (3.6) in the 2,3,4 context.
Similarly an event (1.d) is translated to (4,d). In this exam@ C is 2XD and C’ is {2,3,4} XD,
and translation afT’ccts channel names but not data values.

As another cxamplc we may have for C the real interval [OS] and for C’ the set (0,X,1} with X
denoting invalid, and a translation tmrpping all clcmcnts of the interval [0,2] to 0, the (open) intcr-
val (2.3) to X, and [3,5] to 1. This translation would correspond to the intcrprctation of analog

- 13 -

signals, perhaps voltages, as digital signals in a three-valued system. The obvious application is in
using an analog module in a digital context.

The above two examples can be combined into a single example which translates both the chan-
nels and the data values, translating (c,d) to (f(c),g(d)) where f and g are the respective transla-
tions of those examples.

Definition. Given a translation t:X+C’, the projection induced by t is the substitution
t- + :X’~-+E~ mapping pomsets on C’ to pomsets on C.

In more detail, the inverse of an arbitrary function t:C*C’ is not t- :C’+C but rather
t-:F+2C, a function mapping symbols to sets of symbols. Any symbol not in the range of t
will be mapped by t- to the empty set; we can think of this as being “projected out” by t-.
Any symbol in C’ hit only once by t will be mapped by t- to exactly one symbol in C; we can
think of this as a coordinate transform, or renaming, from C’ back to C. Any symbol in C’ hit
more th,an once by t will be mapped to a set of two or more symbols in C; we can think of those
symbols as needed for labelling simultaneous events in C that are mapped by t to a single event
in C’. (Consider a translation which attaches two pins of an integrated circuit to the same printed
circuit board wire. A single event on that wire can happen only if the corresponding events on
each of those two pins can happen simultaneously.) ’

.

Since a set of symbols is also a pomsct of symbols with the empty order, t- is therefore a func-
tion mapping symbols to pomscts. In the temporal section WC saw how such a function had a
unique extension to a substitution, so let us form that extension, t - ‘, to yield a mapping from
pomsets to pomsets. We call this a projection because a major use of it is to project out some of
the events of a pomset. However as noted just above it may also duplicate some events, so its
function really goes beyond the normal notion of projection. We have not thought of a better
word than projection to describe this action.b

‘I’hc action of a projection on a process P is the set of pomscts resulting from applying the projec-
tion to each of the pomscts of P, a process, so projection maps not only pomsets to pomsets but
processes to p recesses. .

A net N of processes Pi each with associated tmnslation ti embedding it in that net is the set N of
those behaviors p such that, for all i, ti- +(p) E Pi’

14 -

Such a net includes all its internal behaviors. Where a translation t defines an embedding in the
net of its external connections, the external behavior of the net N is just t- ‘(N), the projection
of N induced by t. The erect of this projection is to hide the internal behavior and provide the
appropriate external port names for the externally visible portion OF the behavior.

At this point the whole procedure probably looks quite mysterious. Let us dispel some of the
mystery by showing how it works in the familiar context of composition of binary relations.

2.2. Example: Composition of Binary Relations

Let us begin with a familiar operation, the composition MN of two binary relations M and N on
a set A. Using the representation of binary rel;ltions called for by our approach, we shall exhibit
their composition as a projection of the set of behaviors projecting to behaviors of M and N.

The usual way this can be done for binary relations is to have three projections p(a,b,c) = (a,b),
y(a,b,c) = (b,c), and K(a,b,c) = (a,c). Then the net behavior MN is K = ((a,b,c)(p(a,b,c)fM &
y(a.b,c)EN), the set of all behaviors whose projections under p and v are in M ‘and N respec-

’ tively. The composition itself is then the projection K(K).

To fit this into our scheme we shall show how to represent ~,Y,K as inverses of translations. We
*take C = (0,l)XA and C’ = {0,1,2)XA for the domain and codomain of all three translations.
We shall regard the pair (a,b) as the ordcrcd multiset (O,a)<(l,b), and the triple (a,b,c) as
(O.a)<(l.b)<(2,c). The appropriate transkllions arc then m(c,x) = (c,x), n(c,x) = (c+ 1,x), and
k(c,x) = (- c,x) (mod 3). (That is, m(O,x)==(O.x), m(l,x)=(l,x), n(O.x)=(l,x), n(l,x)=(2,x),
k(O,x) = (0,x), k(1,x) = (2,x).)

Now m-(0,x) = ((0,x)}, m-(l) = {(1,x)}, and m-(2) = {}. Hcncc the behaviors mapped by
m - + to bchaviois of M will be just those pomscts having an event (O.a), a11 event (l,b), and any
numb& ol‘cvcnls (2,~) l’or wrious v;~lucs of c, wib the or&r ;rrbikuy cxccpt that (O.a)<(1.b). and
with (a.1)) E M. Of thcsc. the ones mapped by 111 - ’ to bchavio6 of N will have one event
(Lb) and one event (2,c), where (b,c) E N and (l.b)<(2,c), but with no constraitlts on events of
the form (1~). But this then limits the possible behaviors of the net to just (O,a)<(l,b)<(2,c) where
(a,b)EM and (b,c)CN.

The most noteworthy difference from the standard construction ((;l.b.c)l~((a,b,c)EM &
v(a.b,c)EN} is that our construction does not assume at the olrtsct that the result will consist only

- 15 -

of triples. lnstead the construction “discov’crs” this for itself.

It should now be clear how the projection k- + discards the middle element of each triple to
yield the desired composition.

Had we removed the order in defining binary relations, we would have hit a small snag. Net
behaviors would still have only three events, (O,a), (l,b), (2,~). this time with (0~) and (1,b) being
incomparable and similarly for (Lb) and (2,~). However the ordering between (0,a) and (2,~)
would be unconstrained. Hence for each triple (O,a), (l,b), (2,~) we would have three pomsets,
one for each of the possible order relationships between (0,a) and (2.~): incomparable, (O,a)<(2,c),
and (2,c)<(O,a). We avoided this variety by forcing (O,a)<(l,b)<(2,c), which by transitivity of <
forces (O,a)<(2,c).

An alternative and acceptable approach would have been to consider the set of all three pomsets
representing all possible orderings of a pair to be an acceptable encoding of that pair. Then we
would have pomsets coming in threes in M and N as well as in the projection of their intersec-
tion, ‘and in 13‘s for the net behaviors (1 completely unordered, 6 with one element incomparable
to the other two, 6 linearly ordered).

It is fair to ask what influence the choice of C’ had on this example. What if it had been taken

.

.

. to be (0,1,2,3)XA instead of (0,1,2)XA? Would the fourth channel have confused mattels?
The answer is that the net behaviors would contain, in addition to the three events
(O.a)<(l.b)<(2,c), a cloud ol‘cvcnts (3,d) rclatcd arbitrarily by < to thcsc three and to each other.
However the final projection would project out not only (1,b) but the whole of this cloud. Thus
although {0,1,2,3)XA is a less elegant choice of C’ than (0,1,2} XA, in the end it does not affect
the outcome. The physical interpretation of all this is that the fourth channel is a loose wire
whose behavior is unknown but irrelevant..

Note that nowhcrc in our notions of translation and projection do WC make any assumptions
about cithcr the structure of the network or the type of constituent. This method 01’ describing
the behavior of a network of processes works equally well for any proccsscs conncctcd in ‘any
fashion.

- lb -

3. Real-Time Theory - Quantitative Scheduling

3.1. Semirings

So far our notion of temporal relationship h‘as been qualitative, namely whether one event pre-
cedes another. We would now like to extend the theory to deal with a richer notion of temporal,
relationship. One obvious notion is that of time as a number: by how many femtoseconds or
teracenturies did one event precede another. Other notions of time, or even only marginally
timelike relationships between events, may also suggest themselves.

Our thesis is that the appropriate algebraic structure for supplying the elements of a temporal
relationship is the semiring. Semirings cater for parallel and serial composition of relationships in
a suitably general way, providing one binary operation for each of these two concepts.

A semiring is an algebra (A, +,.,O) such that (A,+ ,0) is a monoid (+ is associative and has 0 as
left and right identity) and . is associative and distributes over +, and has 0 as left and right

. annihilator (a.0 = 0.a = 0). The + operation caters for parallel composition of relationships and
the . operation for their serial composition.

3.2. Particular Scmiringi.

Up to now we have built into OlJr theory the assumption of a particular scmiring that WC shall call
the Boolean semiring. It consists of two values 0 and 1, with + intcrprcted as disjunction and .
as conjunction. The idea is that every pair of events is related by either 0, meaning no temporal
order, or 1, meaning that the first prcccdcs the second. The operation + deals with variety of
behavior: given several sources of information about whether one event prcccdes another, if any
is a 1 then the upshot is a 1, othcrwisc it is 0. The operation . deals with course of events: if a
prcccdcs b and b prcccdcs c then a prcccdes c. This is transitivity, a conjunctive concept.

A semiring that we shall call the taxidriver’s semiring consists of the nonnegative reals with +
interpreted as max, . as addition, and 0 as the number 0. The numbers can be thought of as the
cost of getting from one event to another. When there are competing costs, the highest is always
chosen. The cost of getting from a via b to c is the sum of the costs of getting from a to b and
from b to c. The discrete version of this semiring substitutes the natural numbers for the nonne-
gative reals.

- 17 -

The taxi passenger’s semiring is similar but includes infinity in the algebra, interprets . as min (the
passenger prefers the cheapest route), and 0 as infinity (the least identity for min). To satisfy the
semiring identity a.0 = 0 we need to take the product of numeric 0 with semiring 0 (here infinity)
to be infinity. This semiring too h‘as a discrete version, consisting of the natural numbers and
infinity.

The taxidriver’s semiring is useful in dealing with times between events that may not be reducedbJ
e.g. for preventing events from interfering with each, meeting specifications for integrated circuits,
etc. Dually the taxi passenger’s scmiring is good for times that may not be exceeded, e.g. for
preventing timeouts, or establishing upper bounds on the running time of processes.

3.3. General Theory

We may now generalize our theory of processes from the Boolean semiring to arbitrary semirings.
We begin with the idea that a binary relation from A to B is an AXB Boolean matrix. The inte-
rior and exterior operations of matrix multiplication are respectively conjunction and disjunction;
that is, the dot product of two vectors is formed as the disjunction of pair-wise conjunctions, and
the matrix product MN of matrices M and N is the matrix of dot products whose ik-th entry is
the dot product of the i-th row of M with the k-th column of N.

. A binary relation M from A to A is a parLia1 order when it is irreflexive (leading diagonal of M is
all zeroes) and transitive (M2 < M).

Now these interior and exterior operations associated with binary relations are respectively the .
and + operations of the Boolean semiring. If we substitute for that semiring any other scmiring,
our definitions of irreflexivc and transitive need not be changed since they are expressed in terms
of semiring operations indepcndcntly of any particular semiring such as the Boolean semiring.

Thus WC may gcncralizc the strucLurc. [V.C,<+] to [V.C,S,M,p] where S is a scmiring (no longer
necessarily Llic I~oolc;l~i scniiring (0.1)) and M is an irrcllcxivc Lransitivc matrix over S. Such a
structure is no longer a po~~~sct; one might call it a mcasurcd multisct, where M provides the
measurements bcLwcen elcmcnts of the multiset. A process then becomes a set of measured mu]-
tisets,

The notion of substitution dots not gcncralizc smoothly. Suppose WC have events c<f<g and we
map f to fl<f? and then extend that map to take c<f<g to e<fl<f2<g. Now if < is replaced by

- 18 -

some measure of the delay between events, we have a problem relating e<f<g and e<fl<fXg. The
problem is that whatever delay there is between fl and f2 does not appear in e<f<g, where the
event f itself is treated as having no delay of its own. Thus if there were at least a 2-microsecond
delay between e and f and at least a 3-microsecond delay between f and g, then there would be a
5microsecond delay between e and g. But this assumes that f itself involves no delay, which may
contradict the expansion of f to fKf2, in which there may be a nonzero delay.

This problem does not arise however for the special case of “length-preserving” homomorphisms,
ones that map atoms only to sets, that is, pomsets with the empty order. This special case is all
that is used in defining the notion of projection, which therefore remains unchanged when more
general semirings are used. Thus the spatial theory does extend gracefully to general semirings.

However we do not see how to integrate this semiring approach with general substitutions. Some
adjustment is needed to our temporal model to cater for this. We would be interested in hearing
reasonable solutions.

3.4. Applications

A typical requirement in designing hardware is to achieve minimum delay times between certain
events. For this the taxidriver’s scmiring is appropriate. Whcnevcr there arc two separate delay
requirements for the same pair of cvcnts, the larger is taken, corresponding to scmiring + being
numeric max. Whenever there must be a delay of at least m between events el and e2, and a
delay of at Icast n bctwecn c2 and ~3. there must bc a delay of at Icast 117 + n bctwccn cl and e3,
corresponding to scmiring . being nu mcric addition.

I 4. Appendix

Since strings (finite tomscts) may be defined very simply as a function from (0,1,2,....n-I), it is
natural to ask why ponlscts sl~ould not have an equally simple definition. The basic obstacle, as
we shall see, is that partial orders have nontrivial automorphisms.

In the case of a pomsct that is a string of icngth II, V has n clc~wr~ts and the order < is totill. In
this cast the set n = (O,l,..., n - 1) with its standard order may scrvc as a canonical representative

- 19 -

of the isomorphism class of (V,<). That is, the function p:n *C is for our purposes equivalent to
the tomset [n,C,<,p]. This establishes the connection between our isomorphism-based definition
of tomsets and the simpler definition as a function.

More generally, any “womset” (well-ordered multiset) may be defined as a function from the
appropriate ordinal to C. For the usual notion of an infinite string sos1s2... the appropriate ordi-
nal is ~3. An ordinal serves as a canonical representative of an isomorphism class of well ordered
sets.

A well-ordered set (V,<) has no non-trivial automorphisms (isomorphisms from the set to itself).
Another way to say this is that each element of a well-ordered set (V,<) uniquely determines an
element of the corresponding ordinal. Hence an ordinal may be used as a representative of an
isomorphism class of a well-ordered set without contributing any additional information not
already present in the class.

In general however, ordered sets, whether ordered totally or partially, may have nontrivial auto-
morphisms. For example the function X-I- 5 is an automorphism of the structure (Z,<) of integers
with their standard order. In general therefore the function p:Z+C and its composition with
x+5 will be distinct functions mapping the integers to X, yet they will both be representatives of
the isomorphism class [Z,E,<,p] with no way of telling which is the canonical representative.
Hence such functions oicrspccify the classes they represent.

Thcreforc, rather than attempt to base the theory of pomscts on canonical representatives of iso-
morphism classes we just base it on the classes themselves.

[BA81] Rrock, J.D. and W. B. Ackerman, Scenarios: A Model of Non-Determinate Computation.
In LNCS 107: Formalization of Programming Concepts, J. Diaz and I. Ramos, Eds., Springer-
Verlag, New York, 1981, 252-259.

[dcB72] dc Bakkcr, J.W., and W.P. dc Roevcr, A c:dculus for rccursivc program schemes, in
Automata, Languages and Programming, (cd. Nivat), 167-196, North Holland, 1972.

- 20 -

[Gis84] Gischer, .J., Partial Orders and the Axiomatic Theory of Shuffle, Ph.D. Thesis, Computer
Science Dept., Stanford University, Dec. 1984,

[Kah74] Kahn, G., The Semantics of a Simple Language for Parallel Programming, IFIP 74,
North-Holland, Amsterdam, 1974.

[KaM77] Kahn, G. and D.B. MacQueen, Coroutines and Networks of Parallel Processes, IFIP
77, 993-998, North-Holland, Amsterdam, 1977.

[Pr82] Pratt, V.R., On the Composition of Processes, Proceedings of the Ninth Annual ACM
Symposium on Principles of Programming Languages, Jan. 1982.

[w84] Winskel, G., Categories of Models for Concurrency, this volume.

