January 1985 Report No.STAN-CS-85-1049

The Pomset Model of Parallel Processes:
Unifying the Temporal and the Spatial

by

Vaughan Pratt

Department of Computer Science

Stanford University
Stanford, CA 94305

The Pomset Model of Parallel Processes:
Unifying the Tempord and the Spatial

Vaughan Pratt
Stanford University
Stanford, CA 94305

1/28/85

1. Temporal Theory - Qualitative Scheduling

1.1. Background

The progenitor of our pomset model is Kahn's history-transformer model of nets [Kah74,
KaM77], in which a process is viewed as afunction from n-tuples of histories to histories, where a
history is a sequence of values. Each connection or channel of the net is associated with such a
hisgory. Kahn's model, being functional rather than relational, only caters for detcrminate
processes. This has the advantage of permitting a straightforward |east-fixed-point analysis, and
the disadvantage of excluding such basic processes as the merge process. The Brock-Ackerman
anomaly [BA81] demonstrates the need for something more than histories in extending Kahn's
model to treat nondeterminate processes. Brock and Ackerman show how to extend Kahn's
model by inclusion of ordering information between events on different channels.

The pomsct model was introduced by the present author [Pra82). It is intended as a theoretical

framework for the Brock-Ackerman extension of Kahn's model. However the topic of models of

concurrency has been particularly active in recent years, with the inevitable conscyuence that any

given viewpoint ages rapidly,. Thus the present paper describes our origina model but from a
more current perspective.

The basic idca of the model remains unchanged: a process IS a sct of pomsets, nctworks are
defined in terms of events as channcl-data pairs, and rea-time ismodelled by extending partial
orders to more general semirings (only hinted at near the end of the paper [Pra82)).

A mgjor change is thesymmetrization of input and output. Our channels arc no longer directed;
instcad they arc just places to share information. Communication is by conscnsus: information is
shared Simply when the communicating partics agree to share it. This both simplifiesthe model
and makes it more useful and less oriented to any particular communication protocol, agoal of

- 2 -
our original paper that was not aswell met as now,

With this improvement to our model has come the ability to model bus communication, in which
severa processes al have both read and write access to a single channel. We can model quite
complex bus protocols on even a single wire on which handshakes and data in both directions are
represented simultaneously by appropriatc combinations of say voltages and impedances. We also
can model continuous aswell asdiscrete systems. Indeed coopcrating physical laws like F = ma
and E = mv2/2 may be modelled as continuous communicating processes, permitting physical
and information systems to bemodelled not only in the same style but even in the same model.
This opens up the possibility of proving correct a discrete flip-flop starting from the continuous
equivaent-circuit model of its constituent transistors, an exercise we hope to engage in on some
future occasion.

By far the most extensive work on pomsets to date is Jay Gischer’s thesis [Gis84]. Although his
thesis concentrates on axiomatizability questions for theories of pomsets under severa different
combinations of pomset operations, it also makes a number of other contributions to the subject
of pomsets and their algebras. The material in this first section on pomsets is within the scope of
Gischer's thesis, and we take the opportunity to advertise some of his results. The two following
sections, on spatial processes and real time, are topics not addressed in the thesis. We adopt
Gischer's notation throughout.

There are strong conncctions between our pomsets and Glynn Winskel’ s event structures[w3s4].
One diflerence iSin the conflict relation that is a part of cvent structures but is absent from the
pomsct model.

| .2. Variety, Scquencc, and Concurrency

In this scction we build up to the pomset model by starting with what we fecel arc quite basic
notions for any process-oricnted model of computation. By "process™ WC have in mind cither
cvent-oriented or state-oriented computation. with a contrast being intended with say the applica
tive style of functional programming, where one ecmphasizes functions, their application, and their
types. On the other hand wesce Iess of a contrast with somemodcls of imperative programs- we
view the binary-relation-on-states model advocated by de Bakker [deB72] and used for dynamic
logic as aspccial case of the current study.

A fundamental concept in a process-oriented model of computation is variety of behavior, A

-3-

popular way to model variety iswith sets. ‘aprogram or process is modcllcd as the set of its possi-
ble behaviors.

If the program exhibits only stimulus-response behavior, as with the binary-r&ion-on-states
model, each behavior may consist of a stimulus-response pair. In this case a program consisting
of a set of such pairs may be considered a binary relation from stimuli to responses. If the pro-

gram is determinate (same stimulus yields same response every time) and total (every stimulus
yields aresponse), this relation will then be afunction from stimuli to responses. Stimuli and
responses may be either events or states - we will not attempt here to distinguish these two con-

cepts.

A second fundamental concept is course of events, or thread of control, a concept that is impor-

tant in the context of “ongoing” processes. The stimulus-response model admits only a limited
notion of course of events, namely an initial event followed by afina event, A richer model

would include intermediate events as well, generalizing behaviors from pairs of eventsto
sequences of events. The concept of variety of behavior continues however to bemodelled as a
set of aternative such behaviors, making variety of behavior a notion more basic than, or at least
independent of, course of events.

Whereas a set of pairsisabinary relation, a set of sequencesis alanguage (possibly with infinite
strings), and so languages constitute an appropriate model for ongoing processes. The language
modcl ismade particularly attractive by the extensive work done on formal languages over the
past two decades in response to the needs of both programming and natural languages. The word
“trace” is used by some authors to denote a sequence used in this application.

A third fundamental concept is concurrency: two eventshappening at the sametime, or overlap-
ping intime, or inthe weakest sense of “concurrency,” just having no specifictemporal relation-
ship to each other. One approach to modelling concurrency isto treat it in terms of varicty in
course Of cvents, that is, as a derived concept utilizing both variety of behavior and course of
cvents. A basic cxample of this is to represent the concurrent execution of two processes,
modclicd as languages L and M, as the language L||M consisting of all intcrlcavings or shuflles of
stringsone from ecach of L and M. Thisisthe approach adopted in language or tracc models.

An aternative approach to modclling concurrency iSto consider it aprimitive notion in its own
right, indcpcendent of both of the notions of varicty of behavior and course of cvents. One argu-
ment for this goes as follows.

4 -

For two atomic (indivisible) processes L and M, modelled as languages each consisting of one
unit-length string, their concurrent executionL|jM issimply LMUML. For arbitrary languages
however there is no such convenient cxpression for L||M in terms of course of events (concatena-

tion) and variety of behavior (union). If L and M are given as built up with concatenation and
union (and possibly other operations, e.g. Kleene star) from atomic processes then one may derive
an expression for L||M in terms of the atoms and the other operations. However to require this
decomposition into atoms represents a serious handicap for a model or logic of concurrent pro-

grams.

Consider for example the situation where a software engineer needs to verify the operation of a
system containing two concurrently executing programs. He is provided with specifications of the
behavior of the programs, but not to a sufficient level of detail that he can say what the interleav-
ings of the atomic commands are. This situation can arise either because the atomic behavior is
far too complex to be reckoned with, or because the supplier of the programs does not want the
user depending on implementation details that go beyond the specifications, in order to preserve
the suppiicr’ sflexibility in subsequently improving the software, or because the granularity of
interleaving varies between applications.

1.3. Pomsets

If sets primitively model variety and strings primitively model scquentiality, what primitively
models concurrency? We propose the pomset, or partially ordered multiset.

A string s of length n on aphabet X is commonly dcfined asafunctions:{0.1,2,...n—1}—>2. In
order to lead up to pomsets we shalt adopt a different definition: sis atotally ordered multiset of
N elements drawn from X. To be a muitisct means that the drawing is performed with replace-
ment. If sets were used rather than multisets, the aphabet {0,1} would yield only five strings,
namely the empty string, 0, 1, 01, and 10. The distinction betwecen multisct and set is whether
sampling is with or without replacement. The distinction remains when the sct or multisct is
equipped with an order to make it a pomsct or posct rcspectively.

Informally, a partially ordcred multisct is a string with the requirement removed that its order be
total. The phrase “partially ordered set” abbreviates to “poset”, so by analogy wc shall abbrevi-
ate“totally ordcred muitisct” to “tomset” and “partially ordered multisct” to*“pomset.” We now
formalize the notion of pomset.

-5-

A partial order isa set (V,<) where < isan irreflexive transitive binary relation on a vertex set V.
A labelled partial order or Ipo is a 4-tuple (V,Z,u.,<) where (V) isapartial order and p:V—>3
labels the vertices of V with symbols from an aphabet Z.

Two Ipo's [V, 2L pu]and [V, 2,<,u’] are isomorphic when there exists a bijection 7:V-—>V’ such
that for al uinV, p(u) = $(7(u)), and for al u,vin V, u<v just when +(u) < 7(v).

A pomset [V, 2.<,u] is the isomorphism class of the Ipo (V, Z.<,).

The reason for defining pomsets only up to isomorphism IS to suppress the identities of the ele-
ments of V, so that only the cardinality of V counts, leaving Z as the only important set underly-
ing a pomset. just as the alphabet is the only important set underlying a string. The motivation is
the same as in graph theory, where the identity of graphsis normally defined only up to isomor-
phism. See the appendix for further discussion of isomorphism.

The carrier V may be considered the events of a behavior. The symbols of the aphabet X are
the actions associated with those events. Inthe context of operating systems the distinction isthat
between job and program: the job is an execution of the program and the program controls the
job. A job isaparticular event, and the program controlling the job determines the action taking
place. One job executes only one program, but one program may control many jobs, even con-
currently. in the context of communication the distinction is that between message and contents:
amessage containsitscontents and itSconlents appear inthe message. One message hasonly one
contents, but the same contents may appear in many messages. The word "cvent" iSintended to
be interpreted broadly to cover jobs, messages, experimental observations, etc.

Applications. We make no assumptions concerning the atomicity, temporal extent, or spatial
extent of events. Events may be atomic, or may have a structure that can itself be represented as
a pomsct. An event may represent a point in time, or an interval of time. An cvent may
represent the momentary occurrence Of a voltage at a point in an integrated circuit, or the forma
tion of the Rocky Mountains. Our emphasis is on keeping the model simple rather than forcing
attributes of certain types of eventsonit. Applications are to be fitted to the model, not the
modcl to any particular application,

Related structures. Muitiscts, sets, tomscts, strings, n-tuplcs, and poscts may be considered partic-
ular kinds of pomscts. A multisct iSa pomsct with the empty order, that is, anunordered pomset.
A poset (partialy ordered set) is apomset with an injectivc labclling. A set isamultiset that is

-6 -

also a poset (unordered, injective labclling). A tomset is at the other extreme from a multiset: it
istotally ordered. A string is afinite tomset. An n-tupleis a string of length n. An ordered pair
isa2-tuple, written either ab or (a,b) depending on context.

In the case of a set (and hence also poset), the labels uniquely determine the elements of V. In
this caseit is sometimes convenient to identify V with the range of p and to consider < to par-
tially order that range rather than V itself. Sets and posets may then bc treatcci merely as subsets
and posets of X, and V and p dispensed with. The ordered sets 7 and R of integers and reals
respectively are particularly useful pomsets; they provide a basis for discrete and dense time. In
the case of R time forms an ordered set of points, but without a metric for distance.

The (unique) empty or unit pomset, denoted ¢, meets our definition of string and therefore must
be our old friend the empty string. It isalso amultiset, aset (the empty set), and a poset.

An atom, or atomic pomset, has just one element. Atoms also satisfy our definitions of string,
multiset, set, and poset. The atoms are in one-to-one correspondence with 2, and so just asin
language theory we shall feel free to makethe usual identification between atoms and symbols.

1.4. Algebras of Pomsets

Like most mathematical objects, pomscts do not make good hermits, but thrive when allowed to
gather together into aigchbras. Asin any society acertain degree of conformity isdemanded of its
members: an algebra of pomscts has a base consisting of an ordinal B3, and an alphabet 3 consist-
ing of an arbitrary sct. Only 83-pomscts may join such an algebra, namely those having the
form [V.Z< u] where V is an element of B. (As usual we identify each ordinal with the set of
those ordinasless than it.)

The finitec pomsets arc those with base w, the countable ones those with base w, (the lcast
uncountable ordinal. which consists of cxactly the countable ordinals). The binary pomscts are
thosc with aiphabct 2 = {0,1}, the finitc decimal tomscts arc decimal numecrals.

Algebras come with operations. Among the more elementary operations are shuflle and concate-
nation. (Since no actual shuffling takes place onc might prefer in place of shufilc amore ncutral

name; “co” for concurrency suggests itself, asin the pronunciation of aj|b as*‘a cob.™)

Definition. Let p = [V,2<u] and p’ = [V’, 2.<".u’] be pomscts with V and V' digoint. Then

-7-

their shuffle pllp’ is [VUV',Z<KUC,uUp] and their concatenation p.p’, or just pp’, is
VUV, Z<KUCUNVXV),uUp]

No loss of generality isentailed by the assumption of digjointness since pomscts are only defined
up toisomorpli ism. If weregard pomsetsas graphs then shufMing mercly juxtaposesthem, plac-
ing them side by side to form one graph, white concatenation not only juxtaposes them but adds
additional cdges to the order, one from cach element of V to each element of V'. Itis easily
verified that the ordering relation remainsirreflcxive and transitive even with the additional edges
introduced by concatenation. Roth operations generalize to more arguments; any string of pom-
sets may be concatenated, while any multiset of pomsets may be shuffled.

Roth concatenation and shuffle are associative, and shuflle is commutative. Neither distributes
over the other. The unit pomset ¢ serves as a two-sided identity for both concatenation and
shuffle: pe = ep = ¢|lp = p. These laws completely axiomatize the equationa theory of pom-
sets under concatenation and shuflle [Gis84].

Concatenation prescrves strings, and indeed isjust what is normally meant by concatenation of
strings in -formal language theory. ShufTle on the other hand does not preserve strings. Gischer
defines a function from pomscts to languages that amounts to the completion of a pomset to a set
of tomsets. This function, or functor if we were describing all this categorically, maps shuffle to
the usua notion of language shufMle.

One might ask what is special about concatenation and shuffle as pomset operations. Here they
form anatural introduction to a more general class of opcrations, the pomset-definable opcrations.
Gischer [Gis84] defines both these and the notion of substitution or pomsct homomorphism at the
sametime as follows, with anoperation that wc shalt call expansion.

'1.5. Expansion: Pomsct-definable Operations and Substitution | lomomorphisms

Let PP be algebras of pomscts With respective alphabets 2, 27, Ict p = [V, Z,{,u] bc a pomsct of
P, and let a: Z—P be a* Z-tuple” of pomsets of P'. Informally the expansion of p viaa
transforms p into a pomset p'in P by expanding each v in p into a whole pomset p, = a(u(v)),
preserving order both within and between the p,’s

Morc formally, let p" = [V, Z<",n’] bc the shuflle (juxtaposition, or digoint union) of the pom-
sets p, = a(p(v)) for vin V. Let <* partialy order V' such that for cach pair u’.v' in V' drawn

-8-

from p,.p,, respectively, w'<*v’ just when u<v in p. Let < be the union of <" and <*. Then the
expansion of p viaa isjust p’ = [V',2",<C,1].

Thusin an expansion p’ two elements of V' may be comparable for one of two reasons:. they
came from a common element v of V, in which case they were comparable in the pomset p, that
replaced v, or they came from different elements u and v which were comparablein p.

For example let = = 2 = {0,1}, let C = 01, S=0||1 be two-element pomscts (taking 0 and 1
as atoms as explained above), and let <C,C> and <S,S> be pairs (2-tuples, i.e. functions with
domain 2). Then the expansion of one of C or Sviaone of <C,C> or <S,S> |leads to one of four
pomsets. C and <C,C> yield the string 0101, C and <S,S> yield (01]1)(0]|1), S and <C,C> yield
(01)]|(01), and Sand <S,S> yield 0Jj1}{0]1.

The expansion of C viaa pair (p,q) isjust pg, the concatenation of the pair. Thus the pomset C

definesthe binary operation of pomset concatenation. Similarly the expansion of Svia(p,q) is
pllg, so the pomset S defines the binary shuffle operation. More generally, any pomset with
aphabet n = {0,1,2,...,n -1) defines some n-ary operation in an algebra of pomsets on some
(other) aphabet = mapping n-tuples of pomsets to pomsets. When the defining pomset is
infinite the significance of such operationsis not clear, so it is natural to consider the pomset-
definable operations to be restricted to those defined by finite pomsets.

If we regard a Z-tuple a as a function from atomic potnscts to pomscts, then the pomsct function
mapping p to the expansion of p viaa may bc regarded as the natural extension of o to pomscts.
Thissituation is very common inalgebra. Suppose WC are given some set of frec generators, say
the variables in some term language, or the symbols of an aphabet used to form strings. Then a
function f from the generator Set to some algebra has a unique cxtension £+ to a homorphism
from the algebra that the generators generate. In the case of variables occurring in terms, such a
homomorphism is called a substitution. In the casc of symbolsin stringsit is the notion of string
homomorphism cncoun tered in language theory. (There also exist language homomorphisms,
which further extend string homomorphisms to homomorphisms on sets of strings.) As with
terms and strings, pomscts are freely generated by their atomic constituents.

It is natural to identify the homotnotphism itself with the gencrator-mapping function that it
extends, since the extension aways exists and is unique. Thus we may consider a 2-tuple to
dcfine, or more sSimply to be, a pomset homomorphism, We shall follow the terniinology that
goeswith terms and call such homomorphisms substitutions.

9

To summarize: expansion takes one pomset from an algebra P with alphabet 2 and a>-tuple of
pomsets from an algebra P with alphabet 2", and yields a pomset from P'. Fixing the one pom-
set determines a X-ary operation on the algebra P'; when X isthe ordinal n and Pisfinite, this
operation is an n-ary pomsct-definable operation. Fixing the Z-tuple of pomsetsyields afunction
f that in turn determines a substitution f* from Pto P".

1.6. Applications of the Temporal Theory

The notion of tomsct is apotentially useful generalization of the notion of string. The concatena-
tion of two tomsets is defined and a tomsct, even when the tomsets are uncountable.

The operations of concatenation and shuftle arc obviously of considerable interest. One may ask
whether any of the other operations are of interest, or even whether any of them are not already
expressible directly in terms of concatenation and shuffle. The latter question is answered posi-
tively in Gischer’ sthesis - concatenation and shu flle do not constitute a basis for all the finitary
pomsct-definable operations. Gischer proves the much stronger result that those operations have
no finite basis- no finite sct of operations forms a basis. Thisisin contrast say to the set of
finitary Boolean operations, for which a single operation may serve as a basis.

One operation that is of someinterest iSthe quatcrnary operation N(p,q,r.s). Thisis the opera-
tion defined by the poset {0.1,2,3} with 0<2, 1<2, and 1<3. This operation is not expressible using
sh u filc and concatenation.

Substitutions arc of intercst wherever there isstructure. In the purely temporal theory of this sec-
tion, as opposed to the spatial theory below, the structure is in the events. What may be an
atomic event from onc petspectivc may bercvealed as amore complex cvent closer up. A substi-
tution may expand a point into a hive of scheduled activity.

Wc will also find substitutions usclul in developing the spatia theory, where they allow us to
describe thecfTect onbehavior of connecting acomponent into asystem.

1.7. Discrete vs. Continuous Pomscts
Functions may map rcals to intcgers or intcgers to reals or reals to reals just asreadily asintcgers

to intcgcrs. By the same token wc may have pomsets with cither the base or the alphabet or both
being a continuum.

-10-

In the pomset model time appears only as an order: there is no measure. For a discrete order
(every element but the last has a well-defined successor) one may use the successor relation to
infer ameasure: each element followsits predecessor one unit later. But in a dense order there is
no such obvious measure. Thusif’ we take (V <) to be the set of reals with its standard order, we
have an unmeasured time dimension in which there is no way to detect the speeding up or slow-
ing down of time, either localy or globally.

1.8. Example: Modelling the Two-way Channel with Disconnect

At an STL/SERC workshop on the analysis of concurrent systems, held in Cambridge, UK, in
August 1983, the participants were asked to specify each of ten information systems. The first
system, atwo-way channel with disconnect, was probably the smplest; it also got the lion’s share
of the participants' attention. It was presented thus. “ The ‘channel’ between endpoints ‘a’ and
‘b’ can pass messages in both directions simultaneoudly, until it receives a ‘ disconnect’ message
from one end, after which it neither delivers nor accepts messages at that end. It continues to
deliver and accept messages at the other end until the *disconnect” message arrives, after which it
. can do nothing. The order of messages sent in a given direction is preserved.”

Here is a solution to this problem within the pomset framework. The solution emphasizes formal -
ity at the expense of succinctness: we have an approach to achicving both at once that we shall
‘descri be elsewhere.

Thedesired channcl isthe set of all itspossible behaviors. Each such behavior isa pomset which
is constructed, in away spccified below, from a structure (V.<,m,port,contents.erase) satisfying
conditions|-8 below. V isafinite set of events (cithcr transmissions or receipts of messages), < is
apartia ordering of V indicating necessary temporal preccdcnccs, m:V—V is a function giving,
for each transmission or receipt. its matching receipt or transmission, port:V—>{0,1} is a function
giving for cach event v the port (0 or 1) at which v occurs, erasc is apredicate holding for those
events to be crased by the construction, and contents:V—M maps cach cvent to its contents,
drawn from the set M of possible message contents, among which is the message D for discon-
nect. Wc write u<>v to denote comparability of u and v, namely u<v or v<u.

-11 -

For al uand v:

1. u = m(m(u)) misapairing function

2. uOm(u) transmission-receipt pairs linearly ordered
3. (port(u) = port(v)) = u=v or u>v portslinearly ordered

4. port(u) + porl(m(u)) =1 matching spans ports

5. u<m(u) & ucv & v<m(v) = m(u)Xm(v) channel isorder preserving

6. contents(u) = contents(m(u)) channel is noiseless

7. u<v & erase(u) — erase(V) erasure is suffix-closed

8. contents(u) = D & u<v — erase(v) I> forceserasure of al subsequent events

Events come in matched pairs u,m(u) (1), with one preceding the other (2). Whichever comes
first is the transmission event, the other isthen the matching receipt. Theset of events at each
port islinearly ordered in time (3). Transmission and receipt occur at opposite ports (4). Mes-
sages are received in the order transmitted (5). Message contents are received as transmitted (no
noise on the channel) (6). The predicate “erase” specifying which events did not really happen is
suffix-closed: any event following a non-happening is itself a non-happening (7). Nothing hap-
pens after transmission of a disconnect message (including the matching receipt of that disconnect
message) (8). Note that this does not preclude two nonerased concurrent transmissions of discon-
nect messages from the two ports.

Now from each structure satisfying these conditions construct apomset (H,2,<",p) where H is that
subset of V for which erase does not hold, < isthe restriction of < to H, Z = 2X2)XM (where
2 = {0.1}). and p(u) = ((port(u).m(u)u),contents(u)) where m(u)<u is O or 1 depending on
whether that predicate fails or holds rcspectivcly. Then the process consisting of all possible such
pomsetsis thedesired two-way channel with disconnect.

The label ((p.t),x) on each event in each such pomset indicates the port p at which that event
. occurred, the type of event - O istransmission, 1 isreceipt - and the message X received or
transmitted,

It will be noted that the function m that pairs up eventsis absent from the label. Theidea is that
thisinformation, though visible during our construction of the process, should not bc visiblein
the finished process on the ground that it is not an “obscrvablc” of that process. We can see
messages being transmitted and others being reccived. but the problem did not require that we be
ablc to keep track of the cormcction between transmissions and rcccipts. Accordingly the connec-
tionisdeleted from the final specification.

-12 -

The construction of the pomsets may be viewed as their implementation, and the connection
between transmissions and receipts as an implementation detail. The implementation style of
specifying things, where a structure is built up and then partially discarded, iswidely used in
mathematics. Consider for example the construction of the integers as the quotient of sets of
pairs(a.b) of natural numberswith the equivalence relation(a,b) =(a+ c,a+ ¢). interpreting each
equivalence class [(a.b)] as the integer a— b; the rationals may be constructed similarly as pairs
(a.b), reduced modulo the relation (a,b) =(ac,bc).

2. Spatial ‘Theory - Communication in Nets

2.1. Projection and Net Behaviors

We have viewed a process behavior thus far as a collection of events distributed only in time,
with the distribution being determined by the order. The term “endogenous,” npplied by A.
Pnueli to distinguish temporal logic from an “exogenous’ logic like dynamic logic, seems to be
equally applicable to this purely temporal notion of process. In an endogenous model the
universc IS vicwed as a single process, An exogenous model has distinct processes each with its
own identity indcpendent of other processes, yet able to coexist and communicate with other
processes. WC now wish to be more exogenous. that is, to distinguish between independent com-
municating processes.

Definition. A translation is a function t:X— 3" between two a phabets.

As an example of trandation, suppose WC are given a module with two channels (ports) 0 and 1
on cach of which may appcar values from a set D, and supposc we wish to usc thismodule in a
context having conncctions 2.3.4 by attaching 0 to 3and L to 4. Then t he event (0.d) denoting
the appecarance of value d€D on channel O is translated to the cvent (3.6) in the 2,3.4 context.
Similarly an event (1.d) is trandated to (4,d). In this example 2 is 2XD and 2" is {2,3,4} XD,
and trand ation affects channel names but not data values.

As another example we may havc for 2 the real interval [0.5) and for X' the sct {0.X,1} with X
denoting invalid, and a trandation mapping all clements of theinterval [0.2] to O, the (open) inter-
val (2.3) to X, and [3,5] to 1. This tranglation would correspond to the interpretation of analog

-13-

signals, perhaps voltages, as digital signalsin athree-valued system. The obvious applicationisin
using an analog module in adigital context.

The above two examples can be combined into a single example which trandates both the chan-
nels and the data values, trandating (c,d) to (f(c),g(d)) where f and g are the respective tranda-
tions of those examples.

Definition. Given a trandation t:X—3’, the projection induced by t is the substitution
t +:2 721 mapping pomsets on =’ to pomsets on 2.

In more detail, the inverse of an arbitrary function t:Z—%’ isnot t~ :¥'—X but rather
t -2 2’ afunction mapping symbols to sets of symbols. Any symbol not in the range of t
will be mapped by t™ to the empty set; we can think of this as being “projected out” by t ™.
Any symbol in 2 hit only once by t will be mapped by t ™ to exactly one symbol in X; we can
think of this as a coordinate transform, or renaming, from Z’ back to 3. Any symbol in 2’ hit
more than once by t will be mapped to a set of two or more symbolsin =; we can think of those
symbols as needed for labelling simultaneous events in X that are mapped by t to a single event
in 2". (Consider atrandlation which attaches two pins of an integrated circuit to the same printed
circuit board wire. A single event on that wire can happen only if the corresponding events on
each of those two pins can happen simultaneously.)

Since a set of symbolsis also a pomsct of symbols with the empty order, t™ is therefore a func-
tion mapping symbols to pomscts. In the temporal section wc saw how such afunction had a
unique extension to a substitution, so let us form that extension, t * to yield amapping from
pomsets to pomsets. We call this a projection because a major use of it is to project out some of
the events of a pomset. However as noted just above it may also duplicate some events, so its
function really goes beyond the normal notion of projection. We have not thought of a better
word than projection to describe this action.

The action of aprojection on aprocess P is the set of pomscts resulting from applying the projec-
tion to each of the pomscts of P, a process, so projection maps not only pomsets to pomsets but
processes tO processes.

A net N of processes Pi each with associated translation ; embedding it in that net istheset N of
those behaviors p such that, for alli, t. ™ T (p) €,

14-

Such a net includes all its internal behaviors. Where a trandlation t defines an embedding in the
net of its external connections, the external behavior of the net N isjust t™ *(N), the projection
of N induced by t. Theeftect of this projection isto hide the internal behavior and provide the
appropriate external port names for the externally visible portion of the behavior.

At this point the whole procedure probably looks quite mysterious. Let us dispel some of the
mystery by showing how it worksinthe familiar context of composition of binary relations.

2.2. Example: Composition of Binary Relations

Let us begin with afamiliar operation, the composition MN of two binary relationsM and N on
aset A. Using the representation of binary relations called for by our approach, we shall exhibit
their composition as a projection of the set of behaviors projecting to behaviors of M and N.

The usual way this can be done for binary relations is to have three projections p(a,b.c) = (a,b),

v(a,b,c) = (b.c), and «(a,b,c) = (a.c). Then the net behavior MN is K = {(a,b.c)ju(a,b,c)EM &

v(a.b,c)EN}, the set of all behaviors whose projections under p and » arein M and N respec-
“tively. The composition itself is then the projection k (K).

Tofit thisinto our scheme we shall show how torepresent p.v,x asinverses of translations. We
take = = {0,1} XA and £ = {0.1,2} XA for the domain and codomain of al threetrandations.
We shall regard the pair (a,b) as the ordered multiset (0.a)<(1,b), and the triple (a,b,c) as
(0.)X(1.b)X(2.c). The appropriate translations arc then m(c,x) = (c.x), n(c,x) = (c+ 1.x), and
k(c,X) = (—cx) (mod 3). (That is, m(0,x)==(0.x), m(1,x)=(1,x), N(O.X)=(1,x), n(1,x)=(2,x),
k(0.x) =(0,x),k(1,x) =(2,x).)

Now m™ (0,x) = {(0.x)}, m-(I) = {(1.x)}, and m ™~ (2) = {}. Hcnce the behaviors mapped by
m ™ T to behaviors of M will be just thosc pomscets having an event (0.a), anevent (1.b), and any
numb& of events (2,¢) for various values of ¢, with the order arbitrary except that (0.a)<(1.b), and
with (a.b) € M. Of these. the ones mapped by m ~ * to behaviors of N will have one event
(1.b) and one event (2,¢), where (b,c) € N and (1.b)<(2,c), but with no constraints on events of
theform(l.a). But thisthen limits the possiblc behaviors of the net to just (0,a)<(1,b)<(2,c) where
(a,b)EM and (b,c)EN.

The most noteworthy difference from the standard construction {(a,b.c)ju(a,b,0)EM &
v(a,b,c)EN} isthat our construction does not assume at the outsct that the result will consist only

- 15 -
of triples. Instead the construction "discovers" this for itself.

It should now be clear how the projection k * discards the middle element of each tripleto
yield the desired composition.

Had we removed the order in defining binary relations, we would have hit a small snag. Net
behaviorswould still have only three events, (0,a), (1,b), (2,¢). thistime with (0.a) and(1,b) being
incomparable and similarly for (1,b) and (2,c). However the ordering between (0,a) and (2,c)
would be unconstrained. Hence for each triple (O,a), (1,b), (2,c) we would have three pomsets,
one for each of the possible order relationships between (0,a) and (2.c): incomparable, (0,a)<(2,¢),
and (2,0)<(0,a). We avoided thisvariety by forcing (0,a)<(1,b)<(2.c), which by transitivity of <
forces(0,a)<(2,0).

An dternative and acceptable approach would have been to consider the set of al three pomsets
representing all possible orderings of a pair to be an acceptable encoding of that pair. Then we
would have pomsets coming in threesin M and N as well as in the projection of their intersec-
tion, and in 13'sfor the net behaviors (1 completely unordered, 6 with one el ement incomparable
to the other two, 6 linearly ordered).

It isfair to ask what influence the choice of X' had on this example. What if it had been taken
to be {0,1,2.3} XA instead of {0,1,2} XA? Would the fourth channel have confused matters?
The answer is that the net bchaviors would contain, in addition to the three events
(0.a)<(1.b)<(2.c), acloud of cvents (3,d) rclated arbitrarily by < to these three and to cach other.
However the final projection would project out not only (1,b) but the whole of this cloud. Thus
athough {0,1,2,3} XA is aless elegant choice of Z' than {0,1,2} XA, in the end it does not affect
the outcome. The physical interpretation of al thisis that the fourth channel is aloose wire
whose behavior is unknown but irrelevant..

Note that nowhere in our notions of tranglation and projection do WC make any assumptions
about cither the structure of the network or the type Of constituent. 'This method of describing
the behavior of a network of processes works equally well for any processes connected in any
fashion.

3. Real-Time Theory - Quantitative Scheduling

3.1. Semirings

So far our notion of temporal relationship has been qualitative, namely whether one event pre-
cedes another. We would now like to extend the theory to deal with aricher notion of temporal,
relationship. One obvious notion is that of time as a number: by how many femtoseconds or
teracenturies did one event precede another. Other notions of time, or even only marginally
timelike rel ationships between events, may also suggest themselves.

Our thesisisthat the appropriate algebraic structure for supplying the elements of atemporal
relationship isthe semiring. Semirings cater for parallel and serial composition of relationshipsin
asuitably general way, providing one binary operation for each of these two concepts.

A semiring isan algebra (A, +,.,0) such that (A,+ ,0) isamonoid (+ is associative and has 0 as
left and right identity) and . is associative and distributes over +, and has O as left and right
. annihilator (a.0 = 0.a = 0). The + operation caters for parallel composition of relationships and
the . operation for their serial composition.

3.2. Particular Semirings

Up to now we have built into our theory the assumption of a particular scmiring that wc shall call
the Boolean semiring. It consists of two values 0 and 1, with + interpreted as digunction and .
as conjunction. The idea is that every pair of events is related by either 0, meaning no temporal

order, or 1, meaning that the first prcccdes the second. The operation + deals with varicty of
behavior: given several sources of information about whether one event prcccdes another, if any
isal then the upshot isa 1, otherwise it is 0. The operation . deals with course of events: if a
prceedes b and b precedces ¢ then a precedes . This istransitivity, a conjunctive concept.

A semiring that we shall call the waxidriver's semiring consists of the nonncgative reals with +
interpreted as max, . as addition, and O as the number 0. The numbers can be thought of as the
cost of getting from one event to another. When there are competing costs, the highest is always
chosen. The cost of getting from a via b to c is the sum of the costs of getting from ato b and
from b to c. The discrete version of this semiring substitutes the natural numbers for the nonne-
gativereals.

-17 -

The taxi passenger % semiring is Similar but includes infinity in the algebra, interprets . as min (the
passenger prefers the cheapest route), and 0 as infinity (the least identity for min). To satisfy the
semiring identity .0 = 0 we need to take the product of numeric 0 with semiring O (here infinity)
to beinfinity. This semiring too has a discrete version, consisting of the natural numbers and
infinity.

The taxidriver’s semiring is useful in dealing with times between events that may not be reducedy’
e.g. for preventing events from interfering with each, meeting specificationsfor integrated circuits,
etc. Dually the taxi passenger’s scmiring is good for times that may not be exceeded, e.g. for
preventing timeouts, or establishing upper bounds on the running time of processes.

3.3. General Theory

We may now generalize our theory of processes from the Boolean semiring to arbitrary semirings.

We begin with the idea that a binary relation from A to B is an AXB Boolean matrix. The inte-

rior and exterior operations of matrix multiplication are respectively conjunction and disjunction;

that is, the dot product of two vectorsis formed as the digunction of pair-wise conjunctions, and

the matrix product MN of matricesM and N is the matrix of dot products whose ik-th entry is
the dot product of the i-th row of M with the k-th column of N.

A binary relation M from A to A is a partial order when it is irreflexive (leading diagonal of M is
all zeroes) and transitive (M2 <M).

Now these interior and exterior operations associated with binary relations arerespectively the .
and + operations of the Boolean semiring. If wesubstitute for that semiring any other scmiring,
our definitions of irreflexive and transitive need not be changed since they are expressed in terms
of semiring operationsindepcndently of any particular semiring such as the Boolean semiring.

Thus WC may generalize the structure. [V.2] to [V.Z.S.M.u] where S is ascmiring (no longer
necessarily the Boolean semiring (0.1)) and M is an irrcllcxivce transitive matrix over S. Such a
structure is no longer a pomsct;one might call it a mecasured multiset, where M provides the
measurements between elements of the multiset. A process then becomes a set of measured mul-
tisets.

The notion of substitution docs not gencralize smoothly. Suppose wc have events e<f<g and we
map f to f1<f2 and then extend that map to take c<fg to e<f1<f2<g. Now if < is replaced by

-18-

some measure of the delay between events, we have a problem relating e<f<g and e<f1<f2<g. The
problem is that whatever delay there is between fl and f2 does not appear in e<f<g, where the
event f itsdlf istreated as having no delay of itsown. Thusif there were at |east a2-microsecond
delay between e and f and at least a 3-microsecond delay between f and g, then there would be a
5-microsecond delay betweeneand g. But thisassumesthat f itself involves no delay, which may
contradict the expansion of f to f1<f2, in which there may be anonzero delay.

This problem does not arise however for the special case of “length-preserving” homomorphisms,
ones that map atoms only to sets, that is, pomsets with the empty order. This special caseisall
that is used in defining the notion of projection, which therefore remains unchanged when more
genera semirings are used. Thus the spatial theory does extend gracefully to general semirings.

However we do not see how to integrate this semiring approach with general substitutions. Some
adjustment is needed to our temporal model to cater for this. We would be interested in hearing
reasonable solutions.

3.4. Applications

A typical requirement indesigning hardware isto achieve minimum delay timesbetween certain
events. For this the taxidriver’s scmiring is appropriate. Whcnevcr there arc two separate delay
requirements for the same pair of cvents. the larger is taken, corresponding to scmiring + being
numeric max. Whenever there must be a delay of at least m between events el and €2, and a
delay of at Icast n between ¢2 and ¢3. there must bc a delay of at least m + n between ¢l and e3,
corresponding to scmiring . being nu meric addition.

4. Appendix

Since strings (finite tomsets) may be defined very ssimply as afunction from{0,1,2,...n—1}, it is
natural to ask why pomsets should not have an cqually simple dcfinition. The basic obstacle, as
we shall sce, isthat partial orders have nontrivial automorphisms.

In the case of a pomsct that is a string of length n, V' has n clements and the order < is total. In
this casc the set n = {0,1....,n— 1) with its standard order may scrve as a canonical representative

-19-

of theisomorphism class of (V). That is, the function p:n—2 is for our purposes equivalent to
the tomset [n, Z,<,u]. This establishes the connection between our isomorphism-based definition
of tomsets and the ssimpler definition as a function.

More generally, any “ womset” (well-ordered multiset) may be defined as a function from the
appropriate ordinal to 2. For the usual notion of an infinite string ss;s,... the appropriate ordi-
nal isw. Anordinal serves asacanonical representative of an isomorphism class of well ordered
Sets.

A well-ordered set (V,<) has no non-trivial automorphisms (isomorphisms from the set to itself).
Another way to say thisisthat each element of awell-ordered set (V<) uniquely determines an
element of the corresponding ordinal. Hence an ordinal may be used as a representative of an
isomorphism class of a well-ordered set without contributing any additional information not
aready present in the class.

In genera however, ordered sets, whether ordered totally or partially, may have nontrivia auto-
morphisms. For example the function x-I- 5 is an automorphism of the structure (Z.<) of integers
with their standard order. In general therefore the function u:Z—Z and its composition with
x+5 will be distinct functions mapping the integers to Z, yet they will both be representatives of
the isomorphism class [Z,2.<,u] with no way of telling which is the canonical representative.
Hence such functionsoverspecify the classesthey represent.

Thereforc, rather than attempt to basc the theory of pomsets on canonical representatives of iso-
morphism classes we just base it on the classes themselves.

5. Bibliography

[BA81] Brock, J.D. and W. B. Ackerman, Sccnarios: A Model of Non-Determinate Computation.
In LNCS 107: Formalization of Programming Concepts, J. Diaz and I. Ramos, Eds., Springer-
Verlag, New York, 1981, 252-259.

[deB72] dc Bakker, JW., and W.P. dc Roevcr, A calculus for recursive program schemes, in
Automata, Languages and Programming, (cd. Nivat), 167-196, North Holland, 1972.

-20 -

[Gis84] Gischer, J., Partial Ordersand the Axiomatic Theory of Shuffle, Ph.D. Thesis, Computer
Science Dept., Stanford University, Dec. 1984,

[Kah74] Kahn, G., The Semantics of a Simple Language for Parallel Programming, IFIP 74,
North-Holland, Amsterdam, 1974.

[KaM77] Kahn, G. and D.B. MacQueen, Coroutines and Networks of Parallel Processes, |FIP
77, 993-998, North-Holland, Amsterdam, 1977.

[Pr82] Pratt, V.R., On the Composition of Processes, Proceedings of the Ninth Annual ACM
Symposium on Principlesof Programming Languages, Jan. 1982.

[W84] Winskel, G., Categories of Models for Concurrency, this volume.

