May 1985 Report No. STAN-CS-85-1050

Fast Sequential Algorithms

to Find Shuffle-Minimizing and Shortest Paths
in a Shuffle-Exchange Network

by

John Hershherger

Ernst Mayr

Department of Computer Science

Stanford University
Stanford, CA 94305

FAST SEQUENTIAL ALGORITHMS
TO FIND SHUFFLE-MINIMIZING AND SHORTEST PATHS
IN A SHUFFLE-EXCHANGE NETWORK

John Hershbergert
Ernst Mayrt

Department of Computer Science
Stanford University
Stanford, California 94305

Abstract

This paper analyzes the problem of finding shortest paths and
shuffle-minimizing paths in an n-node shuffle-exchange network, where
n = 2™. Such paths have the properties necded by the Valiant-Brebner
permu tation routing algorithm, unlike the trivial (m — 1)-shuffle paths
usually used for shuffle-exchange routing. The Valiant-Brebner algo-
rithm requires n simultancous route computations, one for each packet
to bc routed, which can be done in parallel. We give fast sequential
algorithms for both problems we consider. Restricting the shortest path
problem to allow only paths that use fewer than m shuflles provides
intuition applicable to the general problem. Lincar-time pattern match-
ing techniques solve part of the restricted problem; as a consequence, a
path using fewest shuflles can be found in O(m) time, which is optimal
up to a constant factor. The shortest path problem is equivalent to the
problem of finding the HHamming distances belween a bitstring and all
shifted instances of another. An application of the fast Fourier trans-
form solves this problem and the shortest path problem in” O(m logm)
time.

1 This work was supported in part by an IBM Faculty Development Award, a National
Science Foundation Fellowship, Ar my Rescarch Oflice Iellowship USARO DAAG29-83-
(30020, National Scicnce Foundation Grants MCS 83-00984 and DCR-835 1757, and a grant
from AT&T Bell Laboratories.

I. Introduction

Algorithms for parallel computation invariably achieve their speedup by partitioning the
original problem, solving the resultant subproblems concurrently, and combining the re-
sults to construct a complete solution. In many cases, almost no computation can bc done
on an isolated datum (as in the case of sorting), so communication between processing ele-
ments dominates the algorithm. It follows that parallel algorithms depend strongly on the
model of computation and communication assumed by the algorithm designer. Many dif-
ferent designs have been proposed to allow multiple processors with fixed interconnections
to cooperate efficiently. One especially popular theme involves connecting processors to
memory banks or to each other through a butterfly-style network [10] [14] [16]. The variant
that is perhaps least complicated for its power is the shuflle-exchange network [18].

In the shuflle-exchange design, n = 2” processing elements are connected in a simple
but powerful network. Each processing element or node has two data paths or edges along
which it can send data packets to other nodes. Let the nodes be numbered 0, 1,. . . ,n — 1,
and let the binary representation of an m-bit integer 2 be %2,,_1t;—2... 29 = ZOSKm i]-2j.
Then the shuffle edge out of node z scnds packets to the node whose address 1n binary
iSTymn—2%m—3 ... L120%m—1. This is node 2 mod (n — 1) when ¢ is not all ones (i # n — 1)
and = = n -~ 1 when it is. The exchange edge sends packets from node ¢ to node z $1 =
Tm—1-..11%0. (Here @ is the binary bitwise exclusive-OR operator and b is the bitwise
complement of b.) Interesting generalizations of the shuffle-exchange network include the
delta network [14] and the Generalized Shuffle Network [3].

It is possible to route any permutation on the shuffle-exchange network in O(m)
time [16], though the routing may take O(m*) time to determine explicitly [13]. Known
permutation routing algorithms require ©(m) expected routing time for a randomizing
algorithm {19] and ©(m?) tine for a deterministic algorithm [18]. Ajtai, Komlés, and
Szemerédi have recently developed a sorting network of size O(nm) and depth O(m) [1].
Leighton has extended their ideas to produce an O(n)-size network that sorts n numbers
in O(m) time [1 1]. Both networks can be used to route permutations in O(m) time.
Unfortunately, the constant factors involved in the construction of thesc networks are such
that the networks arc impractical for realistic n.

In the shuflle-exchange network it is possible to route a packet from any node in the
network to any other node in fewer than 2m routing steps, since m — 1 shullles separated
by exchange operations when necessary will send a packet from node 2 to any address.
Only O(1) preliminary computation is nceded to prepare a packet for shipping along such
a path, but the routing may not be good cnough for some algorithmic applications. For
example, the analyses of the O(m)ex pected time permutation and sorting algorithmms of
Valiant and Brebner [15] and Rcif and Valiant [19] % epend on packets being sent via routes
that 1) have no cycles and 2) have the non-repeating property: edges common to any
pair of routes arc contiguous. The easily-computed route may not satisfy cither of these
requirements. For example, the following 3-shuflle path from 0101 to 1000 has a cycle:

0101 —, 1010 —, 0101 —, 0100 —, 1000.

The following pair of 4-shuflle paths does not satisfy the second property:

01000 —, 10000 —, 10001 -, 00011 —, 00110 — 401100
01000 -—, 10000 —, 00001 —», 00010 —, 00011 —, 00110.

Both shortest paths and shufHe-minimmizing ones satisfy the Valiant-Brcbncr con-
straints. A shortest path clearly cannot have a cycle. Furthermore, if the route is chosen
uniquely from among the shortest paths, for example by choosing the shortest path that
uses fewest shuflle steps and performs exchanges at the first opportunity, the second condi-
tion will also be satisfied. The route that uses fewest shuffles and no redundant exchanges
(at most one between any two shuffles) cannot be longer than twice the length of the
shortest path. It also has the two required properties. No cycles are possible in such a
path, since the only cycle that would not increase the shuffle count would be one involving
only exchanges, and such exchange-only cycles are excluded. In any path that uses £ < m
shuflles, the placement of the exchanges is completely determined. Thus for any p and q,
the path between them that uses fewest shuffles is unique. Any sub-path also uses as few
shuflles as possible and hence is also unique. It follows that two paths that converge, run
together, and diverge cannot later reconverge.

Jn the Valiant-Brebner permutation algorithm, n packets are sent through the network,
and each must have a route computed for it. Since the n routes arc independent, it is most
efficient to compute one route at each of the processing nodes of the network. In particular,
it. is impractical to find shortest paths by using breadth-first search in the network for each
of the n routes. Therefore wc consider sequential algorithms to compute paths in a shuffle-
exchange network.

In Section Il we present an O(m) algorithm for finding shuffle-minimizing paths,
which are adequate for permutation routing. Noncthclcss, the shortest path problem is
still interesting in its own right. The most obvious algorithm for finding such paths takes
Q(m?) time; it has the advantage of requiring only 0(m)s pze. We prove in Section V that
the shortest path problem is closely related to the problem of compu ting the Hamming
distance between one string and all shifted instances of another. In Section VI we use this
fact to compute shortest paths in O(m log m) time and space.

Il. Definition of the Problem

Before formalizing the shortest path problem, let us define some notation and three useful
functions. First, let H(a, b) be the llamming distance between bitstrings a and b. That is,
if v(z) is the number of ones in the binary representation of X, then

H(a,b) = v(a @ b).

Let us define substrings of a bitstring as follows: if ¢ = ¢n_1¢m—2 . . . go, then g, ; is
the string ¢;q; .1 . . . g; if i > j and the empty string otherwise. We indicate concatenation
of bitstrings by abutment, that is, a;; is the same as a; xary, ; for any k such that
i > k > j. These conventions make it easy to define the function s(a), which cyclically
shifts a bitstring a = a,,_;, to the left by one place:

s(am—l,()) = Qn—-2,00m—1-

This is exactly the mapping from the current address of a packet to its new address as it
follows a shuflle edge. The address of the node reached by a packet starting from a and
following shuffle edges i times is s*(a). That is,

1 —
s (arn—l,O) =0m—-i—1,08m—-1,m—i-

The function e(u) corresponds to sending a packet along an exchange cdge. It toggles
the bottom bit of its argument:

e(am—1,180) = Ay—1,130-

Note that ei(a) = ei"“’(IQ(a).

Now the Shuflle-Iixchange Shortest Path problem, or SISSP, can be formulated as
follows:

Let the starting address of a packet be p = p,,_; (in binary), and let the
destination address bc q = g,,_1,. For O < k < m, define

_ 07 if Qm—1k+1— Prm—k—1,1,
d(k) = {m, otherwise.

Thus k + cl(k) is the number of shaflles required in a path from p to ¢ if we only
consider paths that use k + rm shuflles. If only k shuffles arc used, the m — k — 1
bits in p,,_x_1.; cannot be altered by an exchange step. The function d(k) is
zero when these bits are already in agreement with the corresponding bits of g.
If some of them must be modified, m extra shuffles are needed and d(k) = m.
The SESP problem is that of finding a k such that the quantity

k -+ d(k) + H(q, s*(p))

4

is minimized. If k' is the minimizing k, a shortest path has” k” -+ d(k’) shuffles
and as many exchanges as are necessary to transform p; into q(;yxymoam for all
0 <7 < m. One can think of the path as a stcpwisc transformation of p into q:
it cyclically shifts p to the left by k”+ d(k') places, changing each bit that must
be changed when it first arrives in the low position of the shifting register.

Note that once a shortest path has been computed, the routing information that must
be sent with a packet is minimal. All that a packet needs to ensure correct routing is a
ticket (following the terminology of Valiant and Brebner [19]) carrying a ([lg m] + 1)-bit
integer ¢ and the destination address . The integer ¢ initially holds the number of shullles
in a shortest path. Packet-handling during routing requires almost no computation: when
a packet arrives at a node ¢ with ticket (t, q), it leaves via the exchange edge if the bottom
bit of the current address needs to be toggled; otherwise, if ¢ # 0, it lcaves via the shuffle
edge with ticket (t — 1, g). If t = 0 and go = 2, then g = 7 and the routing is complete.
This packet-handling algorithm is formalized in Figure 1.

co Packet arrives at node 7 carrying destination
q and current shuffle-distance t. oc

if 1:0 7$ Jtmodm then
Send packet along exchange edge
else if t # 0 then

begin
t=%t-1,
Send packet along shuffle edge;
end
else

Routing is complete.

Figure 1. Packet-handling Algorithm

Surprisingly enough, shortest paths can have more than m — 1 shufHes. (This con-
tradicts an implicit assumption of [19].) For example, the shortest path connecting the
eight-bit source-destination pair

p = 00101100

g = 11100001

has eleven shuflles. Small cases suggest the conjecture that every source-destination pair
has a shortest path that uses fewer than'3m/2 shuflles, but we have not yet been able to
prove this.

Shortest paths are not necessarily unique. Bany;m networks |7] like the Omega net-
work [10] have exactly one shortest path between a source-destination pair. The m-cube
network (see, for example, [17]) 2lows multiple shortest paths, but its nodes have un-
bounded degree. Even with a node out-degree of only two, the shulflle-exchange network
allows multiple shortest paths: an example of a source-destination pair connected by three
different shortest paths is

p = 11100010
g = 00001110.

Shortest paths from p to q require a total of thirteen routing steps and any of cight, ten, or
twelve shuffle steps. Of course, uniqueness can be enforced by selecting the shortest path
with fewest shuffles that performs exchanges at the first opportunity.

The problem of finding a shortest path among those that use fewer than m shuffles
has more structure than the general problem. This restricted problem is called BSSP, an
abbreviation for Bounded-Shuflle Shortest Path. The restriction to using fewer than m
shuffle steps implies that only k3% for which d(k) is zero need be considered. It also reduces
the number of Hamming distances that must be computed. The obvious algorithm to find
an optimal k for either problem just computes H(q, s*(p)) in {2(m) time for each value of
1; d(k) is a by-product of the calculation. This algorithm runs in O(mz) time, but one can
do much better, as wc show in Section VI.

The restricted problem splits naturally into two parts. The first is determining a set
S of k3 for which d(k) = 0. The second is minimizing k + H(qk.0,P0Pm—1,m-k) OVer S.
The first part is nothing more than pattern matching: the set S contains the shifts that
correspond to exact matches between a prefix of the destination g and a suffix of p,,. i,
the left m — 1 bits of the source string. A modification of the Knuth-Morris-Pratt linear
pattern matching algorithm [9] can be used to determine S in O(m) time. This is described
in the following section.

If | S| > Igm (tre base 2 logarithm of ‘m), there are repeated patterns in the source and
destination strings. In the BSSP case, these can be used to reduce the overall complexity
of determining Hamming distances for bits in the repeats, but they are no help for bits in
regions without repeating structure. Since the algorithm of Section VI achieves O(m log m)
whether or not repeats are present, the analysis of repeats is merely an interesting exercise
and has been omitted. (Readers interested in such analyses in a more useful setting are
referred to the work of Galil and Seiferas on space-optimal pattern matching [6].)

The computation of Hamming distances is the hard part of finding shortest paths in a
shuffle-exchange network. The reduction presented in Section V shows that solving BSSP
is no easier than finding the minimum Hamming distance between a bitstring a and all
cyclic shiftings of a bitstring b, where the length ol the bitstrings is a fixed fraction of m.
Section VI shows how to find the Ilamming distances II(a, s*(b)) for 0 < 7 < m with the
fast Fourier transform. This gives an O(m log m) bound on the time needed for Hamming
distance computation. Combining this with the next sections O(m) method of computing
the feasible set S, we get an O(m logm) algorithm for both SISSP> and BSSP.

I1l. Computation of the Feasible Set

Consider the problem of finding the set S of feasible k3. Given p and g, S is the set of
k3 such that the m — k — 1 bits of p that cannot be changed ‘“using k shuffles are already
correct, that is, S = {K | ¢m—1.k+1 = Pm—k—1,1}. If 0 € S, the match depends on (m)
bits, and hence finding S requires {}(m) time in the worst case. The set S can be found in
O(m) time using the modification of the Knuth-Morris-Pratt [9] linear pattern matching
algorithm that appears below.

The KMP algorithm searches for a match between a pattern string and a substring
of a text string. One can visualize its operation as sliding the pattern string along the
text string looking for a match. The algorithm maintains pointers into both strings at
the current point of comparison. It compares the pattern and the text string character by
character,, moving from left to right. When it encounters a difference (the match fails),
it slides the pattern to the right while keeping the text string pointer fixed. At the time
of the mismatch, the pattern and text are identical to the left of the text pointer. The
pattern slides right until this is true again. For cxamplc, in Figure 2, the pattern and text
match in their first six characters, but disagree at the seventh. The pattern slides right
until it matches left of the text pointer again. In this case it slides two places to the right,
leaving the first four characters of the pattern matched against the text string. At each
step the text left of the text pointer matches the pattern, and hence the KMP algorithm
can precompute the shift function from the pattern string alone.

pattern
paitern abababec slides —a b abalbd c
L T I I O 13 — [T T TR
text labababababc] abababababec
~__......\/_—/T _ t
match match mat ched next
succeeds fajls comparison

Figure 2. KMP Example

The time taken by the algorithm matching phase depends only on the lengths of the
strings involved. Each time two characters are compared either 1) the characters match
and the current position pointers move right in both strings or 2) the match fails and the
pattern slides right. Since the sliding pattern and the text string pointer can both move
right only to the end of the text string, the pattern matching phase of the KMP algorithm
takes Lime proportional 1o the length of the text string.

Let us define the shift function sh(y) to be the smallest positive s for which the first
9 -- s bits of ¢ arc the same as the j — s bits that begin at the (s + 1)“' position (counting
from the left) of q:

Sh(j) = min {S >0 I dn—1-3,m—j5 = (Im—l,'m~—j+s} .

If s> 7, then ¢u-1-am-—y5 @and @p_1 m—; ++ are both empty and therefore equal. Thus
0 < sh(j) <j. When we arc searching for a match between text and pattern, sh(s) is the

7

amount we shift the pattern string if the text and pattern agrce in the first j positions but
disagree at the (j + 1)”‘. As implemented in Figure 3, the KMP algorithm will find the
longest match between an initial substring of the pattern q and a suffix of p,,_1,1. Since
q is longer than p,,_1,1, no complete match is possible, but the algorithm will find the
longest preflix/suflix match at the end of its main loop.

The shift sh is produced by matching the pattern string g against itself. A matching
loop much like the pattern/text comparison loop of the main algorithm generates the
values of sh(y) in ascending order. For each j from 1 to m — 1 it uses earlier values of sh
to find the longest non-identity match between a prefix of ¢ and a suffix of g1 m—;. The
difference between j and the length of this match is sh(j).

The function sh is no larger than nezt of the KMP algorithm [9], which is defined
minimizing over a smaller set:

next(]) = min {3 >0 I dm—-1—s,m—35 = Im—-1.m—j+s and 9m—j-1 7é (I'nz—j+s—1} .

The extra information contained in nezt speeds up ordinary pattern matching, but is not
appropriate for finding the set S of feasible k’s. After the main KMP loop finds the longest
prefix of g that is a suffix of p,,,_1,1, repeated shifting with sh finds all prefix/suffix matches
of ¢ and p,,_;,1. The condition on the next function that the characters to the right of
the matching regions differ is irrelevant for prefix/suffix matching and could cause some
matches to be missed.

The algorithm presented in Figure 3 generates S in three phases, namely 1) producing
sh, 2) finding the smallest clement of S, and 3) producing the rest of S. Each phase uses
O(m) time. The first loop is executed m -~ 1 times, once for cach value of j between 1
and m — 1. Its inner loop increases s each time it is cxecutcd. Since s never decreases
and is bounded from above by m — 2, the inner loop cannot require more than O(m) time
*altogcthcr. The second loop is executed once for each value of ¢ between 0 and m — 2.
Because j is bounded from below by 0, is increased by 1 each trip through the outer loop,
and is deccreased by at least 1 cach pass through the inner loop, that inner loop can bc
exccuted no more than m — 1 times. At thie end of the second loop, j is no larger than z,
which is equal to m — 1. Since cach trip through the third loop begins with j non-negative
and decreases it by at least 1, the loop is executed at most m times.

As wc have noted above, the smallest k in S specifies a path from p to ¢ that satisfies
the requirements of the Valiant-Brebner permutation algorithm. If such a path is all that
WC require, WC can compute it in O(m) time using just the first two phases of the algorithm
in Figure 3.

co Produce ah, working from small j% to large. This is a minor modification of
the program used in the KMP algorithm to generate nezt. (Note that and.,,q 1S
“conditional and;” it only evaluates the second expression if the first one evaluates
true.) oc

sh(0) = 1; s =1 jo=1
while j < m do

begin
while s < j andcona Im—j #: dm—j+s do
8:=8+ sh(j —s— 1)
sh(j) = s;
J=i+ 1
end;

co Find the longest match between p and ¢. This is the basic KMP algorithm. In
the following loop, ¢ is the text pointer and j is the pattern pointer. oc

j = 0; i:=0;
while i <m — 1 do
begin
while j > 0 and ynqg Pm-i-1 75 dm--5-1 do
it=1-sh(s);
i=1i+1; j=j+ 1
end;

co Now Pj1 = Qm-—-1,m—j. OC

co Produce S, the set of all distances we can shift ¢ right and have it match up
with the right end of p,, 1,1. OC

s = 0;
while j > 0 do
begin
S:=SU{m-1-j};
=17 —sh(@);

co If we were to use nezxt instead of sh, we
might miss some feasible k. oc

end;

Figure 3. Algorithm to find S

IV. Hamming Distance Computation

This section defines and discusses several different Hamming distance problems. Let us
define the All HHamuning Distances problem AHD as follows:

Given two m-bit binary numbers a and’ 6, find I1(a, s(6)) for all ¢ such
that 0 <z < m.

An example of AITD appears in Figure 4. We define the minimum ATTD problem MAHD to
be that of finding a shift index i that minimizes H (a, s*(b)). This may be easier than AHD
because it is not necessary to produce all the Hamming distances in AHD’s solution. It is
certainly asymptotically no harder than AIID, since one can find the solution to MAHD
from that of AHID with O(m)more work. For m-bit numbers a and 6, II(a, 6) clearly takes
2(m) sequential time to compute, since it depends on every bit position in both ¢ and

6. However, it is by no mecans obvious that solving Al-ID will take 2(m?) time. (In fact,
Section VI provides an O(m logm) upper bound.) If we allowed ourselves to use table
lookup with a table m22™ long and Ig m bits wide, we could solve AIID in O(m) time
by looking at 2m bits to index into the table, then reading off the m Hamming distance
values from the table. This approach is clearly impractical, but it demonstrates that the
best decision trece lower bound wc can get is only n(m).

a
11100001

st(b) H(a,s'(b))
11100010 2
11000101
10001011
00010111
00101110
01011100
10111000
01110001

N oA WM~ O =
N OO O N

Figure 4. AHD Example

Taking another tack, note that if each of the H(a, s*(b)) were independent of all
the others, there would be about m™ = 2™ 18 m = plz ls n possible solutions to AHD.
But there arc only 22™ = n? possible inputs to AHD, so not all the H(a, s'(b)) are
independent. In fact, independence is even further restricted: many different inputs may
map to a single m-tuple solution to AHD. For example, complementing both inputs leaves
the result unchanged, i.e., H(a, s'(b)) = H(a, s'(b)). A more extreme case occurs when all
m componcnts of AHD’s solution have the same value t. Then if a = 0™, 6 may be chosen

* from the (';‘) bitstrings with ¢ one-bits. Including complements and oxchanges, at lcast
4("") inputs map to the same m-tiiplc. Applying Stirlings formula when ¢ = m/2 shows
that there is a set of inputs to AITD) of size) (,,:72)) = (2™ /y/m) = Q(n/\/m) that have
the same solution. The result of AHD says very little about the values of a and 6.

Though the solution of AIID has m Ig m bits, fewer than m? solution vectors are
possible. This suggests that knowing some elements of the m-tuplc solution to AIID,
possibly O(m/ Ig m) of them, might be ecnough to completely specify the rest. While such
relations may be hard to find, there arc functions that use a [ew solution elements to
partially characterize the rest. Perhaps the simplest such function is parity: for a given
a and 6, all the answers to AIID will be cither even or odd, i.c., I1(a, s'(b)) = 1I(a,b)
(mod 2) for any z. (This is not hard to see: the parity function is v(a¢ ® 6) mod 2, and
v(a ® 6) = v(a) |- v(b) . (mod 2), since each I-bit of a @ 6 corresponds to a single I-bit
in a or 6, and each O-bit of a ® 6 corresponds to zero or two I-bits in a and 6. Thus
H(a, 6) = v(a $6) = v(a) + V(6) = v(a) + v(s'(b)) = H(a, s'(b)) (mod 2).)

10

V. Relation of AHD to Shortest Path Problems

This section presents a simple linear reduction from MAHD to the BSSP problem, demon-
strating that BSSP is asymptotically no easier than MAHD. Let a and b be the two m-bit
inputs to MAHD. Consider the following source and destination strings of a 6m-bit instance

of BSSP:
p::O m-- 1b0m lmO'm lmo

q=1"aal™0™1™,.
The only prefix/suffix match lengths are 0 through m, ie, S={6m — 1 +1¢|0 < < m}.
If we shift p left by 5m — 1, we get the string p = 1™0™b0™1™0™. The strings p, g, and p
appear schematically in Figures 5(a) and (b). The Hamming distance H(g, s®™~1 (p)) is
H(1™,1™)+ H(a, 0™) + H(a, 6) + H(1™, 0™y + H(0™,1™) + H(1™, o™) (1)
= u(a) + H(a, b) + 3m,
where u(a) is the number of 1% in the binary representation of a. (Figure 5(b) shows
the match-up between the two strings ¢ and p.) Each time p shifts to the left, the left
term of (1) decreases by one and the right three terms increase by one. In the second and
third terms, there will always be a copy of a matched against m zeros and a copy matched

against a shifted version of b. Figure 5(c) depicts g matched against a shifted version of p.
If q remains fixed and p shifts to the left z places, the Hamming distance will be

H(q, sSm—l+i(p)) = H(q, si(ﬁ))
= H(1™, 1™7'0%) + H(aa, 0™ *b0°)
+ H(1™, 0™7'1) (0™, 1™7*0%) * H(1™, 0™*1%)
i + H(a,0™) + H(s™ *(a), b) + 3(m — 1)
u(a) + H(a, s’16)) + 3m — 21.

Since the number of shuffles in the path being tested is 5m — 1 + 1, the total path length is
H(a, s'(b)) + v(a) + 8m — 1 — 1. This is not quite what we want, since the non-Hamming
distance part of the expression is not constant. Therefore consider the BSSP problem with
12m-bit p”and g~ obtained from p and q by inserting zeros between their bits in the following
asymmetrical way: let p' = Opgm—10psm—2 - - - 0p10po, and ¢’ = gom—10g6m—20 .. . q10g00.
This mecans that the only prefix/suflix match lengths arc the even integers from 0 to 2m:
S'={10m — 1+ 2i | 0 <7 < m}. Since in every match the interleaved zeros arc matched
against cach other, they contribute nothing co the Hamming distances. The 1 lamuming
distances for the new problem are the same as for the old one:, H(q', s!0™~1+2i(p')) =
H(q,s>™~!*% (p)). Only the shift count changes in figuring the path length, so the total
length is

10m — 1 + 2i + H(q, s'°™~*2%(p')) = H(a, s16)) + u(a) + 13m — 1.

Everything except the ITamming distance is constant, so the shortest BSSI> path also
gives a solution for MAIID. Hence we can say that BSSP is asymptotically no casier than

11

q . m | a | a l 1™ l om | 1m 1
Hamming diaté 0 v(a) H(a,b) m . m , m :

p [rm [om [s | om | 1 | o]

H(g,$) = v(a) +3m + H(a,b)

(b)
¢ L1 | e | o [am | om | 1 |
Hamming dist 0 ' : V(a) + H(a, Si(b)) m—i 0 ’ m—1 : 0 : m-—1 f 0 .
sp)] om | b] om [oam [om [1]

H(q, s'(p)) =v(a) + 3(m — i) + i + H(a, s1b))
= v(a) + 3m - 2i + H(a,s'(b))

(c)
Figure 5. Reduction of MAHD to BSSP

MAT-ID; similarly, a variation of the bounded-shuffle shortest path problem in which path
lengths arce produced for every k in ‘S is no casier than AID.

Convecrscly, the path-producing BSSP problem is no harder than Al-ID. The set S,
genernted in O(mn) time, can be used in combination with the results of AIID (applied to
p and g¢) to producc a solution to BSSP. It takes only O(m) additional time to minimize
k + H(q, s¥(p)) over all k € S. Along the same lines, we can solve the unrestricted SESP
problem as quickly as wc can solve Al-ID. We simply minimize k + d(k) + H(q, s*(p)) over
all 0 < k < m, where d(k) = 0 if k € S and m otherwise.

12

VI. AHD and the Fast Fourier Transform

The restriction of the shortest path problem to shuffle lengths less than m gives an inter-
esting sub-problem to which one can apply the algorithmic techniques of linecar pattern
matching. The machinery needed to solve the restricted problem also helps solve the more
general SESP problem. However, the restriction does not affect the hard part of the prob-
lem, which is computing Hamming distances quickly. Thus while pattern matching may
improve by a constant factor the running time of an algorithm that solves SESP, it cannot
improve its asymptotic performance. The reductions presented above show that we must
be able to solve AHD quickly if we are to find fast solutions to the shortest path problem.
The fast Fourier transform [5][2] provides an O(m log m) solution when m is a power of 2
(or a product of small primes).

Before plunging into the application of the Fourier transform to AHD, let us define
the operation of convolution, which will be needed later. The convolution of two m-vectors
u and v is written u @ v. The two vectors have subscripts ranging from 0 to m — 1, and
the result of convolving them is a similar m-vector. The #*® component of u @ v is

Z UjV(i—j)modm:

Convolution is fundamentally related to the multiplication of polynomials.
The All Hamming Distances problem requires finding the values of H(q, s’{p)) for
0 < ¢ < m given bitstrings p and ¢. The #*® such value is

m -
H(Qa Sz(p)) = U(q ® sl(p)) = Z a; ® P(j—i)modm-
j=0

This can be expressed using the convolution operator.
There is a close analogy betwcen the exclusive-OR, of bits and multiplication of +1
and — 1. Define the function f of a bit a as follows:

1 ifa=1
f(a):{—l ifa=0

= 2a — 1.

Given two bits a and 6, f(a @ 6) = —f(a) x J(6). The inverse function of f is

It should be noted that although replacing 0 bits by -1 and exclusive-OR by multipli-
cation is convenient for the convolution operations that follow, it is not the only possible
approach. Multiplication can bc used on the bits and their complements directly without
the introduction of -1. That is, the bit identity

a®b=(axb)+(axb)

13

allows the exclusive-OR opcration to be decomposed into two multiplication operations
and an addition. One can perform convolutions similar to those described below on each
multiplication subproblem and add the results together at the end.

If v is a bit vector, let f(v) be the vector obtained by replacing every bit v; by f(v]-).
Hamming distances are easy to express in terms of the function f. If u and v are bit
vectors of length m, then

H(u,v) =v(u®v) = Zuj D v;.

If each term u; @ v, of the summation is replaced by f(u; @ v;), every 0 term will be
replaced by -1; the result of the addition will range from -m to m by steps of 2 rather
than from 0 to m by steps of 1. A more formal approach to this transformation proceeds
by introducing f and its inverse into the summation:

H(u,v) = Y (v, ® v;)

J
=37 (uy @),
J
which by definition is

Z j'('u,] &) 'l)j) +1

2

=m0 ()f ()
. J
2

where f(u)- f(v) is the vector inner product of f(u) and f(v).

Now consider the vector p!* obtained from p by reversing the order of p3% bits. That
is, pJR = Pm-1—j- Let p be the vector produced by applying f to the bits of p™ p = f _(pR).
The convolution of f(g) and p is closcly related to the AIID problem.

The vector f(q) ® p has as its ' term the inner product

L f(’]j)(ﬁ)i——jmm]m = Z f(qj)f(p(m—-l~t'+'j)mmlm)
J 7

= }j f(ql)f (p(j—i'—l)luod‘m)
J

by the definitions of convolution and p. Applying the identity f(a) f (b)) =—f (a @ b) gives
- Z I(QJ D p(j—i-l)m()d'm)'
3

14

The subscript of p is offset from 7 by z + 1. Writing this in terms of the s function leads
to an expression involving the Hamming distance:

B Z fla; @ (si+1(p))j)-: Z (1 —2(g; @ (si+1(1'7))j)) (2)

=m — 2H(q, s*7(p)).

Thus the convolution of f(q) and p gives a solution to AHD for p and gq.

It is well-known (see, for example, [2]) thatin any ring that has both a principal m*h
root of unity and a multiplicative inverse for m, convolution may be performed using the
following

Convolution Theorem.
(This theorem can be found in [2], among other places.)

Let F(u) be the discrete Fourier transform of the m-vector u and let
F~1(u) be the inverse Fourier transform of u. That is, #(u) is a vec-
tor whose ** term is >°; u;w*, where w is a principal m*® root of
unity; the ¢*" term of ¥~ !(u) is 30 u;w™*. These definitions imply
that #~1(F(u)) = mu. Then the term-by-term product of two trans-
formed vectors is the transform of their convolution:

Fu ® v) = F(u) x F(v),

where the terms of the transformed vectors are multiplied pairwise.

An immediate consequence of this theorem is the fact that
1,
u®v:;7 (F(u) x F(v)).

The discrete Fourier transform and its inverse can bc performed in O(m log m) tume using
the fast Fourier transform algorithm of Cooley and Tukey [5] [2], and hence convolution
also takes only 0(m log m) time. Since the Hamming distances can take on the m 4 1
values bctween 0 and m, the FFT must be performed over a ring with at least those
clements. Ifurthermore, the clement 2 must have a multiplicative inverse, since extracting
thie Hamming distances from f(q) ® p requires a division by two. If a is a prime of the
form a = rm 4- 1, the required ring may he chosen to be the ficld Z,,, the integers modulo
«. The multiplicative subgroup of this Ecld has size rm and is a cyclic Abclian group.
Since it has an clement g of order rm, the element g" is a principal m*™" root of unity. This
clement may bc used as w to perform the Fourier transform. Because Z,, is a field, every
non-zero element has a multiplicative inverse, and in particular, 2 and m ‘have inverses.
As shown in (2) above, H(q, s**1(p)) is” the 4*® component of the vector

m— (1(0) ®7)
2

15

This vector can be expressed using the Fourier transform .as

m — 277 (/(9) X 7(8))
2 H

where the divisions by 2 and m are to be understood as multiplications by the inverses of
2 and m over the field Z,.

If we could not guarantee the existence of a small prime of the form a = rm + 1, the
arithmetic operations in the FFT computation might require an impractical amount of
time and space. Fortunately, a theorem due to Linnik [12] states that the first prime in an
arithmetic progression {rm + a}, where a and m are fixed and gcd(a,m) = 1, is less than
m¢ for sonic constant c. If one assumes the extended Riemann hypothesis, this constant
is 2 + ¢; without ERH, Linniks ““Large Sieve” techniques are necessary to prove the result
with a larger value of c. For a proof of Linnik’ result, see [4]. Since gcd(m, 1) = 1, there
is always a small prime (bounded by a polynomial in m) of the form « = rm + 1. (Note
that o and g" need be found only once in a preprocessing phase.) Hence the FFT can
be done using arithmetic on O(logm)-bit integers. It is probably reasonable to assume
that arithmetic operations on such small numbers have unit cost. With this assumption,
AHD can be solved in O(m logm) time using O(m logm) random-access memory: If one
uses a stricter model and assumes that multiplication of O(log m)-bit numbers requires
O(log® m) time, the AHD time bound increases to O(m log® m).

16

VIl. Conclusion

This paper has presented analysis of and solutions to the problems of finding shuffle-
minimizing and shortest paths in a shuffle-exchange network. Restricting the latter prob-
lem to allow only paths with fewer than m shuffles led to the idea of using pattern matching
techniques, in particular a modification of the linear-time Knuth-Morris-Pratt algorithm.
This approach solved the first problem, but not the second; it did not address the problem
of finding Hamming distances. This subproblem is the hard part of finding shortest paths,.
as Section V showed with its demonstration of the rough equivalence of SESP and AHD.
Finally, the fast Fourier transform was applied to solve AHD-and hence SESP as well-in
O(m logm) time and space.

The most obvious extension of these results is to the the d-way shuffle. This is the
base d counterpart of the binary shuffle-exchange network. In such a network, addresses
are written in base d, shuffles cycle addresses left (as in the binary case), and exchange
operations can change the bottom digit of the address arbitrarily. This paper® ideas apply
directly to the d-way shufile; in such a setting, as well as in the ordinary shuflle-exchange
case, the O(m)s huffle-minimizing and O(m log m) shortest path algorithms presented here
provide suitable routes for the sorting and permutation algorithms of [15] and [19].

We have shown that AHD and a path-length producing version of SESP have the
same asymptotic time complexity. We believe that AHD requires O(m logm) time, since
it is a weak form of convolution, but our evidence is not a proof. We would like to see
either a proof of our conjecture or an o(m log m) algorithm for AHD.

A second open question involves the definition of optimal routes. This paper has
focused on minimizing total path length; in some cases other criteria might be important.
For example, in some VLSI layouts of the shuffle-exchange network, shuffle edges are
relatively short in comparison with exchange cdges [8]. In such cases one might want to
find routes that use as few exchanges as possible, even at the expense of greater total path
length. Generalizing this criterion, one might look for paths that minimize some linear
combination of the number of shulflles and the number of exchanges they contain. The
problem of selecting a particular weighting of shuflles and exchanges on the basis of design
constraints remains unexplored; however, once such a linear objective function is chosen,
the optimal routes it defines may be found quickly using the algorithms of this paper.

Acknowledgements

Thanks to Dave Foulser for suggesting the FFT solution to AHD and to Peter Sarnak-and
Tom Spencer for their pointers to the work of Linnik and Bombicri. Special thanks to
Jane Hershberger for her contributions to this work3 readability.

17

References
[I1 M. Ajtai, J. Komlés, and E. Szemerédi, “An O(n logn) sorting network,” Proc. 15th
ACM Symp. on Theory of Computing, pp. 1-9, 1983.

[2] A. Aho, J. I1-?0pcroft, and J. Ullman, T’he Design and Analysis of Computer Algorithms,
Addison- Wesley, Reading, Mass., 1974, Chap. 7.

[3] L. N. Bhuyan and D. P. Agrawal, “Design and performance of generalized intercon-
nection networks,” IEI'E Trans. Comput., vol. C-32, pp. 1081-1090, 1983.

[4] E. Bombieri, “le Grand Crible,” Asterisque, vol. 18, 1974.

[5] . W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex
Fourier series,” Math. Comput., vol. 19, pp. 297-301, April 1965.

[6] Z. Galil and J. Seiferas, “Time-Space-Optimal String Matching,” Proc. 13th ACM
Symp. on Theory of Computing, pp. 106-113, 1981.

[7]) G. R. Goke and G. J. Lipovski, “Banyan networks for partitioning multiprocessor
systems,” in Proc. 1st Annu. Symp. Comput. Arch., pp. 21-28, 1973.

[8] D. Kleitman, I'. T. Leighton, M. Leplcy, and G. L. Miller, “An asymptotically optimal
layout for the shuffle-exchange graph,” MIT, Cambridge, Mass., LCS TM-231, Oct.
1982.

[9] D. E. Knuth, J. H. Morris, and V. R. Pratt, “Fast Pattern Matching in Strings,”
SIAM J. Comput., 6, pp. 323-350, 1977.

[10] D. H. Lawrie, “Access and alignment of data in an array processor,” IEEE Trans.
Comput., vol. C-24, pp. 1145-1155, 1975.

[11] 12. T. Leighton, “Tight bounds on the complexity of parallel sorting,” MIT, Cambridge,
Mass., LCS preprint, 1984.

[12] Y. V. Linnik, “The large sieve,))” Dokl. Akad. Nauk SSSR, vol. 30, pp. 292-294, 1941.

[13] D. Nassimi and S. Sahni, “Parallel algorithms to set up the Bcnes permutation net-
work,” IEEE Trans. Comput., vol. C-31, pp. 148-154, I'eb. 1982.

14} J. A. Patel, “PI‘OCCSSOI‘“IHCITIOI’Y interconncctions for llllllti')l'OCCSSOIS ” in Proc. Gth
l b
Annu. Symp. Comput. Arch., pp. 168-177, April 1979.

[15] J. Rcif and L. Valiant, “A logarithmic time sort for linear size networks,” Proc. 15th
ACM Symp. on Theory of Computing, pp. 10-16, 1983.

[16] J. T. Schwartz, “Ultracomputers,” ACM TOPLAS, pp. 484-521, 1980.

[17] 1. J. Sicgel, “A model of SIMD machines and a comparison of various interconncction
networks,” LSOl Trans. Comput., vol. C-28, pp. 9079 17, 1979.

(18] H. S. Stone, “Parallel processing with the perlect shuflle,” IEEE Trans. Comput., vol.
c-20, pp. 153-161, Feb. 1971.

[19] L. Valiant and G. Brcbncr, “Universal schemes for parallel communication,” Proc.
13th ACM Symp. on' Theory of Computing, pp. 263-277, 1981.

18

