
May 1985

Fast Sequential Algorithms
to Find Shuffle-Minimizing and Shortest Paths

in a Shuffle-Exchange Network

bY

.lohll I-tcrshhcrgcr

Krnst Mayr

Department of Computer Science

Skmford Univcrsily
Stanford, CA 94305

FAST SEQU&NTIAL ALGORITHMS

TO FIND SHUFFLE-MINIMIZING AND SHORTEST PATHS

IN A SHUFFLE-EXCHANGE NETWORK

John Ilcrshbcrgert
Ernst Mayrt

Department of Computer Science
Stanford University

Stanford, California 94305

Abstract
This paper analyzes the problem of finding shortest paths and

shufllc-minimizing paths in an n-node shufIle-exchange network, where
n = 2”. Such paths have the properties needed by the Valiant-Brebner
permu tation routing algorithm, unlike the trivial (m - l)-shuffle paths
usually used for shuffle-exchange routing. The Valiant-Brebner algo-
rithm requires 72 simultaneous route computations, one for each packet
to bc routed, which can be done in parallel. We give fast sequential
algorithms for both problems we consider. Restricting the shortest path
problem to allow only paths that use fewer than m shuflles provides
intuition applicable to the gcncral problem. Linear-time pattern match-
ing techniques solve part of the restricted problem; as a consequence, a
patI\ usirrg fcwcst shuflles can be found in O(m) time, which is optimal
up to a constant factor. The shortest path problem is equivalent to the
problem of finding the ITammiug tlistauces bctwecn a bitstring and all
shifted instances of arrother. An application of the fast Fourier trans-
form solves this problem and the shortest path problem in’ O(m logm)
time.

t This work was supported in part by an IBM Faculty Devclopmcnt Award, a National
Scicncc Foiirrdatiou Fellowship, A r m y Rcsonrcl~ OIlice I~ellowsl~il~ USARO DAAC29-83-
ClOO20, National Scicncc I~ourrtlation Grants &KS 83-00984 and DCR-835 t757, and a grant
from AT&T Bell Laboratories.

1

I. Introduction

Algorithms for parallel computation invariably achieve their speedup by partitioning the
original problem, solving the resultant subproblems concurrently, and combining the re-
sults to construct a complete solution. In many cases, almost no computat,ion can bc done
on an isolated datum (as in the case of sorting), so communication between processing cle-
ments dominates the algorithm. It follows that parallel algorithms depend strongly on the
model of computation and communication assumed by the algorithm designer. Many dif-
ferent designs have been proposed to allow multiple processors with fixed interconnections
to cooperate efficiently. One especially popular theme involves connecting processors to
memory banks or to each other through a buttcrfIy-style network [lo] [14] [16]. The variant
that is perhaps least complicated for its power is the shufIlc-exchange network [18].

In the shuflle-exchange design, 72 = 2” processing elements are connected in a simple
but powerful network. Each processing element or node has two data paths or edges along
which it can send data packets to other nodes. Let the nodes be numbered 0, 1,. . . JZ - 1,
and let the binary representation of an m-bit integer i be irn-r&-z.. . io = ‘& .< i +2j.
Then the shufi1e edge out of node i sends packets to the node whose

-? rn J
address m binary

is irn--2irrc--3 . . . i&i,- 1. This is node 2i mod (n - 1) when i is not all ones (; # n - 1)
and i = rh .-- 1 when it is. The exchange edge sends packets from node i to node i $1 =
i,-l . . . i&. (Here @ is the binary bitwise exclusive-OR operator and 6 is the bitwise
complcmcilt of b.) Interesting generalizations of the shuffle-exchange network include the
delta network [14] and the Generalized Shufllc Network [3].

It is possible to route any permutation on the shufIIe-exchange network in O(m)
time [IG], though the routing may take O(m4) t’mre to determine explicitly [13]. Known
permutation routing algorithms require o(m) cxpccted routing time for a randomizing
algorithlll 1191 a n d O(m2) t’nnc for a deterministic algorithm [18]. Ajtai , Komli>s, an d
Szemcredi have recently developed a sorting network of size O(nm) and depth O(m) [I].
Leighton has extended their ide;Ls to produce an O(n)- size network that sorts n numbers
in O(m) time [1 I]. Hot11 networks can be used to route permutations iu O(m) time.
Unfortunately, the constant factors involved in the construction of these networks are such
that the networks arc impractical for realistic n.

In the shufllc-exchange network it is possible to route a packet from any node in the
network to any other node in fewer than 2m routing steps, since m - 1 sl~l~lIlcs separated
by exchange operations when ncccssary will send a packet from node i to any address.
Only O(1) prclilnirlnry coinputation is rrcctlctl to prepare a packet for sllippirq along such
a p;~11~, l~rrl IOl~o rolllpirlg 111;ky not IN good c!110llglt for SOIILO ;kigorit,lll~~ic: ~Ll)l)lic;llioJls. lhr
cxanlplc, the analysts of the O(m cx >octctl) ’ J tinic pcrrlrut;~tiou and sorliug algorittrrns of
Valiant and 13rebncr I.151 and Rcif and Valiant [J.!)] 1 qc c)cnd 011 packets being sent via routes
that 1) have no cycles and 2) have the no~~-rcpem5~g property: cdgcs common to any
pair of routes arc contiguous. The easily-computed route may not satisfy tither of these
requirements. For cxaniple, the following 3-shuillc path from 0101 to 1000 has a cycle:

0101 ---+y 1010 -+y 0101 --bc 0100 -bs 1000.

2

The following pair of 4shufllc paths does not satisfy the second property:

01000 --+g 10000 --+e 10001 --bLq 00011 --by 00110 ---+,q OUOO
01000 --)s 10000 --ky 00001 -+9 00010 -J, 00011 -jg OOlLO.

Both shortest paths and shuffle-mininlizing ones satisfy the Valiant-Brcbncr con-
straints. A shortest path clearly cannot have a cycle. Furthermore, if the route is chosen
uniquely front alnong the shortest paths, for cxalnple by choosing the shortest path that
uses fewest shufTle steps and pcrfornls exchanges at the first opportunity, the second condi-
tion will a,lso be satisfied. The route that uses fewest shuffles and no redundant cxchangcs
(at nlost one between any two shuffles) cannot be longer than twice the length of the
shortest path. It also has the two required properties. No cycles are possible in such a
path, since the only cycle that would not increase the shuflle count would be one involving
only cxcha,nges, and such exchange-only cycles are excluded. In any path that uses Ic < m
shufllcs, the placclncnt of the exchanges is cotnpletely dcternlined. Thus for any p and q,
the path between then1 that uses fewest shuffles is unique. Any sub-path also uses as few
shufTles as possible and hence is also unique. It follows that two paths that converge, run
together, and diverge cannot later reconverge.

Jn the Valiant-Brebner pernlutation algorithm, n packets are sent through the network,
and each luust have a route con~pated for it. Since the n routes arc independent, it is nlost
efficient to conlpute one route at each of the processing nodes of the network. In particular,
it. is impractical to find shortest paths by using breadth-first search in the network for each
of the n routes. Therefore WC consider scqucntial algorithnls to compute paths in a shufIle-
exchange network.

In Section III we present an O(m) algorithnl for finding shufne-nlinilllizing paths,
. which are adequate for pern~utation routing. Noncthclcss, the shortest path problcln is

still intcrcsting in its own right. The xnost obvious algorithm for finding such paths takes
fl(m*) tinlc; it has the advnntagc of requiring only 0(m s xce. We prove in Section V that) pC
tile shortjest path problcnl is closely rclatctl to the problenl of conlpu ting the I-Ianlnling
distance between one string and all shift4 instances of another. In Section VI we use this
fact to coinyutc shortest paths in O(m log m) tinle and space.

II. Definition of the Problem
Before formalizing the shortest patil problem, let 3s define some notation and three useful
functions. First, let H(a, b) be the IIamming distance between.bitstrings a and b. That is,
if Y(Z) is the number of ones in the binary representation of x, then

H(a, b) = v(u @ b).

Let us define substrings of a bitstring as follows: if Q = qrn-lq,,l-2 . . . ~0, then ~i,j is
the string fli~i-1 . . . qi if i 2 j and the empty string otherwise. We indicate concatenation
of bitstrings by abutincnt, that is, ai,j is the same as ai,kuk+l,j for any k such that
i 2 k > j. These conventions make it easy to define the function s(a), which cyclically
shifts a bitstring a = a,,-I,[) to the left by one place:

s(Gn--1,O) = a7n-2,0am-l*

This is exactly the mapping from the current address of a packet to its new address as it
follows a shufIle edge. The address of the node reached by a packet starting from a and
following Auflle edges i times is s’(u). That is,

The function e(u) corresponds to sending a packet along an exchange edge. It toggles
the bottom bit of its argument:

Note that ei(u) = ei110d2(u).

Now the Shufllc-Exchange Shortest Path problem, or SESI’, can be forlnulatcd as
follows:

Let the starting address of a packet be p = p3,,,-l,o (in binary), and let the
destination address bc q = q7rL-l,(). For 0 5 k < m, define

.
if %n--1 k+l = pm-k-1,1,
othcrwi’se .

Thus k +- cl(k) is the nulllbcr of shufiles rcquircld in a path CI-OIU p to (1 if we only
consicler paths that USC k $- rm shulIles. If only k shuBles arc used, the m - k - 1
bits in p~~~-k-l,1 cannot be altered by an cxchangc step. The function d(k) is
zero when these bits are already iu agrecmcnt with the corresponding bits of q.
If SOIIW of them must be modilicd, m extra shuffles are needed and d(k) = m.
The SESI’ problem is t,hat of finding a k srlch that the quantity

k -t (i(k) t- fl(q, s”(p))

4

is minimized. If lc’ is the minimiaing k:, a shortest path has’ k’ -/- d(k’) slndles
and as many exchanges as are necessary to transform p; into q(i+~~)luoC~m for all
0 5 i < m. One can think of the path as a stcpwisc transformation of p into q:
it cyclically shifts p to the left by k’ j- d(k’) places, changing each bit that must
be changecl when it first arrives in the low position of the shifting register.

Note that once a shortest path has been computed, the routing information that must
be sent with a packet is minimal. All that a packet needs to ensure correct routing is a
ticket (following the terminology of Valiant and Brebner [19]) carrying a ([lg m] + l)-bit
integer t and the destination address q. The integer t initially holds the number of shuIIles
in a shortest path. Packet-handling during routing requires almost no computation: when
a packet arrives at a node i with ticket (t, q), it leaves via the exchange edge if the bottom
bit of the current address needs to be toggled; otherwise, if t # 0, it leaves via the shufEle
edge with ticket (t - 1, q). If t = 0 and qo = io, then q = i and the routing is complete.
This packet-handling algorithm is formalized in Figure 1.

co Packet arrives at node i carrying destination
q and current shufIle-distance t. oc

if io f !hodm then
Send packet along exchange edge

else if t # 0 then
begin

t := t - 1;
Send packet along shuffle edge;

end
else

Routing is complete.

Figure I. Packet-handling Algorithm

Surprisingly enough, shortest paths can have more th,an m - 1 shufIles. (This con-
t r a d i c t s a n ilnplicit assuluption o f [19].) 1Tar example, the shortest path connecting the
eight-bit source-destination pair

p = 00101100
q = 11100001

has eleven shullles. Small cases suggest the conjecture that cvcry source-destination pair
has a shortest path that uses fewer than.3m/2 shufIlcs, but we have not yet been able to
prove this.

Shortest patlls are not necessarily unique. &IJ~~;w networks [7] like the Oincga nct-
work [lo] 1 iave exactly one shortest path between a source-destination pair. The m-cube
network (see, for example, [17]) 11a ows multiple shortest paths, but its nodes have un-
bounded degree. Even with a node out-degree of only two, the shufllc-cxchangc network
allows multiple shortest paths: an example of a source-destination pair connected by three
different shortest paths is

p = 11 ?OOOlO

q - 00001110.

5

Shortest paths from p to q require a total of thirteen routing steps and any ,of tight, ten, or
twelve shufIle steps. Of course, uniqueness can be enforced by selecting the shortest path
with fewest shuffles that performs exchanges at the first opportunity.

The problem of finding a shortest p+th among those that use fewer than m shuffles
has more structure than the general problem. This restricted problem is called BSSP, an
abbreviation for Bounded-ShufIle Shortest Path. The restriction to using fewer than m
shuffle steps implies that only k’s for which d(k) is zero need be considered. It also reduces
the number of Hamming distances that must be computed. The obvious algorithm to find
an optimal k for either problem just computes H(q, si(p)) in a(m) time for each value of
i; d(k) is a by-product of the calculation. This algorithm runs in O(m2) time, but one can
do much better, as WC show in Section VI.

The restricted problem splits naturally into two parts. The first is determinirig a set
S of k’s for which d(k) - 0. Tlle second is minimizing k + ~~(qk,“,p”pm--l,m--lc) over S.
The first part is nothing more than pattern matching: the set S contains the shifts that
correspond to exact matches between a prefix of the destination q and a suffix of ~~~-1,~)
the left m - 1 bits of the source Btring. A modification of the Knuth-Morris-Pratt linear
pattern matching algorithm [g] can be used to determine S in O(m) time. This is described
in the following section.

If ISI > lgm (th be ase 2 logarithm of ‘m), there are repeated patterns in the source cand
destination strings. In the BSSP case, these can be used to reduce the overall complexity
o’f determining Hamming distances for bits in the repeats, but they are no help for bits in
regions without repeating structure. Since the algorithm of Section VI achieves O(m log m)
whether or not repeats are present, the analysis of repeats is merely an interesting exercise
and has been omitted. (Readers interested in such analyses in a more useful setting are
referred to the work of Galil and Seiferas on space-optimal pattern Iqatching [G].)

.
The computation of Hamming distances is the hard part of finding shortest paths in a

shuflle-exchange network. The reduction presented in Section V shows that solving I3SSP
is no easier than finding the minim&l Hamming distance between a bitstring a and all
cyclic shiftings of a bitstring 6, where the length of the bitstrings is a fixed fraction of m.
Section VI shows how to find the IIamming distances IZ(a, si(L)) for 0 5 i < rrh with lhe
fast Fourier transform. This gives an O(m log m) bound on the time needed for Haltlming
distaucc computation. Combining this with the next section’s O(m) method of computing
the fcasiblc set S, we get an O(m logm) algorithm for both SESP and BSSP.

6

III. Computat ion of the l?easible Se t
Consider the problem of finding the set S of feasible k’s. Given p and q, S is the set of
k’s such that the m - k - 1 bits of p that cannot be changed ‘using k shuffles are already
correct, that is, S = {k] q71t-r,k+r = &+k-r,J}. If 0 E S, the match depends on n(m)
bits, and hence finding S requires st(m) time in the worst case. The set S can be found in
0(m) time using the modification of the Knuth-Morris-Pratt [9] linear pattern matching
algorithm that appears below.

The KMP algorithm searches for a match between a pattern string and a substring
of a text string. One can visualize its operation as sliding the pattern string along the
text string looking for a match. The algorithm maintains pointers into both strings at
the current point of comparison. It compares the pattern and the text string character by
character,, moving from left to right. When it encounters a difference (the match fails),
it slides the pattern to the right while keeping the text string pointer fixed. At the time
of the ,n&natch, the pattern and text are identical to the left of the text pointer. The
pattern slides right until this is true again. For cxamplc, in Figure 2, the pattern and text
match in their first six characters, but disagree at the seventh. The pattern slides right
until it matches left of the text pointer again. In this case it slides two places to the right,
leaving the first four characters of the pattern matched against the text string. At each
step the text left of the text pointer matches the pattern, and hence the KMP algorithm
can precornpute the shift function from the pattern string alone.

pattern
p-&e rn a b a b a b c slides wabababc

II II II II II II Ab II II II II

text ababubabz] a b a b a b a b a b c
-t

- - - -
- t

match match Illat ched next
succeeds fails comparison

Figure 2. KMP Example

The time taken by the algorithm’s matching phase depends only on the lengths of the
strings involved. I%~ch time two characters are compared tither I) the characters match
and the current position pointers move right in both strings or 2) the match fails and the
pattern slides right. Since the sliding pattern and the text string pointer can both move
right only to tllc end of the text string, the pattern nlatching phase of the KMI’ algorithm
takes tinlo proportional to t,llc length of the text string.

Let us define the shift function i&(j) to bc the smallest positive s for which the first
j -- s bits of q arc the same as the j - s bits that begin at the (s -+- 1)“” position (counting
from the left) of q:

If S 2 A then (Im-l-,q,m--j and qr,c-r,,rrr--j t.q are both cnrpty and thcrcforc equal. Thus
0 < s/~(j) 2 j. When we arc searching for a match between text and pattern, s/~(j) is the

.

amount we shift the pattern string if the text and pattern agree in the first j positions but
disagree at the (j + l)t*‘. As implemented in Figure 3, the KMP algorithm will find the
longest match between an initial substring of the pattern q and a suffix of pm-r,r. Since
q is longer than p,,,-1,1, no complete match is possible, bnt the algorithm will fincl the
longest prcfix/suflix match at the end of its main loop.

The shift sh is produced by matching the pattern string q against itself. A matching
loop much like the pattern/text comparison loop of the main algorithm generates the
values of s/z(j) in ascending order. For each j from 1 to m - 1 it uses earlier values of sh
to find the longest non-identity match bctwccn a prefix of q and a suffix of qrrl--r,m-j. The
difference between j and the length of this match is sh(j). .

The function sh is no larger than nezt of the KMP algorithm [9], which is defined
minimizing over a smaller set:

next(j) = min {S > 0 1 q,m--l-.a,m-j = Qrn-l,m-j+s ad qm-j-1 # qm-j+s--1) a

The extra information contained in nezt speeds up ordinary pattern matching, but is not
appropriate for finding the set S of feasible h’s. After the main KMP loop finds the longest
prefix of q that is a s&x of pWh-r,r, repeated shifting with sh finds all prefix/suffix matches
of q ad Pm-1,l’ The condition ou the ne.r:t function that the characters to the right of
the matching regions differ is irrelevant for prefix/suffix matching Cand coulcl cause some
matches to be missed.

The algorithm presented in Figure 3 generates S in three phases, namely 1) proclucing
sh, 2) finding the smallest clement of S, and 3) producing the rest of S. Each phase uses
O(m) time. The first loop is exccutcd m --. 1 times, once for each value of j between 1
and m - 1. Its inner loop increases s each time it is cxecutcd. Since s never decreases
and is bounded from above by m - 2, the inner loop cannot rccpGrc more than O(h) time

’ altogcthcr. The second loop is executed once for each value of i between 0 and m - 2.
Because j is boundetl from below by 0, is increased by 1 each trip through the outer loop,
and is docrcascd by at Icast 1 each pass througlr the inner loop, that inner loop can bc
cxccuted no more than m - 1 times. At tltc cntl of the second loop, j is no larger than i,
which is qua1 to m - 1. Since each trip through the third loop begins with j non-negative
and decreases it by at lcast 1, the loop is exccutccl at most m times.

As WC have noted above, the smallest IC in S specifics a path from p to (I that satisfies
the requircmcnts of the Valiant-13rcbncr permutation algorithnr. If such a path is all that
WC rcquirc, WC can compute it in O(m) t itnc using just the first two phases of the algorithm
in Figure 3.

8

co Produce ah, working from small j’s to large. This is a minor modification of
the program used in the KMP algorithm to generate ned. (Note that andcond ‘is
“conditional and;” it only evaluates the second expression if the first one evaluates
true.) oc

sh(0) := 1; 9 := 1; j := 1;
while j < m do

begin
while s < j andcon< qm-j # qvt-j+a do

s := s + sh(j - s - 1);
sh(j) := s;
j := j + 1;

end;

co Find the longest match between p and q. This is the basic KMP algorithm. In
the following loop, i is the text pointer and j is the pattern pointer. oc

j := 0; i := 0;
while i < m - 1 do

begin
while j 2 0 andcond p,,. i -1 # q,,--j-l do

j != j - ah(j);
i := i + 1; j := j + 1;

end;
CO NOW Pj,l = Qm-l,m-j. OC

co Produce S, the set of all distances we can shift q right and have it match up
with the right end of ~,,~--r,l. oc

s := 0;
while j 2 0 do

begin
S : = S U { m - l - j } ;
j := j - sh(j);
co If we were to use next instead
might miss some feasible k. oc

of sh, we

Figure 3. Algorithm to find S

IV. Hamming Distance Computation
This section dcfincs and discusses several different TImming distance problems. Let us
dcfinc the All ITmnnGng Distances probl& AITT) as follows:

Giver) two m-bit binnry numbers a and 6, ftntl ll(tr, s”(6)) for all i such
that 0 5 i < ??a.

An example of AITD appears in Figure 4. We define the minimum ATTD problem MAIID to
be that of finding n shift index i that nCninGzcs 1l(a, ~~(6)). This may be easier than AHD
because it is not ncccssary to produce all the Hanming distmccs in ATlD’s solution. It is
certainly asymptotically no ha&r than ATID, since one cm. find the solution to MAEID
from that of AlID with O(m more work. Vor’m-bit numbers a and 6, Il(n, 6) clearly takes)
i](m) scqucutial time to compute, since it dopcnds on cvcry bit positioil in both u and

9

6. However, it is by no means obv.ious that solving AI-ID will take 0(m2) time. (In fact,
Section VI provides an O(m logm) upper bound.) If we allowed ourselves to use table
lookup with a table m2277L long and lg m bits wide, we could solve AIID in O(m) time
by looking at 2m bits to index into the table, then reading off the m Hamming distance
values from the table. This approach is clearly impractical, but it demonstrates that the
best de&ion tree lower bound WC can get is only n(m).

a i
11100001 0

1
2
3
4
5
6
7

~~(6) H(a, ~~(6))
11100010
11000101
10001011
00010111
00t01110
01011100
10111000
01110001

Figure 4. AHD Example

Taking another tack, note that if each of the H(a, ~~(6)) were independent of all
the others, there would be about m” = 2’n ‘g rn = n’g ‘fi rL possible solutions to AHD.
But there arc only 22m = n2 possible inputs to AHD, so not all the H(a, ~~(6)) are
independent. In fact, independence is even further restricted: many dilrerent inputs may
map to a single m-tuple solution to AIID. For cxarnple, complementing both inputs leaves
the result unchanged, ‘i.e., H(a, s;(b)) = H(a, ~~(6)). A more extreme case occurs when all
m components of AITD’s solution have the same value t. Then if a = 0”“) 6 may be chosen

A from the (‘it) bitstrings with t one-bits. Including complcmcnts and oxchanges, at least
ci(‘I’) inputs map to the same m-tiiplc. Applying Stirling’s formula when t = m/2 shows
that there is a set of inputs to AIII.) of size it((,,:T,)) -1 s2(2”‘/fi) I= 12(n/fii) that have
the same solution. The result of AIID says very little about the values of a and 6.

Though the solution of AIID has m lg m bits, fewer than m2 solution vectors are
possible. This suggests that knowing some clcmcnts of the m-tuplc solution to AIID,
possibly O(m/ lg m) of th cm, nlight be enough to complctcly specify the rest. While such
relations may be hard to find, there arc functions that use a few solution elements to
partially charactcrizc the rest. I’crhaps the simplest, such function is parity: for a given
u and 6, all the answers to AlfD will be citllcr cvcn or odd, i.c., ~I(cz, ~~(6)) EE fl(a,b)
(1110cl 2) for any 2’. (This is riot, hard to see: the parity fuIlcl,ion is L/((L CJ> 6) I’ll 2, and
v(a @ 6) FE v(u) {- v(6) . (nlod 2)) since each l-bit of a (D 6 corresponds to a single l-bit
in a or 6, and each O-bit of a (D 6 corresponds to zero or two l-bits in a and 6. Thus
H(a) 6) = ~(a $6) G Y(U) + v(6) = v(a) + z+(b)) FE I+, 46)) (nod 2).)

10

V. Relation of AHD to Shortest Path Problems
This section presents a simple linear reduction from MAHD to the BSSP problem, demon-
strating that BSSP is asymptotically no easier than MAHD. Let a and b be the two m-bit
inputs to MAHD. Consider the following source and destination strings of a Gm-bit instance
of BSSP:

p==O 7n-- IbOrn lmorn lrno

q = lmaa~mOm~m.

The only prefix/suffix match lengths <are 0 through m, i.e., S = (5m - 1 + i 1 0 5 i 5 m}.
If we shift p left by 5m - 1, we get the string rj = 1”0”90”1”0”“. The strings p, q, and fi
appear schematically in Figures 5(a) and (b). The H.amming distance H(q, s57rL-1 (p)) is

H(I~, lTn) + H(a, Om) + H(a, 6) + H(lm, Om) + H(Om, 1”) + H(l”, Om) (1)

= u(a) + H(a, b) + 3m;

where u(a) is the number of l’s in the binary representation of a. (Figure 5(b) shows
the match-up between the two strings q and fi.) Each time ?; shifts to the left, the left
term of (1) decreases by one and the right three terms increase by one. In the second and
third terms, there will always be a copy of a matched against m zeros and a copy matched
against a shifted version of b. Figure 5(c) depicts q matched against a shifted version of fi.

If q remains fixed and 5 shifts to the left i places, the Hamming distance will be

H(% s5m--l+i(p)) = Iicq, 2(fi) j

.

= Ir(im, lW’.-iOi) + H(aa, OmeibOi)

+ 11(1’“, 0m--iii) + II(orn, lm-ioi) + I;l(lm, gm-iii)

= i + H(a, Om) + H(smei(a), b) + 3(m - i)

= u(a) + H(a, s”(6)) -+ 3m - 2i.

Since the number of shufIles in the path being tested is 5m - 1 + i, the total path length is
H(a, si(b)) -f- v(a) + 8m - 1 - i. This is not quite what we want, since the non-Hamming
distance part of the expression is not constant. Therefore consider the BSSP problcm.with
12m-bit p’ and q’ obtained from p and q by inserting zeros between their bits in the following
asymmetrical way: let p’ = Opc~-~Opc~rr-~ . . . OplOpo, and q’ = q~m-lOq~wt-~O.. . q~OrJo0.
This mcans that the only prcfix/suflix match lcirgths arc the even intcgcrs from 0 to 2m:
s’= { 1Om -- 1 + 2i 1 0 5 i 5 m}. Since ill cvcry match the iIll+!rlCi~V~!tl zeros arc mat&cd
Lk~ikiJlSt Cidl dllcr, they contribute nothing CO thC IliUlllIliI1g diStiUl<:CS. l'llo 1 Iilllllllillg
distances for the new problem (are the same <as for the old one:, U(q’, ~~~“‘~~-‘-~-~~(p’)) =
qcl, s 5nL-1+i (p)). Only tlre shift count changes in figuring the path length, so the total
length is

1Om - 1 + 2i + H(q’, ~~~‘~-‘+~~(p’)) = H(a, s’(6)) + u(a) + 13m - 1.

Everything except the Ilalullling distance is constant, so the shortest BSSI’ path also
gives a solution for MAIID. Hence we can say that 13SSP is ~asymptotically no cask than

11

Q . 1 771 a a lrn Orn 1 m 1.
Hamming dist i 0 i

. . v(a) i If(a,6) ! m i m i m i.

I; lrn om i b i om i lrn i om j

H(q,h) = v(a) + 3m + H(a,b)

(b)

Hamming dist i

H(q, si(T;)) - v(a) + 3(m - i) + i + H(a, s’(b))

= v(a) + 3m - 2i + H(a,si(b))

(4

Figure 5. Reduction of MAIID to BSSP

MAT-ID; similarly, rz variation of the bounded-shuflIe shortest path problem in which pntli
lengths arc produced for cvcry k in ‘S is no casicr than AIID.

Convcrscly, the path-producing I3SSP problem is mo harder than Al-ID. The set S,
gcncrntcd in O(m) time, can be used in combination wil,h the results of AIID (npplicd to
p and q) to product a solution to BSSP. It takes only 0(m) additional time to minimize
k + IQ, Sk(P)) over all k E S. Along the sxnc lines, we C~JI solve the unrestricted SESP
problem as quickly as WC can solve AI-ID. We simply nlinimizc k + d(k) -I- H(q, s’(p)) over
all 0 5 k < m, where d(k) = 0 if k E S and m otherwise.

12

VI. AHD and the Fast Fourier Transform
The restriction of the shortest path problem to shuffle lengths less than m gives an inter-
esting sub-problem to which one can apply the algorithmic techniques of linear pattern
matching. The machinery needed to solve the restricted problem also helps solve the more
general SESP problem. However, the restriction does not affect the hard part of the prob-
lem, which is computing Hamming distances quickly. Thus while pattern matching may
improve by a constant factor the running time of an algorithm that solves SESP, it cannot
improve its asymptotic performance. The reductions presented above show that we must
be able to solve AHD quickly if we are to find fast solutions to the shortest path problem.
The fast Fourier transform [5][2] provides an O(m log m) solution when m is a power of 2
(or a product of small primes).

Before plunging into the application of the Fourier transform to AHD, let us define
the operation of convolution, which will be needed later. The convolution of two m-vectors
u and v is written u @ v. The two vectors have subscripts ranging from 0 to m - 1, and
the result of convolving them is a similar m-vector. The jth component of u @ v is

C UjV(i-j)modm*

Convolution is fundamentally related to the multiplication of polynomials.
The ,411 Hamming Distances problem requires finding the values of H(q, s”(p)) for

0 5 i < m given bitstrings p and Q. The jth such value is

m - l

ml, Si(P)> = y(Q @ s’(P)) =. C (?j @ P(j-i)*nodm*
j=O

This can be expressed using the convolution operator.
There is a close analogy bctwccn the exclusive-OR, of bits and nmltiplication of +l

and - 1. DeGne the function f of a bit a as follows:

=2a-1.

Given two bits a and 6, f(a @ 6) = -f(a) x J(6). Tl LC inverse function of f is

f--l@) = ?+A,

It should be noted that although replacing 0 bits by -1 <and exclusive-OR by multipli-
cation is convenient for the convolution operations that follow, it is not the only possible
approach. Multiplication can bc used on the bits and their complements directly without
the introduction of -1. That is, the bit identity

a @ 6 = (a x b) + (ii x 6)

13

allows the exclusive-OR operation to be deconlposed into two multiplication operations
and an addition. One can perform convolutions similar to those described below on each
multiplication subproblem and add the results together at the end.

If v is a bit vector, let f(v) be th c vector obtained by replacing every bit vj by f(vj).
Hamming distances are easy to express in terms of the function f. If u <and v are bit
vectors of length m, then

If each term uj @ l/j of the summation is replaced ,by f(uj $ vj), every 0 term will be
replaced by -1; the result of the addition will range from -m to m by steps of 2 rather
than from 0 to m by steps of 1. A more forlnal approach to this transformation proceeds
by introducing f and its inverse into the summation:

H(u,v) = E(u~ e vj)

.= C f -'(f (Uj @ vj>>.,

i

which by definition is
-c f(Uj 63 Vj) + 1_-_--

2
3

= i(m - - C f (“j>f (vj))

3

= i(m - - f(u) * f(v)),

where f(u). f(v) is tl1c vector inner product of f(u) and f(v).
Now consider the vector p I’ obtained from p by reversing the order of p’s bits. That

is, py = prr4-r -j. Let j? be the vector produced by applying f to the bits of p”: fi = f (p”).
The convolution of f(q) and 1: is closely rclntcd to the AIID problem.

The vector f(q) 8 6 has as its ?” term the inner product

i .i

= xl f(qj)f (P(j-i-l)mod’m)
3

by the definitions of convolution and j5. Applying the identity j(a) f (b) = -. f (a @ b) gives

14

The subscript of 23 is offset from j by .i + 1. Writing this in terms of the s function leads
to an expression involving the Hcwnming distance:

- c f(% CB (s’+‘(P>>j).= c (1 - qqj @ (s”+yi))j))j i
= m - 2H(q, s’+‘(p)).

(2)

Thus the convolution of f(q) and 6 gives a solution to AHD for p and q.
It is well-known (see, for example, [2]) tha in any ring that has both a principal mtht

root of unity and a multiplicative inverse for m, convolution may be performed using the
following

Convolution Theorem.
(This theorem can be found in [2], among other places.)

Let 3(u) be the discrete Fourier transform of the m-vector u and let
3-‘(u) be the inverse Fourier transform of u. That is, 3(u) is a vec-
tor whose i t’l term is Cj UjWij, where w is a principal mth root of
unity; the Ph term of 7-l(u) is Cj ujw-ij. These definitions im$y
that 373(u)) = mu. Then the term-by-term product of two trans-
formed vectors is the transform of their convolution:

3(u QD v) = 3(u) x 3(v),

where the terms of the transformed vectors are multiplied pairwise.

An immediate consequence of this theorem is the fact that

u @ v = k3-1(3(u) x 3(v)).

The discrete Fourier transform and its inverse can bc pcrformcd in O(m log m) time using
the fast Fourier transform algorithm of Cooley and Tukcy [5] [2], and hcncc convolution
also takes only 0(m log m) time. Since the Hamming distances can take on the m + 1
values bctwccn 0 and m, the FFT must be performed over a ring with at lcast those
clemcnts. Furthermore, the clement 2 nmst have a multiplicative inverse, siricc extracting
tlfc IIamnrirlg distances from f(q) 8 fi rctluircs a division by two. If cx is a ~)rinrc of the
form cy .= rm I- 1, the rctluirod ring may bc chosen to bc the ficltl %,I, lhc .ir&gcrs motlulo
cy. The multiplicative subgroup of this Ecld has sir/,c rm and is a cyclic Abclian group.
Since it has an clement g of order rm, the element gr is a principal mtl’ root of unity. This
clement may bc used as w to perform the l?ourier transform. 13ccausc 2, is a Eeld, every
non-zero element has a multiplicative inverse, and in particular, 2 and m ‘have inverses.
As shown in (2) above, Il(q, @l(p)) is’ the P’ component of the vector

2 ’

15

This vector can be expressed using the Fourier transform .as

m - $3-l(3(1(4)) X WI)---
2 ’

where the divisions by 2 and m are to be understood as multiplications by the inverses of
2 and m over the field 2,.

Jf we could not guarantee the existence of a small prime of the form a = rm + I., the
arithmetic operations in the FFT computation might require an impractical amount of
time and space. Fortunately, a theorem due to Linnik [12] states that the first prime in an
arithmetic progression {rm + a}, where a and m are fixed <and gcd(a,m) = 1, is less than
m” for sonic constant c. If one assumes the extended Riemann hypothesis, this constant
is 2 + c; without ERH, Linnik’s “Large Sieve” techniques are necessary to prove the result
with a larger value of c. For a proof of Linnik’s result, set [4]. Since gcd(m, 1) = 1, there
is always a small prime (bounded by a polynomial in m) of the form (x = rm + I. (Note
that CY and g+ need be found only once in a preprocessing phase.) Hence the FFT can
be done using arithmetic on O(logm)-bit integers. It is probably reasonable to assume
that carithnretic operations on such small numbers have unit cost. With this assumption,
AHD can be solved in O(m logm) time using O(m logm) random-access memory: If one
uses a stricter model and assumes that multiplication of O(log m)-bit numbers requires
O(log2 m) time, the AHD time bound increases to O(mlog3 m).

VII . Conc lus ion
This paper has presented analysis of and solutions to the problems of finding shuffle-
minimizing and shortest paths in a shuffle-exchange network. Restricting the latter prob-
lem to allow only paths with fewer than m shuffles led to the idea of using pattern matching
techniques, in particular a modification of the linear-time Knuth-Morris-Pratt algorithm.
This approach solved the first problem, but not the second; it did not address the problem
of finding Hamming distances. This subproblem is the hard part of finding shortest paths,.
as Section V showed with its demonstration of the rough equivalence of SESP and AHD.
Finally, the fast Fourier transform was applied to solve AHD-and hence SESP as well-in
O(m logm) time and space.

The most obvious extension of these results is to the the d-way shuffle. This is the
base d counterpart of the binary shuffle-exchange network. In such a network, addresses
are written in base d, shuffles cycle addresses left (as in the binary case), and exchange
operations can change the bottom digit of the address arbitrarily. This paper’s ideas apply
directly to the d-way shuflle; in such a setting, as well as in the ordinary shuflle-exchange
case, the O(m) h flls u e-minimizing and O(m log m) shortest path algorithms presented here
provide suitable routes for the sorting and permutation algorithms of [15] and [19].

We have shown that AHD and a path-length producing version of SESP have the
same asymptotic time complexity. We believe that AHD requires O(m logm) time, since
it is a weak form of convolution, but our evidence is not a proof. We would like to see
either a proof of our conjecture or an o(m log m) algorithm for AHD.

A second o-pen question involves the definition of optimal routes. This paper has
focused on minimizing total path length; in some cases other criteria might be important.
For example, in some VLSI layouts of the shuffle-exchange network, shuffle edges are
relatively short in comparison with exchange cdgcs [8]. In such casts one might want to

. find routes that use as few exchanges as possible, even at the expense of greater total path
length. Generalizing this criterion, one might look for paths that minimize some linear
combination of the number of shufllcs and the number of exchanges they contain. The
problem of selecting a particular weighting of shufIlcs <and exchanges on the basis of design
constraints remains unexplored; however, once such a linear objcctivc function is chosen,
the optimal routes it defines may be found quickly using the algorithms of this paper.

Acknowledgements

.

Thanks to Dave Foulser for suggesting the FFTsolution to AHD cand to Peter Sarnak.and
Tom Spcnccr for their pointers to the work of Linnik and Bombicri. Special thanks to
Jane Ilc!rshbcrger for her contributions to this work’s rcadxbility.

17

References

[I] M. Ajtai, J. Komk, and E. Szemerhdi, “An O(n logn) sorting network,” Proc. 15th
ACM Symp. on Tlleory of Cornplrting, pp. l-9, 1983. .

[2] A. Aho, J. I-?o p croft, and J. Ullman, ‘I%e Design and Annlysis of Computer Algorithms,
Addison- Wesley, Reading, Mass., 1974, Chap. 7.

[3] L. N. Bhay‘an and D. P. Agrawal, “Design and performance of generalized intercon-
nection networks,” IEEE Trans. Comput., vol. C-32, pp. 1081-1090, 1983.

[4] E . Bombieri, ‘Ye Grand Crible,” Asterisque, vol. 18, 1974.
[5] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex

Fourier series ,” Math. Cornput., vol. 19, pp. 297-301, April 1965.
[6] Z. Galil’and J. Seiferas, “Time-Space-Optimal String Matching,” Proc. 13th ACM

Symp. on TIleory of Computing, pp. 106-113, 1981.
[7] G: R. Goke and G. J. Lipovski, “Banyan networks for partitioning multiprocessor

systems,” in Proc. 1st Aunu: Symp. Co.mput. Arch., pp. 21-28, 1973.
[S] D. Kleitman, I;‘. T. Leighton, M. Leplcy, and G. L. Miller, “An asymptotically optimal

layout for the shuffle-exchange graptl,” MIT, Cambridge, Mass., LCS TM-231, Oct.
1982.

[9] D. E. Knuth, J. H. Morris, and V. R. Pratt, “Fast Pattern Matching in Strings,”
SIAM J. Cornput., 6, pp. 323-350, 1977.

[lo] D. H. Lawrie, “Access and alignment of data in an carray processor,” IE1ZE Trans.
Comput., vol. C-24, pp. 1145-1155, 1975.

[ll] I?. T. Leighton, “Tight bounds on the complexity of parallel sorting,” MIT, Cambridge,
Mass., LCS preprint, 1984.

[12) Y. V. Linnik, “The large sieve,)’ Dokl. AI&d. Nauk SSSR, vol. 30, pp. 292-294, EMi.
[13] D. Nassimi and S. Sahni, “Parallel algorithms to set up the Bcncs permutation net-

work,” 1EFX Trans. Comput., vol. C-31, pp. 148-154, Feb. 1982.
[14] J . A . Patcl, “Processor-memory intcrconncctions for m&iproccssors,” in Proc. Gth

Annu. Symp. Comput. Arch., pp. 168-177, April 1979.
[15] J. Rcif and L. Valiant, “A logarithmic time sort for linear size networks,” Proc. 15th

ACM Symp. on Theory of Computing, pp. 10-16, 1983.
[lci] J. T. Schwartz, “Ultr;Lcollll)lltcrs,” ACM TOPLAS, pp. 484-521, 1980.
[17j’ II. J. Sicgcl, “A ~~~odcl ol’ SIMD md~incs ;wl a comparison of various irlt,crcorlllcction

networks,” 1fs&X ‘1kans. Colllprlt., vol. C-2& pp. 907-9 17, .1979.
[I81 1-I. S . Stone, “Parallel processing with Chc pcrfcct sh~tfIlc,” IZZBfZ Trans. Conlput., vol.

c-20, pp. 153-161, Fc!b. 1971.
[19] L. Wiant and G. Brcbncr, “Universal schemes for parnllcl conlm~lnication,” Proc.

131% ACM Symp. 011. Theory of Computing, pp. 263-277, 1981.

18

