
August 1983 kport No. S’I’AN-G-85 1053

Transaction Classification to Survive
a Network Partition

I’ctcr M. G. Apcrs

C; io \\‘ictlcrliold

Department of Computer Science

St;mfortl I lrlivcrsity
St;wford, Cl\ 94305

. . - \ ’
.,
--

--

Transaction Classificatiou to Survive 3 lWwork Partition

Pem h I. G. Apers t
Gio Wiederhold

Stanford University

When comparing centralized and distributed databases one of the advantages
of distributed databases is said to be the greater availability of the data. . Availabil-
ity is defined as having access to the stored data for update and retricva!, even
when some distributed sites are down due to hardware failures. We will investi-
gate the fimctioning of a distributed database of which the underlying computer
network may fail. A classification of transactions is given to allow an implcmenta-
tion of different levels of operatability. Some transactions can be guaranteed to
commit in spite of a network partition, while others have to wait until the state of
potential transactions in the other partitions is also known. An algorithm is given
to compute a classification. Based on histories of transactions kept in the different
partitions a merge of histories is coniputed, generating the new values for some
data items when communication is re-established. The algorithm to compute the
merge of the histories makes use of a knowledge base containing knowledge about
the transactions, to decide whether to merge, dclcte, or delay a transaction.

1. Introduction

When comparing centralized and distributed databases one of the advantages of distributed
databases is said to be the greater availability of the data [1, lo]. Availability is defined as having
access to the stored data for update and retrieval, even when distributed sites arc down due to
hardware failures. The reason for improved availability is that data can be stored redundantly;
increasing the probability that data is available on a site which is up.

One disadvantage of distributed systems is the possibility of a network partition. A partition

This work was supported in part by the Netherlands Organization for the Advancement of Pure Research
(Z.W.O.) and in part by the Knowledge Base hlanagqnent Syslem Project from the Defense Advanced Research
Projects Agency, contract N39-84 C 0211. This research is part of a joint project c&d Distribution Expertise for
Database Applications (DEDA-project).
t Current address: Dept. of Mathematics and Computer Sci.cnce, Vrijc Univ’crsiteit. De Roelelaan 1081. 1081 HV
Amjterdarn.

-2-

is defined to be a split of a computer network into several subncts, each being able to operate
without conununication among them. Depending on the network topology it is possible that a
crash of only one site may cause a partition of the network. Now updates to rcplicatcd data
become problematical, since consistency cmnot be maintained between the partitions. One rather
ad hoc solution that has been suggested in litcraturc is to count the number of sites in a partition
and if the partition contains more than half the number of sites of the original network the database
in this partition of the network may process updates as normal 1111; the copies of the database in
the other partitions may only be used for retrieval. When the partition is repaired the updates
made are propagated to the other partition. Obviously, this solution provides only limited availabil-
ity, and perhaps no availability for updates.

By means of an example we will point out the specific problems of updating the database
during network partition. Image we have a database for a bank containing the balances of the
accounts. For simplicity, we assume that at every site a complete copy of the database is available.
Let the balance of account n before network partition be $500. During network partition the bank
still wants to allow banking transactions to be executed. A deposit is made to account A of $100 in
one partition and a withdrawal of $200 in another partition. Because there is no communication

. between the two partitions we end up with two balances: $600 and $300. After communication has
been re-established the bank Wants to have one balance for account A. Obviously, from the .two
balances alone we cannot compute a new balance that reflects the banking transactions made in the
two partitions. So, keeping the balances in t&e two partitions is not sufficient.

Another problem is caused by integrity constraints. For example, two withdrawals of $400
and $300 take place in the two partitions. Both are valid because the two partition balances remain
non-negative. However, after merging the transactions in the two partitions a negative balance of

d $200 CR ($500 - $300 - $400) results. Prohibiting the eventual possibility of a final credit bal-
ante will severely restrict the handling of banking transactions. So, strict maintenance of global
integrity constraints may be reasonable during normal operation but may disable the functioning of
the database during partition.

A third problem relates to the interaction between the database and its environment. For
example, a manager inquires about the balances of current, savings, and trust accounts during net-
work partition to decide about a loan. Although the balances of the accounts in the local partition
may be sufficient to obtain the loan, it dots not mean that after merging the deposits and with-
drawals from all partitions the balances are the same. So, the question is what kind of decisions
can be made based on the data during partition and, also, whether the user must be informed that
the answer to his question has changed after merging the transactions from the partitions.

In the approach we will discuss in this paper we will provide a number of different levels of

service for the transactions of the users during network partition. Some transactions will be

-3-

guaranteed to commit sftcr communication has been rc-cstabli:,hcd and othcis may commit dcpcnd-
ing on constraints. l knee WC scparatc the notions of committing a transaction from making the
chsn~cs of the database caused by the transaction pcrmancnt. This means that during the partition

we actually have scvcral databases, which have to bc mcrgcd again into one database after com-
munication has been rc-cstablishcd. ‘1’0 classify the transactions a knowlcdgc base is used contain-
ing knowledge about the transactions, their interaction and their cffccts on the real world.

A related problem is found in a database which is distributed over a loosely coupled network,
where the nodes, typically persona1 computers, have a high degree of autonomy. In this case,
topics of part of a database are available on personal computers that can be hooked onto the net-
work at will. At that time changes made to the local copy of the database will have to be merged
with changes made to other topics.

Related research can be found in [4] whcrc the problem of synchronization after communica-
tion has been re-cstablishcd, is discussed. In [6] a Highly Available System is discussed which
ensures the robustness of partitions. System R* [12] emphasizes autonomy for each partitioq.
In [8] a technique is introduced for dynamic allocation of primary copies and recovery if the data-
base becomes partitioned due to a network partition. Data-Patch [7] is a technique to generate one
big transaction to account for all changes made to the database in one partition; the goal is to find a
serialization of these transactions. Another technique, prcscnted in [3], tries to minimize the
amount of work to merge the transactions from databases in different partitions. In [S] an algo-
rithm is prcscntcd to detect conflicts between transactions executed in diRerent partitions. In [2] a
system which permits distibuted rcsourccs to be shared in a resilient manner, is discussed. Finally,
in [9] automatic conflict resolving in a distributed file system is discussed.

The paper is organized as follows. In Section 2 we will introduce some notions and define
our goal of surviving a network partition more formally. In Section 3 we discuss the history of data
items in the database. In Section 4 a classification of the database transactions is introduced. In
Section 5 an algorithm will be presented to compute the merge of the transactions of the different

1 partitions. In Section 6 it is shown that even though system-wide communication may not occur,
WC are still able to commit or undo transactions. In Section 7 implementation issues are discussed.
Finally, we end with a summary and a conclusion.

2. Notions and Goal Statement

In this section we will introduce some notions and fonnalii:e our goal to survive a network
partition.

A (logicnl) clutabasc is a collection of logical data items. A logical &a ilent will bc the unit

of access at the logical level of a database; for example, the database itself, a relation, or a tuple.
l’hc granularity of a logical data item dcpcnds on the vansactions accessing it. A logical data item

-4-

can be reprcscnted by multiple physical dafa items. So, we allow for replicated data.

A rrelwork pnr/ifioll is a Situation in which a certain site is not able to communicate with
another site, which is not necessarily down. We call the subnetworks that are caused by the nct-
WOI k partition pcrrfiGo)ls. Due to a network partition the set of physical data items belonging to
one logical data item will bc partitioned into a number of subsets, where each subset is contained in
a partition. For each such subset of physical data items there will be a parWon dota ifem. Obvi-
ously, there are no more partition data items for one logical data item than there are partitions. A
partitiorz da/abase is the set of partition data items of all physical data items stored in a particular
partition of the network. We will use the term dufa ifem if we either mean a logical data item or a
partition data item.

Figure 1 shows the relationship between a logical data item, its partition data items and its
physical data items during a network partition. We assume that the network partition causes the set
of physical data items to be split into three @sets.

Fig. 1. Relationship logical, partition and physical data items

A frunsac!ion is a sequence of database operations that transform the database from one con-
sistent state to another. A da/abase operation consists of either a read or write of a data item. A
database operation accessing a data item actually refers to physical data items for reading or writ-
ing. If a change is made to a data item then all physical data items of that data item have to be
changed. A concurrency confrool algorilhm is a scheduler which interleaves the execution of data-

base operations in such a way that the resulting values of the data items are the same as if the tran-
sactions wcrc executed serially.

For a transaction we define an intentional read-set IR and intentional write-set IW as being a

description of the set of data items it will read, respectively write. For simplicity we assume that

the intentional read-set includes the intentional write-set. We assume that the concurrency algo-
rithm makes use of litrze slur)ljz When a transaction is given to the database” for cxccution it is
labclcd with a timc stamp, which is unique for the partition in which it runs, plus its site number.
A transaction is caIlL\d c*otmrlit& if irs cffec~s on the logical datrtbilsc have been m;lc!c pcrmancnt.

The goal for surviving a network partition is to give the users as much as possible the impres-
sion that their transactions access the logical database fnstead of the partition database. To do so
the values of the physical data items are saved upon discovery of a network partition. Transactions
in each of the partitions exccutc based on the locally available data items. After communication
has been re-cstablishcd between two or more partitions, the transactions executed in the different
partitions are redone on the values of the physical data items saved bcforc network partition. It
may happen that some of the transactions cannot be rcdonc because some constraint ltas been
violated. For the users this means that the transactions and their consequences have to be undone
Because undoing certain transactions may be impossible, because it would create an inconsistency
with the outside world, we will classify the. transactions into a guaranteed to commit class, a condi-
tionally committable class, and a class of transactions that should not be executed during petwork
partition. To guarantee the commit of certain transactions the database administrator has to dcter-
mine which contraints have to be relaxed, and to weigh whether the constraints are more important
than the inability to commit the transactions.

3. History of Data Items

In this section WC will introduce the notion of the history of a set of data items and USC it to
determine the different levels of opcratability that can be offcrcd to the transactions.

A simple definition of the hisfory of a data item is a sequence of triples:

<irem-id, old-value, new-value),

where ifern-id stands for the identification of the logical data item, old-value stands for the value of
the data item before the trans‘action, and new-value for the value after exccutioll of the transaction.

During network partition each partition data item will dcvclop its own history. The prublcm
is that these histories will have to bc merged to define the logical data item history after communi-
cation has been rc-establish’ed. A jnerge of two histories is dcfincd as the re’sult of interleaving the
two histories such that the result is a valid history, while prcscrving the partial orders of both. By a
valid history of data item i we mean a sequence of <i, old-value, new-value> triples such that the
old-value of a triple equals the new-value of the previous tuplc. Obviously, with this definition of

valid history we are not able to tncrgc the two histories. For cxamplc, Fig. 2 shows two histories of.
the balance of account A. The balance of the account bcforc network partition was $500. In

history 1 thcrc arc two transactions: ii withdrawal of $300 and ;I deposit of $400; and in Ilistory 2: a

&!)osit of $200 and a withdrawal of $600. ljascd on tltc~c tuplcs WC arc not able to construct a
valid history bccausc the value $500 (the old~wlue of the first transaction in History 2) never
rctf.lrns as a trew-value.

History I

<A, $500. E200>
<.4, $201). $600>t

His1oty 2

<A, $500, $700>
</I, $700, %loo>

I+. 2. Histories of two partition data items

A more complctc hisroty of a data item is a &quencc of sextuples:

Glemjd, Iratrsaclion type, values of itlpur variables, IR, I W, pre-condiliott>,
.

where pre-cotzditiotz is a constraint which has to be satisfied in order to cxecutc a trahsaction
* instance of fratzsacliorl rJ,pe wjth the given values of the input variables. The IR is included to

easily determine which data items wcrc accessed. A transaction may access a data item either by its
. ID or by contents. In the first case the set consists of ID and in the latter it is a set described by a

condition that has to bc fulfilled by the data items to bc accessed. ‘I’hc reason that WC distinguish
between accessing data items by ID and by value is to allow some flexibility. lf a transaction
accesses data items by yaluc then in the merge of the histories it cannot bc guaranteed that the tran-
saction accesses the same data items bccausc their values may have changed. If in the final merge

- the transaction should access the same data items they should be accessed by their 11)s. A valid
merge of hisrorics is now defined as a sequence of.sextuples such that the prc-conditions of each
transaction are satisfied. and that the order of the transactions in the original histories are main-
t a i n c d . , ’

Keeping a history of the kind dcfinad above gives a bcttcr chance of merging the two his-
tories. For example, the two histories in Fig. 3, which correspond to the above example, arc
mcrgeablc into a valid history. The quintuples arc labclcd for f&ire refcrencc. The superscript
refers to the history.

A merge of the two histories may consist of: W”, D*, D’, W*. Not every mcrgc is, of course,
allowable. ‘I’hc prc-conditions may cause a problem in determining the mcrgc of two histories.
For cxamplc, the scqucncc IV’, L)*, W2. I)’ violates a precondition, bccnusc after the cxccution of

D* the balance is $400, which is not suflicicnt to withdraw $600. To make a merge always possible

W1 <A, wi~tdtuwul, (A.300). (A,btrfunc*e), (,4.bakatrce)), cxistL1) and GE(balancc(/f),300)>
1)' <A, deposit. (&too), (/f,bnhrrcc), (~f,balance)). cxist(rl)>

History 2

D2 <A, deposit. (A.200), (A,bahce)), (A,bahce), cxist(A)> *
W2 <A, withdrawal, (11,600). (A,baZance), (A,balatxe), cxist(tl) and GE(balnnce(&,600)>

Fig. 3. Histories consisting of quintuples

and to give the users some kind of guarantee about the execution of their transactions we will clas-
’sify them, relax constraints and/or adjust trcinsactions.

Another constraint on the validity of a mcrgc of histories is the external fittzc, As far as the
database is concerned, any merge of histories satisfying the definition of validity is fine. Howcvcr,
if the database has to report to the outside world, for instance, to compute service charges and pro-
duce monthly statcmcnts, the order of the merge must coincide with an order that is acceptable in
the real world. For example, banking transactions that were handled on the same day should
appear in the monthly statement on the same day. Therefore, WC assume that for cnch transaction
besides the quintuple also a time stamp is kept. During partition the clocks at the different sites
can not bc synchronized and may drift apart. Thcrcforc, and also to allow for some flexibility in
merging histories, the time stamps of the transactions are only used to secondarily or&r the transac-
tions from diffcrcnt partitions.

In the next section we will classify the transactions.

4. Classification of Transactions,
In this section WC will discuss the interaction of transactions and their cffccts on the real

world. A transaction may access data items cithcr by key or value. If during network partition a
data item is acccsscd by key this data item should also be available after the communication has

been re-cstablishcd. Thercforc, the existence of the di\ta items should bc part of the prc-condition

of the transaction. If, on the other hand, data items are accessed by value it might happen that the
data items accessed in the partition differ from the ones accessed by the transaction in the merged
history. The latter may have been caused by transactions in other partitions.

In the next two subsection we will propose a classification for prcdcfincd updates atid discuss
different ways of using rctricvals.

4.1. UpliitC ‘~WNXtiOnS

In rhis subsection WC will pro\ icic the ~;I~;@vx administrator with tools tc.) put the updates
. into ditfcrcnt classes for which diffcrcnt Ic~ls of scrvicc arc provided. In the follo\!ing WC‘ will use
thy’ word trans;tction itlstcad of update bccausc as WC’ will see in the next subsccLic)n SOIIIC of the
rctric4s will he turned into updates.

The classification consists of the following ctasscs of transactions:

1. Utmtrtditiotrull~~ Cottutti//ab!e Cltrss .(UK): a set of transactions belongs to the KC if the
transactions c:m be committed as long as the database in the partition is the whole database,
i.e. the execution of a KC-transaction in one’ partition CilMWt violate the precondition of a
KC-transaction in another partition,

2. Cotrditiottc~ll~~ Cbttw~irtable C’1~7.xs (CCC): a transaction belongs to the CCC if commitment of
the transaction on the logical database cannot bc guaranteed and undoing the transactions
does not lead to inconsistencies with the real world,

3. Non-Cotntnir/able Class (NCC): a transaction belongs to the NCC if undoing the transaction
will lead to an inconsistency with the real world that cannot be resolved from withi! the data-
base.

A simple approach to tic network partition problem would bc to place all tr;lnsactions in the
conditionally committable class, and determine which transactions have to bc undone nRcr com-
munication has been rc-atablishcd. Some transactions cannot bc undone because undoing them
would result in an inconsistency with the real world. Thcrcfore, they should cithcr be put in the
Unconditionally Committable Class or the Non-Committable Class.

Our approach is to combine the seI-\lice that can bc provided by the DBMS with the service
that is required by tlie organization to continue functioning as well as possible. The way to do this-
is by relaxing integrity constraints and thereby making it possible to guarantee the commit of cer-
tain transactions. For example, a bank may have as a policy tzever to allow a withdrawal from an

_ account with a negativ,e balance. During a network partition a customer may withdraw from

: diffcrcnt partitions leading to a negative balance after merging the histories on this account. If the
bank would not allow this, the wihdrmval would fall into the class of non-committr\blc transactions,
bccausc the DBMS is not capable of forcing the customer to return the money. But this may bc an
unacccptablc situation. Therefore, the bank may change its policy by dropping the constraint con-
cerning the negative balance.

To classify the transactions operating on a set of data items we riced to know their prc-
conditions and their post-conditions. The pre-cotzdifiotz and the yosf-condiGon of a transaction on.

’ the database are first order logic expressions. The prc-condition specifies a condition that is

required for normal execution of a transaction, i.e. the transaction does not violate any integrity

constraints. The post-condition of a transaction expresses nhat happened to the data items specified

in the prc-condition or created by the transaction. ‘1’0 do so it makes use of the following prcdi-

catcs:

EXW) means that data item D is accessible,

INC(D,A) (DEC(D,A)) that the value of attribite A of data item L) has increased (decreased),

CH(I), A) means that attribute A of data item I> has changed its value.

This information will be kept in the Tratmcfiort Itl/ctmkw of the transclctions on a set of data

items. Let Pr4’7) and Posr(7) denote the pre- and post-condition of transaction T. These pre- and

post-conditions may make me of comparison operations such as GE(x,y) with the obvious mcan-

ing. Pos/(.C;) violales PrdT) if we are not itblc to prove that Post(S) 3 1 h-e(T) is false. With a

simple, but specialized theorem prover WC try to prove that Posl(S)3lPre(T) is false. If theorem

prover is not able to do so cithcr by lack of information or insufficient time it concludes that

Post(S) violates Pre(T). This spccializcd @eorem prover needs to know about the predicates that

arc used and how they interact. For example, if the Post(S) is DEC(I),A) and the he(T) is

GE(A(I>),x) t h e n i t c o n c l u d e s t h a t Posr(s) violates he(T) b e c a u s e i t k n o w s t h a t

(DEC(D ,A) 3 1 GE(A (U),x)) zz true.

transaction

oper~~accoutit (0)
close-accourll (C)
withdrawal (W)
deposit (II)
rrtotzeyJ-ansfer (M)

input pre-condi tion post-condition

A not EX(A) EX(A)

A EX(A) and GE(balance(A),O) not EX(A)

(Ax) EX(A) and GE(balance(A,x) EX(A) and DEC(A.Mance)
(AJ) Em) EX(A) and INC(A ,bnlatzce)
(A,B,x) EX(A) a n d EX(B) EX(A) and EX(8) and

md GE(baIancc(A),x) DEC(A,balatxe) and [NC(B,balatxe)

Fig. 4. Transaction Interaction for transactions on accounts

Figure 3 displays the Transaction Interaction for transactions on accounts: it shows that the

transactions on the account A can only take place after the creation of the account by the

opera-accorrtrr; WC assume that opetz-accorrtrt is given an account number. Also, all transactions on

A should hake finished before cxccuting the close-&cotrtzt. Jn bctwcen thcsc two transactions, the

transactions withdrawal, &posh, and motley-h?tlsfer may take place under the condition that their

pre-conditions are satisfied. Their effects arc indicated by the predicates EX, INC. DEC, and CH.

- 10 -

IIcfore presenting the algorithm, which computes the classificntion, WC need to introduce one

more notion. A transaction T is excc’lrliorl-de~crll~l~tlt on transaction S if T cannot bc cornmittcd in

cast the execution of S is undone. E.g., S crcatcs a new data item and T opcratcs on it. The cxc-

cution of T dcpcnds on the cxccution of S in the sense that if S is undone T has to be undone as

well.

Based on the Transaction Interaction of a set of transactions operating on a set of data items

we are able to determine into what classes the transactions filll. The classification is computed by

the algorithm CLASSIFY shown in Fig. 5. It has two input parameters, ST, the set of transactions

working on the set of data items under consideration and, RT, the set of transactions that should

belong to the KC according to the database administrator. Rccause the transactions in HT will be

execution-dependent on transactions that create data items thcsc will be added to the set RT. ‘To
put the transactions of RT in the set UCC violations of prc-conditions have to be removed. The

part where these pre-conditions arc relaxed and/or transactions are adjusted form an interactive ses-

sion with the database administrator. Then the transactions in I/CC are made execution-

independent of transactions outside WC cithcr by relaxing preconditions, adding these transac-

tions to UCC as well, or by prohibiting the execution of these tiansactions during network partition.

. The choice is up to the database administrator.

procedure CLASSIFY=(set of transaction ST,RT)void:
begin

procedure UNITE=(set of transaction X, Y)set of transaction:
begin

relax some of the pre-conditions and/or adjust transactions in the sets X and Y to remove
violations of pre-conditions:
update the pre-condition entries in the Transaction Interaction;
UNITE: =X U Y

end:
1: add transactions that create data items to RIT:
2: I/cc: = 0:

for T E RT do KC: = UNITI$!JCC,(Tj) od;
3: while T E UCC is execution-dependent on..!? e WCC

do
case let database aclministrator decide what to do of
relax: ’ relax precondition of T such that T no longer execution-dependent is on S:
unite: UCC: = UN1 TE(UCC. (q);
non-comm: put S in the set NCC
esac

od:
4: put the transactions in ST that are not in I/CC or NCC in the sets CCC or NCC depending on

whether non-committing may lead to inconsistencies
end

Fig. 5. Procedure CL4SSIFYe

Tlworcm 1 The set WC produced by procedure CLASSII~Y contains only unconditionally com-

mittable transactions.

- 11 -

Proof A transaction T in the set CK’C can bc committed on the logical database bcc:lusc the othct

transactions in that set cannot violate its prc-condition. and the transactions on wllich it is

cxccution-dcpcndcnt arc cithct in I/CC or in NCC. t fcncc, T is an unconditionally committable

transaction.

cl

Now an example. Assume that proccdurc CZ,AS’SI/+‘Y of Fig. 5 is called with as first parame-

ter the set shown in Fig. 4 { 0, C, W, 11, A/) and as second parameter the set (W, I1). The cxe-

cution of the statcmcnt at the lint lab&d 1 adds transaction 0 to the set RT. During execution of

the while-statzmcnt at the line lab&d 2 WC have to unite (0) and (D). This can be done by

dropping the precondition that R should be unique. A simple way to do this is to let

opctt-accorrtlf itself gcneratc a unique number by prefixing a locally unique number with the

branch number where the account will reside. From now on we assume that 0 stands for this

adjusted transaction. In the second cxccution of this while-statement WC have to unite (0, D} and

CM’}. This can be achicvcd by dropping the constraint “GE(bnlatlcc(A).x)” in the prc-condition of

withdralt~al. In the execution of the while-statcmcnt labeled 3 we notice that none of the transac-

tions in WC are execution-dependent on C. So, in the statement at the line labeled 4 C is either

put in the set CCC or NCC depending on whether non-committing may lead to an inconsistency

with the real world.

4.2. Retricr al transactions

The difference bctwecn a rctricval transaction and an update transaction is that a rctricval

does not change the contents of the database. However, during its execution it may write on output

dcviccs such as a terminal or a printer. This output is a function of the contents of the database,

which is not up-to-date. The knowledge base may be used to indicate whcthcr the result is reliable.

This may be done based on the frequency with which data items have been changed in the past.

Rut, in gcncral, the result of a retrieval during partition is not reliable.

.For some applications this unreliability is acceptable. If a person inquires about the balance

of his account and the database answers: “‘l’hc balance of your account shows $500 but due to

hardware problems not all banking transactions ha1.c been proccsscd,” the person can bc pcrfcctly

happy with that response. If, on the other hand, a manager inquires about ncgativc balances of

accounts to cvaluatc the crcditworthincss of their owncis the conscqucnccs might bc more severe.

If the result of a retrieval has to have creditable validity it is best to turn it into an update.

Then the output devices arc considcrcd to be part of the database. The output mcssagcs will form

just a private workspace of the database, to bc used for the rctricval. ILXN~SC none of the other

retrievals and updntcs bclongin,0 to KC can violate the precondition of the rctricval the retrieval

transaction belongs automatically to the CCC. During the time that the mcrgc of the histories is

- 12 -

computed the previously computed output, which was kept in the private workspace, is compared

with the newly computed output. If there is any difference the user is notified. Ilctrievals that are

not turned into an update need not bc recorded in any of the histories.

To rcconsidcr the inquiry of the manager, if the manager had turned the ictricval into an

update an updated list of accounts having a ncgativc balance would bc produced at the point in the

mcrgcd history where his retrieval was cxccutcd.

In the next section WC compute a merge of the histories of data items in diffcrcnt partitions

using the classification proposed in this section.

5. Conlputing a Merge of Histories

In this section we will discuss the problem of merging the histories of data items from

different partitions. An algorithm will be proposed, which on the one hand uses the classification

of the transactions and on the other hand uses a knowledge base containing knowledge about the

transactions, their interaction, and their effects on the real world. This algorithm will later be used

within an algorithm to determine whether transactions can be comtnittcd or have to bc undone.

After communication has been re-established between two partitions the transactions executed

in these partitions have to be merged. The merge is done based on the histories that were kept for

the sets of partition data items in the difYcrent partitions and the ‘classification of the transactions.

In general, these histories from the two partitions consist of scqucnccs of conditionally and uncon-

ditionally committable transactions. If the re-establishment of the communication is system-wide

the resulting database is the logical database and all transactions in the final history can be commit-

ted on the logical data items. Otherwise, the history is kept for future merging.

To be able to operate on the histories we will represent them in a graph called the History

Graph. A Histoty Graph consists of nodes representing the transactions and directed edges

representing a dependency among the transactions. T r a n s a c t i o n 7+: depcttds o n Tj i f

7’5’(7-j>>rS(7”) atid also if TS(Ti)= TS(Tj) but Ti appears after rPj in the history of the data

I items, and IR (Tj) intersected with IkY(Tj) is not empty. In this cast there will bc an edge from Ti
to Tj. Tj is called a atxestor of Ti and Ti is a dtpctldetzt of Tj. ‘l’hc cast of identical time stamps

has to be considered because in computing a valid merge of histories some of the titnc stamps may

be changed. In that case the order of the transactions in the history detennincs the depcndcncy.

The “roots” of the History Graph are the last committed ~mtrsac~ions on the logical data items

before network partition, indicated by LCT. The post-conditions of all LCTs indicate that all data

items have changed.

Figure 6 shows a History Graph for two accounts A and B with transactions for deposils (II,),
wi/hdrawaZs (IV’) and ttloney-tratqk-s (M) from one account to another. The roots of the graph are

- 13 -

the last committed transactions on the accounts, indicated by LCT(A) and LCT(B).

W3U)

Fig. 6. A History Graph for accounts A and B

The procedure we propose to compute a merge of histories is called MEfNX and is shown in
Fig. 7. The knowledge base required is shown in Fig. 8. The procedure starts with creating one
graph, called the RESULT, by identifying the last committed transactions of partition data items of
the same logical data item. Then it goes through the histories to determine which transaction will
appear in the merge. Every time it executes the while-statement it looks for a catzdidate tzrergeable
lransaction, which is a transaction whose ancestors have already been merged and which has the
smallest time stamp. Procedure CMT computes this transaction and while doing so it might delete
some transactions from the CCC and reconnect their dependents to the last committed transactions
of the corresponding data items. The rules concerning the order in which the transactions from the
CCC are deleted from the cycle are not shown in the knowledge base. Procedure ChlT throws
away identical transactions to allow procedure MERGE to merge two histories whose beginnings
are identical because they concern transactions executed in the same partition before another net-
work partition occurred.

The procedure MEHG~ accesses the knowledge base to dctcrminc which action to take. The
actions it can take on the T1 being the CM are merge, delete, and delay. Merging a transaction
Tl into the final history means that the transaction will be part of the history of the data items on
which it operates. Every dependent T of a ancestor of T1 is made a dependent of T1 if the inten-
tional read set of T has a non-empty intctiection with the intentional write set of T1. Deleting a
transaction T1 means that it is fcmoved from the history. All depcndcnts of T1 arc made dcpen-
dents of the ancestors of T1 depending on the intersections of the intentional read sets and inten-

tional write sets. Delayitzg a transaction T1 means that the order of execution between transactions

- 14 -

procedure AlERGE=(history HIJI2:rcf history FkI;ref decision DL)void:
begin

history graph NGZ. HG2, FinalHist;
ref decision Declisz: = nit;
transaction Tl: = rrull transaction;

procedure GMT= (history graph R)transaclion:
begin

transaction c
repeat

lei T be the candidate mergeable transaction of R;
if no such T exists

then
there is a cycle in the history graph R;
uccess knowledge base to determine which conditionally committable transaction
should be deleted

else if T is the same as the previous candidate mergeable transaction
then T: = null transaction

fi
until T* null transaction;
CMlI=T

end;

let HGI and HG2 be the history graphs of HI and H2. respectively;
let RESULT be the history graph that results from identijying the LCTs of HGI and HG2;
white there are transactions which are not marked merged in RESULT
do

Tl:=CiWT(RESULT):
access knowledge base (RESULT, Ti, ACTiON);
dase ACTION in
merge: (make every transactloon T whose ancestor is also a ancestor of TI and IR(T) n

IW(TI) f 0, a dependent of Tl;
foreach dependent S of TI
do

if TS(S) < TS(TZ) then T&S’):= TS(T2) fi
od;
mark TI as being mergeri:
add decision to merge TI to DeeList)

delete: (connect a dependent T of TI to a ancestor Ai of TI, ifIR n IW{A$ f 0;
remove TI from RESULT;
add decision to delete TI to DecList);

delay: (make TI a dependent of the last UCC-transaction, whose pre-condition might
be violated by the execution of TI, say 7; and remove edge from TI to Ai
where Ai is an ancestor of both TI and T)

esac
od;
FH: = FinalHist;
DL: = DecList

end

Fig. 7. Yroccdure MERGE

from diflFerent partitions will deviate from the time stamp ordering. T1 is made a dependent of the
last UCC transaction T whose precondition is violated by the post-condition of T1. The depen-
dency of T1 on the mutual ancestor of TI and 7’ is removed from the history graph.

The rules in the knowledge base should be such that a transaction belonging to the KC is

merged into the result history. The other rules concerning the transactions from the CCC should

- 15 -

be such that most of them are merged into the resulting history. Note that a transaction belonging

to the CCC may only be delayed when there is system-wide communication. The knowledge base
is cstablishcd at database design time and is fully replicated. Figure 8 only shows a minimum set
of rules. A possible extension is to test in rule 2 whcthcr the transaction violates the prc-condition
of another transactions belonging to the CCC and then to dccidc to dclctc the first transaction, thus
selectively backing out transactions [5].

Rule I:
if T belongs to UCC then ACTION:==merge fi;

Rule 2:
l if T belongs lo Ihe CCC and its pre-condition is not violated and

T does not violate the pre-condition of a UCC transaction
then ACTION: = merge

fi;

Rule 3:
if T belongs to the CCC and it; pre-condition is violated

then ACTION: = delete
fi;

Rule 4:
if T belongs to the CCC and its pre-condition is not violated and

T violates the pre-condition of a WC-tninsaction
then ACTION: = if there is system- wide communication and

time stamp ordering is important then delete else delay
f i .

fi;

Fig. 8. Rules of a knowledge base

Theorem 2 Procedure MERGE together with the knowledge base as shown in Fig. 8 computes a
valid history.

I Proof A history is valid if the partial order imposed by the time stamp ordering in the different par-
titions is retained and if the pre-conditions of all transactions in the resulting history are fulfilled.

Because the transactions in the diRerent partitions are considered in time stamp ordering the
partial order is maintained. The prc-condition of a UCC transaction cannot be violated by other
UCC transactions by definition and neither by CCC transactions due to the fourth rule of the
knowledge base, and the fact that the UCC transaction is not execution-dependent on CCC transac-
tions. Neither can a combination of CCC transactions and UCC transactions violate the pre-
condition of a UCC transaction, because of the same reasons as above. Also, a CCC transaction
whose prc-condition is violated is deleted from the resulting history graph.

0

- 16 -

Now we will give an example. Assume that the History Graph Rf7SUJ.T after identification
of the LCTs looks as shown in Fig. 9. Furthermore, we assume that the transactions I), W, and M
belong to the UCC and C belongs to the CCC. The superscripts of the transactions indicate the
partition in which they were executed and the subscripts indicate the local time stqmp. Transac-
tions which are merged in the final history are labeled with an asterisk. First, Aif is merged and
Dj and ?Vt become its dependents. The result is shown in Fig. 10. Then 02 bccomcs the CMT
and is merged; W$ becomes its dependent. After LV: has been merged it is the
cution of Ci violates the precondition of IV: and therefore it is delayed. The
Fig. 11. Now both IVj and C$ can be merged and the final history is obtained.

turn of C,2. Exe-
result is shown in

D;(A)

Fig. 9. History Graph RESULT after identification of LCTs

6. Merging and Committing Transactions

In the previous section we presented algorithin MERGE to merge the histories of different
partitions.. In this section we will show how this algorithm is used by the sites in the network after
:communication is re-established between all or several partitions, and when the sites decide about
committing transactions. WC make a distinction bctwccn merging and committing during system-
wide communication and during network partition. The former can be used in environments where
partitions are very unlikely, and the latter where simultaneous complete system-wide communica-
tion hardly ever occurs. An example of the latter environment is a locsely coupled system, e.g., a
network consisting of personal computers, which have a high degree of autonomy.

Fig. 10. History Graph RESULT after merging Mf

Fig. 11. History Graph RESULT after delaying Cl

6.1. Merging and Committing during Systems-Wide Communication

In an environment where a partition hardly ever occurs the best strategy is to wait with mcrg-
ing and committing until system-wide communication has been established again. Then algorithm
MERGE can be executed to merge the histories of the different partitions. Because there is
system-wide communication the algorithm may also decide to delay certain transactions to increase
the number of transactions that will finally bc committed. After that, the list of decisions is scanned
to 1) commit the transactions that arc merged, and 2) undo the transactions that are dcletcd. Undo-\
ing a transaction means that the user will bc notified of the fact that his transaction cannot bc

- 18 -

committed and that appropriiitc actions should be taken. How committing and undoing affect the
d&d at the ditl’crcnt sites in the network will be discussed in the next section on implementation
issues.

6.2. Merging and Committing during Network Yartition

In a loosely coupled network there will hardly ever be system-wide communication. So,
merging and committing transactions cannot bc postponed until thcsc system-wide communications
occur. In this section WC will present an algorithm, which is executed when two or more partitions
have communication again, to decide to commit or undo certain transactions.

Before prcscnting the algorithm we will introduce the notion of a partition-scenario graph. A
partitiorl-scenario graph consist of nodes and directed edges. A node represents a partition and is
labeled with the numbers of the sites in the corresponding partition. A directed edge from node Pi
to node Pj means either that 1) Pi was part of Pj but that a partition caused Pi to split into Pi and

some other partitions (Pi is called a phrtitiorz-node), or that 2) communication has been re-
established between Pj and some other partition(s) to form Pi (Pi is called a merge-node). Pj is
called the predecessor of Pi.

All sites will keep track of their own partition-scenario graph. Because sites within one parti-
tion are able to communicate with each other they will have the same graph. Furthermore, bcc&se
there is no system-wide communication none of the sites will have a partition-scenario graph that
completely describes the current partitions. ‘Therefore, the graph is only used .to keep sack of the
way partitions and reconnections occurred. Figure 12 gives an example of a. pa&on-scenario
graph. For example, the node labeled 23456 is a merge-node and the node labeled 23 a partition-

node. Note, the sites in the partition corresponding to node 1234 do not know anything about
- what happened to sites 5 and 6.

As the partition-scenario graph shows, two things might happen: a n&work partition or the
re-establishment of communication. In the both cases the sites in each partition will update their
paitition-scenario graph. In the latter case algorithm COMMIT-UNDO is executed in the newly
formed partition. Figure 13 shows algorithm COMMIT-UNDO. The algorithm first executes
algorithm MERGE to compute the merge of the histories and the decision list DL of the partitions
between which communication has been re-established again. A decision is either the merge or

delete of a transaction T. Then it checks whethc; the decisions in DL are consistent with the ones
taken by predecessor merge-nodes. If so, they are either committed or undone, and the
corresponding decision is taken from the decision list. Note, the decision list DL consists of both
the decisions taken by the current partition 1” and the dclcte decisions taken by the direct prcdeccs-

sor merge-nodes of P.

- 19 -

time

Fig. 12. An example partition-scenario graph of the node labeled 1234

procedure COMMIT-UNI)O=(history HIJI2;partition P;ref history FH)void:
begin

procedure calf-sites_know=(dccision @boolean:
begin

set of sit6 S;
s l - sites in the partition P,
vi.$~recursively the predecessors of P in the partition-scenario graph and add the set of sites
corresponding to the predecessors if they are merge-nodes and they have also taken decision
D:
all-sites-know := (SS = whole network)

end;

MERGE(fII,H2,FII,DL);
DL := DL -I- delete decisions in DLs of predecessors of P without doubles;
foreach decision D= (type,T) in DL do

case type in
merge: if all-sites-kno\v(l)) then commit(T) fi;
delete: if all.. sires -know(D) then undo(T) fi
esac;

od;
end

Fig. 13. Algorithm COMMIT-UNDO

Algorithm COMi’VIT~WN.DO will bc executed in different partitions. It may occur that exe-
cutions. of algorithm MERGE< take dil‘fcrcnt decisions about a transactions. Ijut as WC will prove
below the condition that all sites know and agree about a particular decision is sufficient to commit

or undo a tmnsaction inspite of diffcrcnt decisions taken by algorithm MERGE.

- 20’

Theorem 3 If T, is committed (?I- undone in partition P all transactions T, (.x(u) arc already com-
mitted or undone.

Proof The theorem holds of course for transactions known in partition P at the time 7” is commit-
ted or undone, because the decision list is ordered on the time stamps of the transactions. So, the
only thing we have to show is that P knows all 7’X with X<JL P knows that all sites know and
agree about the final decision about 7; through the application of algorithm MERGE in the
different partitions (otherwise P could not dccidc to commit or undo T,). Through these same
applications of algorithm MERGE P also knows about the transactions executed at .othcr sites
before Tr .

Theorem 4 If partition P decides to commit or undo transaction T no other partition will take a
decision to the contrary, and all unconditionally committable transactions will be committed.

Proof Partition P can only commit or undo transaction F if it can see in the partition-scenario
graph that all sites agree. So, it is impossible that another partition will take another decision.

The precondition of a unconditionally commitable transaction U executed in partition P can
only be violated by a conditionally committable transaction C with a smaller time stamp executed
in a partition that is not a direct or indirect predecessor of Y. Transaction C can never commit
because it would require all sites to agree about merging C into the final history and all sites that
know about U, the sites in all successors of P, will disagree. Therefore, all unconditionally com-
mittable transactions will commit.

cl

Figure 14 shows the partition-scenario graph know by sites in the partition 45. In partition 1
transaction X1 was executed, in 23 Yz, and in 45 Z3 (the subscripts are their local time stamps).
All three transactions belong to the unconditionally committable class, and the post-condition of X
violates the pre-condition of Y, and the post-condition of Y violates the pre-condition of Z.

In the merge-node 12 the following two decisions were taken: (merge,&) and (delete, Y3.
No transactions were committed or undone. In merge-node 35 the following two decisions were
taken: (merge, Y2) and (delete,Zj). Again no transactions were committed or undone. In mergc-
node 134 three decisions arc taken: (merge,Xl), (delete, Yz), and (merge,Zs). Transaction X1 can
still not be committed because site 5 does not know about the merge decision. In merge-node 25
two decisions ara taken: (merge $1) and (delete, Yz). The same is true here because the sites in
partition 25 do not know yet that the sites in partition 134 have taken a merge decisions about X1.
In merge-node 45 two decisions arc taken: (merge,Xl) and (merge ,Z,). The dccison list DL now
consists of

time

Fig. 14. Partition-scenario graph of partition 45

hw ,X3
(delete, Yz)
hew 23

From the partition-scenario graph we can see that all sites in the network know about (merge,&)
and (delete,Y&. Thcreforc, transaction X1 is committed and Y2 is undone. A final decisions about
transaction 23 cannot be taken at this point.

0

- 22 -

LJntil WC now have carefully avoided to talk about implementation aspects, bccausc we
wanted to explain the notions and algorithms without going into the details of the implementation.
FII&crmorc, there is of COUI-SC no unique implementation. In this section wc wi;l merely show
how everything can be implcmcntcd in a straightforward but inefficient way and indicate ways of
assuring the cfficicncy of the algorithms.

When a partition occurs the values of the data items produced by the last committed transac-
tions arc saved. Transactions that are not aMe to commit bccausc they arc not able to access all
their rcquircd logical and/or physical data items are aborted and have to be executed again under
the network partition mode.

During network partition transactions are executed in the local partition as if the available
data comprise the whole database. If, under normal circumstances, a transaction would commit it is
put in the history of the partition data items it accessed. If a transaction cannot access all its
required data items it is aborted.

After communication has been re-es&blished the histories of the partition data items of the
different partitions are merged into a valid history and the transactions placed in this history are
redone based on the values of the physical data items saved before the partition. This may be
improved by starting from the values of the physical data items obtained during network partition
and try to incorporate transactions executed in the other partition by undoing and redoing transac-
tions [3]. This approach requires that the invcrscs of the transactions are known. By redoing WC

mean that only the database operations of the transaction are exccutcd again.

Conclusion

A schema has been proposed to allow for near normal fimctioning of a database during a net-
work partition. A knowledge base is used to store knowledge about transactions, such as pre- and
post-condi.tions and their classification. The classification indicates whether a transaction is
guaranteed to commit or not after communication has been re-established. An algorithm is given
to compute the classification of the updates. This algorithm requires interaction with the database
administrator to relax constraints and/or adjust transactions. Rased on this classification and rules

in the knowlcdgc base the merge of histories can be computed after communication has been re-
established. If system-wide communication is restored, the transactions in the cqmputed merge of
histories can be committed. Otherwise, the history has to bc kept for fiture merges. A proof is
given that the rules in the knowledge base guarantee that unconditionally committable transactions
arc committed on the logical database. Finally, the problem of committing transactions was itivcsti-
gatcd in an environment where sy-stem-wide communication hardly ever occurs. An algorithm is

given that dccidcs to commit or undo transactions.

WC would like to thank Wolfgang IXclsbcrg, Goran I~‘;~gcrstrom, and Arthur Kcllcr for the fruitful
discussions we had, and Hector Garcia-Molina for his comments on an earlier version of this paper.

Rcfcrcnccs

1.

2.

3.

4.

.

5.

6.

I.
d

8.

9.

10.

ADIBA, M., C~JPIN, J.C., DINOI.,O~~BE, R., G.GAKI)ARIN,, f\~~ BIHAN, J. LE, “Issues in
Distributed Data Base Management Systems: A Technical Overview,” Proc. 41/1 ht. Corzfer.
erlce Very I‘arge Datu Bases, pp. 89-110 (September 1978).

ALSBERG, P.A. AND DAY, J.D., “A Principle for Resilient Sharing of Distributed Resources,”
2nd Int. Conference on Sofrware Engineering, pp. 562-570 (1976).

BLAUSTEIN, B.T., GARCIA-M• LINA, I-I., RIES, D.R., CIIILENSKAS, R.M., AND KAUFMAN,

CH.W., “Maintaining Replicated Databases Even in the Presence of Network Partitions,” ,
CCA, Boston 0.

CHILENSKAS, R.M., BLAUSTEIN, B., AND RIPS, D.R., “Concurrency After the Fact,” pp. 63 in
Symposium on Reliability in Distributed Software and Database Systems, ed.
Wiederhold,IEEE, Pittsburgh (July 1982).

DAVIDSON, S.B. AND GARCIA-M• LINA. I-I., “Protocols for Partitioned Distributed Database
Systems,” Proc. Symp. on Reliabilty in Distributed Sofrware and Datcbase Systems, pp. 145
149 IEEE, (198 I).

EFFELSBERG, W., FINKELSTEIN, S., AND SCIIKOLNICK, M., “Single Database Image in a
Cluster of Processors,” Report RJ 4175 (46103), IBM San Jose (Jan. 1984).

GARCIA-M• LINA, H., ALLEN, T., BLAUS’I-UN, B., CHILENSKAS, R.M., AND RIIZS, D.R.,
“Data-Patch: Integrating Inconsistent Copies of a Database After a Partition,” Proc. Third
Symposium on Reliability in Distributed Software and Database Systems, IEEE, (1983).

MINOIJRA, T. AND WIEDERI-IOLD, G., “Resilient Extended True-Copy Token Scheme for a
Distributed Database,” 1,5X’,!? TSE SE-8(3) pp. 173-189 (May 1982).

PARKER, D.S. AND ET, AL., “Detection of Mutual Inconsistency in Distributed Systems,”

Proc. 5th Berkeley Workshop on Distributed Data Aianagement and Computer Networks, pp.
172-183 (February 19800).

ROTIINIE, J.B. AND GOODMAN, N., “A survey of research and development in distributed

database management,” Proc. 3rd Int. Conference Very Large Data Bases, pp. 48-62

(October 1977).

- 24 -

11. S’I~O~I:I~K:\KIX, M.K. AND NI.~UIIOI I), E., “,4 Distributccl Version of INURES,” Pruc. 2nd
Berkclqv Jt~i~~-k.hop Distributed hta Afmagemellt arid Computer Networks, pp. 19-36 (May
1977). i

1 2 . kVlLLI.ZMS, I<. AN13 El-, A L . , “R*. An Overview of the Architccturc,” RJ 3325, [RM i

Rescarch Laboratory, San Jose, Calif. (Dccembcr 1981).

