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1. Introduction

The course CS204 is a problem solving class offcred to first year Phd. students at
Stanford University. The class consists of five problems drawn from various areas of com-
puter science. The problems are discussed in class and solved and programmed by the
students working in teams. The purpose of the class is to expose the students to the major
paradigms of computer science research.

In this report, the following abbreviations instead of full names will be used to identify
the participants.

EM Ernst Mayr, the Instructor
RA Richard Anderson, Teaching Assistant
PPH  Peter Hochschild, Teaching Assistant

AAS Alejandro Schaffer
ANS  Arun Swamy

AS Ashok Subramanian
CWC Clyde Carpenter
GP George Papagcorgiou
HD Helen Davis

JP Joseph Pallas

MA Mar tin Abadi

MGB Miriam Blatt

RC Ross Casley

RW11 Ramsey laddad
SR Shaibal Roy

Ss Sriram Sankar

ST Steve Tjiang







2. Integer Bricks

2.1 Problem Statement

We want to investigate whether there is an integer brick, i.e., a cuboid whose three
sides, thrce face diagonals, and body diagonal are all positive integers.

Let the three sides of the brick be a, 6, and c. To make the problem computationally
more feasible, we shall restrict ourselves to b,¢ < 10° and a in some rcasonable interval
below 10”. The exact meaning of ‘reasonable” will depend on the details of your algorithm.
One goal is to make this interval as large as possible.

Hint: Let z, y, 2 be the integer sides of a right-angled triangle, i.e.,

2?2 + y? = 22,
Then there arc two relatively prime integers r and s, r > s, such that
Tiy:z=2rs:r —s%:r% 452

While wc are scarching for integer bricks, we also want a list of all “almost” solutions
(a, 6, c) in the above range. Hcrc, an “almost” solution is a brick with all three sides and
all three face diagonals integer, but with the body diagonal irrational.

2.2 Notes for Thursday, January 12

Today3¥ discussion focussed primarily on the subproblen of generating Pythagorean
triples, that is, right-angled triangles with integer sides.

Let, for the moment, a, 6, and ¢ be the integer sides of a right-angled triangle, with
¢ the hypotenuse, and @ and 6 the two legs. In the interest of efliciently generating such
triples, one may very well assume that the greatest conunon divisor o 1 all three o f the
numbers is one, because otherwise onc could factor it out to obtain a triple with smaller
clements. (o f course,if (11, 6, ¢) is a Pythagorcan triple, then so is (mu, mb, mc), for any
positive integer m.)

AS remarked that it is desirable to gcncratc the triples without iistakes, i.e., to
have a method to gencrate all and only Pythagorean triples. SR said that in addition to
ged (a, b, ¢) == 1 one could also require ged(a, 6) = ged(a, ¢) = ged(b, ¢) = 1. This follows
casily from the observation that, if say ged(a, 6) = d > 1 then d” tlivides the lefthand side
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of a®? 4+ b%? = ¢2, and therefore also the righthand side. But from the unique factorization
theorem, one then obtains that d must also divide c. That contradicts the assumption that
gcd(a,b,c) = 1. The argument for the other two pairs runs in an analogous way. One may
therefore look only for reduced Pythagorcan triples, that is Pythagorean triples in which
every pair of the sides are relatively prime. One may also, without loss of generality, take
into account the symmetry of a and 6 by considering only reduced triples with 6 < a <.

EM asked whether more restrictions, for example parity restrictions, can bc placed on
a, 6, c. Obviously, not all three clements can be even because the triples are reduced, and
for the same reason no two of them can bc even. On the other hand EM suggested, assume
that all threec numbers are odd. Then, for any integer m, we have m? = 0 (mod 4) or
m? = 1 (mod 4). If m is odd, it is exactly the second possibility that applies. Ilence, if
one considers a? + b2 = ¢2 with all numbers taken modulo 4, one obtains 2 for the Icfthand
side, and 1 for the righthand side, a contradiction. Similarly, one can exclude the case
that a and 6 are both odd and c is even. Summarizing, in a reduced Pythagorcan triple
(a, 6, c), exactly one of a and 6 must be even while the other and ¢ must be odd.

The class made the following agreement.

Definition 2.1: Let (a, 6, c) be a Pythagorean triple, not necessarily reduced, and let
(a7 b’, ¢ be the corresponding rednced triple. Let a (respectively, 6) be called the even
leg and 6 (respectively, a) the odd leg of the triple if a”(respectively, 6) is even.

AS remarked that the hint given in the problem statement gives a method to generate
reduced Pythagorean triples. The class decided to derive the formulas given in that hint.

Assume that a? + b? = ¢? with (a, 6, c¢) reduced and a even. Then b? = (c - a)(c + a),
and it is easy to sec that the two factors on the right must be relatively prime. But since
the lefthand side is a perlect square, we deduce from the unique factorization theorem,
that both (c — a) and (c la)must be perfect squares, say ¢ - a = z? and ¢ 4 a = y%.

Because of the parity of ¢ and ¢, x and y must both be odd. Hence, r = %5 is an integer,
and so is s = YZ¥. It is straightforward now to verify that with the quantitics so defined,
a = 2rs;
b=r?— 82;
c=r?+s2

Wc also know that r and s must be relatively prime because otherwise (a, 6, ¢) would not
bc reduced. And what is more, since

c--a=(r—s)?

is odd, exactly one of r, s must be ¢ven.

AS then remarked that so far the class had only done the case where a is even. EM
responded that the argument for odd values of a basically worked the same way, and left
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it to the class to fill in the details. Ile gave the final results for this computation:

a =rs;
1
b = E (7‘2 - 82),
c= ! (r? + s?)
2

Again, r and s are relatively prime, but in this case they must both be odd.

EM also observed that interchanging a and b in a Pythagorean triple can easily be seen
to correspond to replacing r and s by r + s and r — s (assuming without loss of generality
that r > s).

SR asked whether a (reduced) triple (a, b, c) uniquely determines (r, s) (assuming again
that r > s). EM said that it does, and that this can be seen from the fact that the equation
for r,

a?

2 - —_—
r“ =>b+ oy
which we obtain from the equations above by eliminating s, only has one positive solution
for 2.
The discussion then turned to getting a crude estimate for the number of (r, s) pairs
involved. The following restrictions were exhibited:

« Since a, b <10% we get ¢ < v/2 x 108, Therefore, for the case that a = 2rs is the even
leg, 1 <s <r <1190, and exactly one of r and s is even. For the case that a = rs is
the odd leg, 1 <s <r < 1682, and r and s are both odd.

- - - 5 -
« Since a = 2rs if a is the cven leg we get s < 20 Otherwise a = rs and thus

¢ T
< 10°
S r

e Since a > b wc obtain (in both cases) s > (\/5 - Dr.

A crude estimate yiclds about 300,000 (r, s)-pairs satisfying the above constraints.

2.3 Notes for Tuesday, January 17

IEM began with a bricf review of the facts established at the previous meeting. Thesc
facts concern the parametric generation of integer sided triangles. Discussion then turned
to the subject of implicit constraints on the side lengths of integer bricks.

AS presented the following observation. Let A, B, and C be the dimensions of a brick.
Then at least two of A, B and C must be congruent to zero modulo four, and one must
be congruent to zero modulo sixteen. This is established by first considering a single face
with legs a and b, and hypotenuse c. Assume that (a, b, c) is reduced, and that four divides
neither « nor b. Then, recalling that exactly one of a and b must be cven, a? + b2 is
congruent to 5 or 13 modulo 16. Unlortunately (maybe fortunately), none of these values
is a quadratic residue modulo 16 and thus this contradicts that a? 4+ b2 = ¢2. Thercfore
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one leg of cach face is divisible by four. This in turn implies that at least two legs of any
brick are divisible by four. To see that one leg is divisible by sixteen, consider the face
formed by the two legs that are divisible by four. Shrink both legs by a factor of four and
apply the above fact about faces to reveal that one leg must still be divisible by four.

EM noted that this fact considerably reduces the size of the space that needs to be
searched. Ile also noted that one may assume that the sides of the brick are relatively
prime. JP pointed out that that implies that exactly two sides of the brick are divisible
by four.

AS announced another similar constraint, namely, that exactly two sides must be
divisible by 3 and one by 9.

EM responded by claiming a similar result for 5 (though possibly less useful for our
purposes since it could he the hypotenuse whose length is divisible by 5) and asked whether
this could be generalized. No generalization came forth and discussion shifted to the ques-
tion of whether the modulo 3, 4 and 5 constraints could be nicely combined. EM suggested
that it might bc recasonable to employ merely the modulo 4 constraint; attempting more
might well result in an unpleasant tangle of rules.

ANS wondered whether the divisible-by-four rule would be used to cut down the
number of admissible r, s pairs. AS replied that it would provided that the program
generated the divisible-by-four sides first. At this point an impenetrable controversy arose.

IEM restored order by pointing out that there arc at least two ways of structuring the
brick hunt. The first method is to use an outer loop to generate all admissible B, C pairs.
Then for each such pair, an inner loop could hunt for suitable values of A.

Another approach would be to employ an outer loop for enumerating candidate values
of A and to use an inner loop to find compatible B, C values.

[EM added that it was not clear in advance which general outline would be preferable.

JP suggested that a table of potential r, s (or I3, C) pairs might be usclul. Naturally
IEM wanted to know how big the table would he. ANS replied that the 7, s table contains
abou t 100,000 entries. The “two sides divisible by four” business came up again; AS argued
that the constraint doesnt reduce the size of the table. [EM stated that it, restricts the m3
but not r or s. CW responded that it does force r and s to remain smaller.

IEM noted that there was an asymmetry in the statement of the problem concerning
the range of A versus the range of B and C. If one deccided to allow A the same range
as B and C one might force, for example, A to be divisible by 4 and B to be divisible
by 16. Howcvcr, if A is confined to a smaller range (in order to keep the computation
Within reason) such an approach is faulty. Thus he feels it would be preferable to use an
unsymmetric algorithm (the alternative being to have A, B and ' share a common but
smaller range).

ANS suggested that the second general framework for the program would be most
appropriate (with some kind of case statement in the inner loop conditioned on A). EM
preached the value of keeping an open mind, while AAS pointed out that it would be more
cflicient to have several sets ol inner loops corresponding to the different cases of A.

AS mentioned that no use had yet been made of the fact that we arc interested in
bricks with integer length body diagonals. He added that the requirement of reporting all
almost bricks would preclude taking advantage of the body diagonal constraint.
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EM provided a brief historical perspective on the problem. He noted that the subject
of Diophantine equations is classic (dating as it does, back to Diophant). Ililbert’s Tenth
problem was the question of decidability of Diophantine equations; this question was rel-
atively recently answered in the negative. Thus there is no algorithm capable of solving
general Diophantine equations. Ilowever, linear Diophantine equations are solvable, albeit
slowly. (The problem is NP-complete.) Euler is responsible for the paramectrization of
integer length triangles. Some not very thorough tables of almost bricks have been pro-
duced; no examples of bricks have yet been discovcrcd. EM added that he had heard that
a search over the range 0 < s < r < 30 has been conducted (without success).

MGB suggested starting our search with r > s > 30 but EM pointed out that it
wouldnt do to force both r and s to exceed 30.

AAS wondered whether it would help to make use of the body diagonal constraint.
EM doubted that it would help much, but said it would be worthwhile if it significantly
increased the range of A that could be searched.

The next topic of discussion was generation of r, s pairs. AAS said that testing the
greatest common divisor of every pair of integers in the suitable range was too ineflicient.
It is better to use an outer loop to run through values of s, factor these values and then,
in an inner loop, test candidates for r to see whether they arc divisible by any factor of
s. EM suggested a refinement of this idea based on sieves. The idea is to use a bit vector
corresponding to possible values of r (something like s + 1 <r < 1189) and to sift this

. vector with all multiples of the prime factors of s. AAS pointed out that some bits of the

vector would thercby be sifted out several times; RWH replied that the number of such
repetitions would be limited to the number of prime factors of s, which is always fairly
small. MA noted that one might save work by using information gninctl from previous
values of s. For example the r vector corrcspontling to s = 10 can be dcrivctl from the r
vector corresponding to s = 5 merely by sifting out all multiples of two.

EM asked whether it would bc possible to store all r, s pairs. AAS volunteered that
there were about 336,000 pairs in the range (his program took 10 seconds to count them).
IEM claimed that storing 336,000 pairs of integers would take up too much space. ANS
suggested storing at any given time only the r values for a single value of s. 1M suggcstcd
a bit vector; a rough estimate of the required size came out to 35k-words. AAS argued that
even this modest sized table might bc plagued by page faults. EM postponed discussion
of page faults until it is known how the table will bc used. He suggcsted that everyone try
to gencrate the r, s table. Ile also urged thought on the question of how to bring the third
leg into play. ANS wanted to know if there were likely to be more constraints. EM didnt
think so unless anyoue could come up with a proof that no bricks exist!

2.4 Notes for Thursday, January 19

EM briefly described the constraints that were presented or alluded to in the last
meeting. These include the facts that:
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() Two legs of every brick must be divisible by four and one of them must bc divisible
by sixteen.

(1) Two legs of every brick must be divisible by three and one of them must be divisible
by nine.

EM noted that some information can be obtained by analyzing the equation a? + b2 =
¢? modulo 5 (the quadratic residues modulo 5 are 1 and 4). The resulting constraint is
not too helpful however. One possibility is that only the hypotenuse is divisible by five.
In this case one leg must be congruent to 1 modulo 5 while the other must be congruent
to £+2 modulo 5. This kind of constraint promises to be much more unwieldy than the
modulo 3 and 4 constraints.

RC had investigated the situation modulo higher primes; he reported that the results
seemed quite unattractive. EM agreed and remarked that the additional programming
complexity would likely outweigh the potential benefits.

RWH connected the leg constraints with constraints on r, s values by claiming that
if 16 divides A then one member of the corresponding r, s pair (the even one) must be
divisible by 8. SS suggested that rather than imposing the condition r > s, one might
insist that r bc even. EM noted that this would not reduce the space of r, s values.

SR discussed the effect of directly applying the modulo 3 and 4 constraints to the
brick legs. He noted that there are six cases of which the following is a typical example:

(i) Modulo 4 constraint:

A # 0 mod 2 = 0 mod 4 C=0mod 16

(ii) Modulo 3 constraint:

A #0mod 3 B =0mod 3 C=0mod9

The implications of these simultaneous constraints reduce the space of candidates for
A, B and C. For example, in this case C must be divisible by 144, B by 12, and A by
neither 2 nor 3.

Some controversy erupted at this point. Eventually a consensus was reached that
. these constraints alone do not bring the size of the scarch space within acceptable limits.

CWC asked a question about modulo 9 constraints. EM didnt see any generally
applicable rule coming from 9; though he did mention that there might exist some kind of
modulo 7 rule. This topic was dropped in favor of the matter of generating r, s pairs.

SS triggered a discussion of merits of gencrating only the pairs with odd members.
EM suggested that this would trade storage for computation; HD noted that it had already
been established that it would bc possible to store (as a giant bit vector) the r, s table in
the computer; SR topped them both by drawing attention to the possibility that forcing
both r and s to have odd parity would incrcase the range of r, s values that had to bc
considered. It was eventually decided that the r, s range would have to bc expanded by a
factor of 2 or 4/2 or something like that.
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SS was then permitted to continue explaining his plan for generating r, s pairs. He
apparently had in mind to use the r, s pairs in the sequence defined by increasing value of
the product of r and s. In order to conserve storage, he proposed a kind of pipeline. The
r, s pairs are computed in lexicographic order and fed into the pipe. The pipe transmits
these pairs to a data structure wherein they are temporarily stored. This data structure is
composed of a set of lists. Each list contains those r, s pairs with a given product. As soon
as each list is completed, it is shoved into an output pipe (in order of increasing product
value). As these lists emerge from the output pipe they are consumed by some process he
did not describe, and are then discarded.

Because this scheme demands some form of dynamic storage allocation, a debate
about the capabilitics of various languages ensued. Some argued that most PASCAL
implementations fail to support storage reclamation. Others, including EM, maintained
that the PASCAL on local machines does correctly implement dynamic storage allocation.
EM also noted that one could provide one3 own dynamic storage facility (using one% own
frce storage list).

EM then turned to the issue of the gencral structure of suitable algorithms. At the
last mceting hc noted two possible outlines. Ile proposed spending the rest of the period
looking at his second outline. In this outlint:, an outer loop generates candidate values for
A, while an inner loop looks for compatible I3, C values. EM pointed out that there would
be various cases of the inner loop, depending, for example, on whether A was divisible
by four. IHe suggested postponing discussion of the details of the different cases, and the
order in which the A% would bc examined. Thus he asked what the program should do to
investigate a given value of A.

SR asked whether there was any reason to believe that bricks with widely different
side lengths exist. XM replied that, at. any rate, there arc almost bricks whose three sides
differ in length by several orders of magnitude.

After some desultory conversation that will not bc reported, talk turned back to the
question of what to tlo when presented with a particular value of A.

. People generally agreed that the first step would bc to find the prime factorization
of A. EM suggested that it would bc helpful to find all factorizations of A of the form
A = mrs with r > s and ged(r, s) -- 1. This suggestion raised the question of how many
such factorizations cxist. It was quickly noticed that the number of such factorizations
is related to the number of three way partitions of the prime factors of A (if repecated
factors arc properly taken into account). An attempt was made to find a rough upper
bound on the number of factorizations; however it was dropped before it yielded specific
numbers. Nevertheless people felt optimistic that, at least for a lot of /i%, the number
of factorizations wouldnt be cnormous. This optimism was derived from the observation
that cither A would have few prime factors or that it would have many rcpcnted prime
factors.

Having ngrced that it would probably be feasible (and possibly bc uscful) to enumerate
all mrs factorizations of A, the class was faced with the question of what cxactly to do
with them. RC observed that one could, at least in principle, consider every pair of mrs
factorizations. One factorization would define B, the other would define C; and it would




2. INTEGER BRICKS 9

only remain to check the length of the BC-face diagonal in order to detect almost brickness.
He noted that unfortunately there would probably be far too many pairs of factorizations.

SS attempted to rescue matters by considering the impact of the modulo 4 and 16
constraints. EM intervened by begging the class to consider what if anything might be
done given A and a factorization A = mrs.

HD snggestcd that if it could bc done quickly, it might pay to factor B (where B =
m(r? — s?)). Somehow conversation then drifted back towards the idea of examining all
pairs of mrs factorizations. That seen-ted to lead nowhere in particular and RC pointed
out that the discussion was going in circles.

EM and HD again brought up the question of factoring B. EM recalled a remark he
made at the last meeting, namely that (modulo some handwaving) reversing the roles of
A and B correspond to replacing r and s by r + s and r — s respectively.

At this point, the question of why one would even want to factor B arose. It emerged
that candidates for C could be generated from the factors of B in the same way that B
was generated from the factors of A. (i.e. by considering all mrs factorizations of B.)

AS clarified the procedure by pointing out that since B = m(r? — s?) = m(r + s)(r — s)
it is possible to quickly factor B by factoring r + s and r — s, both of which are small.

. 2.5 Notes For Tuesday, January 24

This class session was devoted to a discussion of the various solutions to Problem 1.
Four groups of students consbructcd programs for finding bricks. The groups were: {RWH,
MG B, ST}, { 1 ID, RC, SR}, { CWC, JP, SS}, {AS, AAS, ANS}.

IID presented her groupd solution first. An outline of their program follows:

Construct an A where A is not, prime, not even, and A < 10
Choose a multiplier value m.
Choose values for r and s (with r < 1681, s < r and gcd(r, s) = 1).

Compute value of "B" corresponding to r,s.
Put B on the appropriate list (there is a separate list for
each of the various cases of B relative to the modulo 3 and 4
constraints).

Search for suitable B,C values from all pairs of compatible lists.

11D noted that her group® program can bc run in a mode where it only examines values
of A that have at most six distinct prime factors. She gave some statistics for running the
program (written in PASCAL) in the unrestricted case: in examining all A < 421520, the
program looked at a total of 3 million multipliers, 1 million values of B, and 1.5 million
B, C pairs. This feat consumed 6000 scconds of VAX-11/780 CPU time and unearthed
6207 almost bricks (not nccessarily with rclntively prime edges).

IEM remarked that it would be interesting to have an analysis of the length of the lists
of candidate B and C values and of the total running time of the algorithm. IID) pointed




10 A PROGRAMMING _AND _PROBLEM: SOLVING SEMINAR

out that, empirically, it seems that there are only about twice as many B, C pairs to be
examined as there are B values farmed out to the lists.

HD elaborated on the procedure for constructing A values by explaining that they are
produced by a set of nested loops. Each such loop corresponds to a possible prime factor
p of A; the loop index value determines the number of times that p divides A.

SR suggested a possible variation on HD’s algorithm; namely to generate the possible
r, s values in the outer loop rather than in an inner loop. EM noted that this table could
be stored and consulted in the search for C values. SR raised the difficulty of searching
through the r, s table in a useful order. EM proposed that storing several copies (organized
in different, ways, corresponding to several small prime factors of r might alleviate the
troubles.

AS described his group’ program. Their program is quite similar to that of I-ID3%
group. The main difference is that AS3% program chooses the r, s values before choosing m
The program uses the factorization of A to generate the relatively prime r s pairs. The
other difference between the programs is that the B and C candidates are not split into
scparate lists. AS pointed out that this choice reflected his group? estimate of the cost of
separating the candidates into categories, versus the benefits of having fewer eligible pairs.
AS noted that the largest encountered list had 1215 entries, but that it usually has only
30 or 40 en tries.

This program, written in C, was run on the VAX. (After it was discovered that the

" C compiler for the DE-20 produces amazingly ineflicient code.) It took 20 minutes of

CPU time to search the space A < 250000, B < 109, C < 10° whercin it found 385 almost

bricks (counting only those with relatively prime sides). With 71 minutes of CPU time it
managed to examine the range A, B, C < 10% and find 242 almost bricks.

IEM mentioned that it might be a good idea to have several nlgori thms; one to deal
with values of A with lots of prime factors, and one to deal with values of A composed
of few factors. AS noted that his program does this, at lcast implicitly. It uses dillerent
code to enumerate r, s pairs according to the “shape” (i.e. the number of factors and their
multiplicities) of the factor table of A.

EM wondered whether anyone had managed to save computation by using B values
from one choice of A in constructing B values for a different (but related) A. For example,
it appears possible to cificiently transform the list of B, C candidates corresponding to
one value of A into the list for any other value of A having more prime factors (or greater
multiplicities of factors). No one confessed to having attempted such a scheme. However,
under severe authoritarian pressure, SS was persuaded to give it a try.

AS admitted that his group3 program did not examine even values of A He noted
that since an even valuc of A might have a lot of factors of 2, it might give rise to unhcalthy
amounts of computation. (Of course, this restriction matters only when the search space
is asymetric in A, B and C.)

RWH then described his group? approach. They at tempted to find, for each value
of A, two factorizations mr;sy = myres, = A. They discovered a number of constraints
concerning common factors among the numbers my, mq, r1,75,8,,52 (based o 1 the fact
that A = m;mqk where k = ged( 7y 81, r2s2)). By generating the m3, rsand 8’s from a
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table of factors, these constraints can be automatically satisfied. No run-time statistics
were yet available for this approach.

SS’s group wrote a program roughly along the lines of HD’s group. However, SS
wrote it in assembly language. (The program uses a special trick to rapidly eliminate
pairs of incom patible multipliers (i.e. multipliers with common factors). The idea is to
attach a bit vector to each B,C candidate which indicates the presence or absence of
each possible prime factor in the candidate multiplier. Whenever the logical AND of the
vectors corresponding to a pair of candidates is non-zero, the pair is incompatible.) With
an efficient program to generate the primes less than 333,333, his program took only about
eight minutes of CPU time (DEC-20) to search the range A, B,C < 10°.

Listed below are a few references to papers concerned with the topic of bricks.

[11 J. Leech, “The Rational Cuboid Revisited,” American Math. Monthly, 84 (1977)
pp-518-533.

[2] J. Leech, “Corrections to The Rational Cuboid Revisited,” American Math. Monthly,
85 (1977) p.472

[3] M. Lal and W.J. Blundon, “Solutions of the Diophantine Equations z? + y? = [?,
y? + 22 = m? 22 + 12 = n?” Math. Comp., 20 (1966) pp.144-147

Reference [3] contains a list of 130 almost bricks.

2.6 Notes for Thursday, January 26

EM began the class with a brief swmmary of the results of Problem 1. The highlight
was that SS had coded the problem in assembly language, achieving a running time of 8
minutes. To generate the primes up to about 400,000 required only 25 seconds. Discussion
then shifted to Problem 2.

2.7 Notes for Tuesday, March 6

SS began the class by presenting his results from Problem 1. Ile had run his program
up to n =: 10,000,000 over the weekend. His complete results arc summarized in the table
below.
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12, . . . . .. A PROGRAMMING

n=1x10° n =4 x10° n = 10 x 10° Complexity

T Time:

. gerxllrgreaagﬁlber 0:25 min. 2:55 min. 25:00 min. O(n'-?)
Finding constants 2:00 min. 8:00 min. 29:00 min. O(nt*e)
Rest of program 4:14 min. 20:34 min. 56:36 min. O(n_”‘_)
space:

it vector
or primes 4.52 K 18.1 K 45.2 K O(n)
Block size for
m,r,s) records 3.32 K 5.76 K 7.99 K O(n"4)
Results:
Almost bricks 242 472 704
Largest smallest
prime factor 19 29 31
Integer bricks 0 0 0

EM had derived bounds on the running time for the various components of the pro-

gram. For the finding of the constants and the rest of the program, the running time is
O(n log® n). The space requirement for storing the bit vector of primes could bc reduced

to O(y/n). The program would have to be modificd so that the bricks were generated by

the size of their largest side as opposed to the size of their smallest side. If this was done
then the sieve could be constructed in blocks of size

two blocks would be needed at a time. The program did not find any integer bricks in the

n as opposed to all at once. Only

rangeup to 10 million. KM conjectured that there are no integer bricks. A proof of this

is left as an exercise to the reader.
A table of alimost bricks is presented in the appendix. This list was compiled from the

computer outputs provided by SS. The list is printed in two different sequences, once in
increasing odd side length, and once in increasing shortest side length.




3. Scheduling

3.1 Problem Statement

A scheduling problem is given by a number m of identical parallel processors, and a
system of = tasks together with preccdence constraints (or a partial order) among these
tasks. If ¢ < vfor two tasks tand ¢’ the execution of task thas to be finished before task
t’ can be started. We assume that < is transitively reduced, i.e., if t< vthen there is no
t" different from tand vsuch that t< v <t

A scheduling method is a predicate which tells us, for every task system and number m”
of idle processors, which tasks to start executing on the idle processors. A (nonpreemptive)
schedule can, therefore, be obtained in the following way.

(i) at tunc O, all m processors arc idle; we use the scheduling method to determine,
which tasks of the task system should start execution. We assign these tasks to the
appropriate number of processors and remove them from the task system.

(i) at any time when a processor becomes idle, and there is at least one task left to be
executed, we determine the number m?” of idle processors at that time. Again, we
use tlie scheduling method to determine which tasks of the task system should start
execution, we remove them from the task system and assign them to the appropriate
nwmber of processors.

Note that in general, if at some time, m”> 0 processors are idle, not necessarily all of them

are assigned a task at this moment. It could be that there arc not cnough tasks available to

be executed, or the scheduling method could intentionally leave processors idle! We insist,
however, that new tasks are started only (except at time 0) whenever a task is finished.

Wc now consider the case that the execution time t; of the i-th task is not a fixed
integer but randomly distributed. In particular, we assume that all cxccution times t; are
indcpendcent, identically distributed random variables with a negative exponential distri-
bution and mean 1. Thus,

Prob(t; <a)=1—¢* foralla>0

where e = 2.71828.. . .

Woc also assume that the number of processors is fixed, m = 3, and that the precedence
constraints arc restricted in the sense that they form, in graphical terms, in-trees with a
small number of branches, say 3 or 4. Wc only look at task systems with at most 30 tasks.

Every scheduling method determines, for every task system with prccedence con-
straints, anaverage execution time for this system. Our goal is to devise several scheduling
methods and compare them with respect to minimizing this average cxccution time.
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3.2 Notes for Thursday, January 26

EM asked if there were any initial observations about the second problem.

SR pointed out that with the greedy algorithm, the number of active processors will
never increase, i.e. once there are k idle processors, there will always be at least &k idle
processors.

RWI-I brought up the memoryless property of exponential distribution, after a job has
runt units, its time until finishing still has the same exponential distribution.

EM then began providing some background for scheduling problems in general. The
basic problem is given a collection of tasks and several processors, what gets scheduled when
and where. There are many different scheduling problems, depending on what features are
chosen. Some of the facets of scheduling problems are:

e a single processor or several processors.

e execution times could be all the same, different, or random.

e the tasks could be subject to precedence constraints, either as a tree or as a directed
acyclic graph. °

e there could be release times, deadlines, or due times for the tasks.

e there are many possible optimality criteria, such as the total time taken or mininmizing
the total lateness of the jobs.

Taking various combinations of these, one count gives about 9000 scheduling problems,
80% of which arc NP-complete, 10% arc known to be polynomial, and 10% arc open. J. K.
Lenstra et. al. have developed a computer data base to keep track of results on scheduling
problems (CACM November, 1982).

The prccedence constraints for the tasks, are in general a partial order. Possibilities
include no constraints, a lincar order, or as in the case of this problem, the constraints
form a tree. The tasks can be viewed as being in levels, either with the tasks pushed down
as far as possible to give alatest possible time (LPT) they could be run, or pushed up
to give the carliest possible time (EPT) they could be run. With the LPT levels, if the
tasks arc taken off from the highest level first (the HLI algorithm) the tasks are done first
which are the longest distance from the root. A classic result of scheduling theory is that
the HLF algorithm is optimal for the case of in-trees (T.C. IIu, 1961). The problem of
two processors for arbitrary prcccdence constraints was solved by Coffman and Graham
in 1971. Most generalizations of these problems are NI? complete, including m-processors
with arbitrary precedence constraints and 2 processors with exccution times of 1 and 2

(Ullman).

The motivation for looking at stochastic scheduling is that in real applications it is
not gencrally known how long a task will take when it is scheduled. To model this it is
necessary to assume some probability distribution for the execution times of the tasks.
The probability distribution that will be studied is exponential distribution. For the case
of 2 processors with arbitrary precedence constraints it is known that the IILF algorithm
is the best in the sense that it gives the lowest average exccution time. For the case of 3
processors, the problem is opc 11, although examples arc known where I1LF is not optimal.
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In our casc the distribution for the task execution times is the exponential distribution
with mean 1. The distribution function for exponential distribution with mean u is f(z) =
L —e %" for £ > 0 and the probability density function is p(z) = Iile‘”‘/“ for £ > 0. One
important property of this distribution is that if X, X, arc independent random variables
with exponential distribution and mean u then min(X;, X;) has exponential distribution
with mean % . Similarly the minimum of three indcpcnclent exponential random variables
with meau u is exponential with mean é-,u. This is about the extent of the probability
theory that will be required for the problem. More information can be found in Knuth
section 3.4.1. The basic idea is to commit three processors to three leaves of the tree and
run them until one finishes. The task that is finished can be removed and a new leaf is
assigned to the processor. The exponential distribution allows viewing these as all three
processors starting anew. The memoryless property of the distribution allows execution
times of the old tasks to bc regenerated and a time to be generated for the new task.

To begin the actual problem, EM suggested to look at the problem of computing
the expected time for scheduling trees on two processors. The first case is to consider
scheduling a tree with just two branches.

As long as ncither branch has been retnoved, both processors will work, and when there
is only one branch left a single processor can work. The time will be the average number
of steps to remove a branch plus the average number of tasks left when one branch is
removed. This problem is essentially the Toilet Paper Problem from an AA qual. The
setting for the problem is a stall with two rolls of t.p., each of which initially has n sheets.
Pcople randomly select a roll and use a sheet from it, the question tltat is asked is what is
the expected number of sheets left on a roll when the other one is used up. It is natural
to view this problem using a lattice. The point (n, m) contains the expected number of
steps to remove all the tasks from a bush initially with n and m tasks on each branch.
EM suggested a dynamic programming approach to constructing a table of the expected
values. Ile reccommended that the entries in the table be normalized so that the entries
were intcgers. Since the trees that the problem deals with are small (< 30 nodes), intcgers
will not get too big. A closed form for the expectation would bc interesting, but the best
IEM said ho had come up with was a fairly ugly summation. As problems for the next
class, IEM suggested thinking about how to handle the various cases of trees with 3 leaves
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and how to enumerate the topological classes of trees with 4 and 5 leaves.

3.3 Notes for Tuesday, January 31 .

The discussion began with a clarification of what the actual problem is. The first
part of the problem is to compute the expected time for scheduling 2 and 3 leaf trees. A
precedence tree will be given as input. With this information stored in tables, it will then
be possible to compute the expected times for scheduling using various rules for assigning
tasks to processors. The goal will be to come up with several methods and to compare
their performance.

The question of where the scheduler resided arose. EM said that it should be regarded
as an oracle that is consulted cvery time a decision must be made, the oracle requires no
time to answer.

GP presented an example of a tree where the HLIFF method does not give the best
average performance. The qualitative argument is that you want to keep as many proces-
sors busy for as long as possible. With the HLF algorithm, the number of leaves would be
reduced to 2 very quickly. A better approach would bc to assign a processor to the lowest
leaf so as to keep 3 processors busy for as long as possible.

EM suggested that the best thing to do is to keep as many processors busy as possible

siuce the mean time for 3 processors to complete a task is %, the mean for 2 is % and the
mean for 1 is 1. The problem will be to minimize a weighted sum. There will be some

trade offs as to how long a number of processors will be busy.
SR formulated a heuristic of deferring removing leaves for as long as possible.

[XM said one thing to pay attention to was the points where it went from 3 processors
working to 2 processors to 1 processor.
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The discussion then returned to computing the average time for a two branch bush.
The branches will have m and n nodes each, with m > n. What is needed is to compute
the expected number of nodes left when one branch is used up. To compute this a lattice is
used, with the point (n) representing a bush with branches of length m and n. The two
leaves have the same probability of being removed, so there is a_% chance of going down and
a —% chance of going left. The probability of having j nodes left on the second branch when
the other one is removed is half the probability of going from (m, n) to (1, j). The number
of paths form (m, n) to (1, j) is (m*::f"l) so the probability is ("‘t’t‘_‘f_ Y g—(ndm=j—1),
The expected number of nodes left when onc branch is finished is

1. +n-i-| . — i
Apn= Z Ez( m +n .| )2--(m+n—z—1)+ Z %i(m+n 1. 1)2__(m+n_1_1)

noo- i moo-
0<ikn 0<i<m

SR had computed the exact value of this in the case that the branches have the same
length. He defined T, ,, to bc the expected time to remove all of the tasks. It is easy to
sce that T, , = % A, + n. His result is that T, ,, = n + 535 (2").

n
EM said that these values could be computed by dynamic programming. The expected
number of tasks left when one branch is finished satisfies the recurrence:

1
Am,n = E(Am,n—l + Am—— 1 ,n), Am,() = A(),m =m.
The values are symmetric with respect to the diagonal, so only the part of the matrix
below the diagonal really needs to be computed. Another consequence of this is that

A= A

Sittcc the values on the diagonal are the same as the values on the subdiagonal, it is not
necessary to compute the values on the diagonal. The values on the diagonal are

2t 1
Ai,,’ = 0 1, W.
EM asked the class to compute the values for a 30 x 30 table being careful of round off,
perhaps using double or triple precision integers. The generalization of this to the 3 leaf
case is fairly straight forward. In that case, the values should be computed for the slice of
the 30 x 30 x 30 cube that has ¢ + j + k < 30. One interesting thing to look at are the
contours of approximately equal expected times in these tables.

There arc a number of cases of trees to consider when the tree has 3 or more leaves.
One way to get canonical members of the topological classes is to rotate the branches so
that the highest branch is on the left. There are two classes for 3 leaf trees. The class was
asked to identify the classes for 4 and 5 leaf trees.

Here is a small table for the A, ;:
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27
1024
630 1386
256 512
140 315 756
64 128 256
30 1 175 441
16 64 128
6 15 40 0, 26G
4 8 16 éé 64
1 3 9 65 5
T 2 4 gf 16 532

3.4 Notes for Thursday, February 2

EM began the class by asking what progress had been made on the scheduling problem.

RC had looked into the problem of enumecrating all trees that would be in the range
of interest. For trees of 2 and 3 branches there is only one type of each, while there are
two distinct types of 4 branch trees. The trees can be characterized by the lengths of the
various segments of the trees. For 4 branch trees, 6 parameters are needed. RWH pointed
out that by allowing some of the parameters to be zero, nodes of degrce greater than two
can be handled. RC said that the obvious way to store the trees would bc to use a 6
dimensional array, but that the array would be so big that it wouldnt be feasible and only
a small portion of the array would be relevant. A different approach would bc to use some
kind of encoding of trees. One possibility would be to usc a LISP like encoding where the
first element would be the distance from the root to the first branch and the remaining
elements would be lists for the subtrees. For example the tree

would be (1(311)(211)). With an encoding of trees, they could bc ordered Icxicographically,
and then they could bc accessed in log n time using binary search.

RC then pointed out that it is also necessary to keep track of which Icavcs had pro-
ccssors assigned to them. There was some discussion of this before it was agreed that it
probably is necessary to record which tasks have been assigned. The problem is that this
information further increases the number of stales to keep track of. IiM said that it might
be possible to use the scheduling rules to reduce the number of combinations of Icaves that
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had been assigned. RC suggested that restricting the classes of scheduling rules might also
help.

GP had developed a similar characterization of trees as RC’s. GP said that allowing
preemption would get rid of the problem of recording active tasks and might also allow
better schedules.

EM agreed that things would be simpler with preemption, but recommended that the
class continue working on the given problem. EM also said that for the two processor case,
preemption did not help.

GP brought up the problem of large numbers for computing the three dimensional
case, saying that the denominators would be larger than the two dimensional case and
would contain powers of both 2 and 3.

SR wondered if it might be better to store probabilities instead of expectations in
the tables. Overflow might not be quite as bad with probabilities, it wouldnt occur until
tables were 18 x 18. EM thought it was still better to store expectations since look up
could be done with one access, while working with probabilities there would bc quite a few
accesses needed to compute the expected value. This probably is an important efficiency
consideration. --

AS said that the number of trees of interest at a given time will be small, so that it
will only be necessary to look at neighboring trees. AS hoped that it would be possible
to avoid generating all subtrecs. EM wanted the method to work so that given any tree
(within the size of interest), the best way to schedule the tree could be found. EM said
it would bc best to try to generate all trees with some mechanism so that table look up
would be very fast. One problem that would be nice to solve is to End the smallest counter
example to HLF.

ST had also looked into the problem of enumerating trees. ST had a recursive proce-
dure for doing this, one aspect of it was a way to avoid generating duplicate trees.

RWIH had generated the 30 x 30 table discussed during the previous class. He had
used his own multi-precision routines. The value that was calculated for Ay 3y was about
6.5.

MGB had thought about experimental simulations as a way to test various scheduling
strategies. EM said a problem with this approach would be that the differences in expected
times would be very small. In order to get statistically significant results the number of
cxperiments might have to bc very large.

AAS had an idea about generating trees by considering the junction types. To get the
sizes of trees, partitions could be used. The partitions could bc precomputed and stored
in tables. Duplicale trees would only be gencrated when the trees were symmetric.

There was a question about how the tables for 3 branch trees would be used since the
tables were just based on the branch sizes. 15M said that the tables would aid in computing
the transitions from 3 leaf trees to 2 leaf trees.

CWC had counted the topological classes of 4 and 5 branch trees by a brute force
approach. There are 27 classes of 4 branch trees and 236 classes of 5 branch trees.

AS brought up the question of what the expected time for an algorithm would bc if
the input tree was random. AS pointed out that this would require a probability space of
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trees. EM said that this was a different problem since we want to be able to compute the
expected time for a given tree as input.

The discussion then turned to various scheduling methods, to come up with approaches
that would be different from HLI'. The idea is to come up with a predicate that can be used
as a scheduling rule. SR pointed out that by dynamic programming optimal tables could
be constructed. This would give a rather complicated predicate that would be optimal.
As a simple predicate, EM suggested that one might want to kecp three leaves for as long
as possible. SS suggested working on the longest chains first. RWH said that it might be
a good ideca to choose the task at greatest distance from the two running tasks. Some rule
would also be needed to start things up.

3.5 Notes for Tuesday, February 7

RWH began the discussion by presenting a method to represent trees for the dynamic
programming approach to the problem. For 4 branch trees there are two distinct types of
trees to be considered. These must bc handled separately. The trees are:

Iach of these trees can be represented with 6 parameters indicating the lengths of
-each scgment (segments of length 0 arc allowed so as to handle trees with nodes of degree
greater than two). Since any segment can be of length up to 30, (since wc arc restricting
oursclves to up to 30 node trees), to store these in a 6-dimensional array would require
306 ~ 7 x 108 words. The basic problem with the array representation is there are many
states that correspond to trees with more that 30 nodes. What is needed is an efficient
way to order the sixtuples which sum up to at most 30. RWII had computed the numbers
of ordered k-tuples that sum up to n. Ilis results were:

All terms positive, (n—l)
sum to cxactly n k-1
All terms positive, n
sum to at most n Ok
All terms non-negative, (n;crk_l)
-1

sum to cxactly n




3. SCHEDULING 21

All terms non-negative, (,,+k)
sum to at most n k

The method used to compute the first of these is to consider n points on a line and to
count the number of ways dividers can be put down to divide them into k groups. Each
division corresponds to a sum of k terms. The same method works for non-negative terms,
except that k extra clements nced to bc added and each group of 5 elements gives a term
of 3 — 1. The number of trees of each type that have less than thirty nodes is about
(%) = 2,000, 000.

Knowing the number of trees with a given number of nodes suggests a way of storing
the values in a one dimensional array. We first divide the array into n blocks to store all
trees of exactly 7 nodes. Then for each block we divide it into subblocks corresponding to
the first branch having exactly < nodes on it. We continue subdividing the blocks until all
branches are done. The location is computed as follows. Assume the G-tuplc is stored in
the array e[l . . 6]. We define c[i] = 3, . e[s]. The location is 3°, ;¢ (cliti-n,

Onc important facet of this approach is that it should be good for paging. With the
dynamic programming approach, the lower branches of the tree will change very infre-
quently, it will be just the upper branches that will be accessed frequently. If the indexing
is done properly, the portion of the table that is being used will bc small enough that few
page faults will be gcncrated.

Using the symmetries of the trees, the number of table entries may be reduced. For
the first case of tree, it may bc assumed that the left branch is longer than the right, so
the storage requirement may be reduced by roughly half. For the second type of tree there
arc several symmetries that may be used. This complicates the indexing somewhat. SR
outlined a method to handle this complication.

The discussion then digressed to the merits of C over Pascal. The consensus was that
C is much better for bit twiddling and manipulating large arrays.

D suggested that hashing would be an alternate approach to RW I’s approach of
direct indexing. The problem with hashing is that the values would be scattered throughout
the table which would cause a large number of page faults to occur if the table was large.
AS suggested a hybrid approach, where the lower branches of the tree would be used as
indices and the upper branches would be hashed using reasonable sixcd tables. SR said
that computing a hash function would probably be faster than computing an index.

EM presented an example of computing the cxpccted finishing time for a tree to
illustrate the details of the dynamic programming computation. The numbers by the
subtrees are the expected finishing times and the values on the arcs arc the probability
of going fromone tree to another. The computation of the expected times for the lowest
trees are straightforward. The computation goes from the bottom up to the top. For
example,the value at the top is % X 3.4375 - % x 3.583 + —13 This is the weighted sum of
the expected times for the two trees rcachable from it plus the expected time for the task
to bc con&ted.

EM said that the programs only nceded to bc run until a counter example to cach
scheduling proposal was found. EM cxpccted that counter examples most likely exist with
trees Of less than 20 nodes.
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A couple more proposals for scheduling methods were made. One idea was to assign
weights to branches and take the highest weights first. 18M and IID suggested diflcrent
weighting schemes. Another idea would be to look at various cuts of a tree which reduce
it  toadlealtreThere might be some way to use this to form a uscful heuristic for
scheduling tasks.

3.6 Notes for Thursday, February 9

MGDB began the class by presenting an example of a tree which would serve as a counter
example to the “longest twig” method for scheduling. The tasks arc assigned which have
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the longest distance to a branching point. In this example the three lowest branches would
be done before tackling the long branch. It is fairly obvious that a better approach would
be to start with at least one processor on the long branch. EM said that he would still
like to know what the smallest counter example to this method is.

2n

The groups summarized what approaches they were taking. None of the groups had
their programs running.

The group of RWH, MGB, and ST had decided to use 8 tables for dynamic program-
ming. Each table would represent a different type of tree. The trees with nodes of degree
3 or 4 were not considered special cases of 2 node trees. Working with the extra trees
means that the segments would all be positive. This both reduces the size of the tables
and cuts down on some duplication. RWI commented that the really messy part of this
was figuring out the transitions from one tree to another when a branch is exhausted.
They were planning to store all levels for 2 and 3 branch trees and only to save the two
previous levels for 4 branch trees. The estimate for storage required was 170K for trees up
to 20 nodes.

SR said that the table could be reduced to 65,000 clements by using the various
conditions to remove duplicates. This did not count keeping track of which tasks were
already assigned. To keep track of which tasks were #assigned, SR said it is better to view
it as 3 tasks busy and 1 unassigned as opposed to 2 tasks busy and 2 tasks unassigned.
This reduces the number of cases from 6 to 4. However this does make the transitions
from statc to state more complicated.

The next group to present their ideas was A(e + A -+ N)S. They were planning to use
only 2 tables, so that the transition from onc table to another would not be too complicated.
They raised the question of how the scheduling predicate should be represented. They
wanted to make it as general as possible, allowing predicates to bc cntered interactively
and to be able to experiment with precmptive schedules. EM said that it was desirable to
have the scheduling predicate as a separate module. EM pointed out that a more general
method would require extra computation.

The group SR, IID, GP had decided to use a table look up method which diflered from
both hashing and direct indexing. The first step is to enumerate the trees. A tree can be
represented by 4 numbers, since the interior branches will not be reduced. The table for n
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node trees is generated from the table for n — 1 node trecs. Once the list of trees has been
generated it is converted to an array. They were planning to save intermediate results on
disk so that if the program crashed from running out of space, all would not be lost.

CWC pointed out that there was a subtlety in the problem that was being overlooked.
In looking for a counter example, the groups were looking for a state where the scheduling
rule would make a non-optimal choice. The state however might not be one which the
scheduling method would ever reach, since the state contains both assigned processors and
a tree. It might be the case that whenever that tree is reached by the scheduling method,
a diflerent set of tasks is assigned. AS pointed out that a scheduling rule tells what to do
initially as well as when several tasks are running, in fact completely different rules can be
used for these cases.

There are two cases to consider when looking for counter examples. The first case is
the initial step when 3 tasks are assigned. If this initial assignment is non-optimal, then a
counter example has been found. The other case is when two tasks are assigned and a new
one is assigned. If this differs from the optimal choice the method is locally non-optimal.
To prove it is a true counter example, a different method must be employed to show that
this state is reachable from some initial configuration.

3.7 Notes for Tuesday, February 14

The class began with reports on the status of programs for problem 2. Most groups
were still debugging their programs. RC and SR had gotten their program at least partially
opcerational; it has examined all trees with four leaves and at most 15 nodes. The program
has discovered a couple of counterexamples to the optimality of HLE scheduling. The
smallest counterexample is presented below. The number attached to cach leaf is the best
expected total running time when that leaf is not among the three tasks first initiated.

7.0394 7.0394
6.9675
6.9680

RC pointed out that this counterexample serves to demolish the optimality of all the
scheduling heuristics proposed at the last mceting.
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SR drew another counterexample shown below. RWH’s program had also discovered

6.7483 » 6.7483

6.080
6.083

ANS mentioned that when one branch is long, the total running time is dominated by
that branch, and the variations in quality of the heuristics are small. EM added that in
practice, the errors committed by heuristics are rarely expensive. Nevertheless, he would
be interested in further analysis of their behavior.

SR noted another class of countercxamples:

IEM contributed an example where LILIF scheduling might fail to be optimal; results
depend on how tics are broken:
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EM suggested thinking about other heuristics; SR said he had tried a weighting func-
tion based on the sum of leaf depth and twig length but that it performed worse than
HLF. SR noted that his group’s program was quite modular and that it would be feasible
to experiment with aternative heuristics.




4. Presburger Arithmetic

4.1 Problem Statement

Let A = (a;;)i1<i<n and B = (b; j)1<ij<n be two matrices, and set C = AB. To
compute C = (¢, ;) 1<i,j<n, We might define
C,"j’t = Ci,j,t—l + ai,tbt,]' fOl‘ t = 1, cee gy
¢i,jo =0,
and we would then have ¢;; = ¢; j». However, if we try to implement this algorithm in
a straightforward manner on a parnllcl (say, systolic) architecture, we find that at time ¢
the single datum a, ; is simultaneously used to compute the n quantities ¢; ;..

If, on the other hand, we set

, — , . . - . . .
Cigt =Ci jia—1 T Gi42—i—jbey2—ijj,

we avoid this problem. Of course, t now runs from 1 through 3n — 1, and the array elements
not within the original index range have to be preset to zero. Since index transformations

can be quite tricky, and wc are almost bound to make some error in the computations, we t

like to have a program check them. As a matter of fact, such verification is a (small) part

of an interactive program transformation system for parallel programs and architectures
under deve lopment.

More specifically, WC arc interested in the class RP = RP(ny, no, . . .) of sets of intcgers
or integer vectors given in the following way (here, ny, nq, ... are global variables ranging
over integers):

(i) RP contains all simple sets of intcgers, i.c., the intervals {z; (b < ¢ < ub} with
lower and upper bound expressions lb and ub, respectively. A bound expression is
any (quantifier free) arithmetic expression containing rational constants and global
variables. The latter arc allowed to occur only lincarly. Besides addition, subtraction,
and nultiplication (by constants), we also include taking the modulus with respect to
constants as arithmetic operation.

(i) If Ais in RP, and a and b are some integer constants, then {¢; 1 € Aand s = b
(mod a)} is in RP.

(i11) RP is closed under finite union, intersection, and cartesian product.
(iv) RP is the smallest such class.

Woc also consider the subclass RI" of the class of functions bctween members of RP. For
any function f (z4,. . . ,i,)::(fl(il,. cosTe)y e s fm(Try ,ir))eR.F, each fi(21,...,2r)is
of the form:

if C; then E,

elsf C, then F,
elsf . ..

elsf Cy then I else [y , | fi.
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Each C; is an arithmetic condition (comparison of two arithmetic expressions as above
wrt. <) or a boolcan combination of such conditions. Each E; is an arithmetic expression
as above.

Example: From the matrix multiplication example, we would have sets

A B,C'={(,5,t); 1<%, <n,1<t<3n—1},

which are members of RP (though we have used a syntax here not provided in the defini-
tion).
In RF, wC would have the initialization function ¢« from A”to A, given by
z,5,t) = if 1<t+2— j7—1<n then (5, t+2— j-i)
else “som e escape value”

and an analogous function for B”.

H ’ / ’
If we now assign a; ; ., b; ; ,, and ¢; ; ;

version of systolic matrix multiplication.

to some processor p; ; for all ¢, we obtain one

Your task is to design routines to

- - check set inclusion for pairs of sets in RP;

— compute the cardinality of sets in RP (in terms of the global variables);

— check whether functions in RF are I-I;

- - check when given A, B € RP and f € RF, whether f is defined on all of A and
whether T is into (respectively, onto) B.

4.2 Notes for Tuesday, February 14

EM gave a short lecture on Presburger Arithmetic. Presburger Arithmetic is a
first-order logic system for describing the behavior of the integers under addition. It
was first presented in 1929 by a Mr. M. Itcsburger in a paper entitled “Uber die
Vollstiindigkeit cines gewissen Systems der Arithmetik ganzer Zahlen in welchem die Addi-
tion als cinzigc Opcration hervortritt,” which appeared in Comptes-Rendus du 197 Cougrks
des Mathématiciens des Pays Slavs. In first-order logic, quantiflied variables range over cle-
ments of a domain (as opposed to second-order theorics wherein variables arc also allowed
to vary over subsets of the domain). In Presburger Arithmetic the domain is taken to
be the integers. (In some formulations the domain is the non-negative integers. Itowcver
this apparent distinction is eradical ed by representing numbers with pairs (z, y) whose
meaning is  -- y. When the domain is restricted to the non-ncgativc integers the relation
symbol ‘<’ adds nothing new to Itcsburger Arithmetic.)

The language of 1Tcsburger Arithmetic is given by the following set of recursive defi-
nitions.

o Symbols: The permitted symbolsare v, A, -, (,),=,¥,3,<,+,-,0, 1, z,y, 2, . . ...
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e Terms: The constants (0 and 1) and all the variables are terms. Also, if t; and {5 are
terms, then so are (¢; + t2) and (—t;).

« Atomic formulae: If t; and t, are terms, then (t; < t3) and (¢; = t2) are atomic
formulae.

e Formulae: Every atomic formula is a formula. Furthermore, if A; and A, are atomic
formulae, then VzA,, zA;, (A1 V A2), (A; A A3), and —A, arc all formulae.

A sentence in the language of Presburger Arithmetic is a formula in which all variables
are “bound”. (Variables arc ‘bound” when quantified; the scope rules are just what youd
expect if you know PASCAL).

The interpretation of sentences will not be presented formally; interpretations are
intended to be the “natural” ones for integers under addition. Thus a sentence will be
true, false, or, for all we know at this point, indeterminate. For example, the sentences
1 <1 and Vy3zVz[z + y = 2] are false.

To simplify things, we will freely use additional symbols such as >, =, etc. These
symbols add nothing new; they can all be translated into the language defined above.

EM asked whether the constants zero and one are really needed. RC noted that zero
can be represented by the formula Hz(,[xo + zy = a:(,]. EM elaborated by explaining that
given a sentence S, it is possible to construct an equivalent sentence by replacing all zeros
in S with xq, and inserting the result into Jz¢[ (zg + o = Zo) A . . ]

After a few false starts, the class found the following way to represent the constant
“one: Az,Vy(lzr > z0) A (¥ > 20 = Y 2 1))

EM ordered the class to think about how to represent any constant c using as a short
a formula as possible (idcally O( log |¢|) symbols). RW Il ruined the assignment by hinting
that it would help to start by defining powers of two.

IEM noted that there arc other unnecessary symbols in the language. For instance, Vz A
is equivalent to ~3Jz-A. lle suggested that it would bc usclul to introduce abbreviations
such as 2z into the language.

IEM emphasized that all variables occur linearly in Presburger sentences. (One could
allow rational coeflicients -- they can always be climinated by appropriately multiplying
the offending formulac). Thus the following formula (intended to represent compositeness)
is illegal: d; Ad, [dl 7é 1Ad; <dyAx = dldg].

RC wondered whether multiplication could be defined somchow in Presburger Arith-
metic. EM claimed not. RC suggested that perhaps at least compositeness could be
somchow dcfined. Agai n EM claimed otherwise. 18M did point out that it is possible to
express divisibility by constants. Ile asked what other concepts ar ¢ expressible. RWH
suggested addi tive inverses, RC mentioned commutativity, and AAS tried induction.

EM argued that the axiom of induction cannot be cxprcsscd in first-order logic; to do
S0 requires variables ranging over predicates (equivalent to sets) and thus requires second-
order logic. (IEM noted the concept of weak second-order logic, in which variables arc
permitted to range over finite sets.)

IEM then explained how Presburger Arithmetic can be used to represent sets. For
example, the even integers can be expressed by {z [ Jy[z = 2y]}. Thus systems of linear
cquations over the integers can be described in Presburger Arithmetic.
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The class observed that it is possible to express the fact that a given set is finite (or
infinitc); the necessary idea is that a set (of integers) is finite if and only if it has both a
smallest and a largest member.

EM related Presburger Arithmetic to semi-linear sets.

Definition 4.1: Let 6 and py,pa,.. . ,p, be vectors in Z™. Then the set {z = b+ n;p; +
nop2 +..- 4+ Nn.py ] ny,..., n, € N}is linear.

The intuition here is that 6 is the apex of a “cone” formed by the members of the set.
Note that the p3 need not be linearly independent and that the cone may have holes in it.

Definition 4.2: A send-linear set is the finite union of linear sets.

It is a theorem that a set is describable by Presburgcr Arithmetic if and only if it is
semi-linear. It is also true that the intersection of two semi-linear sets is semi-linear.

EM also noted that semi-linear sets are related to context free languages by Parikhy
Lemma. Each word in a context free language defines a count ... as follows: the th
entry of the vector gives the number of occurrences of symbol ¢ in the word. Parikh3
Lemma states that the set of count vectors corresponding to any context free language is

semi-linear. This lemma is proved by applying the Pumping Lemma.

4.3 Notes for Thursday, February 16

This session was devoted largely to an explanation of a decision method for Presburger
Arithmetic. The method is based on a fairly gencral idea called quantifier climination
(rather than, for example, theorem-proving hciiristics from Artificial Intelligence).

IEM first presented an outline of the method. Suppose that it is desired to check the
sentence

S = Q[iC[QQ:EQ “e Q,z,Ele(:rl,. ..,:B,,:E)

(where each Q) is a universal or existential quantifier) for validity. Assume that F' contains
no quantifiers, i.e. that S is in prenex standard form. Then the method of quantifier
elimination calls for replacing the formula 3zF(z,, . . ., X,, X) with an equivalent formula
F’(xl,...,x,) containing no quantificrs (or new variables). The process is then rcpcated
on' the sentence

S'=Qzy,.. .,Qrz, F'(zy,...,3,.)

After r iterations, onc is left with a sentence equivalent to S which contains no quantifiers.
Checking such a scntence for validity is trivial.

To simplify matters, we will forbid the use of universal quantifiers. Thus a formula
VzF(z) must bc rewritten as —Jz—I(z). In light of this restriction and the above outline
we will consider from here on only formulas of the form JzI*(z), where F contains no
quantifiers (but may contain unbound variables).

In order to explain the method, IEM proposed the following additional restrictions on
Presburger syntax.
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« The equality relation is not allowed. [u = v] is replaced by [(u < v + 1) A (v < u + 1}].

« The only allowed relations are: <, |, ,}’ (As before, we require that the left hand sides
of the | and / relations be constants.)

o Negations must be “pushed inwards™ and eliminated. For example, the formula —1(a <
X)==>@>z)=[x<av@=x] =[(x<aVa<x+1l)Ax<a+ 1]] (the
symbol “=—=>" means ‘is transformed to”).

o Like terms must be combined. Thus, [x <3 + X + X] = [ -3 < X].

After the above transformations arc made, every atomic formula in F must be of one
of the following types:

(1.) ciz < g

(2.) b <clz

(3) d,-|(c§':c + 1’,‘)

(4) e f(ci'z + 3i)

where the c3, ¢’s, d3%, 3, T3 and s3% are constants, and the a% and b3% are expressions
containing no x3% (though they may contain other unbound variables).

The next step toward eliminating the quantifier is to eliminate the coeflicients of x.

Let lcm denote the least common multiple. Let ¢ = lem( {¢;} U {c!} u {¢i } U {c/"}), and
multiply every relation so that x appears with coefficient c. (Those interested in the
complexity of quantifier elimination will note that this operation can greatly increase the
size of the formula.) Now our formula JzF(z)can be equivalently expressed as 3zF”( cx).
Let F" () := [F'(X) A c|z]. Then the formula 3zF"(z) has every coefficient of = equal to
one and is equivalent to 3zI*(z).

At this point, every atomic formula in " is in one of the following forms:

(1 ) X< ag
(2")6; <z
(3".) dil(z + ri)
(4".) €; *(CII + Si)

Let § = lem({d;} U {e;}). Notec that the relations 3" and 4 are invariant mod 6. The
point of this observation is that it suggests ‘Searching” for a value of x within a finite
range of size 6.

Define a formula F_(z) equal to F’{x) cxcept that atomic formulae of type (1)

. are replaced by TRUE and those of type (2”) by FALSE. The intuition is that F_o(z) is
cquivalent to F” (X)Wl icnever x is very small (i.e. close to negative infinity). (We could
also define a formula F, () by reversing the substituted TRUE’s and FALSIs; this would

make Fo () equivalent co IM(z) for large values of z. This can in fact be used to speed
up the decision procedure.)

Definition 4.3: Let

Fre=( \ Fol) Vv (VVFE+ )

1<5<8 by 1<5<6

Note that x has been climinated!
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Theorem 4.1: F~°° is equivalent to JzF"(z).

The proof of this theorem relies on the idea that if there is an x that satisfies F” it is
tither very small or it is close to some b;.

Proof 4.1: First suppose that F~° is true (for some particular values given to the
unbound variables). We need to show that there is a value of x which satisfies F’(x), with
the values of the unbound variables as in F'~°°. There are two subcases:

One possibility is that there is a b; and a 7 (with 1 < j < 6) such that F”(b; + j) is
true. In this case, we have a value, namely b; + j, which satisfies F*(z).

The other possibility is that for some value of j, the formula F-,(j) is satisfied. In
this case, let x = j — §( 1 + max{|a;|}). We claim that x satisfies F". Since x is very
small, relations of the form (1") are certainly satisfied. Also relations of form (3”)
and (4™ take the same value as they do for x = 5 (since these relations are invariant
mod 6). Now the relations of type (2°) were all set false in F-, ; thus, if anything,
they are “more true” in F" (x) . Therefore, since F” is monotone (it has only the
boolean opcerators-A and V), it must be that F”’(X) is true.

To complete the proof, suppose that for some value a, the formula F’(u) is true (for
some fixed values assigned to the unbound variables). We must demonstrate that F~* is
true. Again there are two cases.

If a=>5; + ] for some b; and 1 < j < 6, then F~% is clearly satisfied.

Suppose otherwise. Consider F"(a — 6). We claim that it must be true. Assume not.
Relations of type (3") and (4”) are unaffected by substituting a — 6 for a. Relations of
type (1) can only become “more true” by subtracting é. Thus, if I'"(a — 6) is false, it
can only be that some relation of type (2) has turnced false in the replacement of a by
a—=6. Thatis,a—é < b, - a for some z. But that would contradict the non-existence
of a satisfying value of the form b; + j. llence I''(a -- 6) must be true. Thus for all m
it is the case that F"'(a --- md) is true; therefore there is a j (namely a mod 6) such
that E>,() is true. [

We have now seen how to eliminate one quantifier. The cost is high (there is a multi-
plication by a potentially large least common multiple, and a large number of disjunctions
are gcncrated). After repeating this process until all quantifiers are eliminated, there is
left a sentence containing no variables; this (very long) equivalent scntence can then easily
be checked for validity.

This decision procedure for Presburger Arithmetic takes time (and space) 22" 1o
check a sentence of length n. The best lower bound known for this problem is 2% steps
on a non-deterministic machine. EM pointed out that these bounds are probably close;
however a proof of that fact would be, to say the least,, very interesting.

1M turnced discussion to the project assignment. He pointed out that it was necessary
to deline a suitable subsetl of Presburger Arithmetic and to establish a syntax for it. In
the dehumanizing terminology currently fashionable, this amounts to resolving the issue
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of the “human interface.” To encourage discussion, EM proposed representing sentcnces
by their Gédel numbers.

ST suggested that LISP-like expressions might be more reasonable. RC concurred in
this view.

EM promised that a LISP-like syntax (and programs written in LISP) would be ac-
ceptable. e argued however that it would be a good idea to defer discussion of the merits
of LISP until some higher level questions are answered. These questions include how sets
and functions are to be specified. Noting that Presburger sets are all semi-linear , EM
mentioned that they might be presented in some kind of normal form (perhaps as unions
of linear scts).

After some inconclusive discussion took place, EM urged the class to think about the
relative merits of several alternative representations of sets and functions.

RWI-1 wondered whether the intent was to provide full Presburgcr Arithmetic.

EM said not; that restrictions could be placed on quantifiers. An argument ensued
concerning whether or not all variables (which it was agreed are “global”, whatever that
may mecan) should be universally quantified. Eventually the class decided that permitting
only universal quantifiers would be inadequate. EM noted one restriction, namely that
only finite sets are to be permitted.

EM concluded by suggesting that the class consider the kinds of questions the system
ought to be able to answer.

4.4 Notes for Tuesday, February 21

AS began by discussing the “3n + 17 problem. Let f be the minimal function satisfying

1 ifn= 1,
f(n) =< F(%) if 2|n;
[(3n41) otherwise.

(f can be thought of as the function obtained by interpreting the above equation as a
recursive procedure.) It is not known whether the minimal such f is a total function.
AS had thought that it would be possible to write a Presburger sentence expressing the
totality of f. Thus it would bc possible to solve the 3n+ 1 problem by feeding this sentence
to a Presburger theorem prover. Ilowever, on reflection, hc realized that recursion is not
expressible in Presburger Arithmetic.

EM pointed out that if one could quantify over sets it would be possible to represent
the 3n + 1 problem in Presburger Arithmetic. (One would write a formula describing the
minimal set closed under the propertics derived from the definition of f.) He claimed that
because Prcsburger Arithmetic is a Grst-order logic, it is too weak to resolve the 3n + 1
problem. The 3n+ 1 problem is properly attributed to Ilerrn Collatz of Hamburg; however
it travels under a variety of aliases including ‘Conway’s function” and the “ Syracuse func-
tion.” Much effort has been expended on the problem, so far without result. Obscrving
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that the 3n + 1 problem has nothing whatever to do with the matters at hand, EM turned
conversation to the question of specifying input sentences.

RC suggested representing sets by unions and cartesian products of intervals. He
added that further sets could be defined as the ranges of functions.

EM wanted to hear some of the pros and cons of the representation suggested by RC.

ST politely remarked that since EM had prescnted sets in the form of unions and
products of intervals it would prove easicst to think about them in these terms.

EM replied that the problem statement defines only what kinds of sets are to be
represented (in conventional language) and should not be interpreted as an endorsement
of any particular representation scheme. He attempted to clarify the issue by asking “What
are numbers?” and “Do numbers exist if you don’t write them down?” As the class fidgeted
nervously, EM allowed as to how he might be catching the flu. Then he explained that
one way to represent numbers is to use radix notation. Another way is to specify their
prime factorizations. The former method makes addition relatively simple, while the later
facilitates multiplication. This is an example of the kinds of trade-offs one has to consider
when deciding upon representations for objects.

RC asked how one would write down the primes in the second scheme. EM replied that
one wouldn’t; one would simply write down their exponents (perhaps in radix notation).

ST suggested that before choosing a representation it would be helpful to have more
sentence-writing experience.

EM tried to explain his intent in presenting the example of representing numbers. If
he plans on adding lots of numbers, the radix representation will work well. If he plans
on multiplying lots of numbers, the prime decomposition will be effective. (Ile mentioned
that no rcpresentation is particularly good when both operations are to be performed.)
It may cven be worthwhile to convert from one representation to another {or to change
radix) in certain circumstances.

RWIT mentioned that he had considered semi-linear sets, but that it was not clear how
to usc them to represent intervals. Some memnmbers of the class also feared that allowing
intersections of unions of intervals might result in a “blow up” (i.e. a huge number of
intervals).

EM agreed but suggested that that price might have to be paid no matter what
representation is chosen. There was some discussion of how to rcpresent intervals. This
prompted ANS to ask what primitive sets were under consideration (his point being that
if intervals are taken to be primitive then there is no need for further discussion of how to
represent them).

M uoted that the problem statement defines allowable sets by inductive construction.
Such a construction is one way to represent a sct; another way is as a union of intervals.

RC wondered whether the matter under discussion was representation inside the com-
puter. EM thought that it was too carly to discuss internal representation; he felt that
the issuc at hand was analogous to the question of representing numbers. In particular he
noted that two extremes on the spectrum of representation had been presented: on one
end sets are represented as unions of intervals (disjunctive normal form), on the other,
as general expressions involving arbitrary unions and intersections of intervals. EM urged
discussing the relative merits of such altcrnatives.
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RC observed that in disjunctive normal form many tests (such as set inclusion and
cardinality) are casy to perform.

AS argued that it isn’t so casy to compute, for instance, cardinality, when the intervals
fail to be disjoint. RC replied that he had in mind only disjoint intervals. To this, AS
responded that it might not be easy to ensure disjointness, particularly in the presence of
lots of global variables.

EM clarified the issue with the following example. Suppose that A = {1,...,n} and
that B = {1,..., m}. Then the question of how to represent AU B (or A N B) arises. The
disjunctive normal representation depends on the relative magnitudes of m and n.

GP observed that since sets can be represented in Presburger Arithmetic, and since at
least most questions about them can be phrased in Presburger Arithmetic, it might suffice
to simply write a decision procedure for Presburger Arithmetic. He admitted however that
he didn’t know how to express cardinality in Presburger Arithmetic.

EM replied that cardinality cannot be expressed. His reasoning was that the combi-
nation of cartesian products and cardinality provides multiplication, but that Presburger
Arithmetic is too weak to talk about multiplication. In any case, he felt that GP’s idea
merely trades onc¢ problem for an equally difficult one. That for some reason reminded
EM of a joke about boiling water. Unfortunately he had forgotten the funny part.

EM recapitulated: with the disjoint union representation the basic operations are easy,
but constructing the sets may be difficult.

SS and AAS argued that it might be extremely difficult to construct the sets. ANS,
referring to the A N B example, pointed out that in the first place the system wouldn’t
know anything about m and n; and that even if it did, it wouldn’t know what to do with
the information. In support of his second point he observed that the system would need to
“know” about such matters as transitivity. In fact, he claimed, things could get arbitrarily
complex.

SS back-pedalled a bit by questioning whether things werc quite so bad. AAS held
firm and suggested that modular arithmetic would further complicate the situation (quite
possibly beyond repair).

EM barely had time to express some optimism before AS proposcd that at least as a
start, one might tell the system about all relations among the global variables (even ones
that are derivable from other facts).

EM asked whether given non-empty intervals [A, B| and [B, C|] one could prove in
Presburger Arithmetic that [C, A] is empty. AAS answered “yes,” that one could show
that if A :# C, then exactly one or the intervals [a, c1 or [C, A]is empty. Since B € [A, C]
it follows that [C, A] is empty. [XM agreed that the fact that exactly onc of the intervals
is empty could be cxpressed in Presburger Arithmetic; but the question of where this
information would come from still remained.

ANS suggested that the user of the system should provide all needed relations among
the global variables. EM proposed two al ternatives: the system could ask questions when
it nceded more information (e.g. it could ask “Is m < n?”) or it could build a tree of cases
where the children of each node correspond to the possible outcomes of comparing global
variables.
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AAS objected that it might be impossible to know which comparisons necd be made in
the absence of a general “deduction” system. 1'M disagreed, ANS agreed. Perhaps alluding
to his aborted joke, EM then claimed that everything boiled down to the < relation. He
said that it might be necessary to accept cumbersome answers from the system, such as

_Jn—-m ifn>m;
|AnB| = {m-—n ifm>n.

AAS wanted to know what happens when modular arithmetic enters. He wondered
whether the system would need much knowledge about primes, etc. RWH suggested that
a few facts about greatest common divisors and related subjects would suffice. EM said
that a trick could be employed to eliminate the modular arithmetic. To put it briefly, it is
possible to “change variables” (in the calculus sense) and rewrite formulas by introducing
a clause to enforce the eliminated congruence constraints.

Since no alternative schemes were proposed, XM announced that he would represent
sets as unions of disjoint intervals. He noted that there are several potential syntaxes for
sets defined with congruence relations. One possibility is “z € {Ib . .. ub] such that z = b
(mod a)”, another is “fan + b|n € [Ib. . . ub|}”.

AS asked whether EM would allow multiple congruences. EM refused to say; he noted
that there are many possibilities including intersections, Chinese remaindering, etc.

EM requested that everyone cxamine a couple more representations and think about
how they aflect the difficulty of performing the basic operations.

AAS stated that intersecting a bunch of scts defined with congruence relations could
result in an arbitrarily complicated representation. EM took cxception to the word “ar-
bitrarily”; AAS agrecd that the complexity of the result would depend on the number of
global variables involved. EM suggested writing a program that would always work and
not to worry too much about its time and space requirements. He noted though that it
would be vital to decide how the system would deal with inter-relationships among the
global variables. There are a [ew very basic operations, perhaps just the intersection of
sets. [n order to find the representalion of an intersection of sets, the system might have
‘to ask a question, try to prove a (universally quantified) sentence, or construct a set of
cases. One has to decide which, if any, of these methods to implement.

SR observed that the system might return unnecessarily complex expressions (for
example, humongous formulas that are always truc). He noted that this problem also
arises with the resolution method.

EM agreed that the problem is probably unavoidable.

4.5 Notes for Thursday, February 23

The student groups for Problem 3 are as follows: [AS, ANS, AAS|, [MGB, RWH, ST,
[GP, RC, SR], [CWC, SS)].

M asked cach group to report on its progress.
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RC announced that his group had been thinking about using unions of intervals to
represent sets. IHe felt that it would be difficult and unnecessary to require that the
intervals be disjoint.

MGB disputed the difficulty of ensuring disjointness; she pointed to the possibility
that the system could ask the user for information relating the global variables to cach
other. RC replied that it wasn’t just a matter of comparing one variable to another; also
needed arc congruence relations. He illustrated this point with the flollowing problem:
compute the cardinality of the set {z €[l...u]|z=0 (mod 2)}. Here it is neccssary to
know not only whether [ < u, but also the values [ mod 2 and u mod 2. AAS argued that
u — [ mod 2 would sufhice.

AS noted that much difliculty stems from lack of knowledge about the global variables.
He wondered what options were available for getting information about them.

EM wrote down two sets defined in terms of global variables m and n, and a putatively
bijective function between them. He asked how the systemn should check that the function
is indced bijective. It was noted that this could be done by attempting to validate a
Presburger sentence universally quantified over m and n. EM then asked whether a system
which only allowed universal quantification would be interesting. (He noted that this is
not a mathematical question.)

RC returned to the topic of set representation. He suggested that intersections of
basic sets could serve in place of unions; but that that appcared even more diflicult to
implement.

SR proposed having the system build a tree of cases to deal with the various possible
relations among the global variables. He noted that the system may ask what turn out to
be irrelevant questions; thus the answers may be pointlessly complex. He suggested that
the system might do some simplification. In general however, the number of leaves will be
exponential in the number of global variables.

EM observed that building a tree of cases is equivalent to using the system interac-
tively. Ile asked whether it would be possible to antomatically collapse cases that can be
combined. RC replied that it would be possible, at least in theory, to write Presburger
sentences expressing equivalence of cases and then to have these sentences checked for
validity. EM agreed, but noted that it was a matter of guessing which cases might be
combinable. RC asked whether it was nccessary to implement simplification. XM replied
that it wasn’t; he merely wished to point out that the simplification so far described did
not leave the rcalm of Presburger Arithmetic. He added that the notion of “simplest” fails
to have a satislactory definition.

RWII pointed out that many cases are generaled when two big unions of intervals
are combined. The representation of cach resulting cross term may depend upon a new
relationship between global variables. I'M thought that usually most cases would drop out.
However, in the worst case, disjunctive normal representation causes exponential blow-up.

ST observed that even the cases that go away need to be looked at. RC suggested
asking the user which cascs are interesting in order to cut down the amount of work. EM
felt that, by analogy to expericnce with expert systems, exponential blow-up would not
be a problem. Usually most cases will collapse; thus he did not think it desirable to ask
bothersome questions about the user’s interests.
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CWC and EM noted that it would be necessary to obtain information such as 3m <
2n + 5r as well as simpler relations such as m < n. CWC resurrected the idea of allowing
only universal quantifiers. EM agreed that this might suffice; he also mentioned that most
languages do not support sets because of the inherent difficulties.

CWC asked for a clarification of the permitted uses of cartesian products. EM observed
that it is not possible to define a bijection between an n-by-n square and an interval of
length n?. In response to a question from CWC he stated that elements of the cartesian
product [I; x I5] x [I3 x I] are of the form (2, j, k, {). EM claimed that cartesian products
only add quantitatively to the language, not qualitatively. This would not be the case if
such definitions as {(z, 7) | ¢ < 7 A 1 < 7 < n} were allowed.

AAS wondered if it wouldn’t be possible to define the above triangular set as the range
of a function defined on the n-by-n cartesian product. EM replied that it was not allowed
to define sets in terms of functions. RC observed that the constructible multidimensional
sets arc hypercubes, possibly with holes resulting from congruence constraints. AAS and
EM observed that if S is a set and I’ a function in our language, then it is not necessarily
possible to define the set F'(S). Indeed, to check whether F is one-to-one, the range
of F must be embedded in a possibly larger cube. This may preclude checking whether a
function F' is onto.

EM explained that he had added cartesian products so that cardinalities would be
polynomials in the global variables. Without cartesian products, all expressions would
_be linear in the variables and this would be boring. Thus cartesian products introduce
non-linear expressions without departing from Presburger Arithmetic.

AAS regarded as potential trouble the possibility that identical sets could have dif-
ferent disjunctive normal representations. EM noted that a Presburger sentence could be
written to test whether two sets are the same. RC objected that there would be no easy
way to check the sentence. EM noted that it might be expensive to check the sentence but
that it would nevertheless be possible.

EM concluded by observing that many problems have been successfully programmed
despite the fact that in the worst case, the running times may be indistinguishable from
infinity. For example, the simiplex method can take exponentially long. However that
never happens in practice, and the simplex algorithm is very widely used. (A recent result
by Smale shows that the simplex method takes “on the average” only a lincar number of
iterations, and hence quadratic time.)

4.6 Projects

RC and SR implemented a decision procedure for Presburger Arithmetic. Their LISP
program is based upon the mecthod of quantifier elimination. Because they intend their
procedure to be driven by a user interface program rather than by the user directly, they
have chosen a particularly simple syntax for Presburger sentences. The relation (D1V ¢ e) is
TRUE if and only if the expression e is divisible by the constant ¢. The relation (NDIV ¢ e)
is truc if and only if e is not divisible by ¢. The final basic relation (POS e) is true
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if and only if e is greater than zero. Expressions are linear combinations of variables;
(EXP (5) (3.x) (-5-Y))reoresents the expression 5 + 3z — 5y. Sentences are formed (in
prefix notation) from the basic relations, expressions, boolean functions such as A and v,
and existential and universal quantifiers.

ST also implemented a quantifier-elimination decision procedure for Presburger Arith-
metic. Both ST and the group of RC and SR considered the problems inherent in repre-
senting and manipulating sets. They agreed that there is no ideal representation for sets.
Either the union operation or the intersection operation, or both, will be complicated to
program and expensive to execute, as will be the operation of determining set cardinality.
Furthermore, the expressions resulting from the set operations may become complicated
due to their dependence upon ordering relations among the global variables. Unfortunately
neither ST nor RC and SR had time to implement their set-representation ideas. Never-
theless each group felt that with an appropriate user interface their Presburger Arithmetic
decision program could serve as the core of a verification system.







5. Graphics

5.1 Problem Statement

The purpose of this problem is to develop data structures and algorithms that allow
the representation of (wire models of) three-dimensional objects on a SUN terminal. Such
objects could be spheres (given by wires along their latitudinals and longitudinals), or
(ordinary) bottles, or three-dimensional cross-sections throngh 4-dimensional bottles (or
more general bodies). The implementation should be chosen such that it is possible for
the user to move (within bounds) his/her standpoint and distance to the object.

5.2 Notes for Tuesday, February 28

The class started discussing problem 4. The basic problem is to draw nice pictures
on a SUN terminal that can be manipulated interactively. The first questions that were
discussed were what types of objects should be drawn and what operations should be
applied to them. [EM suggested that the class concentrate on wire {rame models. In this
model objects are represented as collections of polygons and the boundaries of the polygons
are displayed. There are quite a few features that could be considered such as shadows,
illumination, shading, and coloring the polygons with patterns. Another option would be
to remove hidden lines from the objects. The wires could be straight lines or else they
could be curves such as conic sections or splines. A possible restriction on the objects is
that they could be required to be convex. RWII pointed out that hidden line removal is
much easier for convex objects. The operations on the objects are to allow them to be
viewed from various angles and distances. The idea is that the object remains fixed while
the viewer moves. The basic operations would be such things as rotations and zooming.
One goal would be to make the movement as close to being continuous as the hardware
and software constraints allow. To make the transformations fast the operations should
be incremental in some manner.

A basic concept in computer graphics is the distinction between world coordinates
and view coordinates. World coordinates are the coordinates with which the object is
modelled. If the object is stationary then the world coordinates will remain fixed. View
coordinates are the coordinates as scen from a particular location. The view coordinates
will change when the object is viewed from a dillerent location. Screen coordinates arce the
coordinates that an object is displayed with. The screen coordinates will be a projection
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of the view coordinates. In this problem both the world and view coordinates will be three
dimensional, while the screen coordinates are two dimensional.

SS pointed out that the problems of transformation of graphical objects had been well
studied and were fairly easy using 4 x 4 transformation matrices. These matrices allow
the view to be changed and perspective to be represented. Three dimensional objects
are represented using homogeneous coordinates. Each point is represented by a 4-tuple
(z,y, z, w). The first thrce coordinates correspond to the normal coordinates and the last
one is a scaling factor. If w # 0, then the coordinates are normalized by dividing each
entry by w so that the last entry is 1. Tuples denote the same point if they have the same
value when normalized. The operations of scaling, translation, and rotation can all be
expressed by matrix multiplication. The matrix for translation by Dx, Dy, Dz is

1 0 0 0

0 1 0 0

T(Dz, Dy, Dz) = o 0 1 0
Dz Dy Dz 1

For example translating the point /3,4,5) by (1, =4, 3) is accomplished by:

1 0 00
0 1 00

(3451)0010*(4081).
1 -4 3 1

The scaling matrix for scaling by factors of F¢, Sy, Sz is
Sz
0

0 0 0 0
0 S 0 0
S(Sz,5y,82) = \ Oy S 0
0 0 0 1

A rotation matrix has a 3 x 3 orthogonal submatrix. The matrix for rotation around the
z-axis by 0 is

1 0 0 0

0 cosf@ sin@ O

0 —sin@ cos@ 0

0 0 0 1

R,(O) =

The rotation matrices for the other axes are similar.

Projection onto a viewing planc can also be expressed as an 4 x 4 matrix. If the object
is being viewed from the origin and the screen is the plane parallel to the z-y plane at
z = d, then the perspective projection matrix is

1 00 0

per 001 3
M = \0 D00 00




42 A PROGRAM NG AND PROBLEM SOLVING SEM NAR

A discussion of the use of homogencous coordinates in computer graphics may be found
in Fundamentals of Interactive Graphics by Foley and Van Dam.

EM said that an important aspect of this problem is the resolution problem. If objects
are viewed from a long way away, small objects will be too small to display. If an object
is so small that it is only one pixel and it is rotated for example, there is no point to
compute how its faces are changed. Similarly if an object is viewed from very close, only
part of it will be visible. The resolution problem is how to restrict the computation so
that unnccessary computation is not done.

EM outlined one possible method for dealing with this problem that uses several
levels of resolution. A naive approach would be to compute how the object appeared
from distances at logarithmic intervals. For example a representation would be computed
for how the objected appeared when viewed from 1 meter, 10 meters and 100 meters. If
the object is viewed from 50 meters, the 10 meter representation is used. There is some
overhead in this method and there are some problems such as what levels to compute.

The objects are to be displayed on the SUN terminal. The graphics routines are part of
the VGTS system. To understand the graphics package there are two basic concepts. The
first is the structured display file or sdf. All of the graphical objects are put into the sdf
with their world coordinates. The coordinales for objects in the sdf are two dimensional
coordinates. This is an intermediate level between view coordinates and the graphical
display. The basic objects are lines, points, text and maybe splines. Composite objects
are created by making a symbol. A symbol is essentially a list of other symbols and basic
objects. Into an sdf there is a view which is what is displayed. A view only displays a
portion of the sdf. Both the sdf and the view must be manipulated. The commands are
given in the V system manuals.

The VGTS software allows programs to be run on either the SUN or a VAX. The
advantage to running on a VAX is that it has hardware floating point arithmetic while the
SUN does floating point with soltware. This is possibly a major consideration. On the
other hand, communication from a VAX to the SUN is over the ethernet which might slow
things down. This will probably be a significant problem if the SUN and the VAX are on
different ethernets and the communication must go through a gateway.

EM brought up some specific data structures that might be useful. One feature the
data structure should have is that it helps in identifying all objects that are close together.
A good data structurc would be traversed until the objects got too small for the resolution
of the display. A type of structure that mects these criteria is a geometric trce. There
arc a number of variants of geometric trees which are atlempts to generalize binary trees. .
A quad tree is a tree with each node of degree 4. [Bach node has a coordinate and cach
child is a quad trce which corresponds to the area northeast, northwest, southwest, or
southcast of the coordinate. Another approach is a k-d tree. ach level splits the points
in a rectangle in half in either the z or y direction with different directions being used for
alternate levels. A AS pointed out that one problem with these two approaches is that the
trees can become unbalanced. A AS suggested cell techniques instead. The points would
be put into rectangular cells. The cells may be of different sizes. They are sorted by
y-coordinate and z-coordinate. To add a new point, two binary scarches must be done.
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This representation would be useful since points that are close together will either be in
the same or neighboring cells.

5.3 Notes for Thursday, March 1

EM began the class by giving two references for computer graphics. The first reference
was W. M. Newman and R. F. Sproull; Principles of Interactive Computer Graphics, 2nd
edition, McGraw-Hill, 1979. This is the standard text book for computer graphics and
contains lots of useful information. The other reference was L. E. Sutherland, R. F.
Sproull, and R. A. Schumacker: “A Characterization of Ten Hidden-Surface Algorithms,”
Comput. Surv., 6( 1):1, March 1974. This paper summarizes a number of different methods
for removing lines and surfaces that are obstructed by other objects.

ANS recommended that it would be best to start with a straightforward implemen-
tation and postpone the complex parts until later. The first step would be to construct
some objects and transformation matrices and display them on the screen. The object
would be constructed with fixed world coordinates. A simple outer loop could call the
various transformations. The problem of resolution would not be addressed until after
this first part was running. A sophisticated user interface could also be added later. EM
suggested that the outer loop could contain a trajectory for the viewer. This would be a
compiled procedure that computed a parameterized curve. One possibility would be to
have the viewer approach the object along a parabola. EM asked the class how difficult
they thought it would be to convert a trajectory to a collection of transformaticn matrices.
The consensus was that this probably wouldn’t be too diflicult.

MGRB had checked up on the spline package for the VGTS. MGB had found out that
the spline package did exist, but unfortunately the author of the package had graduated and
left no documentation on it. This provoked a general discussion on the politics of software
that nced not be reported here. AS had tried to figure out how the splines worked by
looking at the code and the calling sequences. He found that the code was incredibly dirty
and confusing but was able to decipher some of it. The conjecture was that the order
of the spline and the interpolation points would be supplied by the user. Two functions
z = z(s) and y = y(s) would be computed. The functions would probably be low degree
polynomials, probably allowing splines of order 2 through 5. EM gave a brief summary of
spline curves. Splines originated by considering the problem of how a curve would appear
il it had a few fixed pivots that it had to pass through but otherwise it would take the
shape that minimized its potential encrgy. The curves formed this way are exponential
splines. The solutions turn out to be clliptic integrals which are very diflicult to compute
numerically and the methods used arc not particularly stable. These curves are quite
pleasing to the eye and are of considerable practical significance in certain applications.
They arc not used for interactive graphics since they are so diflicult to compute. The main
problem with splines for this problem is that when the view changes the curvature of the
spline would also change. An alternative to using splines would be to just approximate
curves with 1 ne segments.
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EM brought up the subject of what data structures should be used for the project.
SR presented a cell data structure that would avoid having to display objects that were
too close together. The basic objects would be described in terms of points, lines, and
polygons. The viewer would be assumed to be fixed at the origin and the objects would
be moved. The screen would be considered to be at a fixed location. The basic idea would
be to pass objects through a filter. Only the objects that made it through the filter would
have to be displayed, so this could cut down the work in displaying things substantially.
The screen would be subdivided into a number of cells. The working figure was to have
the screen subdivided into 80 x 100 cells. All points would be projected onto the screen.
The points that were not on the screen would not be put into the data structure. lach
point would be projected into a cell. The cell would have all the points contained in the
pyramid with apex the origin and sides passing through the boundaries of the cell. Each
cell would have a count of the number of objects in it. When the number of points in
a bucket exceeded a certain threshold, some of the points would not be displayed. The
cells would also provide information to reduce the number of lines that had to be drawn.
When an object is moved, only the cells it is in need to be altered. The data structure is
applicable if there are a number of objects which can be moved independently. If the view
is changed, then everything is moved, so the entire data structure must be recomputed.

EM brought up the relation of the sdf coordinates to the other coordinates that would
" be worked with. At the top level, the object would be represented with three dimensional
world coordinates. These would be translated into two dimensional view coordinates.
Putting objects into the sdf would convert their view coordinates into sdf world coor-
dinates. The two dimensional sdf world coordinates are finally transformed into screen
coordinates. The transformation would allow translation and primitive scaling. The latter
transformations would be handled by the VGTS. RC pointed out thal the sdf must be
recreated when display is changed. The question was raised as to how much was involved
in rccreating the sdf. The new sdf would have the same structure as the old one, only the
coordinates would have been changed. The VGTS does have a change cominand for the
- sdf which is equivalent to deleting and then inserting. Whether the sdf is recreated or just
modified depends upon the implementation of the VGTS.

. EM said that there were two different approaches to the resolution problem. In the ap-
proach taken by SR, objects would be collapsed that would be displayed too close together
on the screen. These objects could be very far apart and still collapse. One drawback to
this approach is thatl objects collapsing depends on the angle that they are viewed from
and not just on their distance. The other approach is only to attempt to merge points
that are close together in the real world. The world can be viewed in terms of wire fig-
ures, which are collections of lines and vertices. When objects are collapsed, they would
form super vertices. This would create a hicrarchical graph, where nodes can expand to
form subgraphs when viewed from not too far away. Varying levels of resolution could be
achicved by expanding a different number of nodes. The decision to expand nodes could
be just based on the distance from the viewer and not depend on the angle of the view.
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5.4 Notes for Tuesday, March 6

RWH had his program for problem 4 running. His program displayed a pyramid and
allowed it to be rotated around the z, y, or z axis. The surfaces of the object that were
not visible were not displayed. The main loop of the program accepted commands which
specified the axis of rotation and the number of degrees to rotate. The object is displayed
at 1 degrce increments. RWH had attempted to have perspective as well, but it broke when
the hidden surface removal was added. To handle rotations around other lines, RWH had
attempted to have the one degree rotations input from a file. For example, if the inputs
were Z,Y, T, Y, . .. the rotation should appear to be around the line z = y. Unfortunately for
some mysterious reason this approach did not work, the SUN encountered synchronization
problems.

RWH described the data structures that he was using in considerable detail. At each
step of the display, he computed a 3 x 3 rotation matrix and applied it to each point. One
of the important aspects of the data structure was that the transformation was applied
once to each point and not once to cvery line, so that points that were adjacent to several
edges were only transformed once. The hidden surface removal was handled by displaying
only faces of the object that were visible. The object was assumed to be convex, so that
faces would not partially obscure other faces or lines. It was also assumed that only one
object was present. The data structure that was used made it easy to identify which points,
lines, and edges were visible. The data structure was essentially a collection of arrays with
pointers associating various objects. The world coordinates of all the points are stored in
an array. These are not changed and are crcated when the program is started. There is also
an array of the transformed points, which give the view coordinates after a transformation
is applied. Lines are stored by storing pointers to the two endpoints, these are just indices
into the point array. A polygon is a list of edges. These edges arc stored in an array with
an endmarker indicating the last edge. The polygon stores an index into an array that
contains all of the edges, the index gives the first edge of the polygon. The polygon also
stores its normal vector. When the normal vector is transformed by a rotation, it is casy
to tell if the polygon is visible. If the normal is pointing towards the viewer then it is
visible, and it is not otherwise. This just requires checking one coordinate of the normal.
If perspective was added, the computation would have to compare the angle of the normal
‘with the angle between the viewer and the face. Once the visible faces have been found,
the data structure is traversed to find the visible ecdges and points. When a face is visible,
all of its associated lines and points are visible. Boolcan arrays are used to keep track of
which objccts are visible. When all of the visible objects have been found, they can be
drawn on the screcn.

RWH had optimized his program in a number of ways. He was running it entirely on
the SUN so as to avoid problems of communication over a network. Since the SUN doesn’t
have hardwarc floating point, he was doing all of his computations using scaled integer
arithmetic. Ile chose a scaling factor of 1024 so that scaling could be done by left shifting
by 10 bits. Using scaled arithmetic meant that whenever he did a multiplication he had
to rescale, so to compute a = b * C it is necessary to do a = (b * ¢) > > 10 where >> 10 is
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C syntax for right shift by 10 bits. The sines and cosines are precomputed at one degree
increments and stored in arrays sin[0.. 359] and cos[0. . 359).

AS had looked into the spline package and had figured out how they were used. He
had looked at a draw program and had discovered that certain default parameters had to
be reset to get the splines to work. The splines are from orders two to five and can be either
open or closed. The closed splines may also be filled with a pattern. The second order
splines give a way of constructing polygons. The higher order splines have the feature that
the tangent at the endpoints is in the direction of the next point. This means that the
curves often come out looking rather strange. AS said that he was able to generate nice
pictures, but he was not able to generate the pictures that he was trying to get.

AS described the approach that his group was going to take on the problem. His basic
model was the same as RWH had, with the world consisting of points, lines, and polygons.
AS planned to allow several objects, but required them all to be convex. AS delined the
bounding box around the object to be the smallest rectangular box oriented parallel to the
axes that contained it. For his hidden surface removal algorithm to work, he assumed that
all of the bounding boxes were disjoint (in 3-space). The basic hidden surface algorithm
was to sort the boxes according to whether the box was in front or behind other boxes. The
boxes would be ordered so that the furthest away from the viewer came first. The contents
of the boxes would then be displayed in order. Filled polygons will be used to draw the
object, so that when one is drawn on top of another, the obstructed edges are erased.
A paper that describes various conditions other than having disjoint bounding boxes, for
this algorithin to work properly is F. F. Yao, “On the priority approach to hidden-surface
algorithms”, Proc. 21st Symp. on FOCS, (1980), pp. 301-307. AS planned to allow
the viewer to follow an arbitrary trajectory as long as the viewer did not enter any of
the bounding boxes. If the viewer entered a bounding box, then the results would not be
guarantced, most likely a core dump or some other disaster would occur. The testing of
which boxes obstructed the others is an easy computation since it just involves computing
the projection of points onto surfaces. EM asked about what techniques could be used to
speed this up taking advantage of the incremental nature of the trajectory. It should be
possible to save quite a bit of the computation by being able to anticipate when objects
will start and end obstructing one another.

5.5 Notes for Thursday, March 8

Class began with a brief discussion concerning Problem 4. RWH noted that displaying
curved objects is more difficult than displaying flat objects. This is due to the existence of
horizons. The matter arises for example in the display of a globe.

With regard to displaying the globe, KM mentioned the possibility of subdividing
along lines of latitude and longitude, perhaps cvery ten degrees. Ilach of the resulting
picces could be rendered as a four sided polygon. KM wondered how long it would take to
display themn all.
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RWH suggested that a region such as the United States could be cut into a number of
polygons by introducing new edges. By applying an appropriate rule governing whether
such edges are displayed, it might be possible to casily approximate a horizon. The idea
would be to suppress the display of an introduced edge unless one of its adjacent faces falls
below the horizon.

EM seemed a bit dubious about the merits of this method of approximating the effect
of a horizon. He noted that a current Texas Instruments computer demonstration shows
a rotating globe. The globe is represented by a grid of longitude and latitude lines.

AS pointed out that such a grid has singularities at the north and south poles. He
suggested using something else, for instance a hexagonal tiling, that eliminates singulari-
ties. RWH suggested using large regular polyhedra (e.g. dodecahedra) and triangulating
the faces.

5.6 Projects

While working on the problem, several groups of students outlined ambitious plans
for programs. However, due to time constraints, only one group ({ RWII, MB, ST })
completed a program. Their program displayed a two-dimensional projection of a three-
dimensional object on the screen. The user could move around the object to look at it
from different views. The movement was done in real time, and appeared continuous.
The object that was used was a pyramid, although it could be changed by creating a
new initialization file. Two different versions of the program were created, onc provided a
perspective projection, and the other provided hidden surface removal. The program put
major emphasis on efficiency. Such techniques as evaluating trigonometric functions by
table lookup were used so that the program would be fast enough to give reasonable real
tiie motion.







6. Parallel Computation Bottlenecks

6.1 Problem Statement

This last problem concerns GORC, the “Game of the Research Community” (though we
don’t want to take too seriously the model presented here; the author doesn’t seem to be
able to come up with any realistic, attractive games anyway, since otherwise that would
be what he is doing). GORC is played by n > 2 players, but it involves n -+ 2 parties.
The n players represent young, hopeful computer scientists who set out to prove P = N P.
The n+ 1™ party is the prestigious Journal on Unproven Knowledge or J.UNK, in which,
contrary to what its title may seem to suggest, only scientifically sound and verified results
of research into the problems of mathematical and computer knowledge are published. For
the n young and aspiring scientists, it is basically the only place to publish the results of
their work in order to establish a reputation in the hope (albeit slim) to ever get tenure.

The last participant in GORC is an oracle. At the beginning of the game, the oracle
sets up the complete theory of the field on which our researchers intend to work. Of
course, initially this theory is completely unknown to the players of the game. The theory
(it is an average theory) can be envisioned, for the purpose of our game, as a randomly
generated tree with about 10,000 nodes of out-degree at most two, with the leaves at a
depth between 10 and 20. The nodes of the tree represent conclusive results of rescarch.
About 99% of them represent the rcalization of failure, and about onc per cent represent
Theorems (it should be noted here that these numbers seem to be completely arbitrary!).
The theorcems tend to occur clustered in small subtrees at the bottom fringe of the tree,
or in long, skinny chains.

Let’s take a closer look at the Theorems, and let’s assume without loss of generality
that they are called T, T5, ..., until about Tgy. These Theorems are of varying signifi-
cancc. In our case, concerned with the P = N P problem, the first 90 theorems are probably
results that imply that out of the 937 presently open scheduling problems, 884 are in fact
NP-complete (using a number of technically very involved reductions from some so far
rather neglected variants of SAT, namely m-CNF-SAT for several m > 13). Obviously,
there must be some publications in JJUNK on the same result, just judging by the num-
bers. It should be emphasized, however, that such things only happen by accident, and that
the editorial board of JLJUNK takes great care to avoid any duplications. Theorem Ty
could be a theorem that proves that there is an O(n!7) algorithm to factor numbers (this
paper, incidentally, had been rejected by two relerees who also happened to be working on
cryptology), and Ty would be a theorem with a short statement (namely “P = N P”),
together with a short proof as we should have expected (again incidentally, this proof
consists of 24 easy Lemmata, almost all of them previously published in J.UNK).
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Now to the details of how GORC is played. We already mentioned that at the begin-
ning, the oracle sets up the trce of the complete theory of the field under investigation by
the participating scientists. The scientists work on projects which are determined by two
nodes in the tree. The first node represents the proposal for the project, the second node
(which must be a descendant of the first) the current working hypothesis. The proposals
are located relatively high in the tree, and they are, at the beginning of the game, deter-
mined at random by the oracle. The project itself is the sct of nodes on the path between
the proposal and the current node.

The oracle maintains the following local information about the nodes of the tree:
(i) for every node of the tree, its outdegree;

(ii) for every node of the tree, whether it represents a failure or a Theorem, and in the
latter case a unique identifier for the Theorem.

On the other hand, J.UNK represents a global, central database with the following
pieces of information:

(iii) for every Theorem in the theory, whether it has been submitted to the journal for
publication;

(iv) for every subfield of the theory (represented by the subtrees rooted at the nodes of
the tree) a bit indicating whether that subfield has been explored completely (i.e.,
whether every node in the subtree has been visited by at least one scientist);

(v) for every node of the tree, whether it is currently contained in a project.

The game proceeds in steps, cach step representing one day (with, it should be under-
stood for aspiring young researchers, seven days per week). At every step, every scientist
can do one of the following:

(i) He can start a new project. In this case, the node for the proposal is determined
randomly by the oracle. The scientist obtains the local information about this node.

(ii) He can move to a direct descendant of the current node. This node then becomes the
current node, and he is told the local information available for it.

(ii1) He can back up to the predecessor of the current node. This move works analogous
to (ii).

(iv) If he has found a Theorem in the previous step, he can submit it to JJUNK. It is
accepted for publication, if it hasn’t been submitted before, otherwise it is rejected.

(v) He can inquire at the Editorial Office of J.UNK about the global information on a

" given node in the tree.

The Editorial Office of J.UNK works such that incoming requests (submissions or
inquiries) are completed one per day. Requests arriving during the same day arc put in
some random order and queued.

The purpose of this problem is to develop methods which allow the scientists to dis-
cover, in a limited amount of time, say 1,000 steps, as many Theorems as possible.

Remark: If, as a possible idea for a solution, you should decide to distribute the
global database, i.c., found a number of new journals (with you, of course, on the Editorial
Board), stick to the spirit of this problem of one message per step for every “real” actor.
The oracle, and its interface, will be implemented by the author.
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6.2 Notes for Thursday, March 8

EM provided an introduction to Problem 5. The problem is motivated by issues
that arise in parallel processing. The goal of parallel processing research is to provide a
computational environment in which many agents can work in efficient cooperation on a
single problem. This is of course in distinction to the problem of providing computational
resources to a number of independent users. The latter problem can be solved, for example,
by building greater numbers of conventional machines. The former problem is apparently
much more difficult; particularly if the goal is to provide an architecture which permits (at
reasonable cost) a high (and scaleable) degree of parallelism. Difficulty arises whenever it is
necessary to share information among processes; for sharing generally leads to bottlenecks.
There are two extreme solutions to the problem, both usually unsatisfactory. One solution
is to concentrate information at certain locations and to require all interested processes to
query those locations. Of course, if many processes are interested, a bottleneck develops.
At the other extreme, information can be broadcast by its producer to all other processes.
This unfortunately results in what is known as the “junk mail” problem.

EM asserted that in this issue lurks a question of reasonable compromise. He illus-
trated thai claim by constructing an analogy to research. A rescarcher might choose to
visit the library every day, or might choose to visit once a month. The once-a-day schedule
consumes a great deal of time, but reduces the risk inherent in the once-a-month schedule

- of wasting prodigious effort on already solved problems.

Returning to the computational motivation, EM described the traveling salesperson
problem. The input is a graph whose edges bear weights (possibly representing distances).
The problem is to find a simple tour that visits cach vertex and that has minimal total
weight. This problem is known to be NP-complete and thus there is unlikely to exist a
polynomial time algorithm for solving it.

Therc are however some heuristics which find good, but sub-optimal, tours. One such
class of hcuristics is based on local optimization. The idea here is to find any tour (which
it should be noted can be diflicult for certain types of graphs) and then to make iterative,

- local, improvements. IFFor example, at least for complete graphs, one can consider the effect
of replacing any pair (a, b), (c, d) of edges in the so far best tour by the edges (a, ¢), (d,b).
Notice that the resulting path is also a simple tour. If that tour has smaller total weight,
it is used as the basis of the next iteration; otherwise it is forgotten. Of course one could
also consider more complicated local changes. In any case, the process is repeated until
no local change reduces the weight of the tour. Thus, the process is terminated when it
reaches alocal (and hopefully global) minimum.

ST asked whether it couldn’t be proved that no heuristic could perform well. EM
replied that that depends on what is meant by good. Ile outlined a method based on
minimum spanning trees. This method, which works when the graph satisfies the triangle
inequality, is guaranteed to achieve a lour with weight at most twice optimal. (A refinement
due to Christofides guarantees a tour of weight at most 3/2 optimal.) The first step is to
find a minimal spanning tree of the graph. By using cach edge of the tree edges at most
twice, a (non-simple) Lour of the graph can be found. This tour has weight at most twice
optimal (since any tour is a spanuing tree). By “taking shortcuts” to avoid traversing
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edges more than once, the tour can be made simple. Because of the triangle inequality,
this simplification cannot increase the total weight. These heuristics are described in “A
Case Study in Applied Algorithm Design” by Jon Bentley (Computer Vol.17, 2 (Febr.
1984), pp.75-88).

Returning to the topic of local optimization heuristics, EM observed that the currently
popular method of simulated annealing can be applicd. The advantage of this technique is
that it stands a chance of escaping from local minima; thus it has better odds of reaching
a better, if not global, minimum.

EM discussed the problem of parallel local optimization. Suppose that a number
of processors are attempting local improvements on the tour and that the best tour yet
discovered is stored in global memory. The question then arises of how often each processor
should examine the globally stored tour. If the processors check frequently, a lot of time
is wasted in the resulting bottleneck. If they check rarely, they will often be working on
tours worse than one already known and will thereby waste time. Thus there is a trade
off here between communication and computation. This trade off is the subject of “A
Study in Parallel Computation — the Traveling Salesman Problem” by J. Mohan (Tech.
ReportCMU-CS-82-136(August1982) ) and the motivation for Problem 5. Programs for
Problem 5 should permit experimentation with different policies. They should also permit
“changing the system” by distributing computation in various ways (e.g. in the language
of Problem 5, by founding new journals).

SR asked what an “average theory” is. EM replied that it is a tree of ten thousand
nodes, with branch lengths between ten and twenty, and a branching factor belween zero
and two. There is a certain probability that each vertex is a theorem; theorems are biased
towards the leaves and are clustered.

ST asked whether changing the oracle is permitted. EM replied allirmatively, but
suggested that the general mod el should be adhered to (i.e. don’t charge nothing for
something that ought to cost something). Ile added that when many scientists are at
work, perhaps more than one query ought to be answered per day.

ST asked whether “stochastic” rescarch practices are to be condoned. By this he
meant whether scientists are allowed to probabilistically abandon projects and start new
oncs. EM thought that such strategies might prove acceptable.

EM pointed out that oracles will select as projects nodes on level six or seven. He
‘added that oracles could inform scientists of the distance between a given nodc and the
root. However it would be too informative to provide the distance to the closest leaf.
This restriction is designed to encourage focusing on bottleneck effects rather than on
strategies depending on the distance to the goal. 1le noted that because several scientists
may be working in the same arca of the theory, clustering of theorems complicates matters.
Hopcfully extreme strategics will prove sub-optimal (otherwise the theory will be adjusted).

AS asked whether it should be assumed that all scientists pursue the same strategy.
IEM replied not necessarily; in any case the goal is socialistic, namely to maximize the out-
put of the group rather than that of the individual. RC and IEM observed that scientists
descending the tree should probably select sub-branches randomly (but Of course remem-
bering which choice was made) so as to avoid duplicating the steps of others following the
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same strategy. EM noted that it was likely that several scientists would be given projects
in the same area of the theory.

ST wondered whether scientists should be told how many people are working on a
given project. IEM thought that this might be a good idea. AAS asked how multiple
journals should be administered. EM replied that there were many possibilities; one is to
have journals cover separate (but well defined) areas.

EM announced that he would supply the theory in a file of ten thousand vertex records
of the form (I, r, t) where [ and r specify the children vertex numbers (zero if non-existent)
and where t is one if the node represents a theorem and zero otherwise.

6.3 Notes for Tuesday, March 13

EM announced the functioning of the theory-generating program. Contrary to a state-
ment in the problem definition, leaves appear as high as level seven of the tree (levels
counted from the root which is here assumed to reside on level 1).

SS raised several questions regarding the cost of traversing a tree edge. First, he
suggested that perhaps it should take a random amount of time to descend a level (rather
than always one day). Second, he wondered whether it really should take a day for every
step up the tree.

EM replied that it might be acceptable to allow jumping up any distance at unit cost
(though not beyond the proposal node). Going down a level should always cost a day.

EM suggested discussing the speed of the editorial office. MGB said that she was
planning on having the office process three or four queries per day. RC pointed out that the
critical question concerns the speed of the office relative to the number of active scientists.
In particular, if the oflice processes as many queries per day as there are scientists, then
the extreme strategy of checking with the office cvery day will be appropriate. EM and
-MGB contemplated a population of twenty to fifty scientists. XM suggested making the
number of scientists a “variable constant” and setting up the editorial office to process a
quantity of queries per day equal to the ceiling of the number of scientists divided by ten.

RWH asked what factors scientists can reckon into their strategies. For example, is
a scientist permitted to ask how far it is to a theorem? EM answecred that divulging
the distance to the ncarest thecorem gives away too much. The only information to be
divulged about a node is whether it lies in somcone clse’s project, whether it is a theorem,
and whether its subtree has been completely explored.

AAS suggested that one should be allowed to ask whether there are any theorems in
a given subtree. EM didn’t go [or that proposition, thinking again that to do so would be
to give away too much information. AAS then suggested that it would improve scientist’s
strategy if they were permitted to ask whether there were any theorems within a given
number of levels. MGB pointed out that scientists prove theorems every day but that
unfortunately most of these theorems are too boring to publish. EM objected to releasing
any information concerning the location of thecorems on the grounds that it would make
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possible strategies guaranteed to find a theorem in bounded time (e.g. in time equal to
three times the depth of the tree). ANS and EM agreed that one could partially remedy
this objection by giving answers to such questions with some probability of lying. EM was
not enthusiastic however; he felt that the point of the problem was not really to accurately
model the bitter realities of research, but rather to study certain trade-offs in parallel
computation.

AAS wondered why it was reasonable to charge a fixed, single unit of cost for traversing
every edge. EM responded that computation costs incurred at single nodes could be easily
countered by parallel processing. However, attempting to ensure that each node be visited
only once would exact a very high communications toll. By allowing multiple visits, this
toll is reduced.

EM observed that since theory is random, it would be advisable to try each strategy
on a number of theories. In this way one might hope to find a good policy regarding the
communication versus computation trade-off.

ST pointed out that the problem statement permits no direct communication between
scientists. Such communication could, he felt, be uscful. For example, a scientist might
decide to abandon a field and should be able to tell other scientists about that decision.
EM replied that there were two issues here. The first concerns models of reality, and the
second concerns tradcofls between communication and computation given some model. He
did not want to expend much cffort on the first issue. As to the second issue, it arises
in almost any parallel environment, and thus he felt that one could afford to fix on some
particular model.

AAS announced that he was still troubled by the uniform cost of traversing edges.
e wondered traversing a previously-traversed edge costs just as much as traversing an
unvisited edge. He pointed out that one ought to be able to read the publications pro-
duced in previous traversals to reduce ouc’s effort. AS paraphrased AAS by saying that
in the proposed model, no one ever reads the publications. MGB added that previous
work expended in reaching failure nodes is not preserved for later comers. MGB and EM
observed that this holds in reality; no one publishes their (ailures. KM noted that when
you get to a node you know whether it represents a failure or a thcorem. AAS replied
that there should be a cost corresponding to the difficulty of progressing from conjecture
to proof. EM agrced that this was a valid criticism of the model; greater realism could be
had by taking such matters into account.

- EM, MGB and AAS agrecd (after some argument) that although there was no advan-
tage in “reading the journal” it might pay to send inquiries to the editorial office. The
information thereby obtained would indicate whether other scientists were working on (or
had alrcady completed) an arca of the theory. AS asked whether completion of a subtree
referred to completion by an individual or completion by the group. EM replied that it was
a group concept, and that it could be computed by attaching two flags to each vertex: one
to indicate whether the vertex has been visited, and one to indicate whether the subtree
has been completely explored.

SS observed that the theory consists of ten thousand nodes and that there are twenty
scientists at work for a thousand days. Multiplication suggests that it might be possible
to exhaustively scarch the tree. EM responded that this might not be the case since there
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might be unavoidable duplication of effort. AA S suggested that it might be possible to give
each scientist a separate subtree to explore (by some kind of synchronization procedure)
and thereby eliminate duplication. AS, SS and EM replied that should the subtrees vary
drastically in length, some scientists would run out of new material and some subtrees
would be incompletely examined. EM added that if only negligible duplication occurs the
theory would be readjusted.

MGB raised the topic of multiple journals. She pointed out that the idea of two
journals linked by a hot line would be equivalent to one journal working at twice the
speed. ST suggested alternative journals, for instance a journal of failures and a journal
of graffiti.

EM mentioned a variation in which “local reading rooms” are established. Theorems
submitted to the journal are propagated to a set of local data bases each of which services
queries from a subset of the scientists. Because it takes time to transmit information from
the editorial offices to the local recading rooms, the information is not quite up to date.
However, each reading room services only a few scientists, thus query queues remain short
and service times are reduced. AAS asked for motivation for this variation. EM replied
that such a scheme could be implemented in a parallel computation environment. With
a tree architecture there would be a logarithmic (in the number of reading rooms) delay
incurred in sending information from the editorial office to the local reading rooms. Delays
at the reading roms would be short. This contrasts with a linear scrvice time when all
queries are sent to the editorial office.

AAS suggested that it was unreasonable to assume that all queries require the same
amount of time to process; for example a cache could be ecmployed to rapidly answer
frequently-asked questions. EM replicd that there exists a more fundamental issue. Most
memory systems, whether addressed by location or by content, permit only one access
(or at most a small fixed number of accesses) per unit time. Thus the queries must be
serialized and that in itself ensurcs that only one query (or at most a couple of queries)
can be answered per time step cven in the best of circumstances. However it might be
possible to reduce further processing delays by means of such things as caches.

RC raised the issuc of allowing scientists to communicate directly with cach other. EM
pointed out that this really amounts to providing an additional communications network
(analogous to a postal system or an ARPANET) and thus might befog the computation
versus communication tradeoff.

6.4 Notes for Thursday, March 15

EM opencd with the remark that at the last meeting discussion centered more on
questions of modeling reality than on methods for overcoming bottlenecks in parallel com-
putation. Two suggestions had been made, nanely founding additional journals and local-
izing communication by establishi ng “reading rooms.” (Caches had also been suggested,
but EM noted that such improvements still depend upon serial access and thus do not
address the fundamental issue.) 1M solicited further suggestions for solving the problem.
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RC asked for a clarification of the problem to be solved. EM replied that the problem
was one of inventing a method for sharing data among processes.

EM suggested that another idea would be to employ broadcast communications such
as those provided by transmitters, busses, or ethernets. RC pointed out that in evaluating
the performance of this discipline it would be necessary to account for both sending and
receiving costs. EM agreed that scientists would have to listen to the traffic on the bus.
One possibility would be for them to store every message in local memory; another would
be for them to screen all messages and just store the relevant ones. Using a broadcast
channel would eliminate the central bottleneck. However, if traffic is heavy, the burden of
storing everything locally would prove excessive. Furthermore, scientists would still face
the tradeoff of deciding how frequently to check their local memories. Such checks would
still cost at least a unit of time; though the queue delays associated with a central data
base would be eliminated.

MGB and SR wondered what would be broadcast. One candidate that they and EM
agreed on was theorems. IEM quashed the erupting controversy by suggesting that the
general problem (of distributing data to everybody when you don’t know who needs what)
be considered.

AAS proposed that the journal should simply record the status of the tree. Whenever
a scientist visits a node, a message so indicating should be sent to the journal. AAS
asserted that since there would be little or no conflict (since few nodes would be visited by
more than one scientist) these messages could be queued. He also argued that, by analogy
to multiple-user operating systems, simultancous reads would present no problem. EM
disagreed on the grounds that memories (whether disk, IC, etc.) are serially accessed. He
also argued that reading and writing are in general analogous and that while simultaneous-
read, single-write memorics are of theoretical interest, they cannot be built at reasonable
cost.

Returning to the topic of broadcast channels, EM and SR noted a range of possibilities.
Fach piece of information could be broadcast just once, under the assumption that each
process would notice and store it. On the other hand, each piece of information could be
broadcast repeatedly. This would trade memory for time.

SR argued that using a broadcast channel simply replaces the journal query queue with
a channel access queue. He proposed multiple channels, each dedicated to a particular area
of the theory. AAS objected, pointed out that if a scientist only records messages relevant
to his arca, he will be completely ignorant when he switches to a new project. ANS tried
to pursue the question of channcl contention but was drowned out by an argument about
the merits of “mailing lists.”

AAS asked for a clarification of the framework of the problem. He noted that he
had assumed that the available hardware (say 25 scientists) was to be regarded as fixed.
EM replied that part of the point of the problem was to find out what sort of hardware,
and particularly what sort ol architecture, was needed in a parallel environment. AAS
suggested that in the absence of a bound on the amount of available hardware, one could,
in the context of Problem 5, add more scientists to the editorial office. EM responded
that such approaches failed to address the communication versus computation tradeolf.
In order to encourage legitimate solutions, EM urged the class to read the Mohan paper
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cited previously. He also noted that the broadcast channel model raises tradeoff issues. For
example, messages could be sent once and stored locally. This is ineflicient since each picce
of information will be stored in many places. Another possibility is repeated broadcasting;
a third is to store locally only short approximations to the data.

SR raised the possibility that channel contention might cause the same bottleneck as
a central data base. This would certainly be the case, he felt, if write operations occur
as frequently (up to a constant factor) as read operations. EM replied that he didn’t
necessarily accept SR’s hypothesis on the relative frequencies of reads and writes. Thus
he felt that the broadcast channel might have some merit.

EM urged further thought on the general (and unsolved) problem of maintaining
central data bases in parallel environments. He concluded by mentioning that the S|
parallel computer project (conducted by the Livermore National Laboratory, a place better
known for other activities) had compared loosely coupled systems with tightly coupled
ones, and had found results similar to those given in the previously cited paper.

6.5 Projects

RC and HD wrote a simulation program to investigate the behavior of several research
strategies. Their program implements a single journal capable of answering four queries
per day. Five strategies were tried:

1. No communication: Each researcher receives a project at random at the beginning of
the simulation, and searches that subtrec until it is exhausted. Then the researcher
requests another (randomly-chosen) project. Any theorems found are reported to the
journal, but the reply (indicating whether the theorem has already been published)
is ignored. Whenever a resecarcher has to choose between several children in deciding
where next to visit, a random sclection is made. When a leaf node is reached, the
researcher backs up to the closest ancestor in the project possessing nodes unexplored

. by the researcher.

2 Check upon project assignment: Upon embarking on a new project each rescarcher
inquires whether the project is already exhausted. If so, a new project is immediately
selected.

3 ;Random communication: Upon reaching a node each researcher, with probability p,
sends an inquiry to the journal. The purpose of the inquiry is to determine whether the
subtree rooted at the node has been already completely explored. I so the researcher
backs up to the closest ancestor with children unexplored by the researcher. (If no
such node exists, the rescarcher selects a new project.) The researcher does not idle
while waiting for a reply to the inquiry. Replies that arrive too late to be relevant are
ignored. By varying the parameter p it is possible to observe the cffect of different
amounts of communication. Strategy 1 is obtained by setting p to zero.

4, Coordinated project assignment without communication: In this strategy projects are
assigned by the journal (rather than randomly by the oracle). The journal assigns
top priorily to requests for projects; nevertheless resecarchers may bc delayed when
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requesting projects. The journal answers each request for a project by assigning the
requesting researcher to the starting node of the project in which the fewest number

of researchers are working.

5. Coordinated project assignment with communication: Projects are assigned by the
journal as in the previous strategy, and researchers communicate as in strategy 3.

Simulation results are shown below for the case of 10, 20 and 30 rescarchers. RC
and HD found that for a given strategy the number of theorems discovered is varies greatly
from run to run. Therefore they chose to report instead a more stable quantity, the number

of nodes explored.

Researchers Strategy = Explored Nodes
10 1 - 4944
2 - 4887
3 0.1 4878
- 0.2 4574
0.3 4065
0.4 3734
4 - 4764
20 1 - 6175
2 - 6591
3 0.05 6713
0.1 7254
0.15 6892
0.2 6793
4 - 7499
5 0.05 7008
0.1 7399
0.15 6985
30 1 - 7925
2 - 8105
3 0.03 7692
0.07 7796
0.1 8426
0.13 7844
4 - 8084

RC and 1ID drew the following conclusions from their data:

e Ifor low numbers of researchers any communication is a waste of time.

The more

communication, the worse the performance. This can be explained by noting that it
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will be rare that two researchers will find themselves in the same project; so rare that
it takes less time to search the project than to check whether someone clse is there.
For higher numbers of researchers the optimal amount of communication is an amount
just less than that which causes the journal queue to saturate.

The strategy of check upon project assignment is poor, but the strategy of coordinated
project assignment may be best for intermediate numbers of researchers.

Adding communication to the strategy of coordinated project assignment provides
only marginal gains while swelling the journal queue to enormous proportions.




A. A List of “Almost Bricks”

A.1 Almost Bricks Sorted by Odd Leg

Presented below is a list of all almost bricks with side lengths less than 10,000,000.
This list was computed by SS. It is sorted by odd side length.

85 132 720 19635 21964 166320 73017 141856 5196120
117 44 240 20163 33660 332384 77805 30240 141284
187 1020 1584 22473 20864 850080 83475 14500 29568
195 748 6336 23751 7800 29920 84609 187488 556160
231 160 792 24035 30636 70752 85425 810568 839520
275 240 252 24225 22304 51480 96075 164164 556320
429 880 2340 26649 7920 15232 97825 4044096 7656472
496 4888 8160 26775 50880 176176 9854Q 16380 62832
693 140 480 27027 62700 573040 QQGO03 295460 654720
835 832 2640 27755 42372 62160 100035 16016 207900
935 17472 25704 28083 43056 105820 100125 199056 691708

1105 9360 35904 29601 90480 156032 100485 209328 1131020
1155 1008 1100 30195 100100 137904 101565 240900 1041392
1155 6300 6688 32175 169600 339552 102765 65520 394196
1575 1672 9120 32375 49896 427200 103075 28644 281808
1755 4576 6732 33201 59400 362080 103095 66528 446600
1881 1080 14560 34965 62900 358512 106227 154660 237120
2035 828 3120 35075 237GO 35604 10803 1 212160 289800
2079 44080 65472 35321 7560 13728 108405 83804 432960
2163 15840 37100 35409 54288 79040 110979 08172 141680
2295 1560 5984 3G:0Q 203080 2414412 111159 122760 176800
2475 780 2992 37835 269280 1244484 115115 330372 408090
2925 3536 11220 38475 2964 6160 115805 5004 12 5060016
4599 18308 23760 38571 21328 25740 117117 85956 1006480
4599 23760 144832 39 195 1188 16016 J17469 161040 194220
4901 4308 13860 4247 1 54280 59040 117711 255200 450360
549 ] 41580 46512 42053 240240 315 180 118035 225492 748880
5643 14160 21470 46371 210672 1277080 118755 149600 455532
5643 4 3680 76076 46431 269600 3629208 119669 48 1740 1227600
6325 528 5796 47975 84840 107712 128205 28704 247940
6435 24080 24684 51129 30080 85800 131157 167440 272580
7579 8820 17472 51205 36432 5 1324 134805 118404 241072
7884 16320 85932 52185 19800 302 176 137025 737880 1591744
8415 5720 157248 52GJ 1 83952 109340 141075 129888 536900
8415 157248 643720 54087 54784 364320 141525 806652 1451120
8789 10560 17748 57275 8532 36960 144837 363440 404700
9045 3696 121940 58425 300608 729144 148005 81840 122636
9405 2964 9152 59085 166012 2585610 151625 22572 56640
9405 23600 53196 59675 163152 587 100 151803 301200 845020
10395 63364 327360 G0885 302004 820820 153725 1498380 1622304
10395 95004 220400 61215 121204 14 1120 154671 58400 105528
10726 4928 30780 Gi845 9504 3 1372 156519 47200 J06392
10725 7840 9828 61975 4 12920 425508 157157 593676 942480
11753 10296 16800 62205 19604 55440 160185 219600 375232
12075 J 008 1100 62415 145404 362848 160257 100776 209440
12915 36720 290444 63163 5320 353760 167531, 168300 3144960
14715 148148 267 120 66495 53856 277100 168245 495264 633052
15225 17792 308880 066495 146160 313472 169575 49088 360360
15939 18460 48720 67575 23936 33120 171171 112860 429520
16929 G072 18560 67925 B6580 332112 173565 2577QG 5465920
17157 4900 23700 69165 566720 599748 176715 1077188 1927200
17325 100320 264404 69355 28512 138510 177177 38080 47736
18525 71060 90576 69513 41360 83520 179333 25344 109140
19175 J 12320 293832 72G 11 9180 200448 182457 2371720 457840
19305 14112 15400 : 72765 _ 320128 511980 185025 191620 1270704
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186065
186615
188859
190405
191065
191345
191709
192465
195415
200 165
2003895
200385
200583
20 1285
201663
206625
209385
209825
211327
213785
214305
217217
218595
219965
221805
224025
227799
229229
237575
240669
242535
2460675
252637
260107
263835
263865
265353
267813
272745
272987
273581
274275
274527
2749.1 J
278355
287287
291885
295113
206829
206989
290145
301587
301045
303195
305877
306603
306891
308499
316635
318175
323323
325975
3206895
330165
331177
331485
331721
332469
335049
335825

310896
321816
97812
102828
81576
853944
773300
145376
4773G
277200
169312
169312
9856
95004
186416
222200
119680
223104
1358640
325008
46816
279744
431460
684372
315172
215072
48960
1274580
214368
234780
560120
754000
1422960
774 180
97092
3874328
1104320
852720
101952
371280
25908
97152
7336
157760
3508388
216720
1521036
133400
857472
943920
34632
156960
201300
66700
135700
77004
2821500
588008
120320
3357792
112320
1063392
211040
672220
483840
350020
475200
314160
J 87200
426360

3476928
983080
245440
252000

1399200

2126592

1623888

2796600

3051648
970590
211200
467016

61560
791120
262080
421344
402696
293040

2487930
770880
122760
378000
544544
761904

1165104
434304
181720

2380560

1492920
900592
713952

1734084

3369780

1475760

1308944

6763680

3686760

4326484
684400
550116

95040
198220
480480
526680

4264416
369984

3096848

2100384
950300

2484300

66976
752284
204336

1050192
147000
769360

4562800

1750320
204516

6431880
300900

4995144
645096

3502992

1550736
379008

1914960
422300

2734600
753984

341649
343827
350493
352275
354123
356235
361665
362805
366125
370125
373175
376363
384615
387849
389367
392535
400365
401115
406245
406315
412425
414869
415989
416075
419525
421245
426105
426173
430355
430911
432837
442035
448533
449757
450225
451269
460845
461619
462825
463095
469395
474045
474145
474903
477369
477763
486875
489555
480991

405349
500175
503685
504075
604735
508635
508875
512325
512533
518661
523341
524349
524797
526311
5306877
539847
556605
561105
564311
567153
567801

4114240
149500
7531524
485316
934800
3983980
57904
1901900
694260
699600
1055808
96900
3293000
1143040
426880
2069120
1245332
475776
299884
34452
4267872
294492
1233980
1106772
1421244
537152
2307360
2873340
134640
5748160
2403500
142912
1489620
1439000
5368
568480
233772
261580
109600
359040
75152
2837536
72864
348920
263120
296400
108 108
875472
105600
180 180
80080
102080
461916
623480
497904
1444300
1043100
6215220
230100
2056912
273840
2711280
245520
127136
42240
457028
759360
128520
535920
201960

5538768
1050960
8448640
1608880
1490020
6656832
116928
4880304
746592
4421950
1932840
205920
5075136
4451832
1190160
2816208
2406624
2941208
2098800
134064
4637400
327600
3321648
2165700
1847040
2207700
2619904
2923530
948948
6307152
9397200
892620
2845744
2280720
163680
037860
653200
1000800
130152
2530528
413364
8004348
143640
2503290
691008
3654540
250800
996740
2110680
215760
229824
343470
5216288
1789344
627628
2738736
1782352
7694544
271040
4357980
609620
3072900
014048
452100
063296
1025904
1329328
459300
4647104
1758400

570505
570843
574425
575575
576375
581009
588945
592999
G00357
603075
GOr725
611325
613795
615195
615615
616605
617419
617715
625053
631125
631533
636115
638685
641355
645975
647955
657041
667575
667755
673475
685425
686565
689481
699567
700557
712725
720005
720291
733623
735885
736255
749133
749595
750295
758043
772145
777483
7793:: J
784125
799389
806949
807675
811965
820105
833745
839475
839575
847665
851499
853655
855855
859815
863811
865305
876645
894801
908105
9100665
918099
922077

164808
234960
134288
2152512
204160
4063488
1313128
524160
153076
84420
2627148
264860
471276
322400
2086200
70700
835380
1723984
277300
200300
514080
708180
86508
609860
230112
978576
251160
390816
599676
77268
631072
1712580
146960
3345056
1848924
102340
2661660
1029600
801864
823680
539352
701760
1187316
154440
336300
1041408
2536380
4117680
2115828
351648
284700
252000
181702
1619904
492800
432432
216720
1031872
5800G0
812448
3303304
GRGT2
301248
83770
774384
406980
943488
776776
118000
1721764

411840
1128524
732480
5678640
1175328
4809240
1805760
2700432
570960
1570016
6231280
562848
0979440
767052
3564704
134064
046608
3873012
848160
(44688
2257244
2203344
102256
880992
256360
1798940
465120
1343320
1675600

99360
3674880
2091328
1110720
9719640
2141360
043104
5782064
1175300
3053120
1814510
1815840
2079844
3801200
308448
1902160
4848000
4 143200
4493500
5159440
452980
437360
401212
272844
2502072
504648
1947500
272832
1705704
799920
1339404
4511360
3138900
2966660
1244760
2433800
2026640
1029600
7915200
265980
2574000
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933075
935253
935715
939339
954771
968253
970437
970783
992405
1013829
1013850
1018875
1019711
1027675
1039419
1052623
1056965
1067605
1073995
1077615
1090635
1095633
1107225
1107743
1110678
1118425
1146035
1146845
1153427
1163085
1178931
1180971
1198925
1203895
12 10825
1214955
1233513
1239315
1264545
1264835
1281735
1288963
1294994
1297520
1306305
1307859
J3226G865
J33127%
1353275
1354815
1356075
13741555
1374891
1379125
1392075
1420419
1427415
1437975
1440285
1446723
1448655
1491903
15() 1383
J506379
1517373
1587355
1599565
1600435
16011435
1606165

332384
761904
804QG
2889348
403172
328320
1487200
66456
914628
772772
1437040
744800
354240
223440
812592
1419840
579684
116688
208692
1333568
774180
390720
521664
1071840
180180
1461240
2536380
425040
910800
905324
5254060
268780
282348
460200
1120056
418 132
481440
759924
2101440
131196
2220128
474240
6126 12
150012
2801656
619920
923052
2580864
1605708
2574528
459360
1024452
422812
1968000
249964
607392
41184
2765560
1368900
5061964
1345960
801360
1173744
263641 8
757900
335916
1929312
46176
662704
5796720

837540
1967420
380380
4319840
5377680
430996
6195420
542400
1049040
5710320
2832900
748836
553320
1948710
2534620
2861136
4245120
1280916
869856
2951424
2072512
506456
2591480
1309176
269072
2810304
3138816
676972
1283100
127600
654 192
4054128
669120
705 1968
1893600
5809440
9462200
1566200
3168088
4242672
5063520
3045180
3066800
1750320
0158208
1589060
3113264
2688300
8633856
3626896
1306396
5400064
720720
4970532
1330560
3968900
312280
3613248
2575664
5918880
42644 16
1316480
5304040
7050120
7998336
2531712
3137916
211008
1383360
7250628

L6 L1675
1620465
1621477
1638555
1645699
1654653
1666665
1696761
1732599
1733809
1743525
1749825
1752751
1769229
1791075
1792317
1801107
1823041
1826181
1839941
1840575
186 1755
1873989
1900965
1902375
1907451
1916475
1918545
1930467
1953105
1955511
1961375
1965183
1982695
1987557
1992681
1993005
2015775
2034747
2054565
2061675
2066265
2070705
2J 19935
2135705
2139585
2144110
2157285
2179485
2236125
225094 1
2253537
2254825
2288265
2329509
234 1449
2342359
2362635
2399265
24 13675
2446725
2447703
2477875 .
250483 1
2516319
2518725
2% 18725
2519153
2564661
257 1233

1580304
1186328
664020
108 1652
033660
720720
52096
3946680
6596920
540960
92 1388
1212000
554760
3786640
1282644
1532060
3395980
3734640
5498592
2476080
258400
964512
6621120
5751508
796928
1012460
2788240
636768
1055050
2583360
1155840
591888
132 1856
2690400
163676
1431360
310088
509888
613600
328944
1010276
3783736
83776
2977920
29664
81 1800
498212
195408
2469676
643500
4729140
2010560
2138640
136136
813020
937568
526680
1126692
1983696
285360
1622060
1804560
19280
206920
668800
732780
818496
92400
2278 100
17850

4276340
3182400

789264
3491136
1407120
1981396
2650128
6073760
7210560
1089000
2605680
2812888
1374432
5067972
1282960
2974356
8955024
4202688
8476700
5637060
3333528
3579884
8469340
6375600
1157520
3336432
3634092
1615976
2698740
3350672
1909600
964800
6383520
6064344
472320
3905792

362340

995280

902700
2428580
3917760
6776352
11 J 7440
7558048
10 18248
2153536
3219210
7364500
3341520
4445584
5628480
6640920
5062464

351648
4712400
1883520
1133088
1935680
6494272

364572
5493312
6267492
1970892

5 15592
1476600
1474528
3170860

732090
2423952
1660560

2595775
612225
2621619
2636361
2654135
2654619
2673585
2673585
2677103
2678571
2699097
2736405
2750345
2757755
2760307
2796915
2800083
2807805
2807805
2812095
2822391
2841075
2843145
2844205
2847105
2856425
2863245
2866149
2873045
2883595
28904 59
292634 1
2982525
2984247
3008745
30013435
3035725
3057093
3063995
3153645
3168825
3198195
32204 J 9
325348 1
292341
33 16907
3337225
3338205
3357285
3364725
3378485
3388185
3455641
3461179
3462225
352 1583
3522375
3608605
3612141
3716115
3724875
37324 17
3795825
3800745
3806859
382 1665
3828995
3893197
3950325
3974855

1494768 5765760
1426920 7390656
8549200 9181380
2983160 3321120
5278680 9439872
1010592 4302180
1108536 4523552
4523552 9235200
1458504 1990560
2553980 4263000
1158840 3907904
3158804 6857328
1504800 5844696

38304 80340

88176 1337220
3744676 4910400
4107740 6271056
810900 5335616
1527372 4240490
985872 1654400
854488 2518080
4854564 9883952
191352 275264
2018940 2023632
621984 1085812
1374144 8452080
823004 1992672
1651580 4255440
938676 953568
361152 792540
3612240 8355900
1779440 4192188
323380 1430352
2122120 8985504
147840 481712
191268 885920
1082628 5776800
1818960 3456100
2265588 3782160
4106492 5937360
2016824 4749120
2650004 3059760
1556240 2960100
1920000 3504240
84 1340 842688
2340624 7619940
2533 160 3537792
858 176 2777940
2497572 3172400
2669348 7398864
1546116 2508480
580920 981376
3369960 9653280
706860 1997520
1226368 5163120
4093056 742GQR0
3816120 4268768

30156 772992
2084688 4710860
955328 7334820
5642240 6555276
2195840 3103344
408720 4507048
5319352 6219840
2051280 2578900
2358972 2732080
561132 7046160
1518804 1845360
142240 1027356
345576 1205568
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3993535 1299408 2882880 5288547 5122780 5245200 7162085 863280 1137948
4003857 2779840 8849880 5306301 682000 2354100 7243775 3092760 4009824
4009005 2600048 6980340 5351995 8903664 9278052 7290435 5783580 7138624

4054505 2821728 9816840 5406555 141372 176800 7300293 2484720 2828540
4123405 1024800 4948524 5540535 512992 1169256 7301151 2293368 5069120
4150575 3982680 5710352 5544825 54720 614384 7336945 2548800 2738736
4158115 100320 759132 5595975 762280 1619904 7344289 8131200 8605080
4168675 1572480 5039892 5673549 4657660 9540432 7352107 7759920 9969300

4180185 1804200 2063776 5682159 1339200 1688720 7514493 617760 3001180
4210679 1313760 6151080 5799825 4113120 5725688 7545875 4046988 4984560
4216245 214524 1645600 58L1165 2106780 4910048 7567263 434816 3180600
4293015 1888480 3332664 5827965 404404 1983600 7604835 2945052 6 195280
4293315 4803708 5778080 5906667 2304540 5205200 7650825 1850904 7044128

4350645 598400 2063868 G015581 3902800 6543108 7654535 3519912 4634784
4351459 539220 (387312 G049455 4165272 8790496 7773147 970140 597 1504

4355085 2106720 9369436 6088803 3191760 9028700 7850557 8298576, 9004260

43632115 534576 3197700 6111721 4512480 6809472 7891885 2530116 6169680
4307853 3734640 6582796 (3117045 3462592 5757444 8118357 3437280 5099500
4399241 1150560 6469080 6213375 2601720 2642624 8191161 1147600 4488000
4410055 1475760 5208096 6237605 733044 1291392 8253905 1756512 3500184

4423545 2179232 2889000 6238080 706552 8303040 8421885 2910820 5233008

4460103 88704 111520 6403683 6965244 8901920 8430525 3973200 5634412

4477187 2402016 2857140 6403775 7702296 7920000 8709987 706420 5403600
4519515 5820480 7715708 6413913 4952640 5845616 8722105 1232640 2025408

4533815 3162816 3385200 6425679 6772480 8015400 8729875 313632 8430300
4540526 4160772 4717440 6505191 2734200 3409120 8730579 1556100 7227440
4559685 180732 843920 6530111 281160 885600 8794979 956340 GO72528
4574955 1349084 3310560 6551919 209920 1336608 8830459 2894688 9866340
4575483 59280 606956 6058431 793408 4614480 8841417 3365856 6027560
4620147 1712304 3403540 6696795 610060 731952 8858795 3794400 9027012

4669203 2097396 2438480 6704645 150384 688860 9072063 2717416 5206080
4702887 1128920 7207200 6794865 152.1312 4527320 9004371 376740 1268672

4734639 959552 1407120 6936501 166500 1707200 9261569 3825360 7788480
4753285 1974000 5008068 6944861 1636800 5507460 9299225 6503112 753 1680
4799015 488370 2431908 6954519 1591300 1901240 9555741 3273940 7266512

4801797 1468896 7385140 6956235 3172148 4302480 0569749 3977820 5453760
4838625 3047352 0515200 6956565 13004763 2541968 9646011 452848 3318900
4924071 5208840 8557120 7083747 1972496 2450580 9828013 4229940 6715584
5046195 1322288 1631700 7 149205 2372832 3002940 9915675 1536596 1718640
5111703 3736304 7423680 7161165 1637916 3715712
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A.2 Almost Bricks Sorted by Shortest Leg

Presented below is a list of all almost bricks with side lengths less than 10,000,000.
This list was computed by SS. It is sorted by shortest side length.

44 117 240 9856 61560 200583 41360 69513 83520

85 132 720 10296 11753 16800 42240 33296 539847
140 480 693 10395 63364 327360 42471 54280 59040
160 231 792 10395 95004 220400 426353 240240 315180
187 1020 1584 12915 30720 290444 46176 211068 1600435
195 748 6336 14112 15400 19305 46371 210672 1277980
240 252 275 14500 29568 83475 46431 2GQGO0 3629208
429 880 2340 14715 148148 267120 46816 122760 214305
495 4888 8160 15225 17792 308880 47200 106392 156519
528 5796 6325 15939 18460 48720 47736 195415 3651648
780 2475 2992 16016 100035 207900 47975 84840 107712
828 2035 3120 16380 G2832 98549 48960 181720 227799
832 855 2640 17325 100320 264404 49088 169575 360360
935 17472 25704 17856 1660560 2571233 49280 1970892 2477835
1008 1100 1155 18525 7 1060 90576 52096 1666665 2650128
1008 1100 12075 19175 112320 293832 52611 83952 109340
1080 1881 14560 19604 55440 62205 538563 66495 277 160
1105 9360 35904 19635 21964 166320 54087 54784 364320
1155 6300 6688 19800 52185 302176 54720 614384 5544825
1188 16016 39195 20163 33660 332384 57904 116928 361665
1560 2295 5984 20864 22473 850080 58400 154671 165528
1575 1072 9120 21328 25740 38571 58425 300608 720144
1755 4576 6732 22304 24225 51480 59085 166012 2585616
2079 44080 65472 22572 56640 151525 59280 606956 2575483
2163 15840 37100 23760 35075 35604 59675 163152 587 100
2925 3536 11220 23936 33120 67575 60885 302064 820820
2964 6160 38475 24035 30636 70752 61215 121264 141120
2964 9152 9405 25344 109140 179333 61975 412920 425568
3696 0045 121940 25908 95040 273581 62415 145464 362848
4368 4901 13860 26775 50880 176176 65520 102765 394196
4599 18308 23760 27027 62700 573040 66450 542400 970783
4599 . 23760 144832 27755 42372 62160 66495 146160 313472
4000 17157 23760 28083 43056 105820 66528 103005 446600
4028 10725 30780 28512 69355 138516 66700 303 195 1050192
5320 63063 353700 28644 103075 281808 67925 86580 332112
5368 163680 450225 28704 128305 247040 68172 110979 141680
549 | 41580 46512 29601 904 80 150032 68672 313896 859815
5643 14100 2 1476 29664 1018248 2135705 69165 566720 5900748
5643 43680 76076 30080 51129 85800 70700 134064 616605
5720 8415 157248 30156 772992 3608605 72765 326128 511980
G072 16929 18560 30195 100100 137904 72864 143640 474 145
Q435 24080 24684 30240 77805 141284 73017 141856 5 196120
7336 274527 480480 32 175 169600 339552 75152 413364 469395
7560 13728 35321 32375 49896 427200 77004 306603 769360
7579 8820 17472 33201 59400 362080 77268 99360 673475
7800 23751 29920 34452 134064 406315 80080 220824 500175
7840 9828 10725 34632 66976 299145 80496 380380 Q357 L5
7885 16320 85932 34965 62900 358512 81576 191065 1399200
7020 15232 26649 35409 54288 79040 8 1840 122636 148005
8415 157248 043720 36309 2030680 24 14412 83776 8GH3056 1244760
8532 36960 57275 36432 51205 51324 83776° 11L7440 2070705
8789 10560 17748 37835 200280 1244484 83804 108405 432960
9180 72611 200448 38080 47736 177177 84420 G03075 15700 16
9405 23600 53196 38304 80340 2757755 84609 187488 550100
9504 31372 6 1845 41184 312280 1427415 ; 85425 810508 839520
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85956
86508
88176
88704
92400
95004
96075

QEQO0
97092
97152
97812
97825

QQGO3
100125
100320
100485
100776
101565
101052
102080
102340
102828
105000
106227
108031
108 108
109600
111159
112320
112860
115115
115805
110088
11746Q
117711
118000
118035
118404
118755
119669
119680
120320
127136
128520
129888
131157
131196
133400
134288
134640
135700
136136
137025
141372
141525
142241)
142912
144837
145376
146960
147840
149500
150384
150612
151803
153076
153725
154440
156960
157157

117117
1022563
1337220
111520
732006
201285
164164
205920
263835
198220
188850
4044096
295460
199056
750132
209328
166257
240900
272745
343476
643104
100405
489901
154660
212160
250800
130152
122700
300900
171171
330372
500412
1067605
161040
255200
265980
225492
134805
149G00
481740
209385
204516
452100
459360
141075
167440
1264835
2056113
574425
430355
147G00
351648
737880
176800
806652
1027356
442035
363440
192465
689481
481712
343827
688860
1207525
361200
570900
1498380
308448
301587
503676

| 0Q480
638685
2760307
4460103
2519153
791120
550320
376363
1308944
274275
245440
7655472
654720
691708
4158115
1131020
209440
1041392
684400
503685
712725
252000
2110680
237120
289800
486875
462825
170800
323323
429520
408096
5060016
1280916
194220
450360
918099
748880
241072
455532
1227600
402696
316635
536877
564311
530900
272580
4242672
2100384
732480
948948
305877
2288265
1591744
5400555
1451120
3950325
892620
404700
2796600
1110720
3008745
1050960
G794645
1750320
845020
G00357
1622304
750295
752284
942480

157760
160185
163676
164808
166500
167531
168245
169312
169312
173565
176715
180180
180180
181702
182457
185925
186065
186416
186615
186732
187200
191268
191345
101352
191709
195408
200165
201300
201960
204100
205020
206625
208692
209300
209825
200920
211327
211640
213785
214368
214524
215072
216720
210720
217217
218595
219965
221805
223440
229229
230 100
230112
233772
234780
234Q30
242535
2455.0
246675
249964
251100
353000
252637
258400
260107
261580
263120
26648
263865
264860
265353

274911
2 19600
472320
411840
1707200
168300
495264
200385

. 200385

257796
1077188
215760
260072
272844
237120
101620
310896
201663
321816
843920
335049
885920
853444
275264
773300
2157285
277200
204336
567801
576375
515592
222200
869856
6311256
223104
1336608
1358640
326895
325008
237575
1645600
224025
272832
287287
270744
431460
684372
315172
1027675
1274580
271040
250300
460845
240669
570843
500130
526311
754000
1330560
465120
401212
1422960
1840575
774180
461619
477369
1506375
3874328
562848
1104320

526680
375232
1987557
570505
6936501
3144960
533052
211200
467016
5465920
1927200
495349
1110675
811965
457840
1276704
3476928
262080
983680
4550085
2734600
3009435
2126592
2843145
1623888
7364500
970596
301045
1758400
1175328
2504831
421344
1073995
644688
293040
6551919
2487936
645696
770880
1402920
4216245
434304
830575
369984
378000
544544
761904
1165104
1048716
2380560
518661
G45975
653200
900592
1128524
713952
914048
1734084
1392075
057041
807675
3360780
3333528
1475760
1000800
691008
7050120
6763680
(111325
3686760

767813
268780
272087
273840
277300
278355
281160
282348
284700
285360
291885
294492
296400
296829
296989
299884
306891
308499
313632
314160
318175
319088
322400
323380
325975
328320
328944
330165
331177
331485
331721
332384
335825
335916
336300
341649
345570
348920
350493
351648
352275
354123
354240
256235
350040
361152
362805
366125
370125
373175
370740
3840615
387849
389367
390720
390816
391248
392535
400365
401115
403172
404404
406980
412425
415989
416075
418132
419525
421245
422812

852720
1180971
371280
524349
625053
3508388
885600
669120
437360
364572
1521036
327600
477763
857472
943920
406245
2821500
588008
8430300
332460
3357702
362340
615195
1430352
1063392
430QQG
2054565
672220
483840
350020
475200
837540
426300
1587355
758043
4114240
1205568
474903
7531524
452980
485316
934800
553320
3083980
463095
703540
190 1900
694260
699600
1055808
1268673
3293000
1143040
426880
506456
GG7575
863811
2069120
1245332
47577G
954771
1983600
804861
4307873
1233980
1106772
1214955
1421244
537152
720720

4326484
4054128
550110
609620
848100
4264416
6530111
1198925
806949
2413675
3096848
414869
3654540
950300
2484300
2098800
4562800
1750320
8729875
422300
6431880
1993005
767052
2082525
4995 144
968253
2428580
3502992
1550736
379008
1914960
933075
753084
2531712
1902160
5538768
3974855
2503296
8448640
799389
1608880
1490020
1019711
6656832
2530528
2883595
4880304
746502
4421956
1 Q82840
(3004371
5075136
4451832
1190160
1005633
1343320
2966660
2810208
2406624
2941208
5377680
5827005
*2020040
1657400
3321048
2165760
5809440
1847040
2297700
1374891
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425040
426105
426173
430911
432432
432837
434816
448533
449757
451269
452848
457028
450360
460200
461916
468720
471276
474045
474240
481440
488376
489555
402800
497904
498212
504735
508875
509860
500888
512325
512533
512092
514080
521664
523341
524160
524797
525460
526680
534576
535920
530220
539352
540960
554 760
561105
561132
575575
579684
580060
580020
58 1009
588045
591888
598400
599676
G07302
GO7725
610060
612612
613600
615G 15
617419
617715
617760
619920
621984
631072
636115

636768_

576072
2307360
2873340
5748160

839475
2403500
3180600
1489620
1439900

568480
3318000

556605
1306396
1203895

504075
3705825

613795
2837536
1288063
1233513
2431968

875472

504648

508635
2144115

G23480
1444300

641355

995280
104 3100
(3215220
1169256

631533
1107225
2056012

592999
2711280

654192
1133088
3197700

567153

687312

736255
1089000
1374432

759360
3828995
2152512
1056965

799920

981376
4063488
1313128

964800
2063868

667755
1420419
2637148

731952
1294995

902700
2086200

835380
1723984
3001180
1307859

1085812

685425

708180
1515976

1146845
2619904
2023536
6307152
1947500
9397200
7567263
2845744
2280720
037860
9646011
1025904
1356075
7051968
5216288
4507648
079440
8004348
3645180
9462200
4709015
996740
833745
627628
3219216
1789344
2738736
880992
2015775
1782352
76394544
5540535
2257244
2591480
4357980
2700432
3672900
1178931
2342359
4362115
4647104
4351459
1815840
1733809
1752751
1329328
7046160
5678640
4245120
851499
3388185
4809240
1805760
1061375
4350645
1675600
3968900
6231280
6696795
3066800
2034747
3504704
046608
3873012
7514493
15890060
2847195
3674880
2203344
1018545

643500
647955
662704
664020
668800
682000
686565
699567
700557
701760
706420
706552
706860
720005
720291
720720
732780
733044
733623
735885
744800
749595
757900
759924
761904
762280
772145
772772
774180
774384
776776
777483
770331
784125
793408
796928
801360
810900
81 1800
812448
812502
813020
818496
820105
823004
841340
847665
854488
855855
858176
863280
005324
908 105
910800
914628
021388
922077
923052
933660
937568
938676
939339
aHhhHH28
056340
959552
964512
070140
970437
985872
1010276

2236125
978576
1383360
789264
147GG00
2354100
1712580
334505G
1848924
740133
5403600
6238089
1997520
2661660
1029600
16354653
1474528
1291392
801864
823680
748836
1187316
1517373
1230315
933253
1619904
1041408
1013829
1090635
876645
910005
253€380
4117680
2115828
4614480
1157520
1316480
2807805
2130585
853655
1039419
2329509
2518725
1619904
1992672
842688
1631872
25. 18080
3362304
2777940
1137948
1163085
043488
1153427
092405
1743525
1721764
1322685
1407120
1863520
953568
2880348
716115
6072528
1407120
1801755
5971504
1487200
1654400

2061675

4445584
1798940
1601145
1621477
2516319
5306301
3991328
9719640
2141360
2079844
8709987
8303040
3461179
3782064
1175300
1081396
2518725
6237605
3053120
1814516
1018875
3801200
7998336
1565200
1967420
5595975
4848000
5710320
2072512
2433860
7915200
4145200
4493500
5159440
6658431
1902375
1491903
5335616
2153536
1339464
2534620
4712400
3170860
2502072
2863245
3292341
1705704
2822391
4511360
3338205
7162085
1227600
1029600
1283100
1049040
2605680
2574000
3113264
1645699
2341449
2873045
4319840
7334820
8704979
4734039
3579884
7773147
0195420
2812095
3917760

1010592 2654619 4301180

1012460
1013859
1024452
1024800
1052623
1055056
1071840
1077615

1081652
1082628

1108536
1118425

1120056
1126092
1128920
11463035

1147600
1150560
1155840
1158840
1173744
1186328
1212000
1226368
1232640
1264545
1281735
1282644
1299408
1306305
1313760
1321856
1322288
1331275
1339200
1345960
1349684
1353375
1354815
1360476
1368900
1374144
1370125
1426920
1431360
1437975
1440723
1458504

t468896
t475H760
1494768
1504800
1518804

1521312
1527372
1532960
1536596
1546116
1556100
15566240
1572480
LHROZ04
1591200
15995665
1606165
1622060
1636800
1637916
1651580

1907451
1437040
1374555
4123405
1410840
1030467
1107743
1333568
1638555
3035725
2673585
1461240
1210825
1935680
4702887
2536380
4488000
4399241
1909600
2699697
1501383
1620465
1749825
3462225
2025408
2101440
2229128
1282960
2882880
2801656
4210679
1065183
16331700
2580864
1688720
1448655
3310560
1605708
2574528
2541068
1440285
2856425
1968000
2612225
1992681
2765560
5061964
1990560
4801797
44 10055
2595775
2750345
1845360
4527320
2807805
1702317
1718640
2508480
7227440
2960100
4168675
1641675
1001240
1020312
5796720
2440725
5507460
3715712

3336432
2832800
5400064
4948524
2861136
2698740
1309176
2951424
3491136
5776800
4523552
2810304
1893600
2362635
7207200
3138816
8191161
6469080
1055511
3907904
5304640
3182400
2812888
5163120
8722105
3168088
5063520
1701075
3993535
G158208
6151680
(383520
5046195
2688300
5682159
4264416
4574955
8633850
3626896
6956565
2575664
8453080
4976532
7300656
3905792
3613248
5018880
2677103
7385140
5268096
57635760
5844696
3803197
6794865
4240496
2074356
9915675
3378485
8730579
3226419
5030802
4276340
(054519
3137910
7250628
5403312
6944861
7161165

2866149 4255440
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1696761 3946680 6073760 2278100 2423952 2564061 3191760 (G0B8803 9028700
1712304 3403540 4020147 2203368 5069120 7301151 3272940 7266512 9555741
1732500 6596920 7210560 2304540 5205200 5906667 3365856 6027560 8841417
1756512 3500184 8253905 23406324 3316907 7619940 3369960 3455641 9653280
1769229 3786640 5067972 2358972 2732080 3821565 3437280 5099500 8118357
1779440 2926341 4192188 2372832 3002940 7149205 3462592 5757444 6117045
1801107 3395980 8055024 2402016 2857140 4477187 3519912 4634784 7654535
1804200 2063776 4189185 2464720 2828540 7300293 3521583 4093056 7426960
1804560 2447795 6267492 2497572 3172400 3357285 3522375 3816120 4268768
1818960 3057093 3450100 2530116 6169680 7801885 3724875 5642240 6555276
1833041 3734640 4202688 2533160 3327225 3537792 3734640 4367853 6582796
1836181 5498592 8476700 2548800 2738736 7336945 3736304 5111703 7423080
1839941 2476080 5637060 2553980 2678571 4263600 3794400 8858795 9027012
1850904 7044128 7650825 2600048 4009005 6980340 3800745 5319352 6219840
1873989 6021120 8469340 2601720 2642624 6213375 3825360 7788480 9261509
1888480 3332664 4293015 2621619 8549200 9181380 3973200 5634412 8430525
1900965 5751508 6375600 2636361 2983160 3321120 3977820 5453760 9569749
1916475 2788240 3634092 2650004 3059760 3198195 3982680 4150575 5716352
1920000 3253481 3504240 2654135 5278680 9439872 4046988 4984560 5' 545875
1953105 2583360 3350672 2669348 3364725 7398864 4113120 5725688 5799825
1972496 2450580 7083747 2673585 4523552 9235200 4160772 4540525 4717440
1974000 4751285 5008068 2717416 5206080 9072063 4165272 6049455 8790496
19826905 2690400 6064344 2734200 3409120 6505191 4229940 6715584 9828013
1983GQG 2399265 6404272 2736405 3158804 857328 4293315 4803708 5778080
2010560 2253537 6640920 2779840 4003857 8849880 4512480 6111721 6309472
2016824 3168825 4749120 2796915 3744670 4910400 4519515 5820480 7715708
2018940 2023632 2844205 2800083 4107740 6271056 46570660 5673549 0540432
2051280 2578900 3806859 2821728 4054505 9816840 4924071 5208840 8557120
2066265 3783736 6776352 2841075 48545064 0883952 4952040 5845610 0413913
2097396 2438480 4669203 2890459 3612240 8355900 5122780 5245200 3288547
2106720 4355085 9369436 28904688 8830450 9866340 5351995 8903664 8278052
2106780 4010048 5811165 2002800 GO15581 6543108 57835811 7136624 7290435
2119935 2977920 7558048 2010820 5233008 8421885 6403683 6965244 8001920
2122120 2984247 8085504 2945052 6195280 7604835 0403775 7702296 7920000
2138640 2254825 5062464 2984088 3612141 4710860 6425679 6772480 8015400
2179232 2889600 4423545 3047352 4838625 (H15200 6503112 7531680 9299225
2179485 2469676 3341520 3032760 4000824 7243775 7344289 8131200 6005080
2195840 3193344 3732417 3153645 4106492 5937360 7352107 7759920 9969300
2250041 4729140 5628480 3162816 3385200 4533815 7850557 8208576 QUO4260
2265588 3063995 3782160 3172148 4302480 6956235




