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Abstract: We present a paralle! algorithm for the two processor scheduling problem.
This algorithmn constructs an optimal schedule for unit cxecution time task systems
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for the problem made extensive use of randomization, our algorithm is completely
deterministic and based on an interesting decomposi tion technique. And it is of
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of fast parallel computation, and it gives an NC-algorithm for the matching problem
in certain restricted cases.
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1. Introduction

This paper presents results on parallel algorithms for scheduling problems. Our main
result is a deterministic NC agorithm for solving the two processor scheduling problem.
This problem falls into the gencral class ol unit time scheduling problems with precedence
constraints. The prccedence constraints arc given as a partial order on the tasks; if task
t preceeds task t' (written £ < t') then { must be completed before t” can bc started. A
solution to the problem is an optimal (i.c. shortest length) schedule indicating when cach
task is started.

Several results follow immediately from our main result. Since any optima schedule cor-
responds te a maximum matching in the complement of the preccdencc graph, we have an
NC agorithm which finds maximum matchings in the complements of prcccdence graphs
(e.g. interval graphs and permutation graphs). For more details, see [HIM85] and [KVV85].
In addition, our algorithm solves the “obvious’ open problem stated in [VV85].

For research into parallel algorithms, the two processor case is the most interesting unit
time sched uling problem. When only a single processor is available (tasks must bc sched-
uled one at a time) finding an optimal schedule is trivia. If the number of processors is
an input to the problem, then the unit time scheduling problem becomes N P-complete
[U175]. It is unknown whether or not there is a tractable sequential solution for a fixed
number of processors greater than two.

The two processor scheduling problem has a long history and rich literature. The first

polynomial time solution, O(n?), was published by Fujii, Kasami and Ninamiya in 1969
[I'KNGY]. Three years later, Coffman and Graham published an QO(n®) algorithm [CG72].

Gabow found an algorithm that, when combined with Tarjan’s union-find result [G'T'83],
runs iii O(n | €) time |Ga82] and hence i s asymptotically optimal. The only pu blished
parallel algorithm for the problem is Vazirani and Vazirani’s randomized parallel solution

(VV85]. The expected running time of their algorithm is a polynomial iii the logarithm of
the number of tasks.

Severnl researchers have consiticred restricting the prccedence constraints and alowing the
number of processors to vary. If the precedence constraints arc restrictcd to forests [Hu61,
[IM34, DUW84] then optimal schedules can be found cither sequentially or in parallel.
If the precedence constraints arc restricted to interval orders then there is a sequential
polynomial time algori thm for the problem [PY 79).

With the rising use of highly parallel computers, it is important to identily those problems
which can bc cflicicntly solved in parallel. 1t is generally accepted that those problems
in the class NC (solvable in poly-log time using a polynomial number of processors) are
amenable to paralellization while those that are P-complele (polynomial time complete
under log-space reduction) arc not. The class RN C consists Of those problems solvable in
poly-log time using a polynomial number of processors with high probability when random
coin {lips arc available as a basic computation step. Algorithms in this class only need to
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quickly obtain the right answers most of the time.

One fundamental problem which has an RN C (but no known UC) algorithm is the match-
ing problem [KUWS85a]. Our results on two processor scheduling provide evidence that the
matching problem might be in UC, since the two problems are closely related. An optimal
two processor schedule is @ maximum matching in G, the complement of the precedence
graph. Conversely, there is a scqucutial algorithm for convcertirlg any maximum matching
in G into an optimal schedule for G [FKN69).

Our NC algorithm for the two processor scheduling problem is an improvement over the
aforementioned RN C result for two reasons. First, the algorithm in [VV85] is a randomized
algorithm; even though the expected running time is poly-log, it may take an arbitrarily
long time to halt. Secondly, their algorithm heavily relies on powerful KN C subroutines for
computing maximum matchings and node sets of maximum matchings. In contrast, our
algorithm is deterministic, does not require a matching subroutine, and contains interesting
parallel techniques such as recursive decomposition.

Because our two processor scheduling algorithm is complex, wC have divided its presen-
tation into several stages. Our first algorithm simply computes the length of au optimal
schedule. Using this algorithm wc can locate the “empty dlots’: or holes in Iexicographi-
cally maximum jump (1.MJ) sdaedidles. This in turn enables us to find the lexicographically
maximum jump sequence. The most complicated part of our presentation tlcscribes how
tasks are assigned to jumps in the jump sequence. Once we have assigned tasks to cach
jump, it is casy t0 compu e an optimal schedule.

2. Basic Definitions

We use the partia order on the tasks to define other useful quantities. A pair of tasks is
independen t if neither prceeclces the other. The precedence graph, G, is the transitively
closed dirccted acyclic graph with nodes representing the tasks and an edge going from ¢
tot' iff t < t7 We say task t belongs to level [ if the longest path in G from t to a sink
contains [ nodes (counting both ¢ and the sink). We use “lcvel [” to denote the set of
tasks on the ™ level and L to denote the number of levels in G. The length of an optimal
schedule for (¢ is denoted by “OPT(()”. WC say a schedule S has an empty slol at some
timestep if S maps only one task to that timestep.

A level schedule schedules the tasks giving preference to tasks on higher lcvcls. More
preciscly, suppose levelsl,, . .., [ + 1 have already been scheduled and there arc k unscheduled
tasks remaining on level 1. If k is even we pair the tasks with each other. If k is odd wc
pair k — 1 of the tasks with each other and the remaining task ¢ may (but not necessarily)
be paired with a task from a lower lcvel 17 < 1.



Definition Jump:

Given alevel schedule, we say level | jumps to level I’ <1 if the last timestep containing
a task from level | aso contains a task from level I'. If the last task from level [ is scheduled
with an empty slot, we say that ! jumps to level 0. The actual jump from lcvcl [ is an
ordered pair of tasks, (t, t') where t is the last task scheduled from level [ and t' is the task
scheduled with t.

The jump sequence of a level schedule is the list of levels jumped to. The actual jump
sequence is the list of actual jumps.

Definition LMJ:

The Lexicographically Maximum Jump (LMJ) sequence is the jump sequence (re-
sulting from some lcvcl schedulc) that is lexicographically greater than any other jump
sequence resulting from a level schedule. An LMJ schedule is a level schedule whose jump
sequence is the LMJ sequence.

Theorem [Ga82]:
Every LMJ schedule is optimal.

A trivial consequence of the definition is that every LMJ schedule for G has the same
number of tasks remaining on cach level after cach timestep. Note that our definition
of LMJ schedule is equivalent to the definition of highest level first schedule in [VV85)
and [Ga82]. Throughout the remainder of this paper we restrict our attention to LMJ
schedules.

3. Computing the Length of an Optimal Schedule

Our algorithm for computing the length of an optimal schedule works by computing the
number of timesteps that must intcrvenc between any two tasks. To get the length of a
schedule for some prececdence graph G we add two new tasks, i, and o, such that tep
is a predecessor and (¢ a successor of all tasks in G;. Using the new graph, the number
of timesteps that must intervene between Liop @A Ly, 1S precisely OPT(G).

Definition D(¢, t'):
The schedule distance between t ask s tand ¢/, D(¢, t'),is the numbfr ¥ timcstt)?

required to schedule all tasks that are both successors of L and predecessors of n LA
then D(¢, t') is -00.



Level

tl)ot

Figure 1

Here is a precedence graph G containing tasks one through fiftecn. All prece-
dence constraints arc directed downward. The spccinl tasks tiop and &y,,¢ are
added when computing the length of G3% optimal schedules. The levels of the
original graph arc on the left and the jump sequence is on the right. Note that
the transitive edges have been omitted from the figure.
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Figure 2

This is a lexicographically maximal jump schedule for the graph in figure 1.
Each of the sets x; is boxed. Note that some Lasks belong to no x,, and that
all tasks in x; must be completed before those in x;. 1 can be stnrted.
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Lemma 1:

Let t and ¢’ bc any two tasks. If therc is are integers ¢, k, and a non-empty set of tasks
S such that for al s€ S

D(t, s) > ¢ and

D(s, t') > k,

then: D(t, ) > 1 + k + Hs’/ﬂ (see Figure 3).

Proof: When scheduling the tasks between ¢t and t’, ¢ < ¢', there must bc at least ¢
timestcps before the first task in S is scheduled, and at Icast k timesteps after the last
one. The set S cannot be scheduled in fewer than [|S]/2] timesteps, SO it takes at least
t + k + [|S|/2] timesteps to schedule al the tasks between ¢ and ¢'. []

t
1
1 timesteps

l
the set S

k times teps
!
t"

Figure 3

The following agorithm takes a precedence graph G and computes the length of an optimal
schedule for G.

Algorithm 1:
do(*,*) = 0;
for 7 :=1 to [log n] do
for al t, ¢/ with t < ¢’ do in parallel
for adl 0 <k, I <n - 1do in parallel
St,l’,k,l ={s:t<s < l',d,’_ [(t, s >k, d,~_1(s, t) > l},

/2] i1 (8¢}

di (t,t):= lnaxk,l,b"_‘;‘*"#ﬂ{k + 1+ [ Sttt k1

(l(*, *) = d[log n} (*’ *)
OPT(G):=d(trop tiot)

Algorithm 1 has a straightforward implementation on au n% processor P-RAM taking
O(log? n) time.



Lemma 2:

Algorithm 1 never computes a distance between two nodes larger than the schedule
distance.

Proof: The algorithm computes each distance by the method in Lemma 1. Since this
method always gives a lower bound on the schedule distance, the distances computed by
the algorithm will never exceed the schedule distance. []

In our proof that algorithm 1 computes the proper distance, we borrow a result from
[CG72]. Téreit isshown how to construct sets of tasks xg, X 1, - - - - X« for any precedence
graph such that:

1. those tasks in any x; arc predecessors of all tasks in x;-;, and

2. OPT(C) = X, [Ix:l/2].
Although our agorithm does not explicitly compute these sets, we use them in the cor-
rectness proof.

Lemma 3:

After the main loop has been executed [log n] times, dMog =) (ttops thot) iS at least
D(tt()p, tbot) = OPT(G)

Proof: By induction. Let d(x:, xx) denote the least d(t, t') where t € x; and ¢’ € x. After
the first iteration of the algorithm,

dy (Xt x1-2) > [|xi-1l/2]

since al members of x;._; are between any t € x; and any t' € x;__2. Assume, by induction,
that after r iterations of the main loop:

dr(XlaXl—-T) > Z “X]'/Z]

1-2r <5<l

We must show, that after the r + 1% iteration of the main loop,

dry1(Xts Xt—2r 11) > Z [Ix51/2]

<<t

If we let 1 = Z,_,2.<J-<, Mx;1/2) amd k = Y5 ' jelar [1x;]/2], then after the r*®
iteration dy(x1, X1—2r) > ¢ and dy(Xx1—2r, Xi—2-11) > k. Thercfor, after the r+1** iteration:

desr (X Xiar ) 2 i+ k+[lxa-2r |/21= ) [Ixil/2] . 0

1-27 M <5<l



Theorem 1:

Algorithm 1 correctly computes the length of the shortest schedule for the precedence
graph.

Proof: This Theorem follows from Lemmas 2 and 3. []

It is easy to convert a polynomial-time agorithm that computes the length of an optimal
schedule to one computing a particular optimal schedule. This is because we can try each
possibility for the first timestep, and check if the remainder of the graph can bc scheduled
in one less timestep. Unfortunately this process is inherently sequential. We must wait
until the first k timesteps are fixed before we attempt to fix the k + 1%,

The corresponding method for parallel algorithms is to compute the tasks scheduled at
the next timestep for each possible initial schedule. Unfortunately, there are exponen-
tially many possible initial schedules. Therefore we must use more powerful methods for
determining the actual schedule.

4, Computing the Jump Sequence

The first step in computing the LMJ sequence for G is to obtain an agorithm for deter-
mining which levels jump to level 0. When this algorithm is run on appropriate subgraphs
of G, we can find the level jumped to by each level in G.

It is easy to determine if the bottom level jumps to level 0 in an LMJ schedule. WC modify
G by adding a new task to the bottom level which depends on al of the tasks on levels
2 through L(G). If the length of an optimal schedule for the modified graph is the same
as OPT((7), then every LLMJ schedule for (¢ ends with an empty slot (jump to level 0).
I the length of an optimal schedule for the modilied graph is greater than the length of
an optimal schedule for the original graph then we know that the bottom level ends with
a full timestep (a jump to itsell) in LMJ schedules for G. Therefore by either adding
or not adding the new task we can ensure that LMJ schedules end with full timcsteps.
Furthcrmore, ensuring that LMJ schedules end with a full timestep in this way does not
affect the jumps of other levels, since no task on another Jcvel can be paired with the added
task.

Lemma 4:

Given G, there is an NC agorithm for finding which levels jump to level 0 in the LMJ
scquence.

Proof: Wc first determine if the bottom level jumps to level 0, and if so modify G so that
LMJ schedules end in full timesteps. For cach par (I, €), 0 < [, e < T,(G), wc create Gy,e.
Tach Gy, consists of the (modified) G plus ¢ additional tasks. Every task above level [ in
G, has a precedence arc to cach of the e additional tasks,
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The length of an optima schedule for G; . will be the same as the length of the optimal
schedule for G only when al of the e added lasks are jumped to by levels that used to
jump to level 0. Therefore by determining the largest e such that OPT(G,.) = OPT(G)
we can find the number of levels at or below level [ that jump to level O in an LMJ schedule
for G. Those values of | where this changes are precisely those levels that jump to O in an
ILMJ schedule for G. {]

Now wc must convert our algorithm for finding jumps to level O into one that finds all of
the jumps. Say level [ jumps to I’, then if level I’ and all lower Icvcls were deleted, level |
would jump to lcvel 0. This observation leads us to an algorithm for determining the LMJ
sequence for a precedence graph.

Lemma 5:
Given a precedence graph G, there is an NC algorithm for finding the LMJ sequence.

Proof: I'ind the jumps to level 0 in LMJ schedules for the graphs G, GL_y, . . . . Gy where
G, contains only the nodes on levels L down to { (and the precedence constraints between
them). If lcvel { does not jump to lcvel O in Gy then (I, 1) is in the LMJ sequence for G.
If level I jumps to Icvel O in G then (1,0) is in the LMJ sequence for G. Otherwise, for
sonic 0 < ¢ < 1, the jump (Z,0) occurs in G, but does not show up in G;, so there is a
jump from level | to level ¢ in the LMJ sequence for G. []

5. Candidates for Actual Jumps

After obtaining the jump sequence we must assign a pair of tasks to cach jump. This gives
us the ac tualj umps. In this section WC present an algorithm for determining whether or
not a pair of tasks can be used as an actual jump.

Definition Candidate ’air:

A pair of tasks (t, t') is a candidate pair for the jump (I,!') if:
1. ¢t is from [ and t' is from [’ and
2. (t, t') is an actua jump in some LMJ schedule.

Lemma 6:

Any set of digjoint candidate pairs (one for each jump) can be used as the actua jumps
in an LMJ schedule.

Proof: Assume we have a set of disjoint candidate pairs which can not be used as the
actual jumps in any LMJ schedule. Then there is a first task, t', which is scheduled before
all of its predecessors have been completed. All tasks, except the second tasks in the
candidate pairs, are scheduled only alter al higher levels have been completed. Therefore,
t' must be the second task in some candidate pair, say (¢, t') for the jump ({,{’). Wc know
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that t and ¢’ arc indcpendent (since they are scheduled together in some LMJ schedule)
and {’ has an unscheduled predecessor on a level between [ and 17 That predecessor of ¢/
is independent with ¢, so a better jump than ([,1’) is possible. Therefore we did not start
with an LMJ sequence -- contradiction. {]

GI GII
G L+1 L+1 |
L
l+1 dz ié’/ U [+ 1 _d r*;—‘g__//_
I | et I U ! SN 1 t |V
vV |4
! ot/ U ot I

! o |

Figure 4

Wc usc this construction to check if the jump (¢t € 1, t' € 17 is part of any
LM J schedule. The set U contains the tasks on level I, except for L. The set V
contains those tasks on levels between 1 and 17 which are not successors of 1.

Assume that level 1 jumps to 1’ in LMJ sequences for G and that ¢ ¢ 1 and ¢/ ¢ 17 are
independent. Tt is important to know whether or not any LMJ schedule for G maps ¢t and
t' to the same timestep. By modifying the prccedence constraints of G we can answer this
guestion.

Figure 4 shows the modifications we use. The graph G is the original prcccdeucc graph.
The set U consists of all tasks on level [, except for task ¢t. The sot V consists of those
tasks onlevels hetween Land 17 which are not successors of L1 f tand ¢ are mappedtoth e
same timestep in some LMJ schedule, then 1 is the last task schedu led from level 1. The
first part of the construction checks that ¢ is not needed for a jump from a higher Icvcl
and that ¢t can bc paired with some task from level 17

The graph G’ is created from G by the following procedure:
1. Create two dummy tasks, d and d'.
2. Make t a successor of d, d} and the tasks in U.
3. Make d and d’ successors of al tasks on level 1 + | of G.



The effect of this procedure is to “move up” level 1 and every higher level. The new level |
contains only task t. The level [ + 1 in G’ contains those tasks that were in level | (except
for t) in G and the two dummy tasks. The level { + 2 in G’ contains exactly those tasks
on level | + 1 in G and so on. Note that no task can jump to d, d’ , or t.

Using the algorithms from the previous section, we can compute the LMJ sequences for G
and G'. We say the LMJ sequenccs for G and G arc similar if: the jump (I+ 1,1+ 1) isin
the sequence for G'; and whenever the jump (7, k) is in the sequence for G, then the jump
(i, k') isin the sequence for G'. Ilere we use j’ (k')to bej + 1 (k + 1) if j > (k > 1)
and j (k) otherwise.

Lemma 7:

If the LMJ sequences for G and G’ are similar, then any schedule for G’ completes all
of the tasks in V before level | is finished.

Proof: Otherwise task ¢t would have jumped to some level above level I’ in the LMJ
schedule for G'. ]

Lemma 8:

There is an LMJ schedule for G where task ¢ is the last task scheduled from leve [ if
and only if the LMJ sequences for G and G’ are similar.

Proof: Assume G has an LMJ schedule where ¢ is the last task on level . By insecrting
a timestep for the two dummy tasks we get a similar LMJ schedule for G'. Assume the
LMJ scquences for G and G' arc similar. Since level [ ++ 1 jumps to itself, and no task can
jump to either of the dummy tasks, there is an LMJ schedule, S, for G which pairs the
two dummy tasks at some timestep T'. The schedule obtained by deleting timestep 7' from
S is an LMJ schedule for G. {]

Now wc use the following procedure to construct ¢ from G':
1. Dcictc all precedence constraints bctween tasks in 'V U {t'}.
2. Let s bc some successor of ¢ on level | — 1; make every task in V U {t'} a predecessor
of s.
3. Make t' a successor of both d and d'.

The LMJ sequences for graphs G and G are similar if: the jump ([,1’) is in the sequence
for G'; the jump (I, I) isin the sequence for G'; when the jump G, k), j > I, k € [I'+1,1-1],
is in the scquence for G, the jump (j, {) is in the sequence for G”; and ail other jumps in
G arc aso in G”.

Lemma 9:

If there is an LMJ schedule for G which maps tasks { and t' to the same timestep,
then the LMJ sequences for G’ and G” are similar.
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Proof: Such aschedule for G' is also an LMJ schedule for G”, therefore the LMJ sequences
for G and G" are similar. []

Lemma 10:

If the LMJ sequences for G' and G” are similar, then there is an LMJ schedule for G’
which maps ¢ and ¢’ to the same timestep.

Proof: Assume that the LMJ sequences for G and G" arc similar and no LMJ schedule
for G mapst and t' to the same timestep. We know that in some LMJ schedule for G
t is the last task from level 1, t is scheduled with a task from level !’, and that ¢ and ¢’
are independent. Therefore, t' must be needed for some other jump. Since al of the other
jumps to/from level ' in G' are aso present in G, ¢’ is also needed for one of them in G”.
However, t' is paired with ¢t in G” - contradiction. {]

Theorem 2:

There is an NC agorithm to determine whether the pair (¢, t') is a candidate for the
jump from level I to I'.

Proof: Create the graphs G' and G” and check that the LMJ sequences of G and G’, and
of G and G” arc similar. []

The above Theorem leads us to the obvious algorithm for assigning tasks to a particular
jump in the LMJ sequence. We simply try al independent pairs of tasks from the appro-
priate levels and pick any pair that satisfies Theorem 2. This method assures us that there
is al lcast one valid way of assigning tasks to the remaining jumps. However, WC still need
powerful tools in orticr to pick consistent pairs rapidly in parallel.

6. Parallel Selection of Candidate Pairs

In the previous section WC presented a method for determining if a par of tasks from
diflerent levels is a candidate pair. Irom Lemma 6 we know that any disjoint set of
candidate pairs (one for cach jump in the LMJ sequence) forms the actual jumps of an
LLMJ schedule. Therefore our problem is to pick a candidate pair for cach jump in the
.MJ sequence while guarantecing that no task i s in more than onc pair.

This problem is similar to the matching problem, so powerful techniques arc nceded it
solve it in parallel. On the other hand, since cach level jumps to at most one other icvel,
the jumps form a tree structure. WC exploit this structure using recursive decomposition.
At cach stage in the decomposition we split the current problems into two or more digoint
problems. When all of the problems have been reduced to finding a single candidate pair,
they can be solved quickly in parallel.

11



Definition Jump Iorest:

The jump forest for a graph G contains one node for each level in G. An arc goes
from the node for level [ to the node for level 1' # I if and only if the jump (,1') is in the
LMJ sequence for G.

This structure is an inforest since at most one jump originates from each level. Note that
jumps to the same level and jumps to level O are not represented in the jump tree.

5@ 3 *6

Figure 5

This is the jump forest for the precedence graph in Figure . Each node rep-
resents an eutire level in the precedence graph. All edges (jumps) arc directed
downwards.

Lemma 11:

If the jJump forest consists of two or more digoint trees, then candidate pairs can be
picked for cach tree independently.

Proof: Digoint trees do not share levels, hence they do not sharc tasks. Thereforc no task
in a candidate pair for onc tree can also bc in a candidate pair for the other tree. []

For cach jump tree J in the forest, there is an induced subgraph of (. The induced
su bgraph, G, contains those levels of G which are represented in J. Thus each level of
G is in cxnctly one induced subgraph. Becanse the jump trees arc split at cach stage of
the algorithm, it is convenient to denote levels in induced subgraphs by their names in G
rather than renumbering them every step. Initially cach induced subgraph contains al the
jobs from its constituent levels (and the precedence constraints between them).

As a jump tree is split, certain candidate pairs will be picked. In order to keep the tasks
in these candidate pairs from being reused, we delete them from the induced subgraphs.
We continue splitting jump trees (and induced subgraphs) until each jump tree consists of

12



a single level. All tasks remaining in the induced subgraph can then bc arbitrarily paired
together since there are never precedence constraints between tasks on the same level.

Lemma 12:

Any intrec of Size n can be split into disoint subtrees, each of size at most n/2, by
removing a single node. Furthermore, an appropriate node can be found quickly in parallel.

Proof: Count the number of ancestors for each node. When the highest node with at least
n/2 ancestors is removed, the remaining components will all have size a most n/2. []

Since we halve the size of the largest jump tree each iteration, after at most log n iterations
al of the jump trees will consist of a single level.

The first step to remove an internal level 1 from a jump tree J is to make 1 the root. Using
G, wc can find a candidate pair (t, t') for the jump (,I'). If we delete ¢ and t' from G,
the jJump (I, 1) is no longer in G ;’s LMJ scquence and J is split. We use J(1) to denote
the part of J rooted at 1 and J(!') to denote the part containing 1~

Unfortunately, when wc delete ¢ and ¢’ the level structure of our induced subgraphs may
be dcstroycd. Some tasks in (7 ;;y may have preceeded only ¢ from level [. We must adjust
the precedence constraints of G ;(;) so that these “dangling tasks’ preceed at least one
task on level {. Similarly, we must adjust the precedence constraints of & (/) so that tasks
which used to preceeded ¢ still preceed a task on level 17

Level 1 isthe root of J(!). Thercfore wC can add a dummy task to level 1 which is a
successor Of all tasks in 1110 jump Crec, except those on level L. Now every task in G ) is
either on level [ or preceeds a task from level L If I is the root of G (), then we can use
the same method.

If ' is not the root of its jump tree, then it jumps to some other level. Let { € I' be any
task which is not necded for another level’s jump to 17 We know there is at least one
such task, namely the one used for the jump from Icvel 17 The level property is restored
when all of the tasks in G (/) on levels above I' are made predecessors of f. The added
precedence constraints do not aflect the LMJ schedule for 7y since all tasks above level
[ are completed before . WC can find a suitable £ by trying all tasks o1 level I in parallel
and seclecting any one where the added precedence constraints do not change the LMJ
sequence of G ;).

Now level 1, the one to bc removed, is at the root of its jump tree. Let levelsiy, Iy, ls, ... . 1,
be the levels in the jump tree which jump directly to [ in ascending order. Thus [, is the
highest level which jumps co level . Our algorithm assigns each of the levels [ through
l,n @ particular task to jump to.

13



Definition Chunk, C;:

The chunks are sets of tasks from level 1. For 1 < ¢ < m, C; consists of those tasks
from level | which are in a candidate pair for a jump ({5, [) where j > 1.

The set C; may be larger than the set of tasks from level | which can be used for the jump,
(L, 1). 1t may include tasks which must be used for other jumps. Since there is a way to
assign digoint candidate pairs to the m jumps, |Ci| > m — ¢ + 1.

Level LMJ Sequence

7 3
4 3
3 10 2
2 1
1 1
Figure 6a

This is the induced subgraph for the initial jump tree containing level 3. As

usual, transitive cdges have been omitted from the figure.
Level L MJ Sequence
7 15 3
4 ®11 3
3 T 3e ‘ 9 o 10 3

Figure 6b

After the jump (3,2) has been removed from the trec (using the only candidate
pair, tasks 5 and 6), wc get a new induced subgraph. Tasks 15 and 11 arc the
only tasks in candidate pairs on their respective levels, so task 10 is in two
chunks and tasks 7 and 9 are in onc chunk. Thercfore, task 10 will be assigned
to level 7 and cither task 7 or 9 will be assigned to level 4.
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Lemma 13:

If 1 <j<¢i<mandte C;then al tasks on level l; are either needed for jumps to
level [; or are independent with t.

Proof: Assume there is some t; € [; for which the Lemma does not hold. Because ¢ is in
C;, there is some task t; on or above level I; which forms a candidate pair with {. Since
t; is a predecessor of ¢, ¢; and ¢t; must be independent. If ¢; has not yet been scheduled
when ¢;’s level is completed then tasks ¢; and ¢; could be paired and ¢;’s level would jump
to level I; in LMJ schedules for G - contradiction. []

Our agorithm simply sorts the tasks on level [ by the number of chunks they are in,
breaking ties arbitrarily. The task in the most chunks is assigned to level [,,, the task in
the second most chunks is assigned to {,,_, and so on.

Lemma 14:

There is always a t; on level I; which can be paired with the task assigned to [; forming
a candidate pair.

Proof: All tasks in C; are in at least : chunks and any task not in C; can be in a most
1 — 1 chunks. Since there are at least m — ¢ + 1 tasks in C;, the task assigned to level I;
will be in C;. As a consequence of Lemma 13 and the definition of chunks, there is at least
one candidate pair for the jump (I;, ) containing the task assigned to level ;. [}

Theorem 3:

There is an NC procedure to remove an arbitrary node from a jump tree, finding
digoint candidate pairs for al of the dclctcd edges.

Proof: Tn order to remove level [ from jump trec J we first remove any outgoing jump
from [. By Theorem 2, there is an N C algori thm for doing this. Creating the chunks, C;
can easily bc done in parallel since wc have an NC agorithm for dcterruining al candidate
pairs for a given jump. Sorting is in NC, SO we can assign a task to each [; quickly in
paralel. Once task ¢ has been assigned to level I; we can test all of the pairs (t; € &, t) in
paralel, using any candidate pair for the jump (I;, {). [l

Theorem 4:

There is an NC algorithm which finds a two processor LMJ schedule for any prcccdence
graph.

Proof: Create the jump forest. Recursivly decompose each jump tree, saving the picked
candidate pairs. Arbitrarily pair the remaining tasks on cach lcvcl. By sorting these pairs
of tasks wc obtain an LMJ schedule. (]

Our agorithm is intended to show that two processor scheduling isin NC; it is not intended
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to be an efficient solution. Computing the LMJ sequence for a graph G uses L(G)? calls
to the schedule length algorithm (in paralel). Determining if a pair of tasks is a candidate
pair basicaly involves computing two LMJ sequences. Thus the total requirements for
computing al of the candidate pairs is n?L(G)™® processors and O(log n log L(G)) time.
If the candidate pairs have been pre-computed, the cost of decomposing the jump trees
becomes insignificant. Therefore, the requirements for the entire algorithm are n7L(G)2
processors and O (log nlog L(G)) .

7. Conclusions

Our two processor scheduling result, coupled with a transitive orientation algorithm, al-
lows us to solve severa restrictions of the maximum matching problem. By exploiting the
special relationship between two processor scheduling and matching, we can find maxi-
mum matchings on undirected graphs whose complements have a transitive orientation.
Specifically, if G is an interval graph, then G has a trangitive orientation [Gh62]. Similarly,
G is a permutation graph if and only if both G and G are transitively orientable [PLE71].
Thus we have a deterministic NC maximum matching agorithm for both interval graphs
and permutation graphs [HM85, KVV85).

There are many variations of the fundamental two processor scheduling problem. The
tasks can have varying execution times, release times, or deadlines. If tasks have small
integer execution times and are preemptable, then the problem reduces to the unit time
scheduling problem. So far, our attempts at extending the algorithm to handle deadlines
and/or release times have been unfruitful.

One variant of the two processor problem that wc know to be N P-complete (under log-
space reduction) allows incompatability edges as well well as precedence constraints. When
there is an incompatability constraint between two tasks they can be executed in either
order, but not concurrently. Incompatability constraints arise naturally when two or more
tasks need the same resource, such as special purpose hardware or a database file.

It was surprising how much more difficult computing the actual schedule was than simply
computing its length. In higher complexity classes such as P and NP it is often easy to
go from the decision problem to computing an actual solution, because of self reducibility.
llowcver this does not seem to necessarily be the case for parallel complexity classes. To
support this observation we note that the random NC algorithm for finding the cardinality
of a maximum maltching is much simpler than the random NC agorithm for determining
an actual maximum matching [KUW85b).
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