
Report No. STAN-CS-85-1079

Two Processor Scheduling is in NC

bY

lhvid t Iclrnbold

t;,rnst Mayr

Department of Computer Science

Slmford Uuivcrsity
Stanford, CA 94305

C;tanford University
Department of Computer Science

Two Processor Scheduling is in NC

David IIclmbolcl cand Ernst Mayr

Abstract: WC prcsc~~t a parallcl dgorithm for tlic two processor scheduling problem.

with iLrbit,rnry prccctl~~~cc constraints lluillg a polynorhd II~I~I~~HX of processors and

for the problem luadc cxtcnsivc USC of randomization, our algorithm is complctcly
dctcrkuistic and bnscd 011 rln intercsling dccomposi t i o n tcchuique.
indcpcntlcnt rclcvarice for two more rcasous.

And it is of
It provides another exn~uplc for the

apparent difference in complcxi ty betwcc.n decision and starch problems in the context
of bt parallel conlputntion, and it gives an NC-algorithm for the matching problem
ilr ccrtnin restricted cases.

This work was sr~pporhl by ONII, conhct NO00 1.4-85-C-073 1 and NSF grant DCR-
835 1757.

1. Introduction

This paper prcscnts results on parallel algorithms for scheduling problems. Our main
result is a dctcrministic 1C algorithm for solving the two processor scheduling problem.
This problenl fillIs into the gcncral class ol’ unit time scheduling problems with precedence
constraints. The prcccdcncc constraints arc given as a partial order on the tasks; if task
t prccccds task t’ (written 1 -: t’) then 1 must bc complotcd before t’ can bc started. A
solution to the problem is an optimal (i.c. shortest length) schedule indicating when each
task is started.

Scvcral results follow immcdiatcly from our main result. Since cany optimal schedule cor-
responds to a maxilunm matching in the complement of the preccdcncc graph, we have <an
.AiC algorithm which finds maxinmm matchings in the conq~lcn~c~~ts of prcccdcnce graphs
(e.g. interval graphs and permutation graphs). For more details, see [IIM85] and [KVV85].
In addition, our algorithm solves the “obvious” open problem stated in [VV85].

I?or rcsearcli irlto parallel algorithms, the two processor case is the most interesting unit
tilnc s&cd uling problem. When only a single processor is available (tasks must bc sched-
ulcd one at a time) fillding an optinlal schedule is trivial. If the number of processors is
an input to the problcni, then the unit time scheduling problem becomes .A/ P-con$cte
[IJl75]. It is unknown whcthcr or not there is a tractable sequential solution for a fixed
nirinber of processors greater than two.

‘I’hc two processor scheduling problem has a long history alld rich litcraturc. The first
polyrioruinl time solution, CI(n”), WilS piiblishcd by Fujii, Kasauli and Ninamiya in 1969
IlI‘I{N(i!)]. Th reo YCiWS Inter, (~Oflill~ll ihIlt CI’illlillll iddishctl i111 O(?L’) idgoritlllll [C:Cr72].
(:;LI)OW fO~lll<l ill1 id~Ol’itlllll thilt, WllCll qollrbiilotl with CI’iL~~jilII’S union-f ind result [G’l’SS],
riiiis i i i 0(71 1 e) I,illlc [CiLHrt] iIll(l IlCllCC i s iI.Sylll~~t~OtiCiLlly optiiunl. ‘rllC OIlly pii blisluxl
I);lr;lllOl id~o1’ilJllll for the proldcrl~ is Vil.Xi1’iII1i All<1 ViUiriUli’S lYlJltlOllli~c!tl I)iW;dl(!l solution
[VV85] . ‘.l’llc cxpcctcd running time of their nlgoritl~rtl is iI ~~OlyI~Ollliid iii tllc logaritlin~ of
the number of tasks.

Sevcrnl rcsearchcrs IliLVC consitlcred restricting the prcccdcncc ConstribilIts and allowing the
nuu1bcr of processors to vary. II’ the prccedcnce constraints arc rcstrictcd to forests [TIu61,
KM84, IXW84] tl 1~11 optilnal SC~C~UICS can bc found cithcr scqucI~tially or in parallel.
If the prcccclclrcc constraints arc rcstrictcd to illtcrVa1 orders then thcrc is a scqucntial
~~Olyl~Ollliill the algori tlrm for the problcni [l’Y 79).

With the rising 1Isc of highly ~XWilllcl coi~q~idcrs, it is illlpOrtilllt to identify those problems
which can bc cflicicntly solved in parallel. It is gcncri~lly acc(!ptcd that those problems
in the class NC (solval~lc in poly-log tinlc using iI polynoniial nunlbcr of processors) are
i~l\l~llikLIlC t0 pnri~lclli~;~tiOIl while tlIOSC tllnt WC P-COlIIplcbc! (polyrIoIIIin.1 tilIIc c0lllplctc
imdcr log-Sl)i”:(! reduction) arc not. ‘L’llC ClilSS R&C consists Of CllOSC prolG1s SOlVi~blC in
ply-log tiiiio usiiq i\. p0lyn0tlliil.l Jl~lllll)or of processors WilII Ili(;h prold~ilily wlicrl ril,lltlOll~
coin flips arc iv;~ilablc as a basic colllputatiotl step. A lgoritlims in this cl,ass only noctl to

quickly obtain the right answers nlqst of the time.

One fundamental problem which has an R&C (but no known UC) algorithm is the match-
ing problem [KUW85x]. Our results on two processor scheduling provide evidence that the
matching problem might bc iu UC, sirm the two problclns are closely related. An optiuml
two processor schcdulc is a maximum matching in G, the complcu~cnt of the prcccdcncc
graph. Conversely, them is a scqucutial algorithm for convcrtirlg any maximm matching
in G into an optimal schedule for G [FKN69].

Our NC algorithm for the two processor scheduling problem is au improvement over the
aforementioned R&C result for two reasons. First, the algorithm in [VVSS] is a randomized
algorithnl; even though the expected running time is poly-log, it may take an arbitrarily
long time to halt. Secondly, their algorithm heavily relics on powerful R.A/C subroutines for
computing maximum matchings and node sets of maximum matchings. In contrast, our
algorithm is deterministic, dots not require a matching subroutinc, and contains interesting
parallel techniques such as recursive decomposition.

Because our two processor scheduling algorithm is complex, WC have divided its presen-
tation into several stages. Our first algorithm simply computes the length of au optimal
schedule. Using this algorithm WC can locate the “empty slots’: or holes in Zcxicogra$~i-
cdly nm&um jump (LMJ) 7 1sc le(u1 1es. This i!I turn enables us to find the lcxicographically
1naximwii jump sequchce. The most mnplicatcd part of our presentation tlcscribes how
tasks are ilssigncd to jumps in the jutnp sequence. Once we have assigned tasks to each
jump, it is CilSy to COJllpll tc an Optilllid schedule.

.

2. Basic Definitions

We use the partial order on the tasks to define other useful quantities. A pair of tasks is
illdcycmIclr t if neither prcccclcs the other. The ~mccclencc ~al’]~, G, is the transitively
closed directed acyclic graph with nodes representing the tasks and an edge going from t
to t’ iff t -< t’. We say task t bclougs to level 1 if the longest path in G from t to a sink
contains 1 nodes (counting both 1 autl the sink). We use “lcvcl I” to dchotc the set of
tasks on the I”’ level all(l 1, to detl~t~ the IIIIIII~)~:~ of ICVO~S in G. ‘[‘he length of a11 optimal
SCllcdlllc for G is dOIlOllO(l by “OI”l‘(Cr’)“. WC Sily iI SCtlCdlllC S JIiLS Ml ClIJl>ly SIOL ikt SOlllC

timcstcp if S maps only out task to that timestep.

A lcvcl SCIJC~Z~J~ schedules the tasks giving prefercncc to tasks on higher lcvcls. More
prcciscly, suppose levels I,, . . . , I + 1 have already been scheduled and there arc k unschcdulcd
tasks re~nainirlg OH levci 1. If k is cvm WC pair the tasks with each other. Pf k is odd WC

pair k - 1 of t,tto tasks with eacll other arl(l the nmahing task t IIIAY (but not necessarily)
be paired with a task from iI lower lcvcl 1’ < 1.

2

Definition Jump:

Given a level schedule, we say level 1 juxnps to level 1’ 5 1 if the last tinlestcp containing
a task front level 1 also contains a task front level I’. If the last task front level I is schcdulcd
with an cinpty slot, we say that 1 jUlnpS to level 0. The acdr~d jlJlJlp frotii lcvcl 1 is an
ordered pair of tasks, (t, t’) w rere1 t is the last task schcdulcd front lcvcl I ,and 1’ is the task
scheduled with t.

The juhlp se(/lrclrce of a level schedule is the list of levels junlpcd to. The xt~~;d jump
sequence is the list of actual junrps.

Definitiorl LMJ:

T h e Lexicogra~,hica~~y Mzixinzurn Jun~p (LMJ) sequence is the juinp sequence (re-
sulting from sonle lcvcl schcdulc) that is lcxicogrnp~licillly greater than any other jump
sequence resulting front a level schedule. An LMJ sclJcduIc is a level schedule whose jump
sequence is the LMJ sequence.

T h e o r e m [Ga82]:

Every LMJ schedule is optinn~l.

A trivial conscqucnce of the definition is that cvcry 1,MJ schedule for G has the same
nulnber of tasks renrairring on ciicll level after each timcstcp. Note tllat our definition

. of I,MJ schcdulc is cclllivdcnt to the doli~lition ol’ highest level first schcdulc in [VVSS]
and [ckm]. Throughout the rcnlaindcr of this paper we restrict our attention to T,MJ
scllectules.

3. Computing the Length of an Optimal Schedule

Our algorithnl for computing the length of an optinral schedule works by con~puting the
nurubcr of tirnestcps that nlust intcrvcnc between any two tasks. To get the length of a
&11cd11lo for some prcccdcncc graph G WC add two new tasks, tt,c,l, and II,~,~,, sucll that ttop
iS iI J)~(!(l(!CWSOl ;~ltI I!I,,,~ ;I successor OT itI! tasks ill C. llsiilg thtt Jl(!W ~~~iy)II, t,hc II~II~I~C~
of tinlcstcps that iiiusL intervene botwccu t,,‘,r, and li,ot is precisely OPT(G).

Definitiorl D(t, t’):

I%c SCfJCdtJ/C dkihJJC(! b(:t~W(X!n t a s k s t ikJl<I i!‘, ‘D(t, l’), is the nuulbcr of tirncstcps
required to s<:hc(lllle ali tasks th;kt arc botll successors of t arld prodcccssors of t’. If t & t’
then D(t, t’) is -00.

3

Level Jump

10

1

llcrc is a prcccdcnce graph G coutniniug tasks one through Gftecu. All prece-
dcucc constraints arc dircctcd downward. The spccinl tasks ttoI, and t~,,,~ me
adtlcd wllcn computing the lcugth of G’s optimal scl~cclulcs. The levels of the
original graph arc on the left and the jump scc~w.x~c is on the right. Note that
the transitive edges have been omitted from the figure.

l?igiirc 2

This is ii lcXiCo~~;~.~~lliCi~lly lll~Xilllit1 junlp sclicdulc for the grit])11 ill figure 1.
lCi\(~ll of the SC~S xi is ~>OXCCI. NO~C tllat SOIIIC tibsks bc1011g to IIO xi, and thnt
all tasks in x; nest be conq~lctcd bcforc those in x;. 1 can be stnrtcd.

4

Lemma 1:

Let t and t’ bc any two tasks. If them is are integers i, Ic, cand a non-empty set of tasks
S such that for all s E S:

D(t, s) 2 i and
D(s, t’) L k,

then: I$, t’) 1 i + Ic + [iSI/ (see Figure 3).

Proof: When scheduling the tasks between t and 2’, t 4 t’, there must bc at least i
timestcps bcforc the first task in S is schccluled, <anil at lcast k timesteps after the hast
one. The set S cannot be scl~edulcd in fewer than [iSl/21 t in~esteps, so it takes at kast
i + k + [ISI/ timesteps to schedule all the tasks between t ‘and t’. 0

t

t
i timestcps

1
the set S

k times teps

Figure 3

I’hc following algorithm takes a prcxedencc c;raph CZ and computes the length of an optitual
schcdulo for C.

Algorithm 1:
&(*, *) :- 0;

.

for i :-= 1 to [log nl do
for all t, t’ with t 4 t’ do in parallel

for all 0 5 k, 1 < rz -.- 1 do in par&d
St,lf,k,l := {S : t < s + t’pdi- l(t, S) > ky di-l(s, t’) 2 I};

. di (t 9 t’) I= lllikX~,~,SL t, k 19 (9

q*, *) :- +, n1(*, *)

0l-q q := d(ho*, , hot)

Algorithm 1 has a straightforward inll)lcnlcntatiol1 ou au n5 processor P-J1AM taking
O(log2 n) time.

5

Lemma 2:

Algorithm 1 never computes a distance between two nodes larger thcan the schedule
distance.

Proof: The algorithm computes each distance by the method in Lemma 1. Since this
method always gives a lower bound on the schedule distance, the distances conrputed by
the algorithm will never exceed the schedule distance. 0

In our proof that algorithm 1 computes the proper distance, we borrow a result from
[CG72]. Th tere i is shown how to construct sets of tasks ~0, x 1, xk for <any precedence
graph such that:

1. those tasks in Cany xi arc predecessors of all tasks in xi-r, and
2. OPT(C) = ci [lx;l/21.

Although our algorithm does not explicitly compute these sets, we use them in the cor-
rectness proof.

Lemma 3:

After the main loop has been executed [log nl times, +,,, nl (ttop, tl,J is at leCast
Wtop, hot) = OPT(G).

Proof: By induction. Let d(xi, Xk) denote the least d(t, t’) where t E xi ‘and t’ C: Xk. After
the first iteration of the algorithm,

4(X1,X1-2) L [IX&.ll/21

.

since all mcnlbcrs of xl--r are bctwccn any t E x1 (and any t’ E x1--2. ASSUIIIC, by induction,
that after r iterations of lhc main loop:

dr(X1,Xl-2r) L C ☯lXjl/ 21 l

t-2r<j<l

We must show, that after the r + lSt iteration of the main loop,

dr,-1(X1, X6-2’ 1.1) 2 C ~lXil121 l

. 1 -2� � � <j<r

If WC let i c C1--2,<j<l [Ixj[/Zl ;md k = CI-2r 1 l<j<l--2’ [lxj\/Zl, then after the ptl’
iteration d,(xI, x1-2’) 1 i and d,(xl-p, xl-2’4 1) 2 k. Thcrcforc, after the r+l’” iteration:

4+1 XhX1-2’t -() > i -I- k -j- [lxlw2421 = C lM121 l ,n
l - 2 ’ I-1 <j<L

6

Theorem 1:

Algorithm 1 correctly computes the length of the shortest schedule for the precedence
graph.

Proof: This Theorem follows from Lemmas 2 and 3. 0
.

.

It is easy to convert a polynomial-time algorithm that computes the length of an optimal
schedule to one computing a particular optimal schedule. This is because we can try each
possibility for the first timestep, and check if the remainder of the graph can bc scheduled
in one less timestep. Unfortunately this process is inherently sequential. We must wait
until the first k timesteps are fixed bcforc we attempt to fix the k $- Ft.

The corresponding method for parallel algorithms is to compute the tasks scheduled at
the next timestcp for each possible initial schedule. Unfortunately, there are exponen-
tially many possible initial schedules. Therefore we must use more powerful methods for
determining the actual schedule.

4. Computing the Jump Sequence

The first step in computing the LMJ scc~uer~c for G is to obtainan algorithm for dcter-
mining which levels jump to level 0. When this algorithm is run on appropriate subgraphs
of G, we can find the level jumped to by each level in C.

It is easy to determine if the bottoru level julilps to level 0 in an LMJ schedule. WC iuodify
. G by adding a new task to the bottollr level which dcpehds 011 all of the tasks OII levels

2 through 7,(G). If the length of an optiltlal schedule for the motlilicd graph is the same
iu Ol)l‘(G), th CH every 1,MJ schctl~llc for G OI~C\S with ali ~111pty slot, (junlp to level 0).
II’ tlio length of an optiliial scliotlllle for the iilodilicd gl’ill>tl is greater than the length of
a.11 optinial s~lrccl~~l~ for lhc! origirlnl graph tIleri WC khow tliat the I>OC~OI~ ICVC~ etitls with
a full timestep (a jump to itself) in LMJ schedules for G. Therefore by cithcr adding
or not adding the new task we can cnsurc that LMJ schedules end with full timcsteps.
Furthcrmorc, ensuring that LMJ schedules end with a full timcstcp in this way dots not
affect the jumps of other IevcIs, since no task on another Jcvcl can be paired with the added
task.

Lcrnrua 4:
.

Given G, there is Can NC algorithm for finding which levels jump to level 0 in the LMJ
sequence.

Proof: WC first dctermirie if the bottom level jumps to level 0, and if so ulodify G so that
LMJ schedules end iu full tiruesteps. For eacll pair (I, e), 0 _(1, e < T,(G), WC create Gt,,.
l<acll Gl,,. consists of the (ulodi[ictl) G ~IIIS c ;ultlitiorlal ticsks. I<VC~Y task above IOVC~ 1 in
Cl,, has a pr~cetlen~~ &a,~ to each of the e ;ul(lition;~l tasks.

7

The length of an optimal sc’hcdule for CJl,e will be the same as the length of the optimal
schedule for G only when all of the e added lasks are jumpccl to by levels that used to
jump to level 0. Therefore by determining the largest e such that OPT(Gl,,!) = OPT(G)
we can find the number of levels at or below level I that jump to level 0 in an LMJ schedule
for G. Those values of 1 where this changes are precisely those levels that jump to 0 in an
LMJ schedule for G. 0

Now WC must convert our algorithm for finding jumps to level 0 into one that finds all of
the julnps. Say level I jumps to I’, then if level I’ and all lower lcvcls were deleted, level I
would jump to lcvcl 0. This observiktion leads us to an algorithm for determining the LMJ
sequence for a preccdencc graph.

Lemma 5:

Given a precedence graph G, there is an .AK algorithm for finding the LMJ sequence.

Proof: Find the jumps to level 0 in LMJ schedules for the graphs GL, GL- 1, G1 where
Gl contains only the nodes on levels L down to I (and the precedence constraints between
them). If lcvcl 1 dots not jump to lcvcl 0 in Gi then (I, 1) is in the LMJ sequence for G.
If level 1 jumps to lcvcl 0 in G1 then (1,O) is in the LMJ sequence for G. Otherwise, for
sonic 0 < i < 1, the jump (1,O) occurs in G,+l but does not show up in Gi, so there is a
jump from level 1 to level i in the LMJ sequence for G. 0

5. Candidates for Actual Jumps

I
IIS tllC &C tllikl j 11111 IIS. 1~1 this scctioll WC prcucnt an algorithm for dctcri~lining whcthcr or

Definition Candidate lbir:

A pair of tasks (t, t’) is a c.mtZidatc pair for the jump (Z,?) if:
1. t is from I <and t’ is from 1’ and
2. (t, t’) is an actual jump in some LMJ schedule.

*
Lemma 6:

Any set of disjoint candidate pairs (one for each jump) can bc used <as the actual jumps
in an LMJ schedule.

Proof: ASSNJHC we have a set of disjoint candidate pairs which catI not lx used ras the
actual jumps in any T,MJ scl~cclulc. TIICJ~ thcrc is i\ first task, t’, wld is scl~c~lr~lccl bcforc
alI o f its prcdcccssors II~VC bCOJ1 colllplctcd. All tasks, except the scco~d tasks in the
Ci~llditl~h? I)ilil’S, arc scliotliilctl oilly iLfl<!I’ all highor lcvcls hvc hcil col~~pl~:td. Tlicrcfore,
1’ must bc tlrc SCCOJ~~ tiisk in sornc candidate pair, say (t, t’) for the jnrnp (1,l’). WC know

8

that t and t’ arc independent (since they are scheduled together in sonle LMJ schedule)
and t’ has an unscheduled predecessor on a level between I and 1’. That predecessor of t’
is independent with t, so a better julnp than (1,l’) is 1)ossible. Therefore we did not start
with Lan LMJ scqucnce -- contradiction. [1

G
G’

L+l

1+2

I+1
1

l
Figure 4

G’l

L+l I

1+2

I+1
1

WC USC this comtruction to check if the jump (.t E I, t’ E I’) is part of any
1,M J sc:hcdulc. 7’1 IC set II c<)llt;kills the tasks on level 1, cxccpt for 1. ‘1’11~ set V
contiGlls those tasks on levels bctwccn 1 and 1’ wllich arc not successors of 1.

ASSIJIJJC tdJ;Lt, lcvcl 1 jrllllps to 1’ in LM,J SC<lJlCJlCCS for c aJJd that 1 E 1 ikJKl t’ C 1’ are
indcpcndent. Tt is inlportant to know whcthcr or not any LMJ schedule for G nn~,ps t and
t’ to the san~e tinlestep. By nlodifying the prcccdcncc constraints of G we can answer this
question.

Ii’igurc 4 shows the nlodifications we USC. The graph G is the original prcccdeucc graph.
Tlrc set IJ coxJsist,s of all tasks on level 1, except for task t. The sot V consists of those
CiLSkS 011 ICVC~S I)CtWC!OJl I iLlIf I ’ WIJiCIJ &I’<3 JIO!, SJJCCOSSOTS Of 1. I f t! iLlIt t!’ i11’C IJJili)l)CCI IA) t h e
SiLIlJC tiJJlCS~A!~~ iJJ SOIJIC LMJ SCI~C~U~C, ~JI t is the last CiLSk scl~~l~~ Id J’WIH 1~~1 1. ‘The
first part of the construction checks that t is not ncedcd for a junrp front a higher lcvcl
and that t can bc paired with Sony task front level 1’.

The graph G’ is created from G by the following procedure:
1. Create two ~IJJJJJJJJY tasks, d and d’.
2. Make t ;I successor of d, d’, ~1~1 tll~ tasks iJJ U.
3. Make d iUlCI tl’ sJJcccssors of all tasks on lcvcl 1 + 1 of G.

9

The effect of this procedure is to “move up” lcvcl 1 and every higher level. The new level 1
contains only task t. The level I + 1 in G’ contains those tasks that were in level 2 (except
for t) in G and the two dunmy tasks. The levci 2 + 2 in G’ contains exactly those tasks
on level 2 f 1 in G and so on. Note that no task can jump to d, d’ , or t.

Using the algorithms from the previous section, we can compute the LMJ sequences for G
and G’. We say the LMJ sequcnccs for G and G’ arc similar if: the jump (1+ 1, I f 1) is in
the scquencc for G’; and whenever the jump (j, li) is in the sequence for G, then the jump
(j’, k’) is in the sequence for G’. Ilcrc we use j’ (A!) to be j f 1 (Ic $- 1) if j > I (k > r)
and j (E;) otherwise.

Lemma 7:

If the LMJ sequences for G and G’ are similar, then any schedule for G’ completes all
of the tasks in V before level 1 is finished.

Proof: Otherwise task t would have jumped to some level above level I’ in the LMJ
schedule for G’. 0

Lemma 8:

There is an LMJ schedule for G where task t is the last task scheduled from level I if
and only if the LMJ scqucnces for G and G’ are similar.

Proof: Assunm G has an LMJ schedule whcrc t is the last task on level 1. I3y inserting
a timestop for the two dunmy tasks we get a similar LMJ scheduic for G’. Assume the
J,MJ scquonccs for G anti G’ arc sitdar. sillcc ~cvd l -t- 1 jtttttps to itself, and no task can.
jump to citltcr of the duskily tasks, thcrc is a.11 LMJ scl~ccidc, S, for G’ which pairs the
two dtmt~~y tasks at SOIIIC timestcp 1’. ‘t’hc schcdulc obtained by dclctingtittlcstep T from
S is an 1Al.J schccir~lc for G. 0

Now WC use the following procedure to construct G” from G’:
1. Dcictc all precedcncc constraints bctwccn tasks in V U {t’}.
2. Let s bc sonm successor of 1 on ievcl 1 - 1; make every task in V U {t’} a predecessor

of 5.
3. Make t’ a successor of both d and d’.

The r4M.J scquctlccs for grqb G’ itlId G” iWC sitllilar if: tlic jimq) (1,l’) is in tlic scqricncc
for G’; the jump (I, I) is it1 the scc~~~c~~cc fbr G”; whcrt the jump (j, k), j > I, k E [1’+1,2--11,
ip in the scqucncc for G’, the jump (j, 1) is in the sequence for G”; ant1 ail other jmnps in
G’ arc also in G”.

Lemma 9:

If tltcrc is au J,M,J schcdr~lc for G’ which ~t:aps tasks t alid i’ to the skme timcstcp,
then the LMJ sequcnccs for G’ ;~rd G” ikrc siadru.

I 10

Proof: Such a schedule for G’ is alsg an LMJ. schedule for G”, therefore the LMJ sequences
for G’ and G” are similar. 0

Lemma IO:

If the LMJ sequences for G’ and G” are similar, then there is an LMJ schedule for G’
which maps t <and 1’ to the same timestep.

Proof: Assume that the LMJ sequences for G’ and G” arc similar and no LMJ schedule
for G’ maps t and t’ to the same timestcp. We know that in some LMJ schcdulc for G’
t is the last task from level 1, t is scheduled with a task from level 1’, and that t and t’
are independent. Therefore, t’ must be needed for some other jump. Since all of the other
jumps to/from level I’ in G’ are also present in G”, t’ is also needed for one of them in G”.
However, t’ is paired with t in G” - contradiction. 0

Theorem 2:

There is an NC algorithm to determine whether the pair (t, t’) is a candidate for the
jump from level 1 to I’.

Proof: Create the graphs G’ and G” and check that the LMJ sequences of G and G’, and
of G’ and G” arc similar. 0

The above Thcorcm leads us to the obvious ~~lgorithm for assigning tasks to a particular
jump in the LMJ sequence. We sinipiy try all indcpeudcnt pairs of tasks from the appro-
priate levels and pick cany pair that satisfies Theorem 2. This method iwsurcs us tllat there
is at Icast one valid way of Cassigning tasks CO the mnnilliag jumps. Ilowcver, WC still need
powerful tools in orticr to pick consistent pairs rapidly in pnrdlci.

6. Parallel Selection of Candidate Pairs

In the previous section WC prescntOcd a nlcthod for determining if a pair of tasks from
difrcrcnt levels is a candidate pair. From Lemma 6 we know that any disjoint set of
ciLl\<lidatc pairs (one for each jump in the J,MJ scqncnce) forms the actual jumps of an2.
LMJ s&cdr11c. ‘L’hcrcforc our prol.~lc~J~ is to pick a c;~Jlditlatc pair for each julep in the
‘J1M.J scqucncc wldc p~i~r:~“l(!(:iJ~g th;d IIO Gilsk i s irl nmrc CllitJl one pir.

This problem is sinlilar to Chc IJli~khiJlg problem, so powerful tcchniqucs arc ncedcd it
solve it in pnralicl. On the other hilnd, since each lcvcl jumps to at IUOSC one other icvel,
the jumps form a tree structure. WC exploit this structure using rccrmivc tZcconq2osition.
At t!iKll stngc in the dcco~upositiori wc split tlic current problcnis into two or more disjoint
problems. WIICH iLlI of the problems have bOCJ1 rcduccti to finding a single candidate pair,
~IICY c;kn 1)~ SOIVW~ quickly ill p;~r;llicl.

11

Definition Jump l?orest:

The jump forest for a graph G contains one node for each level in G. An arc goes
from the node for level I to the node for level 1’ f- 1 if and only if the jump (1,Z’) is in the
LMJ scqucnce for G.

This structure is an inforest since at most one jump originates from each level. Note that
jumps to the same level and jumps to level 0 are not represented in the jump tree.

5.

4

Figure 5

This is the jump forest for the precedence graph in Figure 1. Each node rep-
resents a11 cutirc level in the precedence graph. All edges (jumps) arc directed
downwards.

Lemma 11:

If the jump forest consists of two or more disjoint trees, then cantiidatc pairs can be
picked for each tree intlcpcndently.

Proofi Disjoint trees do not share IevcIs, hcncc they do not sharc tasks. Thcreforc no task
in a candidate pair for one tree can also bc in a candidate pair for the other tree. 0

For cacll j u m p tree J i n the forest, there i s au irrduccd subgraph o f G. The induced
Sll l)g’;lpll, CJ.J, eolltilills ~IIOSC IOVOIS of G which iLr(! rcl)rcscrltotl in J. TIIIIS <3ikeI1 ICVOI of
G is in cxnctly one intlucctl subgrnlA. II~~.rlsc Cl~c jump trees arc split at cacll stage of
the algorilhm, it is convcnicnt to t‘lcr~otc lcvcls in induced subgraphs by their uames in G
rather than rcnumbcring them cvcry step. Initially cnch inducctl subgraph contains all the
jobs from its constituent h~ls (and the prcccdcncc constraints bctwccn lhc~n).

As a jump tree is split, certain cahditiatc pairs will be picked. In order to keep the tasks
in thcsc camlitlatc pairs fro~u being rcuscd, we tlolctc thc111 from Chc intlucctl subgraphs.
We cohtinuc splitting jump trees (iklltl induced SUbgriLplIS) rirlCil cad1 juuip Crce consists of

12

a single level. A11 tasks remaining in the incluccd subgraph can then bc arbitrarily paired
together since there are never precedence constraints between tasks on the same level.

Lemma 12:

Any intree of size n can be split into disjoint subtrees, each of size at most n/2, by
removing a single node. li’urthcrmore, an appropriate node can be found quickly in parallel.

Proof: Count the number of ancestors for cnch node. When the highest node with at le<ast
n/2 ancestors is removed, the remaining components will all have size at most n/2. 0

Since
all of

we h;LlvC the size of the largest jump tree each iteration, after at most log n. iterations
the jump trees will consist of a single level.

The first stxp to remove an internal level 1 from a jump tree J is to Jnake 1 the root. (Jsing
G.1 WC can find a candidate pair (t, t’> for the jump (1,l’). If we delete t and t’ froJJJ GJ,
the jump (I, 1’) is no longer in G./s LM,J sequence and J is split. We use J(1) to denote
the part of J rooted at 1 and J(1’) to denote the part containing 1’.

Unfortunntcly, when WC delete t and t’ the level structure of our induced subgraphs may
be dcstroycd. Some tasks in G,](l) may have prcceeded only t from level 1. We must adjust
the precedence constraints of G*/(1) so tll:~t tllesc “dangling tasks” precccd ;IC lcast one
task on level 1. Similarly, we must atljrlst the preccdencc constraints of G,l(lI) so that tasks
which nstxl to prccccdcd 1’ still prccccd iL task on level 1’.

Level 1 is the root of J(1). ‘J’hercfore WC cik11 add iL tlrlt~~l~~y task to lcvcl 1 which is a
successor Of aI1 t;Lsks in 1110 jump Crcc, cxccpt Chose 011 Icvcl 1. NOW cvcry CiLSk in G,,(I) is
eitlJcr on Icvcl 1 or prccccds a task front Icvcl 1. If 1’ is ~hc root of’ <i*J(l,), then WC can use
the saJnc nicthod.

If 1’ is not the root of its jump tree, then it julnps to soJne other level. Let t^ E 1’ be any
task which is Jlot needed for another level’s juJJlp to 1’. We know thcrc is at least one
such task, n;~n~cly the one used for CIIC jump I’roJlJ lcvcl 1’. The lcvcl property is restored
WIJCJJ all of the tasks iJJ G.l(rl) on lcvcls above 1’ iLre nJatlc prcdcccssors of i. The iLddd

prccctloncc <:otJstr;LiJJCS (IO tiot iLll’(!cto tllc! I,M,J XI~C~IIIIC for C:*,t,l) siiico iLl1 CiLSkS iLbOV0 lCVC1
1 ;Lrc cOJlJplOtO(l bcrorc 1^. WC ciLt1 Jilt(l iL SliitiLblc t^ by tryiJJg ;LI~ tiLSkS 011 ICVCI 1’ ill l)iLriLlkl

and s&ctiJJg icny orJc whcrc ClJc iLticIcd prcccdc~~cc constraiuts do JJO~ change the LMJ
scqucncc of G,I(l,).

Now lcvel 1, the one to bc rcmovcd, is at the root of its jump tree. T,ct levels I[, /2,/s, I,,
bc the Icvcls ill the jlunp tree which junq) directly to 1 iJl nsccr~&~J~ or&x. Thus I,,, is the
highest htvcl wJlic:ll jumps Co love1 1. our idgOrithJl1 assigrls e;Lch of the lcvcls II through
1 711 a particular task to juJnp to.

13

Definition Chunk, C;:

The chunks are sets of tasks from level 1. I?or 1 5 i 5 m, Ci consists of those tasks
from level I which are in a caudidate pair for a jump (&, I) where j 2 i.

The set C; may be larger th‘an the set of tasks from level I which can be used for the jump,
(l;, I). It may include tasks which musC be used for other jumps. Since there is a way to
assign disjoint candidate pairs to the m jumps, ICil 2 m - i + 1.

’ !
Level LMJ Sequence
7 3

4 3

3 6

2

1 3 1

Figure 6a

Tllis is the induccd subgrnph for the initial julllp tree containing level 3. As
usud, transitive edges have been omitted from the figure.

Level
7

L MJ Sequence
3

4 3

,

3 . 7 0 l 1 0 3

Figure Gb

After the jump (3,X) has been removed from the tree (using the only candidate
pair, tasks 5 and O), WC get a new intlrtccd subgraph. Tasks I5 nd 11 arc the
only tasks ill cnl~<litli\tc pairs on their rcspcctivc levels, so Cask 10 is in two
C~IIIIICS ~IICI tasks 7 iuld 9 iirc in OIIC chullk. Thcrcforc, task 10 will be assigned
to lcvcl 7 WC\ cithcr task 7 or 0 will bc assig:“cd to lcvcl 4.

14

Lemma 13:

If 1 5 j < i 5 m and t E Ci then all tasks on level li are either needed for jumps to
level lj or are independent with t.

Proof: Assume there is some tj E Zj for which the Lemma does not hold. Because t is in
C;, there is some task t; on or above level 1; which forms a candidate pair with t. Since
tj is a predecessor of t, t; and tj must be independent. If tj has not yet been scheduled
when ti’s level is completed then tasks ti and tj could be paired and ti’s level would jump
to level lj in LMJ schedules for G - contradiction. 0

Our algorithm simply sorts the tasks on level I by the number of chunks they are in,
breaking ties arbitrarily. The task in the most chunks is assigned to level I,, the task in
the second most chunks is assigned to 1,-i and so on.

Lemma 14:

There is always a t; on level 1; which can be paired with the task assigned to ii forming
a candidate pair.

Proof: All tasks in C; care in at least i chunks Land cany task not in Ci can be in at most
i - 1 chunks. Since there <are at lecast m - i + 1 tasks in Ci, the task assigned to level li
will be in Ci. As a consequence of Lemma 13 and the definition of chunks, there is at least
one candidate pair for the jump (1;) Z) containing the task assigned to level 1;. 0

Theorem 3:

There is an .K proccdurc to renlove an arbitrary node from a jump tree, finding
disjoint candidate pairs for all of the dclctcd edges.

Proof: Tn order to rcmovc lcvcl I from jump tree J we first rciuovc any outgoing jump
from 1. Uy Theorem 2, there is an 1 C algori thin for doing this. Creating the chunks, Ci
can easily bc done in parallel since WC have an A/C algorithm for dcterruining all candidate
pairs for a given jump. Sorting is in NC, so we can assign a task to each 1; quickly in
parallel. Once task t has been assigned to level li we can test all of the pairs (ti E lit t) in
parallel, using cany candidate pair for the jump (li, r). 0

Theorem 4:

There is an NC algorithm which linds a two processor LMJ schedule for <any prcccdcncc
graph.

Proof: Create the jump forest. ltccursivly decompose each jump tree, saving the picked
canditlatc pairs. Arbitrarily pair the remaining tasks on each lcvcl. 13~ sortiug thcsc pairs
of tasks WC obtain an LMJ scl~dulc. 0

Our algorithm is intended to show that two processor schctluling is in NC; it is not intcndcd

15

to be an efficient solution. Computing the LMJ sequence for a graph G uses L(G)2 calls
to the schedule length algorithm (in parallel). Determining if a pair of tasks is a candidate
pair basically involves computing two LMJ sequences. Thus the total requirements for
computing all of the candidate pairs is n2L(G)2 5n processors and O(log n log L(G)) time.
If the candidate pairs have been pre-computed, the cost of decomposing the jump trees
becomes insignificant. Therefore, the requirements for the entire algorithm are n7L(G)2
processors <and 0 (log n log L(G)) .

7. Conclusions

Our two processor scheduling result, coupled with a transitive orientation algorithm, al-
lows us to solve several restrictions of the nmximum matching problem. By exploiting the
special relationship between two processor scheduling cand matching, we can find maxi-
mum matchings on undirected graphs whose complements have a transitive orientation.
Specifically, if G is an interval graph, then G has a transitive orientation [Gh62]. Similarly,
G is a permutation graph if and only if both G and c are transitively orientable [PLE71].
Thus we have a deterministic NC maximum matching algorithm for both interval graphs
and permutation graphs [HM85, KVV85].

There are many variations of the fundamental two processor scheduling problem. The
tasks can have varying execution times, release times, or deadlines. If tasks have small
integer execution times and are preemptable; then the problem reduces to the unit time
scheduling problem. So far, our attempts at extending the algorithm to handle deadlines
and/or release times have been unfruitful.

One variant of the two processor problem that WC know to be N P-complete (under log-
space reduction) allows incompatability edges cas well well <as preccdencc constraints. When
there is ml incolnl>~~tal)ility constraint between two tasks they can be exccutcd in either
or&r, but not concurrently. Incompatability constraints arise naturally when two or more
tasks need the same resource, such ras special purpose hardware or a database file.

It was surprising how much more diIIicult computing the actual schedule was than simply
computing its length. In higher complexity &asses such as P and NP it is often easy to
go from the decision problem to computing an actual solution, because of self reducibility.
Ilowcvcr this dots not seem to necessarily bc the cast for parallel complexity classes. To
support this observation we note that the random NC algorithm for finding the cartlinality
of a maximum nlatclling is much simpler than the random NC algorithm for determining
can actual maximum matching [KUW85b].

16

References:

[CG72] Coffman, E.G., Jr., cand R.L. Graham “Optimal Scheduling for Two Processor
Systems,” Acta Informatica 1, (1972) 200-213.

[DUW84] D 1o ev, D., E. Upfal, and M. Warmuth, “Scheduling Trees in Parallel,” Proc.
International Workshop on Parallel Computing and VLSI, Amalfi, (1984) l-30.

[FKNGS] Fujii, M., T. Kasami, ‘and K. Ninamiya, “Optimal Sequencing of Two Equivalent
Processors,” SIAM J. of Computing 17 (1969) 784-789.

[Ga82] Gabow, H.N., “An Almost-linear Algorithm for Two-processor Scheduling,” JACM,
29, 3 (1982) 766-780.

[GT83] Gabow, H.N. and Tarjan, R.E., “A Linear Time Algorithm for Special Case of
Disjoint Set Union”, proc. 15th STOC (1983).

[Gh62] Ghouila-Houri, A., “Caracterisation des graphes non orient& dont on peut oricn-
ter les arr;tes de man&e a obtenir le graphe d’une relation d’ordre,” C.R. Acad.
Sci. Paris 254 (1962).

[HM84] Helmbold, D. and E. Mayr, “Fast Scheduling Algorithms on Parallel Computers,”
Stanford tech. report STAN-CS-84-1025, (1984).

[HM~S] Helmbold, D. and E. Mayr, “Transitive Orientation and NC Algorithms,” in
preparation.

[HUGI] Hu, T.C., “Parallel Sequencing and Assembly Line Problems,” Operations Re-
search 9 (1961) 841-848.

[KUW85a] Karp, R.M., E. Upfal, and A. Wigderson, “Constructing a Perfect Matching is in
Random NC,” proc. 17th STOC (1985).

[KUW85b] Karp, R.M., E. Upfal, and A. Wigclcrson, “Arc Starch and Decision l’roblcn~s
Computationally Equivalent?,” proc. 17th STOC (1985).

[KVV85] Kozen, D., U.V. Vazirani, (and V.V. Vazirani, “NC Algorithms for Comparability

[VV85]

(I’Y79]

[PLE7 I]

[u175]

Graphs, Interval Graphs, and Testing for Unique Perfect Matching,” to appear.

Vazirani, U.V. and V.V. Vazirani, “The Two-Processor Scheduling Problem is in
RNC,” proc. 17th STOC (1985).

l’illlil(lilllit,rioll, C.TT. and Y:~rlllnkd<is, M., “Scldulir~g Itltcrvill-Ortlcrc<l Xmks,”
SIAM J. Computing vol 8 #3 (1979).

Pnueli, A., A. Lcmpel, and S. Eveu, “Transitive orientation of Graphs and Idcn-
tification of I’crmu tation Graphs,” Ccan. J. Math., vol 23 #I (1971) 160-175,

Ullman, J.D., “NT’-complete Scheduling Problems,” J. Comput. System Sci. 10
(1975)) 384-393.

