June 1985 Report No. STAN-CS-85-1080
Also numbered KSL-85- 12

The Compleat Guide to MRS

by

Stuart Russell, Fsq.

Department of Computer Science

Stanford University
Stanford, CA 94305

Stanford Knowledge Systems Laboratory June 1985
Report No. KSL-85-12

The Compleat Guide to MM

by

Stuart Russell Esq.

COMPUTER SCIENCE DEPARTMENT

Stanford University
Stanford, California 94305

This Wor k wasfunded from ONR contract N00014-81-K-0004

Preface i

Preface

MRS is a logic programming system with extensive meta-level facilities. As such it can be used
to implement virtually all kinds of artificial intelligence applicationsin a wide variety of architectures.
This guide is intended to be a comprehensive text and reference for MRS. It also attempts to explain
the foundations of the logic programming approach from the ground up, and it is hoped that it will
thus provide access, even for the uninitiated, to all the-benefits of Al methods. The only prerequisites
for understanding MRS are a passing acquaintance with LISP and an open mind.

Thefirst part of the book deals with the principles and basic commands of MRS, and is sufficient
to allow the reader to begin creating fairly complex systems. The second part covers the advanced
features of MRS that enable the user to tailor the system to her own needs and increase performance
and functionality as desired. The best way to read the book is to try out everything on the terminal
as soon as it is introduced, or even to be developing an application concurrently with learning the
material. There are several exercises provided which are not the least bit optional. They are however
non-trivial, so don’t be alarmed if some of them seem daunting. In the author’s opinion, the style
of programming induced by MRS is far more natural and uncomplicated than traditional methods,
and it is only the corrupting influence of previous education that makes logic programming seem a
little strange at first.

The author would like to thank Prof. Michael Genesereth and the other authors of MRS; Russ
Greiner, Matt Ginsberg, Leonor Abraido-Fandifio, Ben Grosof and René Bach for numerous useful
suggestions and diligent reading; and Eric Berglund for help with the figures.

CONTENTS

Part | : Understanding MRS
Chapter 1: Introduction

1.1 Problems problems problems
1.2 Logic doesnt rhyme with Magic

Chapter 2: Representing knowledge in MRS

2.1 Symbols

2.2 Ground literals

2.2 Equality

2.4 More complex propositions
2.5 Variables

2.6 Existential propositions
2.7 Exercises in representation

Chapter 3: Storing and retrieving facts — the database

3.1 Queries--.

5.2 Exercises on unification

3.8 Actually doing things with the MRS database
3.4 Getting facts into and out of the data base

Chapter 4: Reasoning with Knowledge

4.1 Rules of Inference

4. 2 Solving more dificult problems

4.8 Solving really very difficult problems indeed
4.4 Using inference to get results

4.5 Using forward chaining

4.6 Solving problems with numbers

4.7 Solving problems with lists

4.8 Using more complex rules

Chapter 5: Some (almost) real examples

5.1 Deciding on an ontology

6.2 Deciding on a vocabulary

5.3 Collect and encode all the general knowledge
5.4 Encode the description of the particular instance
6.5 Invoke the appropriate MRS inference procedure
5.6 Exercises

Chapter 6: Controlling deduction

6.1 Tasks
6. 2 Controlling what gets done when: the scheduler

6.2.1 The general (non-default) mode of scheduler operation

6. 2. 2 Default mode — the agenda
6. 3 Telling MRS how to do things
6. 4 Expressing control strategies at the meta-level

O @ g0 ULt oo Or NN

bk ket
(=2 = I =)

NP P2
R O ooO®M»uUubhWmwmw

NN NN NN
o OOl N~ W

W W wro NN DN
h O O © O O O

6.5 Control structure examples in backward chaining

Part 11 : Using the advanced features of MRS

Chapter 7: Theories: individually wrapped databases
7.1 Getting facts into and out of theories
7.2 Selecting which theories to use ..
7.3 Related theories

Chapter 8: Procedural attachment
8.1 Task-related attachment
8. 2 Predicate-related attachment — built-in predicates
8. 3 Predicate-related attachment — computable representations

Chapter 9: Alternative representations and inference procedures
9.1 Representations
9. 2 Alternative inference procedures
9.2.1 Forward chaining '
9.2.2 Residue
9.2.3 Resolution
9.2.4 Resolution with residues

Chapter 10: Useful system functions
10.1 Testing for variables
10. 2 Matching and unification
10. 3 Binding lists
10.4 Tasks and the agenda
10.5 Miscellaneous routines

Chapter 11: Tracing, caching and justifications
11.1 Tracing
11.2 Caching
11. 3 Justifications

Chapter 12: More general input and output
12. 1 Asking questions of the user
12. 2 Displaying facts
12. 2.1 Pseudo-natural language output
12. 2.2 Other output routines
12. 3 Monitoring
12.4 Editing

Appendix A : Answers to exercises

A.1 Answers to problems from chapter 2
A.2 Answers to problems from chapter 8
A.3 Answers to problems from chapter 5

Appendix B : Installation Guide

B.1 Introduction
B.2 How to get MRS running

35

38
38
38
39

40
40
41
42

45
45
46
47
47
47
48

49
49
49
49
50
50

51
51
51
51

53
53
53
54
54
55
57

59
61
62

77
77

B.2.1 Maclizp version on the DEC-20.
B.2.2 Franz version on the VAX.
B.2.3 ZetaLisp version on the LM-2/3600.
B.3 Adding Files to MRS - for system maintainers
B.4 Testing MRS installation
B.5 The Share Subdirectory
B.6 Required Files

Appendix C : Dictionary of predicates and flags

Index

77
77
78
79
79
79
80

Part I ¢
Understanding MRS

2 The Compleat Guide to MRS

Chapter 1
Introduction

What is MRS? Good question. MRS stands for Meta-level Representation System. If your
response to this is a knowing nod of understanding you can probably skip the first few chapters.
In a sense, MRS is a computer language, in that one enters text in a designated syntax and it
gets processed and produces answers (or not). But because MRS is also able to reason with the
information you give it, the *program® you ent~r can be seen more as representing facts than
specifying a process. The importance and utility of this difference will become clear.

§1.1 Problems problems problems

Like all computer languages, MRS is a tool for solving problema. By the time you have mastered it,
you will know how to use it to solve some Very Difficult Problems Indeed. But unlike most computer
languages, MRS doesn’t require that you know exactly how to solve a problem before it can help
you. This distinction is not iron-clad — if the claims of Al have any merit then Turing-equivalence
assures us that Albert Einstein could be implemented in BASIC too — but the normal style of
problem-solving in MRS is radically different from that in FORTRAN or even LISP. Yes, even today
people say things like ‘The great thing about computers is that they make sure you know ezactly
how to solve a problem.” You may or may not agree that thisis a great thing, but with the advent
of MRS (and, | suppose, some other systems too) it’s no longer true.
The (somewhat idealized) traditional process of computer use goes something like this:

. ldentify the problem.

. Assemble what you know about it.

. Decide on data structures to correspond to things in the problem.

. Figure how to process those structures to produce the desired answer.
. Encode the process step by step in your favourite language.

. Get the computer to execute the process.

O oD WN P

whereas the happy MRS user can just do the following:

1. Identify the problem.

2. Assemble what you know about it.

3. Encode what you know about it in MRS.
4. Get MRS to figure out the solution.

That, at leadt, is the plan. The key problem faced by the experienced programmer coming to
MRS is that she can’t stop hersef from doing steps I-4 from the old tradition, then trying § in
MRS, whereupon she concludes that it’s no better than Pascal, has a lot of silly parentheses and
doesn’t even have loops.

The new regimen places more emphasis on stage 2, assembling what you know about the
problem, which is often overlooked in the old ways with disastr..as resultsin 6. It should already be
clear that less effort is really required in the basic procedure for solving problems in MRS; but as
any Real World Programmer will tell you, that’s not the whole story. Debugging and maintenance
are apparently non-trivial affairs. Debugging is changed as follows: clearly if all you have is facts,
then you can only get the wrong answers if some of the facts are false. Not only is it unlikely that
you would type a false fact in the first place (apart from typographical inaccuracies), but it is also
considerably easier to notice that a fact is false than it is to decide exactly how it is that the twelve
page procedure you have just coded doesn’t correspond to the solution process you had in mind,
even if the solution process was correct in the first place. Maintenance is also considerably eased: if

Chapter 1: Introduction 8

some facts about the problem change, the enlightened MRS user changes the corresponding facts in
his system; the traditional programmer cusses loudly, tries to find all those places in the program
wher e the solution process relied on the truth of the original facts, and prays that the changes won’t
have more than the usual number of side-effects.

Given that MRS isn't yet Albert Einstein, this has been an idealized version of the truth, but
it illustrates the basic approach that should be followed in producing applications using MRS.

§1.2 Logic doesnt rhyme with Magic

You may suspect that the stage 3' above, ‘Encode these factsin MRS’ is not quite as straightforward
as all that. But facts are being encoded all the time; in fact you're reading fact-encodings right now
(or not, depending on your philosophical inclinations). To see that a fact is different from a sentence,
recall that the same fact could be expressed with different sentences, e.g.

John is taller than Ken
Ken is shorter than John

or even
Ken est plus petit que John.

Some of the linguistic philosophers in the audience may disagree with it, but this smplistic approach
is all that's necessary for understanding MRS.

For centuries, philosophers have tried to devise formal languages for encoding facts about the
world so that strict rules could be applied for deriving new facts from old. In this way, valid
arguments could be distinguished from invalid. The schemes of propositional and predicate calculus,
originating in the work of Frege, are the currently accepted standard. The important thing about
these schemes is not the particular syntax employed or the applicable rules of inference, but their
way of viewing the world.

According to predicate calculus, the universe, as it’s often called, consists of a fixed set of objects
(not necessarily finite). This universe is not usually the same as the whole Universe As We Know
It; in fact it’s often a very small subset, for instance {John,Ken}. A key notion is that we have
independent access to the objects — we know what we mean by ‘John’. The objects need not be
‘real’ things: unicorns, numbers, sets and Pepsis can inhabit universes too.

In the formal language, we will have constant symbols to refer to these objects ~— names, if
you like. For example, | might use the constant symbols John and Ken or j 12 and k535 to refer
to the objects John, Ken in the universe. Notice that even in English we still have to use such
symbols; strictly | should insert the real John and Ken into the text, but even modern computerized
typography doesn’t have such fonts. The point is that the idea of using symbols to refer to actual
objects is extremely natural.

In English, we often want to refer to objects that don’t have names ‘of their own, such as John’s
left foot. Similar constructions are used in MRS, and are called terms. Terms are written with a
function symbol followed by its arguments, which are also terms; a constant symbol is a kind of term.
The whole lot is enclosed in parentheses. So we might write (Lef t Foot OF John) or (LeftFootOf
(Father0f Ken)) but probably not (Foot0f Ken) unless we were in a world of molluscs: a term
ref ers toauniqueobject. It is essential to remember that terms are just fancy kinds of names; they
are not computable expressions.

Along with objects, there are relations. These enable you to say things about the objects, and
in fact that is basically all that can be said. In my universe { John,Ken} | might want to have the
relation of being taller than. Now whatever | might think about the meaning of such a relation,

a The Compleat Guide to MRS

according to relational semantics a relation is defined by the set of all tuples of objects which satisfy
the relation (its eztension). Thus, suppose my relation symbol for this relation is IsTallerThan.
Then in the {John,Ken} universe,

IsTallerThan = { (John,Ken)}.
Now if John is also older than Ken,

Is0lderThan = { (John,Ken)}
so IsTallerThan and IsOldexThan are the same relation. Geed grief! Actually, this isn't just
plain daft, it's a salutary lesson in the art of expressing facts. from the point of view of a system
such as MRS containing such facts, the two relations are identical since one could exchange the two
relation symbols throughout and not affect the result of any computation. ‘In fact you could replace
IsTallerThan by GO0062 and still not change anything. The system really does not know that John
ss taller than Ken. It just knows that IsTallerThan is a binary relation which holds between John
and Ken. For many purposes, however, it is useful to pretend that the' system ‘knows these facts,
and no doubt this grave error is committed liberally throughout this book.

Notice that relations come in many different kinds: unary relations like

PlaysBaseball = {(John), (Ken)},
binary relations like IsTallerThan, and in fact relations with any number of arguments.

All we need now to start encoding facts in our formal language is a syntax for combining relation
symbols with constants to express the fact that the relation holds for the objects referred to by the
constant symbols. The syntax used by MRS will be described in the next chapter, along with more
apparatus of predicate calculus that enables more complex facts about the universe to be expressed.
Chapter 4 will introduce the ideas involved in inferring new facts from old. These ideas are the key
to stage 4’ of the MRS programming process, ‘Get MRS to figure out the solution”.

Chapter 2: Representing knowledge in MRS 6

Chapter 2
Representing knowledge in MRS

The preceding chapter introduced the idea of a formal language for expressing facts, but didn’t
actually express any. The reason for this is that to -actually express & fact one needs to choose
a syntax; it is important to remember that tle syntax used is a somewhat arbitrary choice that
must be clearly distinguished from the ideas of representation discussed above. The choice of syntax
depends on such things as readability and ease of manipulation by computer programs. Because
MRS is a LISP-based system, the syntax is chose . to mesh well with LISP. The following sections
discuss the actual syntax of MRS.

§2.1 Symbols

Any LISP atom can be used for constant, function or relation symbols, with a few exceptions:
- atoms beginning with & and $ have special uses which will be explained later;
-theatoms AND OR NOT | F should not be used asrelations.

$2.2 Ground literals

Generally speaking, the expression of a fact in a formal language is called a proposition. The facts
that we didn’t express in Chapter 1 are called ground literals — they express that a given relation
holds between the given objects. Given the above hint about LISP, you can probably guess that
‘John is taller than Ken” is expressed by

(IsTallerThan John Ken).

Terms with function symbols such as (Father0f Ken) can appear in the same places as constants,
so since John is Ken's father,

(IsTallerThan (FathexOf Ken) Ken)
expresses the same fact. Since terms can be arbitrarily nested, we could say

(PlaysBaseball (FatherOf (MotherOf (FatherOf M randa)))).

§2.3 Equality
A relation with a special meaning in MRS is the equality relation =,
(= <termi> <term2>)

is true if and only if the two terms refer to the same object in the universe. Thus (= John John)
is automatically true; (= (Father0f Ken) John) is true as long as John is Ken's father. If we tell
MRS that

(= MorningStar EveningStar)

then there will be two constant symbols that refer to the same object, but unless otherwise specified,
MRS will assume that different constants refer to different objects, so they are not necessarily =.
Moreover, MRS is equally unable to decide that different constants necessarily refer to different
objects, so they are not necessarily not = either.

§2.4 More complex propositions

Central to the utility of predicate calculus is the idea that complex facts can be expressed as combi-
nations of simpler facts, the modes of combination being such that the truth of a complex fact can

6 The Compleat Guide to MRS

be determined from the truth of its constituents. Thus, for example, the fact ‘John is taller and
older than Ken” is seen as @ conjunction of two simpler facts, and istrue if and only if ‘John is taller
than Ken” and “John is older than Ken” are both true. Notice that the same property does not
hold for sentences such as “John is taller than Ken because John is older than Ken”: even if both
parts are known to be true, say, we still don’'t- know if the whole sentence is true or false because
‘because’ refers to a context of causal relations outside the sentence itself.

Complex facts are expressed in predicate calculus using logtcal connectives. MRS recognizes the
logical connectives AND, OR, NOT and IF:

(AND <proposition; > . . . <proposition, >)
is true when all the conjoined propositions are true. A conjunction of no propositions is
true.

(OR <proposition; > . . . <proposition, >)
is true when any of the digoined propositions are true. A digunction of no propositions is
false.

(NOoT <proposition>)
means that the proposition is false.

(IF <antecedent proposition> <consequent proposition>)
is true if. the consequent is true when the antecedent i s true, or i f the antecedent is false;
i.e. the consequent follows from the antecedent.

§2.5 Variables

Many facts that we might want to express are general in the sense that they do not refer to any
particular object or objects in the universe, but have truth conditions depending on the truth of
all the individual propositions generated by applying the statement to each particular object in the
uni ver se. For example, in the {John, Ken} universe, the statement “ All Americans play baseball”

can be expressed by

(AND (IF (American John) (PlaysBaseball John))
(IF (American Ken) (PlaysBaseball Ken)))

and it’s truth decided by using the rules for AND and IF. But for larger universes this becomes a
tedious way to express what seem to be quite simple statements, and for statements like ‘The sum
of any two integers is an integer® the task of enumerating all propositions of the form

(IF (AND (Integer 1) (Integer 2))
(Integer (+ 1 2)))

is really quite lengthy.
Several other kinds of statement are commonly used which have similar properties:

®There are some Americans who don’t play baseball.”

“At least half of all Americans forget to vote”

“There are two hundred million Americans.”
MRS provides a simple mechanism for expressing only unsversal propositions, which state that some
fact is true of every object in the universe. Of those mentioned, these are by far the most commonly
needed type. All you do is use a special symbol type, called a wariable, in the place where the
constant symbol would go if the general statement were applied to a particular object. A variable
is just a symbol beginning with a dollar sign $, eg. $X $$$ Qvariable. So the statement “ All
Americans play baseball” is expressed as

(IF (American $X) (PlaysBaseball $X))

Chapter 2: Representing knowledge in MRS 7

‘Everything is going wrong today” as (literally speaking)
(GoingWrongToday $Y)
“The sum of any two integers is an integer® as

(IF (AND (Integer $X) (Integer $Y))
(I'nteger (+ $X $Y)))

There are two highly important things to note about variables.

Firstly, the particular variable name you use is irrelevant (although it may have mnemonic
value). Thus, to MRS, (GoingWrongToday $X) and (GoingWrongToday $everything) are the same
fact.

Secondly, where variables appear in more than one place in a proposition, it matters whether
they are the same or different. Thus

(IF (AND (Integer $X) (Integer $X))
(Integer (+ $X $X)))

means something very different from the proposition above that also uses $Y. It says that when you
add an integer to stself you get another integer. Thus the key observation is that whenever a variable
occurs more than once in a proposition, each occurrence will refer to the same object.

Unlike many systems of predicate calculus, computerized or not, MRS allows variables in place
of functions and relations. At first this may seem a little unnecessary — we don’t often want to say
things like ($X Fred), meaning that every unary relation is true of Fred. But in restricted universes
wherewearedealingwi th a known set of relations, this mght be useul. Alsowe can usethisfacility
to describe classes of relations:

(I'F (Reflexive $R) ($R $X $X))
says that every object is related to itself by any reflexive relation.
$2.6 Existential propositions

In the previous section we said that MRS had no simple way to handle anything other than universal
propositions. This isn't quite true. Consider the case of eztstential propositions, i.e. propositions
which st at e that some fact istrue of at least one object in the universe. An example is given above:
“There are some Americans who don’t play baseball’ @. This can be interpreted as a statement about
some unknown individual, whose sole properties are that she iz American and doesn’'t play baseball;
we can invent @ name for this individual such as LUH9781, and express the existential proposition
by

(AND (American LUH9781) (NOT (PlaysBaseball LUH9781))).

It is essential that the name used for the individual be new in the sense that no other facts in the
database thus far can have mentioned it. Given this condition, you should be able to convince your self
that nothing essential is lost in the trandation. The general name for this process is skolemization,
but the general process for arbitrarily nested universal and existential propositions is too complex
to be given here. Any good textbook on predicate calculus should contain an adequate description.

$2.7 Exercises in representation

In these exercises, the given symbols have the obvious meanings; where you are asked to write your
own propositions, use an equally perspicuous vocabulary.
Express the following propositions in reasonable English:

8 The Compleat Guide to MRS

1. (Horse Dobbin)

2. (Menber Dobbin Horses)

8. (NOT (Horse Dobhin))

4. (OR (Horse Dobbin) (Donkey Dobbin))

5. (I F (Horse Dobbin) (Mammal Debbin)) -

6. (IF (Horse $x) (Mammal $x))

7. (1 F (OR (Horse $x) (Cow $x)) (FourLegged $x))

8. (AND (Mammal $x)(FourLegged $x))
(

9. (IF (NOT (Horse Dobbin)) (Dutchman Exrmintrude))
10. (I'F (NOT (Cow $x)) (Brown Dobbin))
11. (1 F (AND (Horse $x)(Nor (Mammal $x))) (Cow $x))

12. (IF (OR (= $x Dobbin) (= $x Tonto)) (Horse $x))

18. (I F (AND (= $xDobbi n) (= $xTonto)) (Horse $x))

14. (1F (A (Manmmal $x)(Nor (= $xDobbin))) (Nor (Horse $x))

15 (F CAND (Horse $x) (Nor (= $x 8$y))) (Nor (Horse $y))

16. (NOT (Menmber $x $x))

17. (I F (AND (Horse $x) (Brown $x)) (Brown (TailOf $x)))
Express the following English in reasonable propositions:

18. Al dogsbark at their neighbours’ dogs.

19. No real numbers are integers.

20. Horses who hate dogs like ice cream.

21. Giraffes have longer necks than Dobbin.

22 An-An is the only male panda in London.

23. Zero is an integer.

24. Thefractional part of au integer is rero.

25. The product of two real numbers is a real number.

26. The product of apositive integer anditsinverse is unity.

21. Zeroisan additiveidentity. (Don' t say (AdditiveIdemtity O !)

28. The product of two real numbers is never an imaginary number.

30. All numbers are either real or imaginary or both.

31. All Englishmen, Scotsmen and Welshmen are British.

Chapter 3: Storing and retrieving facts — the database 9

Chapter 3
Storing and retrieving facts — the database

Once all these facts are represented, we must tell them to MRS, which must store them away
somewhere to be used in solving problems. Obviously, we should like to be able to inspect and
change the facts at will.

MRS stores facts in its dutubuse, also occasionally known as the knowledge base or rule base.
Think of the database as an infinitely extensible repository of knowledge, so organized that the time
taken to retrieve a fact from it is essentially independent of the number of facts it contains. But
before we talk about the MRS commands for storing and retrieving facts, we must understand the
concept of a query.

$3.1 Queries

In MRS, as in all logic programming, problem solutions are given by facts. For instance, if | want
to sum the numbersin a list L then the desired solution will be a fact of the form “ The sum of the
numbersin L is N”. Database retrieval is a simple form of problem-solving, one in which the answer
to the problem is a fact already in the database.

Suppose we have a very simple problem: find the age of John. Our desired solution fact will look
like (Age John x) for some x. What we need to do is ask the system to prove a fact of this form,
given what facts we have already put into its data base. In MRS, as in most logic programming
systems, we can pose this as a query (Age John $x). Note that this isn’t the same as the fact in the
data base, which would mean that everything in the universe was the age of John. It is asking the
system to find any $x such that $x is the age of John. The query is in fact treated as an existential
proposition to be verified. (Note that, as in the case of representing existential propositions in the
database using anonymous constants, we can have universal queries too. For example, if we wanted
to show that everyone was 22, we could use the query (Age GO0089 22); if the system can prove
that an object about which it knows nothing is 22, it can prove the same fact about anything.)

Returning to our simple problem, let’s take the case where John’s age is already known: (Age
John 22) is already in the data base (I said this was a simple problem). The system succeeds in
solving the problem by noting that (Age John 22) matches the query, provided we let $x be 22.
Such an association of a variable with a constant symbol is called a binding. In MRS a binding is
represented by a CONSed pair such as ($x . 22). In general, a query could have more than one
variable, e.g. (Parents John$f ather $mother), soasolution isrepresented by a hinding fist such
as (($father. |an) ($mother . Iris)). In general we say that a query is satisfied by a binding
list if the process of substituting the variable bindings from the list into the query produces a fact
which is true.

. Suppose, however, that we know that everyone in our universe is 22, i.e. (Age $y 22) is
in- the data base, but John’s age is not specifically mentioned anywhere. Obviously, we would
like the system to produce the solution. If we remember that (Age $y 22), as a data base fact,
is shorthand for (Age Al f 22) (Age Bert 22) . . . (AgeJohn 22) . . . (Age Zack
22), then the answer is obvious: allow bindings for variables in the data base fact as well as in the
query. Thus in this case a binding list (($x . 22) ($y . John)) would, if substituted into either
of the two propositions (Age $y 22) and (Age John $x), produces the same fact (Age John 22) .
The substitution into the data base fact produces a fact which is still true; the fact thus produced
matches with the query fact as before, so the solution is guaranteed to be valid.

The process of finding a binding list which, when substituted into two propositions, makes them
the same, is called unification. The binding list is called a unifier. Thus one method of trying to
solve a problem posed as a query proposition Q isto find a fact P in the data base such that that P

10 The Compleat Guide to MRS

and Q unify, with unifier . If we denote the result of substituting a binding list 4 into a proposition
R as R4, then we require that Po = Qa.

§3.2 Exercises on unification

For each of the following pairs of propositions you are to find the binding list that unifies them
(if any). Assume that variables with the same name in different propositions are distinct, so you
will have to rename the variables in the second proposition if there is any conflict. Some of the
examples contain dot notation — this is the same as the LISP notation for CONS, so for example
the propositions

(p $v $x (£ $y))
and
(pa. $2)
unify with unifier (($w . a) ($z . ($x (£ $y)))).

1. (p $a) and($rx).
(p $a) and ($a q).

(p $a ¢) and (p $y).
(q (£ $c)) and (q $d).
(r (g $c)) and (r $c).

(r$x (h $x)) and (xr$b $b).
.(p $a (g $2) (h $a)) and (p (g $b) (g . $c) ($8d . SO)).
. (q $a) and ($r . $s).
9. (r$b . $b) and(r$ca).

$3.3 Actually doing things with the MRS database

After such a lengthy introduction, even the most diligent reader is probably itching to release
the awesome power of MRS. The monitor-level command you need to invoke MRS is installation-
dependent, so we'll assume here that MRS is ready to go.

Commands typed to MRS are actually typed to the LISP interpreter. The normal LISP read-
eval-print loop is still in operation All MRS command8 are performed by functions coded in LISP,
so the ways of entering commands are the same as those for invoking LISP functions: they can be
entered from the terminal or read in from a file using the LOAD function. In addition the MRSLOAD
command can read in MRS propositions directly from a file (see Ch. 10). As with LISP, text
beginning with the comment character ¢’ is ignored up to the end of the line, so MRS command
files can be commented just like programs. Ordinary LISP functions can be invoked at all times,
and MRS functions can be invoked from user code.

It is intended that the reader read this chapter sitting at a terminal and type the entries to
the right of the > symbol. Studies have shown that those who avoid this become stunted MRS
users. Moreover, the facts you enter here will also be used in chapter 4, so it’s probably best to work
through the two chapters in the same session.

w ™

® N o ;A

§3.4 Gettiug facts into and out of the data base

The straightforward and unromantically-named STASH command does the straightforward and
unromantic job of adding a new fact to the data base. Don't forget to quote the fact you are
stashing.

> (STASH ? (Parent Al i ce Bert))

Chapter 3: Storing and retrieving facts — the database 11

P108
>(STASH ‘(Parent Al f Bert))
P109

You may find MRS’s responses a little puzzling, not to say insulting. What it’s actually telling
you is that your propositions have been stored on the property lists of the atoms P108 and P109
(the actual numbers may vary). These atoms are called proposition symboals.

>(STASH' (Femal e Alice))
P110

> (STASH * (Male A1£))
P111

>(STASH ' (Mal e Bert))
P112

An alternativeto STASH is ASSERT, which initially does exactly the same thing. However, often the
user will want further inferences to be made automatically from the facts she enters, and ASSERT
is used for this, whilst STASH is normally reserved for simple storage of facts.

To retrieve facts from the data base, use the LOOKUP command:

> (LOOKUP * (Male Bert))

«r . ™
> (LOOKUP ' (Fermal e Alf))
NI L

LOOKUP returns the binding list that satisfies the query. If the query contains no variables, it just
returns a nominal list (T . T))to indicate that the fact wasinthedatabase — this distinguishes
the situation from that pertaining when the fact can't be found and LOOKUP returns Nl L. To find
out the name of Alf’s child, type

>(LOOKUP ' (Parent Alf $x))
(($x . BERT) (T. T))

As you can see, MRS has no respect for your careful use of upper and lower case, but don’'t abandon
it because it helpsto make your source files much more readable. You may find that variables appear
dightly differently in the returned binding lists — this is a LI1SP effect so don’t worry about it.

Clearly, some queries with variables can be satisfied in more than one way, such as (Parent $p
Bert). LOOKUP returns the first solution it finds, and the data base is searched in the reverse
order from that in which the facts were stashed. This search order is an important, if arbitrary, part
of MRS. It can beused t 0 givea kind of ‘priority’ ranking to facts and rules, and isimportant in
the understanding of how MRS implements various defaults.

To get all the answers to a query, use LOOKUPS which returns a list of binding lists:

> (LOOKUPS * (Parent $p Bert))

((($p . ALF)(T . T))(($P . ALICE)(T. T)))

> (LOOKUPS * (Male $x))

((($x . ALF)(T . T))(($X . BERT)(T. T)))

>(LOOKUPS? (Parent pc))

(((3P . ALF) ($C . BERT) (T . T)) (($P . ALICE) ($C . BERT) (T . T)))

If by some dreadful mischance you happen to stash a fact that isn’t quite true, you can remove
it using UNSTASH:

12 The Compleat Guide to MRS

> (UNSTASH * (Female Alice))

(FEMALE AL| CE)
>(STASH' (Goddess Alice))

P113

An extremely useful command is FACTS; which prints all the facts containing its argument
(which will usually be an atom, but can be a term):

> (FACTS ' Alice)
P108: (PARENT ALl CE BERT)
P113: (GODDESS ALI CE)

FACTS can also take a second, numeric argument indicating the maximum level at which the first
argument may appear in a fact for it to be printed (rather like PRINTLEVEL in L1SP). See chapter
12 for ways to specify the output format for facts. You can use FACTS to avoid the tedious chore
of typing out a whole fact, character by character, smply in order to unstash it. Calling FACTS
with an appropriate argument will tell you the proposition symbol for the unwanted fact; then the
system function Pattern, which takez a proposition symbol as argument and returns the associated

fact, can be used thus:
(UNSTASH (Pattern 'P113)).

UNASSERT can also be used to remove facts. Like ASSERT, it is normally used when further
inference is desired, presumably resulting in the removal of dependent facts.

Chapter 4: Reasoning with Knowledge 13

Chapter 4
Reasoning with Knowledge

§4.1 Rules of Inference

Having entered all these facts, what more can be done with them? How does MRS figure out
solutions to problems? The direct answering by LOOKUP of queries on the database can be seen
as a simple case of problem-solving, and, as we said in the previous chapter, problem solutions are
given by facts. Thus the process of computation in MRS is one of producing new facts from the
original facts encoded about the problem. Obviously, we can’t just produce any old facts: they
should probably follow in some way from the facts already known. The rules which determine what
facts can be added from given facts are called rules of snference.
A rule of inference is usually written like this:

< description of initially known fact(s) >
< facts that can be inferred >

For example, if we know that (AND A B) istrue, we can infer that A istrue and B is true

(AND A B) (AND A B)
A B

If you've gone to a lot of effort to make sure the initial facts encoded about the problem are
true, then usually you'd like all the facts inferred, in particular the solution fact, to be true too. An
important class of inference rules consist of those which guarantee the truth of the inferred facts
provided the initial facts are true. A system using just rules of this type is said to be sound and is
called a deductive system. A system with a set of inference rules which is sufficient to produce all
possible deductions from a given set of facts is called complete. The normal inference processes used
in simple MRS applications are correct but not complete.

§4.2 Solving more difficult problems

In chapter 3 we saw how to solve simple problems involving database retrieval. To solve problems
whose answers we don’'t already know, we have to do some inference, for which we need inference
rules. Where do we get those from, other than from a book? Recall that our logical connectives are
defined in terms of the truth of the propositions they connect — hence the validity of the inference
rules for AND given earlier. Rules for the other connectives can be similarly derived; for example

A (OR A B), (NOT A) (OR A B), (NOT B)
(OR A B) B A

The following is the basic inference rule, called Modus Ponens, used in most MRS work:

(IF A B), A
B

which basically says that if you know that B follows from A, and you know A, then you can deduce
B. For example, if we know (IF (CurrentYear 1985) (Age John 22)) and (CurrentYear 1985)
then we can conclude (Age John 22) and solve our problem. The reasons for using this inference
ruleare

1) Most of our knowledge is naturally expressed using | F.

2) Even if it's not, it can usually be rewritten that way.

14 The Compleat Guide to MRS

The truth of these two statements will become apparent.

Let usreturn to a previous example, the use of (Age $y 22). The diligent reader will no doubt
have spotted that this is really a dumb thing to have in the data base. For instance, it implies such
things as (Age 22 22). What we should have said was something like (IF (Person $y) (Age $y
22)). Then, given (Person John), we can infer (Age John 22).

Or can we? As it stands, no. The above rule of inference requires that the exact antecedent A
be in the data base. A moment’s thought, which you should think, yields the extended rule

(IF A B), A’

where Au = A'a
Bo

i.e. if a known fact A’ unifies with the antecedent A of an IF-proposition, then we can infer the
consequent B modified by substitutions from the unifier . This may seem highly technical, but
really it's just a formalization of your commonsense intuition of how such | F-propositions should be
used.

Typically, an |F-proposition, henceforth known as a rule (not to be confused with an inference
rule), has a more complex antecedent than an atomic proposition (i.e., a proposition with no con-
nectives), although the conclusion will usually be atomic. To avoid having to have a whole, complex
fact stored in the-database to unify with the antecedent, which wouldn’t be usable except for one
particular rule, we must add some inference rules for combining atomic propositions into complex

facts:
Al’ e A”

(AND A4;...A,)
A
(OR A;...4,)

Given these inference rules and database such as

fors = |...n.

(IF (AND (Happy $x) (KnowsHappy $x) (HasHands $x $y))
(ShouldClap $x $y))

(Happy John)

(KnowsHappy John)

(HasHands John JohnsHands)

we can deduce

(ShouldClap John JohnsHands) .

§4.3 Solving really very difficult problems indeed

To get all this to hang together, we need a method for performing multiple inferences and stringing
them together so that we get from the facts at hand to a solution to the user’s query.

Let's start with the facts at hand. Clearly, one way of getting the solution isto find a rule whose
antecedent is satisfied, apply the rule of inference and deduce the consequence. We could then add
the consequence to the data base and start again, until we deduce a fact that unifies with the query.
This is called forward chaining, for obvious reasons. The obvious drawback with the scheme is that
the system could end up making dosens of inferences that bear no relation to the task of proving
the query.

The other simple alternative is to start with the query and ask “How.can we prove this?” The
answer: prove the antecedent of a rule whose consequence unifies with the query. That is, if we have
to prove B, and there is a rule in the data base (IF (AND Ajy... An) B’) such that B'e = Bu, then

Chapter 4: Reasoning with Knowledge 15

the task reduces to proving A;e for all 3. The regression ceases when we find an antecedent that’s
already in the data base. In this case, we only examine inferences that potentially contribute to the
actual goal. This is called backward chaining. The obvious drawback is that the system might go
off trying to prove antecedents that are unprovable, or even false. The majority of expert systems
built thus far are basically backward chaining, with some refinements. The “ expert knowledge”

is encoded as a collection of rules for drawing conclusions under certain circumstances; often, the
system has the option of asking the user to confirm an antecedent if it's not in the data base and
can’'t be proven.

The two methods are illustrated in the following sections.

$4.4 Using inference to get results

Before we can do any inference, we'd better have some rules. The following rules define some family
relationships (we'll omit MRS’s responses to STASH commands from now on):

>(STASH ‘(IF (AND (Parent $p $c) (Female $p)) (Mother $p $¢)))
>(STASH * (IF (AND (Parent $p $c) (Male $p)) (Father $p $¢)))
>(STASH * (IF (Parent $p $c) (Child $c $p)))

>(STASH * (IF (AND (Child $c $p) (Female $c)) (Daughter $c $p)))
>(STASH ‘(IF (AND (Child $c $p) (Child $p $g)) (Grandchild $c $g)))

Let's also extend our family by giving Bert some kids:

> (STASH ? (Parent Bert Cathy)
> (STASH ? (Female Cathy))

> (STASH ? (Parent Bert Chuck)
>(STASH * (Male Chuck))

The normal way to solve problems in MRS is to use backward-chaining, the reason being that
most data bases are more amenable to this approach; we will see later that the MRS user in fact
has a good deal of control over the actual strategy to be adopted. First let’s find out who is Bert’'s
daughter; to do this we use TRUEP, which is like LOOKUP except that it uses backward inference
as well as data base retrieval to find the answer:

>(LOOKUP ‘(Daughter $d Bert))
NIL

>(TRUEP ' (Daught er $d Bert))
(($D . CATHY) (T .T))

. It isimportant to understand how TRUEP arrived at its answer. The first step in any attempt
to- prove a goal is to see if it is aready known to be true. Thus TRUEP calls LOOKUPS, which
fails. Then TRUEP looks in the data base to find those rules whose consequents unify with the goal.
Here there is only one rule

(1F (AND (Childcp) (Fenmal e $c)) (Daughter $c $p)).
After applying the unifier to the antecedent, we have the goal
(AND (Child $c Bert) (Female $c)).

To prove a conjuctive goal like this we need to prove all the conjuncts: TRUEP attempts the subgoals
from left to right, but this is an arbitrary choice and one which you can alter when you know how.
Toprove(Child $c Bert), since LOOKUPS fails, we must usetherule

16 The Compleat Guide to MRS

(IF (Parent $p $c) (Child $c $p))

so we must then prove
(Parent Bert $¢).

LOOKUPS succeeds here, returning to TRUEP a binding list
((($p . Chuck) (T . T)) (($p . Cathy) (T . T))).

There are no rules for concluding parenthood, so that’s all the solutions there are. Having got these
two answers to (Child $c Bert), wemust try to prove (Female $¢) with each in turn:

(Femal e Chuck)

failsbecause i t' s not inthedata base and there areno rulesfor concluding such a proposition (at
least not in the data base).

(Femal e Cat hy)
succeeds in LOOKUPS, so
(AND (Chi |l d $c Bert) (Female $c))
succeeds with $¢ bound to Cathy and the binding list
(($D . CATHY) (T . 1)

is returned after the appropriate substitutions.

Note that if LOOKUP rather than LOOKUPS had been used, TRUEP would not have found
the answer since only (Parent Bert Chuck) would have been found. Thus even though TRUEP
only needstoreturn onesolution, al | al ternatives retrieved must beconsidered. Similarly, in proving
agoal, we rmrust notignoreany possible solutions. To do this, believe it or not, TRUEP actually
calls TRUEPS.

Perform a smilar analysis of the proof procedure for the following:

>(TRUEPS ' (Grandchild $c Alice))

(((¢c . CHUCK) ($1 . BERT) (T . 1))

(($c . CATHY) ($1 . BERT) (T . 1))

>(TRUEPS ’ ($r Al f Bert))

((($R . PARENT) (T . T)) (($R . FATHER) (T . T)))

Lookingat the returned list of Alice's grandchildren, you may be wondering what $1is doing there.
The reason is that sometimes the bindings of intermediate var i abl es, i.e. variables that aren’t in the
query and are unbound when their rules are invoked, are useful in understanding how an answer
is arrived at. Here, $1 is the system-created variable that replaces $p (for the purposes of variable
standardization)int he rul e defining the Gandchild relation. Thusit informs usthat Bert isthe
parent of Alice's grandchildren and it was this relationship that allowed the system to complete
the inference. The rest of the guide will omit these bindings for the sake of clarity; sometimes the
intermediate variables are so numerous that binding lists become alnost ‘illegible . Toovercome
this you can process them using getvar and related functions described in chapter 10.

§4.5 Using forward chaining

Forward chaining in MRS is not quite as simple as backward chaining. If the processes were entirely
analogous, we would give the system a query then have it reason forward from all the facts in the

Chapter 4: Reasoning with Knowledge 17

database until the solution was produced or until no more inferences could be made. However, this
would be somewhat inefficient since most of the inferences would probably be irrelevant. In fact,
one full run of such a forward chainer would produce all possible solutions for all possible queries,
and can easily take forever.

The method we adopt is to assume that a certain small set of facts constitutes a description
of the problem situation. These facts, together with the background knowledge in the database,
should contain the seeds of the solution to the query the user has in mind. Thus, when the user
adds the problem description to the database, the system forward-chains from these facts until no
mor e inferences can be made. Then the user need only do a LOOKUP for her query and vosla, the
answer isthere.

As you may have guessed, the user must add the facts using ASSERT.-But first, to notify MRS
that we would like to forward-chain from assertions, enter

> (STASH ! (toassert &p fc)) .

Don’'t worry yet about how this works. Let us now redo the example of the previous section.
Assuming the rules defining family relations are already in the database, we will assert each fact
describing our particular family in turn, and observe the actions of the forward chainer. To do this,
we can use the tracing mechanism of MRS to see each step of the inference process as it happens,
by entering

> (TRACETASK ’&x).

Work through the following transcript and make sure you see how each conclusion is reached, Each
FCDI SP step shows a fact being asserted. After it isin the database, the system triesto find all those
rules which have a premise, or a conjunct in their premise, that unifies with the fact. For each such
rule, it then performs a LOOKUP on each of the other premise conjuncts (if any), and if successful
calls FCDI SP on the conclusion of the rule.

>(ASSERT ' (Parent Alice Bert))

Executing FCDISP on (PARENT ALICE BERT)
Executing FCDISP on (cH LD BERT ALICE)
DONE

>(ASSERT ' (Parent Alf Bert))

Executing FCDISP on (PARENT ALF BERT)
Executing FCDISP on (CH LD BERT ALF)
DONE

>(ASSERT ' (Femal e Alice))

Executing FCDISP on (FEMALE ALICE)
Executing FCDISP on (MOTHER ALICE BERT)
DONE

> (ASSERT ’(Male A1£))

Executing FCDISP on (MALE ALF)
Executing FCDISP on (FATHER ALF BERT)
DONE

>(ASSERT ' (Mal e Bert))

Executing FCDISP on (MALE BERT)

DONE

> (ASSERT ' (Parent Bert Cathy))

Executing FCDISP on (PARENT BERT CATHY)

18 The Compleat Guide to MRS

Executing FCDISP on (CH LD CATHY BERT)
Executing FCDISP on (GRANDCHI LD CATHY ALI CE)
Executing FCDI SP on (GRANDCHILD CATHY ALF)
Executing FCDISP on (FATHER BERT CATHY)
DONE

> (ASSERT * (Femal e Cathy))

Executing FCDISP on (FEMALE CATHY)
Executing FCDI SP on (DAUGHTER CATHY BERT)
DONE

> (ASSERT ' (Parent BertChuck))

Executing FCDISP on (PARENT BERT CHuck)
Executing FCDISP on (cH LD CHUCK BERT)
Executing FCDI SP on (GRANDCHILD CHUCK AL| CE)
Executing FCDISP on (GRANDCHI LD CHUCK ALF)
Executing FCDISP on (FATHER BERT CHUCK)
DONE

> (ASSERT ! (Male chuck))

Executing FCDISP on (MALE CHUCK)

DONE

> (UNTRACETASK)

(&x)

Af t er thisprocess, the query (Daught er $d Bert) already has its solution in the database, so a
LOOKUP is sufficient tofindit.

There are some restrictions on the forward-chaining routine as currently implemented. These
mean that the only rules triggered when a fact A is entered will be those of the form (IF A B) or
(IF (AND . . A ..) B). Thus instances of the proposition embedded in disunctions or any other
constructions will not be noticed.

§4.6 Solving problems with numbers

MRS knows about certain relations and can ascertain the truth of propositions using them without
recourse to the data base. Arithmetic relations are of this type:

> (LOOKUP * (> 4 2))
(T . 1)

MRS knows about > < >= <= & + - //, The latter four are not n-place functions (as in LISP) but
(n + I)-place relations; for example,

(+ $x $y $2)

means that $z is the sum of $x and $y.
Thus we can define all kinds of arithmetic relations (not functions) usi ng these as primtives:

>(STASH ‘ (I F (AND (+ $x $y $sum) (// $sum 2 $avg))
(Aver age $x $y $avg))

>(TRUEP ‘(Average 7 11 $x))

((x . 9) (T . T

Not e that MRS can only deal with these relations when the arguments are properly bound:
>(LOOKUP * (> $x 4))

Chapter 4: Reasoning with Knowledge 19

NI L
>(LOOKUP *(+ 1 $x 3))
NI L

A useful way to view arithmetic and other ‘built-in’ relations is as virtual facts. Apart from
the restrictions just noted, we can pretend that the database contains an infinite supply of facts
about these relations (their eztenssons, as defined in chapter 1). Thus there are virtual facts like (>
2 1), (+ 514 19) and (// 45 7 6) ‘available to LOOKUP. The concept of a virtual fact can be
applied to any built-in relation, and several more such relations are given in chapter 8.

You can also use rules with TRUEP to define recursive relations. Although this is a hoary
example, it serves to illustrate the technique:

>(STASH ’ (Factorial 0 1))
>(STASH * (IF (AND (> $x 0)
(- $x 1 $x-1)
(Factorial $x-1 $factx-1)
(*» $factx-1 $x $factx))
(Factorial $x $f actx))
>(TRUEP °® (Factorial 6 $n))
((s8v . 720) (T . T))

Using the built-in relations can be quite tedious for computing a complex formula since each
operator in the formularequiresa new conjunct and intermediate variable to hold the result. MRS
uses a special relation IS which allows an entire computation to be done in one step with a functional
representation taken directly from LISP:

>(STASH ' (IF (IS (- (* $b $b) (* 4 $a $c)) $d)
(Discriminant $a $b $c $d)))

> (TRUEP * (Discriminant 2 4 1 $d))

((p . 8) (T . T))

§4.7 Solving problems with lists

A list is an object in the universe just like any other. However, unlike numbers, lists have no ready-
made constant symbols which MRS recognizes. The one exception is the empty list NI L. Other lists
are represented by complex terms. Contrary to the normal syntax for terms, MRS has a special
syntax for lists: a list with CAR $x and CDR $y is written ($x . $y). The function symbal ¢.’
appears in the infix position to enhance readability. Other than this, lists are treated the same way
as any other terms — it is important to remember that ‘.” is not a LISP function which is executed,
but an uninterpreted symbol.
Let us define the APPEND relation for lists:

(APPEND NIL $1 $1)
(IF (APPEND $11 $12 $1)
(APPEND ($x . $11) $12 ($x . $1)))

The recursion works because the empty list NI L can’t be unified with the complex term ($x . $1),
so TRUEP continues to try the IF-rule until $11 becomes NIL. This may seem a little strange at
first, especially if you are used to the CAR and CDR recursion of LISP. Try doing

(TRUEP *(APPEND (1 . (2. (3. NIL))) (4. N'L) $1))

20 The Compleat Guide to MRS

for yourself on paper to see what happens. Then just to make sure, and to get another insight into
why writing facts is better than writing programs, do

(TRUEP ' (APPEND (1 . NIL) $12 (1. (2. (3. NL)))))

as well.

The use of lists in MRS is far less common than in LISP. The reason for this is that facts
usually concern relations between objects rather than between enumerated collections of objects.
However, sometimes you will want to know properties of such collections which can only be obtained
by examining their contents; for example, the question “How many grandchildren does Alice have?”
is asking for the cardinality of the set of Alice’s grandchildren. MRS provides a built-in relation
BAGOF for just this purpose.

(BAGOF $x P $s),

where P is any proposition involving $x, means that $s is the bag (or multiset) containing all $x’s
satisfying P. The bag itsdlf, to which $s is bound, is just a list term, as in LISP. Since bags (and
sets) are represented by ordinary lists they do not have some of the properties of sets one might
expect — for example, two sets with the same elements are not necessarily egual, since the elements
might appear in different orders. '

One of the things about bags is that elements can occur more than once. In some cases these
occurrences will be ‘spurious in that we really want the set returned, i.e. the distinct solutions for
$x of P. This might in fact occur in the case of finding the number of ‘Alice’s grandchildren, since
there could be multiple ways of showing that someone was related to Alice in this way. For these
situations MRS provides a predicate SETOF, which works just like BAGOF except that it removes
multiple elements before returning the list. As a result, it is much less efficient than BAGOF and
should only be used when necessary.

Before you can use BAGOF or any of the built-in predicates for handling sets you must load
the file SET from the MRS directory. Do it now.

OK, now that MRS is apprised of sets, let’s try it out:

>(LOOKUP * (BAGOF $x (Hal e $x) $£))

(($F ALF BERT CHUCK) (T . T))

>(TRUEP ' (BAGOP $x (Grandchild $x Alf) $g))
(($G CHUCK CATHY) (T . T))

Notice that the binding lists for $£ and $g look a little odd. If you really believed the story about
what MRS lists are, you would expect (¢ . (CHUCK . (CATHY .NIL))).Butin fact MRS cheats
a little and uses the same internal representation as LISP does for lists, with the result that the
LISP output routines print out the binding as a normal list structure.

To find out the number of Alice's grandchildren, we just need to find the length of the list
representing the bag of them. Thus we need a LENGTH relation; MRS has one built-in, and this is
how it’'s defined:

(LENGTH NI L 0)
(I'F (AND (LENGTH $1 $n)
(+ $n 1 Snplusl))
(LENGTH ($x . $1) $nplusl))

but the well-known NoOfGrandChildren relation was somehow omitted by MRS’s originators so
you'll have to put it in.

Chapter 4: Reasoning with Knowledge 21

>(STASH ' (IF (AND (BAGOF $x (Grandchild $x $y) $g)
(LENGTH $g $n))
(NoOfGrandchildren $y $n)))
> (TRUEP ’ (NoOfGrandchildren Alf $n))
($y . 2) (T . T)

There are several other built-in relations for handling lists and sets which are described in
chapter 8. Using these rélations is much more efficient than writing your own, since they use
compiled LISP code rather-than interpreted MRS facts.

§4.8 Using more complex rules

So far all the rules we have encountered have had a premise consisting of either an atomic proposition
or a conjunction of atomic propositions. What of the remaining connectives, OR and NOT? In back-
ward chaining, when a goal (NOT <p>) is encountered, the only way of proving it is to find (NOT
<p>) in the database or to find a rule that concludes it — in other words negation is not reducible
in the same way as conjunction. On the other hand, diunction is reducible, since a disunction of
propositions is true if any of the propositions is true. So all we have to do to prove a digunction is
to try proving each digunct in turn until we find one that is true. As with conjunctions, this is done
in left-to-right order. If we have to find all solutions we try all disjuncts. A simple example is the
(AbsSign $n $s) predicate, which returns $s8=0 for $n-0 and 1 otherwise. One's first, LISP-based
instinct is to say

(IF (OR (AND (= $n 0) (= $s 0))
(= $s 1))
(AbsSign $n $s))

which unfortunately doesn’t do the right thing at all. The error shows up when we call TRUEPS
on AbsSign, which happens when we try to prove the predicate as part of some proof in which
AbsSi gn is embedded. Suppose that, when we get as far as AbsSign, $n is indeed bound to 0, so
that AbsSign succeeds with $s bound to 0, but then a later part of the proof fails. MRS will try
to find the alternative solutions to earlier parts of the proof to see if, with those solutions, the later
part will succeed. Thus it will try the other digunct (= $s 1) and succeed with that, and carry on
the rest of the proof with an incorrect binding for $s. Clearly, the answer is to replace that disunct

" with (AND (NOT (= $n 0)) (= $s 1)). But recall that (NOT <p>) can only be proved if a fact
tel | s usthat <p>isnot the case. It's hardly likely that the database contains facts like (NOT (= 1
0)), (NOT (= 2 0)) and so on. So we are in a quandary. But MRS can help out with a whole new
class of connectives called modal operators. Whilst a whole body of literature has been written on
the semantics of these operators, we will concentrate just on what they mean in terms of the proof
process. The operators that MRS provides are KNOWN, UNKNOWN, PROVABLE and UNPROVABLE. Each
oper at es on a single proposition, just like NOT, and means roughly what it says:

(kNOowN <p>) succeeds if <p> can be satisfied by a simple LOOKUP.
(UNKNOWN<p>) succeeds if <p> cannot be satisfied by a simple LOOKUP.

(PROVABLE <p>) succeeds if <p> can be proved from the facts in the database, so it’s a
null operator.

(UNPROVABLE <p>) succeeds if <p> cannot be proved from the facts in the database.
In this case, since = is handled using LOOKUP, we should say

22 The Compleat Guide to MRS

(IF (OR (AND (= $n0) (=$s0))
(AND (UNKNOWN (= $n0)) (=$s 1))
(AbsSign $n $8))

UNKNOWN and UNPROVABLE are extrememly useful in all kinds of situations. In any instance where
something that isn’t known to be true can be assumed to be false, we can use these operators and
avoid the chore of having to explicitly stash the negated propositions which the use of NOT would
require. This assumption is called the closzd-warld assumption, and is used all the time by us
humans. For instance, if | can’t see a wall in .. ot of me as | walk down a corridor | tend to assume
there isn’t one there. In a logic programming environment, we have to make these assumptions a
little more explicit, as you will see when doing the exercise8 in the next chapter.

Chapter 5: Some (almost) real examples 23

Chapter 5
Some (almost) real examples

There are (at least) two distinct styles of using MRS corresponding to the situations in which
the user finds herself: she may already know how te solve the problem, i.e. have the course of
the necessary computation already mapped out; or she may not. The ‘code’ produced in the two
cases is not necessarily dissimilar, in fact one could imagine cases where the same programs were
produced by two programmers even though their approaches were totally different. This distinction
is reminiscent of that between Al and non-Al programs.

In the first case, where the user knows what computation is needed, facts entered as rules of
the form

(1F (AND A;.. A) B)

are understood procedurally to mean “To prove B, prove A; through A, in that order”, assuming
backward-chaining is being used. The user thus breaks down her goals into subgoals, often using the
results of subgoal A; in subgoal A;41, until trivial subgoals are reached. This results in programs
that look very much like their LISP equivalents (cf. the definitions of APPEND and Factorial);
the MRS user has the_additional advantages of the implicit computation in unification and the
non-deter minism achieved using free variables.

In the second case, where the desired computation is not known, MRS (or at least logic pro-
gramming) really comes into its own. In the following example we will produce a system that can
predict the outputs of an electronic device, consisting of wires and gates, given its inputs. The stages
in the general method are as follows:

1) Decide on an ontology for the domain — the contents of the universe and their categories.

2) Decide on a vocabulary of relations for describing both the problem instances and the general
knowledge used in solving problems.

3) Collect and encode all the general knowledge.

4) Encode the description of the particular instance.

5) Invoke the appropriate MRS inference procedure to produce the solution.

Of course, the first three stages are somewhat interdependent: the ontology may depend on
the knowledge available; a new problem instance may turn up objects not yet accounted for, and
so on. For example, if | have no idea how temperature affects electronic devices | won’'t want to
include temperature in my ontology or relations. Similarly, one often finds the need to rethink one's
ontology when one finds that the knowledge is difficult to express in terms of the current set of
objects. Thus for some purposes the best order may be somewhat different from that given above.

Rather than just dump the solution on you, let’s try to follow the stages leading to it in detail
and motivate the decisions leading to the final program.

§5.1 Deciding on an ontology

This is not the same as having a clear definition of the problem. A clear definition of this problem
class is that it consists of arbitrary circuits constructed from wires and two-input AND, OR and
XOR gates and single-input NOT gates. The terminals of the circuit will be designated as input or
output terminals. The full-adder circuit in Fig. 1 is the particular example that we will consider.
The first two inputs are the two bits to be added, the third isthe carry bit from the previous addition.
The first output is the sum bit, the second the carry bit to be included in the next addition.
Presumably we will want to include the gates themselves in our universe since we have to
describe their behavior. Similarly the full adder itself has terminals and a behavior (which we are
trying to deduce) so we'll include it in the universe and call it F. Since we won’t want to describe

24 The Compleat Guide to MRS

: o1 .

AD- =

Figure 1. A full adder circuit.

the behavior of each individual gate when we need only describe each type, we'll want the gate types
ANDGate, ORGate, XORGate. What else? Wires? Junctions? Terminals? Well, the terminals
need to be there because we need to know the i/o signals at them. But the behavior of a circuit in
this idealization is determined by the components and their interconnectiona regardless of the path
or type of those interconnections, so the junctions and wires themselves are irrelevant. Only the fact
of the interconnection need be recorded. Which leads naturally to the next stage.

§5.2 Deciding on a vocabulary

Fit, the description of the individual gates:
(Type <gate> <gatetype>) eg. (Type Al ANDGate)

Now, the behavior of the devices will be specified in terms of signals on their terminals
(Signal <terminal> <val ue>)

where <value> will be on or of f. We could equally well say
(On <terminal>) and (OF f <terminal>)

but reifying the signal will probably allow greater flexibility if needed. For instance, we'll need to
say somewhere that the signals at both.ends of a wire should be the same; then we can say

(I F (AND (Connected $t1 $t2) (Signal $t1 $s))
(Signal St2 $s))

but with ON and OFF pr edi cat es we woul d have to say

(1F (AND (Connected $t1 $t2) (On $t1))
(0n $t2))

(I'F (AND (Connected $t1 $t2) (O f $t1))
(OFf $t2))

Note that

Chapter 5: Sone (al most) real examples 25

(1'F (AND (Connect ed $t1 $t2) ($s $t1))
($s $t2))

is no good because it would imply that the terminals were the same color too.

At first sight one might think that the terminals can be naned just |ike the gates: A1Inputi,
AlInput2etc. But the rules for gate behavior need to Le written for a general gate not just a
particular individual, so we need a function symbol which will refer to the general gate's terminals:
(Inputl Al) perhaps; if we followthe reification principle then (Input 1 Al) is probably beter.
So to state that the second input of gate XI was on, we would say

(Signal (Input 2 X) on).
The interconnections can now be specified easily; for example
(Connected (Qutput 1 X)) (Input 1 X2)).

§5.3 Collect and encode all the general knowledge

The problem here is to predict the behavior of a device; to solve it we need to know how the signals
are propagated. The signals are propagated through wires and gates. The ‘wires are easy to deal

with, as shown above:

(I'F (AND (Connected $t1 $t2) (Signal $t1 $s))
(Signal $t2 $8))

Of course, if we were dealing with time-dependent signals and finite-length wires, or wires with
i npedance, then the systemwoul d need a Iot nore information.

The propagation of signals through a gate depends on the gate type. The following facts describe
the operation of the three types of gate used.

(1'F (AND (Type $g ANDGate)
(Signal (Input 1 $g) on)
(Signal (Input 2 $g) on))
(Signal (Qutput 1 $g) on))
(1 F (AND (Type $g ANDGate)
(Signal (Input $a $g) off))
(Signal (Qutput 1 $g) off))

(1'F (AND (Type $g ORGate)
(Signal (Input 1 $g) off)
(Signal (Input 2 $g) off))
(Signal (Qutput 1 $g) off))
(I F (AND (Type $g ORGate)
(Signal (Input $a $g) on))
(Signal (Qutput 1 $g) on))
(I F (AND (Type $g XORGate)

(Signal (Input 1 $g) $i1)
(Signal (Input 2 $g) $i1))
(Signal (CQutput 1 $g) off))

(I F (AND (Type $g XORGate)
(Signal (Input 1 $g) $i1)

28 The Compleat Guide to MRS

(Signal (Input 2 $g) $i2)
(UNKNOWN (= 118i2)))
(Signal (Qutput 1 $g) on))

§5.4 Encode the description of the particular instance

In this case the probleminstance istwo-fold:firs thecircuit, then the particular i nput s. Theci rcuit
is described by listing the types of the gates and their interconnections.

(Type X XORGate)
(Type X2 XORGate)
(Type Al ANDGate)
(Type Al ANDGate)
(Type 01 ORGate)
(
(
(
(

Connected (Input 1 F) (Input 1 X

())
Connected (Input 1 F) (Input 1 Al))
Connected (Input 2 F) (Input 2 X)).

(I'nput 2 A2))
Input 3 F) (Input 2 X2))
Connected (Input 3 F) (Input 1 A2))
Connected (Qutput 1 X) (Input 1 X2))

Connected (
(
(
(
Connected (Qutput 1 X)) (Input 2 A2))
(
(
(
(

| nput 2 F)
(Connected

)
Connected (Qutput 1 A2) (Input 1 01))
Connected (Qutput 1 Al) (Input 2 01))
Connected (Qutput 1 X2) (Qutput 1 F))
(Connected (Qutput 1 01) (Qutput 2 F))

whilst the inputs are specified by giving the signal value at each of the input terminals of the adder:

~ o~~~ o~ —~
—_ e~ —~

(Signal (Input 1 F) on)
(Signal (Input 2 F) off)
(Signal (Input 3 F) on)

§5.5 Invoke the appropriate MRS inference procedure

To check that the circuit does what we want, we need to check both outputs. A TRUEP for each
woul d suffice, but we can use the power of indeterminacy to get MRSto go through altheoutputs
itself.

>(TRUEPS ‘ (Signal (Qutput $an F) $s))
((($N . 1) ($S. OFR) (T . T))
((N. 2) (8s. ON) (T. 1))

which is the correct answer.

You may say “ That's all very well for those inputs, but what about all the other combinations?”
It would certainly take a lot of boring typing to stash and then unstash all eight combinations of the
three inputs. But we can get MRS to enumerate them, given a bit of thought. To find the possible
inputs, it needs to know the possible values for the signal on a terminal. At the moment, they could
be on, off, green or angry for all it knows. So

(SignalValueon)

Chapter 5: Some (almost) real examples 27

(SignalValue off)

tell it what it needs to know. Then if we define a predicate which is satisfied by any combination
of inputs with their respective outputs and call TRUEPS on it, MRS will go through all possible
inputs for us.

(IF (AND (SignalValue $i1) (Signal (Input 1 F) $i1)
(SignalValue $i2) (Signal (Input 2 F) $i2)
(SignalValue $13) (Signal (Input 3 F) $13)
(Signal (Output $a F) $s))
(InputTested $n $i1 $i2 $13 $s8))
> (TRUEPS ’ (InputTested $n $i1 $i2 $13 $s))
(((SN . 1) ($11 . OFF) ($12 . OFF) ($13 . OFF) ($8 . OFF) (T . T)) etc.

The kind of reasoning by which the above answers are produced is extremely important and
forms the basis of all scientific thought from the time of Newton up to the advent of quantum
mechanics. Basically it relies on the notion that, given a description of the initial situation and
some correct laws on how one situation follows from a preceding one, the situation at any future
time can be predicted. --The knowledge base and case description are said to form a eausal model of
the system; such models are increasingly being employed in expert systems that deal with physical
situations.

You may have a nagging intuition that it’s an odd thing to do to work back from the outputs
when the ‘flow of causality’ starts from the inputs. This intuition is well-grounded — a forward
chaining approach would be more efficient since all the inferences would be necessary and deter mined,
whilst the backward chainer may be trying to prove output values that are inconsistent with the
inputs before it makes the correct choice. A highly instructive exercise is to try it both ways with
tracing turned on.

28 The Compleat Guide to MRS

§5.6 Exercises

The trouble with exercises is that people are just too fat and lazy to do them. You won't lose weight
by doing thesg, in fact you could go jogging instead, but they will test and extend your ability and
understanding, | hope.

1. Write some rules to play a move in tictactoe. The board representation will be
(On <player> <square>)

where the player is 0 or X and the sguares are numbered 1.. .9 left to right, top to bottom. To
produce a move the user should be able to type simply

> (TRUEP * (BestMove X $move))
((/$MOVE . B) (T . T))

Use only rudimentary strategy: take a win if available; stop an opponent’s win if necessary; move
at random otherwise.

2. If you thought that was a little too easy, now do the same for a chess move. Include as many
details of castling, pawn promotion, en passant moves and checking as possible. To make things a
little easier, you don’t need to pick the best move; just do enough so that

(TRUEPS ’ (LegalNove White $move))

would return all of White's legal moves. You will have to decide how to represent the board and the
moves, also some history of the game will have to be present to decide on castling and en passant
legality.

Notice that by writing rules that decide if an individual move is legal you have defined the space
of all legal moves and your rules can be used as a generalor as well as a tester.

3. Create a knowledge base and problem description sufficient to solve the geometrical problem
presented in Fig. 2.

Figure 2. Given <OAB = 20° find < ECD

Try to follow the stages outlined earlier in the chapter for the circuit example. A hint to save
you some head-scratching: the easiest way to say that AB is a tangent to the circle is to say that
AB is a tangent to the circle.

Chapter 6: Controlling deduction 29

Chapter 6
Controlling deduction

So far our description of MRS has concentrated on the solving of problems at the domain
level using mainly backward-chaining inference. In this capacity, MRS is little different from other
systems such as PROLOG. The real distinction lies in MRS’s ability to allow the user to express all
the knowledge she has about the best way to go about finding the solution, efficient ways of doing
particular computations or the overall structure of the computationsshe would like to see performed
(the archstecture). Essentially, at each stage of its operation MRS uses a theorem-prover to find out
how to proceed; by making facts available to this theorem-prover the user can tell MRS what to do
and how and when to do it.

$6.1 Tasks

From the point of view of the actions that are being performed, computation in MRS consists of
the creation and execution of tasks. Tasks are calls to LISP subroutines with their arguments; they
range from calls to proof routines such as TRW through single proof steps to output routine calls.
Executing one task can cause other tasks to be created. Given a method for making tasks available
for execution, a method for finding out how to perform the tasks and a method for deciding which
of several tasks to execute, we have a general architecture for computation capable of producing any
desired behavior.

§6.2 Controlling what gets done when: the scheduler

The question of what gets done requires a discussion of the mechanics of the top level of MRS —
the scheduler routine.

6.2.1 The general (non-default) mode of scheduler operation

The scheduler is invoked by all the built-in inference routines. In its most general mode of
operation it follows the deliberation-action model of intelligent systems shown in Figure 4. To get
the scheduler to operate in this mode the switches executable and executed must be set to I.

V!
Decide Whatto Do I

=

Decide Howto Do It

-Do It |

Figure 4 The deliberation-action model

SO The Compleat Guide to MRS

The deliberation part is achieved by having the meta-level theorem-prover find a task satisfying
(executable &task). There are of course meta-level rules to decide what tasks are executable:

(IF (AND (applicable &t ask)
(UNPROVABLE (disqualified &t ask)))
(executable &task))

A task is disqualified if another applicable task is preferred to it:

(IF (AND (applicable &anytask)
(preferred kanytask & task))
(disqualified &task))

To find the applicable tasks, we first find the runnable tasks; there are no built-in rules for deducing
runnability so this is where the user can decide what gets done. All runnable tasks with operators
which are LISP subroutines are automatically applicable.

Another switch preferred determines whether tasks can be disqualified — if it is NIL the above
rule for proving disqualified will not be used, whereas if it is non-NIL the rule will be in effect.

A simple example of how we can plug into the deliberation process to affect what gets done
is the implementation of demons. A demon is a task that is to be executed whenever a given set
of conditions becomes true. We can signal that a task should be executed (or at least scheduled
for execution) by asserting that it is runnable. This can be done automatically if we use forward
chaining from assertions and express the demon as a rule of the form

(I'F <triggering condition>
(runnable <task to be executed>)).

Using this mechanism, the range of system architectures that can be implemented is enlarged to
include blackboard systems, something one wouldn’t expect from a PROLOG look-alike. Essentially,
these demons form a condition-action ar chi t ect ur e, which can be used to implement any desired
structure of computation.

6.2.2 Default mode — the agenda

The above set of rules is only used in full when the switches executable and executed are
non-null. The normal mode of operation is based on an agenda. The variable agenda stores a list
of tasks, all of which are automatically applicable. If the switch preferred is NIL, the default,
the executable task is the first one on the agenda. Thus in the default mode the agenda is empty
until a top-level command is entered by the user. The LISP function (truep or whatever) that is
invoked places itself and its arguments on the agenda and calls schedul er, thus connecting with the
scheme described above. All the built-in inference routines use the agenda; the normal base-level
backward-chainer bc puts becdiep tasks on the agenda; fc puts fcdisp tasks on the agenda, and so
on.

When the preferred flag is non-null, the tasks on the agenda are compared to find the most
preferable one, thus disqualifying all the others, at least in theory. In practice, for efficiency reasons,
the executable-related rules are skipped, and the preferred task is executed immediately.

$6.3 Telling MRS how to do things

This section introduces the ideas involved in specifying how MRS is to execute the tasks it encounters.
The range of tasks which can be handled is given in the section on task-related attachment in chapter
8; here we present some motivation and a detailed example of the kind of information the user can
give the system for deciding how to perform tasks.

Chapter 6: Controlling deduction 81

We have already seen some strange mumbling necessary for doing forward chaining. The exact
incant at ion was

(STASH * (toassert &p fc)).

Its effect was that all subsequent assertions caused forward-chaining to take place. Instead of using
the normal LISP subroutine for assertions (which is the same as that for STASH initially), MRS
will call £¢ with the asserted proposition as argument. Whenever a task such as an ASSERT or
TRUEP is scheduled to be executed, MRS looks up the appropriate subroutine to use under toassert
or totruep. Thus by stashing facts like (toassert &x fc) we can affect the way in which MRS
performs the commands we give it. Such facts are qualitatively different from the domain facts since
they deal with how those facts are to be used rather than stating truths about objects in the universe;
they refer to the binding status of variables, the order of processing of conjuncts, the method of
representation for fact classes rather than Zen or automotive diagnosis and repair. Thus they encode
meta-knowledge (meaning “ knowledge about knowledge' @) and are said to be at the meta-level. It is
MRS’s extensive facilities for representing and using this kind of information that give it the name
“Meta-level Representation System”. We will see many more examples of meta-level knowledge, but
first we need some background to show why it's necessary.

We have already seen, in the case of predicting the outputs of electronic devices, that forward-
chaining can be more efficient than backward chaining. This piece of meta-level information was
put into action by asserting the input values rather than stashing them and by telling MRS to
forward-chain from assertions. When is this a good idea in general? To discuss this, we need to
think about the structure of the rule base. Suppose that, for any given conclusion (such as the value
of an output), there a dozen different rules for deducing it. Then a backward-chaining system has
to try all of these even if only one of them leads to a solution. Then again, if a given fact (say the
value of an input) is used in the premises of a dozen different rules, then a forward-chaining system
might trigger all of these rules when only one of them leads to the desired answer. Fig. 3 illustrates
the difference in the two types of rule base in diagrams showing rules as nodes, with an arc showing
that the conclusion of the rule at the left end unifies with part of the premise of the rule at the right
end.

~

Figure 8 Good for forward chaining Good for backward chaining

32 The Compleat Guide to MRS

Applying this simple analysis to the family relations examplein section 4. 2, we seethat the only
chaining occurs on the Chi | d relation; it appear8 in one conclusion but three premises, therefore the
database structure is best suited for backward-chaining.

Certainly it’s true that in many real cases the choice is not so simple, for example when the
database diagram contains loops. But we shall now try to get MRS to do this kind of analysis
automatically. Being a meta-level system, MRS can reason about how to do things using facts
which the user can provide, thereby directly influencing the operation of the system. Specifically, it
uses a backward-chaining theorem-prover and meta-level facts to solve meta-level problems. \When
given a command such (ASSERT <p>) MRS call8 a stripped-down version of TRUEP called trtruep
on thegoal (toassert <p> &mrethod). trtruep is stripped-down in the sense that it doesn’t have
access t0 any meta~-meta-level, so it runs pure backward-chaining. Thus all that’s necessary is to
stash a fact of the form

(I F <dat abase ® uitablo for forward-chaining>
(toassert &x fc)).

Notice that, at the meta-level, variables begin with & instead of $. The meta-level theorem-prover
treat8 all base-level variablea as constants; the base-level theorem prover treat8 meta-level variables
a8 congtants. This-is act ual | y done by having two different unification routines, one for each level.
Often, users who are happy with base-level programming are wary of working at the meta-level,
perhaps equating it with ‘system hacking'. Nothing could be further from the truth: the meta-level
is for expressing and using abstract, high-level knowledge about how problem8 should be 8olved. So
to overcome your trepidation or distaste, we're going to plunge in and do an example that’8 probably

mor e complex than anything you'll ever want to do at the meta-level. We shall implement a simple
definition of the predicate

<dat abase suitable for forward chaining>

which will involve some quite tricky problems.
Interpreting simplistically the above analysis, we'll say that a database is suitable for forward
chaining if
the average number of premises unifiable with each conclusion
is less than
the average number of conclusions unifiable with each premise.

This approximately correspond8 to the forward-search branching factor being smaller than that for
backward sear ch.

To convert thisinto an MRS predicate, the top-down approach will be used. The basic condition
is
(IF (FC-Indi cated) (toassert &p fc)).

Note that FC- | ndi cat ed has no arguments; it is a condition on the whole database available at
the time we make the assertion that causes MRS to try to find out how toaseert. From the above
definition we have

(I F (AND(ForwardBranch &ffactor)
(BackwardBranch &bf actor)
(< &ffactor &bfactor))
(FC Indi cated))

We will define. just the forward branching factor here and leave the rest to the reader’'8 fertile

Chapter 6: Controlling deduction 33

imagination.

(1F (AND (BAGOF &n
(AND (| F &premé&concl)
(NoOfMatchingPremises Qconcl &n))
ématchnumbers)
(Average &matchnumbers &ffactor))
(ForwardBranch &ffactor))

To understand this, recall that (BAGOF <X> <P> <8>) tries to find every solution for <P>. Thus
for the first part of the conjunction, (IF &prem Qconcl), what actually happens is that LOOKUPS
returns all the rules in the database just as if IF were an ordinary predicate, and &prem and &concl
are bound appropriately. Then for each Oconcl we find the number of premises it matches (which
is the number of rules it can trigger in forward chaining) and BAGOF returns a list of these numbers.
Carefully avoiding insulting the reader with an exposition of averaging, the only remaining
problem is NoOfMatchingPremises. The approach is similar to the outer loop: make a bag of all
the rules in the database, then find the length of the bag; but this time only include those rules with
a premise that matches the &concl we're looking at.

(1F (AND (BAGOF &lhs ;lhs is as good as the rule if we're only counting.
(AND (| F &lhs &rhs)
(MatchingPremise &concl &lhs))
&matchingrules)
(LENGTH &matchingrules &n))
(NoOfMatchingPremises Oconcl &n))

To write MatchingPremise, we have to deal with the two basic types of premise — the atomic
proposition and the conjunction of atomic propositions. We'll ignore digunction8 and more complex
forms for now.

Whatever the type, we must have a way of deciding if two propositions match. We can’t use
= because we are comparing base-level propositions and to prove = the meta-level theorem-prover
uses the meta-level unifier. Thereis a base-level unification routine available called bat chp, but it's
a LISP function not a built-in mrs predicate. So there two questions that spring to mind: firstly,
how to interface to a LISP subroutine so that it looks like an MRS predicate; secondly, how to
discover that batchp is the name of the function we need. The answer to the second question is
that chapter 10 deals with all the system routines available that might be useful to the user. The
first question is more tricky.

. Normally, to interface a LISP routine to make it look like a predicate you would use the “com-
putﬁble representation” mechanism or stash a procedural attachment for it using totruep (both
discussed in chapter 8).

However, the meta-level theorem-prover is a stripped-down version that doesn’'t cater for these
luxuries. A cheap and cheerful method that works at the meta-level as well as the base levd is to
use the Done built-in predicate:

(Done <LI SP expression> <ternp)

succeeds if the result returned from the execution of the LISP expression unifies with the term.
Obviousdly, any MRS variables in the expression will be instantiated (if possible) before the call to
LISP is made. In this case, we know that batchp succeeds if it returns a list (as opposed to NIL) so

34 The Compleat Guide to MRS

we just have to make sure the term only unifies with a list. After this horrendous plunge into detail,
we are ready to write MatchingPremise.

(IF (AND (= &lhs (AND . &premises))
(Member &premise & premises)
(Done (Batchp &premise &concl) (&bindings)))
(MatchingPremise &concl &lhs))
(1IF (AND (UNKNOWN (= &lhs (AND . &premises)))
(Done (Batchp &lhs &concl) (&bindings)))
(MatchingPremise &concl &lhs))

The purpose of going through this example in gory detail ha8 been not so much to provide a
useful meta-level tool for database analysis (it would be quite inefficient to go through this analysis
for every ASSERT), but more to show that programming at the meta-level is no harder than at the
base level, or perhaps | should ray just a8 easy. The difference is 8imply that the subjects of the
meta-level predicate8 are fact8 instead of domain objects.

§6.4 Expressing control strategies at the meta-level

In most program-ming language8, there are instructions that achieve the necessary computations and
there are instruction8 that order those computations, decide which to perform and how often, and
in general decide what get8 done. The instructions look just like the computational instructiona, use
data structures such as flags, index registers, queue8 and 80 on, and are generally intermingled with
and seldom distinguished from the rest of the program.

We have already seen that in MRS the concept of a program a8 a series of instructionsis replaced
by the complementary ideas of knowledge and inference. The same process can be applied to the
control structure of a program. The control structure is really a procedural expression of meta-level
knowledge about what should be done when. The natural course of action in MRS is to express this
knowledge ezplicitly and use it inferentially to decide what to do. In default mode, MRS just uses
depth-first backward chaining, using fact8 and rules in order of recency of creation, and proving
conjunct8 and disjuncts left to right. These are all arbitrary choices. Meta-level control knowledge
is expressed by specifying preferences between tasks as to which should be done first, and this is
sufficient to allow a broad range of control strategies to be implemented.

The lowest level of task is the single inference step. The task preference8 are expressed using
the predicate PREFERRED; thus when the system has a choice of tasks, as when more than one rule
can be used to prove a proposition, it tries, for each pair of pending tasks, to prove the proposition

(PREFERRED &taski&task2) .

The preference relation induce8 a partial ordering on the tasks, and the most preferred task is chosen
for execution. However, since this mechanism is time-consuming and not always needed, the default
mode of operation ignores preferences. The pr ef erred flagshould besetto T for thisfacility to
operate.

By using conditional preferences, which depend on arbitrarily complex task properties, we can
create very sophisticated control structures. One limitation on the complexity is the amount of
information available in the task description; the information can include the context in which the
task is being invoked, the history of the computation leading to the invocation, the available resour ces
for its completion, the reasons for its invocation and so on. These considerations are particularly
important in constructing autonomous systems and new inference routines. The following section
deals with a concrete task class.

Chapter 6: Controlling deduction 35

$6.5 Control structure examples in backward chaining

Since backward chaining is the usual theorem-proving method at the base level, we will show in
detail how task ordering can be used to implement control structures for it in a number of ways.
The routine that performsthe single i nf erence step is bcdi sp, which hasfour arguments:

gl the list of goals to be satisfied.
al the binding list for the variables in gl.
jl ajustification [ist containing thenanes (P123 etc.) of thefactsusedin

deriving the current gl from its predecessor.

ce a stack of the goal lists preceding the current gl. Each list is followed
by its corresponding j | .

Thus, if we had a query Q, and a database containing

P112: (IF(ANDABCQ Q)
P113: A

and the system had reached the goal of provi ng B, the callt o bcdi sp would have the following
arguments:

gl (B ¢)

al the appropriate hinding lis

j1 (P113)

ce ((A BC) niL ((AND A B) (P112) (q) NIL)

As you can seg, it takes a step to go from a goal list ((AND A B €)) to the subsequent list (A B C).
Now, given two bcdisp tasks

(bcdisp &gll &all Pj 1| &cel)
(bcdisp &gl2 &al2 &jl2 &ce2),

how do we express control knowledge as a preference between them? Obviously we will use the
meta-level inference capability of MRS to make the choice dependent on some condition on the two
sets of arguments:

(IF <condition on both sets of gl, al, j| and ce>
(PREFERRED (bcdisp &gli Ball &j11 &cel)
(bcdisp &gl2 &al2 hjl2 &ce2)))

Let us view the theorem-proving process as a search. If we wanted to implement a breadth-first
architecture, rather than the default depth-first (e.g. if we wanted to guarantee finding the shortest
proof) we would simply use the condition

(IF (AND (LENGTH &cel &11)
(LENGTH &ce2 012)
(< &11 812))
(PREFERRED (bcdisp &gl1 Ball &j11 &cel)
(bcdisp &gl2 &al2 &j 12 &ce2)))

since this means that the shortest existing derivation path will always be expanded first.

36 The Compleat Guide to MRS

If we wrote the length condition on gl instead of ce we would have a simple best-first search,
based on the shaky but often useful premise that a smaller number of goals means a speedier solution.

These are the most general forms of preference imaginable. We can use more delicate instru-
ments; for instance, suppose we have a search-based problem-solver which uses a predicate (Suce
$parent $child) t 0 generatesuccessors. Thenwe can inplenent an eval uation-based best-first
search as follows:

(1 F (AND(Eval uati on &parenti &v1)
(Eval uati on kparent2 &v2)
(> &vi &v2))
(PREFERRED (becdisp ((Succéparenti &childi) . &gli) &all &j11 &cel)
(bcdi sp ((Suce & parent2 &child2) . &gl2) &al2 &j12 &ce2)))

where presumably Evaluation would, for efficiency purposes, be a procedurally attached LISP
function.

Much wor k remainsto be done on the meta-level expression of control strategies, but MRS’s
capabilities are sufficiently general that the user should be able to devise a way to express cleanly
the control knowledge that she has.

. Part 11 :

Using the advanced features of MRS

38 The Compleat Guide to MRS

Chapter 7
Theories: individually wrapped databases

The word theory in MRS is used to describe a set of facts in their own database. Up to now,
we have treated all facts as equals, belonging in one big, finite but unbounded database. With
the notion of theories we can begin to treat databases as objects in themselves. One of the things
objects often have is a hame. The default database you have been using so far is called the global
theory. All the facts in it know they're there: the proposition symbol for each fact has on its theory
property the word gl obal .

Clearly, the burning question is ‘Why would | want to have more than one theory?‘. Well, the
technical use of the term is not so far from the everyday meaning; if you have more than one theory
about something then you can use more than one theory to keep your theories in. The competing
theories might be as different as the wave and particle theories of light, or the Freudian and Gestalt
theories of human behavior; or they might just describe different hypothetical situations in a search
space. Another common use of theories is for efficiency purposes. If one is solving mathematical
puzzles then there is no need to search for rules and facts through an encyclopzedic collection of
knowledge about the lives of composers and ecclesiastical architecture that might be present in
a global theory. By dividing the total knowledge into different areas, one achieves an automatic
focusing of attention onto the relevant information if the appropriate theories are used.

The key idea is that the ability to treat sets of facts as objects gives the ability to compare, select,
rank, exclude, divide, combine, distinguish and otherwise mess around with bodies of knowledge,
thus conferring upon the user a rich, new opportunity for the manipulation of information.

§7.1 Getting facts into and out of theories

As mentioned above, all facts stashed by the user go by default into the theory global. This is
because global is the initial value of the variable theory, which determines the current default
theory for stashing. Thus to create a new theory one can set the value of theory and start stashing.
A alternative to use the following theory-specific versions of the standard database routines:

thaseert (thaseert <p> <th>) asserts <p> in theory <th> and sets the value
of theory to <th>.

thunassert (thunaseert <p> <th>) unasserts <p> from theory <th> and sets
the value of theory to <th>.

thstash Rather like thassert.

thunetash Rather like thunasaert.

A theory can be emptied by calling empty on it. One can also create a whole theory at one go
by saying

(deftheory <th> <p; > . . . <pp >)
which first empties <th> and then asserts the propositions into it.
$7.2 Selecting which theories to use

Having a current default theory for stashing is all very well but when it comes to doing a lookup
one might want to have more than one theory accessible. The value of the variable activetheories
is a list of the theories which are available to lookup. The global theory is always available. Thus
you can set the value of activetheories yourself or use the commands

Chapter 7: Theories: individually wrapped databases 39

(activate <thy > . . . <th, >)
which adds the specified theories to the active list, and
(deactivate <th; > . . . <th, >)

which takes them off the active list.
The user can specify a representation for a class of propositions that is specific to a given theory
by asserting

(threpn <p> <rpn> <th>).

This will be effective while <th> is active. One should be aware that the result of a lookup on a
fact which has two different representations in two active theories is undefined.

_ The subroutine (contents <th>) prints out a list of the pr facts in a theory, each preceded
. by its associated proposition symbol.

$7.3 Related theories

Suppose we have a general theory LogicProgramming and some specific theories such as MRSPro-
gramming and PROLOGProgramming. All of the facts in the specific theories are notionally part of the
subject matter of logic-programmig; thus when we activate LogicProgramming we would like the
language-specific facts to be available also without having to duplicate them in the overall theory or
activate each subtheory explicitly. MRS allows the user to do just this (surprise, surprise) by simply
asserting

(includes 'LogicProgramming 'MRSProgramming)

and so on. The effects can be undone by asserting an unincludes fact for the pair of theories.
includes and unincludes are also available as subroutines which can be called with the theories
as arguments, giving greater efficiency.

40 The Compleat Guide to MRS

Chapter 8
Procedural attachment

Procedural attachment is a term which denotes the interfacing of procedural information (i.e.
applicative or imperative code) to a declarative system. The purpose is to achieve greater efficiency
for certain operations at the expense of the generality and explicitness provided by the mechanisms
of deduction.

Procedural attachments in MRS come in two flavours: the first type might be called task-related
and involves the replacement of system functions for say proof or retrieval with special-purpose user
code or other, non-standard routines; the second type is predicate-related, involving replacing the
normal deductive or look-up procedures for certain predicates with programs that achieve the same
end with greater speed or using less space.

§8.1 Task-related attachment

For any given top-level system task <T>, the user can designate the LISP function to perform it
for arguments matching a pattern by stashing a fact of the form

(to<T> <pattern> <function name>).

As previously mentioned, after the task is invoked by the user MRS twill attempt to find out how to
perform it by looking for just such te<T> facts in the database. A precautionary note: since only
one way of performing a task is needed, MRS will just use the first one it finds; the fact that the
meta-level theorem prover does a lookup before trying rules means that unconditional propositions
will always have precedence over rules, so default procedures may have to be anstashed before
conditional attachments become effective. For instance, the default assertion method is stored as

(toassert &p pr-stash)
so if you wanted to add a conditional fact such as
(IF (E-Desirable &p) (toassert &p fc))

you should first either remove the default by anstashing it, or replace it with a conditional default
whose antecedent is always true (the standard one is (= T T)).
The tasks for which this mechanism is implemented are as follows:

(un) assert Usual choice is whether to forward-chain or not. Certain System” facts
require special routines, e.g. (toassert (repn . &x) repn-assert).
Each representation method also has its own routine.

lookup (s) Representation-dependent.

(un) stash Representation-dependent.

truep(s) To procedurally attach particular predicates or change the inference
method.

cache Special case — invoked automatically but otherwise like stash. See

chapter 11 for a discussion of caching.

edit To specify the editor to be used for direct database editing (see chapter
12).

monitor (s) To affect how database assertions are monitored (see chapter 12).

Chapter 8: Procedural attachment 41

output (8) To affect how facts are displayed (see chapter 12).

Not all of these tasks can be handled independently. If a fact is stashed using a non-standard
representation, it must be retrieved using the appropriate routine for that representation. Such
co-ordinated changes are best handled using the repn mechanism described in the next chapter. In
that chapter we also deal with the alternative inference routines available, some of which require
specialized representations also.

§8.2 Predicaterelated attachment — built-in predicates

As we have already seen, some predicates in MRS are evaluable; that is, they are not defined by
rules or simple facts, but have computable truth conditions. The arithmetic relations are the prime
examples. Equality may also be viewed as a computable predicate, with a procedural attachment
to the unification routine. The predicates for handling sets and lists, including length, are also
evaluable.

These predicates are all attached using tolookup(s) and totruep(s) facts which are in the
initial MRS database. You can inspect these facts by calling PRFACTS on the predicate in question.

* (* x;...x, V) succeeds if y unifies with the product of x5 . . Xp.
+ ~ (+ X1...X, ¥) succeeds if y unifies with the sum xj . . Xxqn.

(- x y z) succeeds if 2 unifies with the difference of x and y.

// (// x y z) succeeds if z unifies with the quotient of x and y.

< (< x y) succeeds if x is less than vy.

> (> x y) succeeds if x is greater than y.

<= (<= x y) succeeds if x is less than or equal to y.

>= (>= x y) succeeds if x is greater than or equal to y.

Disjoint (Disjoint x y) succeeds if the lists x and y have no common elements.

Done (Done x t) succeeds if the result returned from executing the LISP
expression x unifies with the term t .

Element (Element x 1) succeeds if the object x is an element of list 1.

ElementsIn (ElementsIn b s8) succeeds if s is the set of elements in bag b.

Inter (Inter x y z) succeeds if z is the intersection of lists x and v.
“ Intersect (Intersect x y) succeeds if lists x and y have a non-empty intersection.
MAnd (MAnd p 1) succeeds if predicate p is true of every element in list 1.
MAndCan (MAndCan p 1 s) succeeds if s is the union of the lists y that satisfy (p
X y) for each elememt in list 1.

MAndCar (MAndCar p 1 s) succeeds if s is the set of objects y that satisfy (p x
y) for each elememt in list 1.

Member is a synonym for Element.

MemList is a synonym for Element.

SetDif f (SetDif f x y z) succeeds if z is set difference of x and y.

42 The Compleat Guide to MRS

Subset (Subset x y) succeeds if x is a subset of y.
Union (Union x y s) succeeds if z is the list formed by appending x and y.

Another class of evaluable predicates is that of the metalinguistic predicates — predicates
dealing with relations outside of the object-level universe that treat their arguments as syntactic
objects without reference. Because of this property, one could only implement these predicates in
bure” logic programming by using a vast table of all the tuples satisfying the predicate. Strictly
speaking, the arithmetic predicates are also in this class. It includes the (self-explanatory) arithmetic
predicates integer and number, and the numeric equality predicate num-=, This predicate works
exactly like = except that when both its arguments are numeric it performs a comparison with a
tolerance given by the value of num~=~threshold, which is initially 0.0001. Two other predicates
allow examination of the binding status of variables and expressions:

Variable (Variable” <x>) succeeds if <x> is a currently unbound variable.
Ground (Ground <p>) succeeds if the expression <p> contains no unbound
variables.

A nice example of the use of Variable and Ground is the following (partial) implementation of an
addition predicate-that handles aninstantiated arguments:

(IF (AND (Ground $y)
(Ground $z)
(Variable $x)
(- $z $y $x))

(+ $x $y $z2))

To facilitate interaction between MRS and LISP programs, a predicate (Value <x> <v>) is
provided which succeeds when <v> is unifiable with the value of <x>. Also (Property <x> <v>
<p>) succeeds when <x> has value <v> for property <p>. Asserting a Property or Value fact
has the effect of setting the property or value.

§8.3 Predicate-related attachment — computable representations

The computable representation mechanism in MRS allows the user to specify classes of proposition
for which the result of a lookup (and hence of a truep) is computed by a LISP subroutine, which
will be known as the associated LISP subroutine (or ALS) for that class.

This is achieved by asserting a fact of the form

(repn <p> <rpn>)

which means that propositions matching <p> will be handled using the computable representation
<rpn>. The assertion of the repn fact causes a tolookup and a tolookups fact to be stashed for
the proposition class, which attaches it to the appropriate interface routines which call the ALS and
then package the results into the proper binding list format expected by the theorem prover.

The ALS must be on the LISP property of the predicate involved, so one must assert the fact

(Property <pred> <ALS> LISP).

The <rpn> value used will be a mnemonic code specifying how the arguments are to be handled,
whether a value is to be returned, whether binding lists are to be single or multiple and so on. The
code will determine the interface routines to which the predicate will be attached. The rest of this
section deals with the codes that MRS provides.

Chapter 8: Procedural attachment 48

The basic thing to decide is whether the LISP routine is to return a value that is a function
of its arguments, or to act as a predicate in itself (e.g. FLOATP). All function codes begin with
F, all predicate codes begin with R (for Relation). if you always want a given predicate to be
procedurally attached regardless of its arguments you can replace the repn and DEFPROP entries
above by asserting -

(relnproc <pred> <ALS> <rpn>)
for relations or
(funproc <pred> <ALS> <rpn>)

for functions.

Suppose we decide that the LISP routine is to return a value. The <rpn> code will begin
with F. MRS predicate will need to have an extra argument which will be unified with the result
when the function returns. Thus a LISP function (f x3 . ..x,) will be attached to a predicate (f
X1 ...Xn ¥), and y will be unified with the result returned by the function f. Often, we will want
to use arguments which are themselves functional expressions. MRS allows for this in the second
letter of the code which is E or Q. Q (for Quote) means that the arguments are passed as is”to
the subroutine. E (for Eval) means that arguments which are terms beginning with predicates that
have functional attachments are treated like functional expressions and evaluated by calling lookup
on them with an extra argument. An example will make this clearer. Suppose we have a predicate
(Average $a $b $avg) which we want to attach to a LISP function (Average a b). If we declare
the predicate as having representation FE, then we can use it, or any other FE or FQ predicate,
functionally as its first or second argument:

(Average (Average 2 4) 6 $x)

would succeed with $x bound to 4. As one might expect, we can also handle the case where we
want to perform a num-= unification on the result rather than a straightforward =. To do this, use
a third code letter A (for Arithmetic). We would probably want this for the averaging predicate
so we would declare it by saying

(ASSERT , (funproc Average Average FEA)) .

Now for the computable relations, which are a little more complicated. The first letter of the
code will be R; the ALS will have the same number of arguments as the predicate The second letter
is still E or Q as above. Plain RE and RQ relations are treated just as you would expect: if the LISP
routine returns NIL the lookup (or truep) fails; if it returns a non-NIL value the lookup returns
((T .T)).Forexample, to attach FLOATP we would probably use the RE representation:

>(ASSERT ? (relnproc FLOATP FLOATP RE))
DONE

> (TRUEP ’ (FLOATP 1. 34))

NI L

Often we will want to be able to handle procedural attachments for predicates whose arguments
may be unbound variables — the ALS will produce the correct bindings for the variables and return
the appropriate binding list. If we add a B (for Binding) as the third letter of the code, this means
that the ALS will return its own binding list (or NIL). Using this, we could write an averaging
pr edi cat e that worked when say the first argument was unbound. To return binding lists, the ALS
(and not MRS)wil need to test its arguments to see if they are variables, perform the appropriate

44 The Compleat Gui de t o MRS

computation accordingly and construct a binding list to return. This is made easier by the availablity
of the system functions for handling variables and binding lists, which are described in chapter 10.

>(ASSERT ’(relnproc Average AverageP REB))

DONE

> (DEFUN AverageP (X Yy avg)

(COND ((AND (NUMBERP x) (NUMBERP y))

(batchp (QUOTIENT (TIMES x y) 2) avg))
((AND (NUMBERP x) (bl varp y) (NUMBERP avg))
(bat chp (DIFFERENCE (PLUS avg avg) x) y))
((AND (blvarp x) (NUMBERP y) (NUMBERP avg))
(batchp (DIFFERENCE (PLUSavg avg) y) x))))

AVERAGEP

>(TRUEP ‘(Average $x 8 4))

(($x . 8 (T . T)

In some cases, REB and RQB relations will want to return multiple solutions, for instance if we had
a quadratic solver (quad $a $b $c $x) which might want to return 0, 1 or 2 different bindings for
$x. To do this, add-a fourth letter M (for Multiple).

There exists one extra type of attachment which is a hybrid of the functional and relational
classes. The RQFM representation allows for ALS routines which operate like functions on the first
n = 1 arguments but return a simple list of values which are to be interpreted as alternatives. The
RQFM designation will cause a multiple binding list to be automatically constructed for the last
argument (if unbound); if bound, the predicate will succeed if the last argument unifies with any of
the returned values.

Thus, in summary, the available ways of getting LISP programs to do the work of predicate are
FE, FQ, FEA for functions returning values, RQFM for multifunctions, and RE, RQ, REB, RQB,
REBM, RQBM for relations.

To create one own computable representation (if one can think of any other possibilities, that
is) one should assert a fact of the form

(repn-method <rpa> <op> <method>)

for the <op>s lookup and lookups, where the <method> is an appropriate interface routine.

Chapter 9: Alternative representations and inference procedures 45

Chapter 9
Alternative representations and inference procedures

For certain computations and certain classes of facts, a representation other than the standard
MRS indexed list structure is useful, and several such representations are provided. Moreover,
some problems are best solved using inference procedures other than backward chaining with modus
ponens. In some cases these procedures operate with the standard representation, in others they use
specialized forms.

$9.1 Representations

The representations discussed here are essentially storage and retrieval methods for facts, and af-
fect how the stored facts appear snternally. If the database routines are well-written, the chosen
representation need have no effect on the external appearance of the facts at all. A specific represen-
tation can be viewed as an implementation of an abstract data type with the operations stash and
lookup. Different representations are more or less efficient for these operations for different classes
of facts. MRS allows the user to specify that all facts matching a pattern <p> should be stored
using representation <rpa> by asserting a fact of the form

(repn <p> <rpn>).

The effect of this is to cause the appropriate tolookup and tostash facts to be entered into the
database. Since these facts operate at the meta-level the pattern <p> must use meta-level variables.
The currently implemented representations are:

PT The default; each fact is stored verbatim on the pattern property of a
unique proposition (e.g. P123) . The facts are then fully indexed on every
position in the list structure of the fact. Only pr facts are accessible to
the full range of theory-related commands (see chapter 7).

cnf Conjunctive normal form; in this representations all facts are stored as
disjunctions of literals (a literal is an atomic proposition or the nega-
tion of one). The whole database is an implicit conjunction of these
disjunctions, hence the name. For example, (1 F A B) isstored as the
disjunction of (NOT A) and B. This representation is used by the resolu-
tion routines.

dnf Disjunctive normal form; like CNF, but the database is a disjunction
of conjunctions of literals. One can write a DNF resolution routine if
desired.

:pl Property list representation; useful for storing the values of unary func-

tions on (or attributes of) concepts; for example, (Arity Menber 2) is
stored by putting 2 on the Arity property of Menber .

tl is useful for storing unary relations such as (IsWonderful MRS) .
dl is useful for storing many-many binary relations such as SameAge.

For example, suppose we wanted to use a lot of facts about people3% ages. Since age is a
many-one relation, we would use the pl representation for efficiency.To achieve this, enter

(ASSERT * (repn (Age &xky) pl)).

Then, when we say

46 The Compleat Guide to MRS

(STASH {Age Nancy 91))
the attribute is stored directly on Nancy ¥ property list:

(PLIST * Nancy)
(Age 91)

The t1 representation also uses the property list directly, by putting a T on the appropriate property
of the concept involved. The dl representation uses properties with multiple values stored as a list;
for example, the property list of Henry VIII might end up as

(HasWife (KatharineOfA AnneB JaneS Anne0fC CatherineR KatherineP)).

With each of these property list representations the queries can have only the value aninstantiated,
and variables in the facts will not be handled properly. This is an example.of the generality/efficiency
trade-off common in representations (and procedures for that matter).

The user can create her own representations by specifying the storage and retrieval routines for
it; to do this one asserts facts of the form

(repn-method <rpn> <operation> <routine>)

for the operations1ookup, lookups and stash. As an example, we1l take the case of storing
attributes of objects identified by number, for instance a database of customer attributes using facts
like

(CustomerName3423 (John Q Public)).
To have these facts stored in an array, with its instant-access advantages, we would say

(ASSERT q{repn-method ar lookup ar-lookup))
(ASSERT ' (repn-mnet hod ar leokups ar-lookups))
(ASSERT ' (repn-nethod ar stash ar-stash))
(defun ar-lookup (p)
(batchp (caddr p) (funcall (car p) (cadr p))))
(defun ar-lookups (p)
((lambda (bl) (comd (bl (list bl)) (& nil))) (ar-lookup p)))
(defun ar-stash (p)
(apply* 'store (list (car p) (cadr p)) (cad& p)))
(ASSERT * (repn (CustomerName &nunber &name) ar))

Notice that the above routines only work if the customer number is already known. If this were
not the case, they would have to be extended to handle queries such as (CustomerName $n (A N
Other)) by r ecogni zi ng that the first argument to the predicate was a variable and then searching
the entire array to find the index number for the given customer; for this class of query the array
representation would be extremely inefficient. One solution would be to have ar-assert store the
fact in both ar and pr representations, and have ar-lookup choose which to use according to the
binding status of the arguments in p.

§9.2 Alternative inference procedures

MRS provides several modes of inference other than the standard backward chaining. Each is
appropriate for a fairly ill-defined range of situations and deciding which to use is still something of
an art. As with almost anything else, the user can write her own inference routines; the simplest to
implement will be of the black-box”type, which take a proposition as argument and return a binding

Chapter 9: Alternative representations and inference procedures 47

list. They will be invoked using a totruep attachment and their internal workings will avoid the
use of the scheduler architecture. All of the MRS-provided routines are of the non-black-box kind,
putting their individual inference steps on the agenda so that the user can create control strategies
to increase efficiency.

9.2.1 Forward chaining

Forward chaining has already been covered in an earlier chapter.”There only remains to describe
the task structure. The inference step task is very simple:

(f cdisp p)

where p is the proposition to be asserted and from which the forward chaining will take place.
Multiple possibilities occur when a fact satisfies the premise of more than one rule, so that f cdisp
tasks are placed on the agenda for each of the rule conclusions. A typical control strategy would
give preference to the conclusion most likely to contribute to the desired goals.

9.2.2 Residue

The residue routine operates in a backward chaining fashion, the difference from the usual
truep method being that it is allowed to assume the truth of propositions contained in assumable
statements, or which can be proved to be assumable. Thus, if one stashes a fact (assumable <q>),
then a call to (residue <p>) will do a backward-chaining proof of <p> and in doing so assume
that <q> is true. A list of all the facts assumed in the proof of <p> is returned. (residues <p>)
returns all possible lists of such facts. Each list of facts is called the residue of <p>.

That’ all very simple and straightforward 1’ sure. What is not so clear to the uninitiated is
what it% all for. Well, one use is for the expression of default rules. A typical example might be

(IF (AND (Bird $b) (UNPROVABLE (NOT (Flies $b)))
(assumable (Flies $b))).

The use of residues and assumable facts has several advantages: default assumptions upon which a
solution is based are distinguished from solid facts; the user is given a list of assumptions which he
can check for validity in the individual cases; the addition of an exception to the database such as

(NOT (Flies 011yTheOstrich))

will not invalidate the rule, whereas if the conclusion were definite and not just assumable contra-
dictions could arise, particularly if forward chaining or caching were in operation.

A second, and perhaps the major, use of residues is for synthesis of complex objects from
specifications. For instance, we could take the rules for circuit behavior. from chapter §, tell the
system it could assume any connections it wanted and call residue on the desired i/o0 pair and have
it return the circuit it needed to assume to get the required behavior, described by a list of assumed
facts looking very much like the descriptions of circuits as defined by the user. That, at least, is the
idea.

Residues are implemented by the subroutine br. The task step is

(brdisp gl al theory jl ce)

where all the arguments are the same as for bcdisp except for theory, which contains the assump-
tions made so far in deriving the goal list gl.

9.2.83 Resolution

48 The Compleat Guide to MRS

Unlike modus ponens, the resolution inference rule

(OR A;...An), (OR By .. .B,)

OR 4, A A An B BB B)o where A;o = (NOT B,o) or vice versa
veoAim1Aiy1...An By1...B;_1 Bj41...Bn

is complete, i.e. all possible logical conclusions of a set of facts can be drawn using the rule. This is

probably the major reason why one would use it. From the definition two drawbacks are immediately

apparent. Firstly, the rule itself is rather cumbersome and unintuitive in the sense that that normal

human modes of reasoning do not fit it well. Secondly, it requires that the database be in CNF, which

often renders facts unintelligible and/or greatly increased in size. However, for such applications

as mathematical theorem-proving, resolution is still the method of choice, since with resolution one

does not need to worry about the incompleteness or directionality of repesentation inherent in a rule-

based system. With MRS’s ability to convert facts to CNF automatically, resolution is a serious .
candidate for many applications. To prove a proposition using this method, the user should simply

enter

(resolution <p>)

and the binding list will be returned just as with truep. resolutions needs no further comment.
What happens is that <p> is first negated, then added to the database in CNF. Resolutions are

then performed until an empty disjunction is created, signifying a contradiction. The rest of the
database can be created in CNF by starting off with

(ASSERT * (repn &p cnf))

which causes all subsequently entered facts to be stored in normal form, and all retrievalz to be
performed accordingly.

The default strategy used is a set-of-support, linear-input strategy. The set-of-support strategy
is the resolution equivalent of backward-chaining: only resolutions involving a goal clause or a clause
whose derivation includes a goal clause are considered.

The standard resolution routine is rs, and the single inference step is

(rsdisp gl al theory)

where
gl is a list of the clauses produced so far by resolution with the original
negated-goal clauses
al is the binding list for the variables in gl;
theory is a locally-bound theory containing the original goal clauses.

9.2.4 Resolution with residues

resolutionresidue and resolutionresidues operate exactly asone would expect, performing
resolution with assumptions returned. rr is the standard routine, the inference step is

(rrdisp gl cl al theory)

where the arguments are the same as for resolution with the addition of cl which is the list of
assumptions made in deriving gl.

Chapter 10: Useful system functions 49

Chapter 10
Useful system functions

There are several places where the user will want to write some additional code of her own to
tailor the system to her needs. These include writing. procedural attachments for predicates, new
computable representation interfaces, new representation storage and retrieval routines, formatting
and filtering routines for returned solutions and, last but not least, new inference routines. Since
MRS itself does all of these things, it is not surprising that it contains a lot of useful subroutines
which are also available to the user.

$10.1 Testing for variables

In attached LISP subroutines, inference routines and often in ordinary MRS predicates one will want
to test expressions to see if they are ground or variable.

blvarp (blvarp x) returns T if x is a base-level variable, i.e. an atom beginning
with $.
mlvarp (mlvarp x) returns T if X is a meta-level variable, i.e. an atom beginning
-- with &
varp (varp x) returns T if x any kind of variable.
groundp (groundp X) returns T if x is an expression containing no variables.

. $10.2 Matching and unifkation

These routines will come in useful in roughly the same areas as the variable testing routines. The one
that is needed will depend on the level (base- or meta-) and the (non)necessity for standardization
of variables.

batchp (batchp x y) is a base-level unification routine that standardizes vari-
ables first, and returns the binding list (if any) for the variables in x.

matchp (matchp x y) is a meta-level unification routine that standardizes vari-
ables first, and returns the binding list (if any) for the variables in x.

samep (samep x y) is a base-level routine that returns a binding list for the
variables in x if the two expressions are the same up to variable renaming.

unifyp (unifyp x y) is a base-level unification routine that returns the most
general unifier of x and y (if any) but does not distinguish occurrences
of the same variable in the two expressions.

§10.3 Binding lists

Along with multiple uses in inference routines and attached predicates, the functions for binding list
manipulation are very useful for formatting the solutions returned by truep.

getvar (getvar x bl) returns the binding for variable x from binding list bl.
getbdg (getbdg x p) = (getvar x (truep p))

getbdgs is like getbdg but calls trueps and returns a list of values.

getval(s) (getval(s) ' (r x;.. .x,)) =

(getbdg(s) . ' (r x;. XnY))

SO The Compleat Guide to MRS

lookupbdg(s)
lookupval(s)
plug

pluralize

ringularize

is |i ke getbdg(s) but uses lookup(s) instead of truep(s).
is like getval (8) but uses lookup(s) instead of truep(s).

(plug x bl) returns expression x with its variables fully instantiated
from the binding list bl.

(pluralize bl) turns a single binding listinto a nultiple one by putting
parentheses round it.

(singularize bl) turns a multiple binding list into a single one by
taking the CAR of it.

§10.4 Tasks and the agenda

The following routines enable the user to write her own inference routines using t he schedul er

* architecture:
kb

tb

schedul er

(kb te<T> Xji...Xn) invokes the meta-level backward-chainer t rt r uep
to find out how to perform task <T> for the given arguments, t hen
performs the task and returns the results.

(tb <T> x;. . .x,) places the task <T> on the agenda with the given
arguments.

(scheduler) starts the deliberation-action process operating according
to the flags executable, executed and preferred.

$10.5 Miscellaneous routines

The following functions and commands operate only on facts in the pr representation.

datum

pattern

mrsdump

nr sl oad

mrssave

(datum p) returns the proposition symbol for p.

(pattern d) returns the proposition for symbol d. Useful for unstashing
facts without typing them in verbatim.

(mrsdump th £) writes out the propositions in theory th onto file f in
such a way that they can be reloaded using a LOAD.

(mraload £) loads naked propositions (i.e. without stash commands)
from file f into the current theory.

(mrssave thy. . .th, £) saves the propositions from the given theories
onto the file f so that they can be reloaded using nT sl oad.

Chapter 11: Tracing, caching and justifications 51

Chapter 11
Tracing, caching and just ificat ions

$11.1 Tracing

At present the tracing mechanism in MRS is the only form of debugging other than the LISP-
provided utilities, and it is somewhat inadequate to say the least. Once the system has chosen a
task to perform (usually from the agenda), it will be printed out on the terminal if it matches with
the pattern <p> provided by the user with the command

(TRACETASK <p>).

Normally the pattern will be just &x and the resulting output will list each bcdisp (or any other
disp) task with its arguments in a format slightly more readable than that provided by TRACE.
(UNTRACETASK <p>) turns off tracing for tasks matching <p>. To switch tracing off altogether
just type (UNTRACETASK) .

§11.2 Caching

In performing a proof, the system produces not only the final result but also several intermediate
facts which are usually discarded without a second thought. This is often shockingly wasteful -
these results may have to be recreated for some later proof, or they may even be interesting in
themselves. MRS provides a simple caching facility whereby the built-in inference procedures (and
others if they so desire) can stash specified classes of intermediate and final results.

To get this to happen, just set the value of the variable cache to the name of the theory you
would like the results stashed in. See chapter 7 for a description of theories. To use the current
theory (the value of theory) set cache to T. When the time comes to cache a result <p>, MRS tries
to find a caching routine <r> such that

(tocache <p> <r>)

is true. The default is (cachebystash <p>) which behaves as described above. The user is free to
change this as she wishes by unstashing the default and adding her own restricted caching classes
or new caching routines. Due to the large number of results produced by even simple proofs it is
advisable to put them in a separate theory which can then be easily emptied. To turn caching off,
just type (SETQ cache NIL).

§11.3 Justifications

One of the trumpeted advantages of expert systems is their ability to explain their own reasoning.
They achieve this feat by simply saving, for each deduction made, the premises, conclusions and
inference rule used. This does not of course happen automatically; or rather, it does provided the
justify flag is non-NIL. It should be set to the name of the theory in which you would like the
justifications stashed. If this sounds similar to caching, there more to come. Not only does the
justify flag cause saving of justifications, it also causes all the results that caching would cache
to be saved on the property lists of specially-generated proposition symbols which arent attached
to any theory at all. This is because the justifications refer to these intermediate results, and they
must be available for why and where (see below) to print them out.
A justification is a fact of the form

(j ust <concl> <method> <premise; > ... <premise, >)

where the conclusion and premises (which include the rule used) are represented by their corre-
sponding proposition symbols, and the method is bc, fc or whatever.

53 The Compleat Guide to MRS

The justifications are used by the two commands why and where. (why <p>), if a justification
exists for the proposition, prints out the inference method and the premises from which the proposi-
fion was deduced. (where <p>) gives the same informationsfor all inferences in which <p>) took
part as a premise. The following simple example illustrates these ideas:

>(SETQjustify T) ;:¥i1l use current theory for stashing justifications
T
>theory
GLOBAL
>(STASH ’ (Man Socrates))
P285
>(STASH ' (IF (Man $x) (Mortal $x)))
P286
> (TRUEP * (Mortal Socrates))
«r . 1)
> (why ! (Mortal Socrates))
P288: (MORTAL SOCRATES) by BC
P285: (MAN SOCRATES)
P286: (IF (MAN $X) (MORTAL $X))
DONE
> (where® (Man Socrates))
P288: (MRTAL SOCRATES) by BC
P285: (MAN SOCRATES)
P286: (IF (MAN $X) (MORTAL $X))
DONE
> (PRFACTS ’just)
P287: (JUST P285 BC)
P289: (JUST P288 BC P285 P286)
DONE

Chapter 12: More general input and output 53

Chapter 12
More general input and output

The view provided so far of the MRS system is that of a haked”theorem prover, taking facts
and queries in predicate calculus as input and printing facts and binding lists as output. However,
since all the output mechanisms are implemented using default rules, the user can build any desired
interface for displaying facts. In addition, MRS provides a mechanism for asking intelligible questions
of the user; thus it is quite easy to build a system in which the user never has to see any predicate
calculus at all. Also described in this chapter are methods for monitoring ” the progress of inference
on a display, and for directly editing facts in the database.

$12.1 Asking questions of the user

Logic programming is particularly suited to the implementation of consultation systems — systems
that operate in the same mode as a human consultant, by being informed of the user% overall need
and then asking appropriate questions to determine the necessary information for the solution of
the problem.

The backward chaining approach to consultation makes the problem the initial goal, and works
back through the rules until it finds premises that can be supplied by the user, rather like having an
extra database accessible via the terminal instead of the lookup routine. We can use the procedural
attachment mechanism of MRS to implement this idea by having a special subroutine ask(s) perform
the function of truep(s) for the class of facts that the user is likely to know; for example an
interactive tictactoe program might have

(totruep (YourMove &x) ask).

First of all ask calls output on its argument <p> to display it in an understandable form (see next
section) and prints it out. Then it examines <p> to see if it can be answered by a yes/no, which
is the case if it has no free variables. If so, it asks the user if the proposition is true and returns
((T.T))or NI L accordingly. If not, it asks the user to supply a value for each variable so as to
make the proposition true. The routine asks, which simulates trueps, prompts the user for all the
sets of values of the variables which satisfy the query. In most cases, unless truep is called directly
by the user on an askable query (which would be somewhat self-defeating), the routine used will be
asks rather than ask. However, many relations are really functional (i.e. have only one satisfying
binding) so the questions asking for multiple values can be a little irritating. For instance, one is
hardly likely to want to make more than one move at a time in a game of tictactoe. The routines can
accommodate this information if the user states that the predicate involved is actually a function:

(STASH ! (Function YourMove)).

This will cause a single value only to be prompted for.

Often a proposition will be used as a premise of more than one rule. If it is an askable one, this
may have the annoying effect of causing the user to be asked the same question twice (if not more).
One solution is to tell MRS that the class of askable propositions is also to be cached - ask wont
ask something if it is already in the database. Furthermore, this can be used to produce a theory
containing all of the facts about a particular user that pertain to her problems which can then easily
be stored permanently using mrssave.

$12.2 Displaying facts

All of the MRS routines that print facts call output or outputs to do so. The argument to output
is a single fact, that to outputs a list of facts. Facts are printed out by f act s, contents, the tracing

54 The Compleat Guide to MRS

facility, the justification routines why and wher e, and by ask. Moreover, the user can invoke output
directly for display and debugging purposes.
The output (8) routines work by calling trtruep (the meta-level theorem prover) on the goal

(tooutput(s) <p> <m>)

where <p> is the fact(s) to be printed. The returned output method <m> will be called on the
fact(s); thus the user can specify any desired output routine by stashing a tooutput (8) fact for it.
The output routines can do anything the user wishes, from printing charts and trees to moving dials
or beeping Morse code. Several useful routines are provided, and described below.

The default tooutput method is pnl-output (pnl standing for pseudo-natural language). The
default tooutputs method is prop-outputs, which prints the facts verbatim, preceded by their
associated proposition symbol (as in the output from the facts routine): Sometimes, for instance
during debugging, one may want to print out facts in this default format instead of whatever fancy
format one has defined for them. The command (prfacts <t> <level>) (the arguments are the
same as those of facts) does just this.

12.2.1 Pseudo-natural language output

The pnl-output routine mentioned above is designed to provide a form of translation from
predicate calculus into English (or whatever) using templates. A template is essentially a sentence
with holes that are to be plugged with appropriate values. For instance, we would specify the
template for YourMove by stashing

(Tenpl at e (YourMove &x) (Your next nove is going to be &x)).

When output is called on a proposition p, it fries to find a template whose left-hand side unifies
with p (note that this will be a meta-level unification) and when successful applies the binding list
to the right-hand side and returns the result. This process is actually recursive; pnl-output calls
itself on each binding of a template variable before plugging it into the sentence. Thus suppose we
had a case in the tictactoe game where the program could predict where the user was going to move
and wanted to show off. Recalling that the moves are represented by the digits 1 to 9, we could add

(Template 1 (in the top left corner))
(Tenpl ate S (in the center))

(Tenplate 9 (in the bottom right corner)).

12.2.2 Other output routines

Several output routines are provided with MRS for displaying information in various formats.
Each of the following functions takes a list of facts as its only argument:

indent-tree-outputs Prints out the binary relation described by the facts in the list as an
indented free, if possible.

si npl e- bar - out put s Takes a list of facts describing a function with numeric range, and prints
out a sinple bar chart containing the information.

tabl e-out puts Sorts the list of facts by predicate and arity, and prints out a table for
each relation.

Chapter 12: More general-input and output 55

These facilities are best illustrated by running the output demo, which may be invoked by
loading the file OUTPUT-T. A number of output routines are implemented on the Symbolics machine
only, since they take advantage of its graphics capabilities. These are illustrated in the output
demonstration for the Symbolics machine.

$12.3 Monitoring

Particularly in a system using condition-action rules, or one using forward chaining, one will want
to monitor the changes made to the database by assertions. For instance, a flight simulator will
want to continuously monitor such facts as the amount of fuel remaining and the current altitude.
MRS provides a mechanism for doing this using demons (see chapter 6). Once a proposition is
being monitored, any assertion matching the proposition will cause a function to be invoked that
can either output the assertion directly or call a specialized routine for updating the appropriate
display. .

Monitoring can be initiated for a class of facts matching <p> using the Tommand (monitor
<p>). The command monitors takes a list of propositions to be monitored. The effects are as
follows. Firstly, forward chaining is asserted for the proposition so that the monitor demon will
fire:

(toassert <p> fc).
Secondly, the demon is created:
(IF <p> (runnable (monitor-hook <p>))) .

Now we have to decide if we Te going to monitor the fact by just printing it out, or by maintaining
some display (such as a needle gauge or a digital readout) for it. To discover this, trtruep is called
on a goal of the form

(tomonitor <p> <method>).

It is important to remember that the call to monitor is intended to snitsate monitoring for its
argument, rather than actually perform it. Thus the tomonitor method, which will of course be
a LISP routine, set up whatever display window or file may be needed for monitoring the facts.
monitor-hook is the function that gets the facts displayed, and the tomonitor method must also
therefore provide some information for monitor-hook as to exactly how and where to display them.
The convention adopted is that it should return a CONSed pair whose CAR is the name of the
function which will do the displaying, and whose CDR indicates where these facts are to be displayed
(it might be the name of a file, or a pointer to a window). The monitor function takes this returned
pair and uses it to create a fact in the database of the form

(mdisplay <p> <display function> <display argument>).

Now, whenever a fact matching <p> is asserted, monitor-hook will find the mdisplay fact for it
and call the display function with two arguments: the fact and the display argument. Multiple
displays for a fact can be handled because monitor-hook finds all the applicable mdisplay facts.

Clearly, the desired default display function must be output. Since output doesnt require the
display argument, our default tomonitor method will just be a function that returns (output .
NIL),.i.e.

(tomonitor &p (lambda (p) <output)))

56 The Compleat Guide to MRS

This has all been very confusing, no doubt, but perhaps an example will help. The following
transcript comes from the output facility demo, and shows how to implement a history file of
database assertions using monitoring (while this isnt the most exciting use of monitoring, it is, at
least, implementable in all versions of MRS):

MONI TORI NG for dumbtermnals = count uptoten->>

(STASH (QUOTE (IF (AND (NEAR-TEN $X) (< $X 10) (+ $X 1 $Y)) (NEAR-TEN $Y))))
(TRSTASH (QUOTE (TEMPLATE (NEAR-TEN &X) (&X is near ten))))

(MONITOR (QUOTE (NEAR-TEN $X)))
$X is near ten

(TRSTASH (QUOTE (TOMONITOR (NEAR-TEN &X) HISTORY-MONITOR)))
(MONITOR (QUOTE (NEAR-TEN $X)))

(DEFUN H STORY- MONI TOR (P &OPTI ONAL (FILE NIL))
(COND ((NULL FILE)
{LET ((STREAN (OPEN (QUOTE OUTPUT-DEMO) (QUOTE OUT))))
(HISTORY-MONITOR P STREAM)
(CONS (QUOTE HISTORY-MONITOR) STREAM)))
((EQ P (QUOTE KILL)) (CLOSE FILE))
(T (PRINC P FILE) (TERPRI FILE))))

->>
(ASSERT (QUOTE (NEAR-TEN 3)))
3 is near ten
4 is near ten
6 is near ten
6 is near ten
7 is near ten
8 is near ten
9 is near ten
10 is near ten

(UNMONITOR (QUOTE (NEAR-TEN $X)))

(LET ((IN (oPEN (QUOTE ouTPUT- DEMO) (QUOTE IN))))
(PRINC (READ | N)) (CLOSE IN))
(NEAR-TEN $X)

First we stash a simple rule for counting up to ten, and a template for printing its status. Then
we call monitor to establish default monitoring for NEAR-TEN, which will display it using output.
Then we add an additional monitor using the function history-monitor, which will print the facts
directly on a file. Using an optional argument, history-monitor can acf as both the set-up and
the display function. Forward chaining for NEAR-TEN is turned on by monitor, so when we assert
(NEAR-TEN3) @tcounts up to fen, and each new fact is both displayed on the terminal and printed
on the file. At the end, we call unmonitor on the fact to terminate monitoring, and check the output
file to see that something was in fact printed on it.

Chapter 12: More general input and output, 57

§12.4 Editing

At present MRS provides for direct database editing only on the Symbolics Lisp Machine, although
it is anticipated that this will soon be extended to the other implementations. There are two editing
commands:

facts-edit (facts-edit <t> <n>) finds all facts containing the term <t> (up
to the optional level <n>), and calls the appropriate toedit method for
those facts.

contents-edit (contents-edit <th>) finds and edits all facts in the theory <th>
(which defaults to the value of theory if omitted).

It is the job of the editing function to invoke the editing environment, and to return a list of all
the facts in their new form, including those remaining unchanged; if none are changed, the editing
function may return NI L.

It is also possible to do editing by using an output routine which retains control, allows the user
to modify the facts displayed, and updates the database before returning. Thus the user can enter
information by merely mouse-setting a dial or gauge, as well as typing facts explicitly in an editor.

Appendix A :
Answers to exercises

Appendix A:

§A.1 Answers to problems from chapter 2

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. (Horse Dobbi n)

Dobbin is a horse.

(Member Dobbin Horses)

Dobbin is a member of the class of horses.

(NOT (Horse Dobbin))

Dobbin is not a horse.

(OR (Horse Dobbin) (Donkey Dobbin))

Dobbin is a horse or a donkey.

(I'F (Horse Dobbin) (Mammal Dobbin))

If Dobbin is a horse then he is a mammal.

(I'F (Horse $x) (Marmal $x))
All horses are mammals.

(I'F (OR (Horse $x) (Cow $x)) (FourLegged $x))
All horses and cows are four-legged.

(AND (Mammal $x) _(FourLegged $x))

Everything is a four-legged mammal.

(I'F (NOT (Horse Dobbin)) (Dutchman Ermintrude))
If Dobbin is not a horse then Ermintrude is a Dutchman.
(I'F (NOT (Cow$x)) (Brown Dobbin))

If there is anything that isnt a cow then Dobbin is brown.
(I'F (AND (Horse $x)(NOT (Mammal $x)))(Cow$x))
Every horse that isnt a mammal is a cow.

(I'F (OR (= $x Dobbin) (= $x Tonto)) (Horse $x))
Dobbin and Tonto are horses.

(I'F (AND (= $x Dobbin) (= $x Tomnto)) (Horse $x))
Everything which is both Dobbin and Tonto is a horse.

Answers to exercises

(I'F (AND (Manmal $x)(NOT (= $xDobbin))) (NOT (Horse $x))

Dobbin is the only mammal that? a horse.

(IF (AND (Horse $x)(NoT (= xy))) (NoT (Horse $y))

59

There is at most one horse. (Sometimes propositions are difficult to translate directly — it is

better then to construct a universe thatis consistent with them and describe that universe.)

(NOT (Menber $x $x))

Nothing is a member of itself.

(I'F (AND (Horse $x) (Brown $x)) (Brown (TailOf $x)))
Brown horses have brown tails.

All dogs bark at their neighbours? dogs.

(IFr (AND (Dog $d) (Neighbour $d $n) (BelongsTo $nd $n) (Dog $nd))

(BarksAt $d $nd))

Noreal nunbers are integers.
(I F (RealNumber $x) (NOT (Integer $x)))

Horses who hate dogs like ice cream.

60 The Compleat Guide to MRS
(IF (AND (Hor se $h) (Hates $h Dogs))
(Likes $h IceCream))
21. Giraffes have longer necks than Dobbin.
(IF (Graffe $g)(Longer (Neck0f $g) (Neck0f Dobbin)))
22. An-An is the only male panda in London.

(I'F (AND (Mal e $x)(Panda$x) (I n $x London))
(= $x An-An))

23. Zero is an integer.

(Integer 0)
24. The fractional part of an integer is sero.

(IF (Integer $x) (FractionalPart $x 0))
25. The product of two real numbers is a real number.

(IF (AND (RealNumber $x) (RealNumber $y) (* $x $y $z))
(ReallNumber $z))

26. The product of a positive integer and its inverse is unity.

(IF (AND (Integer $x) (> 8x 0) (Quotient 1 $x $inv))
(* $x $inv 1))

29. Zero is an additive identity.
(+ $x 0 $x)
28. The product of two real numbers is never an imaginary number.

(I F (AND (RealNumber $x) (RealNumber $y) (* $x $y $2z))
(NOT (Imaginary $z)))

29. All numbers are either real or imaginary or both.
(IF (Number $x) (OR (RealNumber $x) (Imaginary $x)))
30. All Englishmen, Scotsmen and Welshmen are British.

(IF (AND (EnglishPerson $m) (ScotsPerson $m) (WelshPerson $m))
(BritishPerson $m))

Appendix A: Answers to exercises 61

§A.2 Answers to problems from chapter 3

In the following answers we will rename variables in those cases where it is necessary as $1, $2 etc.,
corresponding to the variables in the second proposition in left to right order of appearance.
1. (p $a) and ($r x).
(($r . p) ($a . x))
2. (p $2) and ($a q).
(($a . q) (31 . p))
3. (p $a ¢) and (p $y).
No unifier possible — different numbers of arguments.
4. (q (f $c)) and (q $4d).
(($d . (£ $c)))
5. (r (g $c)) and (zr $¢).
(($1 . (g $<)))
6. (r $x (h $x)) and (x $b $b).
No possible unifier — infinite substitution process.
7. (p $a (g $a) (h $a)) and (p (g $b) (g . $c) ($4 . $¢c)).
(($a . (g $b)) ($c . ((g $b))) (84 . h))
8. (q %$a) and ($r . §8).
(($r . 2) (83 . ($2)))
9. (r $b . $b) and (r $c a).
(($p . (2)) ($c . (2)))

62 The Conpleat Guide to MRS

§A.3 Answers to problems from chapter 5
1. Tictactoe solution.
;Strategy rul es - |ast has precedence because of reverse search order

(I'F (AND (Squar e $move) (unknown (On $anyside $move)))
(BestMove $0X $move))

(I F (AND (OppositeSide $0X $opponent) (ImmediateWin $opponent $move))
(BestMove $0X $move))

(1 F (ImmediateWin $0X $move) (BestMove $0X $move))

:Rules fordeci ding when an i mediate win is available

(I F (AND (WinLine AB $C)
(on $0X $A)
(0On $0X $B)
(unknown (On $X $C)))
(ImmediateWin $0X $C))
(1 F (AND (WinLine AB $C)
(On $0X $A)
(0n $0X SC)
(unknown (On $X $B)))
(ImmediateWin $0X $B))
(I F (AND (WinLine AB $C)
(on $0x $C)
(0n $0X $B)
(unknown ((On $X $A)))
(ImmediateWin $0X $A))

(OppositeSide 0 X)
(OppositeSide X 0)

:Squares are |isted in this order so the systemwill
;pick the generally better squares when it has no other clue.

[

Qv

=

(¢2]
= 00 O B N
—_— = —

Square 3)
Square 7)
Square 9)
Square 5)

(WinLine 1 2 3)
(WinLine 1 5 9)
(WinLine 1 4 7)

(WinLine 7 5 3)
(WinLine 4 6 6)
(VinLine 7 8 9)
(WnLine. 6 8
(WinLine 3 6 9)

Appendix A:

Answers to exercises

63

64 The Compleat Guide to MRS

2. Chess solution.

This problem is not conceptually difficult but is good practice for organizing a large, complex
set of rules. It is important to think carefully about what predicates to define so that each has a
clear meaning to you and also is a useful building block for the expression of the higher level rules.

: The following rules define the LegalMove predicate which tests ;
; or generates legal movesin chess. The argunents of LegalMove ;

s are as-foll ows: H
: $bw - The color of the side whose turn it is to move.
; Val ues are Black and Wite. i
i $col,$row - The colum and row coords of the origin square.
: Wite's QRL is designated 1,1, H
i $newcol,$newrow - The coords of the destination square. H
;. $flag - I ndi cates the nove cl ass: :
: 0 is anornal nove :
. P is an en passant capture :
; Cis acastling nove. ;

N/B/R/Q i's the new pi ece for a queenin'g mve

I N N N NN NN NN NN

+ Rules establishing the various classes of movesand their legality ;
*

R R R N N N NN NN NN NN NN

;Condition for a normal nove to be |egal (king movesdone separately):
: not already in check, and no discovered check

(I F (AND (Unknown (InCheck $bw))
(Move $bw $col $rovw $newcol $newrow)
(On $bw $piece $col $row)
(Unknown (= $piece K))
(Unprovabl e (DiscoveredCheck $bw $col $row $newcol $newrow)))
(LegalMove $bw $col $row $newcol $newrow 0))

+If castling is possibleit’s|egal

(1 F (CastlingMove $bw $side)
(LegalMove $bw Castl es $side 0 0 C))

;Condition for a king movetobe safe

(1F (AND (On $bw K $col $row)

(Move $bw $col $row $newcol $newrow)
(Opponent $bw $wb)

(Unprovabl e (Attacki ng $wb $newcol $newrow))
(-

$newcol $col $cv)

Appendi x A Answers to exercises

(- $newrow $rowv $rv)
(Unprovabl e
(AND (AttacksAlong $wb $piece $pcol $prow $col $row $cv $rv)
(MultiPiece $piece))))
(LegalMove $bw $col $row $newcol $newrow 0))

:Condition fOr a nmove to get us out of check

; (other than a king move, which is tested for safety already)

i This can only work if there is only one checking piece, whichis
i 0on $pcol,$prow

(1'F (AND (InCheck $bw)
(Opponent $bw $wb)
(On $bw K $kcol $krow)
(SETOF ($pc $pr)
(Attacks $wb $p $pc $pr $kcol $krow)
(($pcol $prow)))
(EscapesCheck $pcol $prow $bw $col $row $newcol $newrow $flag))
(LegalMove $bw $col $row $newcol $newrow $flag))

;Condition foOr a pawn nove to be | egal

(1'F (AND (Unknown (InCheck $bw))
(PawnMove $bw $col $row $newcol $newrow $qpiece)
(Unprovabl e (DiscoveredCheck $bw $col $row $newcol $newrow)))
(LegalMove $bw $col $r ow $newcol $newrow $gpiece))

;Condition fOr an en passant nove to be |egal

(1'F (AND (Unknown (InCheck $bw))
(EnPassantMove$bw $col $row $newcol $newrow P)
(Unprovabl e (DiscoveredCheck $bw $col $row $newcol $newrow))
(Unprovabl e (Pi nned $bw $newcol $row $pcol $prow)))
(LegalMove $bw $col $row $newcol $newrow P))

--

(R N N NN]

; Conditions for various types of noves to escape check, either by ;
. ; taking the checking piece or by interposing ;

Ce e nn e 0 n 0 i 0t g a0 e eeeeaanasansases
IR N N NN NN NN N

(I'F (AND (PawnMove $bw $col $row $col $newrow $qpi ece)
(On $bw K $kcol $krow)
(Bet ween $col $newrow $kcol $krow $pcol $prow)
(Unprovabl e (DiscoveredCheck $bw $col $row $col $newrow)))
(EscapesCheck $pcol $prow $bw $col $row $col $newrow $flag))

(I'F (AND (PawnMove $bw $col $row $pcol $prow $qpi ece)
(Unprovabl e (DiscoveredCheck $bw $col $row $col $newrow)))

65

66

The Compleat Guide to MRS
(EscapesCheck $pcol $prow $bw $col $row $pcol $prov $qpiece))

(I'F (AND (EnPassantMove $bw $col $prow $pcol $newrow P)
(Unprovabl e (DiscoveredCheck $bw $col $prow $pcol$newrow))
(Unprovabl e (Pinned $bw $pcol $prow $pinc $pinr)))
(EscapesCheck $pcol $prow $bw $col $prow $pcol $newrowP))

(IF (AND (EnPassantMove $bw $col $row $newcol $newrow P)
(On $bw K $kcol$krow)
(Bet ween $newcol $newrow $kcol $krow $pcol $prow)
(Unprovabl e (DiscoveredCheck $bw $col $row $newcol $newrow)))
(EscapesCheck $pcol $prow $bw $col $row $newcol $newrow P))

(I'F (AND (Move $bw $col $row $newcol $newrow)
(UNKNOAN (On $bw K $col $row))
(Unprovabl e (DiscoveredCheck $bw $col rownewcol $newrow))
(On $bw K $kcol $krow)
_(OR (Between $newcol $newrow $kcol $krow $pcol $prow)
(AND (= $newcol $pcol) (= $newrow $prow))))
(EscapesCheck $pcol $prov $bw $col $row $newcol $newrow 0))

--

; Conditions for legal castling: unmoved king and rook, not in check, ;
; ho intervening pieces, no intervening checks. ,

(IF (AND (UnmovedK $bw)

(CastlingSide $side)

(Unknown (InCheck $bw))

(UnmovedR $bw $side)

(Opponent $bw $wb)

(Unprovabl e (AND (CastlingMoveSquare $bw $side $col $row)
(On $anyside $anypiece $col $row)))

(Unprovabl e (AND(CastlingCheckSquare $bw $side $col $row)
(Attacki ng $wb $col $row))))

(CastlingMove $bw $side))

R N N NN
; Conditions for pawn noves other than en passant ;

LI A I O A I I B e O O D O T B B D D R BE B RN DN BN DN AN N RN BN BN NN RN BN N BN AN R R N B NN NN BN N

(IF (AND (On $bw P $col $row)
(Direction $bw $oneforward)
(Opponent $bw $wb)
(PawnRank $wb $qrank)
(OR (AND (= $col $newcol)
(+ $row $oneforward $nextrow)
(Unknown (On $anyside $anypi ece $col $nextrow))

Appendi x A Answers to exercises

(OR (= $nextrow $newrow)
(AND (PawnRank $bw $row)
(+ $nextrow $oneforward $newrow)
(unknown _
(On $anyside2 $anypiece2 $col $newrow)))))
(AD (Attacks $bw P $col $row $newcol $newrow)
(On $wb $anypiece3 $newcol $newrow)))
(R (AND (= $row $qrank)
(QueeningPiece$qpi ece))
(AND (Unknown (= $row $qrank))
(= $qpiece 0))))
(PawnMove $bw $col $row $newcol $newrow $qpiece))

: Condition for a normal nove other than pawn noves ;

(IF (AND (On $bw $piece $ci $r1) (Unknown (= $piece P))
(Attacks $bw $piece $ci $r1 $c2 $r2)
(Unknown (On $bw $anypiece $c2 $r2)))
(Move $bw $cl $r1 $c2 $r2))

; Condition for en passant nove ;

(IF (AND (EnPassantRank $bw $row)
(On $bw $col $row)
(PreviousMove $wb $pcol $prow $pcol $row 0) .
(PawnRank $wb $prow)
(On $wb P $pcol $row)
(Attacks $bw P $col $row $pcol $newrow))
(EnPassantMove $bw $col $row $newcol $newrow P))

..

: Rules for determning discovered'éﬁééké';

202 0 0 0000003000002 000NN DNIIIIDINNIODIY

(I'F (AND (Pi nned $bw $col $row $pcol $prow)
(- $newcol $col $cvi)
(- $newrow $row $rvi)
(- $pcol 3col $cv2)
(- $prow $row $rv2)
(Unprovabl e (Paral |l el $cvi $rvi $cv2 $rv2)))
(DiscoveredCheck $bw $col $row $newcol $newrow))

;Condition foOr a piece to be 'pinned', i.e. unrenovable by $bw
; [pcol, prow]>>>>>>>>>>[col,row] [nextcol,nextrow]>>>>>>>>>>[keol, krow]

67

68

The Conpleat Quide to MRS

(IF (AND(On $bw K$kcol $krow)
(UnitVector $col $row $kcol $krow $cv $rv)
(+ $col $cv Snextcol) (+ rowrv $nextrow)
(Rout e $nextcol $nextrow $kcol $krow $cv $rv)
(Opponent $bw $wb)
(AttacksAlong $wb $piece $pcol $prow $col $row $cv $rv)
(MultiPiece $piece))

(Pi nned $bw $col $row $pcol $prow))

; Rul es to deternine when pieces areattacking squares ;

:Definitions Of different specificities of attacks

(I F (AttacksAlong bwp $ci $r1 $c2 $r2$cv $rv)
(Attacks $bw $p $ci $r1 $c2 $r2))

(IF (Attacks $bw $p $ci $r1 $c2 $r2)
(Attacki ng $bw $c2 $r2))

:Condition for attacki ng a’meighbouring® square wth vector $cv $rv

(I'F (AND (On $bw $piece $col $row)
(MoveVector $piece $bw $cv $rv)
(NextTo $col $row $cv $xv $newcol $newrow))
(AttacksDirectly $bw $piece $col $row $newcol $newrow $cv $rv))

;Base case for attacking a'distant' square

(I'F (AND (AttacksDirectly $bw $piece $col $row $newcol $newrow $cv $rv)
(Unknown (MultiPiece $piece)))
(AttacksAlong $bw $piece $col $row $newcol $newrow $cv $xv))

;Condition fora piece to attack a'distant' square with vector $cv $rv

(I'F (AND (On $bw $piece $col $row)
(MultiPiece $piece)
(AttacksDirectly $bw $piece $col $row $col2 $row2 $cv $rv)
(Rout e $co12 $row2 $newcol $newrow $cv $rv))
(AttacksAlong $bw $piece $col rownewcol $newrow $cv $rv))

; Route sees if there is aclearpath from one;
square to another along a given vector.

IR N NN

(Rout e $col $row $col $rov $cv $rv))

Appendix A: Answers to exercises

(I'F (AND (Unknown(On $anyside $anypiece $col $row))
(Rout € $co0l2 $row2 $newcol $newrow $cv $rv))
(Rout e $col $rov $newcol $newrow $cv $rv))

..
LN I B I B I O B B BN B B D B O B RN B BN NN NN NN DN RN RN BN BN BN BN NN NN BN BN B N BN BN AN O) LR N}

; Predicates for handling vector arithmetic ;

; NextTo gives the next square to $col $row al ong vector $cv $rv

(IF (AND
(+ $col $cv $newcol)
(< $newcol 9) (> $newcol 0)
(+ $row $xv $newrow)
(< $newrow 9) (> $newrow 0))
(NextTo $col $row $cv $rv $newcol $newrow))

;Definition of parallel vectors

(IF (1S (- (* $cvi $xv2) (* $cv2 $rvl)) 0)
(Parallel $cvi $rvi $cv2 $rv2))

;UnitVector finds the appropriate movevector to get between two squares

(IF (AND (- $col2 $coli$mcv)
(- $row2 $rowl $mrv)
(Sign $mcv $cv)
(Sign $mrv $rv))
(UnitVector $coll $rowl $col2 $row2 $cv $rv))

(IF (>$x 0) (Sign$x 1))
(IF(<$x0) (Sign$x-1))
(IF (=$x0) (Sign $x 0))

;Between sees if a square x is between two others y,z

(1F (AND (- $zc $xc $cvi)
(- $zr $xr $rvi)
(- $yc $xc $cv2)
(- $yr $xr $rv2)
(Parallel $cvl $rvi $cv2 $rv2)
(IS (+ (* $cvi $cv2) (* $xvi $rv2)) $dot prod)
(< $dot prod 0))
(Bet ween $xc $xr $yc $yr $zc $zr))

B NN N N NN
; Data tabl es for castling, move vectors,piece classes;

LN I I R B B R R I O O B B R B D DB B B B D BN RN AR N DN R BN N AN N BN A AN BN BN BN RN BN BN AN NN B A AN BN NN N NN AR

70

The Compleat Guide to MRS

(CastlingSideKi ngs- si de)
(CastlingSideQueens- si de)
(Opponent White Black)
(Opponent Black Wite)
(CastlingCheckSquare Wite Kings-side 7 1)
(CastlingCheckSquare Wite Kings-side 6 1)
(CastlingCheckSquare Wite Queens-side 3 1)
(CastlingCheckSquare Wite Queens-side 4 1)
(CastlingCheckSquare Black Kings-side 7 8)
(CastlingCheckSquare Black Kings-side 6 8)
(CastlingCheckSquare Black Queens-side 3 8)
(CastlingCheckSquare Black Queens-side 4 8)
(CastlingMveSquare Wiite Kings-side 7 1)
(Castli ngMoveSquar e White Kings-side 6 1)
(CastlingMveSquare Wite Queens-side 2 1)
(CastlingMveSquare Wite Queens-side 3 1)
(CastlingMveSquare White Queens-side 4 1)
(CastlingMveSquare Black Kings-side 7 8)
(CastlingMveSquare Black Kings-side 6 8)
(CastlingMveSquare Black Queens-side 2 8)
(CastlingMveSquare Black Queens-side 3 8)
(CastlingMveSquare Black Queens-side 4 8)
(Direction Wite 1)
(Direction Black -1)
(PawnRank Wi te 2)
(PawnRank Bl ack 7)
(EnPassantRank Wi t e 6)
(EnPassantRank Bl ack 4)
(Queeni ngPi ece N)

(Queeni ngPi ece B)

(Queeni ngPi ece R)

(Queeni ngPi ece Q
(MultiPiece B)

(MultiPiece R)

(MultiPiece Q

(MoveVector P WWite 1 1)
(MoveVector P Wite -1 1)
(MoveVector P Bl ack 1 -1)
(MoveVector P Bl ack -1 -1)
(MoveVector N $anyside 1 2)
(MoveVector N $anyside 2 1)
(MoveVector N $anyside 2 - 1
(MoveVector N $anyside 1 -2
(MoveVector N $anyside -1
(MoveVector N $anyside - 2
(MoveVector N $anyside -2 1
(MoveVector N $anyside - 1 2)

)
)
2)
1)
)

(MoveVector B $anyside 1 1)
(MoveVector B $anyside 1 - 1)
(MoveVector B $anyside -1 - 1)
(MoveVector B $anyside -1 1)
(MoveVector R $anyside 1 0)
(MoveVector R $anyside 0 1)
(MoveVector R $anyside -1 0)
(MoveVector R $anyside 0 -1)
(MoveVector Q $anyside 1 1)
(MoveVector Q $anyside 1 - 1)
(MoveVector Q $anyside -1 -1)
(MoveVector Q $anyside -1 1)
(MoveVector Q $anyside 1 0)
(MoveVector Q $anyside 0 1)
(MoveVector Q $anyside - 1 0)
(MoveVector Q $anyside 0 - 1)
(MoveVector K $anyside 1 1)
(MoveVector K $apyside 1 - 1)
(MoveVector K $anyside -1 - 1)
(MoveVector K $anyside -1 1)
(MoveVector K $anyside 1 0)
(MoveVector K $anyside 0 1)
(MoveVector K $anyside -1 0)
(MoveVector K $anyside 0 - 1)

Appendi x A

Answers to exercises

71

72 The Compleat Guide to MRS

3. Geometry solution.

Theontol ogy for geonetry is fairly well-known — points, lines, angles and circles cover most
things. Points are identified by constant symbols just as in real life. Lines and angles can be
represented by terms with function symbols Line and Angle; for example, the line segment AB wil
be called (Line A B). Circles could be represented by a term with function symbol Ci r cl e with the
points on the circle as arguments, butfor our purposes, as is comon in geometry, thiswont be
needed. It is important to note that the angle terms refer to the particular piece of angle subtended
by the particular three points, so our geometrical theorems will not state that angles are equal, but
that their sizes are equal; similarly, lines are not equal, but have equal length.

A real difficulty arises with the use of an angle described by a term such as (Angle A B C):
how is MRS to know that it is the same as (Angl e C B A)? The same problem arises with (Li ne
AB) and (Line B A).Basically whenever we want touseatermsuchas (Angle$a $b $¢) in a
rule, we are obliged to write the same rule again but with the points in reverse order, in case the
facts we have about that angle happen to be expressed that way. It would be nice if we could get
the unification routine t 0 treat these as unifiable, then we could wri t e rules and describe problem
instances as if there were no problem at all, but that is, as they say, beyond the scope of this book.
There is, however, a way of achieving the same effect. What we want to have is a term that will
unify with a given angle whichever way round it is written; to achieve this we use a constructor
predicate MakeAngle:

(MakeAngle ab $c (Angl e $a $b $¢))
(MakeAngle $a $b $c (Angl e $c $b 3a))

Wherever we want to use (Angle $a $b $c) we now say
(MakeAngle $a $b $c $abc)

and use $abc instead. The call to MakeAngle succeeds twice if necessary so we can treat $abc as i f
it were an ‘unordered’ representation of the angle that unifies with either of the ordered versions.
Letus see how this works in a sinple case, the rule for calculating the thirdangle of atriangle when
the other two are given. The original rule, which is inadequate, is

(IF (AND (DegreeValue (Angle $b $a $c) $bacval)
(DegreeValue (Angl e $a $c $b) $acbval)
(- 180 $bacval $acbval $abcval))
(DegreeValue (Angl e ab$c) $abcval)).

Thefirst stab at fixing it upis

(1 F (AND (MakeAngle $a $b $c $abc)
(MakeAngle $b $a $c $bac)
(MakeAngle $a $c $b $achb)
(DegreeValue $bac $bacval)
(DegreeValue $acb $acbval)

(- 180 $bacval $acbval $abcval))
(DegreeValue $abc $abcval))

but this rule is actually too general, since we will be normally trying to find some fixed angle $abec
so we can dispense with that variable and its corresponding MakeAngle and use (Angle $a $b $¢)
in the conclusion of the rul e, as it appears in the body of the code below. In general, facts such
as actual angle values in the database will have a fixed-order representation (we dont want to give

Appendix A: Answers to exercises 73

each fact for a problem instance t Wi ce), so to achi eve generality the premises of rules, which will
be unified with facts in the database, should use t he MakeAngle method, whilst the conclusions can
be in fixed format. | f we had the nultiple representations of the probl em instance we could use
MakeAngle for angles in the conclusions of rules and fixed format for those in the premses. The key

is to be consistent.
The following rules contain the geometrical theorems that are useful for this proof:

: The angle between a tangent and a radius to the point of contact is 90

(I'F (AND (MakeLine $a $b $ab)
(Tangent $ab $circle)
(Center $circle $0)
(Poi ntOnGircl e $b $circle))
(DegreeValue (Angle $a $b $0) 90))

:The angles in a triangle add up to 180 (for deducing 3rd angle val ue)

(I F (AND (MakeAngle $b ac $bac)
(MakeAngle ac $b $achb)
(DegreeValue $hac $bacval)
(DegreeValue $acb $acbval)

(- 180 $hacval $acbval $abcval))
(DegreeValue (Angl e ab $c) $abcval))

;Angle at the centre is twice the angle at the circunference

Poi nt OnCircl e $b $circle)
Unknown (= $a $b))
Poi nt OnGi rcl e $c $circle)
Unknown (= $a $c))
(Unknown (= $c $b))
(Center $circle $0)
(MakeAngle $a $o0 $c $aoc)
(DegreeValue $aoc $aocval)
(// $aocval 2 $abeval))
(DegreeValue (Angl e $a $b $c) $abcval))

(IF (AND (PointnCircle $a $circle)
(
(
(
(

;The angl es at the base of an isosceles triangle are equal

(1 F (AND (MakeAngle $b $a $c $bac)
(MakeLine $b $a $ba)
(MakeLine $b $c $bc)
(EqualLength $ba $bc)
(MakeAngle $a $c $b $achb)
(DegreeValue $ach $val))

(DegreeValue $bac $val))

74 The Conpleat CGuide to MRS

;All radii of a given circle have equal length

(IF (AND (PointOnCircle $a $circle)
(PointOnGircl e $b $circle)
(Unknown (= $a $b))
(Center $circle $0))
(Equallength (Line $o $a) (Line $o $b)))

;Angles standi ng onthe same segnent are equal

(I'F (AND (PointOnCircle $a $circle)
(PointOnGircl e $b $circle)

(Unknown (= ab))

(PointOnGircl e $c $circle)

(Unknown (= $a $c))

(Unknown (= $c $b))

(PointOnCircle $d $circle)

(Unknown (= ad))

(Unknown (= $b $d))

(Unknown (= $c $d))

(MakeAngle ad $c $adc)

(DegreeValue $adc $val))

(DegreevValue (Angl e ab $c) $val))

:If Pis on AB then <ABC = <PBC

(I'F (AND (MakeLine ab $ab)
(PointOnLine $p $ab)
(MakeAngle ab $c $abc)
(DegreeValue $abc $val))
(DegreeValue (Angl e $p $b $c) $val))

:If Ais on PB then <ABC = <PBC

(I F (AND (MakeLine $p $b $pb)
(PointOnLine $a $pb)
(MakeAngle ab $c $abc)
(DegreeValue $abc $val))
(DegreeValue (Angl e $p $b $c) $val))

;Angle and | ine constructors

(MakeAngle $x $y $z (Angl e $x $y $2z))
(MakeAngle $z $y $x (Angl e $x $y $z))
(MakeLine $x $y (Li ne $x $y))

Appendix A: Answers to exercises 75

(MakeLine $y $x (Line $x $y))

The following is the description of the problem instance. These facts should probably be asserted
with forward chaining turned on.

(PointOnCircle B Q)
(PointOnCircle C Q)
(PointOnCircle D Q)
(PointOnCircle E Q)
(PointOnCircle F Q)
(Center Q 0)

(Tangent (Line A B) Q)
(PointOnLine F (Line A 0))
(PointOnLine O (Line F D))
(PointOnLine O (Line B E))
(DegreeValue (Angle 0 A B) 20)

Appendix B :
Installation Guide

Appendix B: Installation Guide 77

§B.1 Introduction

There are three different machines upon which this MRS will run. They are DEC-20's running
Maclisp, VAXen running Franz under Berkeley Unix, and Symbolics LISP Machine LM-2/3600.
Each machine requires a slightly different set of miscellanous files and slight changes in the file
extensions. The package you received has lisp file extensions . Isp (DEC-20), .I (VAX) or . lisp
(LM-2/3600). In the remainder of the document the lisp files will be referred to as <file>. lap; the
reader should translate this into the appropriate eztension for their machine.

Besides the lap, test, load, dat, mrs, demo and doc files which are used by all the systems,
there are several files and file types which are unique to each individual machine. Each is explained
in the appropriate section.

Extension Machine
.CTL DEC-20
VAX VAX
Makefile VAX
.LM2 LM-2

§B.2 How to get MRS running

B.2.1 Maclisp version on the DEC-20.

Dec-20 tapes are written using the ANSI tape program. The files from the tape should be read
into the directory in which they will reside on your machine. We maintain the files in the directory
<mrs .mac . cur>. There are several locations where the directory name is defined. THESE MUST
BE UPDATED TO YOUR DIRECTORY NAME. The locations are in all the CTL files and in
MRS.LOAD.

There is an automatic compilation program which will compile all the required lisp programs.
It can be run in batch by “SUBMIT COMPMRS. CTL". A summary of the results will be appended to
the file compmrs. log. If you need to compile individual files, then make sure you are connect to the
directory and then run complr.

To make an executable version of MRS, run in batch "SUBMIT MAKMRS.CTL". The resulting
executable file will reside in mrs.exe. Again a log of the results of the batch run is appended to
MAKMRS.CTL.

You are now ready to start using MRS.
- (The fil prmrs .ctl is used to print out the appropriate files on our laser printer . This is not

necessary but is provided as a convenience)

B.2.2 Franz version on the VAX.

Franz-MRS tapes usually are written by the UNIX program tar. After you connect to the
directory where you want to put the sources, restore them with the command tar -xp. (The
directory does not have to be dedicated to MRS but this is recommended.)

There are several locations where the directory name is defined. THESE MUST BE UPDATED
TO YOUR DIRECTORY NAME. The locations are in mrs. load and Makefile. The current
reference should be to /hpp/mrs/cur and should be changed to the directory name.

78 The Compleat Guide to MRS

The file "Makef ile" sets the "make" variables LISP (which points to the directory that contains
"1lisp” and "1iszt”), DESTDIR (which points to the directory where the MRS executable file should
be linked to), and LIBDIR (which points to the directory where the library files should be linked to).
Modify these files for your site.

The file "Makef ile" will be used by "make" to build an MRS for you. You must modify the
install command so that it sets up the links correctly. (If you dont want the library files to be
linked to another directory, this is the place to change.) If you are just interested in a sysout, the
command ““make xmrs" should put an executable version of MRS into the file "xmrs".

"make install”” will create a xmrs in this directory, and also put in a link between the DEST-
DIR/mrs and the xmrs created in this directory. Only the executable file is linked.

You are now ready to start using MRS.
There are three files with the extension .VAX.

The getf ranz . VAX is used to FTP the MRS from our DEC-20 to our VAX. If you have multiple
sites running MRS this program can be used. It will have to be altered to your protocols. Notice
the name changing from DEE20 to VAX.

The sendf ranz .VAX is used to FTP the MRS from our VAX to our DEC-20. If you have multiple
sites running MRS this program can be used. It will have to be altered to your protocols. Notice
the name changing from VAX to DEE20. (getf ranz and sendfranz are just opposite directions)

The sendlispm.VAX is used to FTP the code from our VAX to the Symbolics machines. Notice
the name changing from VAX to LISPM.

The technique for using getfranz and sendfranz is
cat getfranz.VAX | ftp
the technique for using eendlispm is:

cat sendlispm.VAX | ftp

B.2.S ZetaLisp version on the LM-2/3600.

The lispm-MRS tapes are written on Symbolics streamer tapes. The tape was made using the
LMFS dumper and was a complete dump of the MRS directory. The tape can be loaded using the
reload/retrieve command on the directory you intend to install MRS. The tape name is MRS-7.1
(or a later version number). Lisp files on the Symbolics machines should end with extension . LISP.

There is one locations where the directory name is defined in the MRS files. THIS MUST BE
UPDATED TO YOUR DIRECTORY NAME. The location is in mrs. load. The current reference
should be to >mrs>cur> and should be changed to the directory name.

To load MRS into the current lisp environment do the following:

(load '>mrs>cur>mrs.load)

This should compile the appropriate lisp functions and load them in. There will probably be a

Appendix B: Installation Guide 79

lot of warning messages in the compilation. These on the most part can be ignored. It is advised
that MRS be loaded into a clean cold boot. Otherwise names may be redefined.

§B.3 Adding Files to MRS - for system maintainers

If you need to add a new set of source file to MRS, there are several files that are affected and
need to be changed. They are MRS ,LOAD , Makef ile, COMPMRS. CTL, PRMRS. €T1, COPYLISPM.VAX,
GETFRANZ.VAX, SENDFRANZ.VAX, and SENDLISPM.VAX. The files interface.lsp and test .Isp are
affected if new demo packages are added or test files respectively.

In MRS. LOAD two references to the lisp source filename (excluding the lisp extension) need to be
added

In Makef ile the source filename (with .1 extension) needs to be added to the make variable
SOURCES, the object filename (with .0 extension) needs to be added to the make variable OBJECTS,
the test filename (with .test extension) needs to be added to the make variable TESTAUX, and the
demo filename (with .demo extension) needs to be added to the make variable DEMOAUX.

In files COMPHRS . CTL and PRMRS. CTL need to add the source filename (with . Isp extension).

In files COPYLISPM. VAX, GETFRANZ .VAX, SENDFRANZ .VAX, and SENDLISPM .VAX need to add the
source filename (with extension), the test filename (with extension .test) if one exists, and the
documentation filename (with extension .doc) if one exists.

If there are any demo files, they need to be added to the list demolist in the source file
INTERFACE. LSP.

If there are any test files, they need to be added to the function f inderrors in the source file
TEST.LSP.

§B.4 Testing MRS installation

There is a testing program for verifying the system. Once MRS has been installed call (£ inderrors);
it should return a value of 0 indicating that there were no errors encountered. If there are errors in
the MRS function being tested, the result and the expected result are indicated.

If you plan on adding test files you are required to follow a specific format. The format consists
of an MRS (or LI1SP) command followed by the expected answer. If the answer is irrelevant a * can
be used. For examples, look at the <file>. test source files.

§B.5 The Share Subdirectory

We are also maintaining a subdirectory called share which is composed of user written code that
may be useful to other sites. These procedures are not currently considered a core part of MRS and
hence are not in the main directory. All files maintained in this subdirectory should have a * . doc
file describing the use and functions in the file and * .dict file consisting of a dictionary entry for
each of the user accessable functions/procedures/relations.

80 The Complcat Guide to MRS

§B.6 Required Files

This is a list of t he required files that should be on your tape. There may be additional files which

can be ignored.
LISP fes

ask. Isp
base.lsp
batch. Isp
bc. Isp

cnf . Isp
common. Isp
compat. Isp
erfrepn.lsp
execute.lsp
fc.lsp

interface. Isp _

macros.lsp
match. Isp
meta.lsp
mla.lsp
plist . Isp
proprep.lsp
repn.lsp
res.lsp
set.lsp
test.lsp
timer.lsp
tm. Isp
top.1lsp
toplevel.lsp
tr. Isp
trbe.1lsp
trexec.lsp
trfc.lsp

. tut-concpt.lsp
T tut-dict.lsp

tut-exer.lsp
tut-gen.lsp
tut-main.lIsp

tut-synchk.lIsp
tut-topics.Isp

version.lsp

Demo files

blocks.demo
d74.demo
kinship.demo
overview.demo
primate.demo
tax. demo

Test files

base. t est
bc.t est
erfrepn.test
execute. t est
fl.test
fc.test

met a. t est

m a. t est
proprep.test
repn.test
res.test
set.test
tr.test
trbc. test
trfc.test

MRS files used by demo, test

blocks.mrs
fi.mrs
kinship .mrs
meta.mrs
mrs.mrs
msai.mrs
primate.mrs
s.mrs
sets.mrs
syntax.mrs
tax.mrs

VAX files

Makefile
ReadMe
copylispm.vax
getfranz.vax
sendfranz.vax
sendlispm. vax

DEC-20 files
cémpmrs .ctl

makmrs.ctl
prmrs.ctl

Appendix C :

Dictionary of predicates and flags

T

82

The Compleat Guide to MRS

/

o=

achieve

achieve-if

(* <al >...<2, > <ap41 >)
means that <an,431 > represents the product of the values represented
by <a; >. . .<a, >. See fq.

(+ <al > ... <a, <ap41 >)
means that <a,4+; > represents the sum of the values represented by
<a; >...<a, >. See fq.

(- <a> <c>)
means that <e> represents the difference between <a> and . See

fq.

(/] <a> <c>)
means that <e¢> represents the quotient of <a> and . See fq.

(< <a>)
means that <a> is less than . See rq.

(<= <a>)
means that <a> is less than or equal to . See rq.

(= <a>)
means that the terms <a> and are synonymous, i.e. they refer to
the same object. See lookup--.

(> <a>)
means that <a> is greater than , See rq.

(>= <a>)
means that <a> is greater than or equal to . See rq.

(achieve <p>)

makes the proposition <p> true. Achieve is an abstract operator imple-
mented using kb and toachieve. (achieve <p>) and (achieve (not
<p>)) now work when the proposition <p> begins with value, prop-
erty, repn, tbrepn, includes, indb, better, or primitive. So, up to
a point, does (achieve (if <g> <p>)), which calls trueps on <q>
and then ACHIEVEs <p> with the resulting bindings plugged in. Note
that propositions stashed in theories other than the currently writeable
one are not affected. (e.g. (achieve (repn <p> <r>)) has the re-
sult that all propositions matching <p> will henceforth be stashed,
lookuped, and so on using representation <r>, This includes re-storing
currently accessible propositions that were stored using pr-stash or in
cnf. repn works on all theories that are active when it is achieved.
(achieve (tbrepn <p> <r> <th>))) does the same thing as with
repn, but affecting only theory <th>. It is the users responsibility to en-
sure that there are never two or more theories active which use different
representations for the same proposition.) See kb, repn, tbrepn.

(achieve-if (if <p> <q>))
has the effect of calling achieve on the proposition <q> for each list
of variable bindings that makes proposition <p> true, with the relevant

achieve-not

achieve-repn

achieve-threpn

activate

activetheories

agenda

and

applicable

arity

. ask

asks

Appendix C: Dictionary of predicates and flags 83

bindings substituted into <g>. See achieve, trueps, plug.

(achieve-not (not <p>))

is an abstract operator implemented using kb and tounachieve. When
called with an argument of the form (not <p>), it is supposed to
achieve the opposite of <p>, if meaningful. See achieve, unachieve.

(achieve-repn (repn <prop> <rpn>))
uses repn-assert to switch the representation of <prop> from its old
value to <rpm>, and converts any instances of <prop> that can be
found under the old representation to the new one. See domain, repn,
repn-assert, repn-method.

(achieve-threpn (repn <prop> <rpn> <th>)) .
is identical to achieve-repn except that it sets the currently writable
theory to <th> temporarily while it executes. See achieve-repn, the-
ory, threpn.

(activate <ty > . .. <tp >)

__makes the propositions in the theories <ty > ... <t, > available for

retrieval or deduction. See theory, activetheorieg, deactivate.

has as its value the list of currently active theories. The propositions in

these theories are available for retrieval by pr-lookup and pr-lookups.
See pr-stash, pr-unstash, pr-lookup, pr-lookups, activate, and de-
activate.

agenda is a list of applicable tasks. See applicable, scheduler.

(and <p; > ... <pnp >)
means that the propositions <pp > ... <p, > are all true. See assert-
and, bc, br, fc.

(applicable <k>)
states that the task <k> is applicable and, therefore, executable unless
it is disqualified. See executable, disqualified, scheduler.

(arity <rel> <i>)
provides typing information, indicating that the relation (or operation)
<rel> takes <i> arguments, e.g. (arity arity 2). See domain.

(ask <p>)
calls output, prints the result, and reads the users answer. If <p> is
a ground proposition, ask tries to obtain an answer of true or false.
If <p> contains variables, ask obtains variable bindings from the user.
See output.

(asks <p>)
calls output, prints the result, and reads the users answers. If <p> is
a ground proposition, asks tries to obtain an answer of true or false.
If <p> contains variables, asks obtains a list of binding lists from the
user. See output.

84

The Compleat Guide to MRS

assert

assert-and

assert-iff

assumabl e

bagot

batchp

bc

bcdi sp

(assert <p>)
stores the proposition <p> in the data base and performs all appropriate
forward inference. Assert is an abstract operator implemented using kb
and toassert.

(assert-and (and <p1 > . . . <pn >))
separately asserts each of the conjuncts <p; >,. . ., <pn >.

(assert-iff (iff <p> <q>))
asserts (if <p> <q>) and (if <q> <p>).

(assumable <p>)
means that the proposition <p> can be assumed if necessary in trying
to prove a proposition. See residue, residues.

(bagof <x> <p> <s>)

means that <s> is the bag of all objects <x> that atatisfy <p>. Since
there maybe many ways of satisfying <p>, the bag <8> may contain
duplicate objects. Bagof is useful for performing extensional reasoning,
since it allows one to designate the set of all solutions to a problem. See
truep-bagof, lookup-bagof.

(batchp <x> <y>)

checks whether the expressions <x> and <y> can be unified by some
set of bindings for the base-level variables in the two expressions. If so,
batchp returns the corresponding binding list for the variables in <x>
but discards the bindings for the variables in <y>. If the expressions
are not unifiable, batchp returns nil. All variables in <x> are treated
as distinct from the variables in <y>, even though they have the same
name. For example, the expression (r $x b) matches (r a $x) with
result (($x . a) (¢ . t)) . See blvarp, matchp.

(bc <p>)

tries to prove the proposition <p>. If successful, it returns an appropri-
ate binding list; otherwise, it returns nil. Only base-level variables are
treated as variables by bc, and any meta-level variables are treated as
constants. The inference procedure used is backward chaining, but there
are also built-in procedural attachments for many propositions (specified
via the totruep and totrueps relations). Bc is implemented using the
subroutine bcdisp. See bcdisp, scheduler.

(bcdisp <gl> <al> <jl1> <ce>)
performs one backward chaining step in trying to prove the propositions
on the goal list <gl>. The binding list <al> holds bindings for the vari-
ables in <gl> obtained in preceding st eps. The justification list <j1>
holds the names of any propositions used in deriving a goal list from its
super goal list. The list <ce> is a stack of supergoals and justifications.
In working on a goal list (<q> . <1>), bedisp first calls trtruep to
find any procedural attachments for <q> other than bc or bcs, and
if successful calls that subroutine. Otherwise, it generates subgoals by
looking in the data base for propositions of the form <q> or (if <p>

bcs

blvarp

br

brdisp

Appendix C: Dictionary of predicates and flags 85

<q>). The order in which multiple bcdisp tasks are executed can be
influenced via appropriate preferred propositions. bcdisp caches its
results and saves justifications as appropriate. See trtruep, totruep,
totruepa, cache, justify.

(bcs <p>)

tries to prove the proposition <p>. It returns a list of all binding lists for
which it is successful. Only base-level variables are treated as variables by
bes, and any meta-level variables are treated as constants. The inference
procedure used is backward chaining, but there are also built-in proce-
dural attachments for many propositions (specified via the t otruep and
totrueps relations). Bes is implemented using the subroutine bedisp.
See bcdisp and scheduler.

(blvarp <xp>)
returns a non-nil value if <xp> is a base-level variable and otherwise
returns nil. A base-variable in MRS is denoted by a dollarsign prefix
($) and is internally distinguished by the value bl. For example, $a is a
base-level variable. See varp.

(br <p>)

tries to prove the proposition <p>. If succesful, it returns a list of
assumable propositons which, when added to the data base, imply <p>.
Only base-level variables are treated as variables by br, and any meta-
level variables are treated as constants. The inference procedure used is
backward chaining, but there are also built-in procedural attachments for
many propositions (specified via the totruep and totruepa relations).
Br is implemented using the subroutine brdisp. See brdisp, scheduler,
and assumable.

(brdisp <gl> <al> <th> <jl> <ce>)
performs one backward chaining step in trying to find a residue for the
propositions on the goal list <gl>. The binding list <al> holds bindings
for the variables in <gl> obtained in preceding steps. The theory <th>
contains all assumptions made so far. The justification list <j 1> holds
the names of any propositions used in deriving a goal list from its super
goal list. The list <ce> is a stack of supergoals and justifications. In
working on a goal list (<q> . <1>), brdisp first calls trtruep to
find any procedural attachments for <q> other than bc or bcs, and if
successful calls the subroutine so found. Otherwise, it generates subgoals
by looking in the data base for propositions of the form <q> or (if
<p> <q>). It uses trueps to discover whether q is assumable. If it is
assumable and if it is a ground proposition after plugging in the variable
bindings returned by trueps, brdisp creates a new theory that includes
<th>, asserts the proposition in that theory, and generates appropriate
subgoals. The asserted propositions are useful in that they make possible
consistency checking before making assumptions in subsequent steps.
The order in which multiple brdisp tasks are executed can be influenced
via appropriate preferred propositions. Brdisp caches its results and

86

The Compleat Guide to MRS

brs

cache

cachebystash

characteristic

cnf

cnf-assert

cnf-unassert

computable-repn

saves justifications as appropriate. See trtruep, totruep, totrueps,
cache, justify.

(bra <p>)

tries to prove the proposition <p>. It returns a list of all assumption
lists for which it is successful. Only base-level variables are treated as
variables by br8, and any meta-level variables are treated as constants.
The inference procedure used is backward chaining, but there are also
built-in procedural attachments for many propositions (specified via the
totruep and totrueps relations). Brs is implemented using the subrou-
tine brdisp. See brdisp, scheduler, and assumable.

is a variable governing whether various inference methods should cache

their results. When nonNIL, those various inference methods will call
the appropriate tocache method on each cachable result. (l.e., each
method will call (kb tocache <p>) for each intermediate conclusion,
<p>.) See tocache, cachebystash.

(cachebystash <p>)

stashes the value <p> into the theory named by the variable cache.
(If cache has the value T, then the current theory is used.) This
cachebystash subroutine is the default caching method. It is recom-
mended that one house these propositions in a temporary theory, and
apply empty to this theory when the cached values are no longer needed.
See cache, tocache

(characteristic <set> <fn>)

means that the lisp subroutine <fa> is the characteristic function for
the set <set>, e.g. (characteristic integer8 f ixp). See arity,
domain.

is short for conjunctive normal form. A proposition is in conjunc-

tive form if it is written as a conjunction of disjunctions of literals,
i.e. atomic propositions or negations of atomic propositions. For ex-
ample, the proposition (and (or (not (p $x)) (q $x)) (or (r $x)
(s $x))) is in conjunctive form. This also serves as a representation.
See repn.

(cnf -assert <p>)
converts <p> into conjunctive normal form and separately asserts each
of the conjuncta. See cnf.

(cnf -unassert <p>)
converts <p> into conjunctive form and separately unasserts each of the
conjuncts. See cnf.

Explanation.

Many relations and functions can be readily evaluated, and so never
need to be explicitly stashed. Consider, for example, the class of arith-
metic functions and relations, such as + and >. MRS includes several
computable representations in which t0 encode such facts. We describe

computable-repn

computable-repn

Appendix C: Dictionary of predicates and flags 87

below various computable representations - viz., re, rq, rgb, rgbm, reb,
rebm, rgfm, f e, fq and fea. For a proposition to be represented in
one of these representation, its relation symbol must have an associated
LISP subroutine (ALS). Each lookup subroutine associated with each
of these representations takes as input a proposition of the form (<r>
<x3> ... <x, >), and calls ALS on a list of values computed from
that argument list, <x; > . . . <x, >, In some representations, each
argument is first evaluated, using lookupval. Also, in some represen-
tations the ALS takes all n arguments, while in others it is only passed
the term-part of the proposition, namely the first n-l arguments. Note
that propositions stored in this way are not associated with any par-
ticular theory and cannot be found by PR-based routines like prf acts
or prcontents. The details of these representations are specified in
the Computable-Repn (Relation) and Computable-Repn (Function)
entries. These representations are used by the funproc and relnproc
relations.

Functions.

Here we describe those computable-repn representations which are
based on a function. We designate these function-based representations
by using the letter F in the first position of the name of the representation
-~ e.¢g. Fq is a function-based representation. Here, only the term part of
the proposition is passed to the ALS; and it is the responsibility of the
associated lookup subroutines to bind this returned value appropriately.
The same second letter is E for Eval, Q for Quote convention used for
the relation-based representations applies here as well. Hence lookup
subroutines associated with the FE representation will first lookupval
each of the arguments <x; > . . . <xp-3 >, passing the resulting list
to the ALS. The only (current) additional letter for function-based rep
resentations is A, for arithmetic. This uses NUM-= rather than UNIFYP
when comparing the value associated with the term of the proposition
with the value of the proposition. See computable-repn, f e, f ea, f q.

Relations.

This section describes those computable-repn which representations are
based on relations. These relation-based representations are designated
by using the letter R in the first position of the name of the represenation
-~ e.g. Erqg is a relation-based representation. With one exception, the
ALS takes a spread version of the full proposition as its arguments. If the
second letter is E for eval, (as in rEbm,) the associated lookup methods
will first call lookupval on each embedded term, and pass that evaluated
argument list to the ALS. Otherwise, when it is Q for quote, those ar-
gument are directly passed to the ALS. By default, the value returned
by the ALS is an arbitrary value which, when nonNIL, tells the lookup
subroutine that this propostion is true. The third and fourth letter en-
code further refinements: When the third letter in the representations
name is B, (e.g. reB,) the ALS itself will return a binding list, which
the lookup subroutine will return. For these r?b relations, a subsequent

88

The Compleat Guide to MRS

contents

cut

datum

deactivate

def

(def (fact 0 1))

M (e.g. rebM,) means the ALS returns a list of binding-lists, rather
than just one. This 4th letter, M, means multiple values convention is
retained for the RQFM representation (used for multi-functions). Here
the ALS takes only the term part of the proposition, and returns a set of
values. The RQFM-LBOKUPS subroutine then forms the list of appropriate
binding-lists. Consider the Square-Root multi-function, which returns
both the + and - root of @ number. See Computable-Repn (Concept),
repn, re, reb, rebm, rq, rgb, rgom, rgfm.

(content8 <t>)
returns a list of propositions stored in theory <t>. Only those facts
stored using the propositional representation (i.e., pr) will be found.

(cut)

is a gpecial control form. When (cut) is executed, all other subtasks
of the enclosing doable or undoable task are discarded. As a result,
if the subtask containing the (cut) form fails, the enclosing doable or
undoable subtask will fail as well. See doable, undoable.

(datum <x>)
retur ns the symbol corresponding to the expression or proposition <x>.

(deactivate <t; > . . . <t, >)
deactivates the named theories. See theory, activetheories, acti-
vate.

(def <k> <k1> . . . <kn>)

means that the task <k> is defined as (doand <ki> . . . <kn>). A
task can have more than one definition, each one covering a different set
of inputs. For example, the following propositions define the factorial
function.

(def (fact &m &n)

(- &m 1 &p)
(fact &p &q)
(* &m &q &n))

defobject

def rule

(def obj ect <name> <p; > . . . <p, >)
unasserts all propositions in pr that mention <name> and then asserts
the propositions <pj >,. . + <pn >.

(def rule <rule> <f1>...<fy>)

asserts the rule <rule>, and then trasserts each meta-level <f; >, af-
ter substituting the symbol associated with <rule> for *. A typical
application is (defrule *(if (a $x) (b $x)) {direction * for-
ward)), which asserts (if (a $x) (b $x)) and trasserts (direc-
tion p307 forward), where p307 is the proposition symbol assigned
to (if (a $x) (b $x)). As a shorthand, the * may be omitted for
unary functions like direction. That is, * (direction forward) could
be used in place of * (direction * forward). See direction and

deftheory

direction

disjoint

(disjoint nil $y)
(disjoint $x nil)

Appendix C: Dictionary of predicates and flags 89

trassert.

(deftheory <name> <p; > . . . <p, > empties the theory <name>
and asserts propositions <pj >,. . ., <pn > into it.

(direction <p> <d>) .

means that the rule whose symbol is <p> should only be used in the
<d> direction, where <d> is forward, backward or both. E.g., af-
ter (trstash ! (direction p307 forward)), the rule named by p307
- say, (if (a $x) (b $x)) - will only be .used in the forward direc-
tion. That is, the fc subroutines will be able to use this rule in forward-
chaining (e.g. from (@ 18)), but neither bc nor br will have access to
this rule. This is implemented via the direction-lookup, direction-
stash and direction-unstash subroutines. By default, all rules can be
used in both directions. See bc, br, defrule and f c.

(disjoint <x> <y>)
means that lists <x> and <y> do not have any elements in common.

(if (and (not (element $e $s8)) (disjoint $1 $s))
(disjoint ($e . $1) $8))

Procedural attachment: truep-disjoint. The lisp file set must be loaded from the mrs directory.

disqualified
dl
dl-lookup
dl-lookups

(disqualified <k>)
states that the task <k> is disqualified. A task that is applicable
is executable unless it is disqualified. The chief way a task can get
disqualified is for there to be another applicable task that is preferred
to it. However, this fact is used when either of the switches executable
orpref erredisnon-nil. See applicable, scheduler.

(repn <p> dlI)

means that the proposition <p> should be represented in the dl repre-
sentation, i.e. the dl-<x> family of subroutines will be used to stash,
unstash, and lookup <p>. This representation is particularly useful
for representing propositions involving non-functional binary relations,
e.g. (neighbor france Switzerland). Note that propositions stored
in this way are not associated with any particular theory and cannot
be found by PR-based routines like prf acts or prcontents. See dl1-
lookup, dl-stash, dl-unstash, repn.

(dl-lookup (<r> <a>))
matches against each of the values stored as the <r> property of
the lisp atom <a>, and if successful returns the resulting binding list.
Both <r> and <a> must be atoms. See dl.

(dl-lookups {<r> <a>))
matches against each of the values stored as the <r> property
of the lisp atom <a>, and returns a list of the binding lists for every
successful match. Both <r> and <a> must be atoms. See dl.

90

The Compleat Guide to MRS

dl-stash

dl-unstash

dnf

doable

doall

doand

domain

door

edunit

element

(dl-stash (<xr> <a>))
adds to the list of values stored as the <r> property of the atom
<a>. Both <r> and <a> must be atoms. See dl.

(dl-unstash (<xr> <a>))
removes from the list of values stored as the <> property of <a>.
Both <r> and <a> must be atoms. See dl.

is short for disjunctive form. A proposition is in disjunctive form if it is

written as a disjunction of conjunctions of literals, i.e. atomic proposi-
tions or negations of atomic propositions. For example, the proposition
(or (and a b) (and ¢ d)) is in disjunctive form. This also serves as
a representation. See repn.

(doable <k>)
designates the task of trying to execute the task <k>. The task (doable
<k>) succeeds if there is a successful execution of <k>. However, after
a single success, all other subtasks of <k> are discarded, and so it can
succeed at most once. Note that as a result of the current implementa-
tion, it is not possible to interleave subtasks outside a doable task with
those inside. See succeed and cut.

(doall <x> <k> <s8>)
designates the task of getting all <x> for which the task <k> succeeds.
It packages these into a list and succeeds if the resulting list unifies with
<8>.

(doand <k; > . .. <k, >)

designates the task of executing tasks <k; >,.. ., <k, > in sequence. If
one of the tasks can be executed in more than one way, separate subtasks
are set up for each possibility. The doand task succeeds if there is at least
one succesful execution of all the tasks in the list. For example, (doand
(memlist &x ((@) b (c))) (atom &x t)) succeeds because the atom
task succeeds for the execution of the mem task in which &x is bound to b.
The order in which subtasks are executed can be influenced by making
appropriate preferred statements.

(domain <rel> <i> <set>)

provide typing information, indicating that the <i>th argument of the
relation (or operation) <rel> must belong to the set <set>. E.g.
(domain stash 1 propositions). See arity, charactistic, theo-
ries, terms, propositions.

(door <k; > . . . <k, >)
designates the task of trying to execute one the tasks <kj >, . . ., <kn >.

(edunit <x>) allows the user to edit the propositions about <x>
using Zwei. AVAILABLE ONLY IN ZETALISP.

(element <x> <8>)
means that object <x> is an element of list <s>.

(element $e ($e .

Appendix C: Dictionary of predicates and flags 91

$1))

(if (element $e $1) (element $e ($y . $1)))

Procedural attachment: truep-element. The lisp file set must be loaded from the mrs directory.

elementsin

(elementsin <a>).
means that <s> is the set of all elements in the bag .

(elementsin nil nil)

(if (and (not (element $e $1)) (elementsin $1 $s8))
(elementsin ($e . $1) ($e . $8)))

(if (and (element $e $1) (elementsin $1 $s))
(elementsin ($e . $1) $s))

Procedural attachment: truep-elegentsin. The lisp file set must be loaded from the mrs directory.

empty
exdisp

executable

executable

execute

. executed

executed

executes

(empty <t>)
unasserts all the facts in the theory <t>. Only those facts stored using
the propositional representation (i.e., pr) will be found.

~(exdisp <1> <al>)

performs one step in the execution of the list of tasks <1>. The alist
<al>is a list of variable bindings obtained so far.

(executable <k>)

states that the task <k> is executable. If the value of the variable
executable is non-nil, scheduler uses trtruep to find a task <k>
such that (executable <k>) is true. If the value of executable is
nil, it simply selects an element from the value of the variable agenda.
If the value of the variable preferred is nil, it takes the first element;
otherwise, it uses trtruep to find the best according to the preferred
relation. See scheduler.

See definition of the meta-level executable

(execute <k>)

tries to execute the task <k> and, if successful, returns a binding list
for the meta-level variables in <k>. It is implemented using exdisp.
See task, def, doable, undoable, doall, doand, door, succeed, cut,
preferred, tracetask.

(executed <k>)
means that the task <k> has been executed. If the value of the variable
executed is non-nil, scheduler will use trassert to record this fact of
each task as it is.performed. See scheduler.

See definition of the meta-level executed.

(executes <p>)

tries to execute the task <k> and, if successful, returns a list of all
binding lists for the meta-level variables in <k>. It is implemented
using exdisp. See task, def, doable, undoable, doall, doand, door,
succeed, cut, preferred, tracetask.

92

The Compleat Guide to MRS

fc

f cdisp

fe

f e-lookup

f e-lookups

fea

(fc <p>)
means that proposition <p> is assert and then all rules with <p> in the
premise are checked to see if the premise is true and if so the consequence
is asserted. Only base-level variables are treated as variables by fc,
and any meta-level -variables are treated as constants. The inference
procedure used is forward chaining, but there are also built-in procedural
attachments for many propositions (specified via the toassert relation).
Fc is implemented using the subroutine f cdisp. See f cdisp, scheduler.

(f cdisp <p>)

perfdrms one forward chaining step on the proposition <p>. Fcdisp
first calls trtruep to find a procedural attachments for <p> other than
f ¢, and if successful calls that subroutine. Otherwise, it generates other
assertions by looking in the data base for propositions of the form (if
<p> <q>) and (if (and . . . <p> . . .) <q>) . The order in which
multiple fcdisp tasks are executed can be. influenced via appropriate
preferred propositions. Fcdisp caches all results and saves justifica-
tions as appropriate. See trtruep, toassert, justify.

(repn <p> fe)

means that the proposition <p> should be represented in the f e rep
resentation. That is, the fe-<x> family of subroutines will be used to
retrieve <p>. Its lookup method, fe-lookup, takes as its argument a
proposition of the form (<f > <x; > . . . <Xp > <xXp41 >) . It first
evaluates the term (<f > <x; > . . . <x, >) by applying LISP sub-
routine corresponding to the function symbol <f >, (i.e., on <f >s LISP
property,) to the list obtained by calling lookupval on each of the <x; >.
Fe-Lookup then unifies this value with (lookupval <xp41>), and re-
turns the result. See computable-repn, f e-lookup, f e-lookups, f ea,
f g, f unproc, repn.

(£ e-lookup <p>)
is used to retrieve the proposition <p>. See fe, lisp.

(£ e-lookup8 <p>)
is functionally equivalent to (pluralize (Fe-lookup p)). See f e, f e-
| ookup.

(repn <p> fea)

means that the proposition <p> should be represented in the f ea rep
resentation. That is, the fea-<x> family of subroutines will be used
to retrieve <p>. Its lookup method, f ea-lookup, takes as its argument
a proposition of the form (<f > <x; > . . . <xp > <Xp41 >). It first
evaluates the term (<f> <x; > . . . <x, >) by applying LISP sub-
routine corresponding to the function symbol <f >, (i.e., on <f >s LISP
property,) to the list obtained by calling lookupval on each of the <x; >.
Fea-Lookup then compares this value to (lookupval <x,4; >) using
num-=, and returns the result. (Fe-lookup just uses unifyp to produce
this comparison.) See computable-repn, f ea-lookup, f ea-lookups,
fe, funproc, repn.

f ea-lookup

fea-lookups

finderrors

iq

fq-lookup

fg-lookups

function

funproc (2)

funproc (3)

Appendix C: Dictionary of predicates and flags 93

(f ea-lookup <p>)
is used to try to retrieve the proposition <p>. See f ea, num-=, lisp.

(f ea-lookups <p>)
is functionally equivalent to (pluralize (Fea-lookup p)). See f ea,
f ea-lookup.

(f inderrors)
runs through all the test files to find the errors in MRS. For each error it
find it prints out the result and expected result. It returns the number
of errors it finds

(repn <p> £q)

means that the proposition <p> should be represented in the f g rep-
resentation. That is, the fg-<x> family of subroutines win be used to
retrieve <p>. By default, most.functions, (including arithmetic ones,)
use this representation. Its lookup method, fg-lookup, takes as its ar-
gument a proposition of the form (<f > <x1 > . . . <Xp > <Xp4+1>) .
It first evaluates the term (<f > <x; > ... <x, >) by applying LISP

" subroutine corresponding to the function symbol <f>, (i.e., on <f>s

LISP property,) to the list <x; > . .. <x, >. Fg-Lookup then unifies
this value with <xn43 >, and returns the result. See computable-repn,
f e, f g-lookup, f g-lookups, f gm, repn.

(f g-lookup <p>)
is used to try to retrieve the proposition <p>. See fq lisp.

(f g-lookups <p>)
is functionally equivalent to (pluralize (Fg-lookup p)). See f q, f q-
lookup.

(function <x>)
means that <x> is a function. See singlep

(funproc <sym> <op>)

means that the operator <op> is procedurally attached to the symbol
<sym>. E.g. after asserting (funproc + plus), (lookupval (+ 2 3
4)) will pass 2, 3 and 4 to the LISP procedure plus, and return its
answer, 9. Note that this looking-up mechanism is (intentionally) very
simple —= while (lookup (+ 2 3 4 $a)) will work (returning a bind-
ing list which includes ($a . 9),) both (lookup (+ 2 3 $b 9)) and
(lookup (+ $d O $c)) ®w1 Heturn nil. The (funproc <sym> <op>)
assertion will use funproc-assert to forward chain to assert (function
<sym>), and that all propositions (and terms) whose relation symbol
is <sym> should use the fq representation. See £q, function, funproc
(3), funproc-assert, relnproc.

(funproc <sym> <op> <repn>)

This is an embellishment of the binary f unproc, listed under funproc
(2). After a (funproc + plus) assertion, both (lookup (+ 2 (+ 3
4) $x)) and (lookup (+ 2 3 4) 9 .0)) will fail - i.e. return nil. One

94

The Compleat Guide to MRS

funproc-assert

getbdg

getbdgs

getval

getvals

getvar

ground

groundp

if

iff

includes

includes

can use the (optional) third argument, <repn>, to permit two other,
more elaborate forms of functional procedural attachment. The (fun-
proc + plus FE) assertion handles the first problem. Now each em-
bedded ground term = here 2 and (+ 2 3) = will first be lookupvaled,
and the result passed to the LISP procedure plus. That is, this uses
the f e representation, rather than f g. The assertion (funproc + plus
FEA) solves the second problem, causing (+ . &x) to use the f ea rep-
resentation. The <repn> term defaults to f g if omitted. One can also
substitute EVAL for f e, or = for f ea. See f ea, f e, f g, function, funproc
(2), funproc-assert, num-=, relnproc.

(funproc-assert (funproc <sym> <op> <repn>))
asserts the proposition (funproc <sym> <op> <repn>). (The same
subroutine is used to assert (funproc <sym> <op>).) See funproc.

(getbdg <v> <p>)
is equivalent to (getvar <v> (truep <p>)).

(getbdgs <v> <p>)
is equivalent to
(mapcar (lambda (1) (getvar <v> 1)) (trueps p)).

(getval (<r> <x; > . . . <xp >))

is equivalent to (getbdg <y> (<r> <x; > . . . <xp > <y>)).
(getvals (<xr> <x1 > . . . <xq >))

is equivalent to (getbdgs <y> (<x> <x; > . . . <x, > <y>)).

(getvar <v> <1>)

looks up the binding of the variable <v> on the binding list <1>, fully
instantiates it with respect to the other variables on <1>, and returns the
result. For example, (getvar $x (($x . (£ $y)) ($y . @))) would
return (£ a).

(ground <x>)
states that the expression <x> is a ground expression, i.e. it contains
no variables. See lookup-ground.

(groundp <x>)
returns t if and only if the expression <x> contains no variables.

(if <p> <q>)

means that whenever proposition <p> is true, proposition <q> is true.
See bc, br, fc.

(iff <p> <q>)

is equivalent to (and (if <p> <q>) (if <q> <p>)).

(includes <e> <d>)

means that the theory <e> includes the theory <d>.

(includes <t; > <tz >)
makes theory <t; > a supertheory of theory <ts > so that whenever

indb
indbp

integer

inter

Appendix C: Dictionary of predicates and flags 95

<t > is active <tz > will be active as well. In effect theory <t; >
includes all of the propositions in <tz >. Both theory and activethe-
ories take these inclusions into account.

(indb <p>)

(indbp <p>)
means that a proposition equal to <p> up to variable renaming is stored
in the pr representation. See pr-indbp.

(integer <x>)
means that <x> is an integer.

(inter <x> <y>)
means that list is every element in list <x> that is in list <y>.

(inter nil $y nil)
(if (and (element $e $y) (inter $1 $y $s))

(inter ($e .

$1) 8y ($e . $s)))

(if (and (not (element $e $y)) (inter $1 $y $s))
(inter ($e~ $1) $y $8))

Procedural attachment: truep-inter. The lisp file set must be loaded from the mrs directory.

intersect

(intersect <x> <y>)
means that bag <x> and bag <y> have an.equal element.

(if (or (element $e $8) (intersect $1 $8))
(intersect ($e . $1) $s))

Procedural attachment: truep-intersect. The lisp file set must be loaded from the mrs directory.

is

just

justify

kb

known

(is <x> <y>)
means that the value of the arbitrarily nested expression <x> is <y>.
See lookup-is, truep-is.

(just <@> <m> <p; > . . . <pp >)
means that the justification for the proposition named <g> is the infer-
ence method <m> and the premises <p; >, . . . <pn >. See where, why,
justify, tm-unassert.

is a variable governing MRSs mechanism for recording justifications.
When nonNIL, its value is the name of the theory into which MRS will
save justifications for all deductions. (If justify has the value T, then
the current theory is used.) It is recommended that one house these
propositions in a temporary theory, and apply empty to this theory when
these justifications are no longer needed. See why and where.

(kb to<g> <arg; > ... <argy >)

is MRSs way of handling procedural attachments. It is equivalent to
(apply (getvar &f (trtruep (to<g> <arg; > . . . <argy > &f)
<arg; > ... <argy >)). See to<g>.

(known <p>)
means that proposition <p> must be in the database for this to be true.

96

The Compleat Guide to MRS

[ength

Ihf alse

[htrue

lisp

| ookup

| ookup- =

lookup-bagof

lookup-ground

lookup-is

lookupapplicable

lookupbdg

lookupbdgs

lookupbylookups

See unknown.

(length <1> <n>)
means that the list <1> is of length <n>.

(Ihf alse (unprovable <p>))
calls | ookup on theproposition <p>. Itreturnsnil if the answer is
non-nil; otherwise, it returns truth.

(Ihtrue (provable <p>))
call's I ookup on the proposition <p> and returns the answer.

(I'i sp <sym> <op>)

means that <op> is the Lisp subroutine used to compute the function
denoted by the symbol <sym>. E.g. (lisp + plus). See Computable-
Repn (Concept), f ea-lookup, f e-lookup, f g-lookup, re-lookup, rq-
| ookup, rgb-lookup, reb-lookup, r gf m | ookups.

(1 ookup <p>)
checks whether the proposition <p> mat ches a proposition in the data
base and, if so, returns the correponding binding list. Lookup is an
abstract operator implemented using kb and tolookup.

(lookup-= (= <x> <y>))
calls unifyp on the expressions <x> and <y> and returns the result.
See =,

(lookup-bagof (bagof <x> <p> <s8>))
calls lookups on <p> and matches <8> against the sequence formed
by plugging the answers into <x>. Lookup-bagof is useful for perform-
ing extensional reasoning, since it allows one to designate the set of all
solutions to a problem.

(lookup-ground (ground <x>))
returns ((t p t)) if and only if the expression <x> contains no vari-
ables. See ground.

(lookup-is (is <x> <y>))
uses lookupval to evaluate the arbitrarily nested expression <x> and
tries to unify the answer with <y>. See is.

(lookupapplicable (applicable <k>))
tries to match <k> with each element of agenda and returns a corre-
sponding binding list if successful. See applicable.

(lookupbdg <v> <p>)
is equivalent to (getvar <v> (lookup <p>)).

(1 ookupbdgs <v> <p>)
is equivalent to (mapcar (lambda (x) (getvar <v> X)) (lookups
<p>)).

(1 ookupbyl ookups <p>)
is equivalent to (singularize (lookup8 <p>)).

Appendix C: Dictionary of predicates and flags 97

lookups (lookups <p>)
checks whether the proposition <p> matches any propositions in the
data base and returns a list of binding lists for each successful match.
Lookups is an abstract operator implemented using kb and tolookups.

lookupsapplicable (lookupaapplicable (applicable <k>))
tries -to match <k> with each element of agenda and returns list of
binding lists for each successful match. See applicable.

lookupsbylookup (lookupsbylookup <p>)
is equivalent to (pluralize (lookup <p>)).

lookupval (lookupval (<f > <x; > . . . <x, >))
is equivalent to (getvar <y> (lookup (<f > <x; > . . . <% >
<y>))).

lookupvals (lookupvale (<£> <x1 > . . . <X >))

is equivalent to (mapcar (lambda (x) (getvar <y> x)) (lookups
(<f> <x3 > ... <xp > <y>))).

mand = (mand <p> <1>)
is satisfied. if (<p> x) is true for every x in the list <1>.
(mand $p nil) '
(if (and ($p $x) (mand $p $1)) ’

(mand $p ($x . $1)))
Procedural attachment: truep-mand. The lisp file set must be loaded from the mrs directory.

mandcan (mandcan <p> <1> <8>)
means that <s> is the union of the lists y that satisfy (<p> x y) for
every element x in list <1>.

(mandcan $f nil nil)
(if (and ($f $x $y) (mandcan $f $1 $s) (union $y $s $t))
(mandcan $f ($x . $1) $t))

Procedural attachment: truep-mandcan. The lisp file set must be loaded from the mrs directory.

mandcar (mandcar <p> <1> <8>)
means that <s> is the set of objects y that satisfy (<p> x y) for every
element x in list <1>.

(mandcar $f nil nil)
(if (and ($f $x $y) (mandcar $f $1 $s))
(mandcar $f ($x . $1) ($y . $3)))

Procedural attachnent: truep-mapcar. The lisp file set must be loaded from the mrs directory.

matchp (matchp <x> <y>)
checks whether the expressions <x> and <y> can be unified by some
set of bindings for the meta-level variables in the two expressions. If so,
matchp returns the corresponding binding list for the variables in <x>
but discards the bindings for the variables in <y>. If the expressions
are not unifiable, matchp returns nil. All variables in <x> are treated

98

The Compleat Guide to MRS

mem

member

memlist

mlvarp

mrgapropos

mrsdemo

mrsdescribe

mrsdump

mrshelp

mrsload

mrssave

mrstofunctions

not

as distinct from the variables in <y>, even though they have the same
name. For example, the expression (r &x b) matches (r a &x) with
result ((&x . a) (t p t)). See batchp.

(mem <e> <c¢>)
means that the element <e> is a member of the set of <e>. E.g., (mem
george people). See subclass.

(member <a> <8>)
means that <a> is a member of the list <s8>, e.g. (member 6 (4 5

6)).

(memlist <x> <1>)
designates the task of checking whether the object <x> is in the list <1>,
Memlist tries to unify <x> with each element of <1> and succeeds once
for each match that it finds.

(mlvarp <xp>)
returns a non-nil value if <xp> is & meta-level variable and otherwise
returns nil. A meta-variable in MRS is denoted by an ampersand prefix
(&) and is internally distinguished by the value ml, e.g. &a is a meta-level
variable. See varp.

(mrsapropos <s>)
returns a list of all LISP atoms containing <s> as a substring of their
printnames.

(mrsdemo)
presents a demonstration of the range of capabilities in MRS.

(mrsdescribe <x>)
prints out the portion of this dictionary relevant to the object <x>.

(mrsdump <t> <£>)
saves the propositions from theory <t> in a form that allows them to
be reloaded with LISPs load command. Only those facts stored using
the propositional representation (i.e., pr) will be found.

(mrshelp <k>) provides information about the MRS keyword <k>.

(mrsload <f >)
loads a file <f > of propositions.

(mrssave <ty > ... <t, > <f>)
saves the propositions from theories<t; > ... <t, > in the file <f>ina
form that allows them to be reloaded with the mrsload command. Note
that this works only for propositions stored in the pr representation.

refers to the set of all MRS to<g> functions - e.qg.
mrstofunctions). See domain.

(memtostash

(not <p>)
means that the proposition <p> is false. This is not equivalent to un-
known, or to unprovable.

nun-=-threshold

number

or

output

pattern

perceive

perceive-indb
perceive-not

perceives

pl

pl-lookup

Appendix C: Dictionary of predicates and flags 99

(oum-= <x> <y>)

means that the expressions <x> and <y> are numerically equal = or
close enough to qualify. Procedurally, if <x> and <y> (are nonNIL
and) unify, that MGU value is returned. Otherwise, if both terms are
ground atomic numeric expressions, whose difference is less than NUM-
--THRESHOLD, truth is returned. E.g. {(aum-=3 3 .0) returns t r ut h,
whereas (unifyp 3 3.0) returns nil. See f ea, num~=-theshold.

is a special variable whose value is the tolerance required for two numeric
values to be considered equal. It is initially set to 0.0001. See num-=,

(number <x>)
means that <x> is a number.

(or <p; >...<pp >)
means that one or more of the propositions <p; > ... <pyn > is true.

(output <x>)
translates the expression <x> into pseudo-natural language in accor-
dance with programmer-defined templates. See template.

(pattern <d>)
returns the proposition corresponding to the proposition symbol <d>.

(perceive <p>)

determines Whether the proposition <p> is true by direct observation
rather than inference. Perceive is an abstract operator implemented
using kb and toperceive.

(perceive-indb (indb <p>))
(perceive-not (not <p>))

(perceives <p>)
determines whether the proposition <p> is true by direct observation
rather than inference and returns a list of all binding lists for which it
succeeds. Perceives is an abstract operator implemented using kb and
toperceives.

(repn <p> pl)

means that the proposition <p> should be represented in the pl repre-
sentation, i.e. the pl-<x> family of subroutines will be used to stash,
unstash, and lookup <p>. This representation is particularly useful for
representing propositions involving unary functions, e.g. (arity mem-
ber 2). Note that propositions stored in this way are not associated
with any particular theory and cannot be found by PR-based routines
like prfacts or prcontents. See pl-lookup, pl-stash, pl-unstash,
repn.

(pl-lookup (<f£> <a>))
matches against the <f > property of the lisp atom <a>. <f > and
<a> must both be atoms. See pl.

100

The Compleat Guide to MRS

pl-stash

pl-unstash

plug

pluralize

pr

pr-indbp

pr-lookup

pr-lookup8

pr-stash

pr-unstash

prcontents

preferred

(pl-stash (<f> <a>))
places on the property list of <a> under the indicator <f >. <f >
and <a> must both be atoms. See pl .

(pl-unstash (<f> <a>))
removes the <£ > property from the lisp atom <a>, if its value was .
<f > and <a> must both be atoms. See pl.

(plug <x> <1>)

returns a copy of the expression <x> fully instantiated with respect to
the variables on the binding list <1>. For example, (plug (r $x $z)
(($x . (£ $y)) ($y . a))) would return (x (£ a) $z).

(pluralize <x>)
returns the plural-value of <x>. That is, it returns (list <x>) if <x>
is nonNIL, or nil otherwise. See lookupsbylookup, truepsbytruep.

(repn <p> pr)

means that the proposition <p> should be represented in the pr repre-
sentation, i.e. the pr-<x> family of subroutines will be used to stash,
unstash, and lookup <p>. This is MRSs default representation. Propo-
sitions stored in this way can be associated with any number of theories
and will be available for use only when one or more of those theories are
active. See pr-lookup, pr-indbp,' pr-stash, pr-unstash.

(pr-indbp <p>)
checks whether there is a proposition in the pr representation that is
identical to <p> up to variable renaming and, if so, returns its proposi-
tion symbol. See pr.

(pr-lookup <p>)

uses indexp and batchp to find any matching proposition in the pr
representation and, if successful, returns the corresponding binding list.
See pr.

(pr-lookup8 <p>)

uses indexp and batchp to find any matching proposition in the pr rep-
resentation and returns a list of all binding lists for which it is successful.
See pr.

(pr-stash <p>)
stores <p> in the propositional data base and returns the corresponding
proposition symbol. See pr.

(pr-unstash <p>)
removes the proposition <p> from the propositional data base. See pr.

(prcontents <th>)
prints out all propositions in theory <th>. Only those facts stored using
the pr representation will be found.

(preferred <j > <k>)
states that the task <j > is preferred to the task <k>. The preferred is

prfacts

primitive

property

propositions

provable

re

re-lookup

re-lookup8

reb

Appendix C: Dictionary of predicates and flags 101

important in that <k> is disqualified whenever there is an applicable
task that is preferred to it. This relation is the primary way of influ-
encing task ordering in MRS. It has effect only when one of the switches
executable or preferred has a non null value. See disqualified,
scheduler.

(prfacts <n>)
prints out all propositions about <n> in the currently active theories.
Only those facts stored using the pr representation will be found.

(primitive <k>)
states that the operator in the task <k> is a primitive machine operation,
i.e. a Lisp subroutine.

(property <x> <y> <z>)
means that the atom <x> has <y> asit8 <z> property.

(domain <x> <i> propositions)
means that the <i>th argument to the subroutine <x> should be a
proposition. See domain.

(provable <p>)
means that proposition (provable <p>) is true if <p> can be proved
using the normal mechanisms for proving <p>. See unprovable.

(repn <p> re)

means that the proposition <p> should be represented in the re rep
resentation. That is, the re-<x> family of subroutines will be used to
retrieve <p>. Its lookup method, re-lookup, takes as its argument a
proposition of the form (<r> <x; > . . . <x, >) and calls lookupval
on each of the <x; >. If there is a LISP subroutine (i.e. on <r>s
LISP property,) corresponding to the relation symbol <r>, re-lookup
applies the subroutine and returns ((t p t)) if that subroutines re-
turns nonNIL; otherwise it return nil. See computable-repn, repn,
re-lookup, re-lookups, rq, reb, relnproc. .

(re-lookup <p>)
is used in trying to retrieve the proposition <p>. See re.

(re-lookup8 <p>)
is functionally equivalent to (pluralize (Re-lookup p)) . See re, re-
lookup.

(repn <p> reb)
means that the proposition <p> should be represented in the reb rep-
resentation. That is, the reb-<x> family of subroutines will be used to
retrieve <p>. Its lookup method, reb-lookup, takes as its argument a
proposition of the form (<r> <x; > . . . <x, >). If there is a LISP
subroutine (i.e. on <r>s LISP property,) corresponding to the relation
symbol <r>, reb-lookup applies the subroutine to these arguments, and
returns the result (assumed to be a binding list). E.g. (repn (unifyp
$a $b) reb). See computable-repn, repn, reb-lookup, reb-lookups.

102

The Compleat Guide to MRS

reb-lookup

reb-lookups

rebm

rebm-lookup

relnproc (2)

relnproc (3)

(reb-lookup <p>)
is used in trying to retrieve the proposition <p>. See reb, relnproc.

(reb-lookups <p>)
is functionally equivalent to (pluralize (reb-lookup p)). See reb,
reb-lookup.)

(repn <p>rebm

means that the proposition <p> should be represented in the rebm rep
resentation. That is, the rebm-<x> family of subroutines will be used
to retrieve <p>. Its lookup method, reb-lookup, takes as its argu-
ment a proposition of the form (<x> <x; > . . . <x, >) . If there is
a LISP subroutine (i.e. on <r>s LISP property,) corresponding to the
relation symbol <r>, reb-lookup applies the subroutine to these argu-
ments, and returns the result (assumed to be a list of binding lists). See
computable-repn, reb, rebm-lookup, reb-lookups, relnproc, repn.

(rebm-lookup <p>)
is functionally equivalent to (singularize (reb-lookup p)). See
rebm, reb-lookup.

(relnproc <sym> <op>)

is a way of procedurally attaching the operation <op> to the relation
symbol <sym>. E.g. after asserting (relnproc < greater-than),
(lookup (< 2 4)) will pass 2 and 4 to the LISP procedure greater-
than, and seeing its answer is nonNIL, the lookup call will return ((t p
t)). (It would otherwise return NIL.) The (relnproc <sym> <op>)
assertion will use relnproc-assert to forward chain to assert that all
propositions whose relation symbol is <sym> should use the rq repre-
sentation. See funproc, relnproc (3), relnproc-assert, rq.

(relnproc <sym> <op> <repn>)

There are various possible limitations with binary relnproc mecha-
nism, listed above under relnproc (2). First, after asserting (rel-
nproc < greater-than), the query (lookup (< 2 (+ 1 3))) willre-
turn nil. Second, after asserting (relnproc unify unif yp) , (lookup
(unify (a $y) ($x b) M ilbnly return ((tpt)), ignoring the ($x
. a) and ($y . b) bindings. The (optional) third argument above,
<repn>, permits other, more elaborate forms of relational procedural
attachment. The (relnproc < greater-than RE) assertion handles
the first problem. Here each embedded ground term - here 2 and (+ 1
3) = will first be lookupvaled, and the result passed to the LISP pro-
cedure greater-than. This uses the re representation, rather than rq.
The (relnproc unify unifyp RQB) assertion handles the second prob-
lem, as the (unify &x &y) facts will now use the RQB representation.
Similarly <repn> can be set to RQBM, REB, REQB or RQFM. If omitted,
<repn> here defaults to rq. One can also use the aliases EVAL for RR,
BindList for RQB, MBindList for REBM, EBindList for REB, MEBindList
for REBM, or MultiFn for RQFM. See relnproc (2), relnproc-assert,
re, reb, rebm, rq, rgb, rgbm, rgfm.

relnproc-assert

repn

repn-assert

repn-method

repn-unassert

repns

residue

residues

Appendix C: Dictionary of predicates and flags 103

(relnproc-assert (relnproc <sym> <op> <repn>))
asserts the proposition (relnproc <sym> <op> <repn>). (The same
subroutine is used to assert (relnproc <sym> <op>) .) See relnproc.

(repn <p> <rpa>)
means that the representation <rpn> should be used to store and ac-
cess the proposition <p>. (See repns entry for list of allowable repre-
sentations.) See achieve, repn-assert, repn-method, repn-unassert,
repns.

(repn-assert (repn <prop> <rpn>))

uses the repn-method declarations associated with this representation
<rpn> to stash (in a forward chaining manner) the appropriate to<x>
statements for this <prop>. The domain specification of that operation
is used to determine the exact form of the assertion. E.g. calling repn-
assert on the assertion (repn (father &c &d4) pl) will generate the
statements (tolookup (father &c &d) pl-lookup), and (tolookups
(father &c &d) pl-lookups), as (domain lookup 1 propositions).
(Later it may deal with terms,, and assert facts like (tolookupval
(father &c) pl-lookupval), (via (domain lookupval 1 terms)) as
well.) See domain, repn, repn-method, repn-unassert.

(repn-method <rpn> <op> <mthd>)
means that the LISP subroutine <mthd> should be used to perform the
<op> operation, in the representation <rpn>. E.g. (repn-method pr
tostash pr-stash). See repn-assert, repm, repn-unassert.

(repn-unassert (repn <prop> <rpn>))
undoes the effects (read stashes) of repn-assert. See domain, repn,
repn-assert, repn-method.

(mem <r> repns)
means that the symbol r refers to a representations. Currently existing
representations include cnf, dl, pl, pr, tl and achieve-perceive, all
of which store results; and f e, f ea, f q, re, reb, rebm, rq, rgb, rgpm and
rgfm which do not. See repn, computable-repn.

(residue <p>)
tries to prove the proposition <p>. It differs from truep in that it is
allowed to make assume any proposition asserted to be assumable; and,
if it is successful in proving <p>, it returns a list of its assumptions. The
set of assumptions is called the residue of <p>. Residue is an abstract
operator defined using kb and toresidue. See assumable.

(residues <p>)
tries to prove the proposition <p>. It differs from trueps in that it is
allowed to make assume any proposition asserted to be assumable; and,
if it is successful in proving <p>, it returns a list of lists of assumptions.
The set of assumptions is called the residue of <p>. Residue is an
abstract operator defined using kb and toresidue. See assumable.

104

The Compleat Guide to MRS

resolution

resolutionresidue

resolutionresidue

resolutionresidues

resolutions

q

(resolution <p>)

tries to prove the proposition <p>. If successful, it returns an appropri-
ate binding list; otherwise, it returns nil. Resolution is an implemen-
tation of linear-input resolution using the set of support control strategy.
In operation, resolution negates <p> and converts it to conjunctive
form, stashes the results in a locally bound theory, and invokes the sub-
routine rsdisp on each conjunct. See rsdisp, scheduler, tracetask,
cnf.

(resolutionresidue <p>)

tries to prove the proposition <p>. If succesful, it returns a list of assum-
able propositons which, when added to the data base, imply <p>. Res~
olutionresidue is an implementation of linear-input resolution using
the set of support control strategy. In operation, resolutionresidue
negates <p> and converts to conjunctive form, stashes the results in a
locally bound theory, and invokes the subroutine rrdisp on each con-
junct. See rrdisp, scheduler, tracetask, cnf.

(resolutionresidue <p>)

tries to prove the proposition <p>. If succesful, it returns a list of assum-
able propositons which, when added to the data base, imply <p>. Res-
olutionresidue is an implementation of linear-input resolution using
the set of support control strategy. In operation, resolutionresidue
negates <p> and converts to conjunctive form, stashes the results in a
locally bound theory, and invokes the subroutine rrdisp on each con-
junct. See rrdisp, scheduler, tracetask, cnf

(resolutionresidues <p>)

tries to prove the proposition <p>. It returns a list of all assumption lists
for which it is successful. Resolutionresidues is an implementation of
linear-input resolution using the set of support control strategy. In op-
eration, resolutionresidues negates <p> and converts to conjunctive
form, stashes the results in a locally bound theory, and invokes the sub-
routine rrdisp on each conjunct. See rrdisp, scheduler, tracetask,
cnf.

(resolutions <p>)
tries to prove the proposition <p>. It returns a list of all binding lists
for which it is successful. Resolutions is an implementation of linear-
input resolution using the set of support control strategy. In operation,
resolutions negates <p> and converts to conjunctive form, stashes the
results in a locally bound theory, and invokes the subroutine rsdisp on
each conjunct. See rsdisp, scheduler, tracetask, cnf.

(repn <p> 1q)

means that the proposition <p> should be represented in the req rep-
resentation. That is, the rq-<x> family of subroutines will be used to
retrieve <p>. Its lookup method, rg-lookup, takes as its argument
a proposition of the form (<r> <x; > . . . <x, >). |If thereis a
LISP subroutine corresponding to the relation symbol <r>, (i.e. on

rg-lookup

rq- | ookup8

rqb

rgb- 1 ookup

rgb- 1 ookups

rqgbm

rgbm-lookup

rqfm

/
I}

Appendix C: Dictionary of predicates and flags 105

<xr>s LI SP property,) rg-lookup applies the subroutine to the argu-
ments (<x; > ... <x, >), and returns truth if the result is nonnil;
or nil. By default, most relations, including arithmetic ones, use this
representation. See re, rg-lookup, rg-lookups, relnproc, repn.

(rg-lookup <p>)
is used in trying to retrieve the proposition <p>. See rq, lisp.

(rg-lookup8 <p>)
is functionally equivalent to (pluralize (Rg-lookup p)). See rq, rq-
lookup.

(repn <p>r gb)

means that. the proposition <p> should be represented in the rgb rep
resentation. That is, the rgb-<x> family of subroutines will be used to
retrieve <p>. Its lookup method, rgb-lookup, takes as its argument a
proposition of the form (<x> <x; > . . . <x,, >). If there is a LISP
subroutine corresponding to the relation symbol <r>, (i.e. on <r>s
LISP property,) rgb-lookup applies the subroutine to the arguments

(<x1>...<x, >), and simply returns the result (assumed here to be

a binding-list). See computable-repn, reb, rgb-lookup, rgb-lookups,
relnproc, repn.

(rgb-lookup <p>)
is used in trying to retrieve the proposition <p>. See rgb, rgbm, lisp.

(rgb-lookups <p>)
is functionally equivalent to (pluralize (Rgb-lookup p)). See rqb,
rqb-lookup.

(repn <p> rgbm)

means that the proposition <p> should be represented in the rgbm rep
resentation. That is, the rgbm-<x> family of subroutines will be used
to retrieve <p>. Its lookup method, rgb-lookup, takes as its argu-
ment a proposition of the form (<xr> <x3 > . . . <x, >). If there is
a LISP subroutine corresponding to the relation symbol <r>, (i.e. on
<r>s LISP property,) rgb-lookup applies the subroutine to the argu-
ments (<x; > . . . <x, >), and simply returns the result (assumed here
to be a list of binding-lists). See computable-repn, rgb, rqgbm-lookup,
rgb-1 ookup, rel nproc, repn.

(rgbm | ookup <p>)
is functionally equivalent to (singularize (Rgb-lookup p)) . See
rgbm rqb-1 ookup.

(repn <p> rqgfm
means that the proposition <p> should be represented in the r qf m r ep-
resentation. That is, the rqfm-<x> family of subroutines will be used
to retrieve <p>. Its lookup method, rqfm-lookups, takes as its argu-
ment a proposition of the form (<xr> <x; > . . . <x, > <Xp41 >).
It first evaluates the term (<r> <x; > ... <x, >) by applying LISP

106

The Compleat Guide to MRS

rgfm-lookup

rgfm-lookup8

rrdisp

rsdisp

runnable

subroutine corresponding to the function symbol <r>, (i.e., on <r>s
LI SP property,) to the list <x; > . .. <x, >. This returns a list of val-
ues. Rqgfm-lookups then unifies each of these with <xn+1 >, returning
the list of results. See computable-repn, rgfm-lookup, rgfm-lookups,
relnproc, repn.

(rgfm-lookup <p>)
is functionally equivalent to (singularize (Rgfm-lookups p)) . See
rgfm, r gf m | ookups.

(rgfm-lookup8 <p>)
is used to retrieve the propositions <p>. See rgfm, lisp.

(rrdisp <1> <cl> <al> <th>)

performs one resolution step in trying to derive a contradiction from
the propositions on the list €1>. The list <cl> contains a list of as-
sumptions made in preceding steps. The binding list <al> holds the
bindings of the variables from preceding steps. The theory <th> holds
the conjuncts from the negated goal. To be used, all propositions must
be in conjunctive form. In addition, only base-level variablea are treated
as variables, any meta-level variables are treated as constants. Given a
goal list (<p> . <1>), rrdisp generates subgoals by negating <p>
to get <g> and looking in the data base for propositions of the form
<q> or (or . ..<g> ...). It also uses trueps to discover whether p
is assumable. If it is assumable and if it is a ground proposition after
plugging in the variable bindings returned by trueps, brdisp creates a
new theory that includes <th>, asserts the proposition in that theory,
and generates appropriate subgoals. The asserted propositions are useful
in that they make possible consistency checking before making assump-
tions in subsequent steps. The order in which multiple rrdisp tasks are
executed can be influenced via appropriate preferred propositions. See
assumable, cnf.

(rsdisp <1> <al> <th>)

performs one resolution step in trying to derive a contradiction from
the propositions on the list <1>. The binding list <al> holds the
bindings of the variables from preceding steps. The theory <th> holds
the conjuncts from the negated goal. To be used, all propositions must
be in conjunctive form. In addition, only base-level variables are treated
as variables, any meta-level variable is treated as a constant. Given a
goal list (<p> . <1>), rsdisp generates subgoals by negating <p>
to get <q> and looking in the data base for propositions of the form
<q> or (or . ..<q> ...). The order in which multiple rsdisp tasks
are executed can be influenced via appropriate preferred propositions.
See cnf.

(runnable <k>)
states that the task <k> is runnable. A runnable task is applicable
if its operator is a Lisp subroutine; otherwise, it is assumed to be a de-
fined task, and a corresponding invocation of exec is applicable. In

samep

scheduler

Appendix C: Dictionary of predicates and flags 107

MRS demons are implemented via runnable, e.g. to tell the system that
it should print a greeting whenever the user asserts a proposition that
someone is logged, one simply asserts (if (loggedin $x) (runnable
(print hello t))) and (toassert (loggedin &x) fc). See appli-
cable, scheduler.

(samep <x> <y>)

determines whether expressions <x> and <y> are the same under con-
sistent variable renaming; and if so returns a binding list for the variables
in <x>. For example, (p $x $y $x) is the same as (p $y $x $y) but
not (p $x $y $y).

(scheduler)
Scheduler is the heart of the MRS system. It is a simple deliberation-
action loop that, at each point in time, decides on an executable task,
executes it, and repeats. In its most general state, the choice of task
is made by calling trtruep to find a task <k> such that (executable
<k>) is true. After the task is performed, the fact is recorded by call-

. ing trassert on the proposition (executed <k>). In its initial state,

setdiff

MRS contains a number of propositions to help scheduler decide on an
executable task. In particular, a task is executable if it is applicable
and is not disqualified. Once a task becomes applicable, it remains
applicable until it is executed. One way an applicable task can be dis-
gualified is for there to be another applicable task that is preferred
to it. A runnable task is applicable if its operator is a Lisp subroutine.
Otherwise, it is assumed to be a defined task, and a corresponding exec
task is applicable.

This full generality is available only if the switches executable and ex-
ecuted are both non-nil. For reasons of efficiency, both of these switches
are initially set to nil, and an optimired version of this loop is used in-
stead. In particular, the set of applicable tasks is kept as the value
of the variable agenda, and an executable task is obtained from this
list. If the switch preferred is nil, the first element of the list is taken;
otherwise, scheduler uses trtruep to compare the elements using the
preferred relation. This optimization is fully consistent with the ax-
ioms described above. However, it is recommended that the user not
change the settings of executable and executed without careful fore-
thought. Debugging facilities for the scheduler architecture are not very
good at this point. However, rudimentary debugging is possible using
tracetask.

(setdiff <x> <y>)
means that list is all the elements in list <x> that are not in list
<y>,

(setdiff nil $y nil)
(if (and (not (element $e $y)) (setdiff $1 $y $s))

(setdiff ($e .

$1) $y (Se . $8)))

(if (and (element $e $y) (setdiff $1 $y $s))

108 The Compleat Guide to MRS

(setdiff ($e .

$1) $y $s))

Procedural attachment: truep-setdif f. The lisp file set must be loaded from the mrs directory.

setof

(setof <x> <p> <8>)
means that <s> is the set of all objects <x> that satisfy <p>.

(if (and (bagof $x $p $b) (elementsin $b $s))
(setof $x $p $s))

Procedural attachments: truep-setof and lookup-setof. The lisp file set must be loaded from

the mrs directory.

singlep

singularize

stash

stash-and

stashapplicable

subclass

subset

(subset nil $y)

(singlep <p>)
returns t when the proposition <p> has at most one solution, i.e. when
it is a ground proposition or an atomic proposition with a functional
operator and ground arguments. See function.

(singularize <x>)
returns the singular-value of <x>. That is, it returns (car <x>) . See
lookupbylookups, truepbytrueps.

(stash <p>)
stores the proposition <p> in the data base. Stash is an abstract oper-
ator implemented using kb and tostash.

(stash-and (and <p; > . . . <ps >))
separately stashes each of the conjuncts <p; >,. . ., <pp >.

(stashapplicable (applicable <k>))

.adds <k> to agenda. See applicable.

(subclass <e¢; > <ez >)

means that the set <c3 > is a subset of <¢; > - that is, all members of
<cg > are members of <e; >. E.g., (subclass number integer). See
classes.

(subset <x> <y>)
means that every element of the list <x> is an element of the list <y>.

(if (and (element $e $y) (subset $1 $y))

(subset ($e .

$1) $y))

Procedural attachment: truep-subset. The lisp file set must be loaded from the mrs directory.

succeed

task

(succeed <z>)
is a special control form. Executing this form causes the enclosing doable
task to succeed or the enclosing undoable task to fail. In addition, all
other subtasks are discarded.

In MRS the task of performing an operator <ep> with arguments
<X3 >,... <Xp > is written (<op> <x; > . . . <x, >. The oper-
ator in task <k> may be a Lisp subroutine, an MRS subroutine defined
using def, or a special control form like doand, doable, or doall. If

tb

template

terms

test

thassert

theories

theory

thf alse

threpn

Appendix C: Dictionary of predicates and flags 109

the operator is a Lisp subroutine, the task must have have an additional
argument for the output value, and it will succeed only if the last ar-
gument unifies with the result of calling the subroutine on all but the
last argument. For example, the task (cdr (a b ¢) (&x . &y)) will
succeed with the variable-.&x bound to b and the variable &y bound to
(c). See execute, executes.

(tb <op> <xI> . . . <xn>)
makes the task (<op> <xI> ... <xn>) applicable by placing it on the
agenda. See applicable, agenda.

(template <x> <t>)
means that expression <x> should be output as <t>. In particular,
if an expression <y> matches <x> with binding list <al>, (output
<x>) returns a copy of <t> in which each variable is replaced by the
result of calling output on its value in <al>. Templates are used by
output.

(domain <x> <i> terms)
means that the <i>th argument to the subroutine <x> should be a
term. See domain.

(test <file>)
runs the single test file provided <file> and prints out any errors.
Returns the number of errors found in the file.

(thassert <p> <th>)
binds theory to <th> and asserts the proposition <p>. See assert,
theory.

(domain <x> <i> theories)
means that the <i>th argument to the subroutine <x> should be a
theory. See domain.

has as its value the name of the current theory. All propositions stored
in the data base via pr-stash are associated with the theory named
as the value of theory at the time of the stash. One can associate
a proposition with more than one theory by repeating the call to pr-
stash with different values for theory. Calling pr-unstash removes a
proposition only from the current theory. The theory named as the value
of theory is always active, i.e. the propositions associated with it are
available for retrieval by pr-lookup and pr-lookups. See pr-stash,
pr-unstash, pr-lookup, and pr-lookups.

(thf alse (unprovable <p>))
calls truep on the proposition <p>. It returns nil if the answer is
non-nil; otherwise, it returns truth.

(threpn <p> <rpn> <th>)
means that the representation <rpn> should be used to store and ac-
cess the proposition <p> when <th> is an active theory. The effect
of having conflicting representations for a proposition stored in different

110

The Compleat Guide to MRS

thstash

thtrue

thunassert

thunstash

t1

t1-lookup

tl-stash

tl-unstash

tm-unassert

to<g>

toachieve

theories is undefined when both theories are active. (See repns entry for
list of allowable representations.) See activate, deactivate, theory,
achieve, repns, repm, repn-assert, repn-method, repn-unassert.

(thstash <p> <th>)
binds theory to <th> and stashes the proposition <p>. See stash,
theory.

(thtrue (provable <p>))
calls truep on the proposition <p> and returns the answer.

(thunassert <p> <th>)
binds theory to <th> and unasserts the proposition <p>. See
unassert, theory.

(thunstash <p> <th>)
binds theory to <th> and unstashes the proposition <p>. See unstash,
theory.

(repn <p> tl)

means that the proposition <p> should be represented in the 1 repre-
sentation, i.e. the tl-<x> family of subroutines will be used to stash,
unstash, and lookup <p>. This representation is particularly useful for
storing propositions involving unary relations, e.g. (function f) . Note
that propositions stored in this way are not associated with any partic-
ular theory and cannot be found by PR-based routines like prf acts or
prcontents. See repn, tl-lookup, tl-stash,tl-unstash

(tl-lookup (<r> <a>)
returns truth if there is an <r> property on the atom <a>. Both <r>
and <a> must be atoms. See t1.

(tl-stash (<r> <a>))
sets the <r> property of the lisp atom <a> to t. Both <r> and <a>
must be atoms. See tl.

(tl-unstash (<r> <a>))
removes the <r> property of <a>. Both <r> and <a> must be atoms.
See tl.

(tm-unassert <p>)
calls unstash on <p> and then calls unassert on any proposition all of
whose justifications depend on <p>. See just.

(to<g> <p> <£>)

means that the subroutine <f£ > is to be called in performing the action
<g> on argument <p>. Each of MRSs user-level commands has associ-
ated with it a relation that specifies the subroutine to be used in carrying
out that command. The relation is named by prefixing the commands
name with to, e.g. toAssert from assert. See kb.

(toachieve <p> <m>)
means that the method <m> should be used to perform the achieve ac-

toassert

tocache

tolookup

tolookups

toperceive

toperceives

toplevel

tostash

totruep

totrueps

tounachieve

Appendix C: Dictionary of predicates and flags 111

tion for all propositions which match <p>. See kb, achi eve, to<x>.

(toassert <p> <m>)
means that the method <m> should be used to perform the assert
action for all propositions which match <p>. See kb, assert, to<x>.

(tocache <p> <m>)

means that the method <m> should be used to cache propositions which
match <p>. (This <m> will only be used when the variable cache has
a nonNIL value.) See cache, cachebystash, to<x>

(tolookup <p> <m>)
means that the method <m> should be used to determined the lookup
value for all propositions which match <p>. See kb , lookup, to<x>,
tolookups.

(tolookups <p> <m>)

means that the method <m> should be used to determined the lookups
values for all propositions which match <p>. See kb, lookups,
to<x>, tolookup.

(toperceive <p> <m>)

means that the method <m> should be used to determined the per-
ceive value for all propositions which match <p>. See kb, perceive,
to<x>, toperceivee.

(toperceives <p> <m>)

means that the method <m> should be used to determined the per-
ceives values for all propositions which match <p>. See kb, per-
ceives, to<x> , toperceive.

(toplevel)
is a read-execute-print loop. See execute.

(tostash <p> <m>)
means that the method <m> should be used to perform the stash action
for all propositions which match <p>. See kb, stash, to<x>.

(totruep <p> <m>)
means that the method <m> should be used to determined the truep
value for all propositions which match <p>. See kb, truep, to<x> ,

totrueps.

(totrueps <p> <m>)
means that the method <m> should be used to determined the trueps
values for all propositions which match <p>. See kb , trueps , to<x>,
totruep.

(tounachieve <p> <m>)

means that the method <m> should be used to perform the unachieve
action for all propositions which match <p>. See kb, unachieve,
to<x>.

112

The Compleat Guide to MRS

tounassert

tounstash

tracetaak

traseert

trlookup

trlookups

trstash

trtruep

(tounaesert <p> <m>)
means that the method <m> should be used to perform the unasaert ac-
tion for all propositions which match <p>. See kb, unassert , to<x>.

(tounstash <p> <m>)
means that the method <m> should be used to perform the unstash ac-
tion for all propositions which match <p>. See kb, unstash, to<x>.

(tracetask <p>)
As each task is executed, tasktrace prints out the name of the subrou-
tine and its arguments provided they match <p>. If there is no <p>
argument in the subroutine call then a list of all tasks which are to be
traced is printed. See untracetaek.

(trassert <p>)

asserts the proposition <p> and performs forward chaining as appro-
priate. Trassert is MRSs meta-level assertion routine and is called by
many MRS subroutines. The default is simply to stash a proposition,
but there are also built-in procedural attachments for propositions con-
taining certain special relations (stored on each relation as the assert
property). A frequently used procedural attachment is the depth-first
forward chaining program trfc.

(trlookup <p>)

looks up the proposition <p>. If successful, it returns the correspond-
ing binding list; otherwise, it returns nil. Trloookup is one of MRSs
meta-level lookup routines and is called by many MRS subroutines. The
default procedure uses indexp and matchp to find any matching propo-
sitions in the pr representation, but there are also built-in procedural
attachments for propositions containing many common relations (stored
on each relation as its lookup or lookup8 property).

(trlookups <p>)

looks up the proposition <p> and returns a binding list for each match-
ing proposition that it finds. Trlookups is one of MRSs meta-level
lookup routines and is called by many MRS subroutines. The default
procedure uses indexp and matchp to find any matching propositions in
the pr representation, but there are also built-in procedural attachments
for propositions containing many common relations (stored on each r e-
lation as its lookup lookup8 property).

(tretash <p>)
stashes the proposition <p>. Trstash is MRSs meta-level stash routine
and is called by many MRS subroutines. The default is pr-stash, but
there are also built-in procedural attachments for propositions containing
many common relations (stored on each relation as its stash property).

(trtruep <p>)
tries to prove the proposition <p>. If successful, it returns a corre-
sponding binding list; otherwise, it returns nil. Trtruep is one of MRSs
meta-level theorem proving routines and is called by many MRS subrou-

trtrueps

truep

truep-bagof

truep-is

truepbytrueps

trueps

truepsbytruep

trunassert

trunstash

]

Appendix C: Dictionary of predicates and flags 113

tines. Only meta-level variables are treated as variables by trtruep, and
all base-level variables are treated as constants. The inference procedure
used is the depth-first backward chaining program trbc, but there are
also built-in procedural attachments for propositions containing many
common relations (stored on each relation as its truep or trueps prop-
erty).

(trtrueps <p>)

tries to prove the proposition <p> and returns a list of all binding lists
for which it is successful. Trtrueps is one of MRSs meta-level theorem
proving routines and is called by many MRS subroutines. Only meta-
level variables are treated as variables by trtrueps, and all base-level
variables are treated as constants. The inference procedure used is the
depth-first backward chaining program trics, but there are also built-
in procedural attachments for propositions containing many common
relations (stored on each relation as its truep or trueps property).

(truep <p>)

.. tries to prove the proposition <p>. If it is successful, it returns a binding

list for the base-level variables in <p>; otherwise, it returns nil. Truep
is an abstract operator implemented using kb and totruep.

(truep-bagof (bagof <x> <p> <8>))
calls trueps on <p> and matches <8> against the list formed by plug-
ging the answers into <x>.

(truep-is (is <x> <y>))
uses getval to evaluate the arbitrarily nested expression <x> and tries
to unify the answer with <y>. See is.

(truepbytrueps <p>)
is equivalent to (singularize (trueps Cp>)).

(trueps <p>)
tries to prove the proposition <p> and returns a list of all binding lists
for which it is successful. Trueps is an abstract operator implemented
using kb and totrueps.

(truepsbytruep <p>)
is equivalent to (pluralize (truep <p>)).

(trunassert <p>)

unasserts the proposition <p>. Trunassert is MRSs meta-level unasser-
tion routine and is called by many MRS subroutines. The default is
simply to unstash a proposition, but there are also built-in procedural
attachments for propositions containing certain special relations (stored
on each relation as the unassert property).

(trunstash <p>)

unstashes the proposition <p>. Trunstash is MRSs meta-level unstash
routine and is called by many MRS subroutines. The default is pr-
unstash, but there are also built-in procedural attachments for proposi-

114 The Compleat Guide to MRS

truth

tutor

unassert

unassert-and

unassert-iff

undoable ~

unifyp

unincludes

union

(union nil $y $y)

tions containing many common relations (stored on each relation as its
unst ash property).

has ((t p ¢)) as its value. The value of truth occurs as the last pair
in binding lists returned by MRSs retrieval and inference procedures.

(tutor)
runs an interactive tutor that introduces one to the basic representation
and inference mechanisms of MRS.

(unassert <p>)
removes the proposition <p> from the data base and performs all appro-
priate inference. Unareert is an abstract operator implemented using
kb and tounassert.

(unaseert-and (and <p; > . . . <pn >))
separately unasserts each of the conjuncts <p; >,. . ., <pp >.

(unasaert-iff (if <p> <q>))
asserts (if <p> <q>) and (if <q@> <p>).

(undoable <k>)
designates the task of trying to execute the task <k>. The task (un-
doable <k>) succeeds only if there is no successful execution of <k>.
Note that as a result of the current implementation, it is not possible to
interleave subtasks outside a doable task with those inside. See succeed
and cut.

(unifyp <x> <y>)
determines whether expressions <x> and <y> are unifiable, and if so
returns their most general unifier. Unifyp differs from matechp in that
multiple occurrences of the same variable in both <x> and <y> are not
treated as distinct variables. For example, (p $x b) and (p a $x) are
not unifiable, but they do match.

(unincludes <t; > <tz >)
removes any includes link between theories <t; > and <tg >. See
includes.

(union <x> <y>)
means that list is the lists <x> and <y> appended together.

(if (union $1 $y $8)

(union ($x .
Procedural attachnent

unknown

unprovable

$1) 8y ($x . $9))
. truep-union. The lisp file set must be loaded from the mrs directory.

(unknown <p>)
means that if proposition <p> is not in the database then (unknown
<p>) is true. See known.

(unprovable <p>)
means that proposition (unprovable <p>) is true if <p> cannot be

unst ash

unatash-and

unstashapplicable

untracet ask

value

variable

varp

where

why

Appendix C: Dictionary of predicates and flags 115

proved using the normal mechanisms for proving <p>. See provable.

(unstash <p>)
removes the proposition <p> from the data base. Note this is not equiv-
alent to asserting the negation of <p>. Unstash is an abstract operator
implemented using kb and tounstash.

(unstash-and (and <p; > . . . <pp >))
separately unstashes each of the conjuncts <pg >,. . ., <pn >.

(unstashapplicable (applicable <k>))
removes <k> from agenda. See applicable.

(untracetask <p>)
untraces the task <p>. If there is no <p> argument in the subrou-
tine call then it untraces all <p> that are currently being traced. See
tracetaek.

(value <x> <y>)
means that the atom <x> has value <y>.

(variabl e <x>)
means that the symbol <x> is a variable.

(varp <xp>)
returns a non-nil value if <xp> is a variable and otherwise returns nil.
See bl varp and mlvarp.

(where <p>)

prints out a message for each recorded justification in which <p>is a
premise. The message includes information about the justified proposi-
tion, the inference method, and all premises. See justify, just.

(why <p>)

prints out a message for each recorded justification for the proposition
<p>. The message includes information about the relevant inference
method and al | premises. See justify, just.

INDEX

Page numbers given in bold type indicate a def-

inition entry.

$5, 6,32
&5, 32

* 41, 82

+ 41, 82

- 41, 82

.19

// 41, 82

; 10

< 41, 82

<= 41, 82

=82

-5

> 41, 82

>=41, 82

AbsSign 21
abstract data type 45
achieve 82
achieve-if 82
achieve-not 83
achieve-repn 83
achieve-threpn83
activate 39, 83
activetheories 38, 83
agenda 30, 50, 83
Albert Einstein 2, 3
AND 6, 83

APPEND 19
applicable 30, 83
ar chitecture 29
arithmetic code 43
-arithmetic relations 18, 41
‘arity 83

array 46

ask 53, 83

asks 83

ASSERT 11, 17, 84
assert-and 84
assert-iff 84
associated LISP subroutine 42
assumable 47, 84
atom 5

117

Index

atomic proposition 33
Average 18, 43
backward chaining 15
bag 20

- BAGOF 20, 33, 84

bar chart 54 -
base-level variables 32
batchp 33, 49, 84

bc 30, 51, 84

bcdi sp 30, 35, 47,51, 84
bcs 85

best-first 36

binding 9

binding code 43

binding list 9, 49

bl varp 49, 85

br 47, 85

brdisp 47, 85
breadth-first 35

bra 86

cache 40, 51, 53, 86
cachebystash 51, 86
causal nodel 27
characteristic 86
chess 28

closed-world assumption 22
cnf 45, 86

cnf -assert 86

cnf ~unassert 86

code 42

comment 10

complete 13

computable representation 33
computable-repn 86, 87
condition-action 30, 55
conjunction 6
conjunctive normal form 48
constant symbols 3
consultation systems 53
contents 39, 88
contents-edit 57

cut 88

data structures 2, 34
database 9

database diagram 32
datum 50, 88
deactivate 39; 88

117

118 The Conpleat Quide to MRS

def 88 fcdisp 47, 92, 17, 30
default rules 47 FE 43, 92

def obj ect 88 fe-1o0okup92
defrul e88 fe-1 ookup892

def theory 38, 89 - FEA 43, 92
deliberation-action nodel 29 f ea-1 ookup93
denon 30, 55 f ea- | ookups93
direction89 file 50

Disjoint 41, 89 f inderrors 93
disqualified 30, 89 forward chai ning 14, 16, 47
d1 45, 89 FQ 43, 98

dl -1 ookup89 f g-1ookup 93

dl -1 ookups 89 f q-lookups 98

dl -stash 90 Frege 3

dl-unstash 90 full-adder circuit 23
dnf 45, 90 function 53, 54, 93
doabl e 90 function codes 43
doall1 90 - funproc 43, 98
doand 90 funproc-assert 94
domai n90 gates 23

Done 33, 41 generality 40, 46
door 90 get bdg 49, 94

dot notation 10 getbdgs 49, 94
editing 57 getval 49, 94
edunit 90 getval s94
efficiency 38, 40, 46 getvar 16, 49, 94
electronic device 23 gl obal 38

Element 41, 90 ground literals 5
ElementsIn 41, 91 Ground 42, 94
enpty 38, 91 groundp 49, 94

Engl i sh 54 Henry VI 11 46
equality 5, 41 IF6, 13,94

eval code 43 iff 94

eval uation 36 includes 39, 94
exdisp 91 i ndb95

execut abl e 30, 91 i ndbp95

execut e9l indent-tree-outputs 64
executed 30, 91 inference rules 13
execut es91 integer 42, 95
existential proposition 7, 9 Inter 41, 95

expert systems 15, 27 internediate variables 16, 19
extension 4, 19 Intersect 41, 95
Factorial 19 | S19, 95

facts 12 jogging 28, 51
facts-edit57 just 98

famly relationships 15 justify 51, 95

f ¢ 30, 31, 51, 92 kb 50, 95

118

know edge base 9
KNOWN 21, 95

| engt h 20, 96

I'hf alse 96

I htrue 96
|inear-input 48

LISP 5, 10, 11, 33, 42
lisp 96

list 19, 41

logical connectives 6
LOOKUP 11, 45, 96

| ookup-= 96

| ookup- bagof 96

| ookup-ground 96

| ookup-is 96

| ookupappl i cable 96
lookupbdg(s) 50, 96
lookupbylookups 96
LOOKUPS 11, 97

| ookupsappl i cabl e97
lookupsbylookup 97
lookupval(s) 50, 97
LUH9781 7

MAnd 41, 97

MAndCan 41, 97
MAndCar 41, 97

mat chi ng 49

matchp 49, 97
mdisplay 55

mem 98

Mermber 41, 98
MemList 41, 98
meta-knowledge 31

met a-level 31
meta-levelvari abl es 32
‘metalinguisticpr edi cat es42
-mlvarp 49, 98

‘modal operators 21
Mdus Ponens 13, 45, 48
moni t or 55

moni t or - hook55
monitoring 55
monitors 55

nr sapropos 98
nrsdeno 98

nr sdescribe 98
nrsdunp 50, 98

[ndex

nrshelp 98

msload SO 98
nrssave 50, 53, 98
mr st of uuctions 98

~multiple code 44

multiset 20

NIL 19

NOT 6, 21, 98

num-= 42, 99

num =-t hreshol d 42, 99
nurber 42, 99

ontol ogy 23

OR6, 21,99

output 53, 54, 99
outputs 53

Pattern 12, 50, 99
perceive 99
perceive-indb 99
perceive-not 99
percei ves99

pl 45, 99

pl -1 ookup 99

pl -stash 100

pl -unstash 100

plug 50, 100
pluralize 50, 100

pnl -out put 54

pr 45, 100

pr-indbp 100
pr-1ookup 100

pr- 1 ookup8 100
pr-stash 100
pr-unstash 100
prcontents 100
preferences 34 .
preferred 34, 100
prfacts 54, 101
primtive 101
problems 2, 26, 23
procedural attachment 53
procedural interpretation 23
procedural know edge 34
PROLOG 29
Property 42,101
proposition 5
proposition symbols 11

propositional and predicate calculus 3

119

120

The Conpleat Guide to MRS

propositions 101
PROVABLE 21, 101

pr 39, 50

query 9

qQuestions 53

quote code 43

RE 43,101
re-1ookup 101
re-1ookup8 101

reb 101
reb- | ookup102
reb- | ookupsl 02
rebml02
rebm | ookup102
recursion 19
recursive relations 19
reifying 24, 25
relation codes43
relation synbol 4
relational semantics 4
relations 3

rel nproc 43,102
rel nproc-assert 103
repn 42, 45, 103
repn-assert 103
repn-method 44, 46, 103
repn-unassert 103
repns 103

resi due 47,103
residues 47, 103
resolution 48, 104

resolutionresidue 48, 104
resolutionresidues 48, 104

resol utions 48,104
RQ 43, 104

rg-1 ookupl05
rg-1 ookup8105
rqb105
rgb- | ookupl105
rgb- | ookupsl 05
r gbml05
rgbm | ookup105
RQFM 44, 105

rgf m | ookup106
rgf m | ookups! 06
rrdisp

rr48

120

rrdisp 48,106

T8 48

rsdisp 48,106

rule base 9

rules of inference 13
runnable 30, 106
samep 49, 107
schedul er 29, 30, 50, 107
search order 11, 34, 40
SETOF 20

sets 20, 41

set-of -support 48
SetDiff 41, 107
setof 108

si npl e- bar - out put s54
singlep 108

singul arize 50,108
skol emi sation 7

sound 13

STASH 10, 45, 108
stash-and 108
stashapplicable 108
subcl ass108
subgoal s 23

Subset 42, 108
succeed108
successors 36
Synbolics 55

syntax 5

synthesis 47

table 54

tabl e-out puts 54
task 29, 34, 40,50, 108
th SO, 109

tenplate 109

tenpl ates 54

termnals 23

terms 3,109

test 109

t hassert 68, 109

t heori es109

theory 38, 51, 57, 109
thf alse 109

threpn 39,109
thstash 38,110
thtrue 110

t hunassert 38, 110

thunstash 38, 110
tictactoe 28, 53

t1 45, 110
t1-lookup 110
tl-stash 110
tl-unstash 110
tm-unassert 110
to<g>110
toachieve 110
toassert 17, 31, 111
tocache 51, 111
toedit 57
tolookup 45, 111
tolookups 111
tomonitor 55
tooutput 54
tooutputs
toperceive 111 --.
toperceives 111
toplevellll
tostash 45, 111
totruep3l, 111
totruepslll
tounachieve 111
tounassert 112
tounstash 112
tracetask 17, 112
tracing 17

trassert 112
trlookup 112
trlookups 112
trstash 112
trtruep 112
trtrueps 113
TRUEP 15,113
truep-bagof113
Itruep-is 113
truepbytrueps 113
TRUEPS 16,113
truepsbytruep 113
trunassert 118
trunstash 113
truth 114

tutor 114
UNASSERT 12,114
unassert-and 114
unassert-iff 114

121

[ndex

undoabl e 114
unification 9, 33, 49
unifier 9, 33
unifyp 49, 114

-unincludes 39, 114

Union 42,114

universal 6

uni versal propositions 7, 9
universe 3

universe 6

UNKNOWN 21, 114

nmoni tor 56
UNPROVABLE 21, 114
UNSTASH 11, 115
unstash-and 115

uust ashappl i cable 115
uutracetask 115

Val ue 42, 115
variabl e 6, 42, 49, 115
varp 49,115

virtual facts 19

vocabul ary 23

where 52, 115

why 52,115

121

