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Abstract

Directory services and name servers have been discussed and implemented for a number of
distributed systems. Most have been tightly interwoven with the particular distributed systems of *
which they are a part; a few are more general in nature. In this paper we survey recent work in this
area and discuss the advantages and disadvantages of a number of approaches. From this, we are
able to extract some fundamental requirements of a naming system capable of handling a wide variety
of object types in a heterogeneous environment. We outline how these requirements can be met in a ’
universai directory service.
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1. Int reduction

In recent years, researchers have paid a great deal of attention to data abstraction, modularization,
and information hiding. The result has been a clean separation between the implementation  of an
object and the inferface  to that object. Specifically, each object is associated with a server or
manager that implements the object and presents to clients an interface that defines the operations
that can be performed on the object. This model is particularly  ilppropriate for distributed systems
where the physical separation of objects and clients requires that the implementation  be on one
machine, while the interface is duplicated across multiple machines.

One might think that a coherent model of interfaces and implementations would also lead to
common mechanisms for representing, naming, locating, and manipulating objects. By so doing,
different types of objects could be manipulated with the same primitives, such that one object - a file,
say - could be substituted for another object - a terminal. say - in the manner of UNIX’ standard
l/O [22]. Ironically, the server model frequently has led to implementations - especially monitor-
based implementations - that thwart the goal by enforcing overly strong typing. A file server
provides a set of primitives that is incompatible with the primitives provided by a mail server, which
are in turn incompatible with the primitives for a printer server. Often, each server provides its own
naming system. Even where a distinct “name server” is available. it typically is restricted to narrow
domains, such as services (how to access a file server) or mailboxes (how to send mail and where to
find the mailbox).

In this paper we address some of these problems by developing a universal directory service that:

l can span a heterogeneous internetwork of existing naming domains;

l allows us to name, locate, and discover how to manipulate objects (including files,
processes, mailboxes, people, and services);

l provides dynamic binding and context mechanisms; and

l can be integrated into most existing systems as a “value-added” feature.

On the one hand, the UDS may be thought of a superimposing a virtual directory structure on top of a
multitude of pre-existing directories (name spaces). On the other hand, the UDS is designed in such a
way as to admit base-level or native implementations where it provides the only directory structure.
Indeed, a prototype base-level implementation has been running at Stanford for over a year [9].

We begin in Section 2 by examining some existing naming systems to understand how they manage
objects. Section 3 discusses advantliges and clisadvantages of the various approaches. In Section 4
we attempt to move beyond existing systems and suggest very general principles on which a general
naming service should be based. The architecture for a universal directory service (UDS) is
presented in Section 5, followed by a brief discussion of implementation issues in Section 6. Section
7 summarizes the major contributions of the UDS. A subsequent paper will present experience with
the existing implementation.

2. The State of the Art

As noted above, a number of name services have been implemented for distributed systems. In
early message-based systems rudimentary name servers were developed that mapped simple string
names for services (such as “File System”) into the identifiers for the processes that implemented
those services [3, 11, 341. Similarly restrictive name servers include those that have been developed
to map string names for hosts or mailboxes into their network addresses [4, 14, 17, 271 and the
“dictionaries” of many database systems [l, 131. More recently, several efforts have extended the

‘UNIX is a trademark of AT&T  Bell Laboratories.



2 Towardsa Universal Directory Service

notion of file system directory to include access to objects other than files, typically by having the
directory entry contain a process or port identifier rather than a file identifier [12, 203.  Other efforts
have been oriented toward providing access to objects based on the “attributes” of the objects,
rather than by a fixed-format name [7,32].

These last few efforts represent the first steps towards implementing name services that can handle
all objects. There are, of course, numerous paper designs for similar name services. More
importantly, there is a wealth of available research on the fundamental principles of naming (in
distributed systems); the reader is referred to 1181,  [21], [23], 1251, [26], and [31], in particular. The
universal directory service described in this paper represents an attempt to refine both the concepts
of naming and the implementation of viable name services.

In the remainder of this section we examine a number of naming systems that represent the “state
of the art”. For each system, we briefly introduce the motivation for and background of the system.
We cover the key areas of object management by taking the viewpoint of a human user who, upon
encountering each system for the first time might attempt to use its naming services.

2.1. V-System

The V-System is a server-based distributed system that runs on a collection of hosts that are
connected by a high-speed local-area network [5]. Any server may implement the V-System Name
Handling Protocol (VNHP) and so participate in the name service [6]. In fact, the name space is
partitioned among servers; each server is expected to implement the objects corresponding to the
names it defines.

Object names are structured as a context and a context-specific name or CSName.* The context
portion of the name is used to identify the process supporting that piece of the name space in which
the CSName is defined. The name space of CSNames  supported by a particular server may take any
form, be it flat, hierarchical, or whatever. Even the syntax of the CSName is server-dependent.

This approach allows the servers implementing objects a great deal of autonomy. However, it could
also produce a great deal of confusion for clients unless they thoroughly understand the sy,itax of the
names and the semantics  of tire operations offered by a server. This problem is partially ameliorated

. by the wide-spread adoption of the V I/O protocol, which defines operations on a large class of
file-like objects [8].

2.2. Clearinghouse

The Clearinghouse [17] evolved from the the registration service that was provided in early versions
of Grapevine [4]. It is used primarily to name mailboxes. users, and servers (machines), in the context
of a local net-based distributed system. The name space of the Clearinghouse is managed by a
collection of Clearinghouse servers. Each server manages a portion of the global name space. The
name space is not strictly partitioned between servers, as it is in the V-System. Names are organized
into a three level hierarchy of the form L:D:O,  corresponding to the local name, domain name, and
oiganization name, respectively. The syntax for names is uniform over the entire name space.
Autonomy is based on the choice of what D.-O partitions to support within a particular server.

Associated with each object in the Clearinghouse is a set of properties, where each property is an
o r d e r e d  tuple consisting of a ~PropertyName, PropertyType, PropertyValue).  The PropertyType
specifies the format of the PropertyValue. Only two PropertyTypes  are supported: an /tern is an
uninterpreted string of bits, and a group is a set of object names. Lookup mechanisms based on
PropertyNawes  are used to implement a simple generic type capability. Each PropertyName  must be
globally registered through a (human) naming authority.

2
CSN~~W  actually stands for character string name, but for purposes of this paper, co/jfext-spec;fic ~L)IW  is more

appropriate.
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The Clearinghouse can store arbitrary information about any named object. If the proper
information were stored, applications could in principle be handed a description of how to operate on
an object of some newly created type. However, specification of type is not explicit. The agent
getting the description of a named object must recognize which property name refers to the object’s
type and must then be smart enough to figure out what to do with an object of that type. This forces
type knowledge upon the client. Another drawback is that the Clearinghouse doesn’t care what
information is stored. The information needed to find an object or its manager may not be present at
all. Similarly, there is no reason to expect to find any sort of information to help a client understand
how to deal with an unfamiliar type. In brief, while the Clearinghouse has the power to provide
type-independence if it were properly applied, it lacks the discipline to do so.

2.3. ARPA Domain Name Service

A new name service for the ARPA lnternet has been specified and is currently being
implemented [14, 151. It will run on a widely heterogeneous collection of machines running a variety
of operating systems. The Domain Name Service is intended to help clients locate servers for
common network services and to locate objects managed by such servers.

Name service functions are divided between two classes of “servers”: name servers and resolvers.
Clients make requests of resolvers, which in turn make requests of name servers. Typically, one
name server will not query another name server in order to resolve a name. Instead, it will instruct the
resolver which name server, if any, to query next.

The name space is hierarchical, with no limitation on the depth of the hierarchy. The syntax is
uniform across the entire name space. Each component of the hierarchy is a domain and typically
reflects an administrative or geographical grouping. The design allows an administrative entity to
control what names are introduced into domains under its control. In fact, names are generated and
approved manually by the (human) administrative entity for each domain.

Associated with each label in a domain name is a (possibly empty) set of resource records that
contain information about objects within the domain. Each resource record contains a domain name
and a number of other fields. The resource type defines a standard abstract resource such as “host

. address” or “mail forwarder”. A C/XX field defines a systern-wide style for interpreting the resource ,
data fields. It is typically used to hint at protocol family (e.g., Internet vs. PUP), and in combination
with the resource type allows unambiguous interpretation of the resource data field.

Name servers and resolvers are required to contain and use some knowledge of type for their
proper operation. First, name servers are expected to recognize that certain type codes represent *
supertypes of other types. For example, a name server is expected to know that a request for objects
of type MAILA (mail agent) can be satisfied by object of either type MF (mail forwarder) or MS (mail
server). Second. name servers are expected to use knowledge about the type of an object to provide
useful hints. For example, in answer to a query about a mailbox, a narne server will typically return
not only the name of the ARPANET host supporting that mailbox (the contents of the entry for the
mailbox) but will look up and return the ARPANET address of that host. What information is
appropriate for each type of object is type-dependent.

2.4. R* Catalog Manager

The R* distributed database management system [33] supports the relational model [30]. The
database catalog manages information on database objects, including their structure, format, access
paths, and access controls [13]. Names are managed by a distributed collection of catalog
managers. Catalog information about an object is stored at the same site(s) as the object itself. If an
object is moved from the site at which it was created, its “birth site”, a partial catalog entry is
maintained at the birth site indicating where the full catalog entry can be found. The object can be
accessed directly at its new site without reference to the birth site, so that access to an object is still
possible as long as the site that stores it is operational. (This assumes that the client has learned of
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the new location of the object before its birth site failed, or, alternatively, that it can discover the new
location in other ways).

The name space tends to be more implementation-defined than the prior examples. A name,
referred to as a “System Wide Name” (SWN), contains four components: (1) the user-id of the object
creator, (2) the user-site of the object creator, (3) the creator specified object-name of the object, and
(4) the object-site or “birth site” of the object. Autonomous sites can assign the first three
components in any way, but site names must be unique. A SWN maps to information such as
low-level (storage) format. access information, and object type. In this context, it makes little sense to
introduce new types of objects. However, the system may introduce new access methods or
recognized data types. As this entails modification to other parts of the sole application, R*, it is
perfectly reasonable to change the name service functions as well.

R* supplies some context facilities. Users typically specify only the object-name portion of the
SWN; simple rules are provided for supplying the missing components. A user’s context consists of
the user-id and site from which the object-name was issued; these are used to complete the SWN.
Moreover, synonyms are provided on a per user (at a site) basis to allow arbitrary mapping of an
object-name to a SWN.

2.5. Sesame and Spice

Sesame [lo] is the file system for the Spice distributed operating system [2, 191. As with several
other systems, its name service evolved from UNlX -- primarily through the addition of interprocess
communication ports to the set of objects understood by the directory system [20]. The name service
consists of a distributed collection of “Central Name Servers” residing on the file server machines
and “Spice Name Servers” residing on each user’s workstation.

The name space is organized hierarchically. The uame service requires absolute names - frorn the
root - to be specified for all operations. Maintenance responsibility is shared by partitioning the
name space along subtree boundaries, such that only one name server has responsibility for a
subtree  at any time. The names for objects thar are intended to be shared should be kept in
directories that are always maintained by a Central Name Server. Names for objects that are primarily

. used by one user may be kept in directories that are rnaintained by the user’s local Spice Narne
Server.

The name service has a limited facility for user-defined types. The catalog entry associated with
user-defined type is fixed length but uninterpreted. There is no support within the name service for
guiding applications in the interpretation ‘of user-defined types.

3. Evaluation of the State of the Art

Having presented some of the interesting details of a few systems, we now discuss and evaluate
these systems according to different criteria. No attempt is made to be comprehensive; a full
discussion of all the relevant issues would fill many volumes. Instead, we hope to raise some
important points that will guide us in our approach to developing a rnore powerful naming system.

3.1. Segregated vs. Integrated

First, we might characterize name services as either segregated or integrated. Segregated services
explicitly separate the name management facilities from the servers that actually implement the
objects being named, leading to the notion of “name servers”. In integrated services, on the other
hand, names for an object are managed by the same object manager that implements the object. All
of the example name services except the V-System are segregated.

Integration is an example of the “end-to-end” argument [24]: Let each “application” provide the
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minimal services it needs, rather than impose a separate general-purpose facility. In the V-System, for
example, the global name space of fully-qualified CSNames  is strictly partitioned so that each server
manages precisely that portion of the name space describing the objects it implements. Maintaining
consistency between the object and its directory entry is trivial since both are managed by the same
server. Moreover, accessing an object may require one less message exchange - that required in a
segregated service to query the name server. Finally, objects are accessible whenever their object
manager IS; this might not be the case if objects were named through a separate name server and the
name server was inaccessible.

On the other hand. servers and clients must duplicate certain functions in the integrated approach.
Every server must have its own name parsing code. Moreover, if deemed necessary for reliability or
performance, every server must have its own code to replicate the naming information or every
application might have to cache names. A segregated approach eliminates this redundancy.

Note that segregation does not imply a centralized implementation. Rather, a segregated name
service may be implemented in a distributed fashion. Indeed, all of the example segregated systems
are implemented in precisely this manner.

3.2. Scope

Naming systems also can be characterized by whether they name all objects in the system or just
some. Again, all systems but the V-System limit the types of objects that can be named. Even the
V-System does not ensure that all objects are named consistently, since servers are not required to
take part in the name service.

As with segregation versus integration, the debate can be thought of in terms of the end-to-end
argument, in this case by providing different mechanisms for managing the names of different types
of objects. The presumption is that each set of mechanisms will be fine-tuned to its object class, and
yield higher performance. In reality, name management appears to require fairly common
mechanisms. so the erstwhile “special-purpose” mechanisms are redundant.

3.3. Name Space Structure

The designs discussed all implement some form of global name space. The Clearinghouse,
Sesame, and the Domain Name Service specify a hierarchical name space. The V-System specifies
only the context portion of a name and leaves the remainder of name parsing operations to individual
servers. However, common  usage of the V-System naming system is for the server to impose a
hierarchical structure.

The fundamental advantages of a hierarchical structure derive from the fact that the name space is
partitioned. The size of individual databases (directories) is reduced and each database may be
maintained by a different server - perhaps on a different host. Partitioning also provides the means
for easily grouping names relative to particular users or administrative domains. On the other hand,
such partitioning can result in lower performance than using a flat name space. Consequently, the
Clearinghouse restricts the depth of the hierarchy.

3.4. Entry Information

All the designs can provide much more information !o the client than a single identifier to which the
string narne is bound. Each design permits a set of attributes to be returned that further defines the
object. In the V-System, these attributes are wired-in at compile-time, once again yielding high
performance. In the Clearinghouse and Domain Name Service, it is possible to return attributes that
can be interpreted at run-tirne, yielding greater flexibility at the cost of some performance.
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3.5. Context

To deal with users’ reluctance to use long absolute names, a name service must be supplemented
by a context facility. A context facility basically maps relative names into absolute names (see [26] for
a detailed discussion of the basic issues). In R*, the context facility is integrated with the name
service. The Clearinghouse, on the other hand, provides no context support; other services,
especially command interpreters, must do so.

Sesame, the V-System, and the Domain Name Service lie somewhere in between. In the V-System,
each workstation has a context-prefix server that can be used to define some nicknames. Working
directories and search paths are supported as a feature of the command executive, however.
Similarly, in Sesame, current directories, search lists, and “logical names” are provided by a separate
“environment manager” - of which there is one per user. The Domain Name Service calls for name
resolvers to supervise name lookup; a context facility could be built into a resolver or it could be left
for outside facilities to implement.

3.6. Wild-carding

Context facilities may be thought of as ways to allow users to use incompletely-specified names -
in the sense that the user need not specify the “context” of interest. In some situations, the user may
possess (remernber) even less information and therefore require a “wild-carding” facility. The
Domain Name Service, for example, provides completion services in which the set of “best matches”
to the partial name is returned. Similar facilities exist in the Clearinghouse and Sesame. Such
wild-carding support can reduce the amount of interaction between client and name service required
to obtain a complete response to a query, but it also shifts much of the computational burden to the
name service Consequently, the V-System only permits clients to “read” directories and requires
them to do any wild-card matching themselves.

3.7. Type independence

We would liice  a general name service to handle a wide variety of object types with equal ease. For
comparison purposes, we identify three different levels of type-independence - such that the

.
addition of a new object type requires:

1. modifications to applications and name servers;

2. modifications to applications, but not to the name servers; or

3. no modifications to applications or name servers.

R* and the Domain Name Service fall in the first class. Sesame and the V-System fall in the second
class. The Clearinghouse also falls in the second class, in practice, but could be used as a stepping
stone to the third class.

4. Recognition and Synthesis

From the discussion of the previous sections, we can identify a number of areas of commonality
across most, if not all of the systems we have discussed. In addition, we identify some capabilities of
interest that are not currently provided. Both are sumrnarized in the following points:

0 Decouple service from implementation.

A “service” should be provided by a collection of “servers” that adhere to a common
protocol. It is not necessary (and in many situations not desirable) that separate servers
exist to irnplement the protocol. Rather, a single physical server can support multiple
protocols and participate as a component of several services. In brief, a well-designed
service is defined by its interface, and not by a particular implementation.
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l Support multiple media access and object manipulation protocols.

Though we encourage the use of common protocols wherever possible, general
mechanisms for dealing with heterogeneous services should also be provided. As an
example, explicit indication of protocols supported by a client and a server would allow
an appropriate protocol translator to be selected (if it was needed). Globally unique
identifiers - across all object types -should not be required.

l Permit easy addition of new object types.

We must be able to manipulate large classes of objects using common object
manipulation protocols. In addition, we must be able to dynamically create objects of
new types and manipulate them to the extent that our object manipulation protocols allow
without major changes to the system - such as recompilation or relinking. ln general,
such additions should not require human intervention.

l Support flexible external naming.

Largely due to the above two requirements, we should support external names consisting
of sets of (attribute, value)  pairs. By so doing, users may attempt to name objects by any
information they have available,  rather than relying on a specific positional syntax.

0 Support active name components.

Names (or components of names) should be allowed to have an arbitrary action
associated with them, which will be invoked whenever the name is resolved. This action
is in addition to any other inforrnation that may be associated with a name component -
such as it’s type or access controls. This functionality can be used in combination with
object types to implement, for example, extended protection mechanisms, performance
monitoring, and cross-domain naming.

l Provide convenient mechanisms for clients to specify commonly used aliases,
nicknames, generic names, and’ contexts.

Traditionally, this has involved simple concepts such as “working directories” or “search
lists”. We would like to use more powerful mechanisms in which, for example,
interpretation depends on either or both the client and the object.

0 Permit autonomy.

The failure of any site participating in the naming service must not prevent any other site
from accessing information about objects not stored on the failed site. It must be
possible for individual system administrators to decide the best implementation technique
for their system, in particular, an integrated or segregated implementation. It should be
possible to add the naming service to existing operating systems without modifying
existing code.

5. An Architecture for a Universal Directory Service

We have ascended from the details of existing systems through a discussion of their strong points,
weak points, and omissions, to a very high-level set of principles that we feel are generally applicable
to naming systems. In this section, we outline the key features of a universal directory service (UDS)
that we feel embodies the essential abstractions outlined above. The focus is on architectural issues.
For purposes of exposrtion,  any discussion of implementation issues is couched in terms of a
segregated implementation. We return to issues of integrated implementation in Section 6.3.
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5.1. Target Environment

The environment in which we intend to use a general naming and object location service is best
characterized as being heterogeneous. It contains a diverse collection of objects that are
implemented and maintained by multiple administrative entities. The environment is also
characterized by change: new or improved services will appear continuously. So, objects and even
object types will continually be created and destroyed. We must be able to discover and locate the
objects that are of interest to our current application.

5.2. Name Space

The UDS uses hierarchical absolute names for all named objects. Syntax is similar to that for UNIX
path names 1221.  but with the (super)root specified as ‘%I. The collection of all path names constitute
the catalog of named objects.

A hierarchical name space was chosen for performance and compatibility reasons. Fortunately, it
does not preclude the use of attribute-oriented schemes at the level visible to users. For example, a
list of &tribute,  value) pairs might be ordered by sorting first by attribute and then alphabetically
within a single attribute. Two reserved characters must be adopted: one to indicate the start of an
attribute name and a second to indicate the start of an attribute value. A hierarchical narne can be
constructed by concatenating the strings for the attributes and their values using a slash followed by
the appropriate reserved character as separators. For example, employing $ and . to indicate the
start of an attribute and value, respectively:

Attribute-oriented:(lOPIC,Thefts)  (SITE,Gotham-City)
Hiera rch ica l  : %$SITE/.Gotham-City/$TOPIC/.Thefts

While attribute-oriented names can be imposed on any hierarchy, the UDS also defines a special
wild-card search to support lookup on such names.

5.3. Catalog Entries

The UDS maps names into entries describing objects. The purpose of these entries is to enable
. clients to ask appropriate servers to manipulate selected objects. Thus, each entry must I:ontain  an

identifier for the server implementing the object. Since servers will typically use some form of internal
identifiers for the objects they maintain, the UDS should also store such internal identifiers. No
assumptions as to format or length of these internal identifiers can be made in a truly heterogeneous
environment.

Some servers may want to export type knowledge about objects. For example, a file server may
wish to let clients know that certain files are flagged as executable. Therefore, catalog entries contain
a type field that can only be interpreted relative to the server implementing the object; a single value
for the type field can mean one object type to a file server and a different type to a mail server.
Consequently, new object types may be added without modification to the UDS.

*The UDS also may cache arbitrary properties associated with an object - such as access control
information, last modification time, or annotations 116). By so doing, the UDS can return useful
information to clients on request or can employ the cached information when doing attribute-oriented
wild-card searches. However, the information should be regarded strictly as a “hint”; the “truth” can
be ascertained only by querying the object’s manager.

Architecturally, cached properties consist simply of string data - in the form of (attribute, value)
pairs. Consequently, the UDS need only understand the syntax and not the semantics of the data.
Indeed, the same observation applies to both server and server-specific object “identifiers”, namely,
that they consist of an arbitrary string that is not meaningful to the UDS itself.

In this vein, note that the access control information mentioned above is not interpreted by the UDS.
There is access control information that is interpreted by the UDS, but it is associated with the catalog
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entry, not with the underlying object. See Section 5.6 for further discussion.

5.4. UDS Object Types

An object manager may enter objects of arbitrary type into the catalog. The UDS is an object
manager itself and enters objects into the catalog. The definition of type codes corresponding to the
UDS object types must be part of the specification of the UDS interface protocol.

.

5.4.1.  Directory

An object of type Directory is used to store a collection of catalog entries. With each directory is
associated a particular name prefix. A directory holds entries for all objects whose name consists of
that prefix plus some terminal path component. The directory is the fundamental object type of the
UDS.

5.4.2. Generic Name

The GerrericName  object type is used to indicate that the named object represents a set of
equivalent names. That is, a generic name maps to a variable number of catalog entries. Different
approaches to handling generic names may be appropriate, depending on the context in which the
generic name is encountered. In certain circumstances. we might just return the list of equivalent
entries. In other cases, we might like the UDS to select any dne and continue if possible - for
example, while parsing a component of a path name. In still other cases, the client or the object
manager may wish to specify the criteria to be used in the selection. One useful way to represent a
selection function is by identifying a server capable of carrying out the choice (see below). In any
event. the catalog entry for a generic name must indicate how to carry out the choice.

5.4.3. Alias

We have just seen how an object of type GenericName  allows one to perform a selection function
(choose one object from a set). An object of type Alias allows the inverse mapping, namely, map any
one of a szt of names  to a single object. The UDS identifier for an object of type Alias contains the
name of the object it is aliasing. This is an example of a soft or symbolic alias - similar to UNIX 4.2
BSD “symbolic links” - rather than a /lard or direct alias - UNIX “link”. Hard aliases are not

. precluded, however; object managers may choose to register the same object under several different
names.

5.4.4. Agent

Authentication can be implemented as a separate service, but there are reasons for supporting the *
more general concept of an Agent in the UDS. First of all, agents other than users need to be
identified since objects are typically maintained by programs. Secondly, to protect its catalog entries,
the UDS must support the concept of agents (be they users or programs) that may attempt to access
objects. Finally, it is convenient to have a notion of user identity that is uniform over the entire name
space, rattler than trying to handle multiple identities corresponding to different accounts on
machines. The catalog entry for an agent must contain a globally unique agent identifier and a
pCissword  to verify an authentication request. It is also helpful to keep a list of the groups of which the
agent is a member.

5.4.5. Server

The primary thrust of the UDS is to allow clients to access arbitrary objects implemented by arbitrary
servers. Simply providing the name of the server maintaining an object does not suffice on a
heterogeneous system to enable a client to contact a server and properly request it to operate on an
object. The UDS must recognize Server as a special type of agent and report the necessary
additional information. This information includes the various rnedia access protocols by which the
server may be accessed and the various object manipulation protocols understood by the server.

To contact a service, the client must know what low level (media) protocol to use to transmit
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requests to the server and it must know what identifier to use to refer to the server under that
protocol. Some servers may be prepared to accept requests in several ways. Thus, the catalog entry
for a server must contain a list of (medium nanle,  identifier-in-medium) pairs.

Even if a client knows how to contact the server maintaining an object, it must still know how to
phrase its requests. That is, it must know which object manipulation

B
rotocols  are understood by the

server. Thus, the catalog entry also contains a list of these protocols.

5.4.6. Protocol

The previous discussion on servers raised the notion of protocols. It is natural and beneficial for a
UDS to explicitly support the object type Protocol. The benefit is that keeping information on
protocols allows greater type independence. Clients do not necessarily know how to use a particular
medium or interact using a particular object manipulation protocol. In such cases, they require the
aid of a protocol translator. The UDS can keep a list of servers providing translation into a protocol as
part of the protocol’s catalog entry. By follow-up queries to these servers, a client will then be able to
find a server willing to perform protocol translation.

5.5. Parsing Options

The name space is hierarchical, but the parsing process is complicated by the existence of aliases
and generic names, and by provisions for “wild-carding”. Ideally, the architecture of the UDS should
provide transparent handling of these features, while also allowing them to be made visible when
desired.

Consider the handling of an alias. The default action that provides transparency is to substitute the
alias for the prefix just parsed and restart the parse at the root. If, however, a client wishes to
manipulate the catalog entry for an alias, he must have some means for disabling the default action.
Thus, the UDS allows clients to give parse control flags as part of their requests. One option prohibits
alias substitution.

Generic names raise similar issues. Normally, the reasonable course when a generic is
encountered is to invoke the default selection function to pick one choice to continue with. Again,

, clients will sometimes wish to control the choice made, explore all the choices, or see only a summary
indicating a generic entry. Additional parse control options are defined to allow clients to request
such special actions.

Another, related architectural issue, is to decide what “name” is returned with a catalog entry
(giving the name is important when the request can use wild-card characters). The question is
whether to make aliases and generic choices visible. A reasonable course in regards to aliases is to
return the primary name: the name that maps directly to the catalog entry without going through any
alias. For generic names, a reasonable action is to include a path component reflecting the choice
made. The client then has the option of asking for exactly the same catalog entry later if he wishes.

5~6. Protection

Most systems with significant user communities require some reasonable form of protection of one
user’s information from attempted accesses by another. This need is present whether the users are
sharing one timeshared machine, or a collection of computers tied together in a network. Given a
UDS. the need for reasonable protection is increased since it is so easy for a program or person on
one machine to access the objects and data on another.

A suitable basic protection facility can be derived from any of a number of existing systems. The
UDS operations are divided into classes such that an operation in a class may only be performed if the
client has been granted the corresponding right. Similarly, clients are divided into four classes:

3Note that this “type” knowledae need not, in fact, be embedded in the client program itself. See Section 5.9.
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object manager, object owner, privileged users, and everyone else. Ownership is separated from
managerial responsibility because while the owner will normally get rights others are denied, the final
responsibility for maintaining the object, including its primary name, logically resides with its
manager. If desired, special protection mechanisms can be constructed using the portal feature
discussed next.

To accomplish this scheme, information about each client class must be added to each catalog
entry. The identity of the object owner as well as the manager must likewise be kept. A privileged
user could be defined in a variety of ways, and could be represented by adding a field to record the
name of a user group. Alternatively, it could be implicitly defined as any agent whose list of user
groups includes the owner.

5.7. Portals

Thus far we have assumed that all catalog entries are static entities. However, what happens when
a systems programmer wishes to monitor accesses or debug access code and therefore wants to
filter all accesses to some object (or object group) through another piece of system code - such as a
performance monitor or debugger)? What if the system is not booted with all servers running, such
that they need to be created at first access? How do we provide for client-specific procedures for
generic name resolution or context? How do we introduce extended protection modes? How would
we integrate heterogeneous directory systems into our design?

One solution is to allow two types of entries in the catalog structure: passive (or static) and active
(or dynamic). A passive entry designates an existing object requiring no special treatment. An active
entry is associated with an action to be taken when the object is referenced. It effectively introduces
an indirection in the path name parse. We will refer to the active component of the catalog entry as a
portal. A portal can be used with any type of object; the type of catalog entry (passive or active) is
orthogonal to the type of object (Directory, GenericName,  etc.) about which the entry stores a
reference. A portal is invoked every time an attempt is made to map to or continue a parse through a
particular catalog entry. Portals can be represented as server identifiers, in which case the UDS
interface specification must include the protocol used to communicate with portal servers.

There are three general classes of actions that a portal might take:

1. monitoring:  Simply “observe” the attempt to access the object, but allow the parse to
continue after the portal finishes executing.

2. access control:  As above, but potentially abort the parse.

3. domain-switching:  Determine the new name domain (or context) in which the parse
should continue or complete the parse internal to the portal.

The first class of action handles administrative monitoring and run-time server startup, for example.
In the latter case, the UDS is playing a role similar to that of the listener or daemon processes in many
implementations of network architectures4

The second class of action provides, for example, for extended protection modes. The key
difference from the first class is that the parse may be aborted by the portal.

The third class of action is perhaps the most powerful. First, it permits object- or user-specific
procedures for generic name resolution or context (see the next section). Second, it allows the
system to integrate heterogeneous name services; a portal standing in for the “alien” server can
forward the as yet unparsed portion of the pathname on to that server for interpretation.

4There, a liskner  process waits
process to handle the connection.

for “requests for connection” and, when one arrives, the listener creates a new server
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5.8. Context Mechanisms

The UDS name space is a hierarchy in which only absolute names are recognized. Every absolute
name is always interpreted in the same manner, with a parse that picks off path name components
from left to right, yielding the same catalog entry. There are, however, many benefits to be obtained
through the recognition of context in the name resolution process. Context facilities can be
implemented either directly in the UDS or in separate servers - analogous to Domain Name Service
resolvers, Spice environment managers, or UNIX shells.

Many systems provide rudimentary context facilities such as working directories, search lists,
logical names, or nicknames. The UDS as currently implemented has no facility for recording a
working directory. However, if one were implemented or provided by an external facility, the other
common context facilities can be provided using the general primitives already discussed. The effect
of multiple search paths can be achieved by setting the “working directory” to be a generic catalog
entry instead of an ordinary directory reference. The search paths would appear as a choice of
directory entries or aliases pointing to directory entries. To provide the facility of personal nicknames,
a UDS client need only create entries under his home directory (or one of the generic search
directories just mentioned). The relative name should be the nickname. The catalog entry would then
hold as an alias the absolute name for which the nickname stands.

However, these basic context facilities do not satisfy all needs. Consider the problem of resolving
“include” file references. If these are stored as absolute pathnames, the same file will always be
referred to. That would make it impossible to save access time by using a local version of the same
file or to try a compilation with a personal, test version of code. So, it might seem that the solution is
to use relative pathnames and resolve them via a search list. This is not always the answer; in some
common  circumstances, it is desirable to interpret relative file names with respect to different
contexts. For example, formatting another user’s files may require resolving the relative file names
mentioned in the document root file to the creating user’s context, resolving the temporary file names
used by the formatter to the invoking user’s context, and resolving the commands invoked by the
formatter to the context assigned by the maintainer. Ordinary search lists will not necessarily make
the proper translations in this case.

Another, slightly less troublesome case is what to do when a file containing file references is moved
from one site to another or even from one directory to another. It may attempt to “include” a file
usr/dumbo/foobar  when the directory usr/durnbo  exists in the new location under the name
common/goofy. It is possible to define aliases or symbolic links to deal with this problem, but it may
result in cluttering top level directories #with  alias entries. A cleaner solution would be to do the
necessary translation through a more powerful context facility.

The UDS provides the means for implementing these more sophisticated context facilities, namely,
the portal. The trick is to construct an efficient name map package on a per-name basis that provides
the redirection that is appropriate for the context. This package becomes the server implementing a
portal. The portal must then be associated with an appropriate catalog entry. For user-defined
contexts, an appropriate point would be the entry for the user’s home directory. Object-specific
contexts, on the other hand, can be created by tagging a particular object’s catalog entry. Such an
approach yields a logical structure similar to that of property inheritance. It would be convenient
under this approach to have a context specification language that can be compiled to produce portal
servers automatically.

5.9. Type Independence

At the time an application is written, the writer will have access to existing services through the
currently defined, possibly type-dependent object manipulation and media protocols. If these are
hardwired in, applications will require continuous modification to keep up with the changing
environment. Instead, type-independent applications should be written to handle a general abstract
type and an associated object manipulation protocol. Translation to a new type-dependent object
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.

manipulation protocols can be handled by protocol translators. The UDS provides explicit support of
Prolocol  as a basic object type for precisely this reason.

As an example, consider a situation in which the following three servers exist, each with a slightly
different object manipulation protocol:

%disk-server speaks%disk-protocol

%pipe-server speaks %pipe-protocol

% t t y - s e r v e r speaks %tty-protocol

Consider also the abstract type, abstract- f i le,  with operat ions OpenFile, ReadCharacter,
WriteCharacter,  and CloseFile. Call the object manipulation protocol used to specify these operations
on the type abstract-file %abstract-f  i le. Assume that translators from %abstract-f  i le into the
protocols above already exist. Finally, for simplicity, assume that all servers and applications exist on
a network in which a single form of interprocess communication exists, with network-wide process
identifiers. In other words, they are all accessible via the same media access protocols.

In this environment, a typical application would be structured roughly as follows:

1. Look up the name of an object on which the application wishes to do I/O.

2. If the object’s manager doesn’t speak %abstract-f  i 18, look up the protocol(s) it does
speak.

3. If the protocol has a translator from Xabs t ract-f i 1 e, use it. Otherwise, give up.

Note that it is possible to bury this algorithm in runtime libraries, so that application programmers
need not concern themselves.

Now suppose a new type of I/O device was added, managed by the new server %tape-server
which only speaks %tape-protocol. Since %abstract-f  i le is a commonly used protocol, the
implementor of the new server would most likely supply a new translator that translates from
%abstract-f  i le to %tape-protocol.  Once this was done, existing programs would handle tapes
without modification.

6. Implementation Issues

In the previous section, the architecture of the UDS was sketched. A complete specification of the
UDS interface can be derived by filling in some architectural details. The interface defines the
behavior of UDS implementations visible to clients, but leaves implementation details unspecified. In
this section, we discuss several such details that are critical to the overall operation of the UDS.

6.1. Replication and Partitioning

Jo ensure high availability and enhance performance, directories need to be replicated. The
availability motivation occurs because while a given directory, say D, is stored on a given machine,
say N, the objects listed in that directory can (and must, in the case of a network transparent system)
be stored on various machines. If site N crashes or is partitioned away from the other machines, then
directory D becomes unavailable, and all the objects listed in D are inaccessible, even though those
objects may be located at the same site as a requesting program.

The performance enhancement motivation occurs because most accesses to directories are look-
up, not update. Thus, in principle, multiple copies of a directory distributed around the network
permit many look-ups to be local, rather than involving network interaction and delay. Judicious
partitioning of information amongst directories can also enhance performance due to locality.
Terry [28] analyzes a number of mechanisms for partitioning of information in name servers.

The current UDS implementation uses a modified version of a common voting algorithm [29]. Only
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updates are voted upon. Requests to read a directory or perform a look-up are done by the directory
system to the nearest copy (by whatever algorithm is desired to decide nearest). No voting is done to
verify that the most recent version of the entry is read; as a result, look-ups should only be treated as
“hints”. A client can optionally specify that it wants the “truth” (i.e., that a majority read or vote is
required).

6.2. Administration and Autonomy

Effective administration of a distributed name domain is essential to a robust system. Sites should
remain autonomous to the greatest extent possible for both technical (e.g., performance or availability
in the face’ of partitioning) and non-technical (e.g., accounting or authentication) reasons. In
particular, the failure of remote hosts should not prevent local clients from accessing directories that
are stored locally.

As discussed thus far, name resolution could involve moving “through” many sites - possibly back
to the originating site. If any site along the way is inaccessible, the parse would fail, even if the
catalog entry is actually stored on an accessible site. To circumvent this problem, the UDS stores the
name prefix associated with each directory stored locally. If an absolute name matches a local prefix,
the UDS can (re-)start  the parse with the remnant of the name in a local directory.

A related problem is how to achieve autonomy in the sense of being able to enforce local
accounting or access control policies. First of all, it must be possible to identify the boundaries
between adrnirMrative domains. A reasonable way to do this is to create a directory structure
matching these domains. Under this discipline, directories would be associated with exactly one
administrative authority. Special protection at administrative boundaries might be enforced by portals
associated with the boundary catalog entries.

Additional administrative autonomy can be achieved by the choice of which UDS servers actually
impiement a particular portion of the name space. Particular policies imposed by the local authorities
can then be cDded  into the local UDS servers. In addition to accounting and access control policies,
local authorit&  may in this manner enforce other policies, such as dictating which file servers are
used for creating new directories. Thus, while UDS servers cooperate in providing a global name

* space spanning multiple administrative domains, each domain retains the power to control the
resources it owns.

6.3. Integration

From the previous discussion, it might appear that the implementation of the UDS would be highly
segregated. Indeed, the prototype implementation is segregated [9]. However, the UDS architecture
in no way requires a segregated implementation.

Rather, the UDS should be thought of as consisting of the collection of servers that adhere to the
universal directory protocol. These servers may have been written explicitly and exclusively to
prpvide  directory service, or they may provide additional services as well. For example, if a mail
system was prepared to handle the universal directory protocol, it would classify as both a UDS server
and a mail server. In addition, the UDS employs storage servers to store its directories and
interprocess communication servers to provide intercommunication between its constituent parts. In
fact, it may be qGte cost-effective to combine the UDS and storage functions into a single server
wherever possible.

In those cases where the UDS is “integrated” into pre-existing servers-such as mail or file servers
- catalog entries may take a considerably different form than they would in a segregated
implementation. For example, it is no longer necess;lry  to store the identifier for the object manager if
the object of interest is maintained by the same server that contains the catalog entry. Also, there is
no need to cache properties, since the “master” information is available. Finally, the internal
representation of directory entries can be optimized; in particular, it may not be necessary to deal with
variable-length information (strings).
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7. Summary

In the preceding sections we have touched briefly on a very large number of topics related to
naming systems. By examining existing systems, we have attempted to extract and generalize their
most useful features. We have tied our ideas together and described how they might be applied to the
design of a universal directory service.

Other advanced naming services contain different subsets of important features oriented toward a
general naming facility. The UDS integrates all of them, specifically:

l The design focuses on protocol rather than implementation, which admits for
implementation as part of existing services or as an additional service - that is, either
integrated or segregated.

l The UDS can register name bindings for arbitrary object types - together with
information on how to access and manipulate the objects, via media access and object
manipulation protocols, respectively.

l The UDS does not interpret the information given by a client as the “meaning” of the
name (server-specific identifier, server-specific type code, etc.) Thus, it is type-
independent.

l The UDS can both distribute and replicate partitions of its catalog.

l Sites may retain autonomy both in the sense of operating even in isolation and in the
sense of enforcing local policies controlling local resources.

The UDS goes farther and makes a number of original contributions in the area of name
management, including:

o The UDS design is geared to identifying and providing the information needed to write
’applications that are type-independent.

l The UDS introduces the conceptually simple, yet powerful extension mechanism of the
portal. This enables it to, for example:

o Incorporate existing name spaces, even those with different name syntax.

0 Create more powerful context facilities.

o Enforce specialized access control schemes whenever needed.

o Transparently interpose monitoring facilities.

l The design supports the mapping of attribute-oriented names onto its hierarchical name
space by providing a wild-card facility to allow searches based on attribute values. Thus,
servers can provide users with a naming interface that is not positional in nature.
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