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A Model-Theoretic Approach to Updating Logical Databases

Marianne Winslett Wilkins*
Stanford University, Computer Science Dept.

Abstract. We show that it is natural to extend the concept of database updates to en-
compass databases with incomplete information. Our approach embeds the incomplete
database and the updates in the language of first-order logic, which we believe has strong
advantages over relational tables and traditional data manipulation languages in the in-
complete information situation. We present semantics for our update operators, and also
provide an efficient algorithm to perform the operations.

I 1. Introduction

Much attention has been paid to the problem of answering queries in databases contain-
ing null values, or attribute values that are known to lie in a certain domain but whose
value is currently unknown (see e.g. [Imielinski 841, [Reiter 841). Progress on this front
has encouraged research into the problem of updating such databases; as one group of re-
searchers aptly points out [Abiteboul85],  the problem of query answering presupposes the
ability to enter incomplete information into the database, and, with any luck, to remove
uncertainties when more information becomes available.

Among recent work, this paper has ties to that of Abiteboul and Grahne [Abiteboul
851, who investigate the problem of updates on several varieties (with varying representa-
tional power) of tables, or relations containing null values and auxiliary constraints other

. than integrity constraints. They propose a definition for simple updates as set operations
on the set of possible complete-information databases represented by two tables, and inves-
tigate the relationship between table type and ability to represent the result of an update
correctly and completely. They do not consider updates with joins or disjunctions in selec-
tion clauses, comparisons between attribute values, or selection clauses referencing tuples
other than the tuple being updated. Their conclusion was that only the most powerful
and complex version of tables was able to fully support their update operators.

The work presented in this paper is also related to that of Fagin et al [Fagin 83,
Fagin 841, differing chiefly in the definitions of the meaning of updates and in the inclusion
of a constructive algorithm for update computation. We base the semantics of updates on
the contents of the models of the theory being updated; Fagin et al lend more importance
to the particular formulas currently in the theory, producing a more syntactically oriented
approach. The effect of an update in our paradigm is independent of the choice of formulas
(other than schema and integrity constraints) used to represent that set of models. Another
difference concerns our identification of two levels of formulas in a theory-axioms and non-
axioms- and the provision of very different algorithmic manipulations for the two types
of formulas during an update.
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Reiter [84, 84b] sets forth a logical framework for the null value and disjunctive
information problems, where databases are represented as logical theories. (Disjunctive
information occurs when one knows that one or more of a set of tuples holds true, without
knowing which one.) Within this framework one may easily represent many, though not all,
of the pieces of information typically encountered when dealing with missing information.
Given a relational database, Reiter constructs a relational theory whose model corresponds
to the world represented by the database. For our purposes here, the advantages of this
logic framework are four-fold: it allows a clean formalization of incomplete information;
it allows us to define the meanings of query and update operators without recourse to
intuition or common knowledge; and it frees us from implicit or explicit consideration
of implementation issues, by not forcing incomplete information into a tabular format.
By framing the update question in this paradigm, we will also gain insights into the
more general problem of updating general logical theories, and lay groundwork for use
in ap,plications  beyond ordinary databases, such as AI applications using a knowledge base
built on top of ground knowledge.

In the remainder of this paper, we will set forth a simple update capability that
covers many useful types of updates in what we call extended relational theories. Extended
relational theories, presented in Section 2, are an extension to Reiter’s theories for disjunc-
tive information in which predicate constants may appear in formulas in the theory for the
database and in which formulas other than simple disjunctions may appear, thus allowing
a much broader class of models for the theories. In Section 3.1 we set forth a simple data
manipulation language, LDML, for extended relational theories, and give model-theoretic
definitions of the meaning of LDML updates in Section 3.2. Sections 3.3 and 3.5 present an
algorithm, GUA, that implements these semantics. The algorithm is shown to be correct
in the sense that the alternative worlds produced by updates under this algorithm are the
same as those produced by updating each alternative world individually. The algorithm.
can be extended to cover the case where null values appear in the theory as Skolem con-
stants, in which case the theory may have an infinite set of models. In Section 3.4 we
present necessary and sufficient conditions for two LDML updates to be equivalent when
applied to any extended relational theory. Finally, Section 3.6 discusses the computational
complexity of GUA.

A preliminary version of this paper appeared elsewhere [Wilkins 861.

2. Extended Relational Theories

We now give a formal presentation of our extension to Reiter’s theories, called extended
relational theories. Unlike most formalizations of incomplete information, our extended
relational theories will be sufficiently powerful to represent any set of relational databases
all having the same schema and integrity constraints. The language C for the theories
contains the following strings of symbols:
1. An infinite set of variables (to be used in the axioms of the extended relational theory).
2. A set of constants, possibly empty and possibly infinite. These represent the elements
in the domains of database attributes.
3. A finite set of predicates of arity 1 or more. These represent the attributes and relations
of the database.
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4. Punctuation symbols ‘(‘, ‘)‘, and ‘,‘.

5. Logical connectives, quantifiers, truth values, and the equality predicate: A, V, 1, t-),
V, 3, T, F, and = .

6. An infinite set of 0-ary predicates (predicate constants).

A given theory 7 over Cis an extended relational theory if 7 has exactly the
following wffs:

1. Unique Name Axioms: For each pair of constants cl, c2 in C , 7 contains the unique
name axiom + = ~2).

2. Completion Axioms: To implement a version of the closed-world assumption so that
we may prove certain ground atomic formulas to be false, we include axioms stating that
the only ground atomic formulas that may be true in a model of 7are those explicitly
given somewhere in 7. As our extended relational theories do not include any axioms to
generate ground atomic formulas via inference, this means that any ground atomic formula
not appearing in 7 should be false in all models of 7. (A different formulation of these
axioms can be used to allow for ground atomic formulas generated by inference rules.)
More precisely, for each ?I-ary  predicate P of 7 , either 7 cant ains an axiom of the form
v's1 l l l VXn~P(X1,. . . ) xn), or else for some nonempty  set of constants err, ~12,. . . 9 Cmn9 7
contains exactly one axiom of the form

VXlVX2 . . . VXn(P(Xl f X2, ’ l l 7 Xn) +

Kx1 = Cl1 A x2 = Cl2 A.. . A xn = Cl,)V

(x1 = ~21 A ~2 = ~22 A. l . A Xn = C2n)V .

. . . V

( Xl = Cm1 A ~2 = Cm2 A.. . A xn = Cm,))>

Further, (x1 = c;l A 52 = ci2 A . l l A xn = ci,,) is represented in (i.e., is a disjunct of) the
axiom iff P(Cil , Ci2, . . . , tin) appears elsewhere in 7.

Note that the completion axioms of 7 may be derived mechanically from the rest
of 7.

3. Non-Axiomatic Section: The non-axiomatic formulas of 7 may be any finite set of wffs
of L that do not contain variables or the equality predicate. Q

A discussion of extended relational theories with type axioms (an encoding of the
database schema) and dependency axioms is postponed to Section 3.5, because the compli-
cations introduced by those axioms are orthogonal to the other issues in updating extended
relational theories.

In an implementation of extended relational theories, we would not actually store
any of these axioms. Rather, the axioms formalize our intuitions about the behavior of
a query and update processor operating on the non-axiomatic part of the database. For
example, PROLOG is a query processor that shares our unique name axioms, but has an
entirely different closed-world assumption.

Definition. An alternative world dof a theory 7 is a set S of truth valuations
for all the ground atomic formulas of 7 of arity 1 or more, such that S holds for some
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model M of 7. If this relationship holds, then we say that M represents A. Intuitively, an
alternative world is a snapshot of the tuples of a complete-information relational database.
The alternative worlds of an extended relational theory look like a set of ordinary relational
databases all having the same schema and axioms.

With the inclusion of predicate constants in C (as a convenience feature that makes
updates easier to perform) we depart from Reiter’s paradigm. Because predicate constants
are “invisible” in alternative worlds, there may not be a one-to-one correspondence between
the models of a relational theory and its alternative worlds, as two models may give the
same truth valuation to all ground atomic formulas except some predicate constants, and
still represent the same alternative world. Alternative worlds contain just the information
that would be of interest to a database user, while models may be cluttered with predicate
constants of no external interest.

3. A Logical Data Manipulation Language (LDML) For Simple Updates

We now present a data manipulation language based on first-order logic, called LDML
(Logical Data Manipulation Language). In this section we will consider the use of LDML
for the simplest types of updates, which we call ground updates. The examples given will
all be rather abstract; however, traditional data manipulation languages such as SQL and
INGRES may be embedded in LDML.

3.1. LDML Syntax

Let C’ be a language containing all the elements of C except its predicate constants, vari-
ables, and the equality predicate. Let 4 and w be wf& over C’ , and let t be a ground atomic
formula over C’ . Then LDML ground updates consist of the following four operations:

INSERTw WHERE 4
DELETE t WHERE ~$r\t
MODIFY t TO BE w WHERE +A t

ASSERT 4

Examples. Suppose the database schema contains two relations, Orders(OrderNo,
PartNo, Quan) and InStock(PartNo, Quan). Then the following are ground updates:

MODIFY Orders(700,32,9)  TO BE Orders(700,32,1) WHERE T A Orders(700,32,9)

DELETE Orders(700, 32, 9) WHERE T A Orders(700,32,9)

INSERT Orders(800,32,1000)  V Orders(800,32,100)  WHERE T

INSERT F WHERE lInStock(32, 1)

INSERT lInStock(32,l)WHERE T
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3.2. LDML Semantics For Ground Updates

We define the semantics of an update operating on an extended relational theory 7 by
its desired effect on the models of 7. In particular, the alternative worlds (models minus
predicate constants) of the updated relational theory must be the same as those obtained
by applying the update separately to each original alternative world. In database terms,
this may be rephrased as follows: The database with incomplete information represents a
(possibly infinite) set of alternative worlds, or complete-information relational databases,
each different and each one possibly the real, unknown world. The correct answers to
queries and updates are those obtained by storing a separate database for each alternative
world and running query processing in parallel on each separate database, pooling the
query results in a final step. A necessary and sufficient guarantee of correctness for any
more efficient and practical method of query and update processing is that it produce the
same results for queries and updates as the parallel computation method. Equivalently, we
require that the diagram below be commutative: both paths from upper-left-hand corner
to lower-right-hand corner must produce the same result.

has alternative world
7 +d

update update

1 has alternative world 1
7 ’ ,d'

The general criteria guiding our choice of semantics are, first, that the semantics
agree with traditional semantics in the case where the update request is to insert or delete

. a single ground atomic formula, or to modify one ground atomic formula to be another.
Second, an update is to represent the most exact and most recent state of knowledge
obtainable about the ground atomic formulas that the update modifies, inserts, or deletes;
and the update is to override all previous information about these ground atomic formulas.
These criteria have a syntactic component: one should not necessarily expect two updates
with logically equivalent w s to produce the same results. For example, the result of
inserting the truth value T should be different from inserting g V 7 g ; one update reports
no change in the information available about g , and the other update reports that the
truth valuation of g is now unknown.

We now present formal definitions of the semantics of ground updates. Let B be a
ground update, and let M be a model of the extended relational theory 7. Define S to
be the set of models produced by applying B to M as follows:

ASSERT 4: If 4 is false in M , then S is the empty set; otherwise, S contains exactly
M .
INSERTw WHERE qb: If C$ is false in M , then S contains one model, M . Otherwise, S
contains exactly every model M* such that

(1) /M* agrees with M on the truth values of all ground atomic formulas except
possibly those in w ; and

5



(2) w is true in M*.

DELETE t WHERE 4 A t: If 4 A t is false in M , then S contains exactly M . Otherwise,
let M* be the model that agrees with M on all ground atomic formulas except t , which
is false in M*; S contains exactly M* .

MODIFY t TO BE w WHERE 4 A t : If 4 A t is false in M , then S contains one model,
M . Otherwise, let h/ be the model created from M by assigning the truth value F to t .
Then S contains every model M* such that

(1) M* has the same truth valuations for all ground atomic formulas as N does,
except possibly those in w ; and

(2) w is true in M*.

Example. If we insert a V b into M , where a and bare ground atomic formulas, then
three models are created: one where a A bis true, one where a A 1 bis true, and one where
TaAbis true-regardless of whether a or bwere true or false in M originally.

For simplicity we have defined the semantics of B in terms of its effect on the model
M rather than in terms of its effect on the alternative world of M . However, because the
semantics are independent of the truth valuations of predicate constants in M , B will have
the same effect (i.e., produce the same alternative worlds) on every model representing the
same alternative world as M .

Note that DELETE is a special case of MODIFY and INSERT: DELETE t WHERE 4 At is
equivalent to MODIFY t TO BE 1 t WHERE 4 At , and also equivalent to INSERT 1 t WHERE
C$ A t . Similarly, ASSERT is a special case of INSERT: ASSERT dis equivalent to INSERT F
WHERE 14. A little less obvious, but still immediate from the definitions, is that MODIFY is
a special case of INSERT: MODIFY t TO BE w WHERE C$ A t is equivalent to INSERT w WHERE
4 At , if t appears in w ; and equivalent to INSERT w A 1 t WHERE 4 A t , otherwise..

The remarks at the beginning of this section on correctness of update algorithms
may be summed up in the following definition:

Defhition. The execution of a ground update B against an extended relational
theory 7 to produce a new theory 7’ is correct and complete iff 7’ is an extended relational
theory and the alternative worlds of 7’ are exactly those alternative worlds represented
by the union of the models in the S sets.

Definition. A branching update occurs when some S contains more than one
model. In such a case the models of 7 are said to branch, in that a model M before
the update may map into more than one model and alternative world after the update.
Intuitively, an update may cause branching when w contains the logical operation ‘V’, as
with the ground update INSERT Orders(100,  32, 1) V Orders(100,  32, 7) WHERE T.

Branching updates are used to introduce incomplete information into the extended
relational theory. ASSERT is the usual method for removing incomplete information when
more exact knowledge is obtained.

3.3. An Algorithm for LDML Ground Updates: GUA

Recall that DELETE, MODIFY, and ASSERT are special cases of INSERT; it suffices to give an
algorithm for performing updates of the form INSERT w WHERE 4.
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We have semantics that describe the effect of an update on the models of a theory;
the semantics gives no hints whatsoever on how to translate that effect into changes in
the extended relational theory. For INSERT w WHERE 4, we cannot do anything so simple
as to add 4 + w to 7, because wprobably contradicts the rest of 7. For example, if
7 cant ains 1 a A 1 b, then INSERT a V b WHERE T should not be interpreted as a request to
add T+ (a V b) to 7 ! Similarly, for MODIFY, we cannot bodily replace occurrences oft with
something like (4 + w )A (1 q5 + t ); consider the effect of INSERT 1 t WHERE TA ton the
non-axiomatic section t V 1 t . Any update algorithm must preserve much of the structure
of the old theory while changing only selected items.

Our ground update algorithm GUA may be summarized as follows: For each ground
atomic formula f that appears in w , replace all occurrences off in the extended relational
theory 7 by a new predicate constant pf not previously appearing in 7. (These predicate
constants are not visible externally, i.e., they may not appear in any query posed to the
database.) Then add a new formula to 7 that defines the correct valuation off when +is
false, and another formula to give the correct valuation off when 4;s true.

Before a more formal presentation of the algorithm, let us examine its workings
in a simple abstract example of a non-branching update. This example contains all the
essential elements of the algorithm, and illustrates the principles underlying the algorithm.
A similar example for branching updates is given after the presentation of GUA.

Suppose the database schema contains a single relation with at most tuples a and
b (such as Orders(700,34,10)  and Orders(701,35,10)),  and that we have the following
two models and alternative worlds:

Model 1: a, b

* Mode12 :  a

Ignoring the axioms for this database, one non-axiomatic section of the extended relational
theory for this database is the two wffs a and a V b. Suppose a user presents the update
INSERT a’ A lcz WHERE bA CL, which is equivalent to the more familiar MODIFY a TO BE a’
WHERE b A a. To perform this update, we replace a and a’ in 7 by new predicate constants
Pa and Pa’7 and then add formulas to give the new correct valuations for a and a’. In other
words, the new models should be:

Model 1: pa , b , a’

Model 2: pa 9 U.

How do we define the new formulas for a and a’ ? A template for the formulas will be
presented later in this section; for now, looking at the MODIFY form of the update, we
can intuitively say that if the selection clause CL A bis true in an alternative world, then
1 a A a’ should be true in that world after the update: (b A pa) + (la A a’). Similarly, if the
selection clause a A b is false in an alternative world , then the valuations for a and a’ should

7



be the same as they originally were: -(b A pa) + (a A la’). We add these formulas to the
non-axiomatic section of the database, resulting in the new theory

pa, pa V by ‘(b A Pa) + (a A ~a’), (b A Pa) * (la A a’),

which (if we juggle the axioms appropriately) has the desired models:

Model I: pa 3 b, a’

. Model 2: pa, a.

We now present the ground update algorithm for INSERT in full detail. This first
version of the algorithm shows how to perform updates on an extended relational theory
without type and dependency axioms; the procedures for use with extended relational
theories having those axioms will be given later.

Ground Update Algorithm (GUA)
Input. A ground INSERT update Bin LDML and an extended relational theory 7. (Ex-
press DELETE, MODIFY, and ASSERT updates as insertions.)
Output. 7’) an updated version of 7.

Procedure. A sequence of four steps:

Step 1. Add to completion axioms. For any ground atomic formula f appearing  in
w or 4 but not in 7, add f to the completion axiom for its database predicate, and add
if to the non-axiomatic section of 7, creating 7’.

For example, if the update is INSERT Orders(‘700, 32,9) V Orders(700,32,8)  WHERE
T, and neither ground atomic formula previously appeared in 7, then both must be added

. to the completion axiom for Orders.
Step 2. Rename. For each distinct ground atomic formula f of w , select one new
predicate constant not previously appearing in 7’) which we will call pf . For each ground
atomic formula f of w , replace all occurrences of f by pf in the non-axiomatic section of
7’ .

.

A convenient shorthand for this syntactic replacement is the usual substitution
notation, with the semantic difference that one ground atomic formula is to be substituted
for another. For example, if 0 is the substitution :$jl, then the notation (c& or (c&$,
calls for the replacement of all occurrences of the ground atomic formula R(c) in the wff*
Q! by the predicate constant pR(,-) . If aP is the substitution that replaces each ground atomic
formula fin w by its predicate constant pf , then the effect of the current step of GUA is
to replace the non-axiomatic section n/of 7’ by (n/),,, .

Step 3. Define the update. Add the wfF (&P + w to 7’.

Step 4. Restrict the update. For each ground atomic formula fin w , add the wff

1 Wb, + (f * Pf) 0)

to 7’. Then the models of 7’ represent exactly the alternative worlds that B is defined
to produce from 7. 0

I
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Example. We present an abstract example of a branching update, again concen-
trating on the non-axiomatic section of an extended relational theory 7. Suppose the
database schema for 7 contains a single relation with at most tuples a and b, and that we
have the following two alternative worlds:

Model 1: a, b

Model 2: a

Ignoring the axioms for this database, one non-axiomatic section for the logic theory of
the database is the two wffs aand a V 6.

Suppose a user presents the update INSERT cVa WHERE bAa or, in its more familiar
form, MODIFY a TO BE c V a WHERE b A a. In Step 1, if a, b, or cdoes not appear in the
completion axioms of 7’ , we add it there now. By the definition of an extended relational
theory, a and bmust already appear in those axioms; we simply add c to its completion
axiom and add 1 c to the non-axiomatic section of 7’ .

In Step 2, we replace all occurences  of a and c by pa and pc , respectively. The non-
axiomatic section of 7’ now contains the three WES pa , pa V b, and lp, ; the models of
7'are:

Model I: pa
Model 2: pa, b.

In Step 3, we add (q5)bP +w(i.e., (bAp, )*(cVa)) to 7’; and Step 4 supplies the
two formulas 1 (b A pa )+ (pa J+ a) and 1 (b A pa )* (pc * c). The final theory is

Pa7 Pa V b7 ‘PC,
Cb A Pa) + (C V a>,
‘Cb A Pa) + (Pa * a>,
‘Cb A Pa) 3 (PC * C>,

which has the desired models, representing four alternative worlds:

Model 1: pa, u
Model 2: pa, b, c

Model 3: pa, b, a

Model 4: pa, b, C, a.
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The non-axiomatic section of 7’ can be simplified to the two wffs a V band b +
(cVa).

Theorem 1. Given an extended relational theory 7 and a ground update B,
algorithm GUA correctly and completely performs B . In particular,

(1) GUA produces a legal extended relational theory 7’ ;

(2) The alternative worlds of 7’ are the same as the alternative worlds produced
by directly updating the models of 7. 0

Readers not interested in a formal proof of correctness for Algorithm GUA should
skip to section 3.4.

In the proof of Theorem 1, we will use one lemma showing that Step 1 of GUA does
not change the models of 7.

Lemma 1. Let 7 be a theory containing a completion axiom ‘X for an n-
ary predicate P, such that a! does not contain a disjunct of the form (~1 = cl A 22 =
c2 A-Ax, = c,). Then adding the new disjunct (xi = cl A 22 = cy;z A l 0. A xn = cn) to
cy and adding ~P(cl , . . . , cn) to the non-axiomatic section of 7 produces a new theory 7’
with the same models as 7.

Proof of Lemma 1. Let f be the ground atomic formula P(Q). . . , cn) and let (Y’
be a! with the disjunct added for f . Since CY + a’ and a! + 1 f , it follows that any model
of 7 is also a model of 7’ . Conversely, every model of 7’ satisfies all of the formulas of
7- CY . Every model of 7’ must also satisfy cy , since the only way Q! could be violated by
7’ is if f were true in a model of 7’) which is not the case. 0

Proof of Theorem 1. For simplicity of reference in the proof below, let 7be the
original extended relational theory, 71 be the theory produced by Step 1 of GUA, 72 be
the theory produced by Step 2, and so on. M will always refer to a model of the original
theory, Ml to a model of 71 , and so on. We first show that GUA produces a subset of the
correct set of alternative worlds.

Suppose that MA is a model of 74 . Our goal is to show that B produces Mq from
some model M of 7. It suffices to show that 71 has such a model M , because by Lemma
1, the models of 7 and 71 are the same.

First consider the case where (b),,, is true in Mq . (Recall that q, , defined in
Step 2, is the substitution of a set of new predicate constants (i.e., predicate constants
not appearing in 7) pfl through pfn for the ground atomic formulas fi through fn of w ,
respectively.) Let M be a model that agrees with Md on the truth valuations of all ground
atomic formulas except possibly those appearing in w . For ground atomic formulas fin
w , set the truth valuation of fin M to be the same as that of pf in Md . We will show
that M is a model of 71 .

The wffs of 74 differ from those of 71 only in the addition of a number of wffs in
74 and in the replacement of the ground atomic formulas of w by new predicate constants
in 74. Since the axioms of 71 are the same as those of 74, and do not contain ground
atomic formulas of w , M satisfies those axioms. M also satisfies all other wffs of 71 that
do not contain ground atomic formulas of w , as such wffs also appear in Z l Without loss
of generality  we may assume that there is one remaining wff, uof 71 , that may possibly
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not be satisfied by M . The descendant of cx in 74 is (c&, . Since M and MA agree on the
truth assignments to all ground atomic formulas of (o),, , which contains no elements of
w, (c&, must be true in M . This implies that cy will be true in M if pfl through pfn have
the same set of truth assignments in M and M4 as do fi through fn , respectively, in M .
But by the definition of M , this condition is true. We conclude that M is a model of 71 .

It remains to show that B applied to M produces the alternative world of M4.
Since 4 is satisfied by M , it follows that (&, must be satisfied by M4 , since M4 agrees
with M on the truth valuations for all ground atomic formulas of (&, except its new
predicate constants, and any new predicate constant pf has the same valuation in M4 as
does f , which appears in place of pf in 4. By the formula (&, + w of Step 3, it follows
that w is true in M4 , so rule 2 of the definition of INSERT is satisfied by M4 . For rule
1, if his a ground atomic formula of M that is not in w , then by definition of M , h has
the same truth valuation in M and M4. Therefore Bproduces the alternative world of
Mdfrom M .

Now consider the case where ( c#+,,, is false in M4 . Let M be the same model as
M4 . Then M satisfies all wffs of 71 that do not contain ground atomic formulas in w ,
including the axioms of 71 . Without loss of generality we may assume that there is one
remaining wff, cy of 71 , that contains ground atomic formulas of w and may possibly not
be satisfied by M . The descendant of ar in 74 is (a),, . By formula (I), if f is in w then
f has the same truth value in M4 as pf does; we can replace all occurrences of w in (c&, by
f and create a new wff that is also true in M4 . But this new wff is identical to cr e We
conclude that M is a model of 71 and of 7. By the same replacement technique, it follows
that 4 is false in M , and that B produces the alternative world of M4 from M .

We have shown that GUA is correct; we now turn to the question of completeness:
does GUA produce every alternative world that should be derived under B ?

.
Let M be a model of 7and therefore also of 71 . Assume first that #is true in M .

Select one particular set vof truth valuations for the ground atomic formulas of w such
that w is true under v . If no such v exists, then B produces no alternative worlds from M ,
and the theorem follows.

Otherwise, let M4 be the model that agrees with v on all ground atomic formula
valuations of v ; where pf is assigned the same valuation as f had in M , for all new predicate
constants pf ; and that agrees with M on all other valuations. Then M4 is a model of an
arbitrary alternative world that should be produced by B from M , and we claim that
+4 is a model of 74 .

First, M 4 satisfies all wffs of 74 that also appear in 71 . This includes the completion*
and unique name axioms of 74 . Since pf has the same truth valuation in M4 as does fin
M , it follows that M4 satisfies (N)b, , that is, all the formulas of the non-axiomatic section
of 71 , to which + was applied in Step 2. Since w is true in M4, the wfF (d)+ + w added
to 74 in Step 3 is satisfied in 74 . Since 4 is true in M , (+)oP is true in M4 , and formula
(1) from Step 4 is also satisfied. Therefore M4 is a model of 74, and the alternative world
of M4 is produced by GUA.

Suppose now that 4is false in M . Let M4 be a model differing from M only in
assignments to new predicate constants: pf is assigned the same truth valuation in M4 as
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f has in M . Then M4 represents the only alternative world that B will produce from M .
As before, M4 satisfies (N)g, . Since 4 is false in M , ( $)bP must be false in M4 , since
the pattern of truth valuations is identical, and therefore the wff (&, + w added to ‘& in
Step 3 is satisfied by M4 . Formula (1) is also satisfied by M4 , so M4 must be produced
by GUA. We conclude that GUA produces the correct set of alternative worlds from M .

It remains to verify that 74 meets the criteria in the definition of an extended
relational theory. 74 still contains the set of unique name axioms for C , and its comple-
tion axioms still contain disjuncts for exactly those ground atomic formulas appearing in
the non-axiomatic section. As the non-axiomatic section still only contains wfFs without
variables, this concludes the proof of correctness for algorithm GUA. 0

3.4. Equivalence of Updates

In a future publication, we will examine other possible choices for update semantics, and
present in more detail the reasons why we find the semantics presented in this paper to
be the best choice. (Interestingly, algorithm GUA is sufficiently general to serve under
other choices of semantics simply by altering formula (1) of Step 4.) Though a qualitative
discussion of the merits of different choices for semantics is indispensable, we have found
that theorems on equivalence of updates go even farther toward exposing the peculiarities
of a particular choice of semantics. Such theorems tell us exactly when two updates look
similar but really aren’t, and when two different-looking updates really are the same; they
provide an impassionate demonstration of the properties of different semantics. We can
use these theorems to evaluate how well a given semantics meets our intuitions: if a pair
of updates should be the same according to our intuition, but an equivalence theorem tells
us that they are different (or vice versa), then we can register the discrepancy as a mark
against that semantics. As we analyze update equivalence under the current semantics, in
the process we will exactly measure the role that syntax plays in these semantics.

Definition. If B1 and B2 are two updates over a language L, then B1 and
B2 are equivalent if for every extended relational theory 7 over C or any extension of C ,
B1 applied to 7 produces the same set of alternative worlds as B2 applied to 7. B1 and
B2 are equivalent when applied to a particular model M of 7if B1 produces the saxne set
of alternative worlds from M as does B2 .

The reasons for requiring equivalence over all extensions of the language C will
become evident when we consider extended relational theories with type and dependency
axioms.

L
As we pointed out in section 3.2, ASSERT, MODIFY, and DELETE are special cases of

INSERT under this semantics; therefore it suffices to prove conditions on equivalence for
INSERT updates, rather than considering each type of operator separately. We begin with
simple sufficient criteria for equivalence:

Theorem 2. Let B1 and B2 be two INSERT ground updates over a language c:

B1 : INSERTwl WHERE 4,
BP : INSERTw2 WHERE qi

If w1 and w2 are logically equivalent and the same ground atomic formulas appear
in w1 and ~2, then B1 is equivalent to B2 . 0
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Proof of Theorem 2. Assume that wr , and therefore ~2, is satisfiable, as oth-
erwise the theorem follows immediately. For any extended relational theory 7 over Cor
an extension of C, consider the effects of & and B2 on a model M of 7. Br must
produce a model M* from M , since wr is satisfiable. We wish to show that M* is also
a model of an alternative world produced by B2 acting on M . If 4;s false in M f this
follows immediately. Otherwise w2 must be true in M * , because wr and w2 are logically
equivalent; and therefore rule 2 in the definition of INSERT is satisfied for B2 by M* . Rule
1 in the definition of INSERT is satisfied for B2 by M* since Br and B2 contain the same
ground atomic formulas. 0

To see that the criteria of Theorem 3 are sufficient but not necessary, consider the
two equivalent updates INSERT q WHERE p A Q and INSERT p WHERE p A q . For necessary
and sufficient criteria, we have Theorem 3, which can be summed up intuitively as follows:
B1 and B2 are equivalent iff wr and w2 are satisfied by the same sets of truth valuations,
except that a ground atomic formula g may appear in wr and not in w2 (or vice versa) as
long as B1 (resp. B2 ) does not change the truth valuation of g .

Theorem 3. Let B1 and B2 be two INSERT ground updates over a language C:
B1 : INSERTwl WHERE 4,
B2 : INSERT w2 WHERE 4.
If 4 is not satisfiable, then B1 and B2 are equivalent. Otherwise, let Ibe the set of ground
atomic formulas appearing in both wr and w2 . Let vi be a truth valuation for the ground
atomic formulas of wi that satisfies wr . Define vr as the subset of vi containing the val-
uations for all the ground atomic formulas of I. Let V-1 be the set of all such valuations
vr over all valuations vi , and define V2 analogously for w2 . Then BI and B2 are equivalent
iff

(1) VI = V2 ; and
.

(2) if the ground atomic formula g appears in wi but not in w2 then (wr + g ) A (4 ---)
g) or (wr 4-g) r\(++lg) is valid; and

(3) if gappears in w2but not in wrthen (wa+g) A(+-,g) or (wz+yg) A($-)
1 g ) is valid. 0

Examples. A valuation v for a wfI a is a set of truth assignments to all the ground
atomic formulas of QL . If wr is p and w2 is p V T, then w2 is satisfied by a valuation that
assigns F to p , while wr is not; the two formulas do not satisfy condition (1) for equivalence.
Therefore INSERT p WHERE T is not equivalent to INSERT p V T WHERE T; they differ on
producing models where pis false. For updates INSERT p WHERE p A q and INSERT q WHERE
p A q , VI and V2 are both the empty set, and Theorem 3 correctly predicts equivalence.

Proof of Theorem 3. Assume that $is satisfiable, as otherwise the theorem
follows immediately. We first show that if condition (1) does not hold, then B1 and B2 are
not equivalent. Select a valuation v such that, say, v E VI and v # V2 . By definition of VI ,
there must exist a valuation v’of wr that agrees with v on all the ground atomic formulas
of v , such that wr is true under v’ . Create an extended relational theory 7 with the
following axioms:

Unique  Name Axioms. For each pair of distinct constants cl , c2 in L, include the
axiom cl # c2.

13



Completion Axioms. Represent each occurrence of an n-place predicate P(cil , . . . , tin)
in Wl > w2 7 and 4 in a completion axiom of the form Vxl l l l V⌧,(P(⌧l, . . . , x,.J + ((x1 =
cl1 A l l 9 A xn = cln) V l l l V (x1 = c;~ A - l l A xn = c;,) V . - - V (x1 = cm1 A 8 - - A xn =cmn .>>I
Include the axiom Vxr . l b’xn~P(x~, . . . , xn) for all predicates P of L that do not appear
in 4or w.

Non-Axiomatic Section. Select a valuation u for the ground atomic formulas of wr ,
w2 , and 4 that satisfies 4. For every ground atomic formula gin wr , w2 , and 4, include
the wfF gin 7 if g is true under u , and 1 g otherwise.

Clearly 7 is an extended relational theory. 7 must be consistent because 4 is satis-
fiable. By construction, 7 has one alternative world, with model M . Let M* be a model
which agrees with v’ on all valuations of v’ , and with M on all others. Since wr is satisfied
in M* by construction, and M * agrees with M on all ground atomic formulas not in wr ,
it follows that the alternative world of M* is produced by B1 from M* . M* cannot be a
model of an alternative world produced by applying B2 to 7, because w2 is false in M* .
We conclude that condition (1) is necessary.

We now show that when condition (1) is met but condition (2) is violated (or,
symmetrically, condition (3)), then B1 and B2 are not equivalent.

By supposition, neither (wr + g ) A (4 + g ) nor (wr 4-g) A (# + 1 g ) is valid.
Simplifying, this means that either both wr A g and 4 A 1 g are satisfiable, or else both
wr A 1 g and 4 A g are satisfiable. Suppose wr A g and 4 A 1 g are satisfiable; the other case
is symmetric. Construct an extended relational theory 7as before, with non-axiomatic
section such that 7 has a single alternative world, with model M , that satisfies 4 A 1 g .
Then when B1 is applied to M , since wr A g is satisfiable, a model Md is produced in which
the truth valuation for g has been changed to T. Since B2 cannot change the valuation of
g , this means that B1 and B2 cannot be equivalent. We conclude that B1 and B2 cannot.
be equivalent if conditions (2) or (3) are violated.

We now turn to the reverse implication, namely, that if conditions (l), (2), and (3)
are met, then B1 and B2 are equivalent. Assume that wr , and therefore w2 , is satisfiable,
as otherwise the theorem follows immediately.

For any extended relational theory Iover L or an extension of L , consider the
effects of B1 and B2 on a model M of 7 where 4 is true. Since wr is satisfiable, B1 must
produce the alternative world of some model M* from M . We wish to show that the
alternative world of M* is also an alternative world produced by B2 acting on M .

L Since VI = V ‘f2 , 1 every ground atomic formula of w2 is in I, then w2 is true in M * .
If g is a ground atomic formula appearing in w2 but not in wr , say, condition (3) says that
the valuation of g is the same in M as in M* ; and similarly if g appears in w1 but not in
w2 . We conclude that w2 must also be true in M* . Therefore M* satisfies rules 1 and 2
of the definition of INSERT, and is a model of an alternative world produced by B2 from
M. 0

What conditions govern equivalence when the two updates have different selection
clauses? Intuitively, if B1 and B2 are two equivalent ground updates with selection clauses
+r and 42, then B1 must not make any changes in any model where 42 is false, and vice
versa.
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Theorem 4. Let B1 and B2 be two INSERT ground updates over a language L:
B1 : INSERTwl WHERE q!~,
B2 : INSERTw2 WHERE cj2.
Then B1 and B2 are equivalent iff

(1) INSERTwl WHERE t&Ad,2is equivalent to INSERT w2 WHERE 41 A&; and
(2) (~$1 A ~$9 )+ wr and (#2 A 141 )+ 02 are valid; and
(3) if 41 A ~$9 is satisfiable, then there exists exactly one valuation of wr that makes

w1 true; and if 42 A 141 is satisfiable, then there exists exactly one valuation of w2 that
makes w2 true. 0

Proof of Theorem 4. We will use the idea of the conjunction cV corresponding
to a valuation v : c, is a wff formed by including the conjunct ‘g ’ iff g is a ground atomic
formula true under v, and including the conjunct ‘1 g ’ iff g is a ground atomic formula
false under v .

We first show that condition (3) is necessary. Suppose that, say, +r A 142 is satis-
fiable with valuation u ; the proof will be symmetric if 42 A 141 is satisfiable. Let 7 be an
extended relational theory constructed as in Theorem 4, with non-axiomatic section cu.
Then 7 has one alternative world, with model M , and Bs applied to Idoes not change
that alternative world. For B1 to be equivalent to B2 , then, B1 cannot change the alter-
native world of 7. Since the number of alternative worlds B1 produces from JM will be
equal to the number of valuations for wr that satisfy wr , if B1 is equivalent to B2 there
must be only one valuation, v , that satisfies w1 . Further, since the alternative world pro-
duced by B1 must be the same as the alternative world of 7, v must agree with u on all
ground atomic formulas in v . Since u may be any valuation satisfying +r A 142 , v must be
a subset of every valuation satisfying ~$1 A 142 ; in other words, ~$1 A 142 + c,, ; since cV is

. logically equivalent to wr , ~$1 A -42 + wr , implying that condition (2) is also necessary.
We now show that condition (1) is necessary. Suppose that Bi is INSERT w1 WHERE

.

~$1 A 42 and Bk is INSERT w2 WHERE $1 A 42, and Bi and BL axe not equivalent. Then
Bi and Bh give different results when applied to some extended relational theory 7 ; in
particular, they produce different sets of alternative worlds when applied to some model
M of 7. We assume without loss of generality that 7 represents only a single alternative
world, that of M . Since Bi and Bk must produce the same results on models where
~$1 A ~$2 is false, 41 A $2 must be true in M . Then B1 applied to M will produce the same
set of alternative worlds as Bi applied to M , since both 41 and ~$1 A 49 are true in M .
The same relation holds between B2 and Bk ; therefore B1 and B2 applied to 7 produce the
same results as Bi and Bh , respectively, applied to 7, and B1 and B2 cannot be equivalent.
We conclude that condition (1) is necessary for equivalence.

We now turn to the reverse implication, namely, that if conditions (1) through (3)
are met, then B1 and B2 are equivalent. Let 7be an extended relational theory over
C or an extension of L , and M a model of 7. If 141 A 142 is true in M , then B1 and
B2 produce the same set of models Sfrom M . If 41 A 42 is true in M , then since Bi and
Bb are equivalent, again B1 and B2 must be equivalent when applied to M . If $1 A ~42 is
true in M , then any model produced by B2 represents the same alternative world as M .
By condition (2), the same is true of B1 applied to M . A similar line of reasoning holds
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if ~$2 A 141 is true in M . We conclude that BI and B2 are equivalent when applied to 7.
0

Note that although syntax is important in updates, it does not play a role in the
non-axiomatic sections of extended relational theories: if two extended relational theories
have the same axioms, then they will have identical sets of alternative worlds after a series
of updates iff the non-axiomatic sections of the two theories are logically equivalent.

3.5. Extended Relational Theories with Type and Dependency Axioms

Until now, we have considered extended relational theories without type and dependency
axioms, because the complications introduced by those axioms are orthogonal to the other
issues in updating extended relational theories. We now expand the definition of an ex-
tended relational theory as follows: Distinguish a particular set A of unary predicates of
7 as the attributes of 7. Then add two requirements to items l-3 in the definition of an
extended relational theory in Section 2:

4. Type Axioms: The type axioms encode the schema of the database in logic. For each
nary predicate P not in A, 7 contains exactly one axiom of the form

vx~vx2”‘vx,(P(x~,x2,..
l , ⌧n) + (AI(Q) A A2(x2) A l l l A An(xn))),

whereAl,... , A, are predicates in A. Further, each predicate in A must appear in one or
more type axioms, and the non-axiomatic section of 7 must always be such that removing
the type and dependency axioms from 7 does not change the models of 7. The reasons
for this restriction will become apparent when we consider the changes needed in algorithm
GUA to handle type axioms.

. 5. Dependency Axioms: 7 may optionally contain a set of wf& not containing predicate
constants, designated as dependency axioms. We consider universally quantified depen-
dencies of a template form, such as a functional or relation-inclusion dependency:

where Q! is a conjunction of atomic formulas gr through gm, ,O is quantifier-free, and x1
through xn appear in CL For example, a typical functional dependency would be Vx$dx2Vx3
((p(x1, x2) A f’(x1, x3)) + 52 = 53).

+ The non-axiomatic section of 7 must always be such that removing the type and
dependency axioms from 7 does not change the models of 7. The reasons for this re-
striction will become apparent when we consider the changes needed in algorithm GUA to
handle dependency axioms. 0

The semantics of updates must be augmented to enforce items 4 and 5. There
are a number of reasonable enforcement policies that may be adopted. For dependency
axioms in ordinary databases, a dependency axiom violation is usually taken as a signal
to repair the database, e.g., by adding additional tuples. In a database with incomplete
information, such as an extended relational theory, the dependency axioms also serve
the function of automatically weeding out alternative worlds that could not possibly be
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,

the actual world. What should be the policy of the extended relational theory update
algorithms on this delicate interplay of functions? We choose to delegate this issue to a
higher authority, such as a database administrator, and ourselves provide only a mechanism
that uses type and dependency axioms to weed out impossible alternative worlds, If
desired, an additional layer may be incorporated between the user and algorithm GUA
(or directly into GUA) to modify update requests in order to save models that would
otherwise be inadvertently removed. For example, if the user request is INSERT R(a, b, c)
WHERE T, then the type and dependency layer might automatically convert this to INSERT
R(a, b,c) A Al(a) A AZ(b) A As(c) WHERE T, where the three additional predicates are the
attributes of R.

In any case, we modify the update semantics by adding one additional proviso to
INSERT, DELETE, and MODIFY: A model M* produced by a ground update B from M must
also satisfy the type and dependency axioms of 7 ; otherwise, M* is removed from S . In
the proofs below, we will refer to this new provision as rule 3 in the definition of INSERT,
to be appended to rules 1 and 2 of the original definition:

(3) the type and dependency axioms of 7 are true in M * .
In this discussion, the type, dependency, and unique name  axioms will be perma-

nently fixed for each database schema. It is a simple matter to extend this to allow updates
to the axioms such as adding new dependencies, constants, or relations.

For algorithm GUA to handle type and dependency axioms correctly, we need to
change Step 2 slightly and add three additional steps at the end of the algorithm:
Step 2’. Add to completion axioms. In addition to the functions of Step 2, for every
constant cl appearing as a value for attribute A in a ground atomic formula of w , if cl
is not listed in the completion axiom for A, then add cl to that completion axiom in 7r ,
and add lA(q) to the non-axiomatic section of 71 .

For example, if the update is INSERT Orders(‘700, 32, 9) WHERE T, and there was
no order 700 prior to the update, then “700” must be added to the completion axiom for
the OrderNo attribute; and similarly for the quantity 9 and the part number 32.
Step 5. Instantiate the type axioms. Although 7’now represents exactly the desired
alternative worlds, 7’ may not yet be an extended relational theory. Recall that the models
of an extended relational theory must not change if the type and dependency axioms are
removed from the theory. To maintain this property after an update, the type axioms must
be “instantiated” with the new ground atomic formulas in 7’ if (7’ - Dep - Ty) k 7’.
If we did not do this, then “illegal” alternative worlds could suddenly become legal again
after an update, if the violation was removed by the update. To meet this requirement
with a minimum of effort, let P(q, . . . , cn) be a ground atomic formula appearing in 7’ .
Suppose that the type axiom for P in 7 is VxlVx2 .**Vx,(P(xr,.  . . ,xn) + (AI A
A2(x2)  A l l - A An(x,))). Then if it is the case that

(1 ) P( c 1 , * l * 7
cn) appears in w and for some i, Ai is not a formula of 7’ and

w $) Ai( or
(2) Ai appears in w and w $) Ai(

add the formula P(q) . . . A) + (AI A Am A --- A A&Q) to the non-axiomatic
section of 7’ , if it is not already present.
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Step 6. Instantiate the dependency axioms. It suffices to instantiate the template
dependency axiom

v⌧1  l -
- v⌧n((gl A l . l A gm) + ,@,

where gr through gm are atomic formulas, for those ground atomic formulas that unify
with gi of Q! . More formally, for every set of constants cl,. . . , cn in L such that the ground
atomic formula

((9 >
21 . ..zn

i cl...cn >

appears in 7’ for all i, add

to the non-axiomatic section of 7’.

If we did not do this, then “illegal” alternative worlds could suddenly become legal
again after an update, if the violation was removed by the update. For example, suppose
that Q and P are one-place relations, and we have an inclusion dependency Vx(P(x) +
Q(x)). Then whenever a new tuple is added to P, such as P(a), the new formula P(a) +
Q(a) should also be inserted unless it can be proved that Q(a) will be true in all models
where P(a) is to be true. Similarly, if Q(a) is deleted from some alternative worlds while
P(a) is still in the theory, then the new wE P(a) + Q(a) should be added to 7’.

Step 7. Add to completion axioms. Modify the non-axiomatic section and completion
axioms of 7’ as follows: For any ground atomic formula f first introduced into 7’ in Steps
5 or 6, add f to the completion axiom for its predicate, and add lf to the non-axiomatic
section of 7’. Also, for every constant c appearing as a value for attribute A in a ground
atomic formula of 7’ , if c is not listed in the completion axiom for A, then add c to that
completion axiom in 7’ , and add iA to the non-axiomatic section of 7’. 0

Theorem 5. Given an extended relational theory 7 with type and dependency
axioms and a legal ground update B , Steps l-7 of algorithm GUA correctly and completely
performs B. 0

Proof of Theorem 5. First, by Lemma 1, the incorporation of Step 2’ does not
change the result of performing Steps l-4 of algorithm GUA.

GUA will be correct if Step 4 produces exactly the correct set of alternative worlds,
Steps 5-7 do not change that set of alternative worlds, and the final result 7’ is an extended
relational theory. First, by Lemma 1 the set of alternative worlds is not changed in Step
7. Steps 5 and 6 cannot change that set either, because the theory already contains the
type and dependency axioms that are instantiated in those steps.

Now we will show that Steps l-4 produce exactly the correct set of alternative
worlds. First, since every model of 74 satisfies the type and dependency axioms of 74 ,
it follows that every alternative world that should be produced by B is represented by a
model of 74 . For the alternative world of a model Md of 74 to be produced by B , it must
be derived from a model M that satisfies not only the unique name axioms, completion
axioms, and non-axiomatic section of 7(as proved in Theorem 1), but also the type and
dependency axioms of 7. But by the definition of an extended relational theory, the
models of 7minus all type and dependency axioms are the same as the models of 7;
therefore M must be a model of 7.



It remains to verify that 7’ meets all six criteria in the definition of an extended
relational theory with type and dependency axioms. Again, we augment the proof of
Theorem 1 by showing that 7’obeys  the restrictions on type and dependency axioms:

Type Axioms. We must show that (7’ - Ty - D) k Ty, for Ty and D the set of type
and dependency axioms, respectively. Suppose that M’ is a model of 7’ - Ty - D but not
of 7’ , and that M’ violates some type axiom of the form V⌧l - l l Vx, (P(xl, l l l , x,.,) +
(&(x1)  A A2(x2) A a.- A An(xn))).  This type axiom was not violated by any model of
7 ; therefore for some set of constants cl,. . . , cn of L, the update B must have inserted
P(q,... , cn) into an alternative world, or removed some Ai from an alternative world.
More specifically, P(cl , . . . , cn) was in w , w $) (A&) A l l l A An(cn), and (A&) A l l l A
An(cn)) is not true in some model of 7’ ; or some Ai was in w , and w ++ Ai( But
these are exactly the conditions for adding P(cl,. . . , c,-J + (A&) A l l l A An(cn)) to 7’
in Step 5; therefore this change in alternative worlds must take place after Step 5. But we
have already shown that the alternative worlds of 7’ do not change after Step 4.

Dependency Axioms. It remains to show that (7’ - Ty - D) k D. Suppose that
M’ is a model of 7’ - Ty - D but not of 7’. Then M’ violates some template-style
dependency axiom of the form Vxl l ~*Vx,(cr + p), where cuis gi AggA***g,,,,  each gi is an
atomic formula, p is quantifier-free, and x1 through xn appear in CK. It must be the case
that for some set of constants cl,. . . , cn in L , the ground atomic formulas (gi)~,‘:~~,“,” are
all true in M’ ; and all these ground atomic formulas must appear in the non-axiomatic
section of 7’. But by Step 6, the non-axiomatic section of 7’ must also contain

so M’ cannot be a model of 7’ - Ty - D, contradicting our assumption. We conclude
that (7’ - Ty - D) + D and (7’ - Ty - D) k 7’. This concludes the proof that 7’ is

* an extended relational theory. 0

.

Let us consider how type and dependency axioms interact with the results in section
3.4 on update equivalence. There is now a spurious way in which two updates B1 and
B2 over L might be equivalent when applied to any extended relational theory over L ,
caused by a certain relationship between L , B1 , and B2 : B1 and B2 might be equivalent
solely because certain alternative worlds produced by B1 , say, and not by B2 , violate the
type axioms (i.e., schema) of every possible extended relational theory over L . If this is the
case, then augmenting L by a single one-place predicate will make B1 and B2 inequivalent.
This is undesirable; if B1 and B2 are equivalent over L , we would like them to be equivalent
over all extensions of L . For this reason, the definition of equivalence requires that B1 and
B2 be equivalent over all extensions of L .

Example. If L contains one two-place predicate, PI, and two one-place pred-
icates A1 and AZ, then INSERT F WHERE T is spuriously equivalent to INSERT PI
(cl, c2)A lA&)A -7A2(cl) WHERE T.

Theorem 6. Theorems 2 through 4 on update equivalence for extended relational
theories still hold for extended relational theories with type and dependency axioms. 0

Proof of Theorem 6. We first show that it suffices to consider extended relational
theories without dependency axioms when proving results about update equivalence.
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If two ground insertions B1 and B2 are equivalent when applied to extended rela-
tional theories with type and dependency axioms, then they must be equivalent when
applied to extended relational theories without dependency axioms, as these constitute a
proper subset.

Suppose now that B1 and B2 are equivalent when applied to any extended relational
theory without dependency axioms, but are not equivalent when applied to some theory
7 that contains dependency axioms. Then for some model M of 7, B1 must produce a
different set of models from M than B2 does. Let N be a model produced by, say, B1 but
not by B2 . Using the construction procedure of Theorem 4, construct a new extended
relational theory ir’with the same type and unique name axioms as 7, no dependency
axioms, and a non-axiomatic section containing the wff gfor each ground atomic formula
g that is true in M . Let the completion axioms of 7’ include disjuncts only for the ground
atomic formulas that are true in M . Let M’ be a model of the single alternative world
of 7’ . Then B1 applied to M’ must produce the alternative world of N, but B2 cannot
produce the alternative world of n/, a contradiction of our assumption. We conclude
that it suffices to consider extended relational theories without dependency axioms when
proving results about update equivalence.

We now consider the effect of adding type axioms to extended relational theories.
Suppose that B1 and B2 are equivalent when applied to any extended relational theory
with type axioms. Suppose 7is an extended relational theory with no type axioms over
some language L , and B1 and B2 are not equivalent when applied to 7. Let I’be the
same extended relational theory as 7, but with a set of type axioms added:

vq  l - +x,(P(xl,.  . . , xn) -+ (A(xl) A l l l A A(z,)),
for all predicates P of 7of arity greater than zero, where A is a one-place predicate not
in L . We also need a completion axiom for A:

Vx(A(x) + (x = cl v .a- v x = cm),
where x = ci is a disjunct iff ci appears in 4, w , or elsewhere in 7’. To the non-axiomatic
section of 7’ , add A(c) for every constant c appearing in the completion axiom for A.
Then there is a one-to-one correspondence between models M of 7 and models M’ of 7’)
such that M agrees with M’on the truth valuations of all ground atomic formulas except
those of A. Further, this mapping is preserved under application of B1 and B2, as every
model produced by B1 and B2 from M’ is guaranteed to satisfy the type axioms of 7’. By
assumption, B1 and B2 are equivalent when applied to 7’ ; we conclude that they are also
equivalent when applied to 7, or to any extended relational theory without type axioms.

Now suppose that B1 and B2 are equivalent when applied to any extended relational
theory without type axioms. Let 7’ be an extended relational theory over a language L ,
and let 7 be an extended relational theory derived from 7’ by relabeling its type axioms as
dependency axioms. Then B1 and B2 are equivalent when applied to 7. But the semantics
for INSERT do not differentiate between type and dependency axioms; the result of applying
an insertion to 7is by definition the same as applying that insertion to 7’. We conclude
that B1 and B2 must also be equivalent when applied to 7’, and thikt it suffices to consider
extended relational theories without type and dependency axioms when proving results
about equivalence. 0
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3.6. Cost of Algorithm GUA

Let g be the number of instances of ground atomic formulas in the ground update B;
and let R be the greatest number of distinct occurrences in the extended relational theory
7of any predicate. If no dependency axioms are present, an optimized form of GUA
runs in time O(glog(R)) (the same asymptotic cost as for ordinary database updates)
and increases the size of 7 by O(g) worst case. This is not to say that an O(g log(R))
implementation of updates is the best choice; rather, it is advisable to devote extra time
to heuristics for minimizing the length of the formulas to be added to 7. Nonetheless, a
worst-case time estimate for GUA is informative, as it tells us how much time must be
devoted to the algorithm proper.

To obtain this estimate, all ground atomic formulas in the non-axiomatic section
of 7 must appear in indices, with one index per predicate, so that lookup and insertion
time is O(log(R)). I?re icad’ te constants, however, are referenced through a single separate
index. The renaming step (Step 2) is the bottleneck for GUA. To make renaming fast,
we assume that the ground atomic formulas of the non-axiomatic section are stored only
as pointers. In particular, we assume that all occurrences of a ground atomic formula or
predicate constant in the non-axiomatic section of 7 are linked together in a list whose
head is an index entry, so that renaming may be done rapidly. Additionally, the names
of ground atomic formulas cannot be physically stored with the non-axiomatic wffs they
appear in; however, the non-axiomatic wffs may contain pointers into a separate name
space where names of ground atomic formulas are kept.

Finally, we assume that the schema is fixed, i.e., that the number of predicates is a
constant.

We now show the running time of each optimized algorithmic step:

. Step 1. O(g log(R)) to add new negative formulas.
* Step 2. O(g log(R)), if the cost of renaming is constant, as outlined above.

Steps 3 and 4. To improve efficiency, put all instantiations of formula (1) into one
large implication. Then it will cost O(g log(R)) to add the new formulas to 7’ .

Step 5. O(glog(R)), if the testing of logical implications is reduced to a test of
whether A;( ci) is a conjunct of w .

Step 6. (Discussed below)

Step 7. Combine with Steps 5 and 6 at no extra asymptotic cost.

L The cost of Step 6 (dependency checking) depends entirely on the type of depen-
dency axioms. We derive costs for the simplest types of dependencies here, which can be
given optimized enforcement algorithms .

If the dependency axiom is a functional dependency, then the cost of Step 6 is
O(gR) worst case (when every updated tuple seems to conflict with every other tuple in its
relation) and O(g log(R)) bes t case (when no conflicts occur). If the dependency axiom is a
relation-inclusion dependency, then the cost is also is O(gR) worst case (when the removal
of a tuple seems to invalidate every tuple in some other relation) and O(g log(R)) best case
(when no conflicts occur). The same cost functions hold for a multivalued dependency as
well.
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4. Summary and Conclusion

We have defined extended relational theories as extensions of Reiter’s theories for dis-
junctive information. Formulas in the body of an extended relational theory may be any
ground wf&, and may contain auxiliary predicate constants that are not part of the data-
base schema, thereby increasing the representational power of Reiter’s theories. Within
this context, we set forth a simple data manipulation language, LDML, and give model-
theoretic definitions of the meaning of LDML updates. We concentrate on the concept
of a ground update, or an LDML update without variables; updates with variables can
be reduced to the problem of performing a set of ground updates simultaneously. We
present an algorithm for performing ground updates, and prove it correct in the sense that
the alternative worlds produced by updates under this algorithm are the same as those
produced by updating each alternative world individually. For a particular extended rela-
tional theory 7, this algorithm runs in time proportional to the product of the number of
atomic formulas in the update request and the logarithm of the size of the predicate with
the largest number of distinct ground atomic formulas in 7; this is the same asymptotic
cost as for ordinary complete-information database updates.

We conclude that, first, one may extend the concept of a database update to data-
bases with incomplete information in a natural way; second, that first-order logic is a
fruitful paradigm for the investigation; and third, that one may construct an algorithm to
perform these updates with a reasonable running time.

An important topic that we have not found room to discuss here is the simplification
of extended relational theories, as they grow steadily longer under the update algorithms
presented. This is a vital concern, since it is in large part the possibility of heuristic
simplification that makes the LDML algorithms more attractive than simply keeping a
record of past updates and recomputing the state of the theory on each new query. A
heuristic algorithm for simplification will be a vital part of any implementation of these
algorithms, and is at the core of the implementation coded by the author.
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