
April 1986 Report No. STAN-CS-86-1097

TEXware

bY

Donald E. Knuth

Department of Computer Science

Stanford University
Stanford, CA 94305

.

1*

The POOLtype processor

(Version 2, July 1983)

Section Page
Introduction . 1 102
Thecharacterset . 4 103
String handling . 12 106
System-dependent changes . 21 108
Index . 22 109

The preparation of this report was supported in part, by the National Science Foundation
under grants IST-8201926 and MCS-8300984, and by the System Development Foundation.
‘7&X’ is a trademark of the American Mathematical Societ,y.

102 INTRODUCTION POOLtype !.j 1

1. Introduction. The POOLtype utility program converts string pool files output by TANGLE into a
slightly more symbolic format that may be useful when TANGLEd programs are being debugged.

It’s a pretty trivial routine, but people may want to try transporting this program before they get up
enough courage to tackle T@ itself. The first 128 strings are treated as l$jX treats them, using routines
copied from 7&X82.

2. POOLtype is written entirely in standard Pascal, except that it has to do some slightly system-dependent
character code conversion on input and output. The input is read from pool-file, and the output is written
on output. If the input is erroneous, the output file will describe the error.
program POOLtype (pool-file, output);

label 9999; { this labels the end of the program }
type (Types in the outer block 5)
var (Globals in the outer block 7)
procedure initialize; { this procedure gets things started properly

var (Local variables for initialization 6)
begin (Set initial values of key variables 8 >
end:

3. Here are some macros for common programming idioms.
define incr(#) E # t # + 1 { increase a variable by unity }
define deer (#) E $I + # - 1 { decrease a variable by unity }
define do-nothing - { empty statement }

94 POOLtype THE CHAR.ACTER SET 103

4 . The character set. (The following material is copied verbatim from T&X82. Thus, the same system-
dependent changes should be made to both programs.)

In order to make Q$ readily portable between a wide variety of computers, all of its input text is
converted to an internal seven-bit code that is essentially standard ASCII, the “American Standard Code for
Information Interchange.” This conversion is done immediately when each character is read in. Conversely,
characters are converted from ASCII to the user’s external representation just before they are output to a
text file.

Such an internal code is relevant to users of Tl$ primarily because it governs the positions of characters
in the fonts. For example, the character ‘A’ has ASCII code 65 = ‘101, and when T&X typesets this letter
it specifies character number 65 in the current font. If that font actually has ‘A’ in a different position,
TJ$ doesn’t know what the real position is; the program that does the actual printing from ‘&X’s device-
independent files is responsible for converting from ASCII to a particular font encoding.

TI$‘s internal code is relevant also with respect to constants that begin with a reverse apostrophe; and it
provides an index to the \catcode, \mathcode, \uccode, \lccode, and \delcode tables.

5 . Characters of text that have been converted to w’s internal form are said to be of type ASCKcode,
which is a subrange of the integers.
(Types in the outer block 5) G

ASCII-code = 0 . . 127; { seven-bit numbers }
This code is used in section 2.

.

6 . The original Pascal compiler was designed in the late 60s) when six-bit character sets were common, so
it did not make provision for lower case letters. Nowadays, of course, we need to deal with both upper and
lower case alphabets in a convenient way, especially in a program for typesetting; so the present specification
of TJ$ has been written under the assumption that the Pascal compiler and run-time system permit the
use of text files with more than 64 distinguishable characters. More precisely, we assume that the character
set contains at least the letters and symbols associated with ASCII codes ‘40 through ‘176; all of these
characters are now available on most computer terminals.

Since we are dealing with more characters than were present in the first Pascal compilers, we have to
decide what to call the associated data type. Some Pascals use the original name char for the characters in
text files, even though there now are more than 64 such characters, while other Pascals consider char to be
a 64-element subrange of a larger data type that has some other name.

In order to accommodate this difference, we shall use the name text-char to stand for the data type of
the characters that are converted to and from ASCII-code when they are input and output. We shall also
assume that text-char consists of the elements chr (first-text-char) through chr (lust-text-char), inclusive.
The following definitions should be adjusted if necessary.

define text-char 3 char { the data type of characters in text files }
define first-text-char = 0 { ordinal number of the smallest element of text-char }
define lust-text-char = 127 { ordinal number of the largest element of text-char }

_ (Local variables for initialization 6) E
i: 0 . . lust-text-char;
This code is used in section 2.

7. The Q$ processor converts between ASCII code and the user’s external character set by means of
arrays xord and xchr that are analogous to Pascal’s ord and chr functions.
(Globals in the outer block 7) E
xord: array [text-char] of ASCII-code; { specifies conversion of input characters }
xchr: array [ASCII-code] of text-char; { specifies conversion of output characters }
See also sections 12, 13, and 18.
This code is used in section 2.

104 THE CHARACTER SET POOLtype fj8

8. Since we are assuming that our Pascal system is able to read and write the visible characters of
standard ASCII (although not, necessarily using the ASCII codes to represent them), the following assignment
statements initialize most of the xchr array properly, without needing any system-dependent changes. On

the other hand, it is possible to implement ?QX with less complete character set.s. and in such cases it will
be necessary to change something here.
(Set initial values of key variables 8) E

xchr[‘40] + lua; xchr[‘41] + ‘! ‘; xchr[‘42] t -‘I-; xchr[‘43] t I##*; x c h r
xchr [‘451 + ‘%‘: xchr[‘46] + ‘&‘: xchr[‘47] + ****;
xchr[‘50] + ‘(‘; xchr[‘51] + ‘>‘; xchr[‘52] t ***: xchr[‘53] + *+*; x c h r
xchr[‘55] + *--; xchr[‘56] - -.*; xchr[‘57] + -/*;

‘441 + 'V;

[‘541 t -;;

xchr [‘601 + '0'; xchr[‘61] t - 1 ’ ; xchr[‘62] + -2'; xchr[‘63] + -3’; xchr[‘64]
xchr [‘651 + -5': xchr[‘66] + -6'; xchr[‘67] + -7';
xchr [‘701 - -8'; xchr[‘71] t ‘9 ’; xchr[‘72] + -: *; xchr[‘73] - *; *; xchr[‘74]
xchr[‘75] t *=*; xchr[‘76] t *>*; xchr[‘77] t *?*;
:rch,r [‘1 UU] - ‘Q’: .rchr[‘lUl] + - A - : xchw[‘lU2] - ‘B-: xchr[‘lU,?] - ‘C’; x c h r
xchr [‘1051 + -E-; xchr[‘lU6] + -F-; xchr[‘lU7] - -G’;

t -4.;

t -<-;

x14] + -D-;

xchr[‘1101 + ‘H-: xchr[‘lll] + ‘I - : xchr[‘ll2] - ‘J-; xchr[‘ll3] + -K-; xchr[‘ll4] + -L-;
xchr[‘1151 - ‘M-; xchr[‘1161 + IN-; xchr[‘1171 + -0';
xchr [‘1201 + -P-; xchr[‘l21] + ‘9’; xchr[‘l22] + ‘R’; xchr[‘l23] - ‘S’; xchr[‘l24] + -T-;
xchr
xchr
xchr
xchr
xchr
xchr
xchr
xchr
xchr
xchr
xchr

‘1251 - - u - :
‘1301 - ‘X’; xchr
‘1351 + ‘1 -; xchr
‘1401 + I* -; x c h r
‘1451 + -e’; xchr
‘1501 + ‘h-: xchr
‘1551 + ‘m’: xchr
‘1601 - *p*; x c h r
‘1651 + -II’; x c h r
‘1701 +- -x0; x c h r
‘1751 + ‘)‘; x c h r

‘1261 + ‘v-; xchr[‘1271 + ‘w -;
‘1311 - 'Y': xchr[‘l32] + ‘Z’; xchr[‘l33] t * [‘; xchr[‘l34] t ‘\‘;
‘1361 + .I *; xchr[‘1371 + *-*;
‘1411 t *a’; xchr[‘l42] + ‘b-: xchr[‘1431 t *c’; xchr[‘l44] + -d-;
‘1461 + ‘f -: xchr[‘l47] + *g’:
‘1511 + *i’; xchr[‘l52] + *j *; rchr[‘1531 + -k-; xchr[‘l54] - -1’;
‘1561 + ‘n’; xchr[‘157] + -0’;
‘1611 - *q’: xchr[‘l62] - *r’; xchr[‘l63] + -s*; xchr[‘l64] - .t';
‘1661 +- -v’; xchr[‘l67] + *w’;
‘I’?I] t -y-; xchr[‘l72] + *z*; xrh,r[‘l73] - ‘C’; xchr[‘l74
‘1761 + ---;

xchr[O] - *,,-; xchr[‘l77] +- *,,*: { ASCII codes 0 and ‘177 do not appear in text }

]+ ‘I’;

See also sections 10, 11, and 14.
This code is used in section 2.

bolic names in this program9. Some of the ASCII codes without visible characters have been given sym
because they are used with a special meaning.

define null-code = ‘0 { ASCII code that might disappear }
define curriugc-return = ‘15 { ASCII code used at end of line }
define invulid-code = ‘177 { ASCII code that, should uot, appear }

§lO POOLtype THE CHARACTER SET 105

10. The ASCII code is “standard” only to a certain extent, since many computer installations have found it
advantageous to have ready access to more than 94 printing characters. Appendix C of The XQXbook gives a
complete specification of the intended correspondence between characters and T&X’s internal representation.

If TJ$ is being used on a garden-variety Pascal for which only standard ASCII codes will appear in the
input and output files, it doesn’t really matter what codes are specified in xchr[l . . ‘373, but the safest
policy is to blank everything out by using the code shown below.

However, other settings of xchr will make T&X more friendly on computers that have an extended character
set, so that users can type things like ‘P’ instead of ‘\ne’. At MIT, for example, it would be more appropriate
to substitute the code

for i + 1 to ‘37 do xchr [i] + chr (i);

T&X’s character set is essentially the same as MIT’s, even with respect to characters less than '40. People
with extended character sets can assign codes arbitrarily, giving an xchr equivalent to whatever characters
the users of YlJ$ are allowed to have in their input files. It is best to make the codes correspond to the
intended interpretations as shown in Appendix C whenever possible; but this is not necessary. For example,
in countries with an alphabet of more than 26 letters, it is usually best to map the additional letters into
codes less than ‘4 0.
(Set initial values of key variables 8) +r

for i + 1 to ‘37 do xchr[i] - 0u0;

11. The following system-independent code makes the xord array contain a suitable inverse to the infor-
mation in xchr. Note that if xchr[i] = xchr[j] where i < j < ‘177, the value of xord[xchr[i]] will turn out
to be j or more; hence, standard ASCII code numbers will be used instead of codes below '40 in case there
is a coincidence.
(Set initial values of key variables 8) +r

for i - first-text-chur to In&text-char do xord [chr(i)] - invulid-code;
for i + 1 to ‘176 do xord [xchr [i]] + i;

106 STRING HANDLING POOLtype $12

12. String handling. (The following material is copied from the inkstrings procedure of T&X82, with
slight changes.)
(Globals in the outer block 7) +r
Ic, I: 0 . . 127; { small indices or counters }
m, n: text-char; { characters input from pool-file }
s: integer; { number of strings treated so far}

13. The global variable count keeps track of the total number of characters in strings.
(Globals in the outer block 7) +z
count: integer; { how long the string pool is, so far }

14. (Set initial values of key variables 8) +E
count + 0;

15. This is the main program, where POOLtype starts and ends.
define abort (rt) E

begin write-Zn (#)
end

; got0 9999;

begin initialize;
(Make the first 128 strings
s t 128;

16);

(Read the other strings from the POOL file, or give an error message and abort 19);
write-Zn (- (*, count : 1, ‘,characters,,in,all. > ‘);

9999: end.

16. (Make the first 128 strings 16) E
for k + 0 to 127 do

begin write (k : 3, * : ul’ ‘); Z + k;
if ((Character Ic cannot be printed 17)) then

begin if k < ‘100 then 1 + Ic + ‘100 else 1 + k - ‘100;
write(xchr[ftn’l], xchr[“^“]); count + count + 2;
end;

if 1 = II 111111 then write(xchr[Z], xchr[Z])
else write (xchr [I]):
incr(count); write-Zn(-” ‘);
end

This code is used in section 15.

§17 POOLtype STRING HANDLING 107

1 7 . The first 128 strings will contain 95 standard ASCII characters, and the other 33 characters will be
printed in three-symbol form like ‘-^A' unless a system-dependent change is made here. Installations that
have an extended character set, where for example zchr[‘321 = ‘f *, would like string ‘32 to be the single
character ‘32 instead of the three characters ‘136, ‘136, ‘132 (^^Z). On the other hand, even people with
an extended character set will want to represent string ‘15 by *-M, since ‘15 is carriage-return; the idea is
to produce visible strings instead of tabs or line-feeds or carriage-returns or bell-rings or characters that are
treated anomalously in text files.

The boolean expression defined here should be true unless 7&X internal code number k corresponds to
a non-troublesome visible symbol in the local character set. At MIT, for example, the appropriate formula
would be .k E [0, ‘10 . . ‘12, ‘14, ‘15, ‘33, ‘1771’. If character k cannot be printed, then character k + ‘100
or k - ‘100 must be printable; thus, at least 64 printable characters are needed.
(Character k cannot be printed 17) G

(k < “,,“) v (k > “-‘I)
This code is used in section 16.

18. When the WEB system program called TANGLE processes a source file, it outputs a Pascal program and
also a string pool file. The present program reads the latter file, where each string appears as a two-digit
decimal length followed by the string itself, and the information is output with its associated index number.
The strings are surrounded by double-quote marks; double-quotes in the string itself are repeated.
(Globals in the outer block 7) +E
pool-file: packed file of text-char; { the string-pool file output by TANGLE}
xsum : boolean ; { has the check sum been found? }

19. (Read the other strings from the POOL file, or give an error message and abort 19) 3
reset (pool-file): xsum +-- false;
if eof (pool-file) then abort('!,Iucan"t,readutheuPOOL,file.');
repeat (Read one string, but abort if there are problems 20);
until xsum;
if leaf (pool-file) then abort (* !uThere"s,junkuafterutheucheckus~~)

This code is used in section 15.

20. (Read one string, but abort if there are problems 20) E
if eof (pool-file) then abort('!,POOL,file,containedunoucheckusum~);
read(pooZJiZe, m, n); { read two digits of string length }
if m# -**then

begin if (xord[m] < “0”) V (xord[m] > “9”) V (xord[n] < “0”) V (xord[n] > 119t1) then
abort (' !,POOL,lineudoesn "t,begin,with,twoudigits');

1 +-- xord[m] * 10 + xord[n] - “0” * 11; {compute the length}
write (s : 3, * : U” ‘); count +- count + I;
for k +- 1 to Z do

begin if eoln (pool-file) then
begin write-Zn (* ” ‘); abort (* !,ThatuPOOL,lineuwasutooushort');
end;

read(pooZ-file, m); write(xchr[xord[m]]);
if xord[m] = ‘I ‘I ” ” then write (xchr [‘I I’ I’ “1);
end;

write-Zn (* ‘I ’); incr (s);
end

else xsum t- true;
read-Zn (pool-file)

This code is used in section 19.

108 SYSTEM-DEPENDENT CHANGES POOLtype 521

21. System-dependent changes. This section should be replaced, if necessary, by changes to the
program that are necessary to make POOLtype work at a particular installation. It is usually best to design
your change file so that all changes to previous sections preserve the section numbering; then everybody’s
version will be consistent with the printed program. More extensive changes, which introduce new sections,
can be inserted here: then only the index itself will get a new section number.

§22 POOLtype INDEX 109

22. Index. Indications of system dependencies appear here together with the section numbers where
each identifier is used.
abort: l5, 19, 20.
ASCII code: 4.
ASCII-code: 3, 6, 7.
boolean: 18.
carriage-return: 9, 1 7 .

c h a r : 6 .
character set dependencies: 10, 17.
c h r : 6, 7, 10, 11.
count: l3, 14, 15, 16, 20.
deer: 3.
do-nothing: 3.
eof: 19, 20.
eoln: 2 0 .

false: 19.
first-text-char: ti, 11.
incr : ,. 16, 20.
initialize: 2, 15.
integer: 12, 13.
invalid-code : 9, 11.
k: 12.
1: 12.
Znst~text~char: 6, 1 1 .
m: 12.
91: 12.
null-code : 9.
o r d : 7 .
output : 2.

. pool-file : 2, 12, l8, 19, 20.
POOLtype: 2.
read: 20 .
read-Zn : 20.
reset: 19.
s: 12.
system dependencies: 2 , 6 , 8 , 10. 17, 21.
The book: 10.
text-char: 6, 7. 12, 18.
true : 17. 20.
write: 16, 20.
Wite-Zn: 15, 16, 20.

c x c h r : 1, 8, 10. 11, 16, 17, 20.
xord: 1. 11. 20.
xsum : l8, 19. 20.

110 NAMES OF THE SECTIONS POOLtype $22

(Character k cannot be printed 17) Used in section 16.
(Globals in the outer block 7, 12, 13, 18) Used in section 2.
(Local variables for initialization 6) Used in section 2.
(Make the first 128 strings 16) Used in section 15.
(Read one string, but abort if there are problems 20) Used in section 19.
(Read the other strings from the POOL file, or give an error message and abort 19) Used in section 15.
(Set initial values of key variables 8, 10, 11, 14) Used in section 2.
(Types in the outer block 5) Used in section 2.

.

The TFtoPL processor

(Version 2.5, September 1985)

Section Page
Introduction . 1 202
Font metric data . 6 203
Unpacked representation . 18 208
Basic output subroutines . 26 211
Doing it . 44 215
The main program . 85 225
System-dependent changes . 89 226
Index . 90 227

The preparation of this report was supported in part by the National Science Foundation
under grants IST-8201926 and MCS-8300984, and by the System Development Foundation.
‘Tj$’ is a trademark of the American Mathematical Society.

. .-

202 INTRODUCTION T F t o P L $1

1. Introduction. The TFtoPL utility program converts m font metric (“TFM”) files into equivalent
property-list (“PL”) files. It also makes a thorough check of the given TFM file, using essentially the same
algorithm as T@. Thus if T&X complains that a TFM file is “bad,” this program will pinpoint the source or
sources of badness. A PL file output by this program can be edited with a normal text editor, and the result
can be converted back to TFM format using the companion program PLtoTF.

The first TFtoPL program was designed by Leo Guibas in the summer of 1978. Contributions by Frank
Liang. Doug Wyatt, and Lyle Ramshaw also had a significant effect on the evolution of the present code.

The banner string defined here should be changed whenever TFtoPL gets modified.
define banner 3 ‘This,isuTFtoPL,uVersion,2.5’ { printed when the program starts }

2. This program is written entirely in standard Pascal, except that it occasionally has lower case letters
in strings that are output. Such letters can be converted to upper case if necessary. The input is read from
tfm-file. and the output is written on pl-file; error messages and other remarks are written on the output
file, which the user may choose to assign to the terminal if the system permits it.

The t.erm print is used instead of write when this program writes on the output file, so that all such
output can be easily deflected.

define print(#) z write(t)
define print-h (#) E write-Zn (X)

program TFtoPL(tfm-file. pl-file. output):
label (Labels in the outer block 3)
const (Constants in the outer block 4)
type (Types in the outer block 18)
var (Globals in the outer block 6)
procedure initialize; { this procedure gets things started properly }

begin print-/n (banner);
(Set initial values 7)
end:

* 3. If the program has to stop prematurely, it goes to the ‘final-end’.
define final-end = 9999 { label for the end of it all }

(Labels in the outer block 3) E
final-end;

This code is used in section 2.

4. The following parameter can be changed at compile time to extend or reduce TFtoPL’s capacity.
(Constants in the outer block 4) s

tfm-size = 20000: { maximum length of tfm data, in bytes }
This code is used in see-tion 2.>
5. Here are some macros for common programming idioms.

define incr (It) z # +- # + 1 { increase a variable by unity }
define deer(#) G t +- # - 1 { decrease a variable by unity }
define do-nothing E { empty statement }

§6 TFtoPL FONT METRIC DATA 203

6. Font metric data. The idea behind TFM files is that typesetting routines like TEX need a compact
way to store the relevant information about several dozen fonts, and computer centers need a compact
way to store the relevant information about several hundred fonts. TFM files are compact, and most of the
information they contain is highly relevant, so they provide a solution to the problem.

The information in a TFM file appears in a sequence of 8-bit bytes. Since the number of bytes is always a
multiple of 4, we could also regard the file as a sequence of 32-bit words; but lEX uses the byte interpretation,
and so does TFtoPL. Note that the bytes are considered to be unsigned numbers.
(Globals in the outer block 6) z
tfm-file : packed file of 0 . . 255;
See also sections 8, 16, 19, 22, 25, 27, 29, 32, 45, 47, 63, and 68.
This code is used in sectiou 2.

7. On some systerns you may have to do something special to read a packed file of bytes. For example, the
following code didn’t work when it was first tried at Stanford, because packed files have to be opened with
a special switch setting on the Pascal that was used.
(Set initial values 7) E

reset (tfm-file) :
See also sections 17, 28. 33. 46, and 64.
This code is used in section 2.

8. The first 24 bytes (6 words) of a TFM file contain twelve 16-bit integers that give the lengths of the
various subsequent portions of the file. These twelve integers are, in order:

If = length of the entire file, in words;
Zh = length of the header data, in words;
bc = smallest character code in the font;
ec = largest character code in the font:

nw = number of words in the width table;
nh = number of words in the height table;
nd = number of words in the depth table;
ni = nuniber of words in the italic correction table:
nZ = number of words in the lig/kern table;

nlc = number of words in the kern table:
rbe = number of words in the extensible character table:
nP = number of font parameter words.

They are all nonnegative and less than 2’“. We must have bc - 1 5 ec 5 ‘255. ne 5 256, and

If =6+Zh+(ec - bc + 1) + n,w + nh + nd + ni + nZ + nk + ne + np.

Note that a font may contain as many as 256 characters (if bc = 0 and ec = 255), and as few as 0 characters
(if bc = CC + 1).

Incidentally, when two or more 8-bit bytes are combined to form an integer of 16 or more bits, the most,
significant bytes appear first in the file. This is called BigEndian order.
(Globals in the outer block 6) +E
Zf. Zh, bc, ec, nw, nh, nd, ni. n<Z, nk, ne, np: 0.. ‘77‘777; { subfile sizes}

204 FONT METRIC DATA TFtoPL $9

9. The rest of the TFM file may be regarded as a sequence of ten data arrays having the informal specification

header : array [0 . . Zh - l] of stu#
char-info : array [bc . . ec] of char-info-word

width : array [0 . . nw - l] of &word
height : array [0 . . nh - I] of fix-word
depth : array [0 . . nd - l] of fix-word
italic : array [0 . . ni - l] of fix-word

Zig-kern : array [0 . . nZ - l] of Zig-kern-command
kern : array [0 . . nk - l] of fix-word

exten : array [0 . . ne - l] of extensible-recipe
param : array [l . . np] of fix-word

The most important data type used here is a fix-word, which is a 32-bit representation of a binary fraction.
A fix-word is a signed quantity, with the two’s complement of the entire word used to represent negation.
Of the 32 bits in a fix-word, exactly 12 are to the left of the binary point; thus, the largest fix-word value is
2048 - 2-20, and the smallest is -2048. We will see below, however. that all but one of the fix-word values
will lie between -16 and +16.

.

§lO TFtoPL FONT METRIC DATA 205

10. The first data array is a block of header information, which contains general facts about the font.
The header must contain at least two words, and for TFM files to be used with Xerox printing software it
must contain at least 18 words, allocated as described below. When different kinds of devices need to be
interfaced, it may be necessary to add further words to the header block.

header[O] is a 32-bit check sum that QJX will copy into the DVI output file whenever it uses the font.
Later on when the DVI file is printed, possibly on another computer, the actual font that gets used is
supposed to have a check sum that agrees with the one in the TFM file used by Y&X. In this way, users
will be warned about potential incompatibilities. (However, if the check sum is zero in either the font
file or the TFM file, no check is made.) The actual relation between this check sum and the rest of the
TFM file is not important; the check sum is simply an identification number with the property that
incompatible fonts almost always have distinct check sums.

header[l] is a fix-word containing the design size of the font, in units of TjjX points (7227 TjjX points =
254 cm). This number must be at least 1.0; it is fairly arbitrary, but usually the design size is 10.0
for a “10 point” font, i.e., a font that was designed to look best at a lo-point size, whatever that
really means. When a Yl&X user asks for a font ‘at 5 pt’, the effect is to override the design size
and replace it by 6, and to multiply the z and y coordinates of the points in the font image by a
factor of S divided by the design size. AI1 other dimensions in the TFM file are fix-word numbers in
design-size units. Thus, for example, the value of param[6], one em or \quad, is often the fix-word
value 220 = 1.0, since many fonts have a design size equal to one em. The other dimensions must be
less than 16 design-size units in absolute value; thus, header[l] and param[l] are the only fix-word
entries in the whole TFM file whose first byte might be something besides 0 or 255.

header[2 . . 111, if present, contains 40 bytes that identify the character coding scheme. The first
byte, which must be between 0 and 39, is the number of subsequent ASCII bytes actually relevant
in this string, which is intended to specify what character-code-to-symbol convention is present
in the font. Examples are ASCII for standard ASCII, TeX text for fonts like cmrl0 and cmti9,
TeX math extension for cmexl0, XEROX text for Xerox fonts, GRAPHIC for special-purpose non-
alphabetic fonts, UNSPECIFIED for the default case when there is no information. Parentheses should
not appear in this name. (Such a string is said to be in BCPL format.) Oriental fonts, for which many
different individual symbols might share the same metric information, should be identifiable via this
part of the TFM header.

header[l2 . . 161, if present, contains 20 bytes that name the font family (e.g., CMR or HELVETICA), in BCPL
format. This field is also known as the “font identifier.”

header [17], if present, contains a first byte called the seven-bit-safe-flag, then two bytes that are ignored,
and a fourth byte called the face. If the value of the fourth byte is less than 18, it has the following
interpretation as a “weight, slope, and expansion”: Add 0 or 2 or 4 (for medium or bold or light) to
0 or 1 (for roman or italic) to 0 or 6 or 12 (for regular or condensed or extended). For example, 13 is
0+1+12, so it represents medium italic extended. A three-letter code (e.g., MIE) can be used for such
face data.

header [18 . . whatever] might also be present; the individual words are simply called header [181, header [191,2 etc., at the moment.

206 FONT METRIC DATA TFtoPL §ll

11. Next comes the char-info array, which contains one chur-info-word per character. Each char-info-word
contains six fields packed into four bytes as follows.

first byte: width-index (8 bits)
second byte: height-index (4 bits) times 16, plus depth-index (4 bits)
third byte: italic-index (6 bits) times 4, plus tug (2 bits)
fourth byte: remainder (8 bits)

The actual width of a character is width[width-index], in design-size units; this is a device for compressing
information, since many characters have the same width. Since it is quite common for many characters to
have the same height, depth, or italic correction, the TFM format imposes a limit of 16 different heights. 16
different depths. and 64 different italic corrections.

Incidentally, the relation width[O] = height [0] = depth[O] = itaZic[O] = 0 should always hold, so that an
index of zero implies a value of zero. The width-index should never be zero unless the character does not exist
in the font, since a character is valid if and only if it lies between bc and ec and has a nonzero width-in,dex.

12. The tug field in a chur-ir$o-wortl has four values that explain how to interpret the remainder field.
tug = 0 (no-tug) means that remuinder is unused.
tug = 1 (Zig-tug) means that this character has a ligature/kerning program starting at Zig-kern[remuinder].
tug = 2 (list-tug) means that this character is part of a chain of characters of ascending sizes, and not the

largest in the chain. The remninder field gives the character code of the next larger character.
tug = 3 (ext-tag) means that this character code represents an extensible character, i.e., a character that

is built up of smaller pieces so that it can be made arbitrarily large. The pieces are specified in
exten [remainder].

define no-tug = 0 { vanilla character }
define Zig-tug = 1 { character has a ligature/kerning program}
define list-tug = 2 { character has a successor in a charlist }
define ext-tug = 3 { character is extensible }

13. The Zig-kern array contains instructions in a simple programming language that explains what to do
*for special letter pairs. Each word is a Zig-kern-command of four bytes.

first byte: stop-bit, indicates that this is the final program step if the byte is 128 or more.
second byte: next-char, *-if next-char follows the current character, then perform the operation and stop,

otherwise continue.”
third byte: op-bit, indicates a ligature step if less than 128. a kern step otherwise.
fourth byte: remuinder .

In a ligature step the current character aad next-chur are replaced by the single character whose code is
remainder. In a kern step, an additional space equal to kern [remuinder] is inserted between the current
character and next-chur. (The value of kern[rem.uinder] is often negative, so that the characters are brought
closer together by kerning: but, it, might be positive.)

define stopJZug = 128 { value indicating ‘STOP’ in a lig/kern program }
define kern-jZug = 128 { op code for a kern st,ep }

14. Extensible characters are specified by an e:cte7lslbZ~-1,ecipe. which consists of four bytes called top, mid.
hot, and rep (in this order). These bytes are the c*haracter codes of individual pieces used to build up a large
symbol. If top, mid. or bot are zero. they are not present in the built-up result. For example, an extensible
vertical line is like a11 extensible bracket. excc’pt that, the top and bottom pieces are missing.

§15 TFtoPL FONT METRIC DATA 207

15. The final portion of a TFM file is the-purum array, which is another sequence of fix-word values.
purum [l] = slant is the amount of italic slant, which is used to help position accents. For example,

slunt = .25 means thatt when you go up one unit, you also go .25 units to the right. The slant is a
pure number: it’s the only fix-word other than the design size itself that is not scaled by the design
size.

purum[2] = space is the normal spacing between words in text. Note that character t’U” in the font need
not have anything to do with blank spaces.

purum[3] = spuce-stretch is the amount of glue stretching between words.
purum[4] = space-shrink is the amount of glue shrinking between words.
purum[5] = x-height is the height of letters for which accents don’t have to be raised or lowered.
purum [6] = quad is the size of one em in the font.
purum [7] = extru-space is the amount added to purum [2] at the ends of sentences.
When the character coding scheme is TeX math symbols, the font is supposed to have 15 additional

parameters called numl , num:!, num3, denoml , denom2, sup1 , sup2, sup3, sub1 , sub2, supdrop, subdrop,
deliml . deZim.2. and uxis-height, respectively. When the character coding scheme is TeX math extension,
the f<jnt is supposed to have six additional parameters called default-rule-thickness and big-op-spacing1
through big-op-spucing5.

16. So that is what TFM files hold. The next, question is, “What about PL files?” A complete answer to
that question appears in the documentation of the companion program, PLtoTF, so it will not be repeated
here. Suffice it to say that a PL file is an ordinary Pascal text file, and that the output of TFtoPL uses only
a subset of the possible constructions that might appear in a PL file. Furthermore, hardly anybody really
wants to look at the formal definition of PL format, because it is almost self-explanatory when you see an
example or two.
(Globals in the outer block 6) +E
pZ$Ze : text ;

17. (Set initial values 7) +E
rewrite (pl-file);

208 UNPACKED REPRESENTATION TFtoPL

18. Unpacked representation.
The first thing TFtoPL does is read the entire tfm$e into an array of bytes, t,fm[O . . (4 * If - l)].

(Types in the outer block IS) E
byte = 0 . . 255; { unsigned eight-bit quantity }
index = 0 . . tfm-size; { address of a byte in tfm }

This code is used in sectmn 2.

§18

19. (Globals in the outer block 6) +E
tfm: array [- 1000 . . tfm-size] of byte; { the input data all goes here }

{ the negative addresses avoid range checks for invalid characters }

20. The input may, of course, be all screwed up and not a TFM file at all. So we begin cautiously.
define abort(#) z

begin printh (#);
print-ln(‘Sorry, ubutuIucan * l tUgoUon;UareUyouUsureUthisUis,a,TFM?’); goto final-end;
end

(Read the whole input file 20) E

read (tfm$Ze , tfm [0]);
if tfm[O] > 127 then abort(‘TheUf irstUbyteUof,the,input,f ile,,exceedsJ27! ‘);
if eof(@n-file) then abort(‘TheUinputUf ileuisuonlyuoneubyteUlong! ‘);
read(tfm,fiZe, tfm[l]); If + tfm[O] * ‘400 + tfm[l];
if If = Othen abort(-The,fileuclaims,to,have,length,zero,~but~that-~s~impossible!.);
if 4 * If - 1 > tfm-size then abort(‘TheUf ileUisUbiggerUthan,IUcanUhandle! ‘);
for tfm-ptr + 2 to 4 * Zj - 1 do

begin if eof (tfm-file) then abort (‘TheUf ileuhasuf ewer,bytesuthan,itUclaims ! ‘);
read (t&file, tfm [tfmqtr]);
end;

if 1 eof (tfm-file) then
begin print-Zn (‘There ~~sUsomeuextr~junkUatUtheUend,of,the,TFMUfile,~);
print_Zn (‘but,1 “ll,proceed,asUifUitUweren~*tUthere.’):
end

This code is used in section 85.

§21 TFtoPL UNPACKED REPRESENTATION 209

21. Once the file has been read successfully, we look at the subfile sizes to see if they check out.
define eval-two-bytes (#) z

begin if tjm[tjm-ptr] > 127 then abort(‘OneUof,theUsubf ileusizesuisunegative! ‘);
+ tjm[tjm-ptr] * ‘400 + tjm[tjm-ptr + 11; tjm-ptr +- tjm-ptr + 2;
end;

(Set subfile sizes Zh, bc, np 21) E
begin tjm-ptr +- 2;
evabtwo-bytes(Zh); eval-two-bytes (bc); eval-two-bytes (ec); eval-two-bytes (nw); eval-two-bytes (nh);
eval-two-bytes (nd); eval-two-bytes (ni); eval-two-bytes (nZ); eval-two-bytes (nk); eval-two-bytes (ne);
eval-two-bytes(np);
if If #6+Zh+(ec-bc+l)+nw+nh+nd+ni+nZ+nk+ne+np then

abort (‘Subf ileusizesudon * ‘tUadd,upUtoUtheustatedUtotal! ‘);
if (nw = 0) V (nh = 0) V (nd = 0) V (ni = 0) then

abort(‘Incompleteusubfilesufor,character~dimensions! ‘);
if, (bc > ec + 1) V (ec > 255) then

abort(*TheUcharacterUcodeUrangeUa, bc : 1, *. . *, ec : 1, ‘is,illegal! ‘);
if ne > 256 then abort(‘ThereUareU’, ne : 1, ‘,extensibleUrecipes! ‘);
end

This code is used in section 85.

22. Once the input data successfully passes these basic checks, TFt oPL believes that it is a TFM file, and
the conversion to PL format will take place. Access to the various subfiles is facilitated by computing the
following base addresses. For example, the char-info for character c will start in location 4 * (char-base + c)
of the tjm array.
(Globals in the outer block 6) +G
char-base, width-base, height-base, depth-base, italic-base, Zig-kern-base, kern-base, exten-base, param-base:

integer ; { base addresses for the subfiles }

23. (Compute the base addresses 23) 5
begin char-base + 6 + Zh - bc; width-base +- char-base + ec + 1; height-base +- width-base + nw;
depth-base +- height-base -I- nh; italic-base + depth-base -I- nd; Zig-kern-base + italic-base + ni;
kern-base +- Zig-kern-base + nl; exten-base + kern-base + nk; param-base + exten-base + ne - 1;
end

This code is used in section 85.

210 UNPACKED REPRESENTATION TFtoPL ii24

24. Of course we want to define nlacros that suppress the detail of how the font information is actually
encoded. Each word will be referred to by the tjm index of its first byte. For example, if c is a character
code between bc and ec, then tjm [char-info (c)] will be the first byte of its char-info, i.e., the width-index:
furthermore width(c) will point to the fix-word for c’s width.

define check-sum = 24
define design-size = check-sum + 4
define sche7ne = design-size + 4
define family = scheme + 40
define random-word = janlily + 20
define char-info(#) G 4 * (char-base + #)
define width-index (#) E tfm [char-info (#)]
define nonexistent (#) E ((# < bc) V (# > ec) V (width-index(#) = 0))
define height-index (rt) E (tj7n [char-info (tt) + l] div 16)
define depth,-index (#) E (tjm [char-info (#) + I] mod 16)
define italic-index (#) z (tjm [char-injo (#) + 21 div 4)
define tag(#) z (tjm [cha7*-info (it) + 21 mod 4)
define reset-tag(#) 3 tjm [char-info(#) + 21 + 4 * italic-index (#) + no-tag
define re7nain.der (#) E tj7n [char-illjo (#) + 31
define width (#) E 4 * (width-base + width-index(#))
define height (#) G 4 * (height-base + height-index(#))
define depth(#) = 4 * (depth-base + depth-index(#))
define italic(#) 3 4 * (italic-base + z’tnlic-index(#))
define exten (lt) E 4 * (exten-base + remainder(#))
define kern(#) E 4 * (k*em-base + #) { here # is an index, not a character }
define parum (#) s 4 * (parum-btrse + #) { likewise }

25. One of the t,hings we would like to d0 is take cognizance of fonts whose character coding scheme is
TeX math symbols or TeX math extensi on: we will set the font-type variable to one of the three choices
vanilla. math,sy. or mathex.

* define vanilla = 0 { not a special scheme }
define mnth.sy = 1 { TeX math symbols schenle}
define mathex = 2 { TeX math extension schelne}

(Glob& in the outer block 6) +r
jo77t-type: vnnilln . . m&hex: { is this font special? }

§26 TF toPL BASIC OUTPUT SUBROUTINES 211

26. Basic output subroutines. Let us now define some procedures that will reduce the rest of TFtoPL’s
work to a triviality.

First of all, it is convenient to have an abbreviation for output to the PL file:
define out(#) 3 write(pZ$Ze, #)

27. In order to stick to standard Pascal, we use three strings called ASCII-04, ASCII-lU, and ASCII-14,
in terms of which we can do the appropriate conversion of ASCII codes. Three other little strings are used
to produce face codes like MIE.
(Globals in the outer block 6) +E
ASCII-U4. ASCII-10, ASCII-14 : packed array [l . . 321 of char;

{ strings for output in the user’s external character set }
MBL-string. RI-string, RCE-string: packed array [l . . 31 of char;

{ handy string constants for face codes }

28. (Set, initial values 7) +G
ASCII-U4 t -U! “#$%&- - (I*+,-./0123456789: ;<=>?-;
ASCII-10 + ‘QABCDEFGHI JKLMNOPQRSTUVWXYZ [\I - _ - :
Ascm4 +- “abcdefghijklmnopqrstuvwxyzo”,‘:
MBL-string +- ‘MBL *; RI-string + -I& -; RCE-string +- ‘RCE-;

29. The array dig will hold a sequence of digits to be output.
(Globals in the outer block 6) +E
dig: array [0 . . 111 of 0 . . 9;

30. Here. in fact. are two procedures that output dig[j - l] . . . dig[O], given j > 0.
procedure out-digs(j : integer); { outputs j digits}

begin repeat deer(j); out (dig[j] : 1);
until j = 0;
end;

procedure print-digs (j : integer): { prints j digits }
begin repeat deer(j): print(dig[j] : 1):
until j = 0;
end:

31. The print-octal procedure indicates how print-digs
print character codes. it always produces three digits.

can be used. Since this procedure is used only to

procedure print-octnZ(c : byte); { prints octal value of c }
var j: 0 . . 2: { index into dig }
begin print (* * * ‘); { an apostrophe indicates the octal notation)

’ for j +- 0 to 2 do
begin dig [j] +- c mod 8; c + c div 8:
end:

print-digs (3):
end:

32. A PL file has nested parentheses, and we want to format the output so that, its structure is clear. The
Zellel variable keeps track of the depth of nesting.
(Globals in the outer block 6) +E
level: 0 . . 5:

212 BASIC OUTPUT SUBROUTINES TFtoPL §33

33. (Set initial values 7) +E
level +- 0;

34. Three simple procedures suffice to produce the desired structure in the output.
procedure out-ln; { finishes one line, indents the next }

var I: 0 . . 5;
begin write-Zn (pLfile);
for Z +- 1 to level do out (*,,,,,,*);
end;

procedure left; { outputs a left parenthesis }
begin incr (level); out (* (‘);
end;

procedure right ; { outputs a right parenthesis and finishes a line }
begin decr(level); out (‘> ‘); out&;
end;

35 . The value associated with a property can be output in a variety of ways. For example, we might want
to output a BCPL string that. begins in tfm[k]:
procedure out-BCPL(k : index); { outputs a string, preceded by a blank space }

varZ: 0. . 39; { the number of bytes remaining }
begin out (MU ‘); 1 +-- tfm[k];
while Z > 0 do

begin incr(k); deer(Z);
case tfm [k] div ‘40 of
1: out (ASCII-04 [I + (tfm jk] mod ‘40)]);
2: out (ASCII_10 [I + (tfm [k] mod ‘40)]);
3: out (ASCII-14 [l + (tfm[k] mod ‘40)]);
end;
end;

36 . The property value might also be a sequence of I bytes, beginning in tfm[k], that we would like to
output in octal notation. The following procedure assumes that Z 5 4, but larger values of Z could be handled
easily by enlarging the dig array and increasing the upper bounds on b and j.
procedure out-octaZ(k, 1 : index); { outputs 1 bytes in octal }

vara: 0.. ‘1777; { accumulator for bits not yet output }
b: 0 . . 32; { the number of significant bits in a }
j : 0 . . 11; { the number of digits of output }

begin out (*“OU ‘): { specify octal format }
a - 0; b + 0; j + 0;
while Z > 0 do (Reduce Z by one, preserving the invariants 37);
while (a > 0) V (j = 0) do

begin dig [j] +- a mod 8; a + a div 8; incr(j);
end;

out-digs (j);
end;

§37 TFtoPL BASIC OUTPUT SUBROUTINES 213

37. (Reduce Z by one, preserving the invariants 37) E
begin dew(Z);
if tfm [k + Z] # 0 then

begin while b > 2 do
begin dig [j] +- a mod 8; a +- a div 8; b + b - 3; incr (j);
end;

case b of
0: a t tfm[k + Z];
1: a +- a + 2 * tfm[k + Z];
2: a + a + 4 * tfm[k + Z];
end;
end;

b+b+8;
end

This code is used in section 36.

38. The property value may be a character, which is output in octal unless it is a letter or a digit. This
procedure is the only place where a lowercase letter will be output to the PL file.
procedure out-chur(c : byte); { outputs a character }

begin if font-type > vanilla then
begin tfm[O] t c; out-octuZ(0, 1)
end

else if (c 2 “0”) A (c 5 “9”) then out(*,,CuM, c - “0” : 1)
else if (c 2 “A”) A (c 5 “Z”) then out(*JuO, ASCKIO[c - “A” + 21)

else if (c 2 ‘la”) A (c 5 “z”) then out(#&,*, ASCK.24 [c - ltall + 21)
else begin tfm[O] + c; ouLoctuZ(0, 1);

end;
end;

39. The property value might be a “face” byte, which is output in the curious code mentioned earlier,
provided that it is less than 18.
procedure outJuce(k : index); { outputs a face }

var s: 0 . . 1; { the slope }
b: 0 . . 8; { the weight and expansion }

begin if tfm[k] 1 18 then out-octuZ(k, 1)
else begin out (*“Fu ‘); { specify face-code format }

s + tfm [k] mod 2; b t tfm[k] div 2; out(MBLstring[l + (bmod3)]); out(RLstring[l + s]);
out (RCE-string [l + (b div 3)]);
end;

end;

214 BASIC OUTPUT SUBROUTINES TFtoPL 590

40. And finally, the value might be a fix-word, which is output in decimal notation with just enough
decimal places for PLtoTF to recover every bit of the given fix-word .)

All of the numbers involved in the intermediate calculations of this procedure will be nonnegative and less
than 10 - 224.
procedure out-fix(k : index); { outputs a &-word }

var a: 0 . . ‘7777; { accumulator for the integer part }
f: integer; { accumulator for the fraction part }
j : 0 . . 12; { index into dig }
delta: integer; { amount if allowable inaccuracy }

begin out (‘,R, ‘); { specify real format }
a+ (tfm[k]*16)+(tfm[k+l]div16); f +- ((tfm[k+l]mod16)* ‘4OO+tfm[k+2])* ‘4OO+tfm[k+3];
if a > ‘3777 then (Reduce negative to positive 43) ;
(Output the integer part, a, in decimal notation 41);
(Output the fraction part, f/220, in decimal notation 42);
end:

41. The following code outputs at least one digit even if a = 0.
(Output the integer part, a, in decimal notation 41) I

begin j + 0;
repeat dig [j] + a mod 10; a +- a div 10; incr(j);
until a = 0;
out-digs(j);
end

This code is used in section 40.

42. And the following code outputs at least one digit to the right of the decimal point.
(Output the fraction part, f /220. in decimal notation 42) f

begin out(‘. ‘); f + lO* f +5; delta + 10;
repeat if delta > ‘4000000 then f +- f + ‘2000000 - (delta div 2);.

out (f div ‘4000000 : 1); f +- 10 * (f mod ‘4000000); deltu + delta * 10;
until .f 5 deltu:
end:

This code is used in section 40. ,

43. (R.educe negative to positive 43) G
begin out(‘-‘); a t ‘10000 - a;
if f > 0 then

begin f + ‘4000000 - f: deer(a):
end:

end
Thiq C.IH~P is used in sectiou 40.

§44 TFtoPL DOING IT 215

44. Doing it. Y&X checks the inforrriation of a TFM file for validity as the file is being read in, so that
no further checks will be needed when typesetting is going on. And when it finds something wrong, it justs
calls the file “bad,” without identifying the nature of the problem, since TFM files are supposed to be good
almost all of the time.

Of course, a bad file shows up every now and again, and that’s where TFtoPL comes in. This program
wants to catch at least as many errors as TEX does, and to give informative error messages besides. All of
the errors are corrected, so that the PL output will be correct (unless, of course, the TFM file was so loused
up that no attempt is being made to fathom it).

45. Just before each character is processed, its code is printed in octal notation. Up to eight such codes
appear on a line; so we have a variable to keep track of how many are currently there. We also keel) track
of whether or not any errors have had to be corrected.
(Globals in the outer block 6) +E
chars-on-line: 0 . . 8; { the number of characters printed on the current line }
perfect: boolenn: { was the file free of errors? }

46. (Set initial values 7) +E
churs-on-line t 0;
perfect +- true; { innocent until proved guilty }

47. Error messages are given with the help of the bud and range-error and bud-char macros:
define bud (#) E

begin perfect +- false;
if chars-on-line > 0 then print,Zn(SU ‘);
chmrs-on-line +- 0; print-Zn (‘Bad,TFM,f ile : u *, 8);
end

define range-error (#) s
begin perfect 4- false; print-Zn(IU ‘); print (#, ‘uindex,f orucharacteru ‘); print-octal(c);
print-Zn(‘,is,too,large; ‘); print-Zn(‘souIuresetuitutouzero. ‘);
end

define bud-chur-taiZ(#) E print-octuZ(#); print-Zn (* . ‘);
end

define bud-chur (#) z
begin perfect + fulse;
if chars-on-line > 0 then print-Zn(MU ‘);
churs-on-line t 0; print (‘BaduTFMuf ile : u *, #, *unonexistent,,character, ‘); bud-char-tail

(Globals in the outer block 6) +G
i: 0 . . ‘77777: { an index to words of a subfile }
c, r: byte: { random characters }
&: index; { a random index }

216 DOING IT TFtoPL §48

48. There are a lot of simple things to do, and they have to be done one at a time, so we might as well
get down to business. The first things that TFtoPL will put into the PL file appear in the header part.
(Do the header 48) G

begin font-type t vanilla;
if Zh 2 12 then

begin (Set the true font-type 53);
if Zh 2 17 then

begin (Output the family name 55);
if Zh 2 18 then (Output the rest of the header 56);
end;

(Output the character coding scheme 54
end;

>;

(Output the design size 51);
(Output the check sum 49);
(Output the seven-bit-safe-flag 57);
end

This code is used in section 86.

49. (Output the check sum 49) E
left; out (-CHECKSUM-);
if Zh = 0 then out (OuOuO ‘) else out-octuZ(check-sum, 4);
right

This code is used in section 48.

50. Incorrect design sizes are changed to 10 points.
define bud-design (I#) E

begin bud(-Design,size,-, #? * ! ‘); print-Zn(‘I * ‘veUset,itUto,lOUpoints. ‘);
out(-uDulO-);
end.

51. (Output the design size 51) z
left; out ('DESIGNSIZE-);
if Zh < 2 then bud-design(‘missing’)
else if tfm [design-size] > 127 then bud-design (‘negative ‘)

else if (tfm[design-size] = 0) A (tfm [design-size + l] < 16) then bud-design(‘tooUsmall ‘)
else out-fix (design-size);

right; out (* (COMMENTUDESIGNSIZEUISUINUPOINTS) ‘); out-Zn;
out(-(COMMENT,OTH~SIZES,ARE,MULTIPLES~OF~DESIGNSIZE~-); out-Zn

This code is used in section 48.

§52 TFtoPL DOING IT 217

52. Since we have to check two different BCPL strings for validity, we might as well write a subroutine to
make the check.
procedure checlc_BCPL(Ic, I : index); { checks a string of length < 1)

var j: index; {runs through the string}
c: byte; { character being checked }

begin if tfm (k] 2 I then
begin bad(*StringUisUtooUlong;uI”veUshortenedUitUdrastically. ‘); tfm[k] + 1;
end;

forj+-k+ltok+tfm[k]do
begin c + tfm [j] ;
if (c = 1’(“) V (c = ‘I)“) then

begin bad(‘ParenthesisUinUstringUhasUbeen,changedUtoUslash. ‘); tfm~] + I’/“;
end

else if (c < “U1’) V (c > ‘I-‘I) then
begin bad(‘NonstandardUASCIIucode,hasUbeen,blottedUout. ‘); tfm[j] + ‘I?“;
end

else if (c 2 “a”) A (c 5 “z”) then tfm[j] + c + “A” - “a”; { upper-casify letters}
end;

end:

5 3 . The font-type starts out vanilla; possibly we need to reset it.
(Set the true font-type 53) E

begin check-BCPL(scheme, 40);
if (tfm [scheme] 2 11) A (tfm [scheme + l] = “T”) A (tfm [scheme + 21 = “E”) A (tfm [scheme + 31 = “XI’) A

(tfm [scheme + 41 = ltu”) A (tfm [scheme + 51 = I’M”) A (tfm [scheme + 61 = “A”) A
(tfm[scheme + 71 = “T”) A (tfm[scheme + 81 = “HI’) A (tfm[scheme + 9] = “,,“) then

begin if (tfm[scheme + lo] = ‘IS”) A (tfm(scheme + 111 = “Y”) then font-type t mathsy
else if (tfm[scheme + lo] = “E”) A (tfm[scheme + 111 = “XI’) then font-type t mathex;
end;

end
This code is used in section 48.

54. (Output the character coding scheme 54) -
left; out (‘CODINGSCHEME’); outA?CPL(scheme): right

This code is used in section 48.

55. (Output the family name 55) -
left; out (‘FAMILY ‘); checkBCPL(fumiZy, 20); outd?CPL(family); right

This code is used in section 48.

56. (Output the rest of the header 56) E
begin left; out (‘FACE ‘); out-fuce(random-word + 3); right;
for i +- 18 to Zh - 1 do

begin left; out (‘HEADERUDU *, i : 1); out-octaZ(check-sum + 4 * i, 4); right;
end;

end
This code is used in section 48.

218 DOING IT TFtoPL 557

57. This program does not check to see if the seven-bit-safe_fZag has the correct setting, i.e., if it really
reflects the seven-bit-safety of the TFM file; the stated value is merely put into the PL file. The PLtoTF
program will store a correct value and give a warning message if a file falsely claims to be safe.
(Output the seven-bit-safe-./Zag 57) E

if (Zh > 17) A (tfm[random-word] > 127) then
begin Zefl: out (‘SEVENBITSAFEFLAGUTRUE*); right;
end

This code is used in section 48.

58. The next thing to take care of is the list of parameters.
(Do the parameters 58) -

if np > 0 then
begin left: out (‘FONTDIMEN ‘); out-Zn:
for i + 1 to np do (Check and output the ith parameter 60);
right ;
end;

(Check to see if np is complete for this font type 59);
This code is used in section 86.

59. (Check to see if np is complete for this font type 59) G
if (font-type = math,sy) A (np # 22) then

pnnt-Zn(‘Unusualunumber,of,fontdimenuparameters,ols~font~(’,np : 1,
‘,not,22). ‘)

else if (font-type = mathex) A (np # 13) then
~~~l~t_Zn(~UnusualUnumberUofUfontdimen,parameters~for~~~extension~font~(‘,np  : 1,

*,notu13>. ‘)
This code is used in section 58.

. 60. All fix-word values except the design size and the first parameter will be checked  to make sure that
they  are less than  16.0 in magnitude,  using the check-fix macro:

define check-fix-tail(#) z bad(#. *U-,i : 1, ‘,is,too,big; ‘); prinLZn( *Iuhaveusetuitutouzero.  ‘);
end

define check-fix(#) G
if (tfm[#] > 0) A (tfm [#I < 255) then

begin tfm [#I +- 0: tfm[(#) + l] +- 0; tfm[(#) + 21 + 0; tfm[(#) + 31 t 0: ch.eckfix-tail
( Check and output  the it11  parameter 60) E

begin Zefl:
if i = 1 then out ( ‘SLANT ‘) { this parameter is not checked  }
else begin cheek-fix (param (‘I)) ( ‘Paramet  erti ’ ):

( Output  the name  of parameter i 61);
end;

out-fix (param (i)); right;
end

This code is used in section 58.



§61 TFtoPL DOING IT 219

61. ( Output the name of parameter i 6i) E
if i 5 7 then

case i of
2: ouf ('SPACE'): 3: out( 'STRETCH'); 4: out( -SHRINK');
5: out( 'XHEIGHT');6:  out( -QUAD'); 7: out('EXTRASPACE')
end

else if (i 5 22) A (font-type = mathsy) then
case i of
8: out( 'NUMl'); 9: out( -NUM2'); 10: out( -NUM3');
11: out ('DENOMl'): 12: out( 'DENOM2');
13: out(-SUPl);  14: out('SUP2'); 15: out('SUP3'
16: out ('SUBl-); 17: out( SUB2');

):

. 18: out ('SUPDROP'); 19: out ('SUBDROP');
20: out ('DELIMY):  21: out ('DELIM2');
22: out ('AXISHEIGHT')
end

else if (i 5 13) A (font-type = mathex) then
if 1: = 8then out( 'DEFAULTRULETHICKNESS')
else out ('BIGOPSPACING',i - 8:l)

else out(*PARAMETERuDu*,i  : 1)
This  code is used in section 60.

62. We need to check the range of all the remaining fix-word values, and to make sure that width[O] = 0,
etc.

define nonrero-fix(#) = (tfm[#] > 0) V (tfm[#  + I] > 0) V (tfm [# + 21 > 0) V (tfm[#  + 31 > 0)
( Check the fix-word entries 62) E

.

if nonz~o-fix(4  * width-base) then bad ( 'width [Ol ushould,be,zero. ');
if nontero-fill: (4 * height-base) then bad ( 'height [O] ushouldube,zero. ');
if nonaero-fix(4  * depth-base) then bad ( 'depth CO] ,,shouldubeuzero.  ');
if nonzero-fix (4 * italic-base) then bad( 'italic CO] &hould,be,zero. ');
for 1: + 0 to 72~ - 1 do checkfix(4 * (width-base + i))( 'Width'):
for i +- 0 to nh - 1 do checkfi(4 * (height-base + i))( 'Height ');
for i +- 0 to nd - 1 do checkfix(4 * (depth-base + i))( 'Depth'):
for 1: +- 0 to n.i - 1 do checkJx(4 * (italic-base + i))( 'Italic,correction');
if nX:  > 0 then

for i +- 0 to nk - 1 do check-fix (kern  (i))( 'Kern');
This  code is used in section 86.

63 . The ligature/kerning program comes next. Before we can put, it out in PL format, we need to make
‘t, table of “labels” that will be inserted into the program. For each character c whose tag is Zig-tag and
wilose remainder is T-.  we will store the pair (c, r) in the label-table array. This array is sorted by its second
components. using the simple method of straight insertion.
( Globals in the outer block 6) +E
Zabel-table: array [O . . 2571  of record

cc: byte:
rr: 0 . . 256:
end:

Iabel-ptr: 0 . . 256: { the largest entry in ZabeZAabZe  }
sort-ptr: 0 . . 256: { index into Zabel-table }



220 DOING IT

64. ( Set initial values 7) +f
Zabekptr t 0; label-tabZe[O].rr t 0; { a sentinel appears at the bottom}

65. ( Do the ligatures and kerns 65 ) G
( Build the label table 66 );
if nZ > 0 then

begin left; out ( ‘LIGTABLE’);  out.Zn;
( Output the ligature/kern program 69 );
right;
end

This code is used in section 88.

66. We build the label table even when nZ = 0, because
detected.
( Build the label table 66) z

for c + bc to ec do
if tag(c) = Zig-tag then

begin r + remainder(c);
if r 2 nZ then

TFtoPL §64

this catches errors that would not otherwise be

begin range-error ( ‘Ligature/kern ‘); reset-tag(c);
end

else ( Insert (c, r) into label-table 67);
end;

ZabeZAabZe  [label_ptr + l].rr +- 256; { put “infinite” sentinel at the end }
This code is used in section 65.

6 7 . ( Insert (c, r) into label-table 67 ) s
begin sort-ptr + label-ptr; { there’s a hole at position sort-ptr + 1)
while label-tabZe[sort-ptr].rr  > r do

begin label-table [sort-ptr + l] + ZabeZAabZe[sort-ptr];  decr(sort-ptr); { move the hole}
end;

ZabeZAabZe[sort-ptr  + l].cc t c; ZabeZAabZe[sort-ptr  + l].rr +- r; {fill the hole}
incr( ZabeLptr);
end

This code is used in section 66.

68. As we translate the ligature/kern program into symbolic form, we will keep track of whether or not
the program steps are actually accessible from some character.
( Globals in the outer block 6) +r
active : boolean { is there a way to get to the present step? }



§69 TFtoPL DOING IT 221

69. When  ‘(STOP)’ is output  on level  2, an inaccessible portion  of the ligature/kern  program  that is being
commented  out has just ended, so we want to emit an extra right parenthesis.

define out-stop G
begin out ( * (STOP)  ‘); out_Zn;
if level > 1 then right;
end

( Output  the ligature/kern  program  69) =
active +-- false; sort-ptr +- 1;
for i + 0 to nZ - 1 do

begin ( Output  any labels  for step i 70);
if -active then ( Output  a comment  about  the redundancy  71);
( Output  step  i of the ligature/kern  program  72);
end;

if active then
begin bad( ‘No,stopubituat,theuenduof,ligature/kern~program.  ‘); out-stop;
tfm[kern(O)  - 4) + tfm[kern(O)  - 41 + stop-flag;
end

This code is used in section 65.

70. ( Output  any labels  for step i 70) G
while i = label-tabZe[sort-ptr].rr  do

begin if level > 1 then right;
active + true; left; out ( *LABEL’); out-char(ZabeZAabZe[sort~ptr].cc); right; incr(sort-ptr);
end

This code is used in section 69.

71. ( Output  a comment  about  the redundancy  71) -
begin left;  out ( ‘COMMENTUTHISUPARTUOF,,THE~PROGHAMJS~NEVEHJSED!  ‘); out-Zn; active t true;

{ the right  parenthesis  will be emitted  by out-stop or by the next  label output  }
end

This code is used in section 69.

72. ( Output  step i of the ligature/kern  program  72) E
begin k t 4 * (ZigAernhzse  + i);
if tfm[k + 21 2 kem-flag then ( Output  a kern step 73)
else  ( Output  a ligature  step 74);
if tfm[k] > stop-flag then

begin if sort-ptr > 0 then out-stop:
active 4- false;

A end;
end

This code is used in sections 69 and 81.



TFtoPL §73222 DOING IT

73. ( Output  a kern step 73) -
begin if nonelcistent(  tfm[k + I]) then bad-char( ‘Kern,stepUfor’)(  tfm[k + l])
else begin Zefl: out( ‘KRN ‘); out-char( tfm[k + 11):

if tfm[k + 31 2 nk then
begin bad( ‘Kern,index,tooUlarge.  ‘); out ( ‘,R,,,O.O~):
end

else out-fix (kern (tfm [k + 31)):
right;
end;

end
This code is used in section 72.

74. ( Output  a ligature  step 74) 3
begin if nonexistent (tfm [k + 11)  then bad-char ( ‘LigatureUstep,f  or ‘)( tjm[k + 11);
if nonexistent (tfm [k + 31)  then bad-char(  ‘Ligature,step,produces,,the  ‘)( tfm[k + 31)
else begin left: out ( ‘LIG ‘): out-char( tfm[k + 11); ouLchar( tfm[k  + 31); right;

end:
end

This code is used in section 72.

75. Some  of the extensible recipes may not actually be used, but ‘QX will complain  about  them anyway
if they  refer to uouexisteut  characters.  Therefore  TFtoPL  must check them too.
( Check the exteusible recipes 75) E

if ne > 0 then
for c + 0 to ne - 1 do

for r +- 0 to 3 do
begin k + 4 * (eden-base + c) + r;
if (tfm[k] > 0) V (r = 3) then

begin if nonexistent (tfm [k]) then
begin bdchur( ‘Extensible,recipe,involves,the’)(  tj’m[k]);
if r < 3 then tfm[k]  + 0:

end;
end:

end
This code is used in section 88.



§76 TFtoPL DOING IT 2 2 3

7 6 . The last thing on TFtoPL’s agenda is to go through  the list of char-info and spew out the information
about  each  individual character.
( Do the characters  76 ) E

sortqtr  +- 0 : { this will suppress  ‘STOP’ lines in ligature  comments  }
for c t bc to ec do

if width-index(c) > 0 then
begin if chars-on-line = 8 then

begin print-Zn ( -U ‘); chars-on-line + 1;
end

else begin if chars-on-line > 0 then print ( *,,‘);
incr ( chars-on-line);
end:

print-octal(c); { progress  report  }
left;  out ( ‘CHARACTER’);  out-char(c); out-Zn; ( Output  the character’s  width 77);
if height-in&x(c) > 0 then ( Output  the character’s  height  78);
if depth-index(c) > 0 then (Output  the character’s  depth  79);
if italic-index(c) > 0 then (Output  the italic correction  80);
case tug(c) of
no-tag: do-nothing;
Zig-tag:  ( Output  the applicable  part  of the ligature/kern  program as a comment  81 );
list-tag: ( Output  the character  link unless there  is a problem  82);
ext-tng:  ( Output  an extensible character  recipe 83):
end; right;
end

This code is used in section 87.

77. (Output  the character’s  width 77) -
begin left;  out ( ‘CHARWD ‘);
if width-index(c) 2 nw then range-emor{  'Width')
else out-fix (width (c));
r i g h t :

end
This code is used in section 76.

78. ( Output  the character’s  height  78) z
if height-index(c) 2 nh then range-error(  ‘Height ‘)
else begin Zefi; out ( 'CHARHT ‘); out-fix (height(c)); right:

end
This code is used in section 76.

;9. ( Output  the character’s  depth  79) 3
if depth-index(~) 2 nd then range-error ( 'Depth')
else begin Zeff  : auf ( 'CHARDP ‘): out-fix (depth(c)): rig&;

end
This code is used in section 76.

80. ( Output  the italic correction  80) =
if italic-index(c) 2 n,i then range-error( ‘Italic,correction’)
else begin kj?: ouf('CHARIC'): out_~.l:(itnll,c((~)):  right:

end
This code is used in section 76.



224 DOING IT TFtoPL

81. ( Output  the applicable  part of the ligature/kern  program  as a comment  81) s
begin left; out ( ‘COMMENT’);  out,Zn;
i + remainder(c); active + true;
repeat ( Output  step i of the ligature/kern  program  72);

incr(i);
until active = false;
right;
end

This code is used in section 76.

§81

82. We want to make  sure that there  is no cycle of characters  linked  together  by list-tag entries,  since such
a cycle would get Y&X into an endless  loop.  If such a cycle exists,  the routine here detects  it when  processing
the largest  character  code  in the cycle.
( Output  the character  link unless there  is a problem  82) G

begin r +- remainder(c);
if nonexistent(r) then

begin bad-char(  ‘CharacterUlist,linkUto’)(r);  reset-tag(c);
end

else begin while (r < c) A (tag(r) = list-tag) do r t remainder(r);
if r = c then

begin bad ( ‘CycleUin,~characterUlist  ! ‘); print ( ‘CharacterU’);  print-octal(c);
print-Zn( ‘UnowUendsUtheUPist.  ‘); reset-tag(c);
end

else begin left;  out ( ‘NEXTLARGER’);  out,char(  remainder(c)); right;
end;

end;
end

This code is used in section 76.

* 83. ( Output  an extensible  character  recipe 83) E
if remainder(c) 2 ne then

begin range-error(  ‘Extensible’);  reset-tag(c);
end

else begin left;  out( ‘VARCHAR’);  out-Zn; ( Output  the extensible  pieces  that exist  84);
right;
end

This code is used in section 76.

84. ( Output  the extensible  pieces that exist  84) E
for k + 0 to 3 do

if (k = 3) V (tfm[exten(c) + k] > 0) then
begin left;
case k of
0: out(-TOP’): 1: out( -MID-); 2: out(-BOT-); 3: out(-REP-)
end;
if nonexistent (tfm[exten(c) + k]) then out-char(c)
else out-char (tfm [ exten (c) + k]):
right;
end

This code is used in section 83.



§85 TFtoPL THE MAIN PROGRAM 225

85. The main program. The routines sketched out so far need to be packaged into separate procedures,
on some systems, since some Pascal compilers place a strict limit on the size of a routine. The packaging is
done here in an attempt to avoid some system-dependent changes.

First comes the organize procedure, which reads the input data and gets ready for subsequent events. If
something goes wrong, the routine returns false.
function organize : boolean ;

label final-end, 30;
var tfm-ptr : index; { an index into tfm }
begin ( Read the whole input file 20 );
(Set subfile  sizes Zh, bc, . . . , np 21);
( Compute the base addresses 23 ) ;
organize t true; got0 30;

final-end: organize t false;
30: end;

86. Next we do the simple things.
procedure do-simple-things ;

vari: 0.. ‘77777; { an index to words of a subfile  }
begin ( Do the header 48 );
( Do the parameters 58);
( Check the fix-word entries 62)
end:

87. And then there’s a routine for individual characters.
procedure do-characters;

var c: byte; { character being done }
k: index; { a random index}

begin ( Do the characters 76);
end;

88. Here is where TFtoPL begins and ends.
begin initialize;
if 7 organize then goto final-end ;

do-simple-things ;
( Do the ligatures and kerns 65 );
( Check the extensible recipes 75 ) ;
do-characters; print-Zn( -. ‘);
if level # 0 then print-Zn( ‘Thisuprogram,isn’ ‘t,,working! ‘);
if Iperfect then out ( - (COMMENT~THE,,TFM,,FILE~WA&,BAD,  uSOuTHE,,DATAuHASuBEENUCHANGED!)‘);

“final-end: end.



226 SYSTEM-DEPENDENT CHANGES TFtoPL §89

89. System-dependent changes. This section should be replaced, if necessary, by changes to the
program that are necessary to make TFtoPL work at a particular installatiou.  It is usually best to design
your change file so that all changes to previous sections preserve the section numbering; then everybody’s
version will be consistent with the printed program. More extensive changes, which introduce nw sections,
can be inserted here: then only the index itself will get a new section number.



$90 TFtoPL INDEX 227

90. Index. Pointers to error messages appear here together with the section numbers where each ident-
ifier is used.
0,: 36, g&l.
abort: 20,  21.
active : 68, 69, 70, 71, 72, 81.
Asm04: 27, 28, 35.
ASCII-l 0: 27, 28, 35, 38.
Asm-14: 27, 28, 35, 38.
axis-height: 15.
b: 36. 39.
bad.:4j:50, 52, 60, 62, 69, 73. 82.
Bad TFM file: 47.
bad-cha7.: 47, 73. 74, 75, 82.
bad-char-tail: 47.
b(I.d-desig7t  : 50. 5 1.
bnnne7,: 1, 2 .
bc: 6. 9. 11. 21. 23. 24. 66. 76.
big-opspncin,gl  : 1 5 .
big-opspncing5 : 1 5 .
boolean: 45, 68, 85.
bot: 14.
byte: 18.  19, 31, 38, 47, 52, 63, 87.
I‘: 38.  g. 52,  87.
cc: 63. 67. 70.
ch,ar  : 2 7 .

char-base: 22, 23, 24.
char-info : 11, 22, 24, 76.
char-in,fo-word: 9, 11. 12.
Character list link...: 82.
chars-on-line : 45, 46, 47, 76.
check sum: 10.
check-BCPL: 52, 53, 55.
check-fix: @. 62.
check-fix-tail : 60.
check-sum: 24. 49. 56.
Cliiuese characters: 10.
coding scheme: 10.
Cycle in a character list: 82.
deer : 5. 30. 34. 35. 37. 43, 67.
default-rule-thickness: 15.
deZi7nl  :  15.
deZim2: 1 5 .
delta:  40, 42 .
denon : 1 5 .
de7tom2: 1 5 .
depth: 11. 24. 79.
Depth index for char: 79.
Depth n is too big: 62.
depth,-base: 22. 23. 24. 62.
depth-index: 11, 2-1. 76. 79.
design size: 10.
Design size wrong: 50.

design-size: 24. 51.
DESIGNSIZE IS IN POINTS: 51.
dig : 29, 30, 31, 36, 37, 40, 41.
do-characters: 87, 88.
do-nothing: 2, 76.
do-simple-things: 86, 88.
ec: 8, 9, 11, 21. 23, 24, 66, 76.
eof: 20.
eval-two-bytes:  21.
ext- tag : l2, 76.
e x t e n : 12. 24, 84.
exten-base: T2, 23. 24, 75.
Extensible index for char: 83.
Extensible recipe involves...: 75.
exte7~jsibZe-recipe: 9: 14.
extra-space: 15.
f: 40.
face : 10, 27, 39.
false: 47, 69. 72, 81, 85.
family: 24, 55.
family name: 10.
final-end: 3, 20, 85, 88.
fix-word: 9. 10. 15, 24, 40. 60, 62.
font identifier: 10.
font-type: 25, 38, 48. 53, 59, 61.
header: 10.
height: 11, g, 78.
Height index for char...: 78.
Height n is too big: 62.
height-base: 22, 23, 24, 62.
height-index: 11, 24, 76, 78.
i: 47. 86.-
Incomplete subfiles...: 21.
incr  : 5, 34, 35. 36. 37. -11. 67, 70, 76, 81.
index: l8, 35. 36, 39. 40. 47. 52. 85. 87.
initialize: 2. 88 .
integer: 22, 30, 40.
itnlic: 11, a, 80.
Italic correction index for char...: 80.
Italic correction n is too big: 62.
italic-base: 22. 23. 24. 62.
italic-index : 11. 24, 76. 80.
j: 31. 36. 40. 52.
Jatpaucse characters: 10.
k: 35. 36. 3. 40, a. 52. 87.
kerr1 : 13. 24. 62. 69. 73.
Kern index too large: 73.
Kern n is too big: 62.
Kern step for nonexistent...
ktvx base : 22 23. 24.--

: 73.



228 INDEX TFtoPL §90

kern-jlag  :  l3, 7 2 .
I: 34, 35, 36, 52.
label-ptr: 63, 64, 66, 67.
label-table: 63, 64, 66, 67, 70.
left : 34, 49, 51, 54, 55, 56, 57, 58. 60, 65, 70, 71,

73, 74, 76. 77, 78, 79, 80, 81, 82, 83, 84.
level: 32, 33, 34, 69, 70, 88.
If: 8, 18, 20, 21.
lh: 8, 9, 21, 23, 48, 49, 51, 56, 57.
lig-kern:  1 2 .  1 3 .
lig-kern-base: 22, 23, 72.
lig-kern-command: 9, 13.
lig-tag: l2, 63, 66. 76.
Ligature step for nonexistent.. . : 74.
Ligature step produces.. . : 74.
Ligature/kern index for char...: 66.
list-tag: 12. 76, 82.
mathex:  2j, 53, 59, 61.
mathsy : 25, 53, 59, 61.
MBL-string: 27, 28. 39.
m i d :  1 4 .
nd: 8, 9, 21, 23. 62, 79.
ne: 6. 9, 21, 23, 75, 83.
next-char: 13.
nh: 8, 9. 21, 23, 62. 78.
ni: & 9. 21. 23, 62, 80.
nk: t3, 9. 21, 23, 62, 73.
nl: 8, 9, 21, 23. 65, 66, 69.
No stop bit.. . : 69.

’ no-tng: 12. 24, 76.
nonexistent: 24. 73, 74, 75, 82, 84.
Nonstandard ASCII code.. . : 52.
nonzero-fix  : 62.
np: 8. 9, 21, 58. 59.
n u m l :  1 5 .
n u m 2 :  1 5 .
num3: 1 5 .
nw: 8, 9. 21, 23. 62, 77.
One of the subfile sizes...: 21.
op.-bit: 1 3 .I
organize: 85, 88.
oriental characters: 10.
out: 26, 30. 34. 35, 36. 38, 39, 40, 42, 43, 49, 50,

51, 54, 55, 56, 57. 58. 60. 61, 65, 69, 70, 71, 73,
74. 76, 77, 78, 79, 80, 81. 82, 83. 84. 88.

out-BCPL: 35, 54, 55.
out-char: 3& 70, 73, 74. 76. 82. 84.
out-digs: 30, 36. 41.
out-face : 39, 56.
out-fix : 40, 51, 60, 73. 77. 78, 79, 80.
out-ln : 34, 51. 58. 65, 69, 71, 76, 81, 83.
out-octal: 36. 38, 39. 49, 56.

out-stop: 69, 71, 72.
output:
param : ii
param- base :’

15 24 60Y--7 *
22, 23, 24.

Parameter n is too big: 60.
Parenthesis. . .changed to slash: 52.
perfect: 45, 46, 47, 88.
pl-file: 2, l6, 17, 26, 34.
print: 2, 30, 31, 47, 76, 82.
print-digs: 30, 31.
print-ln: 2, 20, 47, 50, 59, 60, 76, 82, 88.
print-octal: 3l, 47, 76, 82.
quad:  15 .
r: 47.
random-word: 24, 56, 57.
range-error: 47, 66, 77, 78, 79, 80, 83.
RCE-string: 27, 28, 39.
read:  20 .
remainder: 11, 12, 13, 24, 63, 66, 81, 82, 83.
r e p :  1 4 .
r e s e t :  7 .
reset-tag: 24, 66, 82, 83.
rewrite: 17.
RI-string: 27, 28, 39.
right: 34. 49, 51, 54, 55, 56, 57, 58, 60, 65. 69, 70,

73, 74, 76, 77. 78, 79, 80, 81, 82, 83, 84.
rr :  63, 64 ,  66 ,  67 ,  70 .
s: 3.
scheme: 24, 53, 54.
seven-bit-safe-jlag: 10, 57.
should be zero: 62.
slant: 15.
sort-ptr : 63, 67, 69, 70, 72, 76.
space: 15.
space-shrink: 15.
space-stretch: 15.
stop-bit: 13.
stop-jlag : l3, 69, 72.
String is too long.. . : 52.
stug: 9.
subdrop: 1 5 .
Subf ile sizes don’t add up.. . : 21.
s u b l :  1 5 .
s u b 2 :  1 5 .
supdrop: 1 5 .
s u p l :  1 5 .
s u p 2 :  1 5 .
sup31 1 5 .
system dependencies: 2, 7, 38, 89.
tag: 11, 12, 24, 63, 66, 76, 82.
text: 16.



§90 TFtoPL

tfm : 4, 18, l9, 20, 21, 22, 24, 35, 36, 37, 38, 39, 40,
51, 52, 53, 57, 60, 62, 69, 72, 73, 74, 75, 84, 85.

tfm-file:  2, 6, 7, 18, 20.
tfm-ptr  : 20, 21, 85.
tfm-size: 4, 18, 19, 20.
T F t o P L :  2.
The character code range...: 21.
The file claims...: 20.
The file has fewer bytes...: 20.
The file is bigger...: 20.
The first byte...: 20.
The input.. .one byte long: 20.
THE TFM FILE WAS BAD...: 88.
There are . . . recipes: 21.
There's some extra junk...: 20.
THIS'PART.. .NEVER USED: 71.
This program isn't working: 88.
top: 14.
true : 46, 70, 71, 81, 85.
Unusual number of fontdimen...: 59.
vanilla: 25, 38, 48, 53.
width: 11, 24, 62. 77.
Width n is too big: 62.
widths-base: 22, 23, 24, 62.
width-index: 11, 24, 76, 77.
write: 2, 26.
write-ln: 2, 34.

INDEX 229



2 3 0 NAMES OF THE SECTIONS TFtoPL 590

( Build the label table 66) Used in section 6%
( Check and output the ith parameter 60) Used in section 58.
( Check the extensible recipes 75) Used in section 88.
( Check the fix-word entries 62) Used in section 86.
( Check to see if np is complete for this font type 59) Used in section 58.
( Compute the base addresses 23) Used in section 85.
( Constants in the outer block 4 ) Used in section 2.
( DO the characters 76) Used in section 87.
( Do the header 48) Used in section 86.
( Do the ligatures and kerns 65 ) Used in section 88.
( Do the parameters 58) Used in section 86.
( Globals  in the outer block 6. 8, 16, 19, 22. 25, 27, 29. 32. 45. 47. 63, 68) Used in
( Insert (c, r) into label-table 67) Used in section 66.
( Labels in the outer block 3) Used in section 2.
( Output a comment about the redundancy 71 ) Used in section 69.
( Output a kern step 73) Used in section 72.
( Output,  a ligature step 74 ) Used in section 72.
( Outsput  ax extensible character recipe 83) Used in section 76.
( Olltput  any labels for step i 70) Used in section 69.
( Output step i of the ligature/kern program 72) Used in sections 69 and 81.
( Output the applicable part of the ligature/kern program as a comment ~1)
( Output the character coding scheme 54 ) Used in section 48.
( Output the character link unless there is a problem 82) Used in section 76.
( Output the character’s depth 79) Used in section 76.
( Output the character’s height 78) Used in section 76.
( Output, the character’s width 77) Used in section 76.
( Olltpllt  the check SUIII 49) Used in section 48.
( Output the design size 51 ) Used in section 48.
( Output the extensible pieces that exist 84) Used in section 83.

. ( Output the family IMI~? 55 ) Used in section 48.
( Output the fraction part. f /220, in decimal notation 42 ) Used in section 40.
( Output the integer pa,rt.  (1, in decimal notation 41 ) Used in section 40.
( Output the italic correction 80) Used in section 76.
( Output,  the ligatture/kern  program 69) Used in section 65.
( Output the nit~ne of parameter i 61 ) Used in section 60.
( Output the rest of the header  56 ) Used in section 48.
( output the sel~e7l_b~t_saf~-~flag 57) Used in section 48.
( R.ead the whole input file 20) Used in section 85.
( Reduce 1 by OIR. preserving the invariants 37) Used in section 36.
( R.educe  negative to positivt  43 ) Used in section 40.
( Set initial values 7. 17. 28. 33. 46, 64) Used in section 2.
( Set subfile  sizes lh. bc. . . . . n,p 21) used  in section 85.
( Set the true fo7lLtgp 53) Used iii section 48.
( Types in the outer block IS) Used in section 2.

section 2.

Used in section 76.



The PLtoTF processor

(Version 2.3, August 1985)

Section Page
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 302
Property list description of font metric data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 303
Basic input routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 309
Basic scanning routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 313
Scanrling  property names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 315
Scanning numeric data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 321
Storing the property values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 326
The input phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 331
The checking and massaging phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 338
The output phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 342
The main program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 346
System-dependent changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 347
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 348

The preparation of this report was supported in part by the National Science Foundation
under grants IST-8201926 and MCS-8300984, and by the System Development Foundation.
‘7&X’ is a trademark of the American Mathematical Society.



302 INTRODUCTION P L t o T F  $1

1. Introduction. The PLtoTF utility program converts property-list (“PL”)  files into equivalent, ‘I&X
font metric ( “TFM“) files. It also makes a thorough check of the given PL file, so that the TFM file should be
acceptable to ‘&X.

The first PLtoTF program was designed by Leo Guibas in the summer of 1978. Contributions by Frank
Liang, Doug Wyatt, and Lyle Ramshaw also had a significant effect on the evolution of the present code.

The banner string defined here should be changed whenever PLtoTF gets modified.
define banner E ‘This,,is,PLtoTF ,,Version,2.3’ { printed when the program starts }

2. This program is written entirely in standard Pascal, except that it has to do some slightly system-
dependent character code conversion on input. Furthermore, lower case letters are used in error messages;
they could be converted to upper case if necessary. The input is read from pLfile, and the output is written
on tfm-file: error messages and other remarks are written on the output file, which the user may choose to
assign to the terminal if the system permits it.

The term print is used instead of write when this program writes on the output file, so that all such
output can be easily deflected.

define print (#) GE write (#)
define print-ln  (#) s write-Zn (It)

program PLtoTF(pZ-file. tfm$Ze, output):
const  ( Constants in the outer block 3 )
type ( Types in the outer block 17)
var ( Globals in the outer block 5)
procedure initialize ; { this procedure gets things started properly )

var ( Local variables for initialization 19 )
begin print-Zn (banner);
( set initial values 6)
end:

3. The following parameters can be changed at compile time to extend or reduce PLtoTF’s  capacity.
a ( Constants in the outer block 3) E

buf-size = 60; { length of lines displayed in error messages }
max-header-bytes  = 100; { four times the maximum number of words allowed in the TFM file header

block, must be 1024 or less }
max-param-words = 30: { the maximum number of f ontdimen parameters allowed }

This code is used in section 2.

I 4. Here are some macros for common programming idioms.
define incr (#) E it t # + 1 { increase a variable by unity }
define deer(#) E # + # - 1 { decrease a variable by unity }
define do-nothing z { empty statement }



§5 PLtoTF PROPERTY LIST DESCRIPTION OF FONT METRIC DATA 303

5. Property list description of font metric data. The idea behind PL files is that precise details
about fonts, i.e., the facts that are needed by typesetting routines like I&X, sometimes have to be supplied
by hand. The nested property-list format provides a reasonably convenient way to do this.

A good deal of computation is necessary to parse and process a PL file, so it would be inappropriate
for T’j# itself to do this every time it loads a font. T&X  deals only with the compact descriptions of font
metric data that appear in TFM files. Such data is so compact, however, it is almost impossible for anybody
but a computer to read it. The purpose of PLtoTF is to convert from a human-oriented file of text to a
computer-oriented file of binary numbers.
( Globals in the outer block 5 ) z
pZ_fiZe : text ;
See also sections 15, 18, 21, 23, 25, 30, 36, 38, 39, 44, 58, 65, 67, 72, 76, 79, 81, 99, 108, 112, 117, 121, and 124.
This code is used in section 2.

6. ( Set initial values 6) E
reset (pl-file);

See also sections 16, 20, 22, 24, 26, 37, 41, 70, and 74.
This code is used in section 2.



304 PROPERTY LIST DESCRIPTION OF FONT METRJC  DATA PLtoTF $7

7. A PL file is a list of entries of the form
(PROPERTYNAME VALUE)

where the property name is one of a finite set of names understood by this program, and the value may
itself in turn be a property list. The idea is best understood by looking at an example, so let’s consider a
fragment of the PL file for a hypothetical font.

(FAMILY NOVA)
(FACE F MIE)
(CODINGSCHEME ASCII)
(DESIGNSIZE D 10)
(DESIGNUNITS D 18)
(COMMENT A COMMENT IS IGNORED)
(COMMENT (EXCEPT THIS ONE ISN'T))
(COMMENT (ACTUALLY IT IS, EVEN THOUGH

IT SAYS IT ISN'T))
(FONTDIMEN .

(SLANT R -.25)
(SPACE D 6)
(SHRINK D 2)
(STRETCH D 3)
(XHEIGHT R 10.55)
(QUAD D 18)

(LIGTABLE
(LABEL c f)
(LIG C i 0 200)
(LIG C f 0 201)
(KRN 0 51 R 1.5)
(STOP)

. (LABEL 0 201)
(LIG C i 0 203)
(STOP)

(CHARACTER c f
(CHARWD D 6)
(CHARHT R 13.5)
(CHARIC R 1.5)

This example says that the font whose metric information is being described belongs to the hypothetical
NOVA family: its Face  code is medium italic extended; and the characters appear in ASCII code positions.
The design size is 10 points. and all other sizes in this PL file are given in units such that, 18 units equals
the design size. The font is slanted with a slope of -.25 (hence the letters atctually  slant backward-perhaps
that is why the family name is NOVA). The normal space between words is 6 units (i.e.. one third of the
l&unit design size),  with glue that shrinks by 2 units or stretches by 3. The letters for which accents don’t
need to be raised or lowered are 10.55 units high, and one em equals 18 units.

The example ligature table specifies that the letter f followed by i is changed to code ‘ZOO. while f followed
by f is changed to ‘201:  and if f is followed by the code ‘51 (which is a right parenthesis) an additional 1.5
units of space should be inserted after the f. The  character code ‘201 is changed to ‘203 if it is followed
by i: thus. the sequence f f i leads to code ‘203. which is presumably where the ’ ffi’ ligature appears in the
font.

Character f itself is 6 units wide and 13.5 units tall, in this example. Its depth is zero (since CHARDP is
not given), and its italic correction is 1.5 units.



V3 PLtoTF PROPERTY LIST DESCRIPTION OF FONT METRIC DATA 305

8. The example above illustrates most ‘of the features found in PL files. Note that some property names,
like FAMILY or COMMENT, take a string as their value: this string continues until the first unmatched right
parenthesis. But most property names, like DESIGNSIZE and SLANT and LABEL, take a number as their value.
This number can be expressed in a variety of ways, indicated by a prefixed code; D stands for decimal, H
for hexadecimal, 0 for octal, R for real, C for character, and F for “face.” Other property names, like LIG,
take two numbers as their value. And still other names, like FONTDIMEN and LIGTABLE and CHARACTER, have
more complicated values that involve property lists.

A property name is supposed to be used only in an appropriate property list. For example, CHARWD
shouldn’t occur on the outer level or within FONTDIMEN.

The individual property-and-value pairs in a property list can appear in any order. For instance, ‘SHRINK’
precedes ‘STRETCH’ in the above example, although the TFM file always puts the stretch parameter first. One
could even give the information about,  characters like ‘f ’ before specifying the number of units in the design
size, or before specifying the ligature and kerning table. However, the LIGTABLE itself is an exception to this
rule; the individual elements of the LIGTABLE property list can be reordered only to a certain extent without
changing the meaning of that table.

If property-and-value pairs are omitted. a default value is used. For example, we have already noted that
the default for CHARDP is zero. The default for ever-y numeric value is, in fact, zero, unless otherwise stated
below.

If the same property name is used more than once? PLtoTF will not notice the discrepancy; it simply uses
the final value given. Once again, however. the LIGTABLE is an exception to this rule: PLtoTF will complain if
there is more than one label for some character. And of course many of the entries in the LIGTABLE property
list have the same property name.

From these rules, you can guess (correctly) that PLtoTF operates in four main steps. First it assigns the
default values to all properties; then it scans through the PL file, changing property values as new ones are
seen; then it checks the information and corrects any problems; and finally it outputs the TFM file.



306 PROPERTY LIST DESCRIPTION OF FONT METRIC DATA P L t o T F  $9

9. Instead of relying on a hypothetical example,
outer level, the following property names are valid:

let’s consider a complete grammar for PL files. At the

CHECKSUM (four-byte value). The value, which should be a nonnegative integer less than 232,  is used to
identify a particular version of a font; it should match the check sum value stored with the font itself.
A check sum of zero, which is the default, is used to bypass check sum testing. If no checksum is
specified in the PL file, PLt oTF will compute the checksum that METRFONT would compute from the
same data.

DESIGNSIZE (numeric value, default is 10). The value, which should be a real number in the range
1.0 5 z < 1024, represents the default amount by which all quantities will be scaled if the font is not
loaded with an ‘at’ specification. For example, if one says ‘\f ont A=cmrlO  at 15pt’ in ‘IjjX language,
the design size in the TFM file is ignored and effectively replaced by 15 points; but if one simply says
‘\f ont A=cmrlO’ the stated design size is used. This quantity is always in units of printer’s points.

DESIGNUNITS (numeric value, default is 1). The value should be a positive real number; it says how many
units equals the design size (or the eventual ‘at’ size, if the font is being scaled). For example, suppose
you have a font that has been digitized with 600 pixels per em, and the design size is one em; then you
could say ‘ (DESIGNUNITS D 600) ’ if you wanted to give all of your measurements in units of pixels.

CODINGSCHEME (string value, default is ‘UNSPECIFIED’). The string should not contain parentheses, and
its length must be less than 40. It identifies the correspondence between the numeric codes and font
characters. (w ignores this information, but other software programs make use of it.)

FAMILY (string value, default is ‘UNSPECIFIED’). The string should not contain parentheses, and its length
must be less than 20. It identifies the name of the family to which this font belongs, e.g., ‘HELVETICA’.
(m ignores this information; but it is needed, for example, when converting DVI files to PRESS files
for Xerox equipment .)

FACE (one-byte value). This number, which must lie between 0 and 255 inclusive, is a subsidiary identifica-
tion of the font within its family. For example, bold italic condensed fonts might have the same family
name as light roman extended fonts. differing only in their face byte. (l&X ignores this information;
but it is needed, for example, when converting DVI files to PRESS files for Xerox equipment.)

SEVENBITSAFEFLAG (string value, default is ‘FALSE’). The value should start wit,h either ‘T’ (true) or ‘F’
(false). If true, character codes less than 128 cannot lead to codes of 128 or more via ligatures or
charlists or extensible characters. (‘.&$82  ignores this flag, but older versions of 7jjX would only
accept TFM files that were seven-bit safe.) PLtoTF computes the correct value of this flag and gives an
error message only if a claimed “true” value is incorrect.

HEADER (a one-byte value followed by a four-byte value). The one-byte value should be between 18
and a maximum limit that can be raised or lowered depending on the compile-time setting of
max-header-bytes.  The four-byte value goes into the header word whose index is the one-byte value;
for example, to set header [18] + 1. one may write ‘(HEADER D 18 0 1)‘. This notation is used for
header information that is presently unnamed. (7&X  ignores it.)

FONTDIMEN (property list value). See below for the names allowed in this property list.i
LIGTABLE (property list value). See below for the rules about this special kind of property list.
CHARACTER. The value is a one-byte integer followed by a property list. The integer represents the number

of a character that is present in the font; the property list of a character is defined below. The default
is an empty property list.



§lO PLtoTF PROPERTY LIST DESCRIPTION OF FONT METRIC DATA 307

10. Numeric property list values can be given in various forms identified by a prefixed letter.
C denotes an ASCII character, which should be a standard visible character that is not a parenthesis. The

numeric value will therefore be between ‘41 and ‘176 but not ‘50 or ‘51.
D denotes a decimal integer, which must be nonnegative and less than 256. (Use R for larger values or for

negative values.)
F denotes a three-letter Xerox face code; the admissible codes are MRR, MIR, BRR, BIR, LRR, LIR, MRC, MIC,

BRC, BIC, LRC, LIC, MRE, MIE, BRE, BIE, LRE, and LIE, denoting the integers 0 to 17, respectively.
0 denotes an unsigned octal integer, which must be less than 232,  i.e., at most ‘0 37777777777’.
H denotes an unsigned hexadecimal integer, which must be less than 232,  i.e., at most ‘H FFFFFFFF'.
R denotes a real number in decimal notation, optionally preceded by a ‘+’ or ‘-’ sign, and optionally

including a decimal point. The absolute value must be less than 1024.

11. The property names allowed in a FONTDIMEN property list correspond to various T$JX parameters,
each, of which has a (real) numeric value. All of the parameters except SLANT are in design-size units.
The admissible names are SLANT,SPACE,STRETCH, SHRINK,XHEIGHT, QUAD,EXTRASPACE,NUMl,NUM2,NUM3,
DENOMl, DENOM2. SUPl, SUP2, SUP3, SUBl, SUB2, SUPDROP,  SUBDROP,  DELIMl, DELIM2, and AXISHEIGHT,
for parameters 1 to 22. The alternate names DEFAULTRULETHICKNESS, BIGOPSPACINGl,  BIGOPSPACING2,
BIGOPSPACING3,BIGOPSPACING4,  and BIGOPSPACINGS,  may also be used for parameters 8to13.

The notation 'PARAMETER n’ provides another way to specify the nth parameter; for example, ‘(PARAMETER
DlR- .25)’ is another way to specify that the SLANT is -0.25. The value of n must be positive and less
than max-param-words.

12. The elements of a CHARACTER property list can be of six different types.
CHARWD (real value) denotes the character’s width in design-size units.
CHARHT (real value) denotes the character’s height in design-size units.
CHARDP (real value) denotes the character’s depth in design-size units.
CHARIC (real value) denotes the character’s italic correction in design-size units.
NEXTLARGER (one-byte value), specifies the character that follows the present one in a “charlist .” The value

must be the number of a character in the font, and there must be no infinite cycles of supposedly
larger and larger characters.

VARCHAR (property list value), specifies an extensible character. This option and NEXTLARGER are mutually
exclusive: i.e., they cannot both be used within the same CHARACTER list.

The elements of a VARCHAR property list are either TOP, MID, BOT or REP; the values are integers, which
must be zero or the number or a character in the font. A zero value for TOP, MID, or BOT means that the
corresponding piece of the extensible character is absent. A nonzero  value, or a REP value of zero, denotes
the character code used to make up the top, middle, bottom, or replicated piece of an extensible character.



308 PROPERTY LIST DESCRIPTION OF FONT METRIC DATA PLtoTF §13

13. A LIGTABLE property list contains elements of four kinds, specifying a program in a simple command
language that Y&X uses for ligatures and kerns.

LABEL (one-byte vi-lluc)  means thatt, the program for the stated character value starts here. The integer must
be the number of a character in the font; its CHARACTER property list must not have a NEXTLARGER or
VARCHAR field.

LIG (two one-byte values). The instruction ‘ (LIG c r)’ means, “If the next character is c, then replace both
the current character and c by the character r; otherwise go on to the next instruction.” Character
T must bc present. in the font. but c need not be.

KRN (a one-byte value and a real value). The instruction ‘(KRN c r)’ means, “If the next character is c,
then insert a blank space of width T between the current character character and c; otherwise go on to
the next intruction.” The value of r. which is in units of the design size, is often negative. Character
code c must exist in the font.

STOP (no value). This instruction ends a ligature/kern program. It must follow either a LIG or KRN
instruction, not a LABEL or STOP.

14. In addition to all these possibilities, the property name COMMENT is allowed in any property list. Such
comments arc ignored.

15. So that is what PL files hold. The next question is, “What about TFM files?” A complete answer to
that question appears in the documentation of the companion program, TFtoPL, so it will not be repeated
here. Suffice it to say that a TFM file stores all of the relevant font information in a sequence of &bit bytes.
The number of bytes is always a multiple of 4, so we could regard the TFM file as a sequence of 32-bit words;
but 7&X uses the byte interpretation, and so does PLtoTF. Note that the bytes are considered to be unsigned
numbers.
( Globals in the outer block 5) +Z
tfm-file: packed file of 0..255;

16. On some systems you may have to do something special to write a packed file of bytes. For example,
*the following code didn’t work when  it, was first tried at Stanford, because packed files have to be opened
with a special switch setting on t hr Pa.scal  that was used.
( set initial values 6) +Z

r e w r i t e  (  tfrn-file  ):



$17 PLtoTF BASIC INPUT ROUTINES 309

17. Basic input routines. For the purposes of this program, a byte is an unsigned eight-bit quantity,
and an ASCKcode is an integer between ‘40 and ‘17’7. Such ASCII codes correspond to one-character
constants like "A" in WEB language.
( Types in the outer block 17) =

byte = 0 . . 255; { unsigned eight-bit quantity }
ASCII-code = ‘40 . . ‘177; { standard ASCII code numbers }

See also sections 57, 61, 68, and 71.
This code is used in section 2.

18. One of the things PLtoTF has to do is convert characters of strings to ASCII form, since that is the
code used for the family name and the coding scheme in a TFM file. An array xord is used to do the conversion
from char; the method below should work with little or no change on most Pascal systems.

define first-ord = 0 { ordinal number of the smallest element of char }

define last-ord = 127 { ordinal number of the largest element of char }
( Globals in the outer block 5) +r
xord: array [chnr] of ASCII-code; { conversion table }

19. ( Local variables for initialization 19) -
k: first-ord . . last-ord; { an index used for clearing xord }
See also sections 40. 69, and 73.
This code is used in section 2.

20. Characters that should not appear in PL files (except in comments) are mapped  into ‘177.
define invalid-code = ‘1 ?‘Y { code deserving an error message }

( Set initial values 6) -i-E
for k + first-ord to last-ord do xord [ ch,r(k)] c invalid-code;
xord[‘u’] t “u”; xord[*! ‘1 t I’!“; xord[““] t “‘I”“; xord[‘#‘*]  t “#I’; xord[‘$‘] t “$1’;
Lo&[*%*] + “%I’; xord[*&*] + “81”; xord[****] t “-‘I; xord[‘(*] t “(I’; xord[*)  ‘1 t 11)“;

. xord[‘*‘] t “*‘I: xord[‘+‘] t “+‘I; xord[*,‘] t “,‘I; xord[‘-‘] t “-‘I; xord[‘. ‘] t “.I’;
xord[s/s] + “/I’; xord[‘O’] t “0”: xord[*l*] t  "1"; xord[*2'] t  "2": xord['3']  t  1'31';
xord[ ‘4’) + "4"; xord[‘5’] t "5"; xord[*6*] t "6"; xord[*7*]  t "7"; xord['8']  t 116";
.rord['g']  t "9"; xord[': '] t ":fl; xord[*;  '1 t ii;ii; xord['<*]  t "<II; x0&['='] + ll='l;
.rod[*>*]  t ">"; .cord[~?~]  t I'?": :cord['@']  t "@": xord[*A*]  t IiAii: xord['B']  t ItBit;
xord[ ‘C’] +-- “C”; xord [ ‘D’] + “D”; xord[ ‘E’] t “E”; xord [ ‘F’] t “F”; xord[ ‘G’] t “G”;
xord['H'] +- "H": xord[‘I*] + "I": xord[*J*]  t "J": xord[‘K’] t “K’I: xord[*L*]  t B’L91;
xord[‘M*] +-- “M”; xord[ ‘N’] t “N”: .mrd[ ‘0’) t “0”; xord[ -p-I t “p”; xord[ 'Q ‘1 t iiQii;
xord[ ‘R’] 4- “R”: xord[*S’] t “S”; xord[*T#]  t “T”; xord[*u-] t “U”; xord[‘V’] c “VI’;
xord[ ‘W-1 t "W": xord[*X’] + “X”: xord[‘Y’] t “Y”; xord[‘Z*] t “Z”; xord[‘[*] t “[I’;
.cord[‘\  ‘1 t “\‘I: ,cor(t[ ‘1 *] t “1 I’: xord[‘̂  ‘1 t “~“: x0&[ ‘-‘I t II-II: xord[ ** ‘1 t II-II;

* xord['a']  t- "a": .cord[*b'] t "b"; xord[*c-]  t "c": xord[*d*]  t "d"; xord['e']  t ",I';
xord[*f*]  t "f": xord[*g*] t “g”; xord[‘h’) t "h": xord['i'] t "i"; xord[*-j  '1 t "j";
xord['k']  + "k": xoyd[  -1') t "1": xc&[ *me] t "ml': xord['n']  t 'InI‘: xord[ -0 '1 t "of‘;
xord[ *p ‘] t “p”; .tord[ *q-l t “q”; xord[ *r '1 t "r": x:ord[ *s-l t “s”; xord[ ‘t ‘1 t “t”:
xord[‘u-] t- “u”; xord[‘v’] c “v”; xord[‘w’] c “w”: xord[*x*] t “XI’; xord[*y’] t “y”;
xord[‘z’] t “z”; xord[‘{‘] t “(“; xord[‘I ‘1 t “I”; xord[‘)*] t “)“; xord[‘“‘] t “-1’;



310 BASIC INPUT ROUTINES PLtoTF 921

21. In order to help catch errors of badly nested parentheses, PLtoTF assumes that the user will begin
each line with a number of blank spaces equal to some constant times the number of open parentheses at
the beginning of that line. However, the program doesn’t know in advance what the constant is, nor does it
want to print an error message on every line for a user who has followed no consistent pattern of indentation.

Therefore the following strategy is adopted: If the user has been consistent with indentation for ten or
more lines, an indentation error will be reported. The constant of indentation is reset on every line that
should have nonzero  indentation.
( Globals in the outer block 5) +E
line: integer; { the number of the current line }
good-indent: integer; { the number of lines since the last bad indentation }
indent: integer; { the number of spaces per open parenthesis, zero if unknown }
level: integer; { the current number of open parentheses }

22. ( set initial values 6) +r
line +- 0; good-indent + 0; indent +- 0; level +- 0;

23. The input need not really be broken into lines of any maximum length, and we could read it character
by character without any buffering. But we shall place it into a small buffer so that offending lines can be
displayed in error messages.
( Globals in the outer block 5 > +E
left-Zn , right-Zn : boolean ; { are the left and right ends of the buffer at end-of-line marks? }
limit: 0 . . buf-size; { position of the last character present in the buffer}
Zoc: 0 . . buf-size; { position of the last character read in the buffer }
bu#er : array [l . . buf’size]  of char;
input-has-ended: boolean!; { there is no more input to read }

24. ( Set initial values 6) +E
limit c 0; Zoc +- 0; left-Zn t true; right-Zn + true; input-has-ended + false;

* 2 5 . Just before each CHARACTER property list is evaluated, the character code is printed in octal notation.
Up to eight such codes appear on a line; so we have a variable to keep track of how many are currently there.
( Globals in the outer block 5) +S
chars-on-line: 0 . . 8: { the number of characters printed on the current line }

26. (Set initial values 6) +E
chars-on-line +- 0;



97 PLtoTF BASIC INPUT ROUTINES 311

27. The following routine prints an error message and an indication of where the error was detected. The
error message should not include any final punctuation, since this procedure suppies  its own.

define err-print (#) E
begin if chars-on-line > 0 then print-Zn( MU ‘);
print (it): show-error-context;
end

procedure show-error-context; { prints the current scanner location }
var k: 0 . . b&size; { an index into bufler }
begin print-Zn( ‘U(lineu*,  line : 1, ‘1’. ‘);
if TZeft-Zn  then print(‘. . . ‘);
for k t 1 to Zoc do print (bufler[k]); { print the characters already scanned }
print-Zn ( SU ’ );
if lZeft_Zn  then print ( *UUU ‘);
for k + 1 to Zoc do print ( *U ’ ); { space out the second line }
for k t Zoc + 1 to limit do print (buJJer [k]); { print the characters yet unseen }
if right-Zn then print-Zn ( *U ‘) else print-Zn( * . . . ‘);
chars-on-line +- 0;
end;

28. Here is a procedure that does the right thing when we are done reading the present contents of the
buffer. It keeps buffer [ bu,f-size] empty, in order to avoid range errors on certain Pascal compilers.

An infinite sequence of right parentheses is placed at the end of the file, so that the program is sure to get
out of whatever level of nesting it is in.

On some systems it is desirable to modify this code so that tab marks in the buffer are replaced by blank
spaces. (Simply setting xord [ chr( ‘II )] + “U” would not work; for example, two-line error messages would
not come out properly aligned.)
procedure fill- buffer ;

begin left-Zn + right-Zn; limit +- 0; Zoc t 0;
if left-k1  then

begin if line > 0 then read-Zn(pZ$Ze);
incr (line);
end;

if eof (pl-file)  then
begin limit t 1; buffer [l] +- * ) *; right-Zn +- false; input-has-ended + true;
end

else begin while (limit < buf-size - 1) A (leoZn(pZ-file))  do
begin incr ( limit ); read (pl-file , bujJer [limit]);
end;

bu#er[Zimit + 1) +- *,,*; right-Zn + eoZn(pZ&Ze);
A if left-Zn then ( Set Zoc to the number of leading blanks in the buffer, and check the indentation 29);

end;
end:



312 BASIC INPUT ROUTINES PLtoTF §29

29. The interesting part about fill-bufier is the part that learns what indentation conventions the user is
following, if any.

define bad-indent (#) z
begin if good-indent 2 10 then err-print (#I);

good-indent +- 0; indent +- 0;
end

( Set lot to the number of leading blanks in the buffer, and check the indentation 29)  E
begin while (Zoc < limit) A (bufler[Zoc + l] = MU ‘) do incr( Zoc);
if Zoc < limit then

begin if level = 0 then
if Zoc = 0 then incr (good-indent)
else bad-indent ( e Warning : ,-, Indented,lineUoccurredUatUlevelUzero*)

else if indent = 0 then
if (Zoc div level) * level = Zoc then

begin indent + Zoc div level; good-indent + 1;
end

else good-indent + 0
else if indent * level = Zoc then incr (good-indent)

else bad-indent ( ‘Warning : U Inconsistent,indentation;,‘,
‘you,areUat,parenthesis,level,‘,  level  : 1);

end:
end

This code is used in section 28.



§30 PLtoTF BASIC SCANNING ROUTINES 313

30. Basic scanning routines. The-global variable cur-char holds the ASCII code corresponding to the
character most recently read from the input buffer, or to a character that has been substituted for the real
one.
( Globals in the outer block 5) +r
cur-char : A SCILcode ; { we have just read this }

31. Here is a procedure that sets cur-char to an ASCII code for the next character of input, if that
character is a letter or digit. Otherwise it sets cur-char + “,,ll, and the input system will be poised to
reread the character that was rejected, whether or not it was a space. Lower case letters are converted to
upper case.
procedure get-letter-or-digit;

begin while (Zoc = Zzmit) A (lright-Zn) do fill-buffer;
if Zoc = limit then cur-char + “,,” { end-of-line counts as a delimiter }
else begin cur-char + zord [ bufer [ Zoc + l]];

if cur-char > “a” then cur-char +- cur,chnr - '40;
if ((cur-char 2 "0") A (cw-char 5 ‘t9’t)) V (( cur-char 2 “A”) A (cur-char 5 "Z")) then incr(Zoc)
else  c u r - c h a r  +-- 'lull;

end;

32. The following procedure sets cur-char to the next character code, and converts lower case to upper
case. If the character is a left or right parenthesis, it will not be “digested”; the character will be read again
and again, until the calling routine does something like ‘incr(Zoc)’ to get past it. Such special treatment of
parentheses insures that the structural information they contain won’t be lost in the midst of other error
recovery operations.

define backup E
begin if (cur-char > ‘I> “) V (cur-char < I’ ( “) then deer (Zoc);
end { undoes the effect of get-next }

procedure get-next ; { sets cur-char to next, balks at parentheses }
begin while Zoc = limit do fill-bufler;
i71u( Zoc): cu7~~hzr +- zord [ bu#er [ Zoc]];
if cur-char > “a” then

if cur-char 5 “z” then cur-char +- cur-char - '40 { uppercasify }
else begin if cur-char = inwzZihcode then

begin err-print ( ‘Illegal,chaxacter,inuthe,f  ile ‘); cur-char + “?‘I;
end;

end
else if (cur-ch,ar  5 ‘I > ‘I) A ( cur-char 2 I’ C”) then decr(Zoc);
end:



314 BASIC SCANNING ROUTINES PLtoTF §33

33. The next procedure is used to ignore the text of a comment, or to pass over erroneous material. As
such, it has the privilege of passing parentheses. It stops after the first right parenthesis that drops the level
below the level in force when the procedure was called.
procedure skip-to-end-of-item;

var I: integer; { initial value of level  }
begin 1 + level;
while level  2 1 do

begin while Zoc = limit do fill-bufler;
incr (Zoc);
if bufler (Zoc] = * > * then decr( level)
else if bufer [Zoc] = * ( * then incr (level);
end;

if input-has-ended then err-print ( ‘FlleUendedUunexpectedly  : uNoUclosingUt’)  ‘I ‘);
cur-char + ‘lU’t; { now the right parenthesis has been read and digested }
end;

34. Sometimes we merely want to skip past characters in the input until we reach a left or a right
parenthesis. For example, we do this whenever we have finished scanning a property value and we hope
that a right parenthesis is next (except for possible blank spaces).

define skip- to,paren E
repeat get-nezt until (cur-char = ‘I (‘I) V (cur-char = ‘I> I’)

define skip-error (#) G
begin err-print (#); skip-to-paren;
end { this gets to the right parenthesis if something goes wrong }

define flush-error (#) s
begin err-print (#); skip-to-end-of-item;
end { this gets past the right parenthesis if something goes wrong }

. 35. After a property value has been scanned, we want to move just past the right parenthesis that should
come next in the input (except for possible blank spaces).
procedure finish-the-property; { do this when the value has been scanned }

begin while cur-char = ‘tUtt do get-next;
if cur-char # “>” then err-print (‘.JunkUafter,propertyUvalue,uillUbeUignoredO);
skip-to-end-of-item;
end;



§36 PLtoTF SCANNING PROPERTY NAMES 315

36. Scanning property names. We have to figure out the meaning of names that appear in the PL
file, by looking them up in a dictionary of known keywords. Keyword number n appears in locations start [n]
through start[n + l] - 1 of an array called dictionary.

define max-name-index = 66 { upper bound on the number of keywords }
define max-letters = 500 { upper bound on the total length of all keywords }

( Globals in the outer block 5 ) +G
start: array [I . . max-name-index] of 0 . . max-letters;
dictionary: array [0 . . max-letters] of ASCII-code;
start-ptr: 0 . . max-name-index; { the first available place in start }
diet-ptr: 0 . . max-letters; { the first available place in dictionary }

37. ( set initial values 6) -4-EL.
start-ptr + 1; start[l]  + 0; diet-ptr  + 0;

38. When we are looking for a name, we put it into the cur-name array. When we have found it, the
corresponding start index will go into the global variable name-ptr.

define longest-name = 20 { length of DEFAULTRULETHICKNESS }
( Globals in the outer block 5) +-
cur-name: array [l . . longest-name] of ASCII-code; { a name to look up}
name-length: 0 . . longest-name; { its length}
name-ptr: 0 . . max-name-index ; { its ordinal number in the dictionary }

39. A conventional hash table with linear probing (cf. Algorithm 6.4L  in The Art of Computer Program-
ming) is used for the dictionary operations. If hash[h] = 0, the table position is empty, otherwise hash[h]
points into the start array.

define hash-prime = 101 { size of the hash table }
( Globals in the outer block 5) +-
hash: array [0 . . hash-prime - l] of 0 . . max-name-index;
cur-hash: 0 . . hash-prime - 1; { current position in the hash table }

40. ( Local variables for initialization 19) +-
h: 0 . . hash-prime - 1; { runs through the hash table }

41. ( set initial values 6 ) 4-S
for h +- 0 to hash-prime - 1 do hush [h] + 0;



316 SCANNING PROPERTY NAMES PLtoTF §42

42. Since there is no chance of the hash table overflowing, the procedure is very simple. After lookup
has done its work, cu.r-hash will point to the place where the given name was found, or where it should be
inserted.
procedure lookup ; { finds cur-name in the dictionary }

var k: 0 . . longest-name; ( index into cur-name }
j :  0 . . maz-letters; { index into dictionary }
not-found: boolean; { clumsy thing necessary to avoid goto  statement }

begin ( Compute the hash code, cur-hash, for cur-name 43);
not-found + true;
while not-found do

begin if cur-hash = 0 then cur-hash t hash-prime - 1 else decr( cur-hash
if hash[cur-hash]  = 0 then not-found + false
else begin j + start [hush [cur-hash]];

if start [hush [ cur-hush] + l] = j + name-length then
begin not-found + false;

.for k + 1 to name-length do
if dictionary [j + k - l] # cur-name[k] then not-found t true;

end;
end;

end:

>;

name-ptr + hash [cur-hush];
end;

43. ( Compute the hash code, cur-hash, for cur-nume 43 ) E
cur-hash + cur-name [I];
for k t 2 to name-length do cur-hash + ((*ur-h~sh + cur-hash + cur-name[k]) mod hash-prime

This code is used in section 42.



§44 PLtoTF SCANNING PROPERTY NAMES 317

44. The “meaning” of the keyword that-begins at start [Ic] in the dictionary is kept in equiv [k]. The numeric
equiv codes are given symbolic meanings by the following definitions.

define comment-code = 0
define check-sum-code = 1
define design-size-code = 2
define design-units-code = 3
define coding-scheme-code = 4
define fumily-code  = 5
define face-code = 6
define seven-bit-safe-flag-code = 7
define header-code = 8
define font-dimen-code = 9
define Zig-table-code = 10
define character-code = 11
define parameter-code = 20
define char-info-code = 50
define width = 1
define height = 2
define depth = 3
define italic = 4
define char-wd-code = char-info-code + width
define char-ht-code = char-info-code + height
define char-dp-code = char-info-code + depth
define char-ic-code = char-info-code + italic
define next-larger-code = 55
define vnr-char-code = 56
define label-code = 70
define Zig-code = 71
define krn-code = 72
define stop-code = 73

( Globals in the outer block 5) +-
equiv : array [0 . . snax-name-index]  of byte ;
cur-code: byte: { equivalent most, recently found in equiv }

45. We have to get the keywords into the hash table and into the dictionary in the first place (sigh). The
procedure that does this has the desired equiv code as a parameter. In order to facilitate WEB macro writing
for the initialization, the keyword being initialized is placed into the last positions of cur-name, instead of
the first positions.
procedure enter-name(*v  : byte): { cur-name goes into the dictionary}

var k: 0 . . longest-name:
* begin for k +- 1 to nam,e-length, do cur-name[k] + cur-name [k + longest-name - name-length]:

{ now the name has been shifted into the correct position }
lookup; { 1t lis sets cur-hush to the proper insertion place }
hush [ cur.-hash] + start-ptr; equiv[start-ptr]  +-- v;
for k t 1 to name-length do

begin dictionary [ diet-ptr] +- cur-nam.e [k]: incr( diet-ptr);
end:

incr( start-ptr); start [start-ptr] t diet-ptr:
end:



318 SCANNING PROPERTY NAMES PLtoTF 946

For46. Here are the macros to load a name of up to 20 letters into the dictionary.
load5 is used for five-letter keywords.

define tail (#) E enter-name (#I)
define t2O (#) E cur-name [ZOj +- #; tail
define tl9 (#) z cur-name [19]  + #; t20
define tl8(#) z cur-name[18]  + it; tl9
define tl7(#) E cur_aame[l7] +- t; tl8
define tl6(#) s cur_name[16]  +- #; tl7
define tl5(#) = cur-name[15] t #; tl6
define tl4 (#)  E cur_name[14]  +- #; t15
define t13 (tt) z cur_name[13]  + #; tl4
define tlZ(#) E cur_name[l2]  +- #; tl3
define tll(#) z cur-name[ll] 4- #i; t12
define tlO(#) E cur-name[lO]  + #; tll
define t9 (#) E cur-name [9] + #; tlO
define t8 (#) E cur-name [8] +- t: t9
define t7(#) E cur_name[7]  +- SC; t8
define t6 (It) E cur-name [6] t #; t7
define t5 (#) E cur-name [5] +- #t; t6
define  t4 (#) E cur_name[4]  + #; t5
define t3 (#) E cur_name[3]  + #; t4
define t2 (#) E cur-name [2] +- #; t3
define tl (#) 3 cur-name [l] + #; t2
define load3 E name-length + 3; t18
define load4 E name-length +- 4; t17
define load5 E name-length + 5; t16
define load6 z name-length + 6; t15
define load7 E name-length + 7; tl4
define load8 z name-length + 8; t13
define load9 z name-length +- 9; t12
define load1 0 z name-length +-- 10; tll
define load11 z name-length +- 11; tl0
define load12 E name-length +- 12; t9
define load13 E name-length + 13; t8
define load14 E name-length +- 14; t7
define load15 E name-length + 15; tG
define load16 G name-length + 16; t5
define load1 7 G name-length + 17; t4
define load18 E name-length +- 18: t3
define Zoadl9  E name-length +-- 19; t2
define load20 E name-length + 20; tl

example, the macro



§47 PLtoTF SCANNING PROPERTY NAMES 319

47. ( Enter all of the names and their’equivalents,  except the parameter names 47) G
equiv [0] +- comment-code; { this is used after unknown keywords }
Zoad8(“C”)(“H”)(“E”)(“C”)(“K”)(“S”)(”U”)(”M”)(check~sum~code);
ZoadlO(“D”)(“E”)(“S”)(“I”)(“G”)(”N”)(”S”)(”I”)(“Z”)(“E”)(design~si~e~code);
load11 (“D”)(“E”)(“S”)(“I”)(“G”)(“N”)(“U”)(”N”)(”I”)(”T”)(“S”)(design~units~code);
Zoad~2(“C”)(“O”)(“D”)(“I”)(“N”)(”G”)(”S”)(”C”)(“H”)(“E”)(”M”)(”E”)(coding~scheme~code);
ZoadS(“F”)(“A”)(“M”)(“I”)(“L”)(“Y”)(fumiZy_code);
load4 (“F”)(“A”)(“C”)(“E’‘)(fuce-code);
~~,~,~(I~,~I~(I~,~~)(~I~II)(~~~~I)(~~~~~)(~~~~I)(I~~~~)(I~~~I)

(“S”)(“A”)(“F”)(“E”)(“F”)(“L”)(“A”)(”G”)(seven~bit~sufe~~ug~code);
Zoad6(“H”)(“E”)(“A”)(“D”)(“E”)(“R”)(header~code);
Zoud9(“F”)(“O”)(“N”)(“T”)(“D”)(“I”)(”M”)(”E”)(”N”)(font~dimen~code);
Zoad8(“L”)(“I”)(“G”)(“T”)(“A”)(“B”)(”L”)(”E”)(Zig~tubZe~code);
Zoad9(“C”)(“H”)(“A”)(“R”)(“A”)(“C”)(”T”)(”E”)(”R”)(churucter~code);
Zoad9(“P”)(“A”)(“R”)(“A”)(“M”)(“E”)(”T”)(”E”)(”R”)(~urumeter~code);
Zd~d6(“C”)(“H”)(‘1A1’)(“R”)(“W”)(”D11)(chur~~d-code);
ZoadG(“C”)( “H”)(“A’l)(l’R”)(l’H1’)(“T”)(  char-ht-code);
Zoad6(‘1C”)(“H”)(“A1’)(“R’1)(“D”)(’1P”)(chur-d~-code);
Zoad6(“C”)(“H”)(“A”)(“R”)(“I”)(“C”)(char~ic~code);
ZoadlO(“N”)(“E”)(“X”)(“T”)(“L”)(”A”)(”R”)(”G”)(“E”)(“R”)(next~Zurger~code);
Zoa&7(“V”)(“A”)(“R”)(“C”)(“H”)(“A”)(”R”)(vur-chur-code);
Zoad3(“T”)(“O”)(“P”)(var-char-code  + 1);
Zoad3(“M”)(‘11”)(“D”)(var-char~code  + 2);
load3 ( “B”) ( “0”) ( “T”) (var-char-code + 3);
load3 ( “R”) ( “E”) ( “P”) (var-char-code + 4);
Zoad3(“E”)(“X”)(“T”)( var-char-code + 4); { compatibility with older PL format }
Zoud7(“C”)(“O”)(“M”)(“M”)(“E”)(“N”)(”T”)(comment~code);
Zoad5(“L”)(“A”)(“B”)(“E”)(“L”)(ZubeZ~code);
Zoad3(“L”)(“I”)(“G”)(Zigqcode);
load3 ( “K”) ( “R”) ( “N”) (km-code);
load4 (“S”)(‘lT”)(“O”)(l’P”)(stop_COde);

This code is used in section 134.



PLtoTF §483 2 0 SCANNING PROPERTY NAMES

48. ( Enter the parameter names 48 ) 3
Zoad5(‘iSf’)(‘fLii)( “A”)(  “N”)( “Tff)(parameter~code  + 1);
load5 ( ffSif)(ifPfi)(“Aff)(‘iCfi)(  “E”)(parumeter-code + 2);
Zoad7( “S”)( “T”)( “R”)( “E”)(  “T”)(  “C”)( iiHff)(pnrumeter-code  + 3);
Zoad6( “S”)( “Hff)(  fiRii)(f’Ifi)(  “N”)( iiK’f)(parumefer-code  + 4);
Zoad7( “X”)( ffHii)(  “E”)(  “Iff)(  ffGii)(  ffHii)(  “T”)(purumetei-code + 5);
load4 (“Q”)(“U”)(  ifAff)(  ffD’i)(parameter-code  + 6);
Zoad~O(iiEfi)(“Xfi)(‘iTf’)(ffRfi)(ifAff)(iiSff)(f’P”)(“Aff)(ffCfi)(f’E”)(purumeter~code  + 7);

load4 (fiN~f)(YJii)(“Mff)(‘flff)(parameter-code  + 8):
loud4 ( “Ni’)(“U”)(  “M”)(  fi2ii)(pnrameter-code  + 9);
load4 (“N”)( “U”)(  “M”)(  ff3ff)(pnrumeter-code  + 10);
lond6(“D’f)(f’E”)(‘fNif)(iiOii)(”M”)(”1’f)(parumeter~code  + 11);
Zond6( “Dff)(  ffEff)(‘iNf’)(  “Off)( ffMii)(f’2ff)(parumeter-code  + 12);
load4 ( “Sif)(“Uff)( f’Pff)( filff)(parumeter-code + 13);
load4 ( “Sff)( ffUii)(  ffPfi)( ii2fi)(parameter-code  + 14);
load4 ( “Sff)( “U”)( iiPff)( “3”)(pnrameter-code + 15);
load4 ( “S1 j( V’)( f’Bt’)(  filif)(parumeter-code + 16);
load4 (‘fSf’)(“U”)(fiB”)(ff2”)(pnrumeter-code + 17);
Zoad7( “Sii)(Vf)(  i’PfI)(  “D”)( “R” j( iiOii)(  ffPif)(parumeter-code  + 18);
Zond7( “S”)( “U”)(  “B”)( “D”)( “R”)( “O”)(  fiPf’)(pnrumeter-code  + 19);
Zond6(“Di’)(  ffE”)(‘fLf’)(f’Ifi)(  “M”)(  “l”)(parumeter-code + 20);
Zoad6(i’Dii)(‘iEf’)(‘fLff)(  “I”)( f’M1i)(fi2f’)(purum.eter-code + 21);
ZondlO(“Aff)(ifXfi)(ffIfi)(fiSff)(’fH”)(”Efi)(’fI”)(‘fGf’)(ifH”)(‘fTff)(purumeter~code  + 22);
~oa~~0("~Il)("~")(II~II)(lI~lI)("~Il)(lI~II)(Il~lI)(II~ll)(ll~ll)(II~ll)(II~Il)

(ifTff)(‘fHf’)(ffIi’)(fiCif)(ifKi’)(”N”)(”Ei’)(‘fS”)(f’Sf’)(puru~neter_cOde  + 8);

Zoad~~~(ffBfi)(‘iIif)(i~Gf’)(fiOii)(f’P’f)(f’Sff)(f’Pfi)(fiAff)(“C’f)(ffIif)(“Nf’)(f’Gf’)(’flff)(parumeter~code  + 9);
ZondIjr( I’B”)( f’Ifi)(  ffGif)(  “O”)( fiPff)(  ifSff)(f’Pii)(  ffAff)(  ffCif)(‘iIii)(  “N”)( “G”)( ii2fi)(pnrumeter-code  + 10);
Zoud23(“Bff)(f’Iff)(fiGf’)(f’O”)(i~P~i)(’iSff)(“Pii)(ffA”)(’fC”)(‘iI’i)(ffNif)(‘fG”)(fi3f’)(parameter~code  + 11):
Zond2,~(iiB~‘)(‘fIif)(~fGff)(i’Of’)(ifPif)(ffSf’)(ffP’i)(”A’f)(’fC’f)(“I”)(“N”)(“G”)(ff4”)(parumeter~code  + 12);

.  Zoad2Y(“Bii)(ffIif)(f’G~‘)(‘iOif)(’~Pfi)(iiSfi)(ffPff)(iiAff)(’fC’i)(iiIff)(ffN”)(“Gff)(if5’f)(pnrumeter~code  + 13) ;
This code is used in section 134.

49. When a left, parenthesis has been scanned, the following routine is used to interpret the keyword that
follows. and to store the equivalent value in cur-code.
procedure get-name:

begin incr(  Zoc);  incr  ( l e v e l ) : { pass the left parenthesis }
cu7’-  char.  + “u”:

while c u r - c h a r  =  ffuf’ do get-next:
if (cu7~-chn7~ > I’) ‘I) V (cur-char < Ii (‘I) then decr(Zoc): { back up one character }
n a m e - l e n g t h t 0: get-letter-or-digit: { preparc  to scan the name }
while cur-char # “uf’ do

begin if name-length = longest-nclme  then cu7*-71n7ne[l] + “X” { force error }
else inm ( name-length  ):

c u r - n a m e  [ n a m e - l e n g t h ]  t cur-ch,ar;  g e t - l e t t e r - o r - d i g i t :
end:

Zookup :
if name-pt7 = 0 then err-prinf ( ‘Sorry, &don’ ‘t,know,that,propertyuname  ‘):
cur-code  + equill[ncl7nc-~)tr]:

end:



&so PLtoTF SCANNING NUMERIC DATA 321

50. Scanning numeric data. The next thing we need is a trio of subroutines to read the one-byte,
four-byte, and real numbers that may appear as property values. These subroutines are careful to stick to
numbers between -231 and 231 - 1, inclusive, so that a computer with two’s complement 32-bit arithmetic
will not be interrupted by overflow.

51. The first number scanner, which returns a one-byte value, surely has no problems of arithmetic overflow.
function get-byte: byte; { scans a one-byte property value }

var act: integer; { an accumulator }
t: ASCII-code; { the type of value to be scanned }

begin repeat get-next;
until cur-char # ‘lU”; { skip the blanks before the type code }
t + cur-char; act t 0;
repeat get-next ;
until cur-char # “,,“; { skip the blanks after the type code }
if t = “C” then ( Scam an ASCII character code 52)
else if t = “D” then ( Scan a small decimal number 53 )

else if t = “0” then ( Scan a small octal number 54 )
else if t = “HI’ then ( Scan a small hexadecimal number 55)

else if t = “F” then ( Scan a face code 56 )
else skip-errur( ~Youuneedu”C”uoru”D”~or~“O”~or~“H”~or~iiFii~here  ‘);

cur-char +- ‘lull; get-byte +- act;
end;

52 . The get-next routine converts lower case to upper case, but it, leaves the character in the buffer, so we
can unconvert it.
( Scan an ASCII character code 52) E

if (cur-char 2 ‘41) A (cur-char 5 ‘176) A ((cur-char < I’ (I’) V (cur-char > ‘I) ‘I)) then
act +- xord [ buffer  [lot]]

else skip-error ( * ” C”Uvalue~ustUbeUstandard,,ASCII,aandUnotU~paren*)
This code is used in section 51.

53. ( Scan a small decimal number 53)  G
begin while (cur-char 2 “0”) A (cur-char 5 “9”) do

begin act t act * 10 +  c u r - c h a r  - “0”:

if act  > 255 then
begin skip-error( ‘This,value,shouldn’ ‘t,exceed,255’);  act t 0; cur-char + llUtl;
end

else get-next:
end:

2 backup :
end

This code is used in section 51



322 SCANNING NUMERIC DATA PLtoTF §54

54. ( Scan a small octal number 54 ) E
begin while (cur-char 2 “0”) A (cur-char 5 “7”) do

begin act +- act * 8 + cur-char - “0”;
if act > 255 then

begin &@-error  ( ‘ThisUvalueUshouldn * *tUexceedU  * ‘377 ‘); act t 0; cur-char t “U”;
end

else get-next;
end;

backup;
end

This code is used in section 51.

55. ( Scan a small hexadecimal number 55 ) 3
begin while (( cur-char 2 “0”) A (cur-char 5 “9”)) V (( cur-char 2 “A”) A (cur-char 5 “F”)) do

begin if cur-char 2 “A” then cur-char + cur-char + “0” + 10 - “A”;
act: + act * 16 + cur-char - “0”;
if act > 255 then

begin skip-error( ‘ThisUvalueUshouldn’ ‘tUexceedU”FF’);  act +- 0; cur-char + “,,“;
end

else get-next;
end;

backup ;
end

This code is used in section 51.

56. ( Scan a face code 56 ) z
begin if cur-char = “B” then act +- 2
else if cur-char = ‘IL” then act + 4

else if cur-char # I’M”  then act t 18;
get-next;
if cur-char = “I” then incr( act)
else if cur-char # “R” then act +- 18;
get-next;
if cur-char = “Cl’ then act + act + 6
else if cur-char = “E” then act t act + 12

else if cur-char # “R” then act +- 18:
if act 2 18 then

begin skip-ermr( ‘IllegalUfaceUcode,uIUchangedUitUtoUMWO);  act t 0;
end;

end2
This code is used in section 51.

57. The routine that scans a four-byte value puts its output into cur-bytes, which is a record containing
(yes, you guessed it) four bytes.
(Types in the outer block 17) +C

four-bytes = record b0: byte; bl: byte; b2: byte; b3: byte;
end;



§58 PLtoTF

58. define CO z cur-bytes. b0
define cl E cur-bytes. bl
define c2 E cur-bytes. b2
define c3 zz cur-bytes. b3

( Globals in the outer block 5) +E
cur-bytes: four-bytes; { a four-byte accumulator}

59. Since the get-four-bytes
we only want it to work.

routine is used very infrequently, no attempt has been made to make it fast;

SCANNING NUMERIC DATA 323

procedure get-four-bytes; { scans an octal constant and sets four-bytes }
var c: integer; { leading byte }

r: integer; { radix }
q: integer ;  { 256/r  }

begin repeat get-next;
until cur-char # “U”; { skip the blanks before the type code }
r t 0; CO +- 0; c1 +--  0; c2 +- 0; c3 +- 0; { start with the accumulator zero }
if cur-char = “H” then r + 16
else if cur-char = “0” then r + 8

else skip-error ( ’ An,oct al, ( “0” > “oruhexu  ( “HI’ > uvalueuisuneededuhere  ’ );
if r > 0 then

begin q +- 256 div r;
repeat get-next;
until cur-char # I’,,“; { skip the blanks after the type code }
while ((cur-char 2 “0”) A (cur-char 5 “9”)) V ((cur-char 2 “A”) A (cur-char 5 “F”)) do

( Multiply by r, add cur-char - “O”, and get-next 60);
end;

60. ( Multiply by r, add cur-char - “O”, and get-next 60) E
begin if cur-char > “A” then cur-char t cur-char + “0” + 10 - “A”;
c+(r*cO)+(cl divq):
if c > 255 then

begin CO + 0; cl + 0; c2 t 0; c3 t 0;
if r = 8 then skiperror( ‘Sorry ,U the,,maximum,octal,valueUisUOU37777777777*)
else skip-error ( ‘Sorry, ,theUmaximum,,hexUvalueUisuH,FFFFFFFF’);
end

else if cur-chur 2 “0” + r then skip-error( ‘Illegal,digit  ‘)
else begin CO +- c; c1 +- (r * (~1 modq)) + (c2 divq); c2 +- (r * (c2 modq)) + (c3 divq);

c3 + (r * (c3 mod q)) + cur-char - “0”; get-next;
2 end;

end;
This code is used in section 59.

61. The remaining scanning routine is the most interesting. It scans a real constant and returns the nearest
fix-word  approximation to that constant. A fix-word is a 32-bit integer that represents a real value that
has been multiplied by 22o . Since PLtoTF restricts the magnitude of reals to 1024, the fix-word will have a
magnitude less than 230.

define unity 3 ‘4000000 { 220, the fix-word 1.0 }
( Types in the outer block 17) +E

fix-word = integer; { a scaled real value with 20 bits of fraction }



324 SCANNING NUMERIC DATA PLtoTF §62

62. When a real value is desired, we might as well treat ‘D’ and ‘R’ formats as if they were identical.
function get-fix : fix-word : { scans a real property value }

var negative: boolean; { was there a minus sign? }
ucc: integer; { an accumulator }
int-purt: integer; {the integer part }
j: 0 . . 7; { the number of decimal places stored }

begin repeat get-next;
until cur-char # t’U”: { skip the blanks before the type code }
negative + f&e; ucc + 0; ( start with the accumulators zero }
if (cur-char # “RI’) A (cur-char # “D”)  then skip-error( ‘AnU”R”UorU”D”uvalueUisUneededUhere  ‘)
else begin ( Scan the blanks and/or signs after the type code 63);

while (cur-chur > “0”) A (cur-chur 5 “9”) do ( Multiply by 10, add cur-char - “O”, and get-next 64
int-purt 4- ucc; ucc + 0;
if cur-char = ‘I. ” then ( Scan the fraction part and put it in ucc 66 );
if (ucr  2 unity) A (inkpurt = 1023) then skip-error( ‘RealUconstants,must,be,lessUthanU1024’)
else ucc 4-- int-purt * unity + ucc:
end:

>;

if negutivc then get-fix t --cc else get-fix + ucc;
end:

63. ( Scan the blanks and/or signs after the type code 63) ZE
repeat get-next;

if cur-char = ‘I-” then
begin cur-chur t “Utt: negative + true:
end

else if cur-chnr = “+” then cur-char + IcU”;
until cur-char # ‘lull

This code is used in section 62.

’ 64. ( Multiply by 10, add cur-char - “O”, and get-next 64 ) E
begin ucc t ucc * 10 + cur-chur - “0”;
if ucc > 1024 then

begin skip-error( ‘Real,constants,,mustUbe,less,thanU1024’);  ucc + 0; cur-char + ItUt’;
end

else get-next;
end

This code is used in section 62.

65. To scan the fraction .dld2.. . , we keep track of up to seven of the digits dj. A correct result is obtained
if we first compute f’ = [221(dl . . . dj)/l@J , a fter which f = [(f’ + 1)/2j.  It is possible to have f = 1.0.
( Globals in the outer block 5) +r
fraction-digits: array [l . . 7] of integer: { 221 times dj }



§66 PLtoTF

66. ( Scan the fraction part and put it in ucc 66 ) s
begin j +- 0; get-next;
while (cur-char 2 “0”) A (cur-char 5 “9”) do

begin if j < 7 then
begin incr (j); fraction-digits [j] + ‘10000000 * (cur-char - llOtt);
end;

get-next;
end;

ucc + 0;
while j > 0 do

begin ucc t fraction-digitslj] + (ucc div 10); deer(j);
end;

ucc + (ucc + 10) div 20;
end

This code is used in section 62.

SCANNING NUMERIC DATA 325



326 STORJNG THE PROPERTY VALUES PLtoTF §67

67. Storing the property values. When property values have been found, they are squirreled away
in a bunch of arrays. The header information is unpacked into bytes in an array called header-bytes. The
ligature/kerning program is stored in an array of type four-bytes; note that such a program is at most 511
steps long, since a label after step 255 may begin a program of length 256. Another four-bytes array holds the
specifications of extensible characters. The kerns and parameters are stored in separate arrays of fix-word
values.

Instead of storing the design size in the header array, we will keep it in a fix-word variable until the last
minute. The number of units in the design size is also kept in a fix-word.
( Globals in the outer block 5) +-
header-bytes: array [header-index] of byte; {the header block}
header-ptr : header-index ; { the number of header bytes in use }
design-size : fix-word ; { the design size }
design-units : fix-word; { reciprocal of the scaling factor }
seven-bit-sufeJ%g: boolean; { does the file claim to be seven-bit-safe? )
Zig-kern: array [0 . . 5111  of four-bytes; {the ligature program}
nl: 0 . . 511; { the number of ligature/kern instructions so far}
unused-label: boolean; { was the last lig/kern step a label? }
kern: array [0 . . 2561  of fix-word; { the distinct kerning amounts }
nk: 0 . . 256; ( the number of entries of kern )
exten: array [0 . . 2551 of four-bytes; { extensible character specs }
ne: 0 . . 256; { the number of extensible characters }
purum:  array [ 1 . . mux-parum-words] of fix-word; { f ontdimen parameters }
n p :  0 . . mux-purum-words: { the largest parameter set nonzero  )
check-sum-specified: boolean: { did the user name the check sum? }

68. (Types in the outer block 17) +E
header-index = 0 . . mux-header-bytes ;

69. (Local variables for initialization 19) +r
’ d: header-index; { an index into header-bytes }

70. We start by setting up the default values.
define check-sum-Zoc = 0
define design-size-Zoc = 4
define coding-scheme-Zoc = 8
define family-lot  = coding-scheme-Zoc + 40
define seven-j&g-lot  = fumily-loc  + 20
define face-Zoc = seven-flug.Joc  + 3

( Set initial values 6) 4-E
check-sum-specified t false;
for d +- 0 to 18 * 4 - 1 do header-bytes[d]  + 0;
header-bytes [8] t  1 1 ;  header-bytes[9]  t "U"; header-bytes[lO]  t "N"; header-bytes[ll] +- “S”;
heuder_bytes[l2]  +- “PI’; heuder_bytes[13]  t  “El’;  header-bytes[l4] t "C";  heuder_bytes[15]  + “ I ” ;
heuder_bytes[l6]  + “F”; header-bytes[l’l]  t "I"; heuder_bytes[l8]  t “E”; header-bytes[l9] t “D”;
for d t family-Zoc to family-Zoc + 11 do header-bytes[d] + header-bytes[d - 401;
design-size t 10 * unity; design-units + unity; seven-bit-safe-flag t false;
header-ptr + 18 * 4; nl t 0; unused-label t false; nk t 0; ne +- 0; np * 0;



§71 PLtoTF STORING THE PROPERTY VALUES 327

71 . Most of the dimensions, however, go into the memory array. There are at most 257 widths, 257 heights,
257 depths, and 257 italic corrections, since the value 0 is required but it need not be used. So memory has
room for 1028 entries, each of which is a fix-word. An auxiliary table called link is used to link these words
together in linear lists, so that sorting and other operations can be done conveniently.

We also add four “list head” words to the memory and link arrays; these are in locations width through
italic, i.e., 1 through 4. For example, Zink[height] points to the smallest element in the sorted list of distinct
heights that have appeared so far, and memory[height] is the number of distinct heights.

define mem-size = 1028 + 4 { number of nonzero  memory addresses }
( Types in the outer block 17) +E

pointer = 0 . . mem-size; ( an index into memory }

72. The arrays char-wd, char-ht , char-dp, and char-ic contain pointers to the memory array entries
where the corresponding dimensions appear. Two other arrays, char-tag and char-remainder, hold the
other information that TFM files pack into a char-info-word.

define no-tag = 0 { vanilla character }
define Zig-tag = 1 { character has a ligature/kerning program }
define list-tag = 2 { character has a successor in a charlist  }
define ext-tag = 3 { character is extensible }

( Globals in the outer block 5) +E
memory: array [pointer] of fix-word; { character dimensions and kerns }
mem-ptr : pointer; { largest memory word in use }
link: array [pointer] of pointer; { to make lists of memory items }
char-wd: array [byte] of pointer; { pointers to the widths }
char-ht: array [byte] of pointer; { pointers to the heights }
char-dp: array [byte] of pointer; { pointers to the depths }
char-ic: array [byte] of pointer; { pointers to italic corrections }
char-tag: array [byte] of no-tag . . ext-tag; {character tags}
char-remainder: array [byte] of 0 . . 255;

{ pointers to ligature labels, next larger characters, or extensible characters}

73. ( Local variables for initialization 19) +-
c: byte; { runs through all character codes }

74. ( set initial values 6 ) i-E
for c +- 0 to 255 do

begin char-wd [c] t 0; char-ht [c] + 0; char-dp[c] + 0; char-ic[c] + 0;
Y char-tag[c] + no-tag; char-remainder[c] + 0;

end;
memory [0] + ‘17777777777 ;  ( an “infinite” element at the end of the lists }

- memory [width] +- 0; link [width] + 0; { width list is empty }
memory [height] + 0; link [height] t 0; { height list is empty }
memory [ depth] + 0; link [depth] t 0; { depth list is empty }
memory [italic] + 0; link [italic] + 0; { italic list is empty }
mem-ptr + italic;



328 STORING THE PROPERTY VALUES PLtoTF §75

75. As an example of these data structures,‘let us consider the simple routine that inserts a potentially
new element into one of the dimension lists. The first, parameter indicates the list head (i.e., h = width for
the width list, etc.); the second parameter is the value that is to be inserted into the list if it is not already
present. The procedure returns the value of the location where the dimension appears in memory. The fact
that memory [0] is larger than any legal dimension makes the algorithm particularly short.

We do have to handle two somewhat subtle situations. A width of zero must be put into the list, so that
a zero-width character in the font will not appear to be nonexistent (i.e., so that its char-wd index will
not be zero), but this does not need to be done for heights, depths, or italic corrections. Furthermore, it
is necessary to test for memory overflow even though we have provided room for the maximum number of
different dimensions in any legal font, since the PL file might foolishly give any number of different sizes to
the same character.
function sort-in(h : pointer; d : fix-word): pointer; { inserts into list }

var p: pointer; { the current node of interest }
begin if (d = 0) A (h # width) then sort-in + 0
else begin p +- 11;

while d 2 memory [link [VI] do p + link [PI;
if (d = memory [p])  A (p # 1~) then sort-in + p
else if mem-ptr = mem-size  then

begin err-print ( ‘Memory,overf  low :,moreuthan,1028,widths  ,uetc ‘);
print-Zn( ‘Congratulations ! UIt * ‘sUhard,to,makeUthisUerror  . ‘); sort-in t-- p;
end

else begin incr( mem-ptr): memory [mem-ptr] + d; Zink[mem-ptr] +- Zink[p]; ZinkIp]  + mem-ptr;
incr (memory [h]); sort-in + mem-ptr;
end:

end:
end;

76. When these lists of dimensions are eventually written to the TFM file, we may have to do some rounding
of values, because the TFM file allows at most 256 widths, 16 heights, 16 depths, and 64 italic corrections.

*The following procedure takes a given list head h and a given dimension d, and returns the minimum m such
that the elements of the list can be covered by nl intervals of width d. It also sets next-d to the smallest value
d’ > d such that the covering found by this procedure would be different. In particular, if d = 0 it computes
the number of elements of the list. and sets next-d to the smallest distance between two list elements. (The
covering by intervals of width next-d is not guaranteed to have fewer than 111 elements, but in practice this
seems to happen most of the time.)
( Globals in the outer block 5) +r
next-d: fix-word; { the next larger interval that is worth trying }



§77 PLtoTF STORING THE PROPERTY VALUES 329

77. Once again we can make good use -of the fact that memory [0] is “infinite.”
function min-cover(h : pointer; d : fix-word): integer;

var p: pointer; { the current node of interest }
1: fix-word; { th 1 t 1e eas e ement  covered by the current interval }
m: integer ;  { the current size of the cover being generated }

begin m + 0; p + Zink[h]; next-d + memory[O];
while p # 0 do

begin incr (m); Z + memory [p];
while memory [link [PI] 5 1 + d do p + link [p];
p +- Zink[p];
if memory [p] - Z < next-d then next-d + memory [p] - 1;
end;

min-cover + m;
end:

78. The following procedure uses min-cover to determine the smallest d such that a given list can be
covered with at most a given number of intervals.
function shorten(h : pointer; m : integer): fix-word; { finds best way to round }

var d: fix-word; { the current trial interval length }
k: integer ;  { tl re size of a minimum cover }

begin if memory [h] > nt then
begin k + min-cover(h, 0); d + next-d; { now the answer is at least d }
repeat d + d + d; k + min-cover(h, d);
until k 5 7~1; { first we ascend rapidly until finding the range }
d + d div 2: k + min-cover(h, d): { now we run through the feasible steps }
while k > m do

begin d + next-d: 12 + min-cover(h. d);
end;

shorten + d;
end

else
end:

shorten + 0:

79. When we are nearly ready to output the TFM file. we will set index [v] + k if the dimension in memory b]
is being rounded to the kth element of its list.
( Globals in the outer block 5) +EE
index: array [pointer] of byte;



330 STORING THE PROPERTY VALUES PLtoTF ii80

80. Here is the procedure that
element per covering interval; the

sets the index values.
remaining elements are

It also shortens the list so that
the midpoints of their clusters.

procedure set-indices(h : pointer; d : fiBword); { reduces and indexes a list }
var p: pointer; { the current node of interest )

q: pointer; { trails one step behind p }
m: byte; { din ex number of nodes in the current interval }
I: @-word; { 1eas va ue in the current interval }t 1

begin q + h; p + Zink[q); m + 0;
while p # 0 do

begin incr (m); Z + memory [p]; index [p>] + m;
while memory [link [p]] 5 1 + d do

begin p + link b]; index[p]  + m;
end;

link [q] t p; memory [p] + (I + memory [p]) div 2; q + p; p + link [p];
end;

is only one

memory [h] + m;



§81 PLtoTF THE INPUT PHASE 331

81. The input phase. We’re ready now to read and parse the PL file, storing property values as we go.
( Globals  in the outer block 5) +E
c: byte; { the current character or byte being processed }

82. ( Read all the input 82) E
cur-char + “U”;
repeat while cur-char = “U” do get-next;

if cur-char = I’ (I’ then ( Read a font property value 84 )
else if (cur-char = “> I’) A Tinput-has-ended then

begin err-print ( ‘ExtrhrightUparenthesis  ‘); incr (Zoc); cur-char + “U”;
end

else if -input-has-ended then junk-error;
until input-has-ended

This code is used in section 134.

83. The junk-error routine just referred to is called when something appears in the forbidden area between
properties of a property list.
procedure junk-error; { gets past no man’s land }

begin err-print ( ‘There * *sUju.nkUhereUthatUisUnot,in,parentheses  ‘); skip-to-paren;
end;

84. For each font property, we are supposed to read the data from the left parenthesis that is the current
value of cur-char to the right parenthesis that matches it in the input. The main complication is to recover
with reasonable grace from various error conditions that might arise.
( Read a font property value 84)  s

begin get-name ;
if cur-code = comment-code then skip-to-end-of-item
else if cur-code > character-code then

fZush_error(  ‘ThisUpropertyUnameudoesn “t,belong,on,theUouterUlevel’)
else begin ( Read the font property value specified by cur-code 85);

finish-the-property;
end;

end
This code is used in section 82.

85. ( Read the font property value specified by cur-code 85) c
case cur-code of
check-sum-code: begin check-sum-specified + true; read-four-bytes ( check-sum-Zoc);

end;
A design-size-code: ( Read the design size 88 );

design-units-code: (Read the design units 89);
coding-scheme-code: read-BCPL( coding-scheme-Zoc, 40);
family-code: read-BCPL(famiZy-Zoc, 20);
face-code: header-bytespace-Zoc] + get-byte;
seven-bit-safe-flag-code: ( Read the seven-bit-safe flag 90);
header-code: ( Read an indexed header word 91);
font-dimen-code: ( Read font parameter list 92);
Zig-table-code: read-Zig-kern;
character-code: read-char-info;
end

This code is used in section 84.



332 THE INPUT PHASE PLtoTF 86

86. The case statement just given makes use of two subroutines that we haven’t defined yet. The first of
these puts a 32-bit octal quantity into four specified bytes of the header block.
procedure read,few-bytes(Z  : header-index);

begin get-four-bytes; h,eader-bytes[Z] + CO; header-bytes[Z + l] + cl ; header-bytes[Z + 2] + ~2;
header-bytes [Z + 3] + ~‘1:
end:

87. The second little procedure is used to scan a string and to store it in the “BCPL format” required by
TFM files. The string is supposed to contain at most n bytes, including the first byte (which holds the length
of the rest of the string).
procedure read-BCPL(Z : header-index; n : byte);

var k: header-index:
begin k + I;
while cur-char = “U” do get-next;
while (cur-char # ” (‘I) A (cur-char # ” > “) .do

begin if k < 1 + 11 then incr( k);
if k < Z + TL then header-bytes[k] + cur-char;
get-next;
end;

if k = Z + 71 then
begin err-print ( ‘String,is,too,long;,itsuf  irstu*, n - 1 : 1, ‘,characters,will,be,kept  ‘);
deer(k);
end;

header-bytes[Z] - k - 1:
while k < 1 + n, - 1 do { tidy up the remaining bytes by setting them to nulls}

begin incr(k); header-bytes[k] + 0:
end;

end;

* 88. ( Read the design size 88 ) E
begin next-d + get-fix:
if (next-d < unity) V (next-d > ‘10000000000) then

err-print ( ‘The,design,size~ustube,between,l,and~1024*)
else design-size + next-d;
end

This code is used in section 85.

89. ( Read the design units 89) E
begin next-d + get-fix;
if next-d 5 0 then err-print( ‘The,number,of,units,per,design,size,must~be~positive-)
else design-units + next-d:
end

This code is used in section 85.

90. ( Read the seveu-bit-safe  flag 90)  E
begin while cur-char = “u” do get-next:
if cur-char = “T” then sel~en_bit-,~cLfe_fEag + true
else if cur-char = “F” then selre7l_bit-safe-fEag + false

else err-print ( ‘The,f  laguvalueushould,beu”TRUE”,or,“FALSE” ‘):
skip-to-paren;
end

This code is used in section 85.



§91 PLtoTF THE INPUT PHASE 333

91. ( Read an indexed header word 91)  =
begin c + get-byte;
if c < 18then skip-error( 'HEADER,indices,should,,be,l8,or,more')
else if 4 * c + 4 > max-header-bytes  then

skip-error( 'This,HEADE~index,isutoo,big,forumy,present~table~size.)
else begin while header-ptr < 4 * c do

begin header-bytes [ header-ptr] + 0; incr (header-ptr );
end;

read-four-bytes(4 * c); header-ptr + 4 * c + 4;
end;

end
This coti~ is uwd  in section 85.

92. The remaining kinds of font property values that need to be read are those that involve property lists
on higher levels. Each of these has a loop similar to the one that was used at level zero. Then we put the
right parenthesis back so that ‘finish-the-proptirty’ will be happy; there is probably a more elegant way to
do this.

define finish-inner-property-Z&  s
begin deer (Zoc); incr (level); cu
end

r-char + ” 1 ‘I;

( Read font parameter list 92) =
begin while level  = 1 do

begin while cur-char = “,,” do get-next;
if cur-char = ” (‘I then ( R.ead a parameter value 93)
else if cur-ch,ar = “1 I’ then skip-to-end-of-item

else junk-error;
end;

.

finish-inner-property-Z&;
end

This code is used in section 85.

93. ( Read a parameter value 93)  E
begin get-name ;
if cur-code = comment-code then skip-to-end-of-item
else if (cur-code < parameter-code) V (cur-code 2 char-wd-code)  then

flush-error( 'This,property,name,doesn" tUbelong,in,~FONTDIMEN,,list~)
else begin if cur-code = parameter-code then c + get-byte

else c + cur-code - parameter-code;
if c = 0 then jlush-error( 'PARAMETE&,index,,must,not,be,zero')
else if c > max-param-words then2

flush-ewor( 'This,PARAMETER,index,isutoo,big,for~y~present~table~size~)
else begin while np < c do

begin incr (np); param [np] + 0;
end:

param [c] + getJix: finish-th,e-property:
end:

end;
end

This code is used in section 92.



PLtoTF §94334 THE INPUT PHASE

94. ( Read ligature/kern list 94 ) -
begin while level  = 1 do

begin while cur-char = l’U’l do get-next;
if cur-char = I’ ( ” then ( Read a ligature/kern command 95 )
else if cur-char = ‘I> I1 then skip-to-end-of-item

else junk-error ;
end;

finish-inner-property-list;
end

This code is used in section 134.

95. ( Read a ligature/kern command 95) -
begin get-name ;
if cur-code = comment-code then skip-to-end-of-item
else if (cur-code < label-code) V (cur-code > stop-code) then

flush-error( ‘ThisUpropertyunameudoesn “tUbelongUir&~LIGTABLEUlist’)
else begin case cur-code of

labeLcode: ( Read a label step 97);
Zig-code: ( Read a ligature step 98);
km-code: ( Read a kerning step 100);
stop-code: (Read a stop step 101);
end;
finish-the-property;
end;

end
This code is used in section 94.

96. When a character is about to be tagged, we call the following procedure so that an error message is
given in case of multiple tags.

’ procedure ch,eck-tag(c : byte); { print error if c already tagged }
begin case char-tag[c] of
no-tag: do-nothing;
Zig-tag: err-print ( ‘Thisucharacter,alreadyuappeared,in,auLIGTABL~LAB~  a
list-tag: err-print ( ‘ThisUcharacter,alreadyuhasUaUNEXTLARGERL#pec  ‘);
ext-tag: err-print ( ‘This,character,alreadyUhasua,VARCHARuspec  ‘);
end;
end;

‘1;

97. ( Read a label step 97) E
begin c t get-byte; check-tag(c);
if hZ > 255 then

err_print(‘LIGTABLEuwith~ore,thanu255ucommands”c~ot”have~further~labels-)
else begin charAag[c]  + Zig-tag; char-remainder [c] + nl; unused-label + true;

end;
end

This code is used in section 95.



ii98 PLtoTF THE INPUT PHASE 335

98. ( Read a ligature step 98) -
begin ZigAem[nZ].bO  +- 0; lig-kem[nZ].bl  + get-byte; Zig_kern[nZ].b2  + 0; Zig_kern[nZ].b3  t get-byte;
if nZ = 511 then err_print( ‘LIGTABLE,shoulduneveruexceedu511uLIG/KRds-)
else incr (nZ);
unused-label * false;
end

This code is used in section 95.

99. define stop-flag = 128 { value indicating ‘STOP’ in a lig/kern program }
define kern-flag  = 128 { op code for a kern step }

( Globals in the outer block 5) +3
km-ptr: 0 . . 256; { an index into kern }

100. ( Read a kerning step 100)  -
begin Zig-kern[nZ].bU  t 0; Zig-kern[nZ].bl  +- get-byte; Zig_kern[nZ].b2 + kern-flag; kem[nk] t get-fix;
km-ptr +-- 0;
while kern [km-ptr] # kern [nk] do incr (km-ptr);
if km-ptr = nk then

begin if nk < 256 then incr (nk)
else begin err-print ( ‘Atgost,256,dif  f erent,kerns,areUallowed’);  km-ptr + 255;

end;
end;

Zig-kern [ nZ] . b3 +- km-ptr ;
if nZ = 511 then err-print ( ‘LIGTABLE,shoulduneverUexceedU5llULIG/KBNUcomma.uds  ‘)
else incr (nl);
unused-label +- false;
end

This code is used in section 95.

.
101. (Read a stop step 101)  -

begin if nZ = 0 then err-print ( ‘Why,$TOP?,You,haven  ‘tUstarted’)
else begin if unused-label then

begin err-print ( ‘STOPUafter,LABELuinvalidatesUthe,label ‘);
for c + 0 to 255 do

if (char-fag[c] = Zig-tag) A (char-remainder[c] = nl) then charAag[c]  + no-tag;
unused-label +- false;
end:

Zig-kern[nZ - l].bO + stop-flag;
end;

endI
This code is used in section 95.



336 THE INPUT PHASE PLtoTF $102

102. Finally we come to the part of PLtoTF’s input mechanism that is used most, the processing of
individual character data.
( Read character info list 102) E

begin c +- get-byte; { read the character code that is being specified }
(Print c in octal notation 107);
while level  = 1 do

begin while cur-char = l’U” do get-next;
if cur-char = ‘I (‘I then ( Read a character property 103 )
else if cur-char = ” > ” then skip-to-end-of-item

else junk-error;
end;

imatize  c }if char-wd [c] = 0 then char-wd [c] t sort-in( width, 0); { legit
finish-inner-property-list;
end

This code is used in section 134.

103. ( Read a character property 103) E
begin get-name ;
if cur-code = comment-code then skip-to-end-of-item
else if (cur-code < char-wd-code) V (cur-code > var-char-code) then

ftush-error( ‘This,,propertyUnameudoesn “t,,belong,in,a,CHARACTERJist->
else begin case cur-code of

char-wd-code: char-wd [c] +- sort-in (width, get-fix);
char-ht-code: char-ht [c] + sort-in( height, get-fix);
char-dp-code: char-dp [c] +- sort-in ( depth, get&a:):
char-ic-code: char-ic [c] 4- sort-in( italic. get-fix);
next-larger-code:  begin check-tag(c); char-tag[c] +- Zist-tag; char-remainder[c] +- get-byte;

end:
var-char-code: ( Read an extensible recipe for c 104):
end:
finish-the-property;
end;

end
This c-ode is used in section 102.

104. ( Read an extensiblt recipe for c 104) G
begin if 71~ = 256 then err-print ( ‘AtaostU256,VARCHARUspecsUareUallowed*)
else begin ch,eck-tag(c):  char-tag[c]  + e&tag: char-remainder[c] + ne;

ezten[ne].b0 t 0: ezten[ne].bl t 0: ezten[ne].b2 + 0: ezten[ne].bS  t 0:
while ZeueZ  = 2 do

*begin  while cur-char = “,,” do get-next:
if cvi7*-char  = I’ (‘I then ( Read an extensible piece 105 )
else if cur-char = ‘I> ‘I then skip-to-end-of-item

else junX:x77-07m;

end:
inc7-(  n.e): ji77rtsh-i7~ne7*  nrnnerty-list;
end:

end
This code is used in section 103.



$105 PLtoTF THE INPUT PHASE 337

105. ( Read an extensible piece 105 ) E-
begin get-name;
if cur-code = comment-code then skip-to-end-of-item
else if (cur-code < var-char-code + 1) V (cur-code > var-char-code + 4) then

flush-error( ‘This,property,,nameUdoesn’ ‘t,belong,in,~VARCHARJist  ‘)
else begin case cur-code - (varxhar-code + 1) of

0: ezten[ne].b0 + get-byte;
1: ezten[ne].bl + get-byte;
2: ezten[ne].bd +- get-byte;
3: ezten[ne].b3 + get-byte;
end;
finish- the-property ;
end;

end
This code is used in section 104.

106. The input routine is now complete except for the following code, which prints a progress report as
the file is being read.
procedure print-octaZ(c : byte); { prints three octal digits}

begin print ( * * * *, (c div 64) : 1. ((c div 8) mod 8) : 1, (c mod 8) : 1);
end;

107. ( Print c in octal notation 107) G
begin if chars-on-line = 8 then

begin print-Zn ( *U ‘); chars-on-line + 1;
end

else begin if chars-on-line > 0 then print ( Mu ‘):
incr (chars-on-line);
end;

print-octal(c); { progress report }
end

This code is used in section 102.



338 THE CHECKING AND MASSAGING PHASE PLtoTF $108

108. The checking and massaging phase. Once the whole PL file has been read in, we must check it
for consistency and correct any errors. This process consists mainly of running through the characters that
exist and seeing if they refer to characters that don’t exist. We also compute the true value of seven-unsafe;
we make sure that the charlists contain no loops; and we shorten the lists of widths, heights, depths, and
italic corrections, if necessary, to keep from exceeding the required maximum sizes.
( Globals in the outer block 5) +E
seven-unsafe : boolean; { do seven-bit characters generate eight-bit ones? )

109. ( Correct and check the information 109) -
( Make sure the ligature/kerning program ends with ‘STOP' 110);
seven-unsafe +- false;
for c + 0 to 255 do

if char-wd [c] # 0 then ( For all characters g generated by c, make sure that char-wd [g] is nonzero,
and set seven-unsafe if c < 128 5 g 111);

if seven-bit-sufeJlag A seven-unsafe then print-ln ('TheUfontUisUnotUreallyUseven-bit-safe!  ');
( Doublecheck the lig/kern  commands and the extensible recipes 115 );
for c t- 0 to 255 do ( Make sure that c is not the largest element of a charlist  cycle 116);
( Put the width, height? depth, and italic lists into final form 118)

This code is used in section 134.

110. (Make sure the ligature/kerning program ends with ‘STOP' 110)  f
if unused-label then

begin for c t- 0 to 255 do
if (char-tag[c]  = Zig-tug) A (char-remainder[c] = nl) then charAug[c]  + no-tug;

print-ln( 'Last,LIGTABLEULABELUwasUnotUused.');
end;

if nl > 0 then &g-kern [nl - 11.  bU + stop-flag
This code is used in section 109.

111. The checking that we need in several places is accomplished by two macros that are only slightly
tricky.

define existence-tail (#) G
begin char-wd [g] +- sort-in (width, 0); print (#, MU ‘); print-octal(c);
print-ln (',hadUno,CHARACTERUspec.M):
end;

end
define check-existence (#) E

begin g +- #:
if (g 2 128) A (c < 128) then seven-unsafe + true;

a if char-wd [g] = 0 then existence-tail
( For all characters g generated by c, make sure that char,wd [g] is nonzero,  and set seven-unsafe if

c <  128Lg 1 1 1 )  =
case char-tag[c]  of
no-tag: do-nothing;
Zig-tag: (Check ligature program of c 113);
list-tag: check-existence(char-remainder [c])('The,character,NEXTLARG&than*);
ext-tag:  (Check the pieces of exten[c]  114);

This code is used in section 109.



$112 PLtoTF THE CHECKING AND MASSAGING PHASE

112. (Globals in the outer block 5) +E
lig-ptr:  0 . . 511; { an index into Zig-kern }

113. (Check ligature program of c 113) E
begin if char-wd [c] = 0 then

begin print ( ‘There * ‘sU~LABELUbutUnoUCHARACTEF@pecuf  or,‘); print-octal(c); print-Zn( * . ‘);
char-wd [c] t sort-in (width, 0);
end;

Zig-ptr + char-remainder [c];
repeat if lig-kern [Zig-ptr]. b2 < kern-flag  then

begin check-existence (Zig-kern [Zig-ptr]. bl )( ‘LIG,characterUgeneratedUby  ‘);
check_existence(Zig_Icern(lig_ptr].b3)(  ‘LIGUcharacterUgenerated,,by*);
end

else check-existence(Zig-kern[Zig-ptrj.bl  )( ‘KRN,characterUgenerated,by’);
incr (Zig-ptr );

until Zig-kern[lig-ptr - l].bO  = stop-flag;
end

This code is used in section 111.

114. (Check the pieces of exten[c] 114) G
begin if exten [char-remainder [cl]. b0 > 0 then

check-existence (exten [ char-remainder [cl]. bO)( ‘TOP,piece,,of  ucharacter  ‘);
if exten [ char-remainder [cl]. bl > 0 then

check-existence( exten [ char-remainder [cl]. bl )( ‘MIDUpieceUof  ucharacter  ‘);
if exten [ char-remainder [cl].  b2 > 0 then

check-existence ( exten [char-remainder [cl]. b2)( ‘BOT,pieceUof  ,,character ‘);
check-existence (exten [char-remainder [cl]. b3)( ‘REP,pieceUof “character ‘);
end

This code is used in section 111.
.

339



340 THE CHECKING AND MASSAGING PHASE PLtoTF $115

115. The lig/kern  program may still contain.references  to nonexistent characters, if parts of that program
arc never used. Similarly, there may be extensible characters that are never used, because they were
overridden by NEXTLARGER, say. This would produce an invalid TFM file; so we must fix such errors.

define double-check-tail (#) E
if char-wd [0] = 0 then char-wd [0] + sort-in( width, 0);

print ( ‘Unused,‘, #, ‘,refersutounonexistent,character,’);  print-octal(c); print-Zn( l ! ‘);
end ;
end

define double-check-Zig (#) E
begin c + Zig-kern[Zig-ptr].#;
if char-wd [c] = 0 then

begin Zig-kern, [Zig-ptr].# +- 0; doubZe_checkAaiZ
define double-&eck-ext  (#) z~

begin c + exten [g].#;
if c > 0 then

if char-wd [c] = 0 then
begin exten [g].# +- 0: double-check-tail

define double-check-rep(t) E
begin c +- exten [g].#;
if char-wd [c] = 0 then

begin exten [g] .# + 0; double-check-tail
( Doublecheck the lig/kern  commands and the extensible recipes 115)  E

if nZ > 0 then
for Zig-ptr +- 0 to nZ - 1 do

if Zig-kern[Zig-ptr]. b2 < kern-flag  then doubZe_checLZig(b3)(  'LIG,step')
else double-check-Zig( bl )( 'KRN,step');

if ne > 0 then
for g +- 0 to ne - 1 do

begin double-check-ext (bO)( 'VARCHA&TOP'); double-check-ext( bl )( 'VARCHA&MID');
double-check-ext (b2)( 'VARCHAR,,BOT  ’ ); double-check-rep (b3 )( 'VARCHARUREP  '):
end

This code is used in section 109.

116. ( Make sure that c is not the largest element of a charlist  cycle 116) E
if char-tag[c] = Zist-tag then

begin g +- char-remainder [cl:
while (g < c) A (charAag[g]  = list-tag) do g + char-remainder [g];
if g = c then

begin char-tag[c] + no-tag:
b print ('A,cycle,of,NEXTLARGERucharacters,has,been~broken"at~~): print-octal(c):

print-Zn ( * . ’ );
end:

end
This code is used in section 109.

117. (Glblo a s in the outer block 5) +E
delta: fix-word: { size of the intervals needed for rounding }



5118 PLtoTF THE CHECKING AND MASSAGING PHASE 341

118. define round-message (#) E -
if delta > 0 then

prinLZn( ‘IUhadUtoUroundUsomeUO, #, 0sUby’,(((deZta+1)div2)/‘400UUU0)  : 1 : 7, ',units. ')
(Put the width, height, depth, and italic lists into final form 118) z

delta t shorten (width, 255); set-indices( width, delta); round-message ( 'width ' );
delta + shorten( height, 15); set-indices( height, delta); round-message( 'height ');
delta + shorten (depth, 15); set-indices( depth, delta); round-message( 'depth ');
delta +- shorten( italic, 63); set-indices( italic, delta); round-message( 'italic,correction');

This code is used in section 109.



342 THE OUTPUT PHASE PLtoTF $119

119. The output phase. Now that we know how to get all of the font data correctly stored in PLtoTF’s
memory, it only remains to write the answers out,.

First of all, it is convenient to have an abbreviation for output to the TFM file:
define out (#) E write ( tfm-file,  #)

120. The general plan for producing TFM files is long but simple:
(Do the output 120) z

( Compute the twelve subfile  sizes 122 );
( Output the twelve subfile  sizes 123 );
( Output the header block 125 );
( Output the character info 127);.
( Output the dimensions themselves 129 );
( Output the ligature/kern program 130);
( Output the extensible character recipes 131);
( Output the parameters 132)

This code is used in section 135.

121. A TFM file begins with 12 numbers that tell how big its subfiles  are. We already know most of these
numbers; for example, the number of distinct widths is memory[width]  + 1, where the +l accounts for the
zero width that is always supposed to be present. But we still should compute the beginning and ending
character codes ( bc and ec), the number of header words (Zh), and the total number of words in the TFM file
(If >*
( Globals in the outer block 5) +r
bc: byte; { the smallest character code in the font }
ec: byte; {the largest character code in the font }
Zh: b y t e ;  { the number of words in the header block }
If : 0 . . 32767; { the number of words in the entire TFM file }
not-found: boolean; { has a font character been found? }
temp-width : fix-word; { width being used to compute a check sum }

122. It might turn out that no characters exist at all. But PLtoTF keeps going and writes the TFM anyway.
In this case ec will be 0 and bc will be 1.
( Compute the twelve subfile  sizes 122) E

lh + header-ptr div 4;
not-found t true; bc + 0;
while not-found do

if (char-wd[bc] > 0) V (bc = 255) then not-found + false
else incr (bc);

not-found + true; ec + 255;
while not-found do

if (char-wd[ec] > 0) V (ec = 0) then not-found +-- false
else deer ( ec);

if bc>ecthen bc+-1:
incr (memory [ width]): incr (memory [ heigh.t]): incr (memory [ depth]); incr (memory [ italic]);
If +-6+Zh+(ec- bc + 1) + memory [width] + memory [ height] + memory [ depth] + memory [ italic] + nZ +

nk+ne+np;
This code is used in section 120.



$123 PLtoTF THE OUTPUT PHASE 343

123. define out-size(#) G out((#)  div 256); out((#)  mod 256)
( Output the twelve subfile  sizes 123) -

out-size (If ); out-size (Zh); out-size (bc); outize  (ec); out,size(  memory [ width]);
out-size (memory [height]); out-size (memory [ depth]); out-size (memory [italic]); out-size (nl);
out-size (nk ); out-size (ne); out-size (np);

This code is used in section 120.

124. The routines that follow need a few temporary variables of different types.
( Globals in the outer block 5) +E
j :  0 . . max-header-b  ytes ; { index into header-bytes }
p: pointer: { index into memory }
q: width . . italic; { runs through the list heads for dimensions }
par-ptr : 0 . . max-param-words; { runs through the parameters }

125. The header block follows the subfile  sizes. The necessary information all appears in header-bytes,
except that the design size and the seven-bit-safe flag must still be set.
( Output the header block 125 ) -

if lcheck-sum-specified then ( Compute the check sum 126);
header-bytes [ designsize-lot] c design-size div ‘100000000 ; ( this works since design-size > 0 )
header-bytes[designAze-Zoc  + l] + (design-size div ‘200000) mod 256;
header-bytes [ design-size-Zoc + 21 + (design-size div 256) mod 256;
header-bytes [ design-size-Zoc + 31 + design-size mod 256;
if Tseven-unsafe then header-bytes[seven&g-Zoc] + 128;
for j t 0 to header-ptr - 1 do out (header-bytes Ij]);

This code is used in section 120.

126. (Compute the check sum 126) E
begin CO t bc; cl +-- ec; c2 +-- bc; c3 + ec;
for c + bc to ec do

if char,wd [c] > 0 then
begin temp-width +- memory [ char-wd [cl];
if design-units # unity then temp-width + trunc(( temp-width/design-units) * 1048576.0);
temp-width + temp-width + (c + 4) * ‘20000000 ; { this should be positive }
CO +- (CO + CO + temp-width) mod 255; cl + (cl + cl + temp-width) mod 253;
c2 +- (c2 + c2 + temp-width) mod 251; c3 + (c3 + c3 + temp-width) mod 247;
end:

header-bytes [ check-sum-Zoc] t  CO; header-bytes[checksum-Zoc  + l] + cl ;
header-bytes [check-sum-Zoc + 2] + c2 ; header-bytes[check-sum-Zoc  + 31 + c3;
end

* This code is used in section 125.

127. The next block contains packed char-info.
( Output the character info 127) -

index[O] + 0;
for c + bc to ec do

begin out (index [ char-wd [cl]); out (index [ char-ht [cl] * 16 + index [ char-dp [cl]);
out (index [char-ic[c]]  * 4 + char-tag [cl); out (char-remainder [cl);
end

This code is used in section 120.



344 THE OUTPUT PHASE PLtoTF $128

128. When a scaled quantity is output. we may need to divide it by design-units. The following subroutine
takes care of this. using floating point arithmetic only if design-units # 1.0.
procedure out-scaZed(r : fix-word); { outputs a scaled fix-word }

var t: real; { a number to output after conversion to fixed point }
72:  byte; {the first byte after the sign}
m: 0 . . 65535; { the two least significant bytes }

begin if abs(x/design-units)  2 16.0 then
begin print-Zn ( ‘The,relative,dimension’,  z/ ‘4000000 : 1 : 3, ‘,isutooularge.  ‘);
print ( MUU (Mustube,lessuthan,16*designsize’);
if design-units # unity then print( *U=S, design-units/ ‘200000 : 1 : 3, ‘,designunits’);
print-Zn( * > ‘): x + 0;
end:

if x < 0 then out (255)
else out (0);
if design-units = unity then

begin if x < 0 then x +- x + ‘10000000~ ;
n + x div ‘200000; nl + x mod ‘200000 ;
end

else begin z + (z/design-units) * 16.0;
if z < 0 then z +- z + 256.0;
n + trunc(z); m + trunc(65536.0 * (z - n));
end:

out(n): out(m div 256); out(m mod 256);
end:

129. We have output the packed indices for individual characters. The scaled widths, heights, depths, and
it alit correct ions are next.
( Output the dimensions themselves 129)  -

for q + width to italic do
. begin out (0); out (0); out(O); out (0); { output the zero word}

p t link [q] ; ( head of list }
while p > 0 do

begin out-scaled (memory [PI); p + link [PI;
end:

end:
This code is used in section 120.

130. (Output the ligature/kern program 130) E
if nZ > 0 then

for Zig-ptr + 0 to nZ - 1 do
. begin out(Zig-kern[Zig-ptr].bO); out(Zig-kern[Zig-ptr].bl):  out(Zig_kern[Zig_ptr].b2);

out(Zig-kern[Zig-ptr].bj):
end:

if nk > 0 then
for km&r + 0 to nk - 1 do out-scaled (kern [ km-ptr])

This code is used in section 120.



$131 PLtoTF THE OUTPUT PHASE 345

131. ( Output the extensible character recipes 131)  z
if ne > 0 then

for c + 0 to ne - 1 do
begin out(exten[c].bO); out(exten[c].bl); out(exten[c].b2); out(exten[c].b3);
end;

This code is used in section 120.

132. For our grand finale, we wind everything up by outputting the parameters.
( Output the parameters 132) =

for par-ptr + 1 to np do
begin if par-ptr = 1 then (Output the slant (parum[l]) without scaling 133)
else out-scaled (pamm [par-ptr]):

end
This code is used in section 120.

133. (Output the slant (param[l]) without scaling 133)  c
begin if parum[l] < 0 then

begin param [l] + param [I] + ‘10000000000 ; out ((parum [I] div ‘100000000 ) + 256 - 64);
end

else out (param [ I] div ‘100000000);
out ((pamm[l]  div ‘200000) mod 256); out((param[l] div 256) mod 256); out(parum[l] mod 256);
end

This code is used in section 132.



346 THE MAIN PROGRAM PLtoTF $134

134. The main program. The routines sketched out so far need to be packaged into separate pro-
cedures, on some systems, since some Pascal compilers place a strict limit on the size of a routine. The
packaging is done here in an attempt to avoid some system-dependent changes.
procedure param-enter;

begin ( Enter the parameter names 48 );
end;

procedure name-enter; { enter all names and their equivalents }
begin ( Enter all of the names and their equivalents, except the parameter names 47 ) ;
param-enter;
end;

procedure read-Zig-kern ;
var km-ptr: 0 . . 256; { an index into kern }

c: byte; { runs through all character codes }
begin ( Read ligature/kern list 94);
end;

procedure read-char-info;
begin ( Read character info list 102);
end;

procedure read-input;
begin ( Read all the input 82 ) ;
end;

procedure corr-and-check;
var c: byte; { runs through all character codes }

Zig-ptr: 0 . . 511; { an index into Zig-kern }
g: byte; { ha c aracter generated by the current character c}

begin ( Correct and check the information 109)
end;.

135. Here is where PLtoTF begins and ends.
begin initialize ;
name-enter;
read-input; print-Zn ( * . ’ );
corr-and-check:
(Do the out.plit 120);
end.



$136 PLtoTF SYSTEM-DEPENDENT CHANGES 347

136. System-dependent changes. This section should be replaced, if necessary, by changes to the
program that are necessary to make PLtoTF work at a particular installation. It is usually best to design
your change file so that all changes to previous sections preserve the section numbering; then everybody’s
version will be consistent with the printed program. More extensive changes, which introduce new sections,
can be inserted here; then only the index itself will get a new section number.



348 INDEX PLtoTF $137

137. Index. Pointers to error messages appear here together with the section numbers where each ident-
ifier is used.
A cycle of NEXTLARGER.. . : 116.
abs: 128.
act : 5l, 52, 53, 54, 55, 56, 62, 64, 66.
An “R” or “D” . . . needed here : 62.
An octal (“0”) or hex (“H”).  . . : 59.
ASCII-code: 17. 18, 30, 36, 38, 51.
At most 256 different kerns...: 100.
At most 256 VARCHAR specs...: 104.
backup: 32. 53, 54, 55.
bnd&den.t  : 3.
b a n n e r :  1, 2 .
bc: 1’21,  122, 123. 126. 127.
boolean: ,23, 42, 62, 67, 108: 121.
BOT piece of character.. . : 114.
buf-size : 1, 23. 27. 28.
bufler : 23. 27, 28, 29. 31, 32, 33, 52.
byte : lJ. 44, 45, 51. 57. 67. 72, 73, 79, 80, 81,

87. 96, 106, 121, 128, 134.
b0: 57, 58, 98, 100. 101, 104, 105, 110, 113,

114. 115, 130. 131.
bl: 57. 58, 98, 100. 104, 105. 113, 114, 115,

130. 131.
b2: 57, 58. 98, 100, 104. 105. 113, 114. 115,

130, 131.
b<?: 57. 58, 98, 100. 104. 105, 113, 114, 115,

130. 131.

“C” value must be. . . : 52.
char: 18, 23.
char-dp: 72, 74. 103, 127.
char-dp-code: 44. 47, 103.
charhi: 72. 747103.  1 2 7 .
char-ht-code:  qj. 47 ,  103.
c h a r - i c :  72. 74. 103. 127.
ch,ar-ic-code : 44: 47, 103.
char-info: 127.
char-info-code: 4-l.
char-info-word: Ti..
char-remain,der:  72, 7-I. 97, 101, 103. 104. 110.

111. 113. 114, 116. 127.
char-fag: 72. 74, 96. 97, 101, 103. 104. 110.

111. 116. 127.
char-wd: 72. 74, 75. 102. 103. 109, 111. 113.

115, 122. 126. 127.
char-wd-code:  4-1.  47. 93. 103.
character-codr: -ii. 47, 8-l.  85.
ch,nrs-on-Zin.e:  25. 26. 27. 107.
check-existence: 111. 113, 114.
check-sum-code : a. 47. 85.
ch,eck-sum-Zoc: KJ, 85. 126 .

check-sum-specified: 67, 70, 85, 125.
check-tag: 9fi, 97, 103, 104.
chr: 20, 28.
coding-scheme-code : 44, 47, 85.
coding-scheme-Zoc: 70, 85.
comment-code: 44. 47, 84, 93, 95, 103, 105.
corr-and-check: 134, 135.
cur-bytes: 57, 58.
cur-char: 30, 31, 32, 33, 34, 35, 49, 51, 52, 53,

54, 55, 56, 59, 60, 62, 63, 64, 66, 82, 84, 87,
90, 92, 94, 102, 104.

cur-code: 44, 49, 84, 85, 93, 95, 103, 105.
cur-hush: 39, 42, 43, 45.
cur-name : 38, 42, 43, 45, 46, 49.
co: 58, 59, 60, 86: 126.
cl : 58, 59, 60, 86, 126.
c2: 58, 59, 60, 86, 126.
c3: 58, 59: 60, 86, 126.
d: 69 75 77 78 80-7 -7 -7 -’ - -
deer: 4, 32, 33, 42, 49, 66, 87. 92, 122.
delta: llJ’, 118.
depth: 44, 74. 103, 118, 122, 123.
design-size: 67. 70, 88, 125.
design-size-code: 44, 47, 85.
design-size-Zoc: ‘&l, 125.
design-units: 67, 70, 89, 126. 128.
design-units-code: 44. 17, 85.
diet-ptr  : 36, 37, 45.
dictionary: 36, 42. 45.
do-nothing: 4, 96, 111.
double-check-ext: 115.
double-ch,erk-Zig: 115.
double-check-rep: m.
double-check-tail: 115.
ec: l2J 122, 123, 126, 127.
en.ter-name: 45. 46.
eof: 28.
eoln: 2 8 .
equiv: g. 45. 47. 49.
err-print : 27. 29. 32. 33. 34. 35, 49, 75. 82, 83, 87,

88. 89. 90. 96. 97. 98, 100, 101, 104.
existen.ceAnil:  111.
ext-tag : 72, 96. 104. 111.
exten: fi7. 104. 105, 114, 115. 131.
Extra right parenthesis : 82.
face-code : 44. 47, 85.
face-zoc: 70. 85.
false : 24. 28, 42, 62, 70. 90, 98, 100, 101, 109. 122.
family-code: g. 47, 85.
family-zoc: 70, 85.



$137 PLtoTF INDEX 349

File ended unexpectedly. . . : 33.
fill-buffer: B. 29. 31. 32. 33.
finish-inner-property-list: 92, 94, 102, 104.
finGsh- th,e-property : 35. 84. 92, 93. 95, 103, 105.
first-ord: 18. 19. 20.
jtlLl1107d: 61. 62. 67. 71. 72. 75. 76. 77, 78. 80,

117. 121. 128.
fZush.-error : 34. 84. 93, 95, 103. 105.
font-dimen-code: a, 47. 85.
four-bytes: x. 58. 59. 67.
fraction-digits: 65, 66.
9: m.
get-byte: 51, 85, 91, 93, 97. 98. 100. 102. 103. 105
get-fix  : 62% 88. 89, 93, 100, 103.
get-four-bytes: 59, 86.
getlletter-or-digit : 31. 49.
ye t-name : Jj. 84. 93. 95. 103, 105.
get-71f:Zt: 32. 34. 35, 49. 51. 52. 53. 54, 55. 563, 59,

60. 62, 63. 64. 66. 82. 87, 90, 92. 94. 102, 104.
good-indent: 2J. 22. 29.
h: 40. 75, 77. 713. 80.
hash : 3. 41. 42. 45.
hash-prime: 3(3, -10, 41, 42. 43.
header :  9 .
HEADER indices.. . : 91.
header-bytes: g. 69. 70. 85. 86, 87. 91. 124.

125. 126.
header-code: 4-1. 47. 85.
header-index: 67, @. 69, 86. 87.
header-ptr : 67. 70. 91. 122. 125.
h.eigh,t  : 44. 71. 74, 103. 118, 122. 123.
I had to round.. . : 118.
Illegal character.. . : 32.
Il legal digit :  60.
Illegal face code. . . : 56.
inc7.: 4. 28. 29. 31. 32, 33. -45,  49, 56, 66, 75, 77. 80,

82. 87. 91. 92. 93. 98. 100. 104. 107, 113. 122.
indent: 2. 22. 29.
index: 79. 80, 127.
initialize: 2. 135.

* input-h,as-ended: 23. 24, 28. 33. 82.
i7~Lpai~t  : a.
i7rteger: 21, 33. 51, 59. 61, 62. 65. 77, 78.
invalid-code: 20. 32.
italic: 41. 71. 7-4. 103. 118, 122. 123. 124, 129.
j :  a. 62. 124.
Junk after property value...: 35.
junk-c7*ror: 82. 83. 92, 94. 102. 104.
k: 19. 27. g. a. z. u.
kern : 67. 99, 100. 130, 134.
kf~l~7Ljhg  : _ 99. 100. 113. 115.
KRN character generated... : 113.

km-code : 44, 47, 95.
ksx-p  tr : 99, 100, 130. 134
1 :  33, 22.0.

-*

label-code : 44, 47, 95.
Last LIGTABLE LABEL...: 110.
last-ord: l8, 19. 20.
left-ln. : 23, 24, 27, 28.
level: 2l, 22, 29, 33, 49, 92, 94, 102. 104.
lf: 121. 122, 123.
lh: 121, 122 ,  123.
LIG character generated.. . : 113.
lig-code: 44, 47, 95.
lig-kern: 67, 98, 100. 101. 110. 112, 113, 115.

130. 134.
lig-ptr : 112, 113, 115, 130, 134.
lig-table-code: 44, 4 7 ,  8 5 .
lig-tag: 72, 96, 97, 101, 110, 111.
LIGTABLE should never...: 98. 100.
LIGTABLE with more than 255...: 97.
limit: 23, 24, 27. 28, 29, 31. 32, 33.
line: 21. 22. 27, 28.
link: 71, 72, 74, 75, 77, 80, 129.
list-tag: 2, 96, 103, 111, 116.
load1 0 : 46, 47, 48.
load11 :  46. 4 7 .
loadl2: a. 4 7 .
load13: 46, 48.
loadl4: 46.
loadl5: a.
loudl6: 4& 4 7 .
loadl?‘: 46.
loadl$: a.
loadlg:  -&.
load20:  4& 4 8 .
load3:  46, 47 .
load4 : 46, 47. 48.
load5 : & 47, 48.
load6: 46. 4 7 ,  4 8 .
load7: 46. -47 .  48 .
loadll : 46. 47.
load9: a. 4 7 .
lot : 23. 2-l. 27, 28. 29. 31. 32, 33. 49. 52. 82. 92.
lon~gestname: 313. 42. 45. -49.
lookup : g. 45. 49.
lrb: 77. a. 128.
m.ax-header-bytes: 3. 9. 68. 91. 124.
niax-letters: 36 42.- -
71)  ~~-1-71  am c-index : 36. 38. 39. 44.
7nalc_pa~.clr~b_~llo1.d~: 1, 11. 67. 93, 124.
nreni-p  tr : 72. 74. 75.
71bf?711-  rize  *<I . 71. 75.



q: 5 9 ,  8 0 ,  124.
r: 59.
read:  28 .
read_BCPL:  8 5 .  87.
read-char-info: 85, 134.
read-four-bytes: 85. &. 91.
read-input: 134. 135.
read-lig-kern: 85, 134.
read-ln : 28.
real: 128.
Real constants must be..
REP piece of character..
r e s e t :  6 .
rewrite: 16.
right-ln : 23, 24, 27, 28, 31
round-message: 118.
set-indices: 80, 118.

. : 62, 64.

. : 114.

350 INDEX

memory: 71, 72, 74, 75, 77, 78, 79, 80, 121, i22,
123, 124, 126, 129.

Memory overflow... : 75.
MID piece of character...: 114.
min-cover: 7 7 ,  78 .
71: 128.
name-enter: 134,  135.
name-length: 38, 42, 43, 45, 46, 49.
name-ptr: 38, 42. 49.
ne: 67, 70, 104, 105, 115, 122, 123, 131.
negative: 62, 63.
next-d: 76, 77, 78, 88, 89.
next-larger-code: 44, 47, 103.
nk: 67, 70, 100, 122, 123, 130.
nl: 67, 70, 97, 98, 100, 101,110, 115, 122, 123, 130.
no-tag: 72, 74, 96, 101, 110, 111, 116.
not-found: 42, 121, 122.
np: 67, 70, 93, 122, 123, 132.
out: lls, 123, 125, 127, 128. 129, 130, 131, 133.
out-scaled: 128,  129, 130, 132.
out-size: 123.
o u t p u t :  2.
p: 75, 77, 80, 124.
par-p tr : I-& 132.
param:  67, 93, 132, 133.
param-enter : 134.
PARAMETER index must not...: 93.
parameter-code: 44, 47, 48, 93.

, p l - f i l e :  2 ,  5, 6, 28.
P L t o T F :  2.
pointer: 7l, 72, 75, 77, 78, 79, 80, 124.
print: 2, 27. 106, 107, 111, 113, 115, 116, 128.
print-ln: zY 27, 75, 107, 109, 110. 111, 113, 115,

116. 118, 128, 135.
print-octal: lO& 107, 111, 113. 115, 116.

PLtoTF $137

seven-bit-safe-flag: 67, 70, 90, 109.
seven-bit-safe-flag-code: 44, 47, 85.
seven$lag-lot: 70, 125.
seven-unsafe: l& 109, 111, 125.
shorten: 7& 118.
show-error-context: 27.
skip-error: 34, 51, 52, 53, 54, 55, 56, 59, 60,

62, 64, 91.
skip-to-end-of-item: 33, 34, 35, 84, 92, 93, 94,

95, 102, 103, 104, 105.
skip-to-paren: 34, 83, 90.
Sorry, I don't know...: 49.
Sorry, the maximum hex...: 60.
Sorry, the maximum octal...: 60.
sort-in : 75, 102, 103, 111, 113, 115.
start: 36, 37, 38, 39, 42, 44, 45.
start-ptr: 36, 37, 45.
STOP after LABEL...: 101.
stop-code: 44, 47, 95.
stopJ?ag: 99, 101, 110. 113.
String is too long...: 87.
system dependencies: 2, 16, 18, 28, 136.
t: 51.
t a i l :  46.
temp-width: 121, 1 2 6 .
t e x t :  5 .
tfm-file : 2, l5, 16, 119.
The character NEXTLARGER...: 111.
The design size must...: 88.
The flag value should be...: 90.
The font is not...safe: 109.
The number of units...: 89.
The relative dimension...: 128.
There's a LABEL but...: 113.
There's junk here...: 83.
This character already...: 96.
This HEADER index is too big...: 91.
This PARAMETER index is too big...: 93.
This property name doesn't belong...: 84,

93, 95, 103, 105.
This value shouldn't...: 53, 54, 55.
TOP piece of character...: 114.
true : 24, 28, 42, 63, 85, 90, 97, 111, 122.
trunc: 126, 128.
t1: 46.
t10: 46.
t11: 46.
t12: 46.
t13: 46.
t14: 46.
t15: 46.
t 1 6 :  46.



.

$137 PLtoTF

t17: 46.
tl8: 46.
t19: 46.
t 2 :  g&i
t 2 0 :  46.
t 3 :  46.
t4: 46.
t 5 :  46.
t 6 :  46.
t7: 46.
t8: 46.
t9: 46.
unity: 61T 62, 70, 88, 126, 128.
UNSPECIFIED: 70.
Unused KRN step...: 115.
Unused LIG step...: 115.
Unused VARCHAR... : 115.
unused-label: 67, 70. 97, 98, 100, 101, 110.
var-char-code: 44, 47. 103, 105.
Warning: Inconsistent indentation...: 29.
Warning: Indented line...: 29.
Why STOP?...: 101.
width : 44, 71, 74, 75, 102, 103, 111, 113, 115,

118, 121, 122, 123, 124, 129.
write: 2, 119.
write-ln: 2.
zord: l& 19, 20, 28, 31, 32, 52.
You need "Cl' or I'D" . ..here. 51.
Z: 128.

INDEX 351



352 NAMES OF THE SECTIONS PLtoTF $137

( Check ligature program of c 113 ) Used in section 111.
(Check the pieces of exten[c] 114) Used in section 111.
( Compute the check sum 126) Used in section 125.
( Compute the huh code, cur-hash,, for cur-name 43) Used in section 42.
( Compute the twelve subfile  sizes 122) Used in section 120.
( Constants in the outer block 3) Used in section 2.
( Correct and check the information log> Used in section 134.
( DO the output 120) Used in section 135.
( Doublecheck the lig/kern  commands and the extensible recipes 115 ) Used in section 109.
( Enter all of the names and their equivalents, except t,he parameter names 47 > Used  in section  134.
( Enter the parameter names 48) Used in section 134.
( For all characters g generated by c, make sure that char-wd [g] is nonzero,  and set seven-unsafe if

c < 128 5 9 111) Used in section 109.
( Globals in the outer block 5, 15, 18. 21, 23. 25, 30. 36, 38, 39, 44, 58, 65, 67, 72, 76, 79, 81, 99, 108,  112, 117, 121, 124)

Used insection  2.
( Local variables for initialization 19,  40, 69, 73) Used in section 2.
( Make sure that c is not the largest element of a charlist  cycle 116 ) Used in section 109.
( Make sure the ligature/kerning program ends with ‘STOP’ 110) Used in section 109.
( Multiply by 10. add cur-chur - “O”, and get-nezt  64) Used in section 62.
( Multiply by r, add cur-char - “O”, and get-next 60) Used in se&on  59.
( Output the character info 127) Used in section 120.
( Output the dimensions themselves 129) Used in section 120.
( Output the extensible character recipes 131) Used in section 120.
( Output the header block 125) Used in section 120.
( Output the ligature/kern program 130) Used in section 120.
( Output the parameters 132) Used in section 120.
( Output the slant (param[l]) without scaling 133) Used in section 132.
( Output the twelve subfile  sizes 123) IJsed  in section 120.
( Print c in octal notation 107) Used in section 102.
1 Put, the width. height, depth. and italic lists into final form 118) Used in section 109.
( Read a character property 103) Used in section 102.
( R.ead a font property value 84) Used in section 82.
( Read a kerning step 100) Used in section 95.
( R.ead a label step 97) Used in section 95.
( Read a ligature step 9t3  ) Used in section 95.
( Read a ligature/kern conlmit~~i 95) Used in section 94.
( Read a parameter value 93) Used in section 92.
( Read a stop step 101) Used in section 95.
( Read all the input 82) Used in section 134.
( R.ead. an extensible piece 105) Used in section 104.
( Read an extensible recipe for c 10-I) Used in section 103.
( Read an indexed header word 91) Used in section 85.
( Read character info list 102 ) Used in section 134.
( Read font parameter list, 92) Used in section 85.
( Read ligature/kern list 94) Used in section 134.
( Read the design size ss ) Used in sectioll 85.
( Read the design units 89) Used in section (35.
( Read the font property value specified by cur-code 85) Used in section 84.
( Read the seven-bit-safe flag 90) Used in section 85.
( Scan a face code 56 ) Used in section 51.
( Scan a small decimal nunlber  53 ) Used in section 51.
( Scan a small hexadecimal number 55) Used in section 51.



$137 PLtoTF NAMES OF THE SECTIONS 353

( Scan a small octal number 54) Usedin  section 51.
( Scan an ASCII character code 52 ) Used in section 51.
( Scan the blanks and/or signs after the type code 63) Used in section 62.
( Scan the fraction part and put it in act  66) Used in section 62.
( Set initial values 6, 16, 20, 22, 24, 26, 37, 41, 70, 74) Used in section 2.
( Set Zoc to the number of leading blanks in the buffer, and check the indentation 29) Used in section 28.
( Types in the outer block 17, 57, 61. 68, 71) Used in section 2.





The DVItype processor

(Version 2.8, August 1984)

Section Page
Iutroduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 402
The character set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 405
Device-independellt,  file format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 407
Input from binary files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 414
Reading the fout inforrnatiou . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 418
Optional modes  of output, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 423
Defining fonts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 428
Low level output routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 431
Translation to symbolic form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 432
Skippingpages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 442
Using the backpointers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 443
R.eading the postamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 444
The ruaiu  program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 446
Syst,erll-deI>endellt  changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 448
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 449

The preparation of this report was supported in part by the National Science Foundst8iorl
under  grants IST-8201926 and MCS-8300984, and by the System  Development, Foundation.
*7lJ$’ is a trademark of the American Mathematical Society.



402 INTRODUCTION DVI type $1

1. Introduction. The DVItype utility program reads binary device-independent (“DVI”)  files that are
produced by document compilers such as Y&X,  and converts them into symbolic form. This program has
two chief purposes: (1) It can be used to determine whether a DVI file is valid or invalid, when diagnosing
compiler errors; and (2) it serves as an example of a program that reads DVI files correctly, for system
programmers who are developing DVI-related software.

Goal numb& (2) needs perhaps a bit more explanation. Programs for typesetting need to be especially
careful about how they do arithmetic; if rounding errors accumulate, margins won’t be straight, vertical
rules won’t line up, and so on. But if rounding is done everywhere, even in the midst of words, there will be
uneven spacing between the letters. and that looks bad. Human eyes notice differences of a thousandth of an
inch in the positioning of lines that are close together; on low resolution devices, where rounding produces
effects four times as great as this, the problem is especially critical. Experience has shown that unusual care
is needed even on high-resolution equipment: for example, a mistake in the sixth significant hexadecimal
place of a constant once led to a difficult-to-find bug in some software for the Alphatype CRS, which has a
resolution of 5333 pixels per inch (make that 5333.33333333 pixels per inch). The document compilers that
generate DVI files make certain assumptions about the arithmetic that will be used by DVI-reading software,
and if these assumptions are violated the results will be of inferior quality. Therefore the present program
is intended a.s a guide to proper procedure in the critical places where a bit of subtlety is involved.

The first DVItype program was designed by David Fuchs in 1979, and it went through several versions on
different computers as the format of DVI files was evolving to its present form.

The banner string defined here should be changed whenever DVItype gets modified.
define banner z ‘This,is,DVItype  , ,Version,:! .8 * { printed when the program starts }

2. This program is written in standard Pascal, except where it is necessary to use extensions; for example,
DVItype must read files whose names are dynamically specified, and that would be impossible in pure
Pascal. All places where nonstandard constructions are used have been listed in the index under “system
dependencies.”

One of the extensions to standard Pascal that we shall deal with is the ability to move to a random place
in a binary file; another is to determine t,he lengt,h  of a binary file. Such extensions are not necessary for
*reading DVI files, and they are not important for efficiency reasons cither-- an infrequently used program
like DVItype does not have to be efficient. But they are included there because of DVItype’s r6le  as a model
of a DVI reading routine, since other DVI processors ought to be highly efficient. If DVItype is being used
with Pascals  for which random file positioning is not efficiently available, the following definition should
be changed from true to false; in such cases, DVItype will not include the optional feature that reads the
postamble first.

Another extension is to use a default case as in TANGLE, WEAVE, etc.
define random-reading z true { should we skip around in the file? }
define othercases G others: { default for cases not listed explicitly }
define endcases  z end { follows the default case in an extended case statement }
format othercases s else
format endcases  E end



§3 .DVI  type INTRODUCTION 403

3 . The binary input comes from d&file.  and the symbolic output is written on Pascal’s standard output
file. The term print is used instead of write when this program writes on output, so that all such output
could easily be redirected if desired.

define print (#) E write (#)
define print-ln (#) E write-ln (#)

program D ‘CTtype (dvi-file,  output);
label ( Labels in the outer block 4 )
const  ( Constants in the outer block 5)
type ( Types in the outer block 8)
var ( Globals in the outer block 10 )
procedure initialize : { this procedure gets things started properly}

var i: integer; { loop index for initializations }
begin print-Zn (banner);
( Set initial values 11)
end;

4 . If the program has to stop prematurely. it goes to the ‘final-end’. Another label, done, is used when
stopping normally.

define final-end = 9999 { label for the end of it all }
define done = 30 { go here when finished with a subtask  }

( Labels in the outer block 4) E
final-end, done:

This code is used in section 3.

5. The following parameters can be changed at compile time to extend or reduce DVItype’s  capacity.
( Constants in the outer block 5) E

max-fonts  = 100: { maximum number of distinct fonts per DVI file }
max-widths  = 10000; { maximum number of different characters among all fonts }
l i n e - l e n g t h  =  7 9 ; { bracketed lines of output will be at most this long}
terminal-line-length. = 150;

{ maximum number of characters input in a single line of input from the terminal }
stack-size = 100; { DVI files shouldn’t push beyond this depth }
name-size = 1000: { total length of all font file names }
name-length  = 50; { a file name shouldn’t be longer than this }

This code is used in section 3.

6 . Here are some macros for common programming idioms.
define incr (#) 3 # + # + 1 { increase a variable by unity}

A define deer (#) E # +- # - 1 { decrease a variable by unity }
define do-nothing E { empty statement }



404 INTRODUCTION DVI type $7

7. If the DVI file is badly malformed, the whole‘ process must be aborted; DVItype will give up, after issuing
an error message about the symptoms that were noticed.

Such errors might be discovered inside of subroutines inside of subroutines, so a procedure called jump-out
has been introduced. This procedure. which simply transfers control to the labcl fin,nZ-end  at the end of the
program. contains the only non-local goto  statement in DVItype.

define abort (#) E
begin print(‘,‘.#); jump-out;
end

define bad-dui (#) s abort ( ‘Bad,DVI,f ile : u *, #, - ! ‘)

procedure j,ump-out  :

begin goto  fhaZ-end:
end:



$8 DVI type THE CHARACTER. SET 4 0 5

8 . The character set. Like all programs written with the WEB system, DVItype can be used with any
character set. But it uses ASCII code internally, because the programming for portable input-output is
easier when a fixed internal code is used, and because DVI files use ASCIJ code for file names and certain
other strings.

The next few sections of DVItype have therefore been copied from the analogous ones in the WEB system
routines. They have been considerably simplified, since DVItype need not deal with the controversial ASCII
codes less than ‘40. If such codes appear in the DVI file, they will be printed as question marks.
( Types in the outer block 8 ) =

ASCII-code = l’,,” . . “-“; { a subrange  of the integers }
See also sections 9 and 21.
This code is used in section 3.

9. The original Pascal compiler was designed in the late 60s when six-bit character sets were common, so
it did not make provision for lower case letters. Nowadays, of course, we need to deal with both upper and
lower case alphabets in a convenient way, especially in a program like DVItype. So we shall assume that the
Pascal system being used for DVItype has a character set containing at least the standard visible characters
of ASCII code (I’ ! ‘I through “-‘I).

Some Pascal compilers use the original name chnr for the data type associated with the characters in text
files, while other Pascals  consider char to be a 64-element subrange  of a larger data type that has some
other name. In order to accommodate this difference, we shall use the name text-char  to stand for the
data type of the characters in the output file. We shall also assume that text-chnr  consists of the elements
chr(first-test-char)  through chr( Znst-tezt-char),  inclusive. The following definitions should be adjusted if
necessary.

define test-char = char { the data type of characters in text files}
define f i r s t - t e x t - c h a r  = 0 { ordinal number of the smallest element of text-chur }

define last-text-char = 127 { ordinal number of the largest element of text-chur }

( Types in the outer block 8) +-
text-file = packed file of text-chur:

10. The DVItype processor converts between ASCII code and the user’s external character set by means
of arrays xord  and xchr that are analogous to Pascal’s ord  and chr functions.
( Globals  in the outer block IO) =
xoui:  array [text-churl  of ASCKcode: { specifies conversion of input characters }
xchr: array [0 . . 2551 of text-char: { specifies conversion of output characters }
See also sections 22, 24. 25. 30, 33. 39. 41, 42, 45, 48, 57, 64, 67, 72, 73, 78, 96, 100, and 107.
This code is used in sectiou  3.



406 THE CHARACTER SET DVI type $11

11. Under our assumption that the visible characters of standard ASCII are all present, the following
assignment statements initialize the xchr array properly, without needing any system-dependent changes.
( Set initial values 11) f

for i +- 0 to ‘37 do xchr[i]  + ‘? *;
xchr [ ‘401  + *u*; xchr[‘dl]  + ’ ! -; xchr
xchr[ ‘451  + ‘X’; xchr[‘46]  + *&.; xchr
xchr[‘50] + ‘(‘; xchr[‘51]  + ‘I’; xchr
xchr[ ‘551  + *- *; xchr[ ‘561 + *. -; xchr
xchr [ '601 t ‘0’; xchr[‘61]  + -1'; xchr
xchr [ ‘651  + -5'; xchr[‘66]  + -6’; xchr
xchr [ ‘??I] + -8': xchr[‘71]  + -9’; xchr
xchr[‘75] t *=*; xchr[‘76]  + *>*; xchr

'421 t *II*; xchr ['431t I#*; xchr ['441 4- -s-i
'471 t ----;
'521 t ***; xchr ['53] + *+*; xchr ['541+ -,-;
'571 +- 'I';
'6.21 + -2’; xchr ['63] t -3'; xchr ['64] + -4';
'671 + -7';
'721 + *: l ; xchr[‘73] t -; *; xchr[‘74] t *<-;
‘77] + -?-;

xchr [ ‘1001  + *(o’;  xchr[‘lUl]  t ‘A’;.xchr[‘lUZ]  + -B-; xchr[‘lU3]  + *C’; xchr[‘l@]  + -D-;
xchr [ ‘1051  + -E’; xchr[‘lU6] + *F’; xchr[  ‘1071  + *G’;
xchr[ ‘1101  + *H’; xchr[‘lll]  t *I’; xchr[‘ll2]  + -J’; xchr[‘ll3]  + -K-; xchr[‘ll4]  + -L-;

t -0';
t *R’;  xchr[‘l23]  + *S’; xchr
t -w-;

['124] t -T-;

t -2’; xchr[ ‘1331  + * [‘; xchr ['I341 t -\-;
. .+ -;

‘1151  + *M’;  xchr[‘ll6]  + -N’; xchr[‘ll7]
‘1201  + *P’; xchr[‘l21]  + ‘Q’; xchr[‘l22]
'125]+ *U’; xchr[‘l26]  + *V’;  xchr[‘l27]
‘1301  + *X0;  xchr[‘l31]  + *Y’; xchr[‘l32]
'1351 +- ‘1 *; xchr[ ‘1361  + *-*; xchr[  ‘1371
‘1401  + ** -; xchr(‘l4lj  + *a’; xchr[‘l42]
'1451 + *e’; xchr[ ‘1461  +- 'f -; xchr[‘l47]

t *b’; xchr[‘l43]  + *c’; xchr ['I441 + -d-;
t -g-; _ _

‘1501  + *h’; xchr[‘l51]  t *i’; xchr[‘l52]  t ‘j-; xchr[‘l53]  + *ls’; xchr[‘l54]  + -1’;
‘1551  + -III’;  xchr[‘156]  + *n’; xchr[‘157]  + -0’;

xchr
xchr
xchr
xchr
xchr
xchr
xchr
xchr [
xchr [
xchr[‘l60]  +  *p-; xchr[‘l61]  t *q*; xchr[‘l62]  t -r’; xchr[‘l63]  +  *s’; xchr[‘l64]  t *t’;
xchr[‘165]  + *II’; xchr[‘166]  + *v’; xchr[‘167]  + l w’;
xchr[‘l70]  + *x’; xchr[‘l’Tl] +  *y-: xchr[‘l72]  t -2’; xchr[‘l73]  t- ‘C’; xchr[‘l74]  + ‘I  *;
xchr[‘l75]  + ‘I’; xchr[‘l76]  + *-*;
for i +- ‘177 to 255 do xchr[i] + ‘? -;

‘See also sections 12, 31, 43, 58, 65. 68, 74. and 97.
This code is used in section 3.

12. The following system-independent, code makes the xord  array contain a suitable inverse to the infor-
mation in xchr.
(Set initial values 11) +Z

E; “, z f;:itrt-chur  to lust-text-char do xord(chr(i)] t '40;
‘lml’ do xord[xchr[i]]  + i;



§13 DVI type DEVICE-INDEPENDENT FILE FORMAT 407

13. Device-independent file format. Before we get into the details of DVItype,  we need to know
exactly what DVI files are. The form of such files was designed by David R. Fuchs in 1979. Almost any
reasonable typesetting device can be driven by a program that takes DVI files as input, and dozens of such
DVI-to-whatever programs have been written. Thus, it is possible to print the output of document compilers
like TEX on many different kinds of equipment.

A DVI file is a stream of &bit bytes, which may be regarded as a series of commands in a machine-like
language. The first byte of each command is the operation code, and this code is followed by zero or
more bytes that provide parameters to the command. The parameters themselves may consist of several
consecutive bytes; for example, the ‘set-rule’ command has two parameters, each of which is four bytes
long. Parameters are usually regarded as nonnegative integers; but four-byte-long parameters, and shorter
parameters that denote distances, can be either positive or negative. Such parameters are given in two’s
complement notation. For example, a two-byte-long distance parameter has a value between -215 and
215 - 1.

A DVI file consists of a “preamble,“’followed by a sequence of one or more “pages,” followed by a
“postamble.” The preamble is simply a pre command, with its parameters that define the dimensions
used in the file; this must come first. Each “page” consists of a bop command, followed by any number of
other commands that tell where characters are to be placed on a physical page, followed by an eop command.
The pages appear in the order that they were generated, not in any particular numerical order. If we ignore
nop commands and fnt-def commands (which are allowed between any two commands in the file), each eop
command is immediately followed by a bop command, or by a post command; in the latter case, there are
no more pages in the file, and the remaining bytes form the postamble. Further details about the postamble
will be explained later.

Some parameters in DVI commands are “pointers.” These are four-byte quantities that give the location
number of some other byte in the file; the first byte is number 0, then comes number 1, and so on. For
example, one of the parameters of a bop command points to the previous bop; this makes it feasible to read
the pages in backwards order, in case the results are being directed to a device that stacks its output face
up. Suppose the preamble of a DVI file occupies bytes 0 to 99. Now if the first page occupies bytes 100 to
999, say, and if the second page occupies bytes 1000 to 1999, then the bop that starts in byte 1000 points to
100 and the bop that starts in byte 2000 points to 1000. (The very first bop, i.e., the one that starts in byte
100, has a pointer of -1.)

14. The DVI format is intended to be both compact and easily interpreted by a machine. Compactness
is achieved by making most of the information implicit instead of explicit. When a DVI-reading program
reads the commands for a page, it keeps track of several quantities: (a) The current font f is an integer:
this value is changed only by fnt and fnt-num  commands. (b) The current position on the page is given by
two numbers called the horizontal and vertical coordinates, h and II. Both coordinates are zero at the upper
left corner of the page; moving to the right corresponds to increasing the horizontal coordinate, and moving
down corresponds to increasing the vertical coordinate. Thus, the coordinates are essentially Cartesian,
except that vertical directions are flipped; the Cartesian version of (h, v) would be (h, -v). (c) The current
spacing amounts are given by four numbers w, x, y, and Z, where w and x are used for horizontal spacing
and where y and z are used for vertical spacing. (d) There is a stack containing (h, w, w, 2, y: Z) values; the
DVI commands push and pop are used to change the current level of operation. Note that the current font f
is not pushed and popped; the stack contains only information about positioning.

The values of h: U, w, x, y, and z are signed integers having up to 32 bits, including the sign. Since they
represent physical distances, there is a small unit of measurement such that increasing h by 1 means moving
a certain tiny distance to the right. The actual unit of measurement is variable, as explained below.



408 DEVICEINDEPENDENT FILE FORMAT DVI type 5 15

15. Here is a list of all the commands that may appear in a DVI file. Each command is specified by
its symbolic name (e.g., bop), its opcode byte (e.g., 139),  and it,s paramet#ers  (if any). The parameters
are followed by a bracketed number telling how many bytes they occupy; for example, ‘p[4]’ means that
parameter 2, is four bytes long.

set-char-0  0. Typeset character number 0 from font f such that the reference point of the character is
at (I&,  1)). Then increase h by the width of that character. Note that a character may have zero or
negative width, so one cannot be sure that h will advance after this command; but h usually does
increase.

set-char-1 through set-char_lZY  (opcodes 1 to 127). Do the operations of set-char-O:  but use the character
whose number matches the opcode, instead of character 0.

set1 128 c[l]. Same as set-chnr-0. except that character number c is typeset. T&K82  uses this command
for characters in the range 128 5 c < 256.

set2 129 c[2]. S ame  as set1  , except that c is two bytes long, so it is in the range 0 5 c < 65536. Ll&X82
never uses this command, which is intended for processors that deal with oriental languages; but
DVItjlpe will allow character codes greater than 255, assuming that they all have the same width as
the character whose code is c mod 256.

set3 130 c[3]. S ame as set1 , except that c is three bytes long, so it can be as large as 224 - 1.
set4 131 c[4]. S ame as set1 . except that c is four bytes long. possibly even negative. Imagine that.
set-rule 132 a[41 b(4].  Typeset a solid black rectangle of height a and width b, with its bottom left corner

at (1,.  11).  Then set /I. +- /z + b. If either CL 5 0 or b 5 0. nothing should be typeset. Note that if
b < 0. the value of h will decrease even though nothing else happens. Programs that typeset from
DVI files should be careful to make the rules line up carefully with digitized characters, as explained
in connection with the rule-pixels  subroutine below.

put1 133 ~$11.  Typeset character number c from font f such that the reference point of the character is at
(1~ v). (The ‘put’ commands are exactly like the ‘set’ commands, except that they simply put out a
character or a rule without moving the reference point afterwards.)

put2 134 c[2].  Same as set2, except that h is not changed.
* put3 135 c[3].  Same as se&?. except that h is not changed.

put4 136 c[4].  Same as set4. except that !k is not changed.
put-rule 137 a[41  b[-l]. S ame as set-rule, except that h is not changed.
nop 138. No operation. do nothing. Any number of nop’s may occur between DVI commands, but a nop

cannot be inserted between a command and its parameters or between two parameters.
bop 139 c()[J]  c$] - . . c&l P[J]- B ,ge inning of a page: Set (II,IJ,zu,x,~,z)  +- (O,O,O,O,O,O) and set the

stack empty. Set the current font f to an undefined value. The ten ci parameters can be used to
identify pages! if a user wants to print only part of a DVI file; TEXAS  gives them the values of \countO
. . . \count9  at the time \shipout was invoked for this page. The parameter p points to the previous
bop command in the file, where the first hop has p = -1.

eoqj  140. End of page: Print what you have read since the previous bop. At this point the stack should
be empty. (The DVI-reading programs that drive most out,put,  devices will have kept a buffer of the
material that appears on the page that has just ended. This material is largely, but not entirely, in
order by II coordinat,e  and (for fixed v) by h coordinate; so it usually needs to be sorted into some
order that is appropriate for the device in question. DVItype  does not do such sorting.)

push 141. Push the current values of (1~ II, ~7,  z, :y. z) onto the top of the stack: do not change any of these
values. Note that f is not pushed.

pop 142. Pop the top six values off of the stack and assign t,hem to (II.  II. W. z, y. z). The number of pops
should never exceed the number  of pushes, since it would be highly embarrassing if the stack were
empty at the time of a pop command.

right1 143 b[l].  Set 1 1 t h + b. i.e., move right, b units. The parameter is a signed number in two’s
complement notation, -128 5 b < 128: if b < 0. the reference point actually moves left.



§15 DVI type DEVICE-INDEPENDENT FILE FORMAT 409

r i g h t 2  1 4 4  b[2]. S ame as right1 , except that b is a two-byte quantity in the range -32768 5 b < 32768.
right9 145 b[3]. S ame as right1 , except that b is a three-byte quantity in the range -223 <  b <  223._
right4 146 b[4]. S ame as righ,fl  , except that b is a four-byte quantity in the range -231  5 b < 231.
w0 147. Set 11 4- 12.  + 2~7;  i.e., move right 211  units. With luck, this parameterless command will usually

suffice, because the same kind of motion will occur several times in succession; the following commands
explain how ‘UI gets particular values.

WI 148 b[l].  Set uj +-- b and h +- h + b. The value of b is a signed quantity in two’s complement notation.
-128 5 b < 128. This command changes the current w spacing and moves right by b.

w2 149 b[2]. Same as WI, but b is a two-byte-long parameter, -32768 5 b < 32768.
w<?  150 b[3]. S ame as ~1, but b is a three-byte-long parameter, -223 <  b <  223._
~14 151 b[4]. Same as WI , but b is a four-byte-long parameter, -231  <  b <  231._
z0 152. Set h + h + z; i.e.. move right -2: units. The ‘2’ commands are like the ‘IU’ commands except that

t,hey involve x instead of UJ.
~1 153 b[ 11. Set n: - b and h - 11 + b. The value of b is a signed quantity in two’s complement notation,

-128 5 b < 128. Tlris command changes the current x spacing and moves right by b.
~2 154 b[2].  Same as sl , but b is a two-byte-long parameter, -32768 < b < 32768.

x3 155 b[3]. S ame as xl. but b is a three-byte-long parameter, -223 5 b < 223.
~4 156 b[4]. S ame as xl . but b is a four-byte-long parameter, -231  <  b <  231._
douml  157 a[l]. Set 7/ - ‘0 + n. i.e., move down a units. The parameter is a signed number in two’s

complement notation, -128 5 a < 128; if u < 0, the reference point actually moves up.
down& 158 a[2]. S ame as down1  . except that (L is a two-byte quantity in the range -32768 5 Q < 32768.
down3 159 n[3]. S ame as down,1  , except that a is a three-byte quantity in the range -223 5 a < 223.
down4 160 n[4]. S ame as down1 , except that a is a four-byte quantity in the range -231 5 a < 231.
y0 161. Set 11 - 11 + g: i.e., move down u uuits. With luck, this parameterless command will usually

suffice. because the same kind of motion will occur several times in succession: the following commands
explain how 9 gets particular values.

yl 162 u[I].  Set ?/ + a and ‘11 - 1~ + Q. The value of CL is a signed quantity in two’s complement notation.
- 128 5 (I < 128. This command changes the current 9 spacing and moves down by a.

y2 163 u[2]. S ame as ~1. but a is a two-byte-long parameter, -32768 5 u < 32768.
y3 164 ~,[3]. S ame as yl . but ct is a three-byte-long parameter. -223 5 c1 < 223.
94 165 ~[4].  Same as ~1. but a is a four-byte-long parameter, -231<.<231._
z0 166. Set ‘I 7 + v + z; i.e., move down z units. The ‘z’ commands are like the *y’ commands except that

they involve z instead of y.
zl 167 u[l]. set z + CL and 17 - v + a. The value of u is a signed quantity in two’s complement notation.

-128 5 (I < 128. This command changes the current z spacing and moves down by n.
+ ~2 168 n[2].  Same as ~1, but (t is a two-byte-long parameter, -32768 5 n < 32768.

23 169 u[3]. S ame as z1 , but,  Q is a three-byte-long paramet,er.  -223 5 a < 223.
z,j 170 u[J].  Same as 21, but n is a four-byte-long parameter. -2”l  5 c1 < 2”l.
fnt-nu7n-0  171. Set f + 0. Font 0 must, previously have been defined by a fnt-dej  instruction. as explained

below.
fntnum-1  through fntmm-63 (opcodes 172 to 234). Set f +- 1, . . . . f t- 63. respectively.
fntl 2 3 5  k[l].  Set,  f - x:.Q$82 uses this command for font numbers in the range 64 5 k < 256.
fn,ti?  2363  k[2]. S ame as fntl . except that,  k: is two bytes long. so it is in the range 0 5 k < 65536. T&X82

never generates this command, but large font numbers may prove useful for specifications of color
or texture, or they may be used for special fonts that have fixed nunrbers  in some external coding
scheme.



410 DEVICE-INDEPENDENT FILE FORMAT DVI type $15

fnt3 237 k[3]. S ame as fit1 , except that k is three bytes long, so it can be as large as 224 - 1.
fnt4 238 k[4]. S ame  as fnt1, except that k is four bytes long; this is for the really big font numbers (and

for the negative ones).
xxx1  239 k[l]  x[k]. This command is undefined in general; it functions as a (k + 2)-byte  nop unless special

DVI-reading programs are being used. !I&?@2 generates xxx1 when a short enough \special  appears,
setting k to the number of bytes being sent. It is recommended that x be a string having the form of
a keyword followed by possible parameters relevant to that keyword.

xxx2 240 k[2] x[k].  Like xxx1 , but 0 5 k < 65536.
xxx3 241 k[3] x[k]. Like xxx1  , but 0 5 k < 224.
xxx4 242 k[4] x[k]. L ki e xxx1 , but k can be ridiculously large. ‘l&X82  uses xxx4 when xxx1 would be

incorrect.
fnt-defl 243 k[l] c[4] 9[4]  d[4]  a[l]  Z[l]. n[a + Z]. Define font k, where 0 5 k < 256; font definitions will be

explained shortly.
fnt-def2  244 k[2] c[4] 9[4]  d[4]  a[l]  Z[l]  n[a + Z].  Define font k, where 0 < k < 65536.-
fit-def3  245 k[3] c[4] s[4]  d[4]  a[l]  Z[l]  n[a + 21.  Define font k, where 0 < k < 224.-
fit-def’ 246 k[4] c[4] s[4]  d[4]  a[11 Z[l]  n[a + 1). Define font k, where -231 5 k < 231.
pre 247 i[l] num [4] den [4] T7Pl WI 44. B ge inning of the preamble; this must come at the very

beginning of the file. Parameters i, num, den, mug, k, and x are explained below.
post 248. Beginning of the postamble, see below.
post-post 249. Ending of the postamble, see below.

Commands 250-255 are undefined at the present time.



§16 DVI type DEVICEINDEPENDENT FILE FORMAT 411

16. define set-char-0 = 0 { typeset character 0 and move right }
define set1 = 128 { typeset a character and move right }
define set-rule = 132 { typeset a rule and move right }
define put1 = 133 { typeset a character }
define put-rule = 137 { typeset a rule }
define nop = 138 { no operation }
define bop = 139 { beginning of page }
define eop = 140 { ending of page }
define push = 141 { save the current positions }
define pop = 142 { restore previous positions }
define right1 = 143 { move right }
define w0 = 147 { move right by w }
define w1 = 148 { move right and set w }
define x0 = 152 { move right by x }
define xl = 153 { move right and set x }
define down1 = 157 { move down}
define y0 = 161 { move down by y }
define yl = 162 { move down and set y }
define z0 = 166 { move down by z }
define z1 = 167 { move down and set z }
define fnt-num-0 = 171 { set current font to 0 }
define fntl = 235 { set current font }
define xxx1 = 239 { extension to DVI primitives }
define xxx4 = 242 { potentially long extension to DVI primitives }
define fnt-defl = 243 { define the meaning of a font number )
define pre = 247 { preamble }
define post = 248 { postamble beginning}
define post-post = 249 { postamble ending}
define undefined-commands E 250,251,252,253,254,255

17. The preamble contains basic information about the file as a whole. As stated above. there are six
parameters:

i[l] num[4]  den[4]  mag[4]  L[l]  x[k].

The i byte identifies DVI format: currently this byte is always set to 2. (Some day we will set i = 3! when
DVI format makes another incompatible change-perhaps in 1992.)

The next two parameters, num and den, are positive integers that define the units of measurement;
they are the numerator and denominator of a fraction by which all dimensions in the DVI file could be
multiplied in order to get lengths in units of low7  meters. (For example, there are exactly 7227 ‘l&X points
in 254 centimeters, and T~$82 works with scaled points where there are 216 sp in a point, so ‘I$$82  sets
num = 25400000 and den = 7227 - 216  = 473628672.)

The mug parameter is what TJJXSZ  calls \mag,  i.e., 1000 times the desired magnification. The actual
fraction by which dimensions are multiplied is therefore mn/lOOOd.  Note that if a T&X source document
does not call for any ‘true’ dimensions, and if you change it only by specifying a different \mag setting, the
DVI file that T&X creates will be completely unchanged except for the value of mug in the preamble and
postamble. (Fancy DVI-reading programs allow users to override the mug setting when a DVI file is being
printed.)

Finally, k and x allow the DVI writer to include a comment, which is not interpreted further. The length
of comment x is Ic, where 0 5 k < 256.

define id-byte = 2 { identifies the kind of DVI files described here }



412

18.

DEVICE-INDEPENDENT FILE FOR MAT

Font definitions for a given font number i contain further parameters

D V I  t y p e  $18

c[d] s[4] d[4] a[11 Z[l]  n[a + t].

The four-byte value c is the check sum that 7$$  (or whatever program generated the DVI file) found in the
TFM file for this font; c should match the check sum of the font found by programs that read this DVI file.

Parameter s contains a fixed-point scale factor that is applied to the character widths in font k; font
dimensions in TFM files and other font files are relative to this quantity, which is always positive and less
than 227 It is given in the same units as the other dimensions of the DVI file. Parameter d is similar to s:.
it is the “design size,” and it is given in DVI units that have not been corrected for the magnification mug
found in the preamble. Thus, font k is to be used at mug . s/lOOOd  times its normal size.

The remaining part)  of a font definition gives the external name of the font, which is an ASCII string of
length a + 1. The number CL is the length of the “area” or directory, and 1 is the length of the font name
itself; the standard local system font area is supposed to be used when a = 0. The n field contains the area
in its first a bytes.

Font definitions must appear before the first, use of a particular font number. Once font k is defined, it
must not be defined again: however, we shall see below that font definitions appear in the postamble as well
as in the pages. so in this sense each font number is defined exactly twice, if at all. Like nop commands and
xxx commands, font definitions can appear before the first bop, or between an eop and a bop.

19. The last page in a DVI file is followed by ‘post’; this command introduces the postamble, which
summarizes important facts that 7&X has accumulated about the file, making it possible to print subsets of
the data with reasonable efficiency. The postamble has the form

post p[A]  num[4]  den[f]  mag[4]  Z[4] u[4] s[2] t[2]
( font definitions )
post-post q[4]  i[l] 223’@4]

Here p is a pointer to the final bop in the file. The next three parameters, num, den, and mug, are duplicates
ef the quantit,ies  that appeared in the preamble.

Parameters 1 and u give respectively the height-plus-depth of the tallest page and the width of the widest
page. in the same units as other dimensions of the file. These numbers might be used by a DVI-reading
program to position individual ‘*pages” on large sheets of filrn or paper: however. the standard convention
for output on normal size paper is to posit,ion each page so that the upper left-hand corner is exactly one
inch from the left and the top. Experience  has shown that it is unwise to design DVI-to-printer software
that attempts cleverly to center the output: a fixed position of the upper left corner is easiest for users to
understand and to work with. Therefore Z and u arc often ignored.

Parameter s is the maximull stack depth (i.e., the largest excess of push commands over pop commands)
needed to process this file. Then comes t. the total number of pages (bop commands) present.

The postamblc continues with font definitions. which are any number of fnt-def  commands as described
above, -possibly interspersed with cloy  commands. Each font number that is used in the DVI file must be
defined exactly twice: Once before it is first selected by a fnt command, and once in the postamble.



§20 DVI type DEVICE-INDEPENDENT FILE FORMAT 413

20, The last part of the postamble, following the post-post byte that signifies the end of the font definitions,
contains q, a pointer to the post command that started the postamble. An identification byte, i, comes next;
this currently equals 2, as in the preamble.

The i byte is followed by four or more bytes that are all equal to the decimal number 223 (i.e., ‘337 in
octal). Y&X puts out four to seven of these trailing bytes, until the total length of the file is a multiple of
four bytes, since this works out best on machines that pack four bytes per word; but any number of 223’s is
allowed, as long as there are at least four of them. In effect, 223 is a sort of signature that is added at the
very end.

This curious way to finish off a DVI file makes it feasible for DVI-reading programs to find the postamble
first, on most computers, even though TJ$ wants to write the postamble last. Most operating systems
permit random access to individual words or bytes of a file, so the DVI reader can start at the end and skip
backwards over the 223’s until finding the identification byte. Then it can back up four bytes, read Q, and
move to byte q of the file. This byte should, of course, contain the value 248 (post); now the postamble can
be read, so the DVI reader discovers all the information needed for typesetting the pages. Note that it is
also possible to skip through the DVI file at reasonably high speed to locate a particular page, if that proves
desirable. This saves a lot of time, since DVI files used in production jobs tend to be large.

Unfortunately, however, standard Pascal does not include the ability to access a random position in a file,
or even t,o determine the length of a file. Ahnost all systems nowadays provide the necessary capabilities,
so DVI format has been designed to work most efficiently with modern operating systems. As noted above,
DVItype  will limit itself to the restrictions of standard Pascal if random-reading is defined to be false.



414 INPUT FROM BINARY FILES DVI type 521

21. Input from binary files. We have seen that a DVI file is a sequence of 8-bit  bytes. The bytes
appear physically in what is called a ‘packed file of 0 . . 255’ in Pascal lingo.

Packing is system dependent, and many Pascal systems fail to implement such files in a sensible way
(at least, from the viewpoint of producing good production software). For example, some systems treat all
byte-oriented files as text, looking far end-of-line marks and such things. Therefore some system-dependent
code is often needed to deal with binary files? even though most of the program in this section of DVIt ype
is written in standard Pascal.

One common way to solve the problem is to consider files of integer numbers, and to convert an integer
in the range -231 < x < 23’_ to a sequence of four bytes (a, b, c, d) using the following code, which avoids the
controversial integer division of negative numbers:

if x _> 0 then a + x div ‘100000000
else begin x t (x + ‘10000000000) -I- ‘10000000000; a + x div ‘100000000 + 128;

end
x +-- x mod ‘100000000 ;
b t- x div ‘200000; x +- x mod ‘200000;
c +- x div ‘400;  d + x mod *dOO;

The four bytes are then kept in a buffer and output one by one. (On 36-bit computers, an additional
division by 16 is necessary at the beginning. Another way to separate an integer into four bytes is to
use/abuse Pascal’s variant records, storing an integer and retrieving bytes that are packed in the same place;
caveat implementor!) It is also desirable in some cases to read a hundred or so integers at a time, maintaining
a larger buffer.

We shall stick to simple Pascal in this program, for reasons of clarity, even if such simplicity is sometimes
unrealistic.
( Types in the outer block 8 ) +r

eight-bits = 0 . . 255; { unsigned one-byte quantity }
byte-file = packed file of eight-bits; { files that contain binary data}

22. The program deals with two binary file variables: dvi-file is the main input file that we are translating
into symbolic form, and tfm-file is the current font metric file from which character-width information is
being read.
( Globals in the outer block 10) +E
dvi-file : byte-file ; ( the stuff we are DVItyping}
tfm-file : byte-file ; { a font metric file }

23. To prepare these files for input, we reset them. An extension of Pascal is needed in the case of tfm-file ,
since we want to associate it with external files whose names are specified dynamically (i.e., not known at
compile time). The following code assumes that l reset(f, s)’ does this, when f is a file variable and s is
a string variable that specifies the file name. If eof (f) is true immediately after reset (f, s) has acted, we
assume that no file named s is accessible.
procedure open-dvi-file; { prepares to read packed bytes in &i-file }

begin reset (dvi-file); cur-loc  + 0;
end;

procedure open-@n-file; { prepares to read packed bytes in tfm-file }
begin reset ( tfm.$Ze,  cur-name);
end;



§24 DVI type INPUT FROM BINARY FILES 415

24. If you looked carefully at the preceding code, you probably asked, “What are cur-Zoc  and cur-name?”
Good question. They’re global variables: cur-Zoc  is the number of the byte about to be read next from
d&file,  and cur-name is a string variable that will be set to the current font metric file name before
open-tfm-file  is called.
( Globals in the outer block IO) +z
cur-lot: integer; { where we are about to look, in dvi-file  }
cur-name : packed array [l . . name-length] of char; { external name, with no lower case letters )

25. It turns out to be convenient to read four bytes at a time, when we are inputting from TFM files. The
input goes into global variables b0, bl , b2, and b3, with b0 getting the first byte and b3 the fourth.
( Globals in the outer block 10) +E
b0, bl, b2, b3: eight-bits; { four bytes input at once )

26. The read-tfm-word procedure sets b0 through b3 to the next four bytes in the current TFM file.
procedure read-tfm-word;

begin read( tfm-file, b0); read (tfm-file, bl); read( tfm-file, b2); read (tfm-file, b3);
end;



416 INPUT FROM BINARY FILES DVI type $27

27. We shall use another set of simpie  functidns  to read the next byte or bytes from d&file. There are
seven possibilities, each of which is treat’ed as a separate function in order to minimize the overhead for
subroutine calls.
function get-byte: integer; { returns the next I+ c, unsigned }

var b: eight-bits:
begin if eof(dkfiZe)  then get-byte t 0
else begin read (dvi-file, b); incr  (cur,Zoc); get-byte c- b;

end;
end:

function signed-byte: integer; { returns the next byte, signed }
var 6: eight-bits;
begin read ( dvi-file, b): incr ( cur-Zoc);
if b < 128 then signed-byte + b else signed-byte +- b - 256;
end:

function get-two-bytes: integer; { returns the next two bytes, unsigned }
var a, b: eight-bits:
begin read (dK.fiZe,  a): read (dkjile.  6); cur-Zoc t cur-Zoc + 2; get-two-bytes +- a * 256 + b;
end:

function signed-paw: integer; { returns the next two bytes, signed }
var a. b: eight-bits:
begin wad (dvi-file . a); read (dvi-file , b); cur-Zoc + cur-Zoc + 2;
if a < 128 then signed-pair + a * 256 + b
else signed-pair t (a - 256) * 256 + b;
end:

function get-three-bytes: integer: { returns the next three bytes, unsigned }
var a. b, c: eight-bits;
begin read (dvi-file . a); read (dvi$Ze , b); read (dLfiZe  , c): cur-Zoc +- cur-Zoc + 3;
get-three-bytes t (a * 256 + b) * 256 + c:

* end:
function signed-trio: integer: { returns the next three bytes, signed}

var a, b, c: eight-bits;
begin read (dvi-file , a): read ( dvi,fiZe  , 6): read (dvi-file. c): cur-Zoc +- cur-lot:  + 3:
if Q < 128 then sigrwd-trio  +- (a * 256 + b) * 256 + c
else signed-trio + (((L  - 256) * 256 + b) * 256 + c;
end:

function signed-quad: integer; { returns the next four bytes, signed }
var a. b. c. d: eigh,t-bits:
begin read ( dL/iZe,  a); read ( dvi-file, b); read ( d&file, c); read ( d&file, d); cur-Zoc +- cur-Zoc + 4;
if a < 128 then signed-quad +-- ((a * 256 + b) * 256 + c) * 256 + d
e l s e  signcltl  y/ad  4- ( ( ( a  - 256) * 256 + b) * 256 + c) * 256 + d:
end:



§28 DVI type INPUT FROM BINARY FILES 417

28. Finally we come to the routines that are used only if random-reading is true. The driver program
below needs two such routines: dvi-length should compute the total number of bytes in dvi-file, possibly also
causing eof(dvi-file)  to be true; and move-to-byte(n) should position dvi-file so that the next get-byte will
read byte n, starting with n = 0 for the first byte in the file.

Such routines are, of course, highly system dependent. They are implemented here in terms of two
assumed system routines called set-pos and cur-pos. The call set-pos(f, n) moves to item n in file f, unless
n is negative or larger than the total number of items in f; in the latter case, set-pos(f, n) moves to the end
of file f. The call cur-pas(f)  gives the total number of items in f, if eof(f) is true; we use cur-pos only in
such a situation.
function dvi-length: integer;

begin set-pos (dvi-file, - 1); dvi-length + cur-pos (dvi-file);
end;

procedure move-to-byte(n : integer);
begin set-pos (dvi-file , n); cur-Zoc +- n;
end;



,

418 READING THE FONT INFORMATION DVI type $29

29. Reading the font information. DVI file format does not include information about character
widths, since that would tend to make the files a lot longer. But a program that reads a DVI file is supposed
to know the widths of the characters that appear in set-char commands. Therefore DVItype looks at the
font metric (TFM) files for the fonts that are involved.

The character-width data appears also in other files (e.g., in GF files that specify bit patterns for digitized
characters); thus, it is usually possible for DVI reading programs to get by with accessing only one file per
font. DVItype has a comparatively easy task in this regard, since it needs only a few words of information
from each font; other DVI-to-printer programs may have to go to some pains to deal with complications that
arise when a large number of large font files all need to be accessed simultaneously.

30. For purposes of this program, we need to know only two things about a given character c in a given
font f: (1) Is c a legal character in f? (2) If so, what is the width of c? We also need to know the symbolic
name of each font, so it can be printed out, and we need to know the approximate size of inter-word spaces
in each font.

The answers to these questions appear implicitly in the following data structures. The current number of
known fonts is nf . Each known font has a.n internal number f, where 0 5 f < nf ; the external number of this
font, i.e., its font identification number in the DVI file, is font-num[f], and the external name of this font is
the string that occupies positions font-name [f] through font-name [f + l] - 1 of the array names. The latter
array consists of ASCII-code characters, and font-name [ nf ] is its first unoccupied position. A horizontal
motion in the range -4 *font-space [f] < h < font-space [f] will be treated as a ‘kern’ that is not indicated in
the printouts that DVItype produces between brackets. The legal characters run from font-bc[f]  to font-ec[f],
inclusive; more precisely, a. given character c is valid in font f if and only if font-bc[f]  5 c < font-ec[f] and
char-width(f)(c) # invalid-width. Finally, char-width (f)(c) = width [width-base [f] + c], and width,ptr is the
first unused position of the width array.

define char-width-end (#)  = # ]
define char-width (#)  E width [ width-base[#]  + char-width-end
define  in.vaZid-width  E ‘17777777777

( Globals in the outer block 10) +r
font-num: array [O . . max-fonts] of integer; { external font numbers }
jonLname : array [0 . . max-fonts] of 0 . . name-size; { starting positions of external font names }
names: array [0 . . name-size] of ASCII-code; { characters of names }
font-checksum: array [0 . . max-fonts] of integer; { check sums}
font-scaled-size: array [0 . . max-fonts] of integer; { scale factors )
font-design-size: array [0 . . max-fonts] of integer; { design sizes }
font-space: array [0 . . max-fonts] of integer; ( boundary between “small” and “large” spaces }
font-bc: array [0 . . max-fonts] of integer; { beginning characters in fonts }
font-ec: array [0 . . max-fonts] of integer; { ending characters in fonts }
width-base: array [0 . . max-fonts] of integer; { index into width table}
width: array [0 . . max-widths]  of integer; { character widths, in DVI units }
nf:  0 . . max-fonts; { the number of known fonts )
widthiptr:  0 . . max-widths; { the number of known character widths }

31. ( Set initial values 11) +-
nf t 0; width,ptr 4- 0; font-name[O] f- 0; font-space[O]  i- 0;



§32 DVI type READING THE FONT INFORMATION 419

32. It is, of course, a simple matter to print the name of a given font.
procedure print-font (f : integer); { f is an internal font number }

var k: 0 . . name-size; { index into names }
begin if f = nf then print( UNDEFINED! ‘)
else begin for k + font-name[f] to font-name[f + l] - 1 do print(xchr[names[k]]);

end;

33. An auxiliary array in-width is used to hold the widths as they are input. The global variable
tfm-check-sum is set to the check sum that appears in the current TFM file.
( Globals in the outer block 10) +E
in-width: array [0 . . 2551 of integer; { TFM width data in DVI units}
tfm-check-sum: integer; { check sum found in tfm-file }

34. Here is a procedure that absorbs the necessary information from a TFM file, assuming that the file has
just been successfully reset so that we are ready to read its first byte. (A complete description of TFM file
format appears in the documentation of TFtoPL and will not be repeated here.) The procedure does not
check the TFM file for validity, nor does it give explicit information about what is wrong with a TFM file that
proves to be invalid; DVI-reading programs need not do this, since TFM files are almost always valid, and
since the TFtoPL utility program has been specifically designed to diagnose TFM errors. The procedure simply
returns false if it detects anything amiss in the TFM data.

There is a parameter, z, which represents the scaling factor being used to compute the font dimensions;
it must be in the range 0 < z < 227.
function in_TFM  (z : integer): boolean; { input TFM data or return false }

label 9997. { go here when the format is bad }
9998, { go here when the information cannot be loaded }
9999; { go here to exit }

var k: integer; { index for loops }
Zh: integer; { length of the header data, in four-byte words}
nw : integer; { number of words in the width table }
wp: 0.. max-widths; { new value of width-ptr after successful input }
alpha, beta: integer; { quantities used in the scaling computation }

begin ( Read past the header data; goto 9997 if there is a problem 35 );
( Store character-width indices at the end of the width table 36);
(Read and convert the width values, setting up the in-width table 37);
( Move the widths from in-width to width, and append pixel-width values 40);
width-ptr + wp: in- TFM +- true; goto  9999;

9997: print-Zn ( ‘---not,loaded,uTFM,file,isubad’);
9998: in_TFM  + false;
9999: end:



420 READING THE FONT INFORMATION D V I  t y p e  $35

35. (Read past the header data; goto  9997 if.there  is a problem 35)  z
read-tfm-word; lh t b2 * 256 + b3; read-tfm-word; font-bc[nf]  + b0 * 256 + bl ;
font-ec[nf]  + b2 * 256 + b3;
if font-ec[nf] < font-bc[nf] then font-bc[nf]  +- font-ec[nf] + 1;
if width-ptr + font-ec[nf] - font-bc[nf]  + 1 > max,widths then

begin przntJn  ( ‘---cot,loaded,,DVItypeuneedsulargeruwidth~table.);  goto 9998;
end;

wp t width-ptr + fonLec[nf]  - font-bc[nf]  + 1; read,tfm-word; nw + b0 * 256 + bl ;
if (nut = 0) V ( nw > 256) then goto 9997;
for k +- 1 to 3 + Zh do

begin if eof (tfm-file) then goto  9997;
read-tfm-word;
if k = 4 then

if b0 < 128 then tfm-check-sum + (( b0 * 256 + bl ) * 256 + b2) * 256 + b3
else tfm-check-sum + (( (b0 - 256) * 256 + bl ) * 256 + b2) * 256 + b3;

e n d ;
This code is used in section 34.

36. ( Store character-width indices at the end of the width table 36) G
if wp > 0 then

for k + width-ptr to wp - 1 do
begin read-tfm-word;
if b0 > nw then goto  9997:
width[k]  + b0;
end:

This code is used in section 34.



§37 DVI type READING THE FONT INFORMATION 421

37. The most important part of in_TFM  is the width computation, which involves multiplying the relative
widths in the TFM file by the scaling factor in the DVI file. This fixed-point multiplication must be done
with precisely the same accuracy by all DVI-reading programs, in order to validate the assumptions made by
DVI-writing programs like T@(82.

Let us therefore summarize what needs to be done. Each width in a TFM file appears as a four-byte quantity
called a fix-word. A fix-word whose respective bytes are (a, b, c, d) represents the number

.

x= b.2-4+c.2-12+d.2-20,
{

if a = 0;
-16+b.2-4+c.2-‘2+d.2-20, if a = 255.

.

(No other choices of a are allowed, since the magnitude of a TFM dimension must be less than 16.) We want
to multiply this quantity by the integer Z, which is known to be less than 227. Let Q = 16~.  If z < 223, the
individual multiplications b . Z, c. z, da z cannot overflow; otherwise we will divide z by 2, 4, 8, or 16, to
obtain a multiplier less than 223, and we can compensate for this later. If z has thereby been replaced by
Z’ = ~/2~,  let ,!? = 24-e; we shall compute

[(b + c . 2-8 + d -2-l’)  .z’/pJ

if CL = 0: or the same quantity minus ~11 if a = 255. This calculation must be done exactly, for the reasons
stated above: the following program does the job in a system-independent way, assuming that arithmetic is
exact on numbers less than 231 in magnitude.
( Read and convert the width values, setting up the in-width table 37)  z

( Replace z by z’ and compute a, p 38 ) ;
for k t 0 to nw - 1 do

begin read-tfm-word: in-width[k]  - (( ((( b3 * z) div ‘400) + (b2 * z)) div ‘400) + (b1 * z)) div beta;
if b0 > 0 then

if b0 < 255 then goto  9997
else in-width[k] + in-width[k]  - alpha;

end
This code is used in section 34.

38. ( R.eplace z by z’ and compute Q. 0 3s ) -
begin alpha t 16 * Z; beta +- 16;
while z 2 ‘40000000 do

begin z + z div 2: beta +- beta div 2;
end:

end
. This code is used in section 37.



422 READING THE FONT INFORMATION D V I  t y p e  5%

39. A DVI-reading program usually works with font files instead of TFM files, so DVItype is atypical in
that respect. Font files should, however, contain exactly the same character width data that is found in the
corresponding TFMs; check sums are used to help ensure this. In addition, font. files usually also contain the
widths of characters in pixels, since the device-independent character widths of TFM files are generally not
perfect multiples of pixels.

The pixelwidth array contains this information; when width[k] is the device-independent width of some
character in DVI units, pixel-width [k] is the corresponding width of that character in an actual font. The
macro char-pixel-width is set up to be analogous to char-width.

define char-pixel-width (#)  E pixel-width [ width-base [#I + char-width-end

hs, in pixels
( Globals in the outer block 10) +E
pixel-width: array [0 . . max-widths]  of integer; { actual character widt
conv  : real; { converts DVI units to pixels }
true-conv: real; { converts unmagnified DVI units to pixels }
numerator, denominator: in.teger; { stated conversion ratio }
mag : integer; { magnification factor times 1000 }

40. The following code computes pixel widths by simply rounding the TFM widths to the nearest integer
number of pixels. based on the conversion factor conv  that converts DVI units to pixels. However, such a
simple formula will not be valid for all fonts, and it will often give results that are off by fl when a low-
resolution font has been carefully hand-fitted. For example, a font designer often wants to make the letter
‘m’ a pixel wider or narrower in order to make the font appear more consistent. DVI-to-printer programs
should therefore input the correct pixel width information from font files whenever there is a chance that it
may differ. A warning message may also be desirable in the case that at least one character is found whose
pixel width differs from conv  * width by more than a full pixel.

define pixeLround  (It) s round (conv  * (#))
( Move the widths from in-width to width, and append pixelwidth values 40) E

if in-width[O]  # 0 then goto 9997; { the first width should be zero }
width-base[nf] - width-ptr - fon+bc[nf];

. if wp > 0 then
for k + width-ptr to wp - 1 do

if width [k] = 0 then
begin width [k] +- invalid-width; pixel-width
end

k] + 0;

else begin width [k] t in-width [ width [k]]; pixel-width [k] t pixeZ-round (width [k]);
end

This code is used in section 34.



§41 DVI type OPTIONAL MODES OF OUTPUT 423

41. Optional modes of output. - DVItype will print different quantities of information based on some
options that the user must specify: The out-mode level is set to one of four values (errors-only, terse, verbose,
the-works), giving different degrees of output; and the typeout  can be confined to a restricted subset of the
pages by specifying the desired starting page and the maximum number of pages. Furthermore there is an
option to specify the resolution of an assumed discrete output device, so that pixel-oriented calculations will
be shown; and there is an option to override the magnification factor that is stated in the DVI file.

The starting page is specified by giving a sequence of 1 to 10 numbers or asterisks separated by dots. For
example, the specification ‘ 1. * . - 5’ can be used to refer to a page output by 7&X when \countO  = 1 and
\count:!  = -5. (Recall that bop commands in a DVI file are followed by ten ‘count’ values.) An asterisk
matches any number, so the ‘*’ in ‘1. *. - 5’means that \count  1 is ignored when specifying the first page. If
several pages match the given specification, DVItype will begin with the earliest such page in the file. The
default specification ‘*’ (which matches all pages) therefore denotes the page at the beginning of the file.

When DVItype begins, it engages the user in a brief dialog so that the options will be specified. This part of
DVItype requires nonstandard Pascal constructions to handle the online interaction; so it may be preferable
in some cases to omit the dialog and simply to stick to the default options (out-mode = the-works, starting
page ‘*‘, max-pages = 1000000, resolution = 240.0, new-mug = 0). On other hand, the system-dependent
routines that are needed are not complicated, so it will not be terribly difficult to introduce them.

define errors-only = 0 { value of out-mode when minimal printing occurs }
define terse = 1 { value of out-mode for abbreviated output }
define verbose = 2 { value of out-mode for detailed tracing}
define the-works = 3 { verbose, plus check of postamble if random-reading }

( Globals in the outer block 10) +E
out-mode: errors-only . . the-works; { controls the amount of output }
max-pages: integer; { at most this many bop . . eop pages will be printed }
resolution: real; { pixels per inch }
new-mug: integer; { if positive, overrides the postamble’s magnification}

.

42. The starting page specification is recorded in two global arrays called start-count and start-there.
For example, ‘1. * . -5’ is represented by start-there [0] = true, start-count [0] = 1, start-there[l]  = false,

start_there[2]  = true, start-count [2] = -5. We also set start-vals = 2, to indicate that count 2 was the last
one mentioned. The other values of start-count and start-there are not important, in this example.
( Globals in the outer block 10) +E
start-count: array [0 . . 91 of integer; { count values to select starting page }
start-there: array [0 . . 91 of boolean; { is the start-count value relevant? }
start-vals: 0 . . 9; { the last count considered significant }
count: array [0 . . 91 of integer; { the count values on the current page }

. 43. ( Set initial values 11) +r
out-mode t the-works; max-pages + 1000000; start-vals + 0; start-there[O]  + false;

*
44. Here is a simple subroutine that tests if the current page might be the starti rig page.
function start-match: boolean; { does count match the starting spec? }

var k: 0.. 9; { loop index }
match,: boolean,; { does everything match so far? }

begin match + true;
for k + 0 to start-vals do

if sturt-there[k] A (start-count[k] # count [k]) then match + false;
start-match ,-- match;

end:



4 2 4 OPTIONAL MODES OF OUTPUT D V I  t y p e  $45

4 5 . The input-Zn routine waits for the user to type a line at his or her terminal; then it puts ASCII-code
equivalents for the characters on that line into the bufler  array. The term-in file is used for terminal input.
and term-out for terminal output.
( Globals in the outer block 10) +E
bufier  : array [0 . . tern&al-line-length]  of ASCII-code;
term-in: text-file; { the terminal, considered as an input file }
term-out: text-file; { the terminal, considered as an output file }

I 4 6 . Since the terminal is being used for both input and output, some systems need a special routine to make
sure that the user can see a prompt message before waiting for input based on that message. (Otherwise
the message may just be sitting in a hidden buffer somewhere, and the user will have no idea what the
program is waiting for.) We shall invoke a system-dependent subroutine update-terminal in order to avoid
this problem.

define update-terminal E break(  term-out) { empty the terminal output buffer }

I 47. During the dialog, DVItype  will treat the first blank space in a line as the end of that line. Therefore
input-Zn makes sure t,hat  there is always at least one blank space in bufler.
procedure input-Zn  : { inputs a line from the terminal }

var k: 0.. terminal-line-length ;
begin update-terminal;  reset (term-in):
if eoln (term-in) then read-ln (term-in);
k + 0;
while (k < terminal-line-length) A -~eoZn(  term-in) do

begin bujgrer  [k] + xord [ term-in r]: incr (k); get (term-in);
end:

bu#er[k]  + “LJ”:
end;

4 8 . The global variable buf-ptr is used while scanning each line of input; it points to the first unread
iharacter in bufler.
( Globals in the outer block 10 > +E
buf-ptr : 0 . . terminal-line-length; { the number of characters read }

49. Here is a routine that scans a (possibly signed) integer and computes the decimal value. If no decimal
integer starts at, buf-ptr. the value 0 is returned. The integer should be less than 231 in absolute value.
function get-integer: integer:

var x: i nteger : { accumulates the value }
negative : boolean; { should the value be negated? }

begin if bufler[buf-ptr]  = “-‘I then
begin negative + true: incr( buf-ptr);
end

else  n e g a t i v e  + f a l s e :

x  + 0 :

while (bu#er[ buf-ptr] 2 ‘IO”) A (buffer  [buf-ptr] 5 “9”) do
begin x + 10 * x + bufier[buf-ptr]  - “0”: incr(  buf-ptr);
end;

if negative then g e t - i n t e g e r  +  - x  e l s e get-integer + x;
end;



§50 DVI type OPTIONALMODESOFOUTPUT 425

50. The selected options are put into global variables by the dialog procedure, which is called just as
DVItype  begins.
procedure dialog;

label 1,2,3,4,5;
var k: integer; { loop variable }
begin rewrite(  term-out); { prepare the terminal for output }
write-Zn( term-out, banner); ( Determine the desired out-mode 51);
( Determine the desired start-count values 52);
( Determine the desired max-pages 53);
( Determine the desired resolution 54);
( Determine the desired new-mug 55);
(Print all the selected options 56);
end;

51. (Determine the desired out-mode 51)  E
1: write (term-out. 'Output,level,(default~3,,?,for,help)  :“*);  out-mode + the-works; input-Zn;

if bu#er[O]  # “U” then
if (bufler[O]  2 “0”) A (bufler[O] 5 “3”) then out-mode + bufler[O]  - “0”
else begin write  ( term-out , 'Type,3,,forucomplete,listing,');

write (terpn-out  , *uOuforuerrorsuonly,*);
write-Zn (term-out, ',l,or,2,for,something,in,between.');  gotol;
end

This code is used in section 50.

52. ( Determine the desired start-count values 52) f
2: write (term-out, 'Starting,pageu(default=*):, ‘): start-vuls  +- 0: start-there[O]  + false;  input-Zn;

buf-ptr + 0; k +- 0;

.

if bufler[O]  # ‘lUt’ then
repeat if bufie7*[buf_ptr]  = “*I’ then

begin sturt-there[k]  +-- fulse; incr( buf-ptr);
end

else begin sturtAhere[k]  +- true: stu7Lcount[k]  t get-integer;
end:

if (k < 9) A (bufler[buf..ptr]  = I’. I’) then
begin incr  (k); i7hcr  (buhptr  );
end ’

else if bufler[buf_ptr]  = “U” then sturt-vuls  + k
else begin write(term-out,  'Type,ue.g.,ul.*.-5,touspecify~theu');

write-ZnC  (ter7n_out, 'first,page,with,\count0=l,u\count2=-5.');  goto 2:
end:

A until sturL7vzZs = k
This code is used in section 50.



426 OPTIONAL MODES OF OUTPUT D V I  t y p e  $53

53. ( Determine the desired max-pages  53)  r
3: write (term-out, ‘MaximumUnumberUofUpagesU(default=lOOOOOO)  : U’); mux-pages + 1000000;

input-Zn; buf-ptr + 0;
if bufier[O]  # I’,,” then

begin mux-pages +- get-integer;
if mux-pages 5 0 then

begin write-Zn( term-out, ‘Pleaseutype,~positive,number.‘);  goto3;
end;

end
This code is used in section 50.

54. ( Determine the desired resolution 54)  z
4: write (term-out, ‘AssumedUdeviceUresolution’);

write (term-out, ‘,inUpixelsUper,inchu(def  ault=300/1)  : U ‘); resolution + 300.0; input_Zn;
buf-ptr + 0;
if buflei[O]  # ‘lull  then

begin k + get-integer;
if (k > 0) A (bufler  [buf’ptr]  = I’/“) A (bufler[buf_ptr  + l] > “0”) A (bu,@er[buj-ptr  + l] 5 “9”) then

begin incr  (buj-ptr);  resolution +- k/get-integer;
end

else begin write (term-out, ‘Type,hratioUofupositiveUintegers;’);
write-Zn ( term-out, *U ( lUpixelUper~wouldubeU254/10)  . ‘); goto 4;
end;

end
This code is used in section 50.

55. ( Determine the desired new-mug 55)  E
5: write (term-out, ‘New,,magnificationU(default=OUtoUkeeputheUoldUone)  :u’); new-mug +- 0;

input-Zn; buf-ptr + 0;
’ if bufler[O]  # l’,,” then

if (bufier[O]  2 “0”) A (bufler[O] 5 “9”) then new-mug + get-integer
else begin write (term-out, ‘Type,hpositiveuinteger,toUoverride,’);

write-Zn (term-out : ‘thesagnif ication,in,the,DVI,f  ile. ‘); goto 5;
end

This code is used in section 50.



§56 DVI type OPTIONAL MODES OF OUTPUT 427

56. After the dialog is over, we print the options so that the user can see what DVItype thought was
specified.
( Print all the selected options 56) E

print-Zn( ‘Options,selected:  ‘); print( ‘U,StartingUpageU=U’);
for k + 0 to start-vuls do

begin if start-there[k]  then print(sturt-count  [k] : 1)
else print ( I* ‘);
if k < start-vuls then print ( -. ‘)
else print-Zn ( *U ‘);
end;

print-Zn ( -uuMaxim~number,of  UpagesU=U  *, mox-pages : 1);
print ( ‘U,OutputUlevelU=,  I, out-mode : 1);
case out-mode of
errors-only  : print-Zn ( eU (showing,bops ,Ufonts,UandUerror~essages,only)’);
terse: print-Zn( ‘U(terse)  ‘);
verbose: print-Zn ( Mu  (verbose) ‘);
the-works: if random-reading then print-Zn( ‘,,(theUworks) ‘)

else begin out-mode + verbose; print-Zn ( *U (the,works  *.UsameUasulevelU2Uin,thisUDVItype)*);
end;

end;
print-Zn( ‘UUResolutionU=U*,  resolution : 12 : 8, ‘UpixelsUperUinch’);
if new-mug > 0 then print-Zn( ‘,UNew,,magnification,factor,=,‘,  new-mug/1000  : 8 : 3)

This code is used in section 50.



428 DEFINING FONTS DVI type 557

57. Defining fonts. When out-mode = the-works, DVItype reads the postamble first and loads all of
the fonts defined there: then it processes the pages. In this case, a jn,t-dej  command should match a previous
definition if and only if the jnt-dej being processed is not in the postamble. But if out-mode < the-works,
DVItype reads the pages first and the postamble last, so the conventions are reversed: a jnt-dej should
match a previous jnt-dej if and only if the current one is a part of the postamble.

A global variable in-postamble  is provided to tell whether we are processing the postamble or not.
( Globals in the outer block 10 > +E
in-postumble : boolean; { are we reading the postamble? )

58. (Set initial values 11) +E
in-postamble  + false;

5 9 . The following subroutine does the necessary things when a jnt-dej command is being processed.
procedure define-font (e : integer): { e is an external font number }

var f: 0 ,. . mux-fonts; p: integer; { length, of the area/directory spec  }
n: integer: { length of the font name proper}
c, q, d: integer: { check sum, scaled size, and design size }
r: 0 . . name-length; ( index into cur-name }
j, k: 0 . . name-size; { indices into names }
mismatch : boolean ; { do names disagree? }

begin if 71f  = muxfon.ts  then
abort(  ‘DVItypeucapacity,exceededu(maxufonts=O,  mux-fonts : 1, ‘> ! ‘);

font-num [nj] t- e; j + 0;
while font-num[j] # e do incr(j);

(Read the font parameters into positiorl  for font nj, and print the font name 61);
if ((out-mode = the-works) A in-postumble) V ((out-mode < the-works) A Tin-postamble)  then

begin if j < nj then print-Zn( ‘---this,font,was,a1ready,defined!’);
end

else begin if f = 71j then print-Zn ( * ---thisufontuwasn”tuloaded,before!  ‘);. end;
if j = nf then ( Load the new font. unless  there are problems 62 )
else ( Check that the current font definition matches the old one 60 );
end;

60. ( Check that the current font definition matches the old one 60) E
begin if font-check-sum[j] # c then

print-Zn ( - ---checkusumudoesn’ ‘taatch,previous,,def  inition! ‘);
if font-scaled-size[f]  # q then print-Zn ( ‘---scaledusizeudoesn”t,match,previous,definition!0):
if font-design-site[j] # d then print-Zn ( ‘---design,&ze,doesn “tdatch,previous,definition!  ‘):
j + font-nume[j]: k  t font-num,e[nj]:  mism,atrh + f a l s e ;

while j < font-name[j  + l] do
begin if names [j]  # names(k]  t h e n  m i s m a t c h  + t r u e ;

incr  (j): incr  (k):
end:

if k # jon.Lnume[nj  + I] then mismutch  t- true:
if mismatch then print-Zn ( ‘---f  ontunameudoesn  * a tumatchUprevious,definition!  ‘):
end



§61 DVI type DEFINING FONTS 429

6 1 . ( Read the font parameters into position for font nj, and print the font name 61) -
c + signed-quad; font-check-sum[ nj] + c;
q + signed-quad: font-scaled-size [nj ] + q;
d + signed-quad; font-design-size [nj ] t d;
p + get-byte; 7~ +- get-byte;
if jon,t-name  [ nj ] + 71, + p > name-size then

abort(  ‘DVItype,capacity,exceededu(nameusize=*,  name-size : 1, ‘> ! ‘);
font-name [nj + l] + font-name [nj ] + 72 + p;
if showing then print ( * : U * ) { when showing is true, the font number has already been printed }
else print(  ‘FontU’,e : 1, -:“‘);
if n + p = 0 then print ( ‘null,f  ont”name  ! ‘)
else for k + font-name[nj]  to font-nnme[nj + I] - 1 do names[k]  t get-byte;
i7zcr( nj); print-font (nj - 1); decr( 7tj)

This code is used in section 59.

62. ( Load the new font, unless there are prdblems  62 ) z
begin ( Move font name into the cur-name string SC);
ope72-  tj7n-file  ;
if eoj ( tjm.$Ze  ) then print ( ‘---not,loaded,,TFM,file,,can**tUbeUopened!*)
else begin if (q 5 0) V (q 2 ‘1000000000) then print ( ‘---not,loaded,,badUscale,(  *,q : 1, ‘> ! ‘)

else if (d 5 0) V (d 2 ‘1000000000) then print(‘--- notUloaded,UbadUdesignUsizeU(*,d  : 1, ‘> ! ‘)
else if i71-  TFM (q) then ( Finish loading the new font info 63 );

end;
if out-mode = errors-on.ly  then print&(  cU ‘):
end

This code is used in section 59.

63. ( Finish loading the new font info 63 ) z
begin font-space[nj]  + q div 6; { this is a 3-mlit “thin space” }
if (c # 0) A (tjm-check-sum # 0) A (c # tjmxhecksun2)  then

begin print-Z7l.(  *---beware:,,check,,s~s~do~not,,agree!  ‘);
print-Zn(‘uuu(‘,c:  1, rUvs.US,  tj7n-check-sum  : 1, ‘> ‘): print(‘,,,‘);
end:

pri7A  t ( ‘---loaded,at,size,  *. (I : 1. ‘,DVI,units’);  d + round((lOO.O * con71  * q)/( true-conv  * d)):
if Ct # 100 then

begin print-ln(  ‘,,‘); print(  ‘,,(this,font,is$agnifiedU*,  d : 1, ‘%) ‘);
end:

incr( n j ) :  { now the new font is officially present }
font-space  [nj] + 0; { for o&-space  and out-7~7nove  }
end

This code is used in section 62.

6 4 . If p = 0, i.e., if no font directory has been specified. DVItype  is supposed to use the default font
directory. which is a system-dependent place where the standard fonts are kept. The string variable
dejuuZt_di7*ectory  contains the name of this area.

define dejauZt-di7~ectory-7la7ne  = ‘TeXf onts : * { change this to the correct name }
define dejauZt-directo7y-7~n7ne-Ze7~gth  = 9 { change this to the correct, length }

( Glob&  in t#he  outer block 10) +r
dc~fnlrlt-di7.c~c.tory:  packed array [l . . dejault-directo7*y-7~nmr-le7~gth]  of ch,nr:



430 DEFINING FONTS D V I  t y p e  565

65. ( Set initial values 11) +r
default-directory + default-directory-name;

66. The string cur-name  is supposed to be set to the external name of the TFM file for the current font.
This usually means that we need to prepend  the name of the default directory, and to append the suffix
‘ . TFM’. Furthermore, we change lower case letters to upper case, since cur-name  is a Pascal string.
( Move font name into the cur-name string 66)  z

for k + 1 to name-length do cur-name [k] + *U *;
if p = 0 then

begin for k t 1 to default-directory-name-length do cur-name [k] + default-directory [k];
r + default-directory_name-length;
end

else r + 0:
for k + font-name [nj] to font-name [nj + l] - 1 do

begin incr  (r);
if r +‘4 > name-length then

abort(  ‘DVItypeUcapacityUexceeded,(maxUfontUnarrreUlength=0,  name-length : 1, ‘> ! ‘);
if (names [k] 2 “a”) A ( names[k] 5 “z”)  then cur-name[r]  + zchr[names[k]  - '401
else cur-name [r] + zchr[names[k]];
end;

cur-name [r + l] + * . *; cur-name [r + 2] t *T’; cur-name [r + 31 + *F’; cur-name[r  + 4] + ‘M’
This code is used in section 62.



§67 DVI type LOW LEVEL OUTPUT ROUTINES 431

67. Low level output routines. Simple text in the DVI file is saved in a buffer until line-length - 2
characters have accumulated, or until some non-simple DVI operation occurs. Then the accumulated text
is printed on a line, surrounded by brackets. The global variable text-ptr keeps track of the number of
characters currently in the buffer.
( Globals in the outer block IO) +E
text-ptr: 0 . . line-length; {the number of characters in text-buj }
text-buj: array [l . . line-length] of ASCII-code; { saved characters }

68. ( Set initial values 11) +z
text-ptr + 0;

69. The flush-text procedure will empty the buffer if there is something in it.
procedure flush-text;

var k: 0 . . line-length; { index into text-buj }
,begin if text-ptr > 0 then

begiu  if out-mode > errors-only then
begin print ( a C ‘);
for k + 1 to text-ptr do print(xchr[text-buj[k]]);
print-Zn(  ‘1 ‘);
end;

text-ptr + 0;
end;

end;

70. And the out-text procedure puts something in it.
procedure out-text (c : ASCII-code);

begin if text-ptr = line-length - 2 then flush-text;
; text-buj[text-ptr]  + c:incr (text-ptr )

end:



432 TRANSLATION TO SYMBOLIC FORM D V I  t y p e  $71

71. Translation to symbolic form. The main work of DVItype is accomplished by the do-page
procedure, which produces the output for an entire page, assuming that the bop command for that page has
already been processed. This procedure is essentially an interpretive routine that reads and acts on the DVI
commands.

72. The definition of DVI files refers to six registers, (h, ZJ,  w, x, y, x), which hold integer values in DVI units.
In practice, we also need registers hh and vv, the pixel analogs of h and w, since it is not always true that
hh = pixel-round(h) or wv = pixel-round(v).

The stack of (h, v, w, x, y, z) values is represented by eight arrays called hstack, . . . , astack, hhstack, and
vvstack.
( Globals in the outer block 10) +E
h. v, w. x, y, z. hh, vu: integer; { current state values }
hstack, vstack, wstack, xstack,  ystack,  zstack:  array [0 . . stack-size] of integer;

{ pushed down values in DVI units }
hhstack, vvstack: array [O . . stack-size] of integer; { pushed down values in pixels }

73. Three characteristics of the pages (their max-v, max-h, and max-s) are specified in the postamble,
and a warning message is printed if these limits are exceeded. Actually max-v is set to the maximum height
plus depth of a page, and max-.h to the maximum width, for purposes of page layout. Since characters can
legally be set outside of the page boundaries, it is not an error when mux-v or max-h is exceeded. But max-s
should not be exceeded.

The postamble also specifies the total number of pages; DVItype checks to see if this total is accurate.
( Globals in the outer block 10) +z
max-v: integer: { the value of abs(v) should probably not exceed this }
max-h: integer; { the value of abs (h) should probably not exceed this }
max-s: integer; { the stack depth should not exceed this }
max-v-so-jar , maxh-so-jar , max-s-so-fur : integer; { the record high levels }
total-pages: integer; { the stated total number of pages }
page-count : integer; { the total number of pages seen so far }

74. ( Set initial values 11) +r
max-v + ‘17777777777 - 99; max-h + ‘17777777777 - 99; max-s - stack-size + 1;
max-v-so-jar t 0; max-h-so-fur  + 0: max-s-so-jar  + 0: page-count + 0;



§75 DVI type TRANSLATION TO SYMBOLIC FORM 433

75. Before we get into the details of &o-page, it is convenient to consider a simpler routine that computes
the first parameter of each opcode.

define fowxmes  (#) E #, # + 1, # + 2. # + 3
define eight-cases (#) E four-cases (#), few-cases  (# + 4)
define sixteen-cases (#) z eight-cases (#), eight-cases (# + 8)
define thirty-two-cases (#)  z sixteen-cases (#I),  sixteen-cases (# + 16)
define sixty-four-cases (rt) E thirty-two-cases (#), thirty-two-cases (# + 32)

function first-par(o : eight-bits): integer;
begin case o of
sixty-four-cases (set-char-0 ), sixty-four-cases (set-char-0 + 64): first-par +- o - set-char-0 ;
set1  , put1 , fntl , xxx1  , fnt-defl : first-pur 6 get-byte;
set1  + 1, put1 + l? fntl + 1, xxx1 + 1, fnt-defl + 1: first-par t- get-two-bytes;
set1 + 2, put1 + 2, fntl + 2, xxx1 + 2, fnt-defl + 2: first-par + get-three-bytes;
right1 , wl , xl, down1 , yl , ~1: first-par * signed-byte;
right1 + 1, wl + 1. xl + 1, down.1 + 1, yl + 1, zl + 1: first-par + signed-pair;
right1 + 2, wl + 2, xl + 2, down1 + 2, yl + 2, zl + 2: first-par + signed-trio;
set1 + 3, set-rule, put1 + 3, put-rule, right1 + 3, wl + 3, xl + 3, down1 + 3, yl + 3, zl + 3, fntl + 3,

xxx1  + 3, fnt-defl + 3: first-par + signed-quad;
nap,  hop, cop, push, pop, pre, post, post-post, undefined-commands: first-par + 0;
ZOO: first-par t 211;
x0 : first-par + x;
y0: first-pur t y;
20: first-pur + z;
sixty-four-cuses(fnt-num-0 ): first-par i-- 0 - fnt-num-0;
end;

76. Here is another subroutine that we need: It computes the number of pixels in the height or width of a
rule. Characters and rules will line up properly if the sizes are computed precisely as specified here. (Since
conu  is computed with some floating-point roundoff  error, in a machine-dependent way, format designers
who are tailoring something for a particular resolution should not plan their measurements to come out to
an exact integer number of pixels; they should compute things so that the rule dimensions are a little less
than an integer number of pixels. e.g., 4.99 instead of 5.00.)
function rule-pixeZs(x  : integer): integer: { computes [conl) . x1 }

var n: integer; .
begin n + trunc( cow  * 2):
if 71, < conu  * 3: then rule-pixels + 71 + 1 else rule-pixels +- n;

end:

77. Strictly speaking, the do-page procedure is really a function with side effects. not a ‘procedure’ ; ita.
returns the value f&e if DVItype  should be aborted because of some unusual happening. The subroutine is
organized as a typical interpreter, with a multiway  branch on the command code followed by goto  statements
leading to routines that finish up the activities conmon to different commands. We will use the following
labels:

define fin-set = 41 { label for commands that set or put a character }
define fin-rule = 42 { label for commands that set or put a rule }
define move-right = 43 { label for commands that,  change h }
define move-down = 44 { label for commands that change v }
define show-stute = 45 { label for commands that change s }
define chunge-font  = 46 { label for commands that chatrlge  cur-font }



434 TRANSLATION TO SYMBOLIC FORM D V I  t y p e  978

78. Some Pascal compilers severely restrict the length of procedure bodies, so we shall split do-page into
two parts, one of which is called special-cases. The different parts communicate with each other via the
global variables mentioned above, together with the following ones:
( Globals  in the outer block 10) +r
5: integer; { current stack size }
ss: integer; { stack size to print }
cur-font: integer; { current internal font number )
showing : boolean ; { is the current command being translated in full? }

79. Here is the overall setup.
( Declare the function called special-cases 82)
function do-page: boolean;

label fin-set, jkrule,  move-right, show-state, done, 9998,9999;
var o: eight-bits; { operation code of the current command }

p, q: integer; { parameters of the current command }
a: integer; (byt e number of the current command }
hhh : integer: { h, rounded to the nearest pixel }

begin cur-font + nf; { set current font undefined }
o-0; h+O; v+O; w-0; x+0; y t 0; z t 0; hh + 0; IN +- 0; { initialize the state variables }
while true do ( Translate the next command in the DVI file; goto 9999 with do-page = true if it was

eop; goto 9998 if premature termination is needed 80);
9998: print-ln ( l ! * j: do-page t false;
9999: end;



§80 DVI type TRANSLATION TO SYMBOLIC FORM 435

80. Commands are broken down into “major” and “minor” categories: A major command is always shown
in full, while a minor one is put into the buffer in abbreviated form. Minor commands, which account for
the bulk of most DVI files, involve horizontal spacing and the typesetting of characters in a line; these are
shown in full only if out-mode 2 verbose.

define show(#) E
begin flush-text:  showing + true; print(a : 1, *
end

.*Ll -3 #>;

define major (#)  E
if out-mode > errors-only then show (#)

define minor (#)  s
if out-mode 2 verbose then

begin showing +- true; print(a : 1, * :
end

define error(#) E
if lshowing  then show(#)
else print ( MU *, #)

u-7 #I;

(Translate the next command in the DVI file; goto 9999 with do-page = true if it was eop; goto  9998 if
premature termination is needed 80 ) I

begin a t cur-lot; showing + false; o t get-byte; p + first-par(o);
if eof (dvi-file) then bad-dvi ( ‘theuf  ile,endedUprematurely  ‘);
( Start translation of command o and goto  the appropriate label to finish the job 81);

fin-set: ( Finish a command that either sets or puts a character, then goto  move-right or done 89);
fin-rule: (Finish a command that either sets or puts a rule, then goto  move-right or done 90);
move-right: ( Finish a command that sets h t h + q, then goto done 91);
show-state: (Show the values of ss, h, v, w, LC,  y, z, hh, and vu; then goto done 93);
done: if showing then print-ln( -U’);

end
This code is used in section 79.

81. The mult iway switch i n  f i r s t - p a r ,

do-page is organized by the semantics.
above, organized by the length of each command; the one in

( Start translation of command o and goto the appropriate label to finish the job 81) E
if o < set-char-0 + 128 then ( Translate a set-char command 88)
else case 0 of

fourxases(set1):  begin major(  ‘set *,o - set1 + 1 : 1, *UO,p  : 1); goto fin-set;
end;

fourxases(put1):  begin mujor(  ‘put *, o - put1  + 1 : 1, lue,p  : 1); goto fin-set;
end;

set-rule: begin mujor(  ‘setrule  ‘); goto finxule;
end:

put-rule: begin major ( ‘putrule  ‘); goto  fin-rule;
end;

( Cases for commands nop, bop, . . . , pop 83)
( Cases for horizontal motion 84)
othercases if special-cases (0, p, a) then goto done else goto  9998
endcases

This code is used in section 80.



436 TRANSLATION TO SYMBOLIC FORM

82. ( Declare the function called special-cases. 82) s
function special-cnses(o  : eight-bits; p, a : integer): boolean;

label change-font, move-down, done, 9998;
var (I: integer; ( parameter of the current command }

b: integer; { loop index }
bad-char: boolean; { has a non-ASCII character code appeared in this xxx? }
pure : boolean ; { is the command error-free? }
vvv : integer; { v, rounded to the nearest pixel }

begin pure +- true;
case 0 of
( Cases for vertical motion 85 )
( Cases for fonts 86 )
four-cases(xxx1  ): ( Translate an xxx command and goto done 87);
pre: begin error( ‘preambleUcommandUwithinUaUpage  ! ‘); goto  9998;

end;
post, post-post: begin error ( ‘postamble,command,withinU~page  ! ‘); goto  9998:

end;
othercases begin error( ‘undef ined,command,‘. o : 1. * ! ‘); goto  done;

end
endcases;

move-down: ( Finish a command that sets 1~ +- v + p, then goto done 92);
change-font: ( Finish a command that changes the current font, then goto done 94);
9998: pure +-- false;
done: special-cases +- pure:

end;
This code is used in section 79.

DVI type $82



583 DVI type TRANSLATION TO SYMBOLIC FORM 437

83. ( Cases for commands nop, bop, . . . . , pop 83 ) s
nop: begin minor(  ‘nop ‘); goto  done;

end:
bop: begin error ( ‘bopUoccurred,bef  ore”eop ! ‘); goto  9998;

end;
eop: begin mujor(  *cop’);

if s # 0 then error(OstackunotuemptyuatuenduOfupageu(levelU’,s  : 1, ‘> ! ‘);
do-page + true; print-Zn( 0U ‘); goto  9999;
end:

push : begin major ( ‘push ’ );
if s = max-s-so-far then

begin max-s-so-fur  t s + 1;
if s = max-s  then error( ‘deeper,than,claimeduin,postamble  ! ‘);
if s = stack-size then

begin error( ‘DVItypeUcapacityUexceeded,(stackUsize=-,  stack-size : 1, ‘> ‘); goto  9998;
end:

end;
hstack[s]  +- h; vstack  [s] +- ‘~1:  wstack  [s] t w; xstack[s]  t x; ystack[s]  t y; ,zstack[s]  t z;
hhstack[s]  +- hh; vvstack[s]  t vv; incr(s);  ss t s - 1; goto show-state;
end;

pop : begin major ( *pop  ’ );
if s = 0 then error( * (illegal,at,levelUzero)  ! ‘)
else begin deer(s);  hh, + hhstack[s];  vv t vvstack[s];  h t hstack[s];  v t vstack[s];  w t wstack[s];

x +- xstack [s]: y + ystack[s];  z +- zstack[s];
end;

ss +- s: goto  sh.ow-state;
end:

This code is used in section 81.

8 4 . Rounding to the nearest pixel is best done in the mamler  shown here, so as to be inoffensive to the eye:
When the horizontal motion is small, like a kern, hh changes by rounding the kern; but when the motion is
large. hh changes by rounding the true position h so that accumulated rounding errors disappear. We allow
a larger space in the negative direction than in the positive one. because 7&X makes comparatively large
backspaces when it positions accents.

define out-space (#)  E
if (p z’font-space  [cur-font]) V (p 2 -4 * font-space[cur-font])  then

begin out-text (“,,” ); hh + pixel-round (h + p);
end

else hh + hh + pixel-round(p);
minor(#. 0U*, p : 1); q +- p; goto  move-righf

( Cases for liorizont,al  motion 84) E
four-cases (right1 ): begin out-space(  ‘right *, o - right1  + 1 : 1):

end:
w0, four-cases(  wl ): begin UY +- p: out-spacc(  *w *. o - u10  : 1):

end:
x0, four-cuses(  xl ): begin x +- p; out-spare ( *x *, o - x0 : 1):

end:
This code is used in section 81.



438 TRANSLATION TO SYMBOLIC FORM D V I  t y p e  585

85. Vertical motion is done similarly, but with the threshold between “small” and “large” increased by a
factor of five. The idea is to make fractions like “a” round consistently, but to absorb accumulated rounding
errors in the baseline-skip moves.

define out-vmove (#)  E
if abs(p)  2 5 * font-space[cur-jont]  then vu + pixeLround(v  + p)
else vu t vu + pixel-round(p);

major (#,  LU *, p : 1); goto move-down
( Cases  for vertical motion 85) E
four-cases(  down1 ): begin out-vmove( ‘down’? o - down1  + 1 : 1);

end;
y0. four-cases (~1):  begin y 4- p; ouLvmove(  -y-,0  - y0 : 1);

end;
z0, four-cases(  A): begin z t p; out-vmove(  *z*, o - .zO  : 1);

end:
This code ig used in section 82.

8 6 . ( Cases for fonts 86) E
sixty-four-cases(jnt-num-0):  begin mujor(  ‘fntnum’,p : 1); goto change-font;

end;
four-cases (jntl ): begin mujor(  ‘fnt *, o - jntl + 1 : 1, 0U *,p : 1); goto  change-font;

end;
four-cases (jnt-dejl  ): begin major ( ‘f ntdef *, o - jnt-dejl + 1 : 1, 0U -,p : 1); define-font(p); goto done;

end;
This code is used in section 82.

87. ( Translate an xxx command and goto done 87) E
begin major ( -xxxUO  * ‘); bad-char c false;
if p < 0 then error( ‘stringUof,negativeUlength!  ‘);

. forktltopdo
begin q + get-byte;
if (q < “Ui’)  V (q > “-‘I)  then bad-char t true;
if showing then print (xchr [q]);
end;

if sh.owing then print ( * * a ‘);
if bad-char then error( ‘non-ASCIIUcharacter,inuxxxUcommand! *);
goto  done;
end

This code is used in section 82.

88. ‘( Translate a set-char command 88)  E
begin if (o > Itutt) A (o 5 *N-lq)  then

begin out-text(p); minor(  ‘setchar’,p  : 1);
end

else mujor(  ‘setchar’,p  : 1);
got0  fin-set;
end

This code is used in section 81.



§89 DVI type TRANSLATION TO SYMBOLIC FORM 439

89. ( Finish a command that either sets or puts a character, then goto move-right or done  89)  E
if p < 0 then p + 255 - ((-1 -p) mod256)
else if p 2 256 then p + p mod 256; { width computation for oriental fonts }
if (p < font-bc[cur-font])  V (p > font-ec[cur_font])  then q + invalid-width
else q + char-width ( cur-font )(p).;
if q = invalid-width then

begin error( ‘character,‘,p  : 1, ‘UinvalidUinuf  ontu  ‘); print-font (cur-font);
if cur-font # nj then print ( * ! ‘); { font nj has ‘ ! ’ in its name }
end:

if o 2 puti  then goto done;
if q = invalid-width then q + 0
else hh + hh + char-pixel-uridth (cur-font)(p);
goto move-right

This code is used in section 80.

90. ( Finish a command that either sets or puts a rule, then goto move-right or done go) z
q + signed-quad;
if showing then

begin ptint(‘,height,‘,p:  1, ‘,,width,‘,q:  1);
if (p 5 0) V (q 5 0) then print ( ‘u(invisible)  ‘)
else print ( IU ( *, rule-pixels(p) : 1, *x0,  rule-pixels(q) : 1, ‘upixels)  ‘);
end;

if o = put-rule then goto done;
if showing then print-ln( 0U ‘);
hh + hh + rule-pixels(q); goto move-right

This code is used in section 80.



440 TRANSLATIONTOSYMBOLICFORM DVI type $91

91. A sequence of consecutive rules, or consecutive characters in a fixed-width font whose width is not an
integer number of pixels, can cause hh to drift far away from a correctly rounded value. DVItype ensures
that the amount of drift will never exceed max-drift  pixels.

Since DVItype is intended to diagnose strange errors, it checks carefully to make sure that h and v do not
get out. of range. Normal DVI-reading programs need not do this.

define infinity z ‘17777777777 { oo (approximately) }
define max-drip?  = 2 { we insist that abs( hh - pixel-round(h)) 5 mux-drift  }

( Finish a command that sets h +- h + q, then goto done 91) E
if (11 > 0) A (q > 0) then

if h > infinity - q then
begin error ( ‘aritbmet  icuoverf low !Uparameter,changedUfro~O,q  : 1, 'UtoU', infinity - h : 1);
q + infinity - h;
end;

if (h < 0) A (q < 0) then
if -h > q + infinity then

begin error(‘arithmetic,overflow!Uparameter,changedUfrom,‘,q  : 1, ‘UtoUO,  (-h)- infinity : 1);
q +- (-II) - infinity;
end;

hhh +-- pixel-round (h + q):
if abs(hhh - hh) > max-drijt  then

if hhh > hh then hh +- hhh - max-dri=ft
else hh t hhh + max-drip?;

if showing then
begin print(  IUh:=*, h : 1);
if q 2 0 then print ( ‘+‘):
print(q : 1, *=*, h + q : 1. _ ./ ,hh:=‘, hh : 1):
end:

11 t h+q;

if abs(h)  > max-h-so-jar  then
begin if abs(h)  > max-h + 99 then

begin error('warning:,lhl>',  max-h : 1, ‘! ‘); max-h + abs(h);
end;

max-h-so-jar +- abs (h);
end:

goto  done
This code is used in section 80.



t-492 DVI type TRANSLATION TO SYMBOLIC FORM 441

92. ( Finish a command that sets v c v + p, then goto  done 92) s
if (u > 0) A (p > 0) then

if v > infinity - p then
begin error( ‘arithmeticUoverflow!uparameter,changedUfro~*,p  : 1, -utou*,  infinity - v : 1);
2, t infinity - v;
end:

if (v < 0) A (p < 0) then
if ----II  > p + infinity then

begin error(  ‘arithmetic,overflow!Uparameter,changed,from,’,p  : 1, -,,to”-, (-v)-  infinity : 1);
p +- (-v) - infinity;
end;

vvv +- pixel-round (v + p);
if abs( vvv - vu)  > max-drip?  then

if WV > vu then vu +- vvv - max-drif2
else vv +-- vvv + max-drift  ;

if showing then
begin print(  *,,v:=*,  v : 1);
if p 2 0 then print(  ‘+‘);
print(p : 1, *=-,v +p : 1, * ,Uvv:=*, vv : 1);
end;

v + v 4-p;
if &s(u)  > mnx-v-so-fur  then

begin if abs (v) > mnx-v + 99 then
begin error(‘warning:Ulvl>*.m~x-v  : 1, ‘! ‘); mux-v + abs(v);
end:

mm-u-so-far  + nbs(,u);
end;

goto  done
This code is used in section 82.

93. ( Show the values of ss, h. ‘II, W. x, y, z, hh, and vv; then goto  done 93) E
if showing then

begin print-ln( *US); print(  ‘level,‘, ss : 1, * : (h=‘, h : 1, a ,v=*, ZI : 1, * ,w=*,w  : 1, * ,x=*,x : 1, * ,y=-,
y : 1. *,z=*.z  : 1. -,hh=‘.hh  : 1. -,vv=-,WJ  : 1, ‘) ‘):

end:
goto  done *

This code is used in section 80.

94. ( Finish a connnand that changes the current font. then goto  don,e 94)  E
font-num[  nf ] 4- p: cur-font i- 0:

a while font-num [ cur-font] # p do incr (cur-font):
if showing then

begin prin.t  ( *Ucurrentuf  ontuisu*);  print-font (cur-font):
end:

goto  doue
This code is used in section 82.



442 SKIPPING PAGES DVI type §%

95. Skipping pages. A routine that’s much simpler than do-page is used to pass over pages that are not
being translated. The skip-pages subroutine is assumed to begin just after the preamble has been read, or
just after a bop has been processed. It continues until either finding a bop that matches the desired starting
page specifications, or until running into the post amble.
procedure skip-pages ;

label 9999: { end of this subroutine }
var p: integer; { a parameter }

k: 0 . . 255; { command code}
down-the-drain: integer; { garbage }

begin showing + false;
while true do

begin if eof (dviJ2e)  then bad-dzli  ('theUfileUendedUprematurely');
k t get-byte; p t first-par(k);
case k of
bop: begin (Pass a bop command, setting up the count array 98);

if lstarted A start-match then
begin started + true; got0 9999;
end;

end;
set-rule, put-rule: down-the-drain * signed-quad;
fnt-defl , fnt-defl + 1, fnt-defl + 2: fnt-defl + 3: begin define-font(p); print-ln( HU’);

end;
xxx1  , xxx1  + 1, xxx1 + 2, xxx1 + 3: while p > 0 do

begin down-the-drain + get-byte; deer(p):
end;

post: begin in-postamble + true; goto 9999;
end;

othercases do-nothing
endcases;
end:

9999: end;

96. Global variables called old-backpointer  and new,backpointer are used to check whether the back
pointers are properly set up. Another one tells whether we have already found the starting page.
( Globals in the outer block 10) +E
old-backpointer : integer; { the previous bop command location }
new-backpointer: integer; { the current bop command location }
started: boolean; { has the starting page been found? }

97. ( Set initial values 11) fr
old_bnckpointer  - -1: started t false;

98. (Pass a bop command, setting up the count array 98) s
new-backpointer + cur-lot - 1; incr(page-count);
for k + 0 to 9 do count [k] + signed-quad;
if signed-quad # old-backpointer then

print,Zn(  ‘backpointer,inUbyteU*,  cur-lot - 4 : 1, ‘,shouldUbeU’,  old-backpointer : 1, * ! ');
old-backpointer - new-backpointer

This code is used in s+‘rt ions  95 and 110.



§99 DVI type USING THE BACKPOINTERS 443

99. Using the backpointers. The routines in this section of the program are brought into play only
if random-reading is true (and only if out-mode = the-works). First comes a routine that illustrates how to
find the postamble quickly.
( Find the postamble, working back from the end 99) s

n + dvi-length;
if n < 53 then bad-dvi( *onlyuS,n  : 1, ‘,,bytes,long’);
m + n - 4:
repeat if m = 0 then bad-dvi( ‘a11,223s  ‘);

move-to-byte(m); k + get-byte; deer(m);
until k # 223;
if k # id-byte then bad-dvi( ‘IDUbyteUis,‘, k : 1);
move-to-byte(m - 3); q + signed-quad;
if (q < 0) V (q > m - 33) then bad-dvi( ‘postupointer,‘, q
move-to-byte(q); k + get-byte;
if k # post then bad-dvi( ‘byte,‘,q  : 1, *uisunotupost ‘);
post-lot + q: first-backpointer + signed-quad

This code is used in section 106.

: 1, ‘,,at,byteu’, m - 3 : 1);

100. Note that the last steps of the above code save the locations of the the post byte and the final bop.
We had better declare these global variables, together with another one that we will need shortly.
( Globals in the outer block 10) +E
post-lot: integer; { byte location where the postamble begins }
first-backpointer : integer; { the pointer following post }
start-lot:  integer: { byte location of the first page to process }

101. The next little routine shows how the backpointers can be followed to move through a DVI file in
reverse order. Ordinarily a DVI-reading program would do this only if it wants to print the pages backwards
or if it wants to find a. specified starting page that is not necessarily the first, page in the file; otherwise it
would of course be simpler and faster just to read the whole file from the beginning.
( Count the pages and move to the starting page 101)  z

q + post-lot; p + first-backpointer; start-lot + -1;
if p < 0 then in-postamble + true
else begin repeat { now q points to a post or bop command: p 2 0 is prev pointer }

if p > q - 46 then bad-dvi(*pageUlinku’(p  : 1, ‘,afterUbyteU’,q  : 1);
Q + p: move-to-byte(q); k + get-byte;
if k = bop then incr (page-count)
else bad-dvi( *byteu’,q : 1, *,&,,notUbop’);
for k + 0 to 9 do count [k] + signed-quad;
if start-match then start-lot + q;
p + signed-quad;

until p < 0:
if start-Zoc < 0 then abort(  ‘starting,pageUnumberUcouldUnotUbe,found!  ‘);
move-to-byte (start-Zoc + 1); old-backpointer + start-Zoc;
for k + 0 to 9 do count [k] + signed-quad;
p + signed-quad; started + true;
end;

if page-count # total-pages then
print-Zn( ‘thereUareUreallyu’, page-count : 1, ‘Upages  ,unotucr total-pages : 1, * ! ‘)

This code is used in section 106.



444 READING THE POSTAMBLE DVI type 5 102

102. Reading the postamble. Now imagine that we are reading the DVI file and positioned just four
bytes after the post command. That, in fact, is the situation, when the following part of DVItype  is called
upon to read, translate. and check the rest of the postamble.
procedure read-postamble;

var k: integer; { loop index }
p. q, 111:  integer: { general purpose registers }

begin showing +- false; post-lot +- cur-lot  - 5:
print-Zn.(  ‘Postamble,starts,at,byteu’.  post-loc  : 1, I. ‘);
if signed-quad # numerator then print-Zn(  ‘nnmeratorUdoesn’ ‘tUmatch,theUpreamble!  ‘);
if signed-quad # denominator then print-ln( ‘denominator,doesn’ ‘taatch,the,preamble!  ‘);
if signed-quad # mag then

if new-mag  = 0 then print-ln( ‘magnif ication,doesn’ ‘t~atchUtheUpreamble!  ‘);
max-v + signed-quad; max-h + signed-quad;
print(  *maxv= #. max-v : 1, - ,umaxh= *, max-h : 1);
max-s  + get-two-bytes; total-pages t get-two-bytes;
print-k  ( * ,,maxstackdepth=  *. max-s : 1. - , ,totalpages=  *, total-pages : 1);
if out-mode < the-works then ( Compare the Eust parameters with the accumulated facts 1.03);
( Process the fout definitions of the postamble 105);
( Make sure that the end of the file is well-formed 1.04 );
end:

103. No waruiug  is given when max-h-so-far exceeds max-h by less than 100, since 100 units is invisibly
small: it’s approximately the wavelength of visible light, in the case of l&X output. Rounding errors can
be expected to make h and 21 slightly more than max-h and max-v, every once in a while; hence small

’ discrepaucies  are uot cause for alarm.
( Compare the lust parameters with t,he accumulated facts 103) 3

begin if max-v + 99 < max-v-so-far then print-Zn ( ‘warning : ,,observed,,maxvuwasu  #, max-v-so-far : 1);
if max-h + 99 < max-h-so-far then print-ln( ‘warning: U observedUmaxhUwasU’,  max-h-so-far : 1);
if max-s  < m.ax-s-so-far  then prinLZn(  ‘warning:,observed,maxstackdepthUwasU*,  max-s-so-far

’ if page-count # total-pages then
prinLZn  ( ‘thereUareUreallyu’,  page-count : 1, *Upages ,unotu*.  total-pages : 1, * ! ‘):

end
This code is used in section 102.

: 1);

104. Wlicrl we get, to the prcserit code. the post-post command has just beer1  read.
( Make sure that the cud of the file is well-formed 104) -

q + signed-quad:
if q # post-lot  then print-Zn( ‘bad,postamble,pointeruin,byteUS.  cur-lot  - 4 : 1, * ! ‘):
m + get-byte:
if m # id-byte then

printAn(  ‘identification,in,byteU*.  CW-ZOC~  - 1 : 1. ‘,should,be,‘, id-byte : 1. * ! ‘):
k + cur~lof;  Vl +- 22x
while (II! = 223) A leaf (dvi-file)  do 111 + get-bytr:
if leaf (dkj&:) then bahdvi(  ‘signature,in,byte,‘.  cur-lot  - 1 : 1, ‘,should,be,223’)
else if r*ur-lot  < X: + 1 then

print-ln(  ‘not,enough,signatureUbytes,atUend,of Uf ile, ( *, CW-Zoc - k: : 1. * > ‘)
This code is used in section  102.



5105 DVI type READING THE POSTAMBLE 445

105. ( Process the font definitions of the postamble 105 ) E
repeat k + get-byte;

if (k 2 fnt-defl  ) A (k < fnt-defl  + 4) then
begin p + first-par(k): define-font(p); print-h ( *U ‘); k + nop;
end;

until k # nop;
if k # post-post then print-ln( ‘byte,,., cur-Zoc - 1 : 1, ‘,is,notupostpost!  ‘)

This code is used in section 102.



446 THE MAIN PROGRAM DVI type $106

106. The main program. Now we are ready to put it all together. This is where DVItype  starts, and
where it ends.

begin initialize; { get all variables initialized }
dialog; { set up all the options }
( Process the preamble 108 >;
if out-mode = the-works then { random-reading = true }

begin ( Find the postamble, working back from the end 99 ) ;
in-postamble t true; read-postamble; in-postamble + false;
( Count the pages and move to the starting page 101);
end

else skip-pages ;
if Tin-postamble  then ( Translate up to max-pages pages 110);
if out-mode < the-works then

begin if -Gn-postamble  then skip-pages;
if signed-quad # old-backpointer then

print-Zn( ‘backpointerUin,byteU-,  cur-Zoc - 4 : 1, ‘UshouldUbeU’,  old-backpointer : 1, * ! ‘);
read-postamble;
end;

final-end: end.

107. The main program needs a few global variables in order to do its work.
{ Globals in the outer block 10) +E
k, m, n, p, q: integer; { general purpose registers }

108. A DVI-reading program that reads the postamble first need not look at the preamble; but DVItype
looks at the preamble in order to do error checking, and to display the introductory comment.
( Process the preamble 108 ) 2

open,dvi-file; p +- get-byte; ( fetch the first byte}
. if p # pre then bad-dvi( ‘FirstUbyteUisn”tUstartUof,preamble!  ‘):

p t get-byte; { fetch the identification byte }
if p # id-byte then print-Zn( ‘identif icationUinUbyteul,shouldUbeU*,  id-byte : 1. * ! ‘);
( Compute the conversion factor 109 ) ;
p +- get-byte; { fetch the length of the introductory comment }
print ( * * * ‘);
while p > 0 do

begin deer(p); print(xchr(get-byte]);
end;

printAn
This code is used in section 106.



$109 DVI type THE MAIN PROGRAM 447

109. The conversion factor conv is ‘figured as follows: There are exactly n/d DVI units per decimicron,
and 254000 decimicrons per inch, and resolution pixels per inch. Then we have to adjust this by the stated
amount of magnification.
( Compute the conversion factor 109 ) G

numerator + signed-quad; denominator +- signed-quad;
if numerator < 0 then bad-dvi( ‘numerator&, *, numerator : 1);
if denominator 5 0 then bad-dvi( ‘denominator&,‘, denominator : 1);
printh(  ‘numerator/denominator=‘, numerator : 1, ‘/ *, denominator : 1);
conv  + (numerator/254000.0)  (* resolution/ denominator ); mag + signed-quad ;
if new-mag > 0 then mag +- new-mag
else if mag 5 0 then bad-dvi ( ‘magnif ication,isUa, mag : 1);
true-conv +- conv;  conv  +- true-conv * (mag/lOOO.O);
print-ln(  ‘magnif ication=‘,  mag : 1, : ;UM, conv  : 16 : 8, ‘Upixels,per,DVI,unit  ‘)

This code is used in section 108.

110. The code shown here uses a convention that has proved to be useful: If the starting page was specified
as, e.g., ‘1. *. -5’‘, then all page numbers in the file are displayed by showing the values of counts 0, 1, and 2,
separated by dots. Such
working on that page.

numbers can, for example, be displayed on the console of a printer when it is

( Translate up to max-pages pages 110) =
begin while mm-pages > 0 do

begin deer (max-pages);  print-h ( SU ‘); print (cur-Zoc - 45 : 1, * : ,beginninguof upageu ‘);
for k + 0 to start-vals do

begin print (count [k] : 1);
if k < start-vals then print( *. ‘)
else print-h ( *U ‘);
end;

if 1 do-page then bad-dvi ( ‘page,ended,unexpect  edly ’ );
repeat k + get-byte;

if (k 2 fnt-defl ) A (k < fnt-defl + 4) then
begin p + first-par(k); define-font(p); k + nop;
end;

until k # nop;
if k = post then

begin in-postamble + true: goto done;
end;

if k # bop then bad-dvi( ‘byte,‘, cur-Zoc - 1 : 1, ‘,is,not,bop’);
( Pass a bop command, setting up the count array 98 >;
end;

_ done: end
This code is used in section 106.



448 SYSTEM-DEPENDENT CHANGES DVI type  8111

111. System-dependent changes. This sect ion should be replaced, if necessary, by changes to the
program that are necessary to make DVItype work at a particular installation. It is usually best to design
your change file so that all changes to previous sections preserve the section numbering; then everybody’s
version will be consistent with the printed program. More extensive changes, which introduce new sections,
can be inserted here: then only the index itself will get a new section number.



5112 DVI type INDEX 449

112. Index. Pointers to error messages appear here together with the section numbers where each ident-
ifier is used.
a: 27, 79.  82.
abort: 1, 59, 61, 66? 101.
abs: 73, 85, 91, 92.
all 223s : 99.
alpha : 34: 37, 38.
arithmetic overflow...: 91, 92.
ASCII-code: 6. 10, 30, 45, 67, 70.
b: 27.
backpointer...should be p: 98, 106.
bad design size: 62.
Bad DVI file : 7.
bad postamble pointer: 104.
bad scale: 62.
bad-char: 82, 87.
bad-dvi : I, 80, 95, 99, 101, 104, 108, 109, 110.
banner: A, 3, 50.
beta: 34,  37, 38.
beware : check sums do not agree: 63.
boolean: 34, 42, 44, 49, 57, 59, 78, 79, 82, 96.
bop : 13, 15. l&, 18, 19, 41, 71, 75, 83, 95, 96,

100, 101, 110.
bop occurred before eop : 83.
break: 46.
bufptr  : 48, 49, 52, 53, 54, 55.
buffer: 45,  47, 48, 49, 51. 52. 53, 54, 55.
byte n is not bop: 101, 110.
byte n is not post: 99.
byte n is not postpost: 105.
byte-file: 2. 22.
b0: 25, 26, 35, 36, 37.
bl: 25.  26. 35, 37.
b2: 25.  26, 35. 37.
b3: 25, 26, 35, 37.
c: 27.  3. *
change-font: 77, 82, 86.
char: 64.9, 24,
char-pixel-width: 39, 89.
char-width: 30,  39, 89.

‘char-width-end: 30, 39.
character c invalid.. . : 89.
check sum: 18.
check sum doesn’t match: 60.
check sums do not agree: 63.
Chinese characters: 15, 89.
chr: 9, 10, 12.
conv : 39, 40. 63. 76. 109.
count: 42, 44. 98. 101. 110.
cur-font: 77. 3. 79, 84, 85. 89, 94.
cur-lot: 23, 24, 27, 28, 80, 98, 102. 103. 105,

106. 110.

cur-name: 23, 24, 59, 66.
cur-pas: 2 8 .
d: 27, 3.
deer:  5, 61, 83, 95, 99, 108, 110.
deeper than claimed. . . : 83.
default-directory: 64, 65, 66.
default-directory-name: 64, 65.
default-directory-name-length: 64, 66.
define-font: 59, 86, 95, 105, 110.
den : 15, l7, 19.
denominator: 3J, 102, 109.
denominator doesn’t match : 102.
denominator is wrong: 109.
design size doesn’t match: 60.
dialog: 50, 106.
do-nothing: 6, 95.
do-page : 71, 75, 77, 78, 79, 81, 83, 95, 110.
done: 4: 79, 80, 81, 82, 83, 86, 87, 89, 90, 91,

92, 93, 94, 110.
down-the-drain: 95.
down1 : 15, lJ, 75, 85.
down2: 15.
down3: 15.
down4:  15.
DVI files : 13.
dvi-file: 3, 22, 23, 24, 27, 28, 80, 95, 104.
dvi-length:  28 ,  99 .
DVI-type: 3.
DVItype capacity exceeded. . . : 59, 61, 66.
DVItype needs larger.. . : 35.
e: 59.
eight-bits: 2, 25. 27. 75, 79, 82.
eight-cases: 75.
else: 2.
end: 2.
endcases: 2.
eof: 23. 27, 28, 35, 62, 80, 95, 104.
eoln: 4 7 .
eop: 13, 15, 16. 18, 41, 75, 83.
error: 80, 82, 83, 87, 89, 91, 92.
errors-only: 4l, 56. 62, 69, 80.
f: 32, 3.
false : 2, 20, 34. 42. 43, 44, 49, 52, 58, 60, 77, 79.

80, 82, 87. 95, 97, 102, 106.
fin-rule  : 77, 79, 80, 81.
fksef: 77 79, 80, 81. 88.-*
final-end: 5, 7, 106.
First byte isn’t.. . : 108.
first-backpointer : 99, lJ@. 101.
first-par: 75, 80, 81, 95, 105, 110.



450 INDEX DVI type $112

first-text-char: cl7 12.
&-word: 3 7 .
flush-text: 69, 70, 80.
fnt-defl : 15, 16, 75. 86, 95, 105, 110.
fnLdef2 : 15.
fnLdef3:  1 5 .
fnt-def4  : 15.
fnt-num-0: 15, l6, 75, 86.
fnt-num-l :  1 5 .
fnt-num-63: 1 5 .
fnt1: 15, lJ, 75, 86.
fnt2:  1 5 .
fnt3: 15.
fnt4:  1 5 .
font name doesn’t match: 60.
font-bc: 30, 35, 40, 89.
font-check-sum I 30, 60, 61.
font-design-size: &I, 60, 61.
font-ec: 3J, 35, 89.
font-name: 3J, 31, 32, 60, 61, 66.
font-num: 30. 59, 94.
font-scaled-size: 3J, 60, 61.
font-space: 30, 31, 63, 84, 85.
four-cases: 75, 81, 82, 84, 85, 86.
Fuchs, David Raymond: 1, 13, 20.
get: 47.
get-byte : 27, 28, 61, 75, 80, 87, 95, 99, 101,

104, 105, 108, 110.
get-integer: 49, 52, 53, 54, 55.

* get-three-bytes: 27, 75.
get-two-bytes: 27, 75, 102.
h: 72.
hh: -72,  79, 83: 84, 89, 90, 91, 93.
hhh: 79, 91.
hhstack: 72,  83.
hstack:  72 ,  83 .
i: 3, 17.
ID byte is wrong: 99.
id-byte: l7, 99, 104, 108.
identification...should be n: 104, 108.
in-postamble:  57, 58, 59, 95, 101, 106, 110.
in-  TFM : 34, 37, 62.
in-width: 33, 37, 40.
incr: 6, 27. 47, 49, 52, 54, 59, 60, 61. 63, 66,

70, 83, 94, 98, 101.
infinity: 91, 92.
initialize: 3, 106.
inputAn:  45, 47, 51, 52. 53, 54, 55.
integer: 3. 21, 24! 27, 28, 30, 32, 33. 34. 39,

41, 42, 49. 50, 59, 72, 73, 75, 76, 78, 79, 82,
95, 96, 100. 102, 107.

invalid-width: JO, 40, 89.

j: 59.
Japanese characters: 15, 89.
jump-out: 1.
k: 17,32,34,44,47,50,59,69,82,95,102,107.
last-text-char: 9, 12.
lh: 34 ,  35 .
line-length: 5, 67, 69, 70.
m: 102, 107.
mug: 15, I7, 18, 19? 3, 102, 109.
magnification doesn’t match: 102.
magnification is wrong: 109.
major: 80, 81, 83, 85, 86, 87, 88.
match: 44.
max-drift : 9l, 92.
max-fonts:  3, 30 ,  59 .
max-h: 73, 74, 91, 102, 103.
max-h-so-far  : 73, 74, 91, 103.
max-pages  : 4l, 43, 53, 56, 110.
max-s : 73, 74, 83, 102, 103.
max.-s-so-far: 73, 74, 83, 103.
max-v: 73, 74, 92, 102, 103.
max-v-so-far: 73, 74, 92, 103.
max-widths: 5, 30, 34, 35, 39.
minor: 80: 83, 84, 88.
mismatch: 59, 60.
move-down: 77, 82, 85.
move-right: 77, 79, 80, 84, 89, 90.
move-to-byte: 28, 99, 101.
12: 5J, 7 6 ,  107.
name-length: 5, 24, 59, 66.
name-size: 5, 30, 32, 59, 61.
names: 30, 32, 59, 60, 61, 66.
negative: 49.
new-backpointer : 96, 98.
new-mug: 4l, 55, 56, 102. 109.
nf: 30, 31, 32, 35, 40, 59, 60, 61, 63, 66, 79, 89, 94.
non-ASCII character.. . : 87.
nop: 13, 15, 16, 18, 19, 75, 83, 105, 110.
not enough signature bytes...: 104.
null font name : 61.
num: 15, 17, 19.
numerator: 39, 102, 109.
numerator doesn’t match: 102.
numerator is wrong: 109.
nw: 34, 35, 36, 37.
0: 79, 82.
observed maxh was x: 103.
observed maxstackdepth was x : 103.
observed maxv was x: 103.
old-backpointer : 96, 97, 98, 101, 106.
only n bytes long: 99.
open-dvi-file: 23, 108.



$112 DVI type INDEX 451

open-tfm-file:  23, 24, 62.
Options selected : 56.
ord: 10.
oriental characters: 15, 89.
ot hercases: 2.
others: 2.
out-mode: 4l, 43, 51, 56, 57, 59, 62, 69, 80,

99, 102, 106.
out-space: 63, 84.
out-text: 70, 84, 88.
out-vmove: 63, 85.
output: 3.
p: 59, 79,  82, 95, 102, 107.
page ended unexpectedly : 110.
page link wrong. . . : 101.
page-count: 73, 74, 98, 101, 103.
pixel-round: @, 72, 84, 85, 91, 92.
pixel-width: 39, 40.
POP : 14, 15, l6, 19, 75, 83.
post: 13, 15, l6, 19, 20, 75, 82, 95, 99, 100,

101, 102, 110.
post pointer is wrong: 99.
post-lot: 99, 100. 101, 102, 104.
post-post: 15, l& 19, 20, 75, 82, 104, 105.
postamble command within a page: 82.
Postamble starts at byte n: 102.
pre: 13, 15, 16, 75, 82, 108.
preamble command within a page: 82.
print: 3: 7, 32, 56, 61, 62, 63, 69, 80, 87, 89, 90,

91, 92, 93, 94, 102, 108, 110.
print-font: 32, 61, 89, 94.
print-ln: 3. 34, 35, 56, 59, 60, 62, 63, 69, 79,

80, 83, 90, 93, 95, 98, 101, 102, 103, 104,
105. 106, 108, 109, 110.

pure: 82.
push : 5, 14, 15, 16, 19, 75, 83.
push deeper than claimed...: 83.
put-rule: 15, l6, 75, 81, 90, 95.
put1 : 15, l6, 75, 81, 89.
put2: 15.
put3: 15.
put4 : 15.
q: 59, 79 82 102 107.-7 -7 --7
r: 59.
ran.dom-reading  : 2, 20, 28, 41, 56, 99, 106.
read: 26, 27.
read-ln:  4 7 .
read-postamble: 102,  106.
read-tfm-word: 26, 35, 36, 37.
real: 39, 41.
reset: 23, 47.
resolution : 41, 54, 56, 109.

rewrite: 50.
right1 : 15, l6, 75, 84.
right2 : 15.
right31  1 5 .
right4:  1 5 .
round: 40, 63.
rule-pixels: 15, 76, 90.
s: 78.
scaled size doesn’t match: 60.
set-char-0 : 15, l6, 75, 81.
set-char-l : 15.
set-char-127: 15.
set-pos: 28.
setrule: 13, 15, l6, 75, 81, 95.
set1 : 15, l6, 75, 81.
set2: 15.
set3: 15.
set4 : 15.
show: 80.
show-state: 77, 79, 80, 83.
showing: 61, 78, 80, 87, 90, 91, 92, 93, 94, 95, 102.
signature.. .should  be.. . : 104.
signed-byte: 27, 75.
signed-pair: 27, 75.
signed-quad: 27, 61, 75, 90. 9.5 Sk 99, 101,

102, 104, 106, 109.
signed-trio: 27, 75.
sixteen-cases: 75.
sixty-four-cases: 75, 86.
skip-pages: 95, 106.
sp: 17.
special-cases: 78, 81, 82.
ss: 78, 83, 93.
stack not empty.. . : 83.
stack-size: 5, 72, 74, 83.
start-coun,t: 42, 44, 52: 56.
start-lot: 100, 101.
start-match: 44,  95, 101.
start-there: 42, 43, 44, 52, 56.
start-vals: 42, 43, 44, 52, 56, 110.
started: 95, 96, 97, 101.
starting page number.. . : 101.
string of negative length: 87.
system dependencies: 2, 7, 9, 20, 21, 23, 26, 27,

28, 40, 41, 45, 46, 47, 50, 64, 66, 111.
term-in: 45, 47.
term-out: 45, 46, 50, 51, 52, 53, 54, 55.
terminal-line-length: 5, 45, 47, 48.
terse: 4l, 56.
text-buf : 67, 69, 70.
text-char: 9, 10.
text-file: 9, 45.



452 INDEX

text-ptr: 67, 68, 69, 70.
TFM files : 29.
TFM file can’t be opened: 62.
TFM file is bad: 34.
tfm-check-sum: 33, 35, 63.
tfm-file  : 22, 23, 26. 33, 35, 62.
the file ended prematurely: 80, 95.
the-works : 41, 43, 51, 56, 57, 59. 99, 102, 106.
there are really n pages: 101, 103.
thirty-two-cases: 75.
this font is magnified: 63.
this font was already defined: 59.
this font wasn’t loaded before: 59.
total-pages: 7J, 101:  102, 103.
true : 2. 28, 34, 42. 44, 49, 52, 60, 79, 80, 82, 83,

87, 95, 99, 101, 106, 110.
true-conv:  39,  63, 109.
trunc: 7 6 .
UNDEFINED: 32.
undefined command: 82.
undefined-commands: lx, 75.
update-terminal: 46, 47.
21: 2.
verbose : 41, 56, 80.
ostack: 72, 83.
vv : 72, 79, 83. 85, 92, 93.
unstack  : 72, 83.
vvv : BJ, 92.
w: 72.
Varning : lhi...: 9 1 .
warning: Ivl.. . : 92.
warning: observed maxh... : 103.
warning : observed maxstack...: 103.
warning: observed maxv... : 103.
width,  : 30. 36, 39, 40.
width-base: 30,  39, 40.
width-ptr : 30, 31. 34, 35, 36. 40.
wp: 34,  35. 36, 40.
write: 3, 51. 52, 53. 54, 55.
write-ln  : 3. 50, 51. 52, 53, 54, 55.
wstack: 72, 83.
wo: 15, 16, 75, 84.
UJl : 15. 16, 75. 84.
W2: 1 5 .
ur3: 15.
1114 : 15.
.l“: lJ.AcJa.
XChl~  : lo. 11, 12. 32, 66. 69. 87, 108.
X-Old  : 10. 12. 47.
xstack: 72, 83.
xxx1  : 15. 16. 75. 82. 95.
xxx:!: 15.

D V I  t y p e  5112

xxx3: 15.
xxx4 : 15, 16.
x0: 15, l6, 75, 84.
xl : 15, 16, 75, 84.
x2: 15.
x3: 1 5 .
x4: 15.
y: 72.
ystack:  72,  8 3 .
yo: 15, l6, 75, 85.
yl : 15, l6, 75, 85.
y2: 15.
y3: 15.
y4: 15.
t: 34, 72.
zstack: 72, 83.
zo: 15, 16, 75, 85.
zl : 15, 16. 75. 85.
22: 1 5 .
23: 1 5 .
z4: 15.



5112 DVI type NAMES OF THE SECTIONS 453

( Cases for commands nap, bop, . . . , pop 83 ) Used in section 81.
( Cases for fonts 86) Used in section 82.
( Cases for horizontal motion 84) Used in section 81.
( Cases for vertical motion 85) Used in section 82.
( Check that the current font definition matches the old one 60) Used in section 59.
( Compare the lust parameters with the accumulated facts 103) Used in section 102.
( Compute the conversion factor 109 ) Used in section 108.
( Constants in the outer block 5) Used in section 3.
( Count the pages and move to the starting page 101) Used in section 106.
( Declare the function called special-cases 82) Used in section 79.
( Determine the desired max-pages 53) Used in section 50.
( Determine the desired new-mag 55 ) Used in section 50.
( Determine the desired out-mode 51) TJsed  in section 50.
( Determine the desired resolution 54) Used in section 50.
( Determine the desired start-count values 52) Used in section 50.
( Find the postamble, working back from the end 99) Used in section 106.
( Finish a command that changes the current font, then goto done 94 ) Used in section 82.
( Finish a command that either sets or puts a character, then goto move-right or done 89)

Used in section 80.
(Finish a command that either sets or puts a rule, then goto move-right or done 90) Used in section  80.
( Finish a command that sets h + h + q, then goto done 91) Used in section 80.
( Finish a command that sets v +- v + p, then goto done 92) Used in section 82.
( Finish loading the new font info 63 ) Used in section 62.
( Globals in the outer block 10, 22, 24, 25. 30, 33, 39, 41, 42, 45, 48, 57, 64, 67, 72, 73, 78, 96, 100, 107)

Used in section 3.
( Labels in the outer block 4) Used in section 3.
( Load the new font, unless there are problems 62 ) Used in section 59.
( Make sure that the end of the file is well-formed 104 > Used in section 102.
( Move font name into the cur-name string 66) Used in section 62.
( Move the widths from in-width to width, and append pixel-width values 40) Used in se&ion  34.
(Pass a bop command, setting up the count array 98) Used in sections 95 and 110.
( Print all the selected options 56) Used in section 50.
( Process the font definitions of the postamble 105) Used in section 102.
( Process the preamble 108) Used in section 106.
( Read and convert the width values, setting up the in-width table 37) Used in section 34.
( Read past the header data; goto 9997 if there is a problem 35) Used in section 34.
( Read the font parameters into position for font nf , and print the font name 61 ) Used in section 59.
( Replace z by x’ and compute Q, 0 38 ) Used in section 37.
( Set initial values 11, 12, 31, 43, 58, 65, 68, 74, 97) Used in section 3.
( Show the values of ss, h, v3 W, x. y, Z, hh, and vv; then goto done 93) Used in section 80.
( Start translation of command o and goto the appropriate label to finish the job 81) Used in section 80.
( Store character-width indices at the end of the width table 36) Used in section 34.
( Translate a set-char command 88) Used in section 81.
( Translate an xxx command and goto done 87) Used in section 82.
(Translate the next command in the DVI file: goto 9999 with do-page = true if it was eop; goto 9998 if

premature termination is needed 80) Used in section 79.
( Translate up to max-pages pages 110) Used in section 106.
( Types in the outer block 8, 9, 21) Used in section 3.




