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We describe resolution proof systems for several modal logics. First we present the propo-
sitional versions of the systems and prove their completeness. The first-order resolution
rule for classical logic is then modified to handle quantifiers directly. This new resolution
rule enables us to extend our propositional systems to complete first-order systems. The
systems for the different modal logics are closely related.

1. INTRODUCTION

Modal logics ([HC]) have found a variety of uses in Artificial Intelligence (e.g., [MC]),
in Logics of Programs (e.g., [PI), and in the analysis of distributed systems (e.g., [HM]).
For such applications, natural and efficient automated proof systems are very desirable.
A variety of decision procedures have been proposed for propositional modal logics (e.g.,
[WI). The traditional proof systems for first-order modal logics are simple; this makes
them appropriate for metamathematical studies ([Fill). However, they often require much
creative help from a user or give rise to long proofs. Thus, they are not suitable for
automatic implementation.

Classical clausal resolution proofs ([RI) are usually short and their discovery requires
little or no human guidance. Classical nonclausal resolution ([MWl], [Mu]) has the virtue
of added clarity, since formulas do not need to be rephrased in unnatural and sometimes
long clausal forms.

Farifias de1 Cerro ([Fall, [Fa2], [Fa3]) proposed imitating classical clausal resolution
in some modal logics. The proposed methods are rather attractive, but fail to treat the
full modal logics under consideration - quantifiers are not allowed in the scope of modal
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operators. Geissler and Konolige ([Ko], [GK]) attempted to solve this problem with the
addition of a new operator, l , and the introduction of “semantic attachment” procedures.

In this paper we extend nonclausal resolution to eight modal logics with the operators
0 (“necessarily”) and 0 (“possibly”). Our approach is quite uniform and generalizes to
a wide class of modal logics in different languages. For instance, this class includes logics
of knowledge with a knowledge operator I<i for each knower. In fact, all “analytic logics”
as well as some “non-analytic” ones (in the terminology of Fitting ([Fill)) are tra.ctable by
these techniques. Also, similar methods can be used for more comnlicated  loeics. such as
Temporal Logic ([AMl], [AM2]).

In the next section we introduce some basic definitions. In section 3 we present the
propositional proof systems for K, T, K4, S4, S5, D, D4, and G; their completeness is
proved in section 4. These propositional modal systems are lifted to first-order modal
systems by adding some quantifier rules (section 5)) special auxiliary rules (section 6)) and
an extended resolution rule (section 7). Skolemization rules (mentioned in section 5) are
optional. Section 8 contains a simple example. The completeness of the first-order systems
is proved in section 9.

2. PRELIMINARIES

a. Informal syntax and semantics

The propositional modal language includes propositions, modal operators, and con-
nectives. All propositions are fEezNe,  i.e., they may change value from “world” to “world.”

. The modal operators we consider are the usual ones: 0 (“necessarily”) and 0 (“possi-
bly”). The primitive connectives are just 1, A, V, true, and false. It is practical to regard
all other connectives as abbreviations. Formulas are not restricted to any special form
such as clausal form.

For the first-order versions, the quantifiers V and 3, variables, and flexible predicate
symbols are added. It is convenient and natural to include flexible function symbols and
world-independent, rigid predicate and function symbols as well. Informally, we may say
that variables are also rigid. For example, the formula %.[q(s)  V &@c)] expresses that
the same object has property Q or necessarily has property p.

Models and and the satisfaction relation can be described in terms of possible worlds
([HC]). A model is a tuple (0, IV, ~0, R, 1)) where

l the domain D is a non-empty set (note that we require that there be
just one domain rather than one for each element of IV);

l IV is a set with a distinguished element ~0; intuitively IV is the set of
possible worlds and ws the real world;

l R is a binary accessibility relation on W;



l the interpretation I gives a meaning over D to each predicate symbol
and each function symbol at each world in W; the meaning of rigid
symbols is required to be the same at all worlds.

An assignment Q! is a function from the set of variables to D. The satisfaction relation,
/=, is then e ne in UC ive v over formlllas. In particular, the semantics of 0 and 3 ared fi d d t lI
given by:

((D,wwo’R’I)‘4 t= ou if for some wr E W, tuoRw1 and ((D, W,wl, R, I)+) b u,

((D,W,wo,R,I),a)+3rc.u  ifforsomedED,((D,W,wo,R,I),a(J:+d))~u.

As usual, the semantics of 0 and V are dual to those of 0 and 3, respectively, and validity
is defined as the dual of satisfiability. Free variables are implicitly universally quantified:
u is valid exactly when Vx.u is valid.

The different logics are characterized by properties of the accessibility relation R:

K: R does not need to satisfy any special conditions.

T: R is reflexive.

K4: R is transitive.

S4: R is reflexive and transitive.

S5: R is reflexive, symmetric, and transitive.

D: R is serial (i.e., there is some accessible world from every world).

D4: R is serial and transitive.

G: R-l is transitive and well-founded.

b. Proofs and rules

I- w denotes that the formula w can be proved by resolution, that is, that there is a
sequence of formulas So, . . . , S, such that So = lw, S, = false, and Si+i is obtained from
Si by an application of a rule. We refer to So, . . . , S, as a proof of w or a refutation of
-JW.‘

Our proof systems include two kinds of rules: simplification rules and deduction rules.

l The .qimplification rules have the form

Ul,...,Um 3 2).

Suppose the formulas ~1,. . . , u, occur in some conjunction in Si, in any order.
Then we delete an occurrence of each of them and add the derived formula ‘v to
the conjuction.
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Example:

The rule u, lu + false applied to

Si : (q V O(lp A Q A p))

yields

S i+l : (q V O(q A false)). 1

l The deduction rules have the form

Suppose the formulas ~1,. . . , urn occur in some conjunction in Si, in any order.
Then the derived formula v is added to that conjunction.

Unlike simplification rules, deduction rules do not discard the premises ui, . . . , urn.
Sometimes, however, we may use the weakening rule (defined in section 3) to dis-
cardul,...,um immediately after applying a deduction rule.

Example:

The rule mu, 0 v c-) O(u A v) applied to

Si 1 qv[oorAnPl

yields

S i+l: qv[OqA r A Up A O(p A q>]- 1

An occurrence of a subformula has positive polarity in a formula if it is in the scope
of an even number of explicit or implicit 1%. It has negative polarity if it is in the scope
of an odd number of 1’s. For instance, 0 p occurs with positive polarity and false occurs
with negative polarity in 0 l(false  V lop).

We use the following polarity restriction to reduce the proof search space:
Rules are applied only to positive occurrences of ur, . . . , urn.

c. Soundness

For our proof notion to be meaningful, we require that rules be sound, i.e., that they
maintain satisfiability: if Si is satisfiable then Si+i is satisfiable as well.

We say that u entails v (and denote it u w v) if (u > v) is valid. The following
observation is often helpful in soundness arguments: a formula gets “truer” as its positive
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.

.

subformulas get “truer” and as its negative subformulas get “falser.” More precisely, we
can prove:

Lemma (Monotonicity of entailment):

For all u and v, if u - v and
w’ is the result of replacing one positive occurrence of u by v in w, or
w’ is the result of replacing one negative occurrence of v by u in w,

then w L) w’.

Proof sketch: The lemma is proved by complete induction on pairs of formulas, with the
order + defined by: (w,w’) 4 (z,z’) if w and w’ are proper subformulas of z and 2,
respectively, or of 2 and z, respectively. 1

Suppose that for any S; and any Si+r obtained from Si by applying a given rule we
have Si L) Si+r . Then soundness is clearly guaranteed for the rule under consideration.
Consequently, we can use the lemma to conclude that simplification rules are sound if
v c-) (ul A . . . A urn)  for negative occurrences of ur, . . . , urn. For positive occurrences,
it suffices that (ur A . . . A IL,,,) -+ v. The entailment (ur A . . . A urn)  LS v holds for
all the simplification rules we will present, except for the skolemization rules. With the
polarity restriction, this guarantees the soundness of all the simplification rules except the
skolemization rules. We prove the soundness of the skolemization rules with a different
method.

Similarly, deduction rules are always sound for negative occurrences of ur, . . . , IL,,,
(since the given formulas ur , . . . , urn are kept); for positive occurrences, (ur A.. . A urn) c-) w
suffices. The entailment (ur A. . . A u m ) L) v holds for all the deduct ion rules we will present.
This guarantees the soundness of deduction rules, with no need for polarity arguments.

3 . PROPOSITIONAL SYSTEMS

a. Simplifkation rules

0 true-false simplification rules:

These are the regular true-false simplification rules, such as

false V u I false and false, u =S false,

and the rule

0 false * false.

l Negation rules:

1 nu * 01 24 , 1 o u * q  I�U,

+ Av) =+ (lu V-I), l(u V v )  + (T.L ATI), 1lt.t + u.
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l Weakening rule:

u, v * u.

The weakening rule lets us discard any conjunct v that we regard as no longer
useful.

l Distribution rule:

u, VlV .*. vz)k=$  (uh$/ . . . v(uAvr,).

b. The resolution rule

We write u(v) to indicate that v occurs in u, and then u(w) denotes the result of
replacing exactly one occurrence of v by w in u. Similarly, u[v] indicates that if v occurs
in u then u[w] denotes the result of replacing all occurrences of v by w in u.

The nonclausal resolution rule for classical propositional logic is:

A(u,. . . ,u), B(%** . , u) I+ A( true) V B(false).

That is, if the formulas A(u,. . . , u) and B(u,. . . , u) have a common subformula u, then
we can derive the resolvent A(true) V B(faZse). This is obtained by substituting true for
certain (one or more) occurrences of u in A(u, . . . , u) ) and false for certain occurrences of
u in B(u,. . . , u), and taking the disjunction of the results.

In propositional modal logics, this rule is not sound. For instance, consider the formula
(u A 0 lu); it is satisfied by any model where u holds in the real world and fails in some
possible world. We cannot soundly deduce (u A 0 lu A (0 ltrue V fabe)),  as the rule
would suggest, since this formula is unsatisfiable. The problem is that while u occurs in
both 0 YL and u, it does not need to have the same truth value in all contexts. Intuitively,
different occurrences of u may refer to u at different worlds.

The resolution rule is sound in propositional modal logics under the following same-
world restriction:

The occurrences of u in A or B that are replaced by true or false, respectively, are
not in the scope of any 0 or 0 in A or B.

Informally, this imposes that all the occurrences of u under consideration are evaluated in
the same world.

c. Modality rules

These rules deal with formulas in the scope of modal operators. For each modal logic
there is a set of modality rules:
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0 K:

0% ov H o(uAv).

l T:

mu, 0~ H o(uAv), q  u I-+ u.

l K4:

0% ov I--+ o(uAv), [7u, ov I-+ o(~uAv).

0 s4:

021, ov H o(~uAv), q  u H u.

. s5:

[7u, ov I-+ o(ouAv), clu I--+ u,

0% ov H o(ouAv), u H 021.

l D:

mu, ov H o(u A v ) , H 0 t r u e .

a D4:

l G:

mu, 0 v H o(u A v), mu, ov H o([zluAv),

q  U,OV I+ O(U~~U~\V~~~V).

I-+ 0 t r u e .

4. COMPLETENESS FOR PROPOSITIONAL SYSTEMS

Theorem: The resolution systems for propositional K, T, K4, S4, S5, D, D4, and G are
complete for the corresponding classes of models.

Proof sketch: We exploit some known abstract characterizations of completeness for these
logics. Specifically, model existence lemmas (stated in terms of consistency properties)
([Fill) turn out to provide simple and uniform proofs for all the systems. A consistency
property is a syntactic property of sets of sentences that satisfies certain conditions de-
pending on the logic. Typically, consistency properties have the form “is not refutable
(in a given proof system).” Model existence lemmas guarantee that if a set of sentences



satisfies a consistency property then all the sentences in the set are satisfiable (in fact, all
the sentences are simultaneously satisfiable in some logics).

We give a proof sketch for K and point out where it should be modified to apply to
the other systems. Consider restricting the proof system for K so that negation rules are
applied as early as possible. It suffices to show that the restricted system is complete.

We say that a set S of sentences is admissible (for K) if no finite conjunction of mem-
bers of S can be refuted (in the resolution system for K). More precisely, S is admissible if
for all distinct wi, . . . , wk E S there is a permutation 7r : (1,. . . , k} + (1,. . . , k} such that
%(l) A * l l

A w,(k) cannot be refuted (or, as we often say for simplicity, “WI,. . . , wk E S
cannot be refuted”). We show that admissible is a consistency property for K. To this end
we check that admissible satisfies the conditions in the definition of consistency property
for K:

if S is admissible and S# = (~10 u E S} U (1uIl0 u E S} then
1) S contains no proposition and its negation; false 4 S, itrue 4 S;
2) if (u A v) E S then S U {u, v) is admissible;
3) if l(u V v) E S then S U {lu, TV) is admissible;
4) if (u V v) E S then S U { }u is admissible or S U {v} is admissible;
5) if l(u A v) E S then S U { lu} is admissible or S U { V.J} is admissible;
6) if 0 u E S then S# U {u} is admissible;
7) if 10 u E S then S# U {lu} is admissible.

Thus, admissible is a consistency property for K. Hence, by the model-existence lemma
for K, if S is admissible then each member of S is satisfiable. It follows (taking S = {u})
that if u cannot be refuted then u is satisfiable. Therefore, the propositional proof system

. for K is complete.

The completeness arguments for the other logics only differ from the one for K in the
definition of consistency property that admissible needs to satisfy. 1

5. QUANTIFIER RULES

Starting in this section, we consider the extension of the resolution systems to first-*
order modal logics. The propositional language is extended with quantifiers, variables,
predicate symbols, and function symbols. The definition of models imposes that the Barcan
formula (Vx. 0 u(x)) > (0 Vx.u(x)) and its converse (0 Vx.u(x)) > (Vx. 0 u(x)) are
theorems of the first-order systems.

We first give four definitions:

l An occurrence of a quantifier Qv is of universal force if it is either a universal
quantifier V and has positive polarity or an existential quantifier 3 and has nega-
tive polarity. An occurrence of a quantifier Q3 is of existential force if it is either
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a universal quantifier V and has negative polarity or an existential quantifier 3
and has positive polarity.

l An occurrence of a modal operator AP is of necessary force if it is either 0 and
has positive polarity or 0 and has negative polarity. An occurrence of a modal
operator AI0 is of possible farce if it is either 0 and has negative polarity or 0
and has positive polarity.

This section discusses skolemization and gives some skolemization rules. Completeness
of the systems does not depend on the inclusion of the skolemization rules, but the rules
may sometimes give rise to short-cuts in proofs. In general, we do not rely on skolemization
to eliminate quantifiers. Instead, we describe some rules to move quantifiers; we manipulate
formulas with quantifiers, and, therefore, the resolution rule presented in the next section
takes quantifiers into account.

a. Skolemization

In classical logic, all quantifiers can be eliminated by applications of skolemization
rules. This is elegant for quantifiers of both universal and existential force, and very
practical for quantifiers of existential force. The classical skolemization rule for eliminating
quantifiers of existential force is:

where f is a new rigid function symbol and 5, ~1,. . . , xn are all the free variables in u.

In modal logics, this rule is sound as long as u is not in the scope of any 0 or 0.
Unfortunately, this rule is not sound in general. For instance, consider the formula.

(Vx. OP(X>) A (0 3Y*T(Y)),

where p is a flexible predicate symbol. The formula is satisfied by the model M with
D = {O,l}, w = {O,l}, w() = 0, R = w2, where p holds for 0 only in the real world and
p fails for 1 only in the real world. The rule replaces y by a new rigid constant symbol a,
yielding the formula

(Vx. 0 P(X)) A (0 ~PW7

.
which is unsatisfiable. Notice that the new formula states that there is an element in the
domain that has the property -p in all possible worlds. The original sentence, on the other
hand, only claimed that in each possible world there was some element with property lp.
Therefore, the classical rule does not capture implicit dependencies on worlds.

A variant of the rule with flexible skolem symbols does capture implicit dependencies
on worlds and soundly eliminates some quantifiers of existential force in the scope of modal
operators. Consider, for instance, the formula 0 3~ p(x). If 0 3x.p(x) holds then in each
world there must be some element with property p. In each world, denote this element by
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a. Thus, we may derive that for a new flexible constant symbol a, 0 p(a) holds. More gen-
erally, flexible function symbols are introduced when free variables appear. For instance,
assume 0 3x.p(x, y) holds. Then, for a new flexible function symbol f, q  p( f (y), y) holds.
This resembles the classical method to eliminate quantifiers of existential force, with the
exception that now a flexible function symbol is introduced.

We obtain a flexible skolemization rule of the same form as the classical skolemization
rule:

3x.+1 * U[f(Xl, ’ * l ,G)],

where f is a new flexible function symbol, x, xl, . . . , xn are all the free variables in u, and
x does not occur in the scope of any modal operator in u.

Proposition (Soundness of flexible skolemization):

I f  ?J(3x.u[2])is satisfiable, f is a new flexible function symbol, x, xi,. . . , xn
are all the free variables in u, x does not occur in the scope of any modal
operator in u, and 3x.u[x] occurs positively in v,

then v(u[f(xr , . . . , xn)]) is also satisfiable.

The rule is not always satisfactory when x occurs in the scope of modal operators in
u. For instance, the formula

0 3L (P(X) A 0 P(X))

yields

cl (PW * 0 P(4)

.
for a flexible constant symbol a. The original formula is stronger than the one we deduce:
the original formula asserts that for each world the same x satisfies p(x) in the real world
and in some possible world. On the other hand, since a is world-dependent, the formula
0 (PW A 0 p(a)) does not guarantee that the sarne element of the domain has property
p in the real world and in some possible world.

Instead, we could deduce the formula

q  v⌧.☯⌧ = a 1 (P(X) A 0 Q(x))] l

This formula is as strong as the original one. Note that it involves a V instead of a 3.

This suggests how to eliminate all quantifiers of existential force. The price paid is that
* the deduced formulas involve some new equations and some new quantifiers of universal

force. The general rule is

3x.u * Vx.[x = f(Xl, . . . ,xn) 3 u],

where f is a new flexible function symbol and X, xl, . . . , X~ are all the free variables in u.

Proposition (Soundness of generalized flexible skolemization):

If v(3x.u) is satisfiable, f is a new flexible function symbol, X, ~1, . . . , xn are

all the free variables in u, and 3x.u occurs positively in V,
then v(VX.(X  = f(x1, . . . , xn) > u)) is also satisfiable.
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b. Quantifier extraction rules

The quantifier extraction rules move quantifiers to the outside of formulas. We can
always extract quantifiers of universal force:

u(Q”x.v[x]) =+ Vx’.u(v[x’]),

.

where x’ is a new variable. (Q’is V or 3, whichever is of universal force in the context
under consideration.)

Proposition (Soundness of Qv rule):

u(Qvx.v[x]) c-) Vx’.u(v[x’]).

Sometimes we can extract quantifiers of existential force in a similar way:

u(Q3x.v[x]) =+ 3x’.u(v[x’]),

where x’ is a new variable. The rule is restricted so that dependencies on other variables and
implicit dependencies on worlds are not overlooked: the replaced occurrence of Q3x.v[x]
should not occur in the scope of any quantifier of universal force or modal operator of
necessary force in u.

Proposition (Soundness of Q3 rule):

If the replaced occurrence of Q3x.v[x] is not in the scope of any quantifier of
universal force or modal operator of necessary force in u,

then u(Q3x.v[x])  c-) ~x’.u(v[x’]).
.

6. AUXILIARY RULES

a. Rigid symbols and the frame rules

.

It is convenient to include rigid symbols for world-independent functions and predi-
cates in the first-order modal language. The frame rules reflect the fact that the meanings
of these symbols do not depend on the world where they are evaluated:

b
if u is a formula with no occurrences of flexible symbols, then

I
. ou H u and u H c]u.

For instance, if p is a rigid proposition symbol. then 0 p can yield p, and then q  p.

b. Equality

As in classical logic, we can add axioms for the equality symbol. Alternatively, we
can include an extension of paramodulation or E-resolution (see [MW2]).
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c. The cut rule

The cut rule is

Note that the cut rule requires heuristics to choose u. This may be impractical in fully
automatic systems. On the other hand, the cut rule is quite convenient in interactive
settings, where a user may suggest appropriate u’s to obtain shorter proofs.

This rule is not essential for completeness for the propositional modal systems, but
it is essential in the first-order systems. Other first-order modal systems include similar
devices. In fact, there exists proof-theoretic evidence that some rule like the cut rule is
necessary for the logics in question ([Fill).

7. THE RESOLUTION RULE

In subsections a, b, and c we describe a unification algorithm and a resolution rule for
first-order modal logics. For the sake of simplicity, the language is temporarily restricted
not to contain flexible function symbols. In subsection d this restriction is abandoned.

a. Unification

We extend the classical unification algorithm to handle formulas with modal operators
and quantifiers. Suppose we have one of the usual recursive definitions of the function uni-
fier to compute most-general unifiers of classical quantifier-free expressions. Two clauses.
are added to the recursive definition, one for modal operators and one for quantifiers.

l Modality extension: Let A.4 be a modal operator.

unifier(Mul, . . . , Mum) is
unijier(ul, . . . , urn) if it exists
fail otherwise

In other words, 0 and 0 are treated just like unary connectives as far as unifi-
cation is concerned.

a
a Quantifier extension: Let Q be a quantifier and x’ a new variable.

unifieT(Qx1  .ul[a], . . . , Qxm.um[xm])

is unifieT(u1  [x’], s . . , um[x’]) if it exists and does not bind X’
fail otherwise

For instance, Vx.p(x)  and Vy.p(y) unify because p(x’) unifies with itself and the
unifier (the empty substitution) does not bind x’. On the other hand, Vx.p(a)
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and VY-P(Y) do not unify, since the most-general unifier of p(a) and p(x’) binds
x’ to a. The formulas Vx.p(x) and p(y) do not unify: the main operator of the
latter formula is not a V.

These additions to the recursive definition of unifier are simple enough that most-
general unifiers can still be computed when unifiers exist at all.

b. The resolution rule

The classical nonclausal resolution rule can be written

+I, . . * , %a), B(%+1,  * - .  ,  vm) H A6(true) V  BB(fulse)

where 8 is a most-general unifier of vi, . . . , vm and replaces only variables that are (im-
plicitly) universally quantified ([MWl]). As might be expected, the classical rule is not
sound for formulas with quantifiers, modal operators, and flexible symbols.

Since we do not rely on skolemization and the quantifier extraction rules only shift
quantifiers outwards, the modal nonclausal resolution rule should handle quantifiers in
front of A and B. Also, the conclusion of the resolution rule, Ao(true) V B6(fulse), may be
preceded by some quantifiers (obtained by mixing those in front of A and B). Moreover,
the formulas A, B, and Ao(true) V BO(fulse) may contain quantifiers. Some restrictions
guarantee that the presence of quantifiers does not make the rule unsound. Other restric-
tions deal with flexible symbols and modal operators.

The rule is:

&1x1 . . . &h2h.A(% . . . ,vn), RIYI . . . Rkyk.B(vn+l,  . . . ,vm)
H SlZl... sh+@h+k. [A6( true) V BO(fulse)]

where 8 is a most-general unifier of v1, . . . , vm and Qi, . . . , Qh, RI,. . . , Rk, Si, . . . , Sh+k
are quantifiers, under the restrictions:

(i) The variables x1, . . . , xh, yl , . . . , yk are all different.

(ii) The sequence Sizl . . e sh+kzh+k  is a merge Of Qlxl . . . &hXh  and Rlyl . . . Rkyk,
1 that is, &1x1 . . . Qhxh and Rlyl . . . Rkyk are subsequences of Slzl . . . Sh+l;zh+k.

(iii) The same-world restriction: If the replaced occurrences of ~16,. . . , v,B are in the
scope of any modal operator in A8 or B6 then v#, . . . , v,B contain only rigid
symbols.

(iv) The replaced occurrences of VI 8, . . . , v,8 are not in the scope of any quantifier in
A8 or BO.

(v) If (x t t) E 8 then for some i, 1 < i < h $ Ic, Si = V, zi = x, and no variable in t
occurs bound in VxSi+lzi+l . . . Sh+kzh+k. (A V B).
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Once all the restricticion are checked, redundant quantifiers in Srzl . . . Sh+kzh+k  may
be discarded.

Restriction (iii) is necessary for modal logics, even at the propositional level. On the
other hand, restrictions (i), (ii), (iv), and (v) are intended to solve classical logic prob-
lems; some of them are actually related to restrictions described by Manna and Waldinger
([MW3]) for resolution with quantifiers in classical logic. Restriction (v) is intended to
enforce that the application of 6 does not cause any capture of free variable, that 8 only
instantiates universally quantified variables, and that if (x + t) E 6 then t does not depend
on x implicitly.

Example: When we apply the resolution rule to

3x~if~2~~3-(op(x1,x2)  v 4(X2,X3))
A

3Yl~YZ*~Q(Yl  t Y2 )*

with

A = lQ(y1,y2)  a n d  B =  (Op(x1,~2)  V q(x2,xd),

Vl =q(yl,yz) ax.d ~2 =q(x2,x3),

8=(x2 +y1,y2 +x3),

restrictions (i), (iii), and (iv) are satisfied.

To satisfy the remaining restrictions, we choose

3x~3y~Vx23x3Vy2*[+Ue v (OP(Xl,Yl) v faW1

as the derived formula. We delete redudant quantifiers to obtain

3213yl.[ltme  V (Op(xl,yl) V fa2se)].

Simplification yields

3X13Yl. OP(Xl,Yl).  I

Example: Whether the resolution rule is applicable or not can be extremely sensitive to
the order of the quantifiers in the premises. For instance, suppose we change the formula
in the previous example to

3x~t/X&3.(op(21,Q)  v &%xd)
A

VY23Yl .‘Q(Y17  Yd
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and take

A = ‘Q(Yl,Y2) and B = (OP(XhX2) v Q(X293)),
= q(yl,y2)

2;‘= {
and v:! = q(m,x3),

X2 + Yl,Y2 + X3).

Restrictions (i), (iii), and (iv) are still satisfied, but it is not possible to satisfy restrictions
(ii) and (v) simultaneously. For instance, if we derive the formula

3X1Vy23y1Vx23x3.[ltTue  V (Op(x~,  yl) V false)]

restriction (v) is not satisfied: (~2 + x3) E 6 and x3 is bound in

Other formulas we may want to derive give rise to similar restriction violations. 1

c. Merging the quantifiers

The resolution rule does not explicitly specify the order of Slzi, . . . , Sh+kzh+k.  A
method for obtaining the sequence Sizl . . . Sh+kzh+k is based on systematically merging
the sequences Qixi . . . Qhxh and Rlyl . . . &yk in different ways, until one of the results
satisfies all the restrictions at once. Fortunately, there are less expensive implementations.

For instance, the one sketched here is based on choosing a partial order for the quan-
tifiers and then running a topological sort. As a preliminary step, we check that conditions
(i), (iii), and (iv) are satisfied. Then we build a directed graph with nodes labelled  by the
quantifiers from the premises of the rule, that is, Srzi, . . . , Sh+kzh+k.  There is an edge
from Si.zi to Sjzj if (zj + t (2;)) E e for some term t or if Sizj is in the scope of S;z;
in either of the premises’ quantifier sequences, &ix1 . . . Qhxh and Rlyl . . . Rkyk. An edge
from Sizi to Sizj can be interpreted as expressing that zj depends on z; and implies that
S;zi should occur to the left of Sizj in the formula derived by the rule.

If the graph is cyclic, the rule is not applicable. Otherwise, the graph can be mapped
into a string by a topological sort. The output string is just Sizl . . . Sh+kzh+k.  When
arbitrary choices are possible, it is convenient to place 3’s close to the source (that is,
to the left in Sr.zi . . . Sh+kzh+k) in order to get a stronger conclusion. This construction
respects the original order of the quantifiers and dependencies; therefore, restrictions (ii)
and (v) are satisfied. Finally, redundant quantifiers may be discarded in the derived
formula.

Example: The graph for the first example above is

3x1 - vx2 d 3x3

T 1
3Yl - VY2
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It can be flattened into the string

3x1 - 3y1 d vx2 + 3x3 - vyp. I

Example: The graph for the second example is

3x1 - v.q - 353

T 1
3Yl - VY2

The resolution rule is not applicable because the graph is cyclic. 1

d. Resolution with flexible function symbols

I In the presence of flexible function symbols, a new restriction on the resolution rule
is necessary. The following examples show that the current rule is not sound for formulas
with flexible function symbols.

Example: Consider the formula

u  :  (VX.lOP(X))  A UP(a),

where a and p are flexible. The formula u is satisfied by the model M with D = (0, l},
F = {O,l}, w. = 0, R = W2, where a has value 0 in the real world and 1 elsewhere,

. p holds for 0 only in the real world, and p fails for 1 only in the real world. Take A =
Clp (⌧), B = q  lp (a ), VI = Up (⌧), ~2 = 0 p(u). The most-general unifier of vi and v2 is
6 = {x t a}. With the restrictions we have presented so far, the resolution rule allows us
to deduce

(Vx.1 up(x)) A up(u) A (+rueV fake).

Simplification yields false. According to this proof, u is unsatisfiable. I

*Example: Consider the formula

u : p(u) A Up(u) A v+P(x)  v 0 lP(X)) 7

where a and p are flexible. The model M described in the previous example satisfies U.

Take A = (-p(x) V 0 lp(x)),  B = p(a), VI = p(x), ~2 = p(a). The most-general classical
unifier of vi and v2 is 6 = {x t a}. With the restrictions we have presented so far, the
resolution rule allows us to deduce

p(a) A Up(a) A VX.(lp(x) v OlP(X)) A [(+ev 01P(4) Vfa4.
16



Simplification yields

up(a)  A OIP(“)y

I a clearly provably unsatisfiable formula. According to this proof, then, u is unsatisfiable.

P

Unification in the scope of modal operators and substitution into the scope of modal
operators give rise to incorrect derivations in these examples. The basic problem is sim-
ply that equals cannot be substituted for equals in modal logics. The resolution rule is
restricted further in order to avoid this problem:

(vi) If (x t t) E 6 and a flexible symbol occurs in t then x does not occur in the
scope of any modal operator in either A or B.

e. Soundness of resolution

The restrictions presented in the last two subsections are actually sufficient to guar-
antee the soundness of the resolution rule. We first show:

Lemma (Soundness of instantiation):

Given the substitution 6, the quantifiers Tl, . . . , Tp, and v = Tlwl . . . Tewp.u,  and
v’ = Tlwl... Ttwc.u6, such that

if (x + t) E 6 then for some i, 1 5 i < e, Ti = V, w; = x, and no variable
in t occurs bound in VxTi+lw;+l  . . . Ttwe.u,

if (x + t) E 6 and t contains flexible symbols then x does not occur in

I the scope of any modal operator in u,

then v L) v’.

Theorem: The resolution rule, with restrictions (i), (ii), (iii), (iv), (v), and (vi), is sound.

Proof sketch: It suffices to show that the premises entail the conclusion, that is,

&1x1..  . &hzhJ+l, . . . A) * RIYI . . . Rkyk-B&l,  . . . ,vm)
- spq... sh+kZh+k.  [h?(tTUe)  v Be(fdse)].

Assume the premises Qixi . . . Qh2h.A  and Rlyl . . . &yk.B hold. Conditions (i) and (ii)
guarantee that the (sound) quantifier rules allow us to derive Sizi . . . Sh+kzh+k.(A  A B).
This formula and 6 fulfill the hypotheses of the lemma by conditions (v) and (vi). There-
fore, we can derive Sizl . . . Sh+kZh+k.(A  A B)6, that is, &Zl . . . sh+kZh+k.(A6 /\ Be). (At
this point redundant quantifiers can be deleted from the conclusion without harm.)

We have shown that

&1x1 . . . &hxh.A A Rlyl . . . Rkyk.B
c--) SlZl... sh+kZh+k.(A6(Vl, .  .  .  ,  Vn) A B6(Vn+1,  .  .  .  ,  Vm))*
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It suffices to show that

SlZl... sh+kZh+k.(A6(Vl, . . . ) Vn> A B6(vn+l,  . . . ) vm))
- SlZl... sh+kZh+k.  [A6( tTUf3) v BB(fdse)] .

This can be proved by purely propositional modal reasoning: by the monotonicity of
entailment lemma, it suffices to show that

( (A6 VI) . . . pn) A B6(v,+l,  . . . ,v~)) L-$ [AB(tTue)  v BB(fdse)].

The formulas A6 and B6 have some subformulas in common, since vi6 = . . . = v,6. Let
v6 denote ~6,. . . , v,& Consider occurrences of v6 not in the scope of any quantifier and,
if v6 contains any flexible symbols, not in the scope of any modal operator. Assume that
A@1 , ’ - .  7 Vn) a nd  Be(v,-+l, l  l

. , v,,,) hold. If v6 is true then AB(true) holds; otherwise,
BB(false)  holds. In either case, AB(true)  V BB(fdse) holds, as we wanted to show. I

8 . AN EXAMPLE

We prove that

q  WP(z)) 2 (Vx- 0 PW>

in the resolution system for K. We will derive false from

. so  : 1  ☯l q  (Vx.p(x)) v (Vx.  Up(x))]  l

By the negation rules, we first get

q  (‘dx.p(x)) * (3x.0 lp(x))-

The rule for moving quantifiers of existential force yields

3x’. [n(\dx.p(x)) A 0 -p(x’)].

* The modality rule in the system for K yields

3x’. [O(Vx.p(x)) A 0 -p(x’) * O((‘J’X.P(X))  * UP)] l

Weakening reduces this sentence to

3x’. 0 [(tlx.p(x)) A +‘)] .

TakeA= -p( xl), B = p(x), vi = p( x'), v2 = p(x).  Resolution yields

3x’. 0 [(Vx.p(x)) A lp(x’) A (+ue V false)]  -

18



true-false simplifications yield false.

9. COMPLETENESS FOR FIRST-ORDER SYSTEMS

Our propositional modal resolution systems together with the quantifier rules, the
auxiliary rules, and the resolution rule for the first-order language with flexible function
symbols, constitute first-order resolution systems. Skolemization rules may be added, but,
are not essential.

Theorem: The first-order resolution systems for K, T, K4, S4, S5, D, and D4 are complete
for the corresponding classes of models.

Proof sketch: Some Hilbert systems are known to be complete for these logics, at least
for the language with no rigid symbols and no function symbols (e.g., [HC], [Fill). We
can extend these completeness results to the language with rigid symbols and function
symbols. Then we show that each of the resolution systems is at least as powerful as
one such complete Hilbert system. Specifically, we show that any Hilbert proof can be
transformed into a resolution proof, by induction on the structure of Hilbert proofs. 1

Remark: We will not discuss completeness issues for first-order G. Several notions of
completeness have been proposed for this logic and none of those based on Kripke models
seems fully satisfactory ([Fi2]).
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