
February 1986 Rcport No. STAN-CS-86-1102

Data Independent Recursion in
Deductive Databases

bY

Jeff Naughton

Department of Computer Science

Slmford Ilnivcrsity
Stanford, CA 94305

Data Independent Recursion in
Deductive Databases

Jeff Naughton*
Stanford University

February 28, 1986

Abstract
Some recursive definitions in deductive database systems can be replaced by equivalent
nonrecursive definitions. In this paper we give a linear-time algorithm that detects
many such definitions, and specify a useful subset of recursive definitions for which the
algorithm is complete. It is unlikely that our algorithm can be extended significantly,
as recent results by Gaifman [5] and Vardi [19] show that the general problem is
undecidable. We consider two types of initialization of the recursively defined relation:
arbitrary initialization, and initialization by a given nonrecursive rule. This extends
earlier work by Minker and Nicolas [lo], and by Ioannidis [7], and is related to bounded
tableau results by Sagiv [141. Even if there is no equivalent equivalent nonrecursive
definition, a modification of our algorithm can be used to optimize a recursive definition
and improve the efficiency of the compiled evaluation algorithms proposed in Henschen
and Naqvi [6] and in Bancilhon et al. [3].

-
1 Introduction
In order to increase the expressive power of database systems, many authors have pro-
posed augmenting these systems with logic-based query languages. These languages can
bk viewed either as an extension of relational query languages or as restricted logic pro-
gramming languages. The result is sometimes called a deductive database, because of
the ease with which implicit information can be “deduced” from the facts stored in the
relations.

Our model follows that of Reiter [13], and consists of two parts. The extensional
database, or E D B , is equivalent to a traditional relational database. The intensional
database, or IDB, is a set of inference rules that define relations not stored explicitly in

*Work supported by NSF grant IST-84-12791 and a grant from the IBM Corporation.

1

I

the EDB. These inference rules are function-free Horn clauses that contain no negation or
equality. An IDB predicate is recursive if its definition depends, directly or indirectly, on
itself.

Recursive rules make logic-based query languages strictly more powerful than relational
languages. This extra power is not free - recursion can be a major source of inefficiency.
There is currently a great deal of interest in finding efficient evaluation algorithms for
recursive rules (see for example [3,6,8,16,18].) Here we investigate properties of recursive
definitions that are independent of the particular evaluation algorithm used.

In the absence of recursion, Reiter [12] has shown that the definition of an IDB rela-
tion can be “compiled” to a disjunction of conjunctions of EDB relations. We will call
this disjunction the ezpanaion of the IDB predicate; it contains every conjunction of EDB
predicates that can be generated by some sequence of rule applications to the IDB predi-
cate.

The expansion of a recursively defined predicate is infinite. However, because there are
no function symbols in the inference rules, there is no way to introduce new values into
the system, and even recursively defined relations must be finite. Then for any given state
of the EDB, only a finite subset of the expansion needs to be evaluated. In general, this
subset depends on the data in the EDB relations, and the recursion is data dependent. But
for some recursive rules, we can prove that evaluating a fixed subset of the expansion will
suffice for arbitrary values of the EDB, and the recursion is data independent.

There are two natural definitions of data independence. The first is that stated in the
previous paragraph - a set of rules is data independent if-d only if it can be replaced
by a fixed, finite set of nonrecursive rules. The second definition is more restrictive, and
examines only the recursive rules. A set of recursive rules is strongly data independent if
and only if adding any nonrecursive rule produces a set that is data independent. Because
any fixed set of nonrecursive rules is equivalent to some first order expression, a set of rules
is data independent if and only if it is equivalent to some first order expression.

l&rnple 1.1 If e is the edge relation for a digraph, the following rules define the transitive
closure of the graph:

t-(X, Y) :- e(X, Z), t(Z, Y).
t(X,Y) :- e(X,Y).

Aho and Ullman [2] prove that the transitive closure is not equivalent to any first order
expression, so this pair of rules is not data independent. This in turn implies that the
recursive rule is not strongly data independent. 1

Example 1.2 Suppose we have an EDB relation likes@, Y), where Zikes(X, Y) means that
person X likes product Y. Suppose we also have an EDB relation trendy(X), where
trendy(X) means that person X is trendy. If we know that a person will buy a product if

they like it, or if they’re trendy and someone else has bought it, we can find all consumers
and the products they buy using the following rules.

bu ys(X, Y) :- likes(X, Y).
buys(X, Y > :- trendy(X), buys(Z, Y)*

This pair of rules can be replaced by

bu ys(X, Y > :- likes(X, Y).
bu ys(X, Y > :- trendy(X), ldkes(Z, Y).

so the original pair of rules was data independent. 1

Previous work [7,10,14] considers only strong data independence, although the two are
not equivalent - it is possible for a data independent set of rules to include recursive rules
that are not strongly data independent.

To further discuss related work we need a few definitions. Initially we consider a relation
t defined by a linear recursive rule t :- t, pl, ~2,. . . , p,, and a nonrecursive or exit rule t :-
el, e2,. l . 7 em,

where p and e are EDB predicates. (A linear recursive rule is a rule with
exactly one recursive predicate.) We add the restriction that the rule heads contain no
repeated variables and no constants.

Variables appearing in the heads of the rules axe distinguished variables, and those
appearing only in rule bodies axe nondistinguished variables. We standardize the variables
in the rules so that the rule heads are identical, and the nondistinguished variables in
different rule bodies are disjoint.

Sagiv [14] presents a tableau-theoretic approach to the problem. He considers typed
rules of a single predicate. (A rule is typed if each variable appears in exactly one argument
of the predicate, although it may appear in several occurrences of that predicate.) His
results can be interpreted as giving a necessary and sufficient condition for strong data
independence for sets of rules in this class.

Minker and Nicolas [lo] adopt a theorem-proving approach. They determine a class of
recursive rules such that for any rule in the class, all branches of a resolution refutation
for the predicate at the head of the rule can be terminated by subsumption. In our
terminology, they give a sufficient condition for strong data independence. Their class of
rules includes nonlinear recursion, but excludes all permutations of distinguished variables
except in predicates in which no nondistinguished variable appears. In addition, they
disallow shared nondistinguished variables between predicates.

The work by Ioannides [7] is the most similar to this work. He gives a necessary and
sufficient condition for strong data independence in single linear recursive rules having the
property that no subset of argument positions of the recursive predicate in the rule body
contains a permutation of the variables appearing in the same positions in the rule head.
This includes the trivial permutation, so the test doesn’t apply to any rule in which a
distinguished variable appears in the same position in the rule head and in the rule body.

We now describe the organization and principle results of the paper.

3

In Section 2, we give a procedure that enumerates the expansion of a recursively defined
predicate. This section also establishes an equivalence between data independence and
the existence of mappings between the strings of the expansion. Section 3 introduces the
argument/variable graph, a graph that concisely represents information about the structure
of these strings.

Section 4 defines chain generating paths in the argument/variable graph. We show that
the absence such a path is a sufficient condition for a linear recursive rule to be strongly
data independent, and show that it is a necessary and sufficient condition if the rule has
no repeated nonrecursive predicates.

Also in Section 4, we show that simple data independence is not equivalent to strong
data independence, and give a necessary and sufficient condition for a regular recursive-
nonrecursive rule pair to be data independent. (The body of a regular recursive rule
contains only one nonrecursive predicate.) Section 5 extends Section 4 by giving a sufficient
condition for strong data independence in a set of linear recursive rules.

Finally, in Section 6, we show two ways that the techniques of Section 4 can be used to
optimize the evaluation of recursive queries. The first simply notes that data independence
implies that complex termination conditions can be replaced by iteration bounds; the
second shows that, in the data dependent case, we can detect predicates that can be
moved out of the recursion, just as loop-invariants can be moved out of loops in procedural
programming languages.

2 Data Independence and Expansions
We begin this section by repeating the definitions of data independence.

Definition 2.1 A set of rules is data independent if it can be replaced by a fixed, finite
set of nonrecursive rules.

Definition 2.2 A set of recursive rules is strongly data independent if adding any nonre-
cursive rule produces a data independent set.

We will call data independence of the first type “weak” data independence when it is
necessary to distinguish between the two.

The expansion of an IDB predicate is the set of all conjunctions of EDB predicates
that can be generated by some sequence of rule applications to that predicate. Data
independence can be decided by investigating containments between the relations specified
by the elements of an expansion.

The strings of the expansion of a recursive predicate t can be enumerated by system-
atically applying sequences of rules to t. Although the results of this section hold for
arbitrary recursive definitions, for concreteness we show how to generate the expansion of
a predicate defined by one linear recursive rule and one nonrecursive rule.

4

1) Give all variables in rules subscript 0;
2) s. 0;l =

3) CurString := t ;
4) while true do
6) S := S U {CurString with r, applied};
7) CurString := CurString with r, applied;
8) increment the subscripts o f all variables in rt a n d r,;
9) endwhile ;

Figure 1: Procedure ExpandRule.

Procedure ExpandRule (Figure 1) enumerates the expansion for predicates defined by
linear recursive rules with heads that contain no repeated variables or constants. Since
this procedure imposes an order on the predicates in the conjunctions, we refer to them as
strings. The input to ExpandRule is a recursive rule, r,, and an exit rule, r,. The output
is the expansion of the recursively defined predicate, represented by the infinite set S.

Throughout the procedure, the string-valued variable CurString will have exactly one
. occurrence of the recursive predicate t. To “apply” a rule r to CurString, replace that

occurrence of t by the right side of r, after the substitutions required to unify it with the
head of the rule. In the initialization, we subscript the variables in the rules so that no
variable appears in both CurString and one of the rules. On each iteration, we increment
the subscripts for the same reason.

Example 2.1 Here we repeat the rules from Example 1.1.
7-l.: t(X, Y) :- e(X, Z), t(2, Y).
r,: t (X , Y) : - e (X , Y) .

- Since e and p are identical in this case, we let e denote the occurrence of e in the recursive
rule, and e’ denote the occurrence in the nonrecursive rule. The first four strings in the
set S are

e’(X, Y),
e(-& Z0)e’(20, Y),

e(X, Z0)e(20, &)e’(Zl, Y>,

e(X, Z0)e(20, &>e(21, Zz)e’(Zz, Y)-

I

The strings of an expansion are conjunctive queries, which Chandra and Merlin [4]
have shown to be a subset of relational expressions. If VI, V’, . . . , K are the distinguished

5

variables, and WI, W2, . . . , Wj the nondistinguished variables, then the relation specified
by the string plpz . . . p, is

{(wG,**., K)1(3Wl)(3wZ) l l 9 (3Wj)(p l A p2 A 0 9 0 A pn)}

The relation for the recursively defined predicate is the union of the relations for the strings
in its expansion.

To decide containments between the relations for these strings we use techniques related
to tableaux, a tool developed by Aho et al. [l] for deciding equivalences between relational
expressions.

Definition 2.3 A mapping m from the variables of a string si into the variables of a
string 232 is a containment mapping if m maps distinguished variables to themselves, and
ifp(Xi,... ,X,,) appears in si, then p(m(Xl), . . . , m(X,)) appears in ~2.

The following lemma shows the similarity between this mapping and containment map-
pings for deciding the equivalence of tableaux.

Lemma 2.1 If a string s1 maps to a string ~2, then the relation specified by s2 is contained
in the relation specified by s1 .

Proofi Suppose that si maps to ~2, and that tuple t is in the relation specified by
82. Since t is in the relation specified by ~2, there is some mapping ml that maps
tuples of variables in s2 into tuples of data values in tlie database. In particular,
ml maps the tuple (VI, . . . , Vn) appearing in ~(6, . . . , K) to the tuple (~1, l l l 7 an>
in the relation for p, and maps the distinguished variables of s2 to the elements of
t.

If m2 is the mapping from si to ~2, then, by definition of string mappings,
ml(m2(sl)) is a mapping from s1 to the database that proves that t is in the relation

d specified by si. 1

Another useful relationship between strings is isomorphism.

Definition 2.4 Two strings are isomorphic if they are identical up to renaming of nondis-
tinguished variables.

There are containment mappings in both directions between isomorphic strings. For a
given set of rules, the number of predicates, argument positions in predicates, and distin-
guished variables are all bounded. Thus for any k, there are only finitely many nonisomor-
phic strings of k predicates. To rephrase this, isomorphism is an equivalence relation that
partitions all strings of a given length into a finite number of equivalence classes. Any two
strings from the same equivalence class specify exactly the same relation.

We can use Lemma 2.1 to relate data dependent recursion to mappings between the
strings in expansion of the recursively defined predicate.

6

Theorem 2.1 A set of rules defining a predicate t is data independent if and only ;f, in
the expansion of t, there exists an no such that for all n > no, s, is mapped to by some
previous string.

Proof: Suppose there is such an ~20. By Lemma 2.1, after evaluating the first no
strings, evaluating subsequent strings can return no new tuples, and the first no
strings completely define the relation. If si, 0 < i 5 no, are the first 720 strings of
the expansion, then the recursive definition can be replaced by the no rules t :- si.

Suppose that t can be defined by a set of k nonrecursive rules. Let rl through rk
denote the bodies of these k rules. If we view rl through rk as relational expressions,
then the relation for t is the union of the relations for the r;. Let R denote the set
containing the Tit and S denote the expansion of t.

Consider some string rj in R. Define a one-one mapping h from the variables
of rj to some set of constants. Then construct a representative database edb as
follows: if p(VI, V2, . . . , &,) appears in rj, add the tuple (h(Vl), h(Vz), . . . , h(Vn)) to
the relation for p in edb. By the definition of edb, if D1, . . . , D, are the distinguished
variables, h proves that (h(Dl), . . . , h(Dn)) is in the relation returned by evaluating
rj over edb.

Because R and S both define t, there must be some string s in S such that
v@lL,wa)) is in the relation returned by evaluating s over edb. Thus there
is a mapping g from the variables of s to the constants in cdb such that distinguished
variables map to themselves, and the tuples of variables in s map consistently to tu-
ples of constants in edb. Since h is one-to-one, it is invertible. Then the composition
g o h-l is a containment mapping from s to g.

We can repeat this argument for every string in R to prove that every string in
R is mapped to by some string in S. (This is the result by Sagiv and Yannakakis
[15] concerning equivalences between unions of tableaux.) Because R is finite, there
must be some no such that every string in R is mapped to by one of the first no
strings of S. Now consider some string s,,, where n > no. Again using the preceding
arguments, we can show that there is some rj such that there is a containment
mapping ml from Tj to sn. But there is also a containment mapping m2 from some

_ si, i 5 720, to rj. Then m2 o ml maps 8; to sn. This argument holds for any n > no,
so the proof is complete. 1

We close this section by noting that if we allow the nonrecursive predicates to be IDB
predicates, then any necessary condition for data independent recursion must take into
account the definitions of these predicates. As an example, if we take the recursive rule of
Example 2.1 and add r3:

7-3: e(X, Y) :-- a(X), b(Y),
to ri and r2, then t can be defined by the nonrecursive rule

rl,: t(X, Y) :- a(X), b(Y).

7

and the recursion strongly data independent. In the following, we assume that all nonre-
cursive predicates are EDB predicates.

3 The A/V Graph
In Section 2, we reduced the question of data independence to the existence of mappings
between the strings in the expansion of the recursively defined predicate. The existence of
these mappings depends on the patterns of shared variables in the strings. In this section
we return to the class of rules handled by procedure ExpandRule - one linear recursive
rule with no repeated variables or constants in the rule head.

To relate the patterns of variables appearing in the strings of S to the structure of the
rules, we define the argument/variable (A/V) graph:

l For each variable appearing in the rules add a variable node.

l For each argument position in each rule body add an argument node.

l Draw a directed edge from each argument node to the node for the variable that
appears in that position in the rule. This kind of edge is called an identity edge.

l Draw a directed edge from each argument node corresponding to a position p in the
recursive predicate to the node for the distinguished yariable that appears in the p
in the rule head. This kind of edge is called a unification edge.

The node for a variable X is labeled X, and the node for argument position i of a predicate
p is labeled pi. A node for a distinguished variable is a distinguished variable node; all other
variables nodes are nondistinguished. Because of the one-to-one correspondence between
positions in the bodies of rules and the argument nodes in the A/V graph, we use position
names to refer to both an argument position and the argument node it is represented by.
Similarly, we use variable names to refer to variable nodes.

Many of the subsequent results depend on the existence of certain kinds of paths
through the A/V graph. Some nonstandard terminology arises because we allow the di-
rected edges in an A/V graph to be traversed from head to tail as well as from tail to head;
thus-a path in an A/V graph can contain unification edges traversed in either direction.

Example 3.1 Figure 2 gives the A/V graph for the rules of Example 2.1. [

The following properties of A/V graphs are immediate from their definition:

1. Each edge in the graph is between an argument node and a variable node.

2. Each distinguished variable node has exactly one incident unification edge; nondis-
tinguished variable nodes have no incident unification edge.

8

e e’2r1

Figure 2: A/V graph for Example 2.1.

3. Each argument node has exactly one incident identity edge; argument nodes for
positions of the recursive predicate are also the source of exactly one unification
edge.

The A/V graph is similar to the o-graph developed independently by Ioannides. The a-
graph differs primarily in that there are no argument nodes; the information about the
variables appearing in each predicate is represented by predicate edges, which, for every
nonrecursive predicate, connect the nodes for the variables appearing in that predicate and
are labeled with the name of that predicate. Because the a-graph has no argument nodes,
some information is lost.

There is a close relationship between the A/V graph and procedure ExpandRule of
Section 2. If a predicate instance first appears through applying a rule on iteration i, then
we say that predicate instance was produced on iteration i. (The first iteration of the
while loop is iteration 0.) There are two ways a predicate appearing in a string s of S can
be produced on iteration i. It can be added to CurString through applying the recursive
rule, or, if s was added to S on iteration i, it can be produced by applying the exit rule.

Consider iteration i. At line 8 on iteration i - 1, the variables in the rules were given
subscript i. Letting the argument nodes of the A/V graph represent the bodies of the
rules, we represent iteration i by subscripting the labels of the variable nodes by i. (Figure

3(a))*
Because the heads of the rules contain no repeated variables or constants, the unification

can be done by replacing the subscripted distinguished variables by the variables appearing
in the instance of t in CurString. If we consider the argument nodes for t as representing
that instance of t, the variable at the end of a unification edge is replaced by the variable
appearing in the argument at the beginning. On iteration 0, because of the initialization of
Curstring, these arguments contain the distinguished variables. On all other iterations,
they hold the variables that were put there on the previous iteration - in this case, zi-1

9

er1

Xi

r
t1

e r2

Figure 3: A/V graph for Example 2.1.

and Y. (Figure 3(b)).
After the substitution, argument p of a predicate produced on iteration i will contain

the variable that is the label of the node at the end of its incident identity edge. In
our example, the predicate added by the nonrecursive rule will be e’(Z;-1, Y), and the
predicates added by the recursive rule will be e(Z;-1, Zi)t(Zi, Y).

The previous two paragraphs show how we can determine what variable appears in
any position of any predicate in the expansion. The following two facts can be proven by
induction:

Fact 3.1 A nondistinguished variable Wi appears in position p in a predicate produced
on iteration i + k if and only if there is a path from W to p containing k unification edges,
all traversed in the forward direction.

Fact 3.2 A distinguished variable V appears in position p on iteration i if and only if
there is a path from V to p containing i unification edges, all traversed in the forward
direction.

Any A/V graph can be divided into two kinds of connected components, those contain-
ing nondistinguished variables and those containing only distinguished variables. (Con-
nected components in A/V graphs can require unification edges to be traversed in either
direction.) The following two lemmas show that each type of component has a specific
structure.

Lemma 3.1 If a connected component in an A/V graph contains a nondistinguished vari-
able W, it is a tree, and W is the only nondistinguished variable in the component.

Proof= Consider starting at the node for some nondistinguished variable Wo. The
only edges incident on nondistinguished variables are identity edges, so if we explore

10

any path p out of Wo, the first edge must be an identity edge. Suppose this identity
edge goes to an argument al.

Since al has exactly one incident identity edge, if p can be extended, the second
edge in p must be a unification edge, which by definition connects al and some
distinguished variable node, say V2. The edges incident on V2 are one unification
edge, which has already been traversed, and some number of identity edges. Then
if we extend p, the next edge must be an identity edge to a3. Furthermore, since
we’ve already traversed the only identity edge incident on al, a3 # al.

We prove by induction that for all j > 0, edge 2j must be a unification edge
to a distinguished variable node that hasn’t been visited previously, while edge
2j + 1 must be an identity edge to an argument node that also hasn’t been visited
previously.

The basis, j = 1, has been shown. Suppose that edge 2j - 1 is an identity edge
to an argument node azj-1 that hasn’t been visited previously. Because asj-1 has a
single incident identity edge, if we extend p, edge 2j must be a unification edge to a
distinguished variable node V2j. Furthermore, because each distinguished variable
node has only one incident unification edge, Vzj hasn’t been visited previously.

Now consider extending the path from V2j. Edge 2j + 1 must be an identity
edge to azj+i. But because a2j+i has only one incident identity edge, a2j+i can’t
have been visited previously. u

Lemma 3.2 If a connected component contains no nondistinguished variable, that com-
ponent must contain a cycle.

Proof: Suppose that we explore a path p starting at some distinguished variable
Vo. Vo has an incident unification edge; if we follow it, we reach an argument
node, say al. There must be an identity edge out of al; the only way to extend
p is to take this identity edge. This edge must go to some distinguished variable
V2, or else the connected component would contain a nondistinguished variable. If

v2 = Vo, we have a cycle. If not, we continue with V2. Because there are only
finitely many distinguished variables, we must eventually return to some previously
visited distinguished variable node, and there will be a cycle. u

Lemmas 3.1 and 3.2 combine with Facts 3.1 and 3.2 to prove that

1. Arguments in connected components that contain a cycle will eventually contain only
the distinguished variables appearing on the cycle.

2. Arguments in connected components that contain no cycles will eventually contain
only subscripted instances of the nondistinguished variable in the component.

11

Example 3.2 See Figure 2 for the A/V graph for Example 2.1. There are two connected
components in this graph. The first, { t2, Y, e’2}, contains the cycle t2 + Y + t2. Then
Fact 3.2 implies that Y always appears in ef2. The remaining nodes form a tree, and 2 is
the only nondistinguished variable in the tree. By Fact 3.1, Zi appears in e2 and e” on
iteration i, and in e1 on iteration i + 1. @

In Section 4 it will be important to know how variables are shared between the predi-
cates in the expansion. Things are complicated by the possibility of repeated variables in
the rule body. Repeated variables give rise to branches in the paths from variable nodes to
argument nodes, and the variable at the root of such paths appears on all branches. Thus
to determine when argument positions share variables, we need to follow unification edges
backward (toward the argument nodes) as well as forward.

To count the net number of forward unification edges in a path, we introduce weights on
the edges of the A/V graph. The weight of an identity edge is 0; the weight of a unification
edge traversed in the forward direction is 1, and the weight of a unification edge traversed
in the reverse direction is -1. The weight of a path in the A/V graph is the sum of the
weights of the edges in the path. With this definition, we have the following lemma:

Lemma 3.3 For i 2 max(j, k), a variable appears in position pl of a predicate produced
on iteration i + j, and in position p2 of a predicate produced on iteration i + k, if and only
if there is a path from from pl to p2 of weight k - j.

Proof: If V is a nondistinguished variable, then by Fact 3.1, V appears in pl
if and only if there is a path from the node for V to pl containing j unification
edges, and a path from the node for V to p2 containing k unification edges. The
concatenation of these two paths is a path from pl to p2 of weight k - j.

If V is a distinguished variable, then by Fact 3.2, V appears in pl if and only if
there is a path from the node for V to pl containing i+ j unification edges, and a path

M from the node for V to p2 containing i+k unification edges. Again, the concatenation
of these two paths is a path from pl to p2 of weight -(i + j) + (i + k) = k - j. n

The proof shows that the path can always be divided into two segments. The first runs
from @i to some variable node V and contains only identity and reverse unification edges;
the second runs from V to p2 and contains only identity and forward unification edges. The
clause “for i 2 max(j, k)” is necessary because for i < max(j, k), the argument positions
at the ends of the two segments could still contain variables from intermediate nodes in
the segments.

Example 3.3 Consider the following pair of rules:

rr: t(X, y, 2) :- t(W, w, X), P(K 2).
r,: t(X, Y, 2) :- e(X, Y, 2).

12

e1 e2 e3

Y

\
1E*

*’
,)

9I
t2 IT”

z w

v. a 1 3
P’ P’

Figure 4: A/V graph for Example 3.3

The first four strings generated are

e(X, Y, Z),

@f-G 9 Wl, X)P(Y, z>,
e(Wz, w2, W)P(W 7 X)P(Y, q,

e(W3, w3, wz)P(W2, Wl)P(W 7 X>P(Y, 2).
The A/V graph for these rules is given in Figure 4. There is a path from p’ to p2 of
weight (-1) + 2 = 1, SO by Lemma 3.3, with j = 0, and k + 1, for i >, 1, position p’ in a
predicate produced on iteration i shares a variable with position p2 in a predicate produced
on iteration i + 1. fl

4 Testing for Data Independence

- 4.1 Unbounded Chains
In Section 2, we reduced the question of data independence to the existence of mappings
between the strings in the (infinite) expansion of the recursively defined predicate. The
existence of those mappings is in turn tied to the presence of unbounded chains in the
expansion. Informally, the expansion contains unbounded chains if, for any n, we can find
a string of the expansion that contains a subsequence of 2 n predicates such that each
shares a nondistinguished variable with the next. Strictly speaking, no single string in the
expansion contains an unbounded chain. However, we will occasionally refer to chains that
grow from string to string as instances of the unbounded chain.

Example 4.1 In the expansion of the transitive closure rules, (Example 2.1), string n
contains a sequence of n e predicates, linked by the 2;‘s. Thus the expansion contains
unbounded chains. 1

13

It is easiest to define unbounded chains in terms of the A/V graphs for rules that
produce them. Unbounded chains depend only on the recursive rule; to detect them, we
augment the A/V graph for the rule by adding predicate edges between adjacent argument
positions of each nonrecursive predicate. These predicate edges have weight zero.

Definition 4.1 A path in the the augmented A/V graph for a recursive rule is a chain
generating path if and only if

1. For every argument position p on the path, there is a path containing no predicate
edges from some nondistinguished variable node to p, and

2. It is a simple cycle of non-zero weight.

The following lemma justifies the name “chain generating path.” In this subsection we
will say that each occurrence of a predicate in the body of the recursive rule is a different
instance of that predicate.

Lemma 4.1 The strings in S contain a sequence of predicates pl,p~, . . . ,p, = pl such that

1. pl and p, were produced on different iterations by the same predicate instance in the
recursive rule, and

2. For 1 < i < n, pi and p;+l share a nondistinguished variable

if and only if there is a chain generating path in the augmented A/V graph for the recursive
rule.

Such a sequence is called a link, and the positions holding the shared variables the
linking positions. Because the first and last predicates of a link are instances of the same
predicate, produced on different iterations, the last predicate of one link can be the first
predicate of another. Thus for any n, we can find a string in the expansion that contains
a subsequence of n predicates, each connected to the next by a shared nondistinguished
variable.

Proof: (Lemma 4.1) Suppose that there is a chain generating path containing n
predicate edges. The predicate edges partition the path into n - 1 segments. Let
the ith segment start in position p? of predicate p;, end in position pi+1 of predicate
p;+i, and have weight k;. By Lemma 3.3, the variable appearing in pf on iteration
j will appear in position pi+I on iteration j + k;. Thus sufficiently long strings in
the expansion will contain sequences

p = p1 --s p2 A p3 . ..p.,1 %pn =p,

where the label on each arrow is the number of iterations between the appearances
of the predicates on either side of the arrow, and the predicates on either side of

14

an arrow share a nondistinguished variable. Because the total weight of the cycle
is nonzero, pl and p, can’t have been produced on the same iteration.

Now assume that the strings of the expansion contain a sequence pl, ~2, . . .,
Pn = p’, such that pl and pi were produced on different iterations by the same
predicate instance in the recursive rule, and that for 1 < i < n, pi and p;+l share a
nondistinguished variable. We can assume without loss of generality that no three
predicates share the same nondistinguished variable. Also, we can assume that with
the exception of pl and pi, the p; where produced by different predicate instances
in the recursive rule. Then for 1 5 i < n, in p; there are distinct argument positions
pt and pf such that pf and P:+~ share nondistinguished variables. By Lemma 3.3,
for 1 5 i < n there must be a path in the A/V graph from pt to P:+~ of weight k;.
These paths are connected by predicate edges, and form a simple cycle. We claim
that this cycle is a chain generating path.

By Fact 3.1, a nondistinguished variable Wj appears in position p on iteration
i only if there is a path from W to p of weight i - j. Then because the linking
positions of the sequence contain nondistinguished variables, for all p on the path
there must be a predicate edge-free path from some nondistinguished variable node
to the node for p.

Since pl and pi were produced on different iterations, Cy-’ ki # 0, and the cycle
will have a nonzero weight, so the path is a chain generating path. 1

Example 4.2 The chain generating paths in most commonly exhibited recursive rules
consist of a single segment. In the transitive closure example (Example 2.1 and Figure 5),
the chain generating path visits e’, e2, 2, t’, and X. The corresponding link is a pair of
e predicates, produced on iteration i and i + 1 for all i, and the corresponding unbounded
chain begins

e(X, z0)e(z0, &)e(&, z2)e(Zz, 23). . .

For a two segment chain generating path, consider the following recursive rule:

t(X, Y) :- P(X w>, q(w, Z), t(G Yb
The A/V graph for this rule is given in Figure 6. One segment of the chain generating
path goes from p2 to ql; the other goes from q2 to p’. The corresponding link is

and the corresponding unbounded chain begins

p(X, Wo)q(Wo, Zo)p(Zo, w,>q(K Zl)PVl~ WMWd2) l l l

15

z

e1 e2

x Y

e
t’ t2

Figure 5: Augmented A/V graph for Example 1.1.

L”il
p’ p2 q1 q2 t’ t2

Figure 6: Augmented A/V graph for the two segment rule in Example 4.2.

There are two more important facts about unbounded chains.

Fact 4.1 In the chains produced by a chain generating path, no variable appears twice in
any linking position.

Fact 4.2 In the chains produced by a chain generating path, there is a distinguished
variable in at least one linking position in the first predicate of the chain.

Proof: (Fact 4.1) By Fact 3.1, since there are paths from nondistinguished vari-M
ables to all positions on the chain generating path, eventually all positions on the
chain generating path will contain nondistinguished variables. We prove Fact 4.1
by showing that if a nondistinguished variable appears in position p, no variable
appears twice in position p. Suppose that Wi appears in position p on iterations
i/kiandi+k2. Then there must be paths from W to p of lengths ICI and kg. But
then, again by Fact 3.1, if kr < k2, on iteration i + k2, both Wi and Wi+kz-kl must
appear in p.

(Fact 4.2) Supp ose we arbitrarily pick some node and make one complete cycle of
the chain generating path. Let Wmin and 20~~~ be the minimum (maximum) weight
of any node on the cycle, relative to the starting node. Then if k = wmat - wmin,
the predicates produced on the first k + 1 iterations will contain one complete link.
Let thislinkbepr, pz,...,pn = pl. We will continue to use pl and p, to distinguish
the two occurrences of the same predicate.

16

p’ p2 t’ t2 t3 q’ q2

Figure 7: Augmented A/V graph for Example 4.3.

p,, in its role as the last predicate in the first link, must share some variable
with a predicate in the second link of the chain, say q. By Lemma 3.3, there must
be a path from an argument position of q to an argument position of p. However,
pl cannot share a variable with an earlier instance of q, or else the sequence of
predicates from this instance of q to the later instance of q would be the first link
of the chain. This is possible only if pl was produced on iteration i, and the path
from the variable node for the variable shared between p and q to the position of p
has more than i reverse unification edges. But then on iteration i, this position of
p must contain a distinguished variable. 1

Example 4.3 The A/V graph for the following rule (Figure 7) has a chain generating
path that illustrates some of the points in the proof of Facta4.2.

t(X K 2) :- P(X q, tw, M, N), q(M, NJ*
There is a two-segment chain generating path, with one segment from q’ to p’, and the other
from p2 to q2. If we start at position q’ and traverse the path, we find that wmcrz - wmin =
2 - 0 = 2, so a complete link will be generated in the first three iterations. The predicates
produced on the first three iterations, subscripted by the iteration on which they appeared,
are

The first link runs from pl to qo to p2. pi shares No with q& and there is a path containing
2 unification edges from N to p*. Because pl is produced on iteration 1, p: shares no
variable with any q instance, and contains the distinguished variable Y. I

4.2 Strong Data Independence
Strong data independence is equivalent to data independence with an arbitrary initializa-
tion of the recursive relation. It is easier to test for than weak data independence because
there is no possibility of a recursive rule that would be data dependent but for some
nonobvious interaction with the nonrecursive rule.

17

Theorem 4.1 A linear recursive rule is strongly data independent if there is no chain
generating path in the augmented A/V graph for the rule.

Proof: By showing a stronger condition: if the A/V graph for a rule contains no
chain generating path, then there is a k such that if a string s is generated by more
than k successive applications of the rule, then s is mapped to by a string generated
by no more than k successive rule applications.

We first prove a bound on the distance between occurrences of the same nondis-
tinguished variable in the strings of the expansion.

Let I be the maximum weight of any acyclic path in the A/V graph. By Lemma
3.1, no nondistinguished variable can appear in a position reachable from a cyclic
path. Then Lemma 3.3 implies that no nondistinguished variable appears in two
predicates produced on iterations more than 2 apart.

By Lemma 4.1, if there is no chain generating path, there is no sequence of
predicates, linked by shared nondistinguished variables, that starts and ends in two
instances of the same predicate. Let rt be the number of predicates in the recursive
rule. Then in any substring produced by more than In consecutive applications
of the recursive rule, there is no predicate connected, via a sequence of predicates
sharing nondistinguished variables, to predicates appearing both before and after

* the substring. (If there were, there would be a sequence of predicates satisfying the
conditions of Lemma 4.1, which would imply a chain generating path.)

Let L = Zn2, the number of predicates produced by in consecutive applications
of the rule, and let I be the number of nonisomorphic instances of strings of L
predicates. Furthermore, let r be the number of nonisomorphic instances of the
recursive predicate t. Then any string s that is longer than rIL can be written as

M where plcypz and picw’pi are isomorphic, each is L predicates long, and the t instances
that generated pz and pi are isomorphic. Here pl and p2 are predicates, and a! and
p are strings of predicates.

Consider the string s’,
sf = . . .p1cup’, . . . ,

formed by deleting the predicates in s from p2 up to but not including pi. Because
the instances of t that generated p2 and ph were isomorphic, s’ can be generated
by deleting the subsequence of rule applications that produced pzppi(~’ from the
sequence of rule applications that produced s. Thus s’ is also in S.

We claim that s’ maps to s. No predicate appearing in CII in s’ can be linked by
predicates sharing nondistinguished variables to predicates appearing both before
pl and after pk, and any distinguished variables in ar appear in the same positions
as they do in cy and in (Y’ in s. If a predicate in cy in s’ is linked to predicates

18

appearing before pl, map it to the corresponding instance in cy in s; else, map it to
the corresponding instance in ac’. Map all predicates appearing after pi in s’ to the
corresponding predicates appearing after pk in s, and map all predicates appearing
before pl in s’ to the corresponding predicates appearing before pl in s. u

Chain generating paths can be detected in time linear in the length of the recursive rule.
The algorithm has two phases, each phase checking one part of the definition.

Phase 1 uses depth-first search on the non-augmented A/V graph to discover the con-
nected components for each distinguished variable node, and removes all nodes in any
connected component that contains a cycle. The argument nodes in such a component
are exactly the argument nodes that will always contain distinguished variables; removing
them leaves exactly the nodes that can be reached from a nondistinguished variable node.

The second phase operates on the augmented A/V graph, restricted to the nodes that
survived phase 1. Phase 2 uses depth-first search, starting at each nondistinguished variable
node W, to search for a node that can be reached by two paths with different weights. The
A/V graph contains a chain generating path if and only if there is such a node. (Phase 2
is essentially Algorithm 6.1 in Ioannides [7].)

Unfortunately, a chain generating path is not a sufficient condition for data dependent
recursion. The strongly data independent rules with chain generating paths are strange.

Example 4.4

is a strongly data independent rule with a chain generating path. 1

It is easy to define subclasses of rules such that a chain generating path is indeed
a sufficient condition for data dependence. One such class, rules for which the (non-
augmented) A/V graph contains no cycles, was considered by Ioannides [7]. Another such
class is rules with no repeated nonrecursive predicates. To prove this, we use another fact
about unbounded chains.e

Fact 4.3 Let r be a linear recursive rule with no repeated nonrecursive predicates, and
let the expansion for r contain unbounded chains. Then if string si in the expansion maps
to another string ~2, all variables in the unbounded chain in si must map to themselves in
$2.

Proof: By induction on the positions of the predicates in which the variables
appear.

Let p be the first predicate in the chain. By Fact 4.2, there is a position a

in p that contains a distinguished variable. Then, because there are no repeated
predicates in the rule, by Fact 4.1, this is the only instance of p such that a contains
that distinguished variable. Thus if this instance of p is to map any predicate in ~2,
every variable in this instance of p must map to itself.

19

Assume that the variables in predicate i in the chain in sl must map to them-
selves in ~2. Predicate i + 1 shares a linking variable, say W, with predicate i, so W
must map to itself. Suppose W appears in position b in predicate i + 1. As there
are no repeated predicates in the rule, Fact 4.1 implies that predicate i + 1 is the
only instance of the predicate that contains W in position b. Thus every variable
in predicate i + 1 in si must map to itself in ~2. fl

Theorem 4.2 A linear recursive rule with no repeated nonrecursive predicatea is strongly
data independent if and only if there is no chain generating path in the augmented A/V
graph for the rule.

Proof= The “if” part is given by Theorem 4.1.
For the “only if” part, suppose that there is a chain generating path in the A/V

graph for the rule, and that the recursively defined predicate is t(X,, . . . , X,,J. We
show that if we add the base rule
r,: t(X*, . . . ,Xm) :- to(X*, . . . ,Xm).

where to doesn’t appear anywhere in the recursive rule, then the recursion is data
dependent.

In any chain generating path, there must be at least one segment that is of
positive weight. Suppose that this segment runs from position p to position p’.
Since this path must contain a unification edge, it must pass through a distinguished
variable node. But every distinguished variable node shares an identity edge with
some position of to, so there must be a positive weight path from p to some position
of to. Then by Lemma 3.3, to shares a linking variable with the unbounded chain.

Let W, be a linking variable shared between the chain and to in si, and suppose
that W, appears in argument position tb. By Fact 4.3, W;, must map to itself in
~2. But because s2 is longer than s 1, the variable appearing in tb in s2 can’t be Wm.
Because there is only one instance of to in the string, si can’t map to ~2, and by
Theorem 2.1, the recursion is data dependent. 1

ExaFple 4.5 The augmented A/V graphs for the recursive rules of Examples 2.1, 2.4,
and 215 all satisfy the conditions of Theorem 4.2, so they are not strongly data independent.
The augmented A/V graph for the rule

rt: t(X, Y, 2) :- t(Y,X, W), e(X, W).
is given in Figure 8. There is no chain generating path, so the rule is strongly data
independent. 1

20

t’ t2 t3 e1 e2

Figure 8: Augmented A/V graph for Example 4.5

4.3 Weak Data Independence
If we pair a strongly data independent rule with any exit rule, the pair will be data
independent. However, the recursive rule in a weakly data independent recursive rule-exit
rule pair need not be strongly data independent. Results for weak data independence are
less clean than those for strong data independence because they must deal explicitly with
interactions between the recursive rule and the exit rule.

Example 4.6 Consider again the transitive closure rule,

I’*: t(X, Y) :- e(X, Z), t(Z, Y)
where e is an EDB predicate. There is a chain generating path in the A/V graph for this
rule, so it is not strongly data independent. If we add the usual nonrecursive rule

r2: t(X, Y) :- e(X, Y),
the recursion is data dependent. However, if we replace r2 with

ri: t(X, Y) :- e(W, Y).
then t is completely defined by the exit rule rk. Our second example shows what can
happen if there are multiple nonrecursive predicates in the recursive rule.

r3: t(X, Y) :- t(X, q, e(Z, Y), e(X, W), e(w, Y)*
7-q: t(X,Y) : - e (X,Y) .
Here, after the first string, all strings contain the two-predicate chain e(X, Wl)e(WI, Y), so
the second string in S, e(X, &)e(Zi, Y)e(X, Wl)e(Wl, Y), maps to all subsequent strings,
and the recursion is data independent. i

Recently, Vardi [19] has proven that weak data independence is undecidable even for
recursive definitions containing only one linear recursive rule. However, we can test for
necessary and sufficient conditions for weak data independence in predicates defined by

1. One regular recursive rule (a regular rule is a linear recursive rule with a single
nonrecursive predicate), and

2. One nonrecursive rule with a single-predicate body.

21

Proofs of necessary and sufficient conditions for weak data independence for such rules
closely parallel the proof of Theorem 4.2. In that proof we paired the recursive rule with
a nonrecursive rule with a single predicate body, to. We used two properties of to. First,
in the strings of the expansion, to shares a nondistinguished variable with the unbounded
chain. Second, if si is to map to ~2, the to instance in si must map to the to instance in
320

If the predicate of the nonrecursive rule satisfies the first property, we say that it is
connected to the unbounded chain; if it satisfies the second, we say it is irredundant. When
considering strong data independence, we can choose the predicate in the nonrecursive rule
so that it is connected and irredundant. The task in weak data independence is to decide,
given a recursive-nonrecursive rule pair, whether the predicate in the nonrecursive rule has
these properties. If it does, then we can apply the following theorem:

Theorem 4.3 Given a regular recursive-nonrecursive rule pair, with e being the predicate
in the nonrecursive rule body, the recursion is data dependent if and only if

1. There is a chain generating path in the augmented A/V graph for the recursive rule,
and

2. e is connected to the unbounded chain, and

8. e is irredundant.

Proof= The “if” condition follows exactly that of Theorem 4.2.
The “only if” part uses a cyclic property of the strings of S. Since there are

only a finite number of nonisomorphic instances of t, if we observe the instances of
t in CurString through successive iterations, we must eventually see two that are
isomorphic. Furthermore, after a startup interval of I iterations, if the number of
iterations between the isomorphic instances is r, then for any i, the instances oft in

a CurString on iteration i and on iteration i+T are isomorphic. (The startup interval
is the number of iterations until distinguished variables that appear in no cycles have
disappeared, and is bounded above by the maximum number of unification edges in
any acyclic path in the A/V graph.) Since the predicates added to Curstring on
any iteration depend only on the recursive rule (which is fixed) and on the instance
oft, for any m, a predicate produced on iteration I+i is isomorphic to one produced
on iteration I + mr + i.

By Theorem 4.1, a chain generating path is a necessary condition for data de-
pendent recursion. Suppose that there is a chain generating path, but that e is not
connected to the unbounded chain. Then the only variables e can share with the
unbounded chain are distinguished.

Because predicates produced mr iterations apart are isomorphic, distinguished
variables appear in the same positions in predicate instances produced mr iterations

22

apart. Then for all m and j, the string

is mapped to by
Pl ***PI+1 l . l PI+~PI+~+~ l . . PI+.,+je,

where we map pi in the second string to pi in the first, and the e predicate to itself.
Finally, if e is redundant, by definition of irredundance, we can map si to s2 by

’ mapping all predicates but e to themselves, and mapping e to some predicate in ~2.
I

We can decide both irredundance and connectedness from the A/V graph for the pair of
rules.

Definition 4.2 The predicate e of the exit rule, is irredundant if either

1. e # p, or

2. There is a path from a distinguished variable node V, where V is on a cycle, to an
argument of e such that there is no path from V to the same argument of p, or

3. There are paths from some variable node V to two distinct arguments of e, each of
weight k, and no j such that there are paths of weight j from some variable node to
both of the corresponding arguments of p, or

4 . Let {VI,... , Vn} be the distinguished variable nodes such that there is an identity
edge from Vi to eii , and for each Vi there is a positive weight path from some argument
of p to Vi. Then there must be no k such that, for all i, there is a path of weight k
from I$ to pi’.

e This definition is complex, but the intuition is simple. Either of conditions one, two,
or three guarantee that the exit predicate maps to no other predicate in any string. In
condition four, the variables at the beginnings of paths to the Vi are the variables that are
shared between the exit predicate and the chain. By Fact 4.3, if one string is to map to
another, these variables must map to themselves. If there is no k as described, then e will
contain these variables in a pattern different from any p predicate in any string, and again
e must map to itself.

Definition 4.3 The predicate e of the nonrecursive rule is connected to the unbounded
chain if and only if there is a positive weight path from some argument of p, through some
nondistinguished variable node, to an argument of e.

By Lemma 3.3, this definition guarantees that e will share a nondistinguished variable
with some instance of p in the chain.

23

Figure 9: A/V graph for rules r, and r, in Example 4.7.

e2

Example 4.7 Consider the following rules:
rT: t(X, Y, U, W) :- t(X, M, M, Y), e(M, Y).
?-,I t(X, Y, U, W) :- e(X, X).

Since the nonrecursive predicate in both rules is e, we use e’ for the instance of e in r,. In
the A/V graph for these rules (Figure 9), there is no path satisfying Definition 4.3, and
the exit predicate is not connected. The expansion for t begins

e’(X, X),
e/(X, X)e(Mo, Y),

e/(X, X)e(M, Mo)e(Mo, Y),

e’(X,X)e(Ms, M&(M’,Mo)e(Mo,Y).

Any string in the expansion can be mapped to any subsequent string.
If we replace r, by
- r$ t(X, Y, U, W) :- e(U, W).
then the path in Figure 10 from e’ to e’* proves that e’ is connected. However, condition
4 of Definition 4.2 is not satisfied. The distinguished variable nodes with identity edges to
nodes of e’ are U and W, and there are positive weight paths from arguments of e to both
U and W. Also, there are paths containing one unification edge from U to el, and from
W to e2. This implies that a string produced on iteration i will map to all longer strings
by mapping the e predicates to themselves, and mapping e’ to the instance of e produced
on iteration i - 1. The first four strings of the expansion confirm this:

e’(u, W),
e’(MO, Y)e(Mo, Y),

e’(Ml, Mo)e(Ml,Mo)e(Mo,Y)~
e’(M2, Ml)e(Mz, M~)e(M~yMo)e(Mo~Y)*

24

Figure 10: A/V graph for rules r, and r6 of Example 4.7

If we replace ‘I‘, by

rf: t(X, Y, U, W) :- e(U, U).
then the paths from U to et1 and et2 in Figure 11 satisfy condition 3 of Definition 4.2,
and exit predicate is no longer redundant. Theorem 4.3 says that the recursion is data
dependent. Here the first four strings are

e’(M& Mo)e(M& y),

e’(Ml, M&(Ml, Mo)e(M& Y),
e’(M2, M2)e(M2, M&o19 Mo)Gh y)*

5 An Extension to Multiple Rules
consider a predicate defined by n linear recursive rules t :- ti, pii, . . . , Piki , where 1 < i 2 72,
and m nonrecursive rules t :- eji, . . . , ejkJ, where 1 < j < m. The subscripts on the t
predicates are to distinguish the instances in different rules, while the pik and e;j may be
distinct sets of predicates.

Gaifman [5] has shown that deciding if such a set of rules is weakly data independent
is undecidable, and Mairson and Sagiv [9] have extended his result to show that even
strong data independence is undecidable for multiple linear recursive rules. However, we
can extend Section 4 to give a sufficient condition for strong data independence in sets of
recursive rules.

25

3

Figure 11: A/V graph for rules rt and rF of Example 4.7

Procedure ExpandRule must be changed so that Curstring, instead of being a single
string, is a growing set of strings. The procedure methodically applies the rules in all
possible ways so that on iteration i, all strings that can be generated by i applications of
the rules are produced.

We can represent the set CurString over time as a tree, where the label of the root is
t’, and the labels of nodes on level i are the strings that were the elements of Curstring
on iteration i. Paths in this tree correspond to sequences of rule applications - a child
node is the result of one more rule application to the sequence that produced its parent.
Each node in this tree has associated with it the m strings of base predicates generated
by applying the m exit rules to its label. From this perspective, the above procedure is a
breadth-first construction of the rule/goal tree [l7] for the input rules.

We must also extend the interpretation of the A/V graph. In a multiple rule A/V
graph, in addition to telling where a variable appears in the strings of S, paths specify
sequences of rule applications. Informally, when following a path, we start by assuming
that a variable V appears in some position p on an iteration i. This implies that the rule
containing p was applied on iteration i. As we follow paths through the A/V graph, taking
identity edges corresponds to moving between argument positions of predicates produced
on the same iteration. Taking a unification edge in the forward direction specifies the rule
to be’ applied on iteration i + 1, while taking a unification edge in reverse specifies the rule
to be applied on iteration i - 1. By induction, if we start by considering what variable
appears in a position p on iteration i, and the weight of the path traversed from p to a
position p’ of rule rj is w, then rule rj must be applied on iteration i + W.

There are some paths that imply that a string was generated by applying multiple rules
on a single iteration. Such paths are termed inconsistent and must be disallowed. The
relationship between path weights and iterations suggests the following definition.

Definition 5.1 A path through an A/V graph is inconsistent if it contains argument

26

1
t :
X

t :

Pf

V

Pi

Figure 12: A/V Graph for the recursive rules of Example 5.1

positions p and p’ such that p and p’ appear in different rules, and the weight of the prefix
of the path top is the same as the weight of the prefix of the path top’. A path is consistent
only if it is not inconsistent.

Example 5.1 Consider the following three rules defining a relation t.
rl: t(-& y, 2) :- h(X, u, Z), Pl(U, 2).
7’2: qx, y-7 2) :- tz(X, y-7 q, P2(v, Y)*
r3: t(X, Y, 2) :- e(X, Y).
A portion of the first three levels of the rule/goal tree for these rules is given in Figure
13. The A/V graph for the same rules is given in Figure 12. The t$ and pi are argument
positions of rule r2, and the tf and pf are argument positions of rule rl. The longest path
in Figure 13 corresponds to the sequence of rule applications ri, r2, rl. The string produced
by this sequence followed by r3 is

e(X, vz)Pl(uz, K)P2(& uo)Pl(uo,q

An inconsistent path through the A/V graph is given in Figure 14. It would require that
rule r1 and rule r2 both be applied on the same iteration. fi

In multiple recursive rule A/V graphs, modified versions of Facts 3.1 and 3.2 still hold.

Fact 5.1 There is a sequence of rule applications such that a nondistinguished variable
Wi appears in position p in a predicate produced on iteration i + k if and only if there is
a consistent path from W to p containing k unification edges.

Fact 5.2 There is a sequence of rule applications such that a distinguished variable V
appears in position p on iteration i if and only if there is a consistent path from V to p
containing i unification edges.

27

Figure 13: The rule/goal graph for Example 5.1

Figure 14: An inconsistent path for the recursive rules of Example 5.1

28

The following version of Lemma 3.3 holds:

Lemma 5.1 For i 2 max(j, k), there is a sequence of rule applications such that a variable
appears in position pl of a predicate produced on iteration i + j, and in position p2 of a
predicate produced on iteration i + k, if and only if there is a consistent path from pl to p2
of weight k - j.

Proof: Follows closely that of Lemma 3.3, using Facts 5.1 and 5.2 instead of 3.1
and 3.2. 1

The definition of a chain generating path must be extended in two ways. First, the path
must be consistent. Second, it is not enough that there be some path from a nondis-
tinguished variable into every argument position of the chain generating path - these
paths must specify sequences of rule applications that are consistent with that specified
by the chain generating path. Here we use the fact that the sequence of rule applications
specified by a chain generating path can be repeated to generate arbitrarily long chains.
Thus if ril riz . . . rik is the sequence of rules applied along the chain generating path, and
rj, rj, . . . rj, is a sequence of rules applied along a path from a nondistinguished variable
to an argument position on the chain generating path, for some n, rjlrjg . . . rj,,, must be a
substring of (r;, riz . . . r;,)n. (The sequence of rules is completely determined by the chain
generating path, so any two sequences that are consistent with the chain generating path
must be mutually consistent.)

We summarize the above two points with the multiple rlile definition of a chain gener-
ating path.

Def’inition 5.2 A path in the augmented A/V graph for a set of linear recursive rules is
a chain generating path if and only if

1. It is a simple cycle of nonzero weight, and

2. It is consistent, and

3. For every argument position p on the cycle, there is a path, containing no predicate
edges and consistent with the chain generating path, from some nondistinguished
variable node to p.

Example 5.2 The darkened path in Figure 15 is a chain generating path. fl

Fact 4.1, Fact 4.2, and Lemma 4.1 are unchanged.

Theorem 5.I. A set of linear recursive rules is strongly data independent if there is no
chain generating path in the augmented A/V graph for the rules.

29

I

.t:
,1
IX1t :

Pi

V

Figure 15: Augmented A/V Graph for the recursive rules of Example 5.1

Proof= By showing a stronger condition: for any n rules, if there exists no chain
generating path in the graph for the rules, then there is a constant k: such that any
string produced by more than k consecutive applications of the rules is mapped to
by a string produced by fewer than k applications. The proof is by induction on
the number of rules. The basis, one rule, is given by Theorem 4.1.

If we have n recursive rules and no chain generating path, by induction we can
find a k,-1 such that if we remove any rule, any string produced by more than knW1
applications of the remaining rules is mapped to by a shorter string. Assume that
every rule is applied at least once every k,,l rule applications.

If there is no path from a nondistinguished variable node to a cycle, then the
largest number of iterations separating two appearances of a nondistinguished sari-
able is bounded above by the maximum number of unification edges in any path
from a nondistinguished variable node to an argument node. If there is a path from
a nondistinguished variable node of some rule into a cycle, then a new variable is
injected into the cycle every time that rule is applied. Since each rule must be
applied at least every k,,l rule applications, a variable can appear in predicates
produced on iterations at most D = ft + 1 * k,-1 + f2 apart, where I is the number of
unification edges in the cycle and fi and f2 are the maximum numbers of unification
edges in any acyclic paths into and out of the cycle.

Because there is no chain generating path, there can be no subsequence of pred-
icates linked by shared variables such that the first and last were produced by the
same predicate instance of the same rule. Thus if D is the maximum number of it-
erations between appearances of a nondistinguished variable, and there are at most
m predicates in any recursive rule, the maximum number of predicates between two
predicates linked by a sequence of predicates sharing nondistinguished variables is
bounded above by L = m2 * n * D.

From here on the proof follows that of Theorem 4.1. If I is the number of

30

.

equivalence classes of isomorphic strings of L predicates, and r is the number of
nonisomorphic instances of the recursive predicate R, any string containing more
than rIL predicates must contain two isomorphic substrings of length L such that
the last predicate of each was generated by isomorphic R instances. We can delete
the predicates between the two, and the resulting shorter string is in S and maps
to the longer. g

We note that it is possible for two strongly data independent rules to combine to form
a set that is not strongly data independent. In Example 5.1, the A/V graphs for the
individual recursive rules contain no chain generating paths, so by Theorem 4.1 they are
strongly data independent. However, in the augmented A/V graph for the pair of rules
(Figure 12), there is a chain generating path, so by Theorem 5.1 the pair is not strongly
data independent.

6 Applications
Typically, for termination, evaluation algorithms for recursive rules rely either upon as-
sumptions about acyclicity in the base relations or upon expensive duplicate detection
tests. If the recursion is recognized as data independent, the recursion can be replaced
by the equivalent set of conjunctive relational queries, and can be optimized by standard
techniques. We now turn to the data dependent case.

A relation defined by a linear recursive rule can be constructed by evaluating successive
strings in the expansion of the rule until some string returns no new tuples. This method
would be hopelessly inefficient, and recently proposed algorithms [3,6] improve on this
method in two ways. First, they use partial results from one string in the evaluation of the
next string. Second, they use constants from the queries that cause the recursive relation
to be constructed to restrict lookups during evaluation. Here we present a different kind of
optimization, finding predicates that need only be evaluated a bounded number of times
per string.

Example 6.1 Consider the following rules:

r1 t(X, Y) :- e(X, Z), b(W,Y), t(Z, Y).
7-2 t(X, Y) :- t*(X, Y).
Here are the first four strings generated by procedure ExpandRule:

e(X, &)b(Wo, Y)to(Zo, Y),
e(X, Zo)b(Wo, Y)e(20, &)b(W 7 Y)tG 3 y)y
e(X, Zo)b(Wo, Y)e(20, &)b(WI7 Y)e(S 3 G)b(W29 Y)to(Z2~ y,

The b predicates need only be evaluated once per string. u

31

The techniques of Section 4 can be used to identify these predicates.

Definition 6.1 A predicate p is connected to an unbounded chain if it shares a nondis-
tinguished variable with a predicate on a chain generating path, or if it shares a nondis-
tinguished variable with a predicate that is connected to an unbounded chain.

Theorem 6.1 If a predicate p is not connected to an unbounded chain, then there is a
constant k such that all but k occurrences of p can be removed from any string in the
expansion of the rule.

Predicates that are not connected to any unbounded chain can be detected in linear
time by an extension to the algorithm mentioned at the end of Section 4. An optimizer can
then transform the original recursive rule-exit rule pair to a new set of rules, containing
one recursive rule, where all remaining nonrecursive predicates in the recursive rule are
connected to unbounded chains. The details of this transformation, and a proof of Theorem
6.1, are given in [ll].

We cannot hope to find a complete algorithm that detects data independent recursion in
arbitrary sets of rules - the problem is undecidable. However, testing for chain generating
paths and removing predicates from the recursive rule, as suggested by Theorem 6.1, may
be a useful part of a query planning process. Although we expect that the majority of
recursive rules in an actual system will be data dependent, in many cases not all the
predicates need to be evaluated at every level of the recursion. In these cases the avoided
redundancy during evaluation should more than pay for the added complexity during
planning.

Acknowledgement I’d like to thank Jeff Ullman and Yehoshua Sagiv for their many
useful comments on this work.

References
[l] Alfred V. Aho, Y h he OS ua Sagiv, and Jeffrey D. Ullman. Equivalence of relational

expressions. SIAM Journal of Computing, 8(2):218-246, 1979.

[2] Alfred V. Aho and Jeffrey D. Ullman. Universality of data retrieval languages. In
Proceedings of the Sixth ACM Symposium on Principles of Programming Languages,
pages 110-120, 1979.

[3] Francois Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D. Ullman. Magic sets
and other strange ways to implement logic programs. In Proceedings of the ACM
SIGACT-SIGMOD Symposium on Principles of Databases Systems, 1986.

32

PI

151
bl

VI

PI

PI

PO1

PI

WI

P31

- PI

[:151

[161

P71

P81

Ashok K. Chandra and Philip M. Merlin. Optimal implementation of conjunctive
queries in relational data bases. In Conference Record of the Ninth Annual ACM
Symposium on Theory of Computing, pages 77-90, 1977.

Haym Gaifman. January 1986. NAIL! seminar, Stanford University.

Lawrence J. Henschen and Shamin A. Naqvi. On compiling queries in recursive first
order databases. JACM, 31(1):47-85, 1984.

Yannis E. Ioannides. Bounded recursion in deductive databases. Technical Re-
port UCB/ERL M85/6, UC Berkeley, February 1985.

Michael Kifer and Eliezer L. Lozinskii. A framework for an efficient implementation
of deductive databases. 1985. Unpublished manuscript.

Harry G. Mairson and Yehoshua Sagiv. February 1986. NAIL! seminar, Stanford
University.

Jack Minker and Jean M. Nicolas. On recursive axioms in relational databases. In-
formation Systems, 8(l):l-13, 1982.

Jeffrey F. Naughton. Optimizing function-free recursive inference rules. Stanford
Tech Report, to appear.

Raymond Reiter. Deductive question-answering on relational databases. In H. Gal-
laire and J. Minker, editors, Logic and Databases, pages 149177, Plenum Press, New
York, 1978.

Raymond Reiter. On closed world databases. In Herve Gallaire and Jack Minker,
editors, Logic and Databases, pages 55-76, Plenum Press, New York, 1978.

Yehoshua Sagiv. On computing restricted projections of representative instances. In
Proceedings of the ACM SIGACT-SIGMOD Symposium on Principles of Databases
Systems, pages 171-180, 1985.

Yehoshua Sagiv and Mihalis Yannakakis. Equivalences among relational expressions
with the union and difference operators. JACM, 27(4):633-655, October 1980.

David E. Smith, Michael R. Genesereth, and Matthew L. Ginsberg. Controlling Re-
cursive Inference. Technical Report HPP 84-6, Stanford, June 1985.

Jeffrey D. Ullman. Implementation of logical query languages for databases. TODS,
10(4):289-321, September 1985.

Allen Van Gelder. A Message Passing Framework for Logical Query Evaluation. Tech-
nical Report STAN-CS-85-1088, Stanford University, 1985.

- Y

