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Abstract
Some recursive definitions in deductive database systems can be replaced by equivalent
nonrecursive definitions. In this paper we give a linear-time algorithm that detects
many such definitions, and specify a useful subset of recursive definitions for which the
algorithm is complete. It is unlikely that our algorithm can be extended significantly,
as recent results by Gaifman [5] and Vardi [19] show that the general problem is
undecidable. We consider two types of initialization of the recursively defined relation:
arbitrary initialization, and initialization by a given nonrecursive rule. This extends
earlier work by Minker and Nicolas [lo], and by Ioannidis [7], and is related to bounded
tableau results by Sagiv [ 141.  Even if there is no equivalent equivalent nonrecursive
definition, a modification of our algorithm can be used to optimize a recursive definition
and improve the efficiency of the compiled evaluation algorithms proposed in Henschen
and Naqvi [6] and in Bancilhon et al. [3].

-
1 Introduction
In order to increase the expressive power of database systems, many authors have pro-
posed augmenting these systems  with logic-based  query languages.  These languages can
bk viewed either as an extension of relational query languages or as restricted logic pro-
gramming languages. The result  is sometimes called a deductive  database,  because  of
the ease with which implicit information  can be “deduced” from the facts stored in the
relations.

Our model  follows that of Reiter [13], and consists of two parts.  The extensional
database, or E D B ,  is equivalent to a traditional relational  database.  The intensional
database, or IDB, is a set of inference  rules that define  relations not stored explicitly in
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the EDB. These  inference rules are function-free  Horn clauses that contain no negation  or
equality. An IDB predicate  is recursive if its definition  depends,  directly or indirectly,  on
itself.

Recursive  rules make  logic-based  query languages  strictly more powerful  than relational
languages.  This extra power  is not free - recursion  can be a major source of inefficiency.
There is currently  a great deal of interest  in finding  efficient evaluation  algorithms  for
recursive rules (see for example  [3,6,8,16,18].) Here we investigate  properties  of recursive
definitions  that are independent  of the particular  evaluation algorithm used.

In the absence  of recursion,  Reiter [12] has shown that the definition  of an IDB rela-
tion can be “compiled” to a disjunction of conjunctions of EDB relations. We will call
this disjunction  the ezpanaion  of the IDB predicate;  it contains  every conjunction  of EDB
predicates  that can be generated  by some sequence of rule applications  to the IDB predi-
cate.

The expansion  of a recursively  defined predicate  is infinite. However,  because  there  are
no function  symbols in the inference rules, there is no way to introduce  new values into
the system, and even  recursively  defined relations must be finite. Then for any given state
of the EDB, only a finite subset of the expansion needs to be evaluated. In general, this
subset depends  on the data in the EDB relations, and the recursion  is data dependent. But
for some recursive rules, we can prove that evaluating  a fixed subset of the expansion will
suffice for arbitrary values of the EDB, and the recursion  is data independent.

There are two natural definitions  of data independence.  The first is that stated in the
previous  paragraph  - a set of rules is data independent if-d only if it can be replaced
by a fixed, finite set of nonrecursive rules. The second definition  is more restrictive,  and
examines only the recursive rules. A set of recursive rules is strongly data independent if
and only if adding  any nonrecursive rule produces a set that is data independent.  Because
any fixed set of nonrecursive rules is equivalent to some first order expression,  a set of rules
is data independent  if and only if it is equivalent to some first order expression.

l&rnple 1.1 If e is the edge relation  for a digraph, the following rules define  the transitive
closure  of the graph:

t-(X, Y) :- e(X, Z), t(Z, Y).
t(X,Y) :- e(X,Y).

Aho and Ullman [2] prove that the transitive  closure is not equivalent to any first order
expression, so this pair of rules is not data independent.  This in turn implies that the
recursive rule is not strongly data independent. 1

Example 1.2 Suppose  we have an EDB relation  likes@, Y), where Zikes(X, Y) means that
person X likes product  Y. Suppose  we also have an EDB relation  trendy(X), where
trendy(X) means  that person X is trendy.  If we know that a person will buy a product  if



they like it, or if they’re trendy  and someone  else has bought it, we can find all consumers
and the products  they buy using the following rules.

bu ys(X, Y) :- likes(X,  Y).
buys(X,  Y > :- trendy(X), buys(Z, Y)*

This pair of rules can be replaced by

bu ys(X, Y > :- likes(X,  Y).
bu ys(X, Y > :- trendy(X), ldkes(Z, Y).

so the original pair of rules was data independent. 1

Previous work [7,10,14] considers  only strong data independence,  although the two are
not equivalent - it is possible for a data independent  set of rules to include recursive rules
that are not strongly data independent.

To further  discuss related  work we need a few definitions. Initially  we consider a relation
t defined by a linear recursive rule t :- t, pl, ~2,. . . , p,, and a nonrecursive or exit rule t :-
el, e2,.  l . 7 em,

where p and e are EDB predicates. (A linear recursive  rule is a rule with
exactly one recursive predicate.) We add the restriction  that the rule heads contain no
repeated  variables and no constants.

Variables  appearing  in the heads of the rules axe distinguished variables, and those
appearing  only in rule bodies axe nondistinguished variables. We standardize  the variables
in the rules so that the rule heads are identical, and the nondistinguished  variables in
different rule bodies are disjoint.

Sagiv [14] presents  a tableau-theoretic  approach to the problem.  He considers  typed
rules of a single predicate.  (A rule is typed if each variable  appears  in exactly one argument
of the predicate,  although it may appear in several occurrences  of that predicate.) His
results  can be interpreted  as giving a necessary  and sufficient  condition  for strong data
independence  for sets of rules in this class.

Minker  and Nicolas [lo] adopt a theorem-proving  approach. They determine  a class of
recursive rules such that for any rule in the class, all branches  of a resolution refutation
for the predicate  at the head of the rule can be terminated  by subsumption.  In our
terminology,  they give a sufficient  condition  for strong data independence.  Their class of
rules includes  nonlinear recursion,  but excludes  all permutations  of distinguished  variables
except in predicates  in which no nondistinguished  variable  appears.  In addition,  they
disallow shared  nondistinguished  variables between predicates.

The work by Ioannides [7] is the most similar to this work.  He gives a necessary  and
sufficient  condition  for strong data independence  in single linear recursive rules having the
property that no subset of argument positions of the recursive predicate  in the rule body
contains a permutation  of the variables appearing  in the same positions in the rule head.
This includes  the trivial permutation,  so the test doesn’t  apply to any rule in which a
distinguished variable  appears  in the same position  in the rule head and in the rule body.

We now describe the organization and principle  results of the paper.
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In Section 2, we give a procedure  that enumerates  the expansion of a recursively  defined
predicate.  This section also establishes  an equivalence  between  data independence  and
the existence of mappings between the strings  of the expansion.  Section 3 introduces  the
argument/variable graph, a graph that concisely represents  information about the structure
of these strings.

Section 4 defines chain generating paths in the argument/variable  graph. We show that
the absence such a path is a sufficient  condition  for a linear recursive rule to be strongly
data independent,  and show that it is a necessary  and sufficient  condition  if the rule has
no repeated  nonrecursive predicates.

Also in Section 4, we show that simple data independence  is not equivalent to strong
data independence,  and give a necessary  and sufficient  condition  for a regular recursive-
nonrecursive rule pair to be data independent.  (The body of a regular recursive rule
contains  only one nonrecursive predicate.) Section 5 extends  Section 4 by giving a sufficient
condition  for strong data independence  in a set of linear recursive rules.

Finally,  in Section 6, we show two ways that the techniques  of Section 4 can be used to
optimize the evaluation  of recursive queries. The first simply notes that data independence
implies that complex  termination  conditions can be replaced by iteration bounds;  the
second shows that, in the data dependent  case,  we can detect predicates  that can be
moved out of the recursion,  just as loop-invariants  can be moved out of loops in procedural
programming  languages.

2 Data Independence and Expansions
We begin this section by repeating  the definitions of data independence.

Definition 2.1 A set of rules is data independent if it can be replaced by a fixed, finite
set of nonrecursive rules.

Definition 2.2 A set of recursive rules is strongly data independent if adding any nonre-
cursive  rule produces  a data independent  set.

We will call data independence  of the first type “weak” data independence  when it is
necessary  to distinguish between the two.

The expansion of an IDB predicate  is the set of all conjunctions of EDB predicates
that can be generated  by some sequence of rule applications  to that predicate.  Data
independence  can be decided by investigating  containments between the relations specified
by the elements  of an expansion.

The strings of the expansion of a recursive predicate  t can be enumerated  by system-
atically applying sequences of rules to t. Although the results of this section hold for
arbitrary recursive definitions, for concreteness  we show how to generate  the expansion of
a predicate  defined by one linear  recursive rule and one nonrecursive rule.
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1) Give all variables  in rules  subscript 0;
2) s. 0;l =

3) CurString  := t ;
4) while true do
6) S := S U {CurString with r, applied};
7) CurString := CurString with r, applied;
8) increment the subscripts  o f  all variables  in rt a n d  r,;
9) endwhile  ;

Figure  1: Procedure  ExpandRule.

Procedure  ExpandRule  (Figure 1) enumerates  the expansion for predicates  defined  by
linear recursive rules with heads that contain no repeated  variables or constants.  Since
this procedure  imposes an order on the predicates in the conjunctions, we refer  to them as
strings.  The input to ExpandRule  is a recursive rule, r,, and an exit rule, r,. The output
is the expansion of the recursively  defined  predicate,  represented  by the infinite set S.

Throughout the procedure,  the string-valued  variable CurString will have exactly one
. occurrence of the recursive predicate  t. To “apply” a rule r to CurString, replace that

occurrence of t by the right side of r, after the substitutions required to unify it with the
head of the rule. In the initialization, we subscript  the variables in the rules so that no
variable  appears  in both CurString and one of the rules. On each iteration,  we increment
the subscripts  for the same reason.

Example 2.1 Here  we repeat the rules from Example 1.1.
7-l.: t(X, Y) :- e(X, Z), t( 2, Y).
r,: t ( X , Y )  : -  e ( X , Y ) .

- Since e and p are identical  in this case,  we let e denote  the occurrence of e in the recursive
rule, and e’ denote the occurrence in the nonrecursive  rule. The first four strings  in the
set S are

e’(X, Y),
e(-& Z0)e’( 20, Y),

e(X, Z0)e( 20, &)e’(Zl, Y>,

e(X, Z0)e( 20, &>e( 21, Zz)e’(Zz,  Y)-

I

The strings of an expansion are conjunctive  queries, which Chandra  and Merlin [4]
have shown to be a subset of relational  expressions.  If VI, V’, . . . , K are the distinguished
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variables, and WI, W2, . . . , Wj the nondistinguished  variables, then the relation  specified
by the string plpz . . . p, is

{(wG,**., K)1(3Wl)(3wZ)  l l 9 (3Wj)(p l  A p2 A 0 9 0 A pn)}

The relation for the recursively  defined predicate  is the union  of the relations for the strings
in its expansion.

To decide containments  between the relations for these strings we use techniques  related
to tableaux,  a tool developed  by Aho et al. [l] for deciding  equivalences  between  relational
expressions.

Definition 2.3 A mapping m from the variables of a string si into the variables of a
string 232 is a containment mapping if m maps distinguished  variables to themselves, and
ifp(Xi,... ,X,,) appears  in si, then  p(m(Xl), . . . , m(X,)) appears  in ~2.

The following lemma shows the similarity between  this mapping and containment map-
pings for deciding  the equivalence of tableaux.

Lemma 2.1 If a string s1 maps to a string ~2, then the relation specified by s2 is contained
in the relation specified by s1 .

Proofi Suppose  that si maps to ~2, and that tuple t is in the relation  specified by
82. Since t is in the relation  specified by ~2, there is some mapping  ml that maps
tuples  of variables in s2 into tuples  of data values in tlie database.  In particular,
ml maps the tuple (VI, . . . , Vn) appearing in ~(6, . . . , K) to the tuple  (~1, l l l 7 an>
in the relation  for p, and maps the distinguished  variables of s2 to the elements  of
t.

If m2 is the mapping  from si to ~2, then,  by definition  of string mappings,
ml(m2(sl)) is a mapping  from s1 to the database that proves that t is in the relation

d specified by si. 1

Another useful relationship  between  strings is isomorphism.

Definition 2.4 Two strings are isomorphic  if they are identical  up to renaming  of nondis-
tinguished  variables.

There are containment  mappings  in both directions between isomorphic  strings.  For a
given set of rules, the number  of predicates,  argument positions in predicates,  and distin-
guished  variables are all bounded.  Thus for any k, there  are only finitely many nonisomor-
phic strings of k predicates.  To rephrase  this, isomorphism is an equivalence relation that
partitions all strings of a given length into a finite number  of equivalence classes.  Any two
strings from the same equivalence class specify exactly the same relation.

We can use Lemma 2.1 to relate data dependent  recursion  to mappings  between the
strings in expansion of the recursively  defined predicate.
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Theorem 2.1 A set of rules defining a predicate t is data independent if and only ;f, in
the expansion of t, there exists an no such that for all n > no, s, is mapped to by some
previous string.

Proof: Suppose  there is such an ~20. By Lemma 2.1, after evaluating  the first no
strings, evaluating  subsequent  strings can return no new tuples,  and the first no
strings completely define  the relation. If si, 0 < i 5 no, are the first 720 strings of
the expansion, then the recursive definition  can be replaced by the no rules t :- si.

Suppose  that t can be defined by a set of k nonrecursive rules. Let rl through rk
denote  the bodies of these k rules. If we view rl through rk as relational  expressions,
then  the relation for t is the union of the relations for the r;. Let R denote the set
containing  the Tit and S denote the expansion of t.

Consider some string rj in R. Define a one-one  mapping  h from the variables
of rj to some set of constants.  Then construct a representative  database edb as
follows: if p( VI, V2, . . . , &,) appears  in rj, add the tuple (h(Vl), h(Vz), . . . , h(Vn)) to
the relation  for p in edb. By the definition  of edb, if D1, . . . , D, are the distinguished
variables, h proves that (h( Dl), . . . , h( Dn)) is in the relation  returned by evaluating
rj over edb.

Because  R and S both define  t, there must be some string s in S such that
v@lL,wa)) is in the relation returned by evaluating  s over edb. Thus there
is a mapping  g from the variables of s to the constants  in cdb such that distinguished
variables map to themselves, and the tuples  of variables in s map consistently  to tu-
ples of constants  in edb. Since h is one-to-one, it is invertible.  Then the composition
g o h-l is a containment  mapping  from s to g.

We can repeat this argument for every  string in R to prove  that every  string in
R is mapped  to by some string in S. (This is the result  by Sagiv and Yannakakis
[15] concerning equivalences  between unions of tableaux.) Because  R is finite, there
must be some no such that every  string in R is mapped  to by one of the first no
strings of S. Now consider  some string s,,, where n > no. Again using the preceding
arguments, we can show that there is some rj such that there is a containment
mapping ml from Tj to sn. But there  is also a containment mapping  m2 from some

_ si, i 5 720, to rj. Then m2 o ml maps 8; to sn. This argument holds for any n > no,
so the proof  is complete. 1

We close this section by noting that if we allow the nonrecursive predicates  to be IDB
predicates,  then  any necessary  condition  for data independent  recursion  must take into
account  the definitions  of these predicates. As an example,  if we take the recursive rule of
Example 2.1 and add r3:

7-3: e(X, Y) :-- a(X), b(Y),
to ri and r2, then  t can be defined by the nonrecursive rule

rl,: t(X, Y) :- a(X), b(Y).
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and the recursion  strongly  data independent.  In the following, we assume that all nonre-
cursive  predicates  are EDB predicates.

3 The A/V Graph
In Section 2, we reduced  the question  of data independence  to the existence of mappings
between the strings in the expansion of the recursively  defined predicate.  The existence of
these mappings depends  on the patterns of shared variables in the strings.  In this section
we return to the class of rules handled by procedure  ExpandRule - one linear recursive
rule with no repeated  variables or constants  in the rule head.

To relate the patterns of variables appearing  in the strings of S to the structure of the
rules, we define  the argument/variable (A/V) graph:

l For each variable appearing  in the rules add a variable node.

l For each argument  position  in each  rule body add an argument node.

l Draw a directed  edge from each argument  node  to the node for the variable that
appears  in that position  in the rule. This kind of edge is called an identity edge.

l Draw a directed  edge from each argument  node  corresponding  to a position  p in the
recursive predicate  to the node for the distinguished yariable that appears  in the p
in the rule head. This kind of edge is called a unification edge.

The node for a variable X is labeled  X, and the node  for argument  position i of a predicate
p is labeled  pi. A node for a distinguished variable is a distinguished  variable  node;  all other
variables nodes  are nondistinguished. Because  of the one-to-one  correspondence  between
positions in the bodies of rules and the argument  nodes in the A/V graph, we use position
names to refer  to both an argument  position  and the argument node it is represented  by.
Similarly, we use variable names to refer  to variable nodes.

Many of the subsequent  results depend on the existence of certain kinds of paths
through the A/V graph. Some nonstandard  terminology arises because  we allow the di-
rected edges  in an A/V graph to be traversed from head to tail as well as from tail to head;
thus-a path in an A/V graph can contain unification edges traversed in either direction.

Example 3.1 Figure 2 gives the A/V graph for the rules of Example 2.1. [

The following properties  of A/V graphs  are immediate  from their definition:

1. Each edge in the graph is between an argument  node  and a variable node.

2. Each distinguished  variable node  has exactly one incident unification edge;  nondis-
tinguished variable nodes have no incident unification  edge.
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Figure  2: A/V graph for Example 2.1.

3. Each argument  node has exactly one incident identity edge;  argument  nodes for
positions of the recursive predicate  are also the source of exactly one unification
edge.

The A/V graph is similar to the o-graph developed  independently  by Ioannides.  The a-
graph differs primarily in that there  are no argument  nodes; the information about the
variables appearing  in each predicate  is represented  by predicate edges, which, for every
nonrecursive predicate,  connect  the nodes for the variables appearing  in that predicate  and
are labeled  with the name  of that predicate.  Because the a-graph has no argument nodes,
some information is lost.

There is a close relationship  between the A/V graph and procedure  ExpandRule of
Section 2. If a predicate  instance  first appears  through applying a rule on iteration i, then
we say that predicate  instance was produced  on iteration i. (The first iteration of the
while loop is iteration 0.) There are two ways a predicate  appearing  in a string s of S can
be produced  on iteration i. It can be added to CurString through applying the recursive
rule, or, if s was added to S on iteration i, it can be produced  by applying the exit rule.

Consider iteration i. At line 8 on iteration  i - 1, the variables in the rules were given
subscript i. Letting the argument  nodes of the A/V graph represent  the bodies of the
rules, we represent  iteration  i by subscripting the labels of the variable  nodes by i. (Figure

3(a))*
Because  the heads of the rules contain no repeated  variables or constants,  the unification

can be done  by replacing  the subscripted distinguished variables by the variables appearing
in the instance of t in CurString. If we consider  the argument  nodes for t as representing
that instance  of t, the variable  at the end of a unification edge is replaced by the variable
appearing  in the argument at the beginning.  On iteration 0, because  of the initialization of
Curstring, these arguments  contain the distinguished variables. On all other iterations,
they hold the variables that were  put there  on the previous iteration - in this case,  zi-1
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Figure 3: A/V graph for Example 2.1.

and Y. (Figure 3(b)).
After the substitution,  argument p of a predicate  produced  on iteration i will contain

the variable  that is the label of the node at the end of its incident identity edge.  In
our example,  the predicate  added by the nonrecursive rule will be e’(Z;-1, Y), and the
predicates  added by the recursive rule will be e( Z;-1, Zi)t( Zi, Y).

The previous  two paragraphs show how we can determine  what variable  appears  in
any position of any predicate  in the expansion. The following two facts can be proven by
induction:

Fact 3.1 A nondistinguished  variable  Wi appears  in position  p in a predicate  produced
on iteration i + k if and only if there  is a path from W to p containing  k unification  edges,
all traversed  in the forward direction.

Fact 3.2 A distinguished  variable  V appears  in position  p on iteration i if and only if
there is a path from V to p containing  i unification edges,  all traversed  in the forward
direction.

Any A/V graph can be divided into two kinds of connected components, those contain-
ing nondistinguished  variables and those  containing only distinguished  variables. (Con-
nected components  in A/V graphs  can require unification  edges  to be traversed in either
direction.) The following two lemmas show that each type of component  has a specific
structure.

Lemma 3.1 If a connected component in an A/V graph contains a nondistinguished vari-
able W, it is a tree, and W is the only nondistinguished  variable in the component.

Proof= Consider  starting at the node  for some nondistinguished  variable Wo. The
only edges  incident on nondistinguished  variables are identity edges,  so if we explore
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any path p out of Wo, the first edge must be an identity edge.  Suppose  this identity
edge goes to an argument al.

Since al has exactly one incident identity edge,  if p can be extended,  the second
edge in p must be a unification  edge, which by definition  connects  al and some
distinguished  variable  node, say V2. The edges  incident on V2 are one unification
edge, which has already  been traversed,  and some number  of identity edges.  Then
if we extend  p, the next edge must be an identity edge to a3. Furthermore,  since
we’ve already  traversed  the only identity edge incident on al, a3 # al.

We prove  by induction  that for all j > 0, edge 2j must be a unification  edge
to a distinguished  variable  node that hasn’t been  visited previously, while edge
2j + 1 must be an identity edge to an argument  node that also hasn’t been  visited
previously.

The basis, j = 1, has been shown. Suppose  that edge 2j - 1 is an identity edge
to an argument node azj-1  that hasn’t been visited previously. Because  asj-1 has a
single incident identity edge,  if we extend p, edge 2j must be a unification  edge to a
distinguished  variable  node V2j. Furthermore,  because  each distinguished  variable
node has only one incident unification  edge,  Vzj hasn’t been  visited previously.

Now consider extending  the path from V2j. Edge 2j + 1 must be an identity
edge to azj+i. But because  a2j+i has only one incident identity edge,  a2j+i can’t
have been  visited previously. u

Lemma 3.2 If a connected component contains no nondistinguished variable,  that com-
ponent must contain a cycle.

Proof: Suppose  that we explore  a path p starting  at some distinguished  variable
Vo. Vo has an incident unification  edge;  if we follow it, we reach an argument
node, say al. There must be an identity edge out of al; the only way to extend
p is to take this identity edge.  This edge must go to some distinguished  variable
V2, or else the connected  component  would contain a nondistinguished  variable. If

v2 = Vo, we have a cycle. If not, we continue  with V2. Because  there  are only
finitely many distinguished  variables, we must eventually  return to some previously
visited distinguished  variable  node,  and there  will be a cycle. u

Lemmas 3.1 and 3.2 combine with Facts 3.1 and 3.2 to prove that

1. Arguments  in connected  components  that contain a cycle will eventually  contain only
the distinguished  variables appearing  on the cycle.

2. Arguments  in connected  components  that contain no cycles will eventually  contain
only subscripted  instances  of the nondistinguished  variable  in the component.
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Example 3.2 See Figure  2 for the A/V graph for Example 2.1. There are two connected
components in this graph. The first, { t2, Y, e’2}, contains  the cycle t2 + Y + t2. Then
Fact 3.2 implies that Y always appears  in ef2. The remaining  nodes form a tree,  and 2 is
the only nondistinguished  variable in the tree. By Fact 3.1, Zi appears  in e2 and e” on
iteration  i, and in e1 on iteration i + 1. @

In Section 4 it will be important  to know how variables are shared between the predi-
cates in the expansion.  Things are complicated  by the possibility of repeated  variables in
the rule body. Repeated  variables give rise to branches  in the paths  from variable  nodes to
argument  nodes,  and the variable at the root of such paths  appears  on all branches.  Thus
to determine  when  argument  positions share variables, we need to follow unification edges
backward (toward the argument  nodes)  as well as forward.

To count the net number  of forward  unification edges in a path, we introduce  weights on
the edges of the A/V graph.  The weight of an identity edge is 0; the weight of a unification
edge traversed in the forward direction  is 1, and the weight of a unification  edge traversed
in the reverse  direction  is -1. The weight of a path in the A/V graph is the sum of the
weights of the edges in the path. With this definition,  we have the following lemma:

Lemma 3.3 For i 2 max(j, k), a variable appears in position pl of a predicate produced
on iteration i + j, and in position p2 of a predicate produced on iteration i + k, if and only
if there is a path from from pl to p2 of weight k - j.

Proof: If V is a nondistinguished  variable, then by Fact 3.1, V appears  in pl
if and only if there is a path from the node for V to pl containing  j unification
edges,  and a path from the node  for V to p2 containing k unification edges. The
concatenation  of these two paths is a path from pl to p2 of weight k - j.

If V is a distinguished  variable, then by Fact 3.2, V appears  in pl if and only if
there is a path from the node  for V to pl containing i+ j unification edges,  and a path

M from the node  for V to p2 containing i+k unification edges. Again, the concatenation
of these two paths is a path from pl to p2 of weight -(i + j) + (i + k) = k - j. n

The proof  shows that the path can always be divided into two segments.  The first runs
from @i to some variable node V and contains  only identity and reverse unification edges;
the second  runs  from V to p2 and contains  only identity and forward  unification  edges. The
clause “for i 2 max( j, k)” is necessary  because for i < max(j, k), the argument  positions
at the ends of the two segments  could still contain variables from intermediate  nodes in
the segments.

Example 3.3 Consider the following pair of rules:

rr: t(X, y, 2) :- t(W, w, X), P(K 2).
r,: t(X, Y, 2) :- e(X, Y, 2).

12
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Figure  4: A/V graph for Example 3.3

The first four strings generated  are

e(X, Y, Z),

@f-G 9 Wl, X)P(Y, z>,
e(Wz, w2, W)P(W 7 X)P(Y, q,

e(W3, w3, wz)P(W2,  Wl)P(W 7 X>P(Y, 2).
The A/V graph for these rules is given in Figure  4. There is a path from p’ to p2 of
weight (-1) + 2 = 1, SO by Lemma 3.3, with j = 0, and k + 1, for i >, 1, position p’ in a
predicate  produced  on iteration i shares a variable  with position  p2 in a predicate  produced
on iteration i + 1. fl

4 Testing for Data Independence

- 4.1 Unbounded  Chains
In Section 2, we reduced  the question  of data independence  to the existence of mappings
between the strings in the (infinite)  expansion of the recursively  defined predicate.  The
existence of those  mappings  is in turn tied to the presence  of unbounded chains in the
expansion. Informally,  the expansion contains  unbounded  chains if, for any n, we can find
a string of the expansion that contains  a subsequence  of 2 n predicates  such that each
shares a nondistinguished  variable with the next.  Strictly speaking,  no single string in the
expansion contains  an unbounded  chain. However,  we will occasionally  refer to chains that
grow from string to string as instances  of the unbounded  chain.

Example 4.1 In the expansion of the transitive  closure rules, (Example  2.1), string n
contains  a sequence of n e predicates, linked  by the 2;‘s. Thus the expansion contains
unbounded  chains. 1

13



It is easiest  to define unbounded  chains in terms  of the A/V graphs for rules that
produce  them. Unbounded  chains depend only on the recursive rule; to detect them,  we
augment the A/V graph for the rule by adding  predicate  edges  between  adjacent argument
positions  of each nonrecursive predicate.  These  predicate  edges  have weight zero.

Definition 4.1 A path in the the augmented  A/V graph for a recursive rule is a chain
generating path if and only if

1. For every argument position p on the path, there  is a path containing  no predicate
edges from some nondistinguished  variable  node  to p, and

2. It is a simple cycle of non-zero weight.

The following lemma justifies the name  “chain generating  path.” In this subsection  we
will say that each occurrence of a predicate  in the body of the recursive rule is a different
instance of that predicate.

Lemma 4.1 The strings in S contain a sequence of predicates pl,p~,  . . . ,p, = pl such that

1. pl and p, were produced on different iterations by the same predicate instance in the
recursive rule, and

2. For 1 < i < n, pi and p;+l share a nondistinguished variable

if and only if there is a chain generating path in the augmented A/V graph for the recursive
rule.

Such  a sequence  is called a link, and the positions holding  the shared variables the
linking positions. Because  the first and last predicates  of a link are instances  of the same
predicate,  produced  on different iterations,  the last predicate  of one link can be the first
predicate  of another.  Thus for any n, we can find a string in the expansion that contains
a subsequence  of n predicates,  each connected to the next by a shared nondistinguished
variable.

Proof: (Lemma 4.1) Suppose  that there is a chain generating  path containing  n
predicate  edges.  The predicate  edges partition the path into n - 1 segments.  Let
the ith segment  start in position p? of predicate  p;, end in position pi+1 of predicate
p;+i, and have weight k;. By Lemma 3.3, the variable appearing  in pf on iteration
j will appear in position pi+I  on iteration j + k;. Thus sufficiently long strings in
the expansion will contain sequences

p = p1 --s p2 A p3 . ..p.,1 %pn =p,

where the label on each arrow is the number  of iterations  between  the appearances
of the predicates  on either side of the arrow, and the predicates  on either side of

14



an arrow share a nondistinguished  variable. Because  the total weight of the cycle
is nonzero, pl and p, can’t have been produced  on the same iteration.

Now assume that the strings of the expansion contain a sequence  pl, ~2, . . .,
Pn = p’, such that pl and pi were  produced  on different iterations  by the same
predicate  instance in the recursive rule, and that for 1 < i < n, pi and p;+l share a
nondistinguished  variable. We can assume without  loss of generality  that no three
predicates  share the same nondistinguished  variable. Also, we can assume that with
the exception  of pl and pi, the p; where produced  by different predicate  instances
in the recursive rule. Then for 1 5 i < n, in p; there are distinct argument positions
pt and pf such that pf and P:+~ share nondistinguished  variables. By Lemma 3.3,
for 1 5 i < n there must be a path in the A/V graph from pt to P:+~ of weight k;.
These paths are connected  by predicate  edges,  and form a simple cycle.  We claim
that this cycle is a chain generating  path.

By Fact 3.1, a nondistinguished  variable  Wj appears  in position p on iteration
i only if there is a path from W to p of weight i - j. Then because  the linking
positions  of the sequence  contain nondistinguished  variables, for all p on the path
there must be a predicate  edge-free path from some nondistinguished  variable  node
to the node for p.

Since pl and pi were produced  on different iterations,  Cy-’ ki # 0, and the cycle
will have a nonzero  weight,  so the path is a chain generating  path. 1

Example 4.2 The chain generating  paths  in most commonly  exhibited  recursive rules
consist  of a single segment.  In the transitive  closure  example  (Example  2.1 and Figure  5),
the chain generating  path visits e’, e2, 2, t’, and X. The corresponding  link is a pair of
e predicates,  produced  on iteration i and i + 1 for all i, and the corresponding  unbounded
chain begins

e(X, z0)e(z0, &)e(&, z2)e(Zz, 23). . .

For a two segment  chain generating  path, consider the following recursive rule:

t(X, Y) :- P(X w>, q(w, Z), t(G Yb
The A/V graph for this rule is given in Figure  6. One segment  of the chain generating
path goes from p2 to ql; the other goes from q2 to p’. The corresponding  link is

and the corresponding  unbounded  chain begins

p(X,  Wo)q(Wo, Zo)p(Zo, w,>q(K Zl)PVl~ WMWd2)  l l l
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Figure  5: Augmented  A/V graph for Example 1.1.

L”il
p’ p2 q1 q2 t’ t2

Figure 6: Augmented  A/V graph for the two segment  rule in Example 4.2.

There are two more important  facts about unbounded  chains.

Fact 4.1 In the chains produced  by a chain generating  path, no variable appears  twice in
any linking  position.

Fact 4.2 In the chains produced  by a chain generating  path, there is a distinguished
variable  in at least one linking position  in the first predicate  of the chain.

Proof: (Fact 4.1) By Fact 3.1, since there  are paths from nondistinguished  vari-M
ables to all positions on the chain generating  path, eventually  all positions on the
chain generating  path will contain nondistinguished variables. We prove Fact 4.1
by showing that if a nondistinguished  variable appears  in position  p, no variable
appears  twice in position  p. Suppose  that Wi appears  in position  p on iterations
i/kiandi+k2. Then there  must be paths from W to p of lengths ICI and kg. But
then, again by Fact 3.1, if kr < k2, on iteration  i + k2, both Wi and Wi+kz-kl  must
appear in p.

(Fact 4.2) Supp ose we arbitrarily pick some node and make one complete  cycle of
the chain generating  path.  Let Wmin and 20~~~ be the minimum (maximum) weight
of any node on the cycle, relative to the starting  node.  Then if k = wmat - wmin,
the predicates  produced on the first k + 1 iterations will contain one complete  link.
Let thislinkbepr,  pz,...,pn = pl. We will continue  to use pl and p, to distinguish
the two occurrences  of the same predicate.
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p’ p2 t’ t2 t3 q’ q2

Figure  7: Augmented  A/V graph for Example 4.3.

p,, in its role as the last predicate  in the first link, must share some variable
with a predicate  in the second link of the chain, say q. By Lemma 3.3, there  must
be a path from an argument  position  of q to an argument  position  of p. However,
pl cannot  share a variable with an earlier instance  of q, or else the sequence of
predicates from this instance  of q to the later instance  of q would be the first link
of the chain. This is possible only if pl was produced  on iteration i, and the path
from the variable  node  for the variable shared between p and q to the position  of p
has more than i reverse  unification edges. But then on iteration i, this position  of
p must contain a distinguished  variable. 1

Example 4.3 The A/V graph for the following rule (Figure 7) has a chain generating
path that illustrates some of the points in the proof  of Facta4.2.

t(X K 2) :- P(X q, tw, M, N), q(M, NJ*
There is a two-segment  chain generating  path, with one segment  from q’ to p’, and the other
from p2 to q2. If we start at position  q’ and traverse the path, we find that wmcrz - wmin =
2 - 0 = 2, so a complete  link will be generated  in the first three  iterations.  The predicates
produced  on the first three  iterations,  subscripted by the iteration on which they appeared,
are

The first link runs  from pl to qo to p2. pi shares  No with q& and there  is a path containing
2 unification  edges from N to p*. Because  pl is produced  on iteration 1, p: shares  no
variable with any q instance,  and contains  the distinguished variable Y. I

4.2 Strong Data Independence
Strong data independence  is equivalent to data independence  with an arbitrary initializa-
tion of the recursive relation. It is easier  to test for than weak data independence  because
there  is no possibility of a recursive rule that would be data dependent  but for some
nonobvious interaction  with the nonrecursive rule.
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Theorem 4.1 A linear recursive rule is strongly data independent if there is no chain
generating path in the augmented A/V graph for the rule.

Proof: By showing a stronger condition:  if the A/V graph for a rule contains  no
chain generating  path, then there  is a k such that if a string s is generated  by more
than k successive  applications  of the rule, then s is mapped  to by a string generated
by no more than k successive  rule applications.

We first prove  a bound on the distance between  occurrences  of the same nondis-
tinguished variable  in the strings of the expansion.

Let I be the maximum  weight of any acyclic path in the A/V graph. By Lemma
3.1, no nondistinguished  variable  can appear in a position reachable from a cyclic
path. Then Lemma 3.3 implies that no nondistinguished  variable  appears in two
predicates  produced  on iterations  more than 2 apart.

By Lemma 4.1, if there is no chain generating  path, there is no sequence of
predicates,  linked by shared  nondistinguished  variables, that starts  and ends in two
instances  of the same predicate.  Let rt be the number  of predicates  in the recursive
rule. Then in any substring produced  by more than In consecutive applications
of the recursive rule, there is no predicate  connected, via a sequence of predicates
sharing nondistinguished  variables, to predicates  appearing  both before and after

* the substring. (If there were,  there would be a sequence of predicates  satisfying  the
conditions  of Lemma 4.1, which would imply a chain generating  path.)

Let L = Zn2, the number  of predicates  produced  by in consecutive applications
of the rule, and let I be the number  of nonisomorphic  instances  of strings of L
predicates. Furthermore,  let r be the number  of nonisomorphic  instances  of the
recursive predicate  t. Then any string s that is longer than rIL can be written as

M where plcypz and picw’pi are isomorphic,  each is L predicates  long, and the t instances
that generated  pz and pi are isomorphic. Here  pl and p2 are predicates,  and a! and
p are strings of predicates.

Consider  the string s’,
sf = . . .p1cup’, . . . ,

formed by deleting  the predicates  in s from p2 up to but not including  pi. Because
the instances  of t that generated  p2 and ph were isomorphic,  s’ can be generated
by deleting  the subsequence  of rule applications  that produced  pzppi(~’ from the
sequence  of rule applications  that produced  s. Thus s’ is also in S.

We claim that s’ maps to s. No predicate  appearing  in CII in s’ can be linked by
predicates  sharing nondistinguished  variables to predicates  appearing  both before
pl and after pk, and any distinguished  variables in ar appear in the same positions
as they do in cy and in (Y’ in s. If a predicate  in cy in s’ is linked to predicates
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appearing  before  pl, map it to the corresponding  instance  in cy in s; else,  map it to
the corresponding  instance in ac’. Map all predicates  appearing  after pi in s’ to the
corresponding  predicates  appearing  after pk in s, and map all predicates  appearing
before pl in s’ to the corresponding  predicates  appearing  before  pl in s. u

Chain generating  paths can be detected  in time linear in the length of the recursive rule.
The algorithm has two phases, each phase checking  one part of the definition.

Phase 1 uses depth-first  search on the non-augmented  A/V graph to discover the con-
nected components  for each distinguished  variable  node,  and removes all nodes  in any
connected  component  that contains  a cycle. The argument  nodes  in such a component
are exactly the argument nodes  that will always contain distinguished  variables; removing
them leaves exactly the nodes  that can be reached  from a nondistinguished  variable  node.

The second  phase operates on the augmented  A/V graph, restricted  to the nodes  that
survived  phase 1. Phase 2 uses depth-first  search, starting  at each nondistinguished  variable
node  W, to search for a node that can be reached  by two paths  with different weights. The
A/V graph contains a chain generating  path if and only if there is such a node.  (Phase 2
is essentially  Algorithm  6.1 in Ioannides [7].)

Unfortunately,  a chain generating  path is not a sufficient  condition  for data dependent
recursion.  The strongly data independent  rules with chain generating  paths  are strange.

Example 4.4

is a strongly data independent  rule with a chain generating  path. 1

It is easy to define subclasses of rules such that a chain generating  path is indeed
a sufficient  condition  for data dependence. One such class, rules for which the (non-
augmented)  A/V graph contains  no cycles,  was considered  by Ioannides [7]. Another such
class is rules with no repeated  nonrecursive predicates. To prove this, we use another fact
about unbounded  chains.e

Fact 4.3 Let r be a linear recursive rule with no repeated  nonrecursive predicates, and
let the expansion for r contain unbounded  chains. Then if string si in the expansion maps
to another string ~2, all variables in the unbounded  chain in si must map to themselves  in
$2.

Proof: By induction  on the positions of the predicates  in which the variables
appear.

Let p be the first predicate  in the chain. By Fact 4.2, there is a position  a

in p that contains a distinguished  variable. Then, because  there are no repeated
predicates  in the rule, by Fact 4.1, this is the only instance of p such that a contains
that distinguished  variable. Thus if this instance  of p is to map any predicate  in ~2,
every  variable  in this instance  of p must map to itself.
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Assume that the variables in predicate  i in the chain in sl must map to them-
selves in ~2. Predicate i + 1 shares  a linking variable, say W, with predicate  i, so W
must map to itself. Suppose  W appears  in position  b in predicate  i + 1. As there
are no repeated  predicates in the rule, Fact 4.1 implies that predicate  i + 1 is the
only instance  of the predicate  that contains  W in position b. Thus every  variable
in predicate  i + 1 in si must map to itself in ~2. fl

Theorem 4.2 A linear recursive rule with no repeated nonrecursive predicatea is strongly
data independent if and only if there is no chain generating path in the augmented A/V
graph for the rule.

Proof= The “if” part is given by Theorem 4.1.
For the “only if” part, suppose  that there  is a chain generating  path in the A/V

graph for the rule, and that the recursively defined  predicate  is t(X,, . . . , X,,J. We
show that if we add the base rule
r,: t(X*, . . . ,Xm) :- to(X*, . . . ,Xm).

where to doesn’t  appear anywhere in the recursive  rule, then the recursion  is data
dependent.

In any chain generating  path, there  must be at least one segment  that is of
positive weight. Suppose  that this segment  runs from position  p to position  p’.
Since this path must contain a unification edge,  it must pass through a distinguished
variable  node.  But every  distinguished variable node shares  an identity edge with
some position of to, so there  must be a positive weight path from p to some position
of to. Then by Lemma 3.3, to shares  a linking variable with the unbounded  chain.

Let W, be a linking variable shared between the chain and to in si, and suppose
that W, appears  in argument  position  tb. By Fact 4.3, W;, must map to itself in
~2. But because  s2 is longer than s 1, the variable appearing  in tb in s2 can’t be Wm.
Because  there  is only one instance  of to in the string, si can’t map to ~2, and by
Theorem 2.1, the recursion  is data dependent. 1

ExaFple 4.5 The augmented A/V graphs  for the recursive rules of Examples 2.1, 2.4,
and 215 all satisfy the conditions of Theorem 4.2, so they are not strongly  data independent.
The augmented  A/V graph for the rule

rt: t(X, Y, 2) :- t(Y,X, W), e(X, W).
is given in Figure 8. There is no chain generating  path, so the rule is strongly  data
independent.  1
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t’ t2 t3 e1 e2

Figure  8: Augmented  A/V graph for Example 4.5

4.3 Weak Data Independence
If we pair a strongly data independent  rule with any exit rule, the pair will be data
independent.  However,  the recursive rule in a weakly data independent  recursive rule-exit
rule pair need not be strongly  data independent.  Results for weak data independence  are
less clean than those for strong data independence  because  they must deal explicitly  with
interactions  between the recursive rule and the exit rule.

Example 4.6 Consider again the transitive  closure rule,

I’*: t(X, Y) :- e(X, Z), t(Z, Y)
where  e is an EDB predicate.  There is a chain generating  path in the A/V graph for this
rule, so it is not strongly  data independent.  If we add the usual nonrecursive rule

r2: t(X, Y) :- e(X, Y),
the recursion  is data dependent.  However,  if we replace r2 with

ri: t(X, Y) :- e( W, Y).
then t is completely defined  by the exit rule rk. Our second example  shows what can
happen if there  are multiple  nonrecursive predicates in the recursive rule.

r3: t(X, Y) :- t(X, q, e(Z, Y), e(X, W), e(w, Y)*
7-q: t(X,Y) : -  e (X,Y) .
Here,  after the first string, all strings  contain the two-predicate  chain e(X, Wl)e( WI, Y), so
the second  string in S, e(X, &)e(Zi, Y)e(X, Wl)e(Wl,  Y), maps to all subsequent  strings,
and the recursion  is data independent. i

Recently,  Vardi  [19] has proven that weak data independence  is undecidable  even  for
recursive definitions containing only one linear recursive rule. However,  we can test for
necessary  and sufficient  conditions for weak data independence  in predicates  defined by

1. One regular recursive rule (a regular rule is a linear recursive rule with a single
nonrecursive predicate), and

2. One nonrecursive rule with a single-predicate  body.
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Proofs of necessary  and sufficient  conditions  for weak data independence  for such rules
closely parallel  the proof  of Theorem 4.2. In that proof  we paired the recursive rule with
a nonrecursive rule with a single predicate  body, to. We used two properties  of to. First,
in the strings of the expansion, to shares  a nondistinguished  variable with the unbounded
chain. Second,  if si is to map to ~2, the to instance  in si must map to the to instance  in
320

If the predicate  of the nonrecursive rule satisfies  the first property,  we say that it is
connected to the unbounded  chain; if it satisfies the second,  we say it is irredundant. When
considering  strong data independence,  we can choose the predicate  in the nonrecursive rule
so that it is connected  and irredundant.  The task in weak data independence  is to decide,
given a recursive-nonrecursive  rule pair, whether  the predicate  in the nonrecursive rule has
these  properties.  If it does, then  we can apply the following theorem:

Theorem 4.3 Given a regular recursive-nonrecursive rule pair, with e being the predicate
in the nonrecursive rule body, the recursion is data dependent if and only if

1. There is a chain generating path in the augmented A/V graph for the recursive rule,
and

2. e is connected to the unbounded chain, and

8. e is irredundant.

Proof= The “if” condition  follows exactly that of Theorem 4.2.
The “only if” part uses a cyclic property of the strings of S. Since there are

only a finite number  of nonisomorphic  instances  of t, if we observe the instances  of
t in CurString through successive  iterations,  we must eventually  see two that are
isomorphic. Furthermore,  after a startup interval  of I iterations,  if the number  of
iterations  between  the isomorphic  instances  is r, then  for any i, the instances  oft in

a CurString on iteration i and on iteration i+T are isomorphic. (The startup interval
is the number of iterations  until distinguished variables that appear  in no cycles have
disappeared,  and is bounded  above by the maximum  number  of unification edges in
any acyclic path in the A/V graph.) Since the predicates  added to Curstring on
any iteration depend only on the recursive rule (which is fixed) and on the instance
oft, for any m, a predicate  produced  on iteration I+i is isomorphic  to one produced
on iteration I + mr + i.

By Theorem 4.1, a chain generating  path is a necessary  condition  for data de-
pendent  recursion.  Suppose  that there  is a chain generating  path, but that e is not
connected  to the unbounded  chain. Then the only variables e can share with the
unbounded chain are distinguished.

Because  predicates  produced  mr iterations  apart are isomorphic,  distinguished
variables appear in the same positions in predicate  instances  produced  mr iterations
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apart. Then for all m and j, the string

is mapped  to by
Pl ***PI+1 l . l PI+~PI+~+~  l . . PI+.,+je,

where we map pi in the second  string to pi in the first, and the e predicate  to itself.
Finally, if e is redundant, by definition  of irredundance, we can map si to s2 by

’ mapping all predicates  but e to themselves, and mapping  e to some predicate  in ~2.
I

We can decide both irredundance  and connectedness  from the A/V graph for the pair of
rules.

Definition 4.2 The predicate  e of the exit rule, is irredundant  if either

1. e # p, or

2. There is a path from a distinguished  variable  node V, where V is on a cycle, to an
argument of e such that there is no path from V to the same argument of p, or

3. There are paths from some variable node V to two distinct arguments  of e, each of
weight k, and no j such that there are paths of weight j from some variable node  to
both of the corresponding  arguments  of p, or

4 .  Let {VI,... , Vn} be the distinguished  variable  nodes  such that there is an identity
edge from Vi to eii , and for each Vi there  is a positive weight path from some argument
of p to Vi. Then there must be no k such that, for all i, there is a path of weight k
from I$ to pi’.

e This definition  is complex,  but the intuition  is simple. Either of conditions one, two,
or three guarantee that the exit predicate  maps to no other predicate  in any string. In
condition  four, the variables at the beginnings of paths  to the Vi are the variables that are
shared  between  the exit predicate  and the chain. By Fact 4.3, if one string is to map to
another, these variables must map to themselves.  If there  is no k as described, then e will
contain these variables in a pattern  different from any p predicate  in any string, and again
e must map to itself.

Definition 4.3 The predicate  e of the nonrecursive rule is connected to the unbounded
chain if and only if there  is a positive weight path from some argument of p, through some
nondistinguished  variable  node, to an argument of e.

By Lemma 3.3, this definition  guarantees  that e will share a nondistinguished  variable
with some instance of p in the chain.
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Figure  9: A/V graph for rules r, and r, in Example 4.7.

e2

Example 4.7 Consider the following rules:
rT: t(X, Y, U, W) :- t(X, M, M, Y), e(M, Y).
?-,I t(X, Y, U, W) :- e(X, X).

Since the nonrecursive predicate  in both rules is e, we use e’ for the instance  of e in r,. In
the A/V graph for these rules (Figure 9), there  is no path satisfying  Definition  4.3, and
the exit predicate  is not connected.  The expansion for t begins

e’(X, X),
e/(X, X)e(Mo, Y),

e/(X, X)e(M, Mo)e(Mo, Y),

e’(X,X)e(Ms,  M&(M’,Mo)e(Mo,Y).

Any string in the expansion can be mapped  to any subsequent  string.
If we replace r, by
- r$ t(X, Y, U, W) :- e(U, W).
then the path in Figure  10 from e’ to e’* proves that e’ is connected.  However,  condition
4 of Definition 4.2 is not satisfied.  The distinguished variable nodes with identity edges to
nodes of e’ are U and W, and there  are positive weight paths from arguments  of e to both
U and W. Also, there are paths containing one unification edge from U to el, and from
W to e2. This implies that a string produced on iteration  i will map to all longer strings
by mapping  the e predicates to themselves,  and mapping  e’ to the instance  of e produced
on iteration i - 1. The first four strings of the expansion confirm this:

e’( u, W),
e’( MO, Y)e(Mo, Y),

e’(Ml,  Mo)e(Ml,Mo)e(Mo,Y)~
e’(M2, Ml)e(Mz,  M~)e(M~yMo)e(Mo~Y)*
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Figure 10: A/V graph for rules r, and r6 of Example 4.7

If we replace ‘I‘, by

rf: t(X, Y, U, W) :- e(U, U).
then the paths from U to et1 and et2 in Figure  11 satisfy condition  3 of Definition  4.2,
and exit predicate  is no longer redundant.  Theorem 4.3 says that the recursion  is data
dependent.  Here  the first four strings  are

e’(M& Mo)e(M& y),

e’( Ml, M&( Ml, Mo)e(M& Y),
e’(M2, M2)e(M2, M&o19 Mo)Gh y)*

5 An Extension to Multiple Rules
consider a predicate  defined by n linear recursive rules t :- ti, pii, . . . , Piki , where 1 < i 2 72,
and m nonrecursive rules t :- eji, . . . , ejkJ,  where  1 < j < m. The subscripts  on the t
predicates  are to distinguish the instances  in different rules, while the pik and e;j may be
distinct sets of predicates.

Gaifman  [5] has shown that deciding  if such a set of rules is weakly data independent
is undecidable,  and Mairson  and Sagiv [9] have extended  his result  to show that even
strong data independence  is undecidable  for multiple  linear recursive rules. However,  we
can extend Section 4 to give a sufficient  condition  for strong data independence  in sets of
recursive rules.
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Figure 11: A/V graph for rules rt and rF of Example 4.7

Procedure  ExpandRule  must be changed  so that Curstring, instead of being a single
string, is a growing set of strings. The procedure  methodically applies the rules in all
possible ways so that on iteration i, all strings that can be generated  by i applications  of
the rules are produced.

We can represent  the set CurString over time as a tree,  where the label of the root is
t’, and the labels of nodes  on level i are the strings  that were  the elements  of Curstring
on iteration i. Paths  in this tree correspond to sequences of rule applications  - a child
node is the result  of one more rule application  to the sequence  that produced  its parent.
Each node in this tree has associated with it the m strings of base predicates  generated
by applying the m exit rules to its label. From this perspective,  the above procedure  is a
breadth-first  construction  of the rule/goal tree [l7] for the input rules.

We must also extend  the interpretation  of the A/V graph. In a multiple  rule A/V
graph, in addition to telling where a variable  appears  in the strings of S, paths  specify
sequences of rule applications. Informally,  when  following a path, we start by assuming
that a variable  V appears  in some position  p on an iteration i. This implies that the rule
containing  p was applied  on iteration i. As we follow paths through the A/V graph, taking
identity edges  corresponds to moving between argument  positions of predicates  produced
on the same iteration.  Taking a unification  edge in the forward direction  specifies  the rule
to be’ applied  on iteration i + 1, while taking a unification edge in reverse specifies  the rule
to be applied  on iteration i - 1. By induction, if we start by considering  what variable
appears in a position p on iteration i, and the weight of the path traversed  from p to a
position p’ of rule rj is w, then  rule rj must be applied  on iteration i + W.

There are some paths  that imply that a string was generated  by applying multiple  rules
on a single iteration. Such  paths  are termed inconsistent and must be disallowed. The
relationship  between  path weights and iterations  suggests  the following definition.

Definition 5.1 A path through an A/V graph is inconsistent if it contains  argument
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Figure 12: A/V Graph for the recursive rules of Example 5.1

positions  p and p’ such that p and p’ appear in different rules, and the weight of the prefix
of the path top is the same as the weight of the prefix of the path top’. A path is consistent
only if it is not inconsistent.

Example 5.1 Consider  the following three rules defining a relation  t.
rl: t(-& y, 2) :- h(X,  u, Z), Pl(U,  2).
7’2: qx, y-7  2) :- tz(X,  y-7 q, P2(v, Y)*
r3: t(X, Y, 2) :- e(X, Y).
A portion of the first three levels of the rule/goal tree  for these rules is given in Figure
13. The A/V graph for the same rules is given in Figure 12. The t$ and pi are argument
positions  of rule r2, and the tf and pf are argument  positions of rule rl. The longest path
in Figure 13 corresponds to the sequence of rule applications  ri, r2, rl. The string produced
by this sequence  followed by r3 is

e(X, vz)Pl(uz,  K)P2(& uo)Pl(uo,q

An inconsistent path through the A/V graph is given in Figure 14. It would require that
rule r1 and rule r2 both be applied  on the same iteration. fi

In multiple  recursive rule A/V graphs, modified versions  of Facts 3.1 and 3.2 still hold.

Fact 5.1 There is a sequence of rule applications  such that a nondistinguished  variable
Wi appears in position p in a predicate  produced  on iteration i + k if and only if there  is
a consistent  path from W to p containing  k unification edges.

Fact 5.2 There is a sequence of rule applications  such that a distinguished  variable V
appears in position p on iteration i if and only if there  is a consistent  path from V to p
containing  i unification  edges.
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Figure  13: The rule/goal graph for Example 5.1

Figure  14: An inconsistent  path for the recursive rules of Example 5.1
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The following version of Lemma  3.3 holds:

Lemma 5.1 For i 2 max(j, k), there is a sequence of rule applications such that a variable
appears in position pl of a predicate produced on iteration i + j, and in position p2 of a
predicate produced on iteration i + k, if and only if there is a consistent  path from pl to p2
of weight k - j.

Proof: Follows closely that of Lemma 3.3, using Facts 5.1 and 5.2 instead of 3.1
and 3.2. 1

The definition  of a chain generating  path must be extended  in two ways. First, the path
must be consistent.  Second,  it is not enough  that there  be some path from a nondis-
tinguished variable into every  argument  position  of the chain generating  path - these
paths must specify sequences of rule applications  that are consistent  with that specified
by the chain generating  path. Here  we use the fact that the sequence of rule applications
specified by a chain generating  path can be repeated  to generate  arbitrarily long chains.
Thus if ril riz . . . rik is the sequence of rules applied along the chain generating  path, and
rj, rj, . . . rj, is a sequence of rules applied along a path from a nondistinguished  variable
to an argument  position  on the chain generating  path, for some n, rjlrjg . . . rj,,, must be a
substring of (r;, riz . . . r;,)n. (The sequence of rules is completely  determined  by the chain
generating  path, so any two sequences  that are consistent  with the chain generating  path
must be mutually  consistent.)

We summarize the above two points with the multiple  rlile definition  of a chain gener-
ating path.

Def’inition 5.2 A path in the augmented A/V graph for a set of linear recursive rules  is
a chain generating path if and only if

1. It is a simple cycle of nonzero weight, and

2. It is consistent,  and

3. For every  argument position  p on the cycle,  there  is a path, containing no predicate
edges and consistent  with the chain generating  path, from some nondistinguished
variable  node  to p.

Example 5.2 The darkened  path in Figure  15 is a chain generating  path. fl

Fact 4.1, Fact 4.2, and Lemma 4.1 are unchanged.

Theorem 5.I. A set of linear recursive rules is strongly data independent if there is no
chain generating path in the augmented A/V graph for the rules.
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Proof= By showing a stronger condition:  for any n rules, if there exists no chain
generating  path in the graph for the rules, then there  is a constant k: such that any
string produced  by more than k consecutive applications  of the rules is mapped  to
by a string produced  by fewer than k applications.  The proof is by induction  on
the number  of rules. The basis, one rule, is given by Theorem 4.1.

If we have n recursive rules and no chain generating  path, by induction  we can
find a k,-1 such that if we remove  any rule, any string produced  by more than knW1
applications  of the remaining  rules is mapped  to by a shorter string. Assume that
every  rule is applied  at least  once every  k,,l rule applications.

If there is no path from a nondistinguished  variable  node to a cycle, then  the
largest number  of iterations  separating  two appearances  of a nondistinguished  sari-
able is bounded  above by the maximum number  of unification  edges in any path
from a nondistinguished  variable  node to an argument node.  If there is a path from
a nondistinguished  variable  node of some rule into a cycle, then  a new variable is
injected  into the cycle every  time that rule is applied. Since each rule must be
applied  at least  every  k,,l rule applications,  a variable  can appear in predicates
produced  on iterations  at most D = ft + 1 * k,-1 + f2 apart, where I is the number  of
unification  edges  in the cycle and fi and f2 are the maximum numbers  of unification
edges  in any acyclic paths into and out of the cycle.

Because  there is no chain generating  path, there  can be no subsequence  of pred-
icates linked by shared  variables such that the first and last were produced  by the
same predicate  instance of the same rule. Thus if D is the maximum  number  of it-
erations between  appearances  of a nondistinguished  variable, and there  are at most
m predicates  in any recursive rule, the maximum number  of predicates  between two
predicates  linked by a sequence of predicates  sharing nondistinguished  variables is
bounded  above  by L = m2 * n * D.

From here on the proof  follows that of Theorem 4.1. If I is the number  of

30



.

equivalence classes of isomorphic  strings of L predicates,  and r is the number  of
nonisomorphic  instances  of the recursive predicate  R, any string containing  more
than rIL predicates  must contain two isomorphic  substrings  of length L such that
the last predicate  of each was generated  by isomorphic  R instances.  We can delete
the predicates  between the two, and the resulting shorter string is in S and maps
to the longer. g

We note that it is possible for two strongly  data independent  rules to combine to form
a set that is not strongly data independent. In Example 5.1, the A/V graphs for the
individual recursive rules contain no chain generating  paths, so by Theorem 4.1 they are
strongly data independent.  However,  in the augmented  A/V graph for the pair of rules
(Figure  12), there is a chain generating  path, so by Theorem 5.1 the pair is not strongly
data independent.

6 Applications
Typically,  for termination,  evaluation  algorithms  for recursive rules rely either upon as-
sumptions about acyclicity in the base relations or upon expensive  duplicate  detection
tests. If the recursion is recognized  as data independent,  the recursion  can be replaced
by the equivalent set of conjunctive  relational  queries,  and can be optimized by standard
techniques.  We now turn to the data dependent  case.

A relation  defined by a linear recursive rule can be constructed  by evaluating  successive
strings in the expansion of the rule until some string returns  no new tuples.  This method
would be hopelessly  inefficient, and recently  proposed  algorithms  [3,6] improve  on this
method  in two ways. First, they use partial results from one string in the evaluation  of the
next string. Second,  they use constants  from the queries that cause  the recursive relation
to be constructed  to restrict  lookups  during evaluation. Here  we present  a different kind of
optimization, finding predicates  that need only be evaluated a bounded  number  of times
per string.

Example 6.1 Consider  the following rules:

r1 t(X, Y) :- e(X, Z), b(W,Y), t(Z, Y).
7-2 t(X, Y) :- t*(X, Y).
Here  are the first four strings generated  by procedure  ExpandRule:

e(X, &)b( Wo, Y)to(Zo,  Y),
e(X, Zo)b( Wo, Y)e( 20, &)b( W 7 Y)tG 3 y)y
e(X, Zo)b( Wo, Y)e( 20, &)b( WI7 Y)e(S 3 G)b(W29 Y)to(Z2~ y,

The b predicates  need only be evaluated  once per string. u
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The techniques  of Section 4 can be used  to identify these predicates.

Definition 6.1 A predicate  p is connected to an unbounded  chain if it shares  a nondis-
tinguished variable with a predicate  on a chain generating  path, or if it shares  a nondis-
tinguished variable with a predicate  that is connected to an unbounded  chain.

Theorem 6.1 If a predicate p is not connected to an unbounded chain, then there is a
constant k such that all but k occurrences  of p can be removed from any string in the
expansion of the rule.

Predicates  that are not connected to any unbounded  chain can be detected  in linear
time by an extension to the algorithm mentioned  at the end of Section 4. An optimizer can
then transform the original recursive rule-exit rule pair to a new set of rules, containing
one recursive rule, where all remaining  nonrecursive  predicates in the recursive rule are
connected to unbounded  chains. The details of this transformation,  and a proof  of Theorem
6.1, are given in [ll].

We cannot  hope to find a complete  algorithm  that detects data independent  recursion  in
arbitrary sets of rules - the problem  is undecidable.  However,  testing for chain generating
paths and removing predicates  from the recursive rule, as suggested  by Theorem 6.1, may
be a useful part of a query planning process. Although we expect that the majority  of
recursive rules in an actual system will be data dependent,  in many cases not all the
predicates need to be evaluated at every level of the recursion.  In these cases the avoided
redundancy  during evaluation should more than pay for the added complexity during
planning.

Acknowledgement I’d like to thank  Jeff Ullman and Yehoshua Sagiv for their many
useful comments on this work.
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