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A TIMELY RESOLUTION

Martin Abadi and Zohar Manna

Computer Science Department
St anford University

We present a novel proof system R for First-order (Linear) Temporal Logic. This system
extends our Propositional Temporal Logic proof system ([AM]). The system R is based
on nonclausal resolution; proofs are natural and generally short. Special quantifier rules,
unification techniques, and a resolution rule are introduced. We relate R to other proof
systems for First-order Temporal Logic and discuss completeness issues. The system R
should be useful as a tool for such tasks as verification of concurrent programs and reasoning
about hardware devices.

. 1. INTRODUCTION

Temporal Logic ([Pn]) has been proposed as a framework to describe and reason about
sequences of states. In particular, it is useful for specification (e.g., [L], [HO]), verification
(e.g.7 [MP2],[OL]), and synthesis (e.g., [MWo], [CE])0fconcurrent systems, as well as for
synthesis of robot plans (e.g., [G]) and for verification of hardware devices (e.g., [M]).

In spite of the wide range of applications of Temporal Logic, proof techniques for
Temporal Logic, especially for First-order Temporal Logic (FTL), are quite limited. A
number of proof systems for Propositional Temporal Logic (PTL) have been proposed and
" shown to be complete. Most PTL systems are based on either tableaux (e.g., [W]) or on
Hilbert and Gentzen proof techniques (e.g., [GPSS], [B]). Plaisted% tableau system ([Pl])
can handle certain first-order theories. Manna and Pnueli ([MP1]) suggested the extension
of a PTL Hilbert system to FTL. The system uses modus ponens as the main inference rule
and is therefore inadequate as an automatic or semi-automatic proof system.

Recently, Cavalli and Farinas del Cerro ([Ca], [CF]) described a resolution system for
PTL which provides a reasonable basis for theorem-proving. However, completeness is only
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shown for a PTL fragment with the modalities O (“next”), [J (“always™), & (““eventually™);
the completeness proof does not seem to carry over to PTL with the more general operators
U (“until”) and P (“precedes”). The system is clausal and therefore requires that formulas
be paraphrased into unnatural and long clausal forms. Venkatesh ([V]) also-proposed a
similar clausal resolution approach.

In an earlier paper ([AM]), we presented complete nonclausal resolution systems for
PTL with the modalities O, [, ©, and also with & and P. In this paper, we generalize
our PTL resolution system into an efficient proof system R for FTL and study its soundness
and completeness. The system handles arbitrary formulas in FTL; they do not have to be
in clausal form and may include the operators & and P. While R can be used as a proof
system by itself, special purpose rules as well as known decision procedures for fragments
of FTL, such as Plaisted®, can be built into R.

The system R includes rules for propositional temporal reasoning, equality axioms or
rules, auxiliary rules to move quantifiers, and a generalization of the classical resolution
rule that treats quantifiers explicitly. Skolemization rules to remove quantifiers may be
included in R. They are not essential to the completeness of R, but they are sometimes
convenient to use.

In the next section we introduce the syntax and semantics of FTL informally and define
the general notions of proof and rule. In section 3, we review the basic rules of R for FTL,
mainly following our earlier rules for PTL. In sections 4 and 5, we present the rest of the
FTL system, describing rules for quantifiers and the resolution rule. Section 6 contains an
example. In section 7 we relate R to other proof systems for FTL and discuss completeness
issues.

2. PRELIMINARIES

a. The language

The language of FTL is that of the predicate calculus with equality, with additional
modal operators. For simplicity, we assume that the only connectives are -, A, V, and
regard all other connectives as abbreviations. The modal operators we consider are the
usual ones for discrete linear time: O, [, ¢, and the more general U« and P. Formulas
need not be in clausal form.

For formulas u and v,
e O u means “u is true in the next state™;
e [ u means “u is always true (from now on)*
e < u means “u is eventually true’; that is, & u =~ a U,

e ullv means “u is true until v is true”; in particular, u is true forever if
v is never true (therefore, Y is often called “weak until” or “unless™);



« uPv means “u precedes v”; that is, (uPv) = ~(( ~u)Uv).

Predicate and function symbols are either flexible (time-dependent) or rigid (time-
independent). Thus, if busy is a flexible unary predicate symbol and printer is a rigid
constant symbol (that is, a nullary rigid function symbol),

busy(printer) A = O [ busy(printer)

expresses that the printer is busy in the initial state and not busy from there on. Note that
the value for printer is the same in all states and the property of being busy may change
with time.

Variables are rigid. For instance, 3z.(p(z) A O p(x)) means that the same value in
the domain has property p in the initial state and in its successor. Free variables have an
implicit universal quantification: u is valid if and only if Vz.u is valid.

b. Proofs

We write  w to mean that the FTL formula w is provable by refutation resolution,

i.e.,, that there is a sequence of formulas Sy, . . . ,Sy, such that So = ~w, S, = false, and
S.~+1 is derived from S; by one of the rules of the system. We refer to Sp, . . . , Sn as a
proof.

For our proof notion to be meaningful, we require that rules be sound, i.e., that they
maintain satisfiability: if S; is satisfiable then S;4; is also satisfiable.

c. Rules

Our proof system contains two types of rules: simplification rules and deduction rules.
Both simplification and deduction rules may be constrained by side conditions to guarantee
their soundness.

e Simplification rules are all of the form
u],..’,u:'n => Vv .

If the formulas u1,. . ., u, are embedded as conjuncts in some conjunction in Si (order

is irrelevant), then we delete an occurrence of each of them and add the derived formula v
to -the conjuction.

Ezamples:

» If we apply the rule [J false = false to

Si= BB AQ false)g)

we get

Sis1 = ((P A false) V q).



m If we apply the rule v, v = v to
Si=O{(gvPATA@QV P)
we get
Si+1=O(r A (g V p)).
e Deduction rules are all of the form
ULy oo yUpm M V .

If the formulas u,, ..., u,, are embedded as conjuncts in some conjunction in S; (order
is irrelevant), then the derived formula v is added to that conjunction.

Examples:

e The rule = (v V —w) lets us introduce instances of (v V =w) anywhere;

thus,
Si=(gANOr)
can yield

Sit1= (g A O(r A (s V -s))).

a If we apply the rule vV w -vVwr—wto
Si=O(sA(PVag AP V)
we obtain
Sis1 =O(sA (P V@ A(-PV ) A Q).

- Deduction rules differ from simplification rules only in that the conjuncts ui, . . ., Um
are -kept in the derived formula. In practice, however, we often delete uj, . . ., Uy, immedi-
ately after applying a deduction rule, using the weakening rule (defined in section 3).

d. Polarity and soundness

An occurrence of a subformula has positive polarity in a formula if it is embedded in
the scope of an even number of explicit or implicit =’s. It has negative polarity if it is in
the scope of an odd number of =’s. Thus, p occurs positively and q occurs negatively in
—(—=pVgq). One important observation is that P reverses the polarity of its second argument
(e.g., p has negative polarity in rP(q V p)).



We reduce the proof search space with a polarity restriction:

Simplification rules and deduction rules are applied only to positive occurrences
of uy,...,Um.

We say that u entails v (and denote it u < v) if u D v is valid. The following lemma
provides a criterion for soundness.

Lemma (Monotonicity of entailment):

For all u and v, if u < v and

w' is the result of replacing one positive occurrence of u by v in w, or

w?” is the result of replacing one negative occurrence of v by u in w
then w — w'.

Informally, the lemma states that a formula gets “truer” as its positive subformulas get
“truer” and as its negative subformulas get ““falser.”

As a corollary, simplification rules are sound for negative occurrences of uy, . . ., Upy if
v — uj A.. . Au,; for positive occurrences, it suffices that u; A.. . A u,, — Vv. Each of the
simplification rules has the property that u; A . . . A u, < Vv, except for the skolemization
* rules. Thus, with the polarity restriction, the soundness of all the simplification rules but
the skolemization rules is guaranteed. We will prove the soundness of the skolemization
rules with separate arguments.

Deduction rules are always sound when u,, . . ., u,, occur with negative polarity (since
the given formulas uy, . .., uy,, are kept); for positive occurrences, it suffices that u; A.. . A
U, — V. Each of the deduction rules has the property that uy A . . . A uyp < Vv. This
suffices for the soundness of deduction rules, independently of polarity considerations.

3. BASIC RULES

- In this section we present the basic rules for Q, [0, and ©. The rules for Y/ and P
are described in our earlier paper ([AM]). Sections 4 and 5 contain the remaining rules of
our FTL system R, that is, the rules for quantifiers and the resolution rule.

a. Simplification rules
e true-false simplification rules:

These rules include

[ false = false, < false = false, O false = false,



and the regular true-false simplification rules, such as
false, u = false, -irue = false.
Weakening rule:
u, v = u.

This rule allows us to delete any conjunct that is considered useless.

Negation rules:
~0u = O-wu, ~Ou=UO0TH -0Ou = O -,
S(uAv)=>(uVv-w), =~(uVv)=(uAv), -—--u=u.
Distribution rule:

UunVv...Vog = (uAv) V...V (uAvg).

b. Modality rules

These are rules to handle subformulas in the scope of modal operators.

O rule:

O uv—uaOOw
<O rule:

ou —u v OQu.
O O rule:

d =04 - 0 ()
O Ooeens

Ou, Ov » O(OuAv).
O O rule:

Qu, Ov = O(uA Ov)VO(OuAw).
O O rule:

Qu, O v Ou A v).



Two useful derived rules are:

e [ O derived rule
Ou, Ov » O(Ou Av),

which is obtained from the [J and O QO rules, with weakening.

o O O derived rule
Ou, Ov —» uVO(QuAv),

which is obtained from the & and O O rules.

Due to the induction rule (presented below) most of the modality rules (in fact, all but

the [, ©, and O O rules) are not essential for completeness. We include them because
they often provide convenient and natural short-cuts in proofs.

c. The induction rule
The induction rule is:

w, Qurr O(-uAOuA-w)i f F-(w Au).

To justify the rule informally, suppose that u and w cannot both hold at the same
instant (that is, 7(w A u)). Assume that w is true in the present and u is eventually true.
Then u must be false in the present; at some point u must change from false to true.
Furthermore, w is false when u is true. Thus, the induction rule allows us to conclude that

O (mu A O(u A ~w)).

We frequently use a special case of the induction rule (where w = —u):
u, Ou — O(-uA Qu).

In fact, this special case is as powerful as the general rule in presence of the following cut
rule.

d. The cut rule

The cut rule is

= U VvV -u.

While this rule is not essential for completeness for PTL, it is essential for FTL. The cut
rule is quite convenient in interactive settings, where a user may suggest appropriate u%
to obtain shorter proofs.



e. The frame rule

Let & be any string of modal operators, and u a formula with no occurrences of flexible
symbols, then

®u — Du.

For instance, if p is a rigid proposition symbol, then & O O O p can yield [ p.
f. Equality

Equality can be handled with the usual techniques of classical first-order logic, such as
adding equality axioms or using variants of paramodulation or E-resolution (see [MWa2]).

4. QUANTIFIER RULES

We first introduce a few definitions.

e An occurrence of a quantifier Q¥ is of universal force if it is either a universal
quantifier V and has positive polarity or an existential quantifier 3 and has nega-
tive polarity. An occurrence of a quantifier Q3 is of existential force if it is either
a universal quantifier V and has negative polarity or an existential quantifier 3
and has positive polarity.

o An occurrence of a modal operator M® is of permanent force if it is either [J and
has positive polarity or & and has negative polarity. An occurrence of a modal
operator M? is of eventual force if it is either [J and has negative polarity or &
and has positive polarity. An occurrence of a binary modal operator M¥ is of
until force if it is either I/ and has positive polarity or = and has negative polarity.
An occurrence of MP is of precedes force if it is either & and has negative polarity
or = and has positive polarity.

¢ An occurrence of a formula u is in a permanent context if it is in the scope of a
modal operator of permanent force, within the first argument of a modal operator
of until force, or within the second argument of a modal operator of precedes force.

. In predicate calculus, we can always eliminate quantifiers by skolemization. This is
very convenient, particularly in the case of quantifiers of existential force. Unfortunately,
the usual skolemization rules are not sound for FTL. For example, consider the satisfiable
sentence

(O 3z.p(z)) A (Vy. O ~p(y)),

where p is a flexible predicate symbol. The classical rule to eliminate quantifiers of exis-
tential force replaces x by a new rigid constant symbol a. We obtain the sentence

(O3 p(a)) A (Vy. O —p(y)),



which is unsatisfiable. The problem is that the new sentence claims that there is an
element in the domain that always has the property p, while the original sentence only
claims that at each instant of time there is some element with property p. Thus, the
classical skolemization rules fail to reflect implicit dependencies on time. However, if we
introduce a flexible skolem constant symbol a, then the dependencies on time are captured.

We present some skolemization rules for quantifiers of existential force. They some-
times provide convenient simplifications, but are not essential for completeness. In general,
we will not attempt to eliminate quantifiers and the resolution rule will handle quantifiers
directly. We use auxiliary rules to move quantifiers.

a. Skolemization

We write u(v) to indicate that v occurs in u, and then u(w) represents the result of
replacing exactly one occurrence of v by w in u. Similarly, u[v] indicates that v occurs in
u, and then u[w] represents the result of replacing all occurrences of v by w in u.

The classical skolemization rule to eliminate quantifiers of existential force can be
soundly applied at any point in the derivation process outside the scope of [J, &, U, and
P:

3r.ulz] = uf(z1,. . ., za)]

where f is a new rigid function symbol, x, z1,. .., z, are all the free variables in u, and u
does not occur in the scope of any modal operator other than Q. The intuitive justification

for the rule is that if u is not in the scope of (J, &, U, or P, then x does not depend on
implicit time variables.

A variant of the classical skolemization rule sometimes handles formulas in the scope

of modal operators. For instance, suppose [J 3z.p(z) holds. Then there must be a sequence

- of values for x that makes p(x) always true. Call this sequence a. Thus, we can deduce

that for a new flexible constant symbol a, (Jp(a). This reflects the classical elimination

of existential quantifiers, with the exception that here a flexible constant is introduced.

Similarly, we introduce flexible function symbols when free variables appear. For example,
assume (J 3z.p(z, y). Then, for a new flexible function symbol f, O p(f(y),y) .

Thus, we obtain a flexible skolemization rule similar to the classical skolemization
rule:

Jr.ufz] = ulf(z1, .. .,za)]

where f is a new flexible function symbol, x, Xi, . . . , T are all the free variables in u, and
x does not occur in the scope of any modal operator in u.



Proposition (Soundness of flexible skolemization):

If v(3z.u[z]) is satisfiable, f is a new flexible function symbol, x, z1,. . ., z, are
all the free variables in u, x does not occur in the scope of any modal operator
in u, and 3z.ufz] occurs positively in v,

then v{u[f(z1, . .., zn)]) is also satisfiable.

When x occurs in the scope of modal operators in u, this flexible skolemization rule
is no longer satisfactory. Consider

0 3z.(p(z) A O g(x)).

The rule would derive

O(p(a) A O g(a)),

for a new flexible constant symbol a. The derived sentence is weaker than the original one:
the original sentence meant that for each state the same x satisfies p(x) at the present state
and q(x) at the next state. Because a is flexible, [J (p(a) A O q(a)) does not guarantee
that a same value in the domain has property p in the initial state and property q in the
next one.

An appropriate formula to derive from

O 3x.(p(2) A O q(x)

will be
O Vx. [z = a2 (p(z) A O g(z))].

Thus, we introduce V when we eliminate 3.

-

This idea allows us to eliminate all quantifiers of existential force. However, the
resulting formulas contain new quantifiers of universal force and some equalities. The
generalized flexible skolemization rule is

3X.U = Vz.(z = f(21,...,2n) Du)

where f is a new flexible function symbol and x, z1, . . ., £, are all the free variables in u.
Proposition (Soundness of generalized flexible skolemization):

If v(EIx.u) is satisfiable, f is a new flexible function symbol, X, xi,. . . , x, are all
the free variables in u, and Jz.u occurs positively in v,

then v(Vx.(a: = f(z1, . . . ,zn) D U)) is also satisfiable.

10



b. Auxiliary quantifier rules

If Q¥ is a quantifier of universal force, it can be moved outside formulas:
u(QVz.v[z]) = Vz'.u(v[z'])

where x” is a new variable. (QY is V or 3, whichever is of universal force in the context
under consideration.)

Proposition (Soundness of QY rule):

u(Q"z.v[z]) — Vz'.u(v[z']).

Similarly, we move quantifiers of existential force. The rule is restricted so that de-
pendencies on other variables and implicit dependencies on time are not overlooked:

If x”is a new variable and Q3 is a quantifier of existential force not in the scope
of any quantifier of universal force or in a permanent context in u then

u(Q3z.v[z]) = 3Ir'.ulv[z']).

Proposition (Soundness of Q2 rule):

If the occurrence of Q3z.v[z] under consideration does not occur in the scope of
any quantifier of universal force or in a permanent context in u,

then u(Q3z.v[z]) — Iz'.u(v[z']).

5. THE RESOLUTION RULE

a. Resolution is affected by time

For classical quantifier-free first-order logic, the nonclausal resolution rule is
A(vi,...,0n), B{vns1, . . ., vm) — A8( true) v BO(false)

where the substitution 8 is a most-general unifier of v1, . . . , v, and replaces only variables
that are (implicitly) universally quantified ([MWal]).

That is, if A has subformulas v, . . ., v, and B has subformulas vp41, . . . , Um, We compute
a most-general substitution 8 such that 1,6 = . . . = v, 0. We denote v10, . . . , vr8 by vé.
Then we derive A6( true) v Bé(false). T his is obtained by replacing certain occurrences of
v8 in A8 with true, and certain ocurrences of v8 in B8 with false, and taking the disjunction
of the results.

This rule does not carry over to FTL. One problem is that while v8 occurs in both
A0 and B#, it need not denote the same truth value in all its occurrences; intuitively, each

11



occurrence of v may refer to different instants of time. For example, from —u and & u we
cannot soundly deduce -true VvV & false, because while the hypotheses are satisfiable (e.g.,
by the model which makes u false now, but true otherwise), ~trueV < false is always false.

As in PTL ([AM]), this problem is dealt with by a same-time restriction:

If any flexible symbol occurs in v8 then the occurrences of v8 in A8 and in Bé
that are replaced by true and false, respectively, are all in the scope of the same
number of QO’s and are not in the scope of any other modal operator in either A6
or B6.

Intuitively, this means that all occurrences of v refer to the same time instant. For
example, consider the formulas

O-0O@pvgaoOp and OOOpvOLp
where p is a flexible symbol. The resolution rule for PTL allows us to derive the resolvent
[O-O(truev ¢) A Op] Vv [O O false v O Op.

We only substituted true or false for those occurrences of [Jp in the scope of two Q’s.
These occurrences are not in the scope of any [J or < in either of the premises. We cannot
replace the second occurrence of [Jp in the first premise by true, since it is in the scope
of a {. Also, we cannot replace the second occurrence of [J p in the second premise by
false, since it is in the scope of only one Q.

The same-time restriction does not suffice to guarantee the soundness of the resolution
rule in FTL, because quantifiers and flexible function symbols may appear in formulas.

We now describe an extension of the unification algorithm for FTL. Later we show
how it can be used to obtain a sound FTL resolution rule. For the sake of clarity, we will
temporarily assume that there are no flexible function symbols and reintroduce them in
subsection d.

* b. Unification

We use the classical unification algorithm with two minor extensions: a quantifier
extension and a modality extension. These extensions to classical unification are superficial
enough that we still obtain a most-general unifier & when unifiers exist.

e Quantifier extension: Let Q be a quantifier and z' a new variable.
unifier(Qzy.us[z1], . .., QTm Um[Tm])

unifier(uifz'], .. ., um[z'])  if it exists and does not bind x’,
fail otherwise.

For example, Vz.p(z) and Vy.p( y) unify because p(z') unifies with itself, without binding
x” On the other hand, Vz.p(z) and Vy.p(a) do not unify because p(z') and p(a) unify

12



only by binding z' to a. Also, Vz.p(z) and p(a) do not unify because Vz.p(z) starts with
a quantifier while p(a) does not.

e Modality extension: Let M be any of O, [J, <.
uniﬁer(Mul, ..., Mu,)

. [unifie(u, ..., um) if it exists,
1S . .
fail otherwise.

In other words, O, [J, and { are treated just like unary connectives as far as unification
is concerned. Similarly, & and P are handled just like binary connectives.

c. The resolution rule

In the nonclausal resolution rule for FTL, quantifiers may appear explicitly in front of
the resolved formulas A and B. The conclusion of the resolution rule will also be prefixed
by a string of quantifiers (obtained by interleaving those for A and B). Furthermore, the
formulas A, B, and, therefore, [A6(true) v B6(false)] maycontain quantifiers. The rule is:

Q1z1...Qnzh.-Av1,. . . ,Vn), Riy1... Reye.B(vps1, ..., Um)
— S121 ... Shikzhtk- [AO( true) V Bb(false)]

"where 6 is a most-general unifier of vy,....v;m and @1, . ... Qn, R1,..., Rk, 51, ® .- Sh+k
are quantifiers, with the following restrictions.

(i) The same-time restriction: If any flexible symbol occurs in »8 then the replaced
occurrences of v@ are all in the scope of the same number of Q’s and are not in
the scope of any other modal operator in either A8 or BS.

(ii) The replaced occurrences of v are not in the scope of any quantifier in either A8
or B#.

(iii) z1, ..., Th,y1. ..., yx are all different variables.

(iv) The sequence S1z; . . . Sp4k2zn+k is @ merge of Qi1 . . . Qrzr and Ryy; . . . Riyk,
that is, S1z1 . . . Sh4kzh+k has @171 . . . Qnzpr and Ryys . . . Riyx as subsequences.
(Redundant quantifiers in Sy1z; . . . Sk+k2zp+x May be deleted once (v) is checked.)

(V) If (x « t) € 8 then for some i, 1 <i<h+k, Si=V, z = x, and no variable in ¢
occurs bound in Vz;Si+1zi+1 . - . Sh+kzn+k-(A A B).

Note that only condition (i) has to do with our working in modal logic. Conditions
(ii)-(v) are concerned with classical logic problems. In fact, some of them are similar to
restrictions studied in [MWa3] for resolution with quantifiers in classical logic. Condition
(v) succintly guarantees that 8 only instantiates universally quantified variables; that no
free variable is captured when 6 is applied; and that if (x « t) € 8 then t does not depend
on x implicitly.

13



Example : Consider

Vz13z2.(-p(z1,22,a) V Ogq(z1))
A

1 Vye. (p(v1,y2,a) V O r(£(3))).

We choose

A = (-p(z1,22,a) VOgq(z1))and B = (p(1,¥2,a) V O r(f(b))),
v} = p(:cl,xg,a) and vy = p(yl,yZaa)’
0 = {z1 « y1,y2 « z2}.

Conditions (i), (ii), and (iii) are clearly satisfied.

The conclusion

(ﬂtrue \% Oq(yl))
EIyIV:cIBngyg. \Y

[(false V O r(f(b)))

satisfies conditions (iv) and (v). The quantifiers Yz, 3z2, and Vy2 are redundant. Thus,
we can derive

3y1. [(~true V 0 g(y1)) V (false Vv Or(£(b)))]

which simplifies to

3y . [Og(m) vV Or(f (5))].

. Example: A slight change in the formulas in the previous example makes the resolution
rule no longer applicable. Consider

Vxlamg.(—-p(ml,mz,a) v O‘I(ml))
A

Yy23y1.(p(v1,42,8) vV O r(f(D))).

We choose

A = (=p(z1,22,a) V O ¢(z1)) and B = (p(y1,¥2,0) V O r(f(h))),
v = p(z11x21 a) and UZZP(yl,yZ’aa)’
6 = {z1 — y1,y2 « z2}.

Conditions (i), (ii), and (iii) are clearly satisfied.

14



The conclusion

(ﬂtrue \Y; Oq(yl))
Vm13z2Vy23y1. \Y

(fa,lse v O r(f(b)))

violates condition (v), since (xi « y;) € 8 and y; is bound in the scope of Vz;. Other
possible conclusions run into similar problems.

A simple-minded implementation of the rule could be quite inefficient: while conditions
(i), (ii), and (iii) are trivially handled, the sequence Sy z1 . . . Sh4+k2n+k is described fairly
non-constructively. One could blindly build sequences with quantifiers from the premises
and hope to fulfill all restrictions. However, we can suggest a more efficient approach.

After checking (i), (ii), and (iii), construct a directed graph with nodes labelled by
the quantifiers from the premises, Syzy, . . . , Sh4+k2a+k. We put an edge from S;z; to S;z;
if (2; — t(2;)) € @ for some ¢ or if Sjz; occurs in the scope of S;z; in either @ zy . . . Qazs
or Ryjy; . . . Riyk. Thus, an edge from S;z; to S;jz; denotes that z; depends on z; (that is,
Sizi has to appear to the left of S;z; in the conclusion of the rule).

If possible, flatten the directed graph into a string; in other words, topologically sort
the graph-the rule is applicable only when this is possible. When arbitrary choices are
available, put 3’s close to the source of the string (that is, to the left in S121 . . . Sh4k2h+k)
"in order to get a stronger conclusion. We obtain the sequence S12; . . . Sh+k2Za+k- Since
the construction respects the original order of the quantifiers and dependencies, (iv) and
(v) are satisfied. Finally, delete redundant quantifiers from the conclusion.

Example: In our first example above, the graph is
le 4 3332
Jyp — Ve

It can be flattened into the string

Iy — Vg — 3z, - Vy2

Example: In our second example, the graph is
Vo, — 3z,
Jyn — Vi

Since it is cyclic, it cannot be flattened into a string. Therefore, the resolution rule is not
applicable.
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d. Flexible function symbols reintroduced

For terms containing flexible symbols, substitutivity of equals for equals fails in the

scope of modal operators. This affects the soundness of resolution, as illustrated by the
following examples.

Unification in modal contexts:

The formula
u == p(a) A Ve O p(x),

where a and p are flexible, is satisfied by the model M with domain D =
{0,1},a = (O,1, 1.. . ), where p[0] is false at the initial state and true else-
where, p[1] is true at the initial state and false elsewhere. Take A = =< p(a),

B = Op(z), vy = O p(a), v2 = O p(x). The most-general classical unifier of vy
and vy is 8 = {x t a}. The resolution rule allows us to derive

- O p@) A vx. 0 p(x) A (—true V false)

which simplifies to false. This derivation would (unsoundly) show that u is not
satisfiable.

Substitution into modal contexts:

The formula

u = —p(a) A Vz. [p(a:) vV O(p(z) A "P(a))],

where a and p are flexible, is satisfied by the model M described in the _previous
example. Take A = -p(a), B = [p(z) vV O(p(z) A -p(a))], v1 = p(a), v2 = p(z).
The most-general classical unifier of vy and vy is 6 = {z « a}. The resolution
rule allows us to derive

p(@) A Vz. [p(X) V O(p(z) A ~P(a))]
A
[-—. trueV [false v 0 (p(a)A -p(a)) 11

which simplifies to

O(p(a) A -p(a)).

Another simple application of resolution immediately yields false. Thus, we could
(unsoundly) show that u is not satisfiable. We can trace back this error to ap-
plying {x t a) to O(p(:c) A —-p(a)): while we make x = a for the current state,
this does not guarantee that x = a in the next state (since a may change value).
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A restriction is added to the resolution rule to deal with these difficulties:

(vi) Suppose the replaced occurrences of v are all in the scope of ¢ O’s and are not
in the scope of any other modal operator in either A8 or BO. If (x «+ t) € § and
a flexible symbol occurs in t then all occurrences of x in A and B are in the scope
of ¢ O’s and are not in the scope of any other modal operators in either A or B.

Intuitively, the new restriction guarantees that if 8 indicates x should be equal to ¢,
then @ refers to the value of t in ¢ time units and is only applied in contexts where this
would be clear (that is, in the scope of ¢ O%).

This final restriction on the resolution rule allows us to prove:

Theorem: The resolution rule, with restrictions (i), (i), (i), (iv), (v), and (vi), is sound.

6. AN EXAMPLE

Let p and g be flexible predicate symbols and let a be a flexible constant symbol. To
prove that

[O(p(a) V ¢(a)) A O(Vz.-p(z))] D Og(a)
we will attempt to derive false from
So=-[~[O(@)Va@>A U vxrpon VO,
By simplification, we first get
OWp(a)va@) A (vxipx)) A O —g(a).
Take A = O —¢(a), B = O(p(a) v q(a)), v1 = q(a), v2 = (a). Resolution yields
O(p(a) vV q(a)) AO  (Yz.-p(2)) A 0 ~g(a)
[O -wAtrue v O(p(a) V false)].
true-false simplifications vyield
O(p(a)va@) AO  (Vz.-p(z)) A O —~g(a) A O p(a).
Weakening reduces this sentence to
O (VxIp(x)) A0 p(a).
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An application of the [J rule yields

O (VYz.-p(z))AOp(a)
A
(Vz.p(z)) AO D (v-p()

and another application of the [J rule yields

O wxropx)AOp(a)
(Vw-:\p(w)) A O [O(Vz.~p(z)) A (Vz.-p(=)) A O O(Vz.-p(2))] .
Weakening reduces this sentence to
0 p(a) A O(Vz.=p(2)).
The O O rule and weakening yield
Olp(a) A (Vz.-p(z))].
Take A = —p(z), B = p(a), v; = p(z), v; = p(a). Resolution yields
O[p(a) A (Vz.~p(z)) A [(Va.~true) v false]].

true-false simplifications yield

false.

7. COMPLETENESS ISSUES

-

This section sketches some of the basic theory of R.

Incompleteness Theorem: The standard notion of validity in FTL, kK, is xi-complete.

" This theorem was fist proved by Parikh ([Pa]).

It follows that no effective system for FTL can be complete for the standard models.
In particular, R is incomplete. Therefore, it is natural to ask whether other proposed FTL
systems are more or less powerful than R. For instance, a natural Hilbert system T for
FTL (inspired from the one in [MP1]), adds some rules and axioms for quantifiers and a
variant of the Barcan axiom to a usual PTL proof system. This defines the concept k.

o If kru and kr(u D v) then krv.
e If bru then Fr Ou.
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If br(u D v) and x is not free in u then kr(u D Vz.v).

If u is an instance of a schema valid in Propositional Temporal Logic then kru.

If u is an equality axiom then Fru.

briz.—~u = ~Vz.u.

o kr(Vz.w) O wh where @ is {x «— ¢« and does not create any new bound occur-
rences of variables or any new occurrences of flexible terms in the scope of modal
operators.

o If u does not contain any flexible symbols then kpu = O u.

e Fr(Vz.Ou) =(O Vz.u).

The resolution system R (even without skolemization rules) is as powerful as the above

Hilbert system:

Theorem: For all formulas u, bk u < kru.

Acknowledgements: We are grateful to Marianne Baudinet, Alexandre Bronstein, and
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