7 7 "May 1986 Report No. STAN-CS-86-1109

A Proof Editor for
Propositional Temporal Logic

by

RossCasley

Department of Computer Science

Stanford University
Stanford, CA 94305

A PROOF EDITOR FOR
PROPOSITIONAL TEMPORAL LOGIC

Ross Casley

Computer Science Departuent
Stanford University

1. Introduction

This report describes PTL, a program to assist in constrncting proofs in propositional logic
extended by the operators O (“always”), ¢ (“eventually™) and O (“at the next step™). This is called
propositional temporal logic and is one of two systems of logic presented by Abadi and Manna in
1]

PTL is neither a proof generator nor a proof checker. Instead, it is a proof editor. It provides
convenient commands to manipulate logical formulas in order to case the task of constrncting valid
proofs.

PTL is written in Zetalisp and runs on the Symbolics 3600 workstation.?!

PTL is not a stand-alone program. It is a number of additional commands that extend the
3600 editor, Zmacs. All of the deduction rules of propositional temporal logic are implemented.

1.1 Onutline of this Report

Chapter 2 begins with an example of proof construction using PTL. The second part of this
chapter 1s a user’s manual describing all the commands available,

Chapter 3 is an overview of PTL internals. In it I show that the code consists of four relatively
independent seetions. Chapters 1 to 7 concentrale on cach of these four sections in turn. In
these chapters I discuss the reasons for choosing particular algorithms, as well as the algorithins
themselves.

PTL nses undocumented features of Zmacs. These features are deseribed in Appendix A.

This rescarch was supported in part by the National Science Foundation under grant DCR-
84-13230.
! Zetalisp, Symbolies and Sywmbolies 3600 are trademarks of Symbolics, Inc.

2. PTL Users Manual

I assume that the reader has a basic knowledge of Zimacs, including entering and saving text,
and using the mouse to move the cursor and mark text. However, I will assuine as little knowledge
as possible about other parts of the Symbolics environment. Knowledge of Abadi and Manna’s
proof systein is also assuined.

2.1 Terminology

In this manual the term formnula is applied to any PTL formula, whether it occurs as a single
line of the proof, or as a part of a larger formula. The term whole formula is used to restrict
meaning to ii. formula that forms a line of the proof.

The term conjunction aways refers to a formula in which two or more subformulas are joined
by the A operator. The subformulas are called conjuncts.

Similarly, a disjunction is a formula cousis ting of two or more disjuncts joined by the v
opcrator.

2.2 Example of Using PTL

The best introduction to PTL is by example. Here | give instructions for constructing a proof
of Op O Op. The reader is encouraged to follow the instructions while running PTL. Even if this
is not possible, do not skip this sec¢ tion; the basic operations used to run PTL are not repeated
clsewhere. More detail on the PTL connnands is given later in this chapter.

Loading the PTL Systcin

If PTL is not alrcady loaded, give the lisp command (load "¢ : >ross>ptl>system-def™).
Lisp will respond with a question ending: load all 5 of them? (Y, N, S). You should type Y.
(If this gquestion did not appear, PTL was already loaded and you can continue.)

_ Creating « New File

Create a new file to hold the proof. The file can be given any name, but the extension should
be . ptl. This extension ensures that Zmaces will an tomatically edi t the file in PTL mode. The
special PTL commands arc only available for files edi ted in PTL mode.

- the firgt line of this file we will simply deseribe the deduction to follow. Of course, PTL does
not require that this be doue, it is just, our choice to do s0. So we want to insert a line containing
something like “Tlerveis il proof of Op D Op.” This brings us to the first problem, how to type the
logical symbols.

Typing Logical Opcrators

The three special keys marked with a square, circle and triangle can be used to enter the modal
operators O, O and § respectively. The other logical symbols are standard on the 3600 keyboard,
and arc typed using the “symbol” key. Unfortunately, the symbols do not appear on the keyboard,
but their position can be discovered by typing symbol-Help. Symbol-Q is the A-sign, symbol-W
is V, symbol-K is — and symbol-Y i s D. (3 and — are equivalent ways to type “implies”.) The
carat (shift-6) is not the same cha rac ter as the and-sign, A.

Now type the first few lines of the file so that it appears as follows. (Note: the first, line
displayed is an attribute list for the file. 1t was created using the Zimmacs commands, PTL Mode
and Set Package. This line may .be omitted if you wish)

-*- Mode: PTL; Package: USER -*-
First a proof that Op > Op. Proof is by contradiction

Text such as this may appcar anywhere in the file, and does not affect the deduction.

Typing a Formula

Now type the premise of the deduction. Since this is a proof by contradiction, the premise is
~(Op 2 Op).

Formulas that are part of the proof are distinguished from plain text by appearing on a new
line beginning with a line numnber, which is an integer followed by a colon. The line number can be
entered by typing it, or it can be generated automatically nsing the “Super-L” command.

Line numbers need not be unique. However proofs containing duplicated line numbers arc
difficult to read.

After entering the formula the file should contain:

-*- Mode: PTL; Package: USER ~-*-
First a proof that Op 3 (}p. Proof is by contradiction
1 ~(Op > $Op)

Performing a Deduction

There are now several ways to proceed. The strategy taken here is first to distribute negations,
then apply the O rule to obtain an explicit contradiction.

The PTL dednetion commands are invoked by giviug a columand which specifies the deduction
rule to be applied. The command for distributing negatious is “Super-N”. Type Super-N now.

ITL is now waiting for you to choose il. formula using the mouse. The method nsed to select
premises is comumon to all rules, and 1s worth explajning in some detail here.

Notice that the monse cursor changes to a thick vertical arrow, and instead of pointing to
individual characters on the sereen, the mouse points to subformmlas occurring in the proof. A
hollow box always surrounds the formmla to which the mouse is pointing. Clicking a mouse button
sclecets the outlined subformula.

* Move the mouse so that it points to the formula in line 1. Be careful not. to click one of the
mouse buttons.

PTL always assumes that the mouse points to the smallest possible formula surrounding the
mouse cursor. In the example formula, pointing the mouse cursor to the $ sign will outline the
formula ¢p; pointing to the D sign will outline the formula OQp D ¢p. In general, a subformula
can be outlined by pointing to its logical operator.

When pointing to a formula, cach of thie three mouse buttons will have a different effect. A
[right] click adways aborts the command. The effect o ¢ [leftand [middle] clicks depend on the
command you gave, For most connands the middle button aborts the command, and the left
buttoun perforis the requested deduction. The inverse-video information line at the bottom of the
screen always lists the meaning Of cach mouse button. Typing anything besides one of the mouse

clicks will abort the command. The nuexpected input is put back onto Zmacs’ input stream to be
interpreted as a command.

To complete this deduction, outline the whole formula -(QOp D ¢p), by pointing to the =
operator. Click [left] t0 complete the deduction. PTL inserts the conclusion at the end of the
buffer, so the file now contains:

-*- Mode: PTL; Package: USER -*-
First a proof that Op o) <>p. Proof is by contradiction

1 -(QOp > Op)

2 : QOp a0 : By distributing -~ in 1

The conclusion is written with a new ‘line number, and with a comment explaining how the
line was derived.

Comments are not restricted to formulas written by PTL. You can place comments on any
formula by typing a scinicolon before the comment.

Ezpanding the Modal Operator

The next step in this strategy is to apply the ¢ | rule to the subformula O-p of line 2. The O
rule is invoked by the “Super-E” command. Super-E invokes the O rule or the § rule, depending
on the main operator of the premise chosen for it. Most, PTL commands invoke one of several rules,
depending on the premises chosen.

The Suver-E command is invoked in exactly the same way as the Super-N command. In fact
we must invoke this rule twice, and the file finally contains:

-*- Mode: PTL; Package: USER =~*-
First a proof that Op 2 ()p. Proof is by contradiction

L ~(Op > Op)

2: Op A 0O-p : By distributing -~ in 1
3: Op & (~p » OO-p) : By the [1 rule from 2
4: Op A (=p » O(-p » OO-p)) : By the [I rule from 3

Completing the Proof

By now the contradiction should be obvious, we have both Qp and OQ—p occurring (implicitly)
inline 4. This suggests that the basic resolition rule should be nsed to complete the proof. There
are two ways to invoke the basic rule. The one used here is the “Super-R” conmand. The user must
choose two premises for Lhis contmand, both occureences of the same formula. The command works
oul a reasonable way to apply Lhe resolution rule so that true is substituted for one occurrence and
Jalse for the other.

When a command uses two (or more) premises, clicking [left] selects the first premise, but
no deduction is performed. The hollow box surronnding the first premise remains even when the
mouse is moved. A sccond box surrounds the formula to which the mouse points. Both boxes
disappear after the sccond premise is selected, and the deduction made.

When you click [left] the box surrounding the first -premise may disappear. This happens
because it is being surrounded twice once by the blinker that follows the mouse around, and a
second time by the blinker that shows it has been seleched, These two blinkers cancel cach other,

Simply iiiove the mouse, and both blinkers will be visible. For the same reason, you may see nnnsnal
outlining whenever two blinkers overlap on the screen.

The Super-R conunand is unusual in that it generates two lines in the proof. The first new
line is the result of the basic rule, the second line simplifies the first line.

After typing Super-R, the user here selects as first premise the leftinost ocenrrence of p. The
second premmise is the third occurrence of p, which appears as. .. A OQ(-p Do this now, and the
following addi tional lines will appear.

5: Op a (~p » O(=p » OO-p)) ; By resolution from 4
((-p ~ O(-TRUE o OO-p)) v (QFALSE)
6: FALSE : By simplifying

This completes the proof, and illustrates an important point. Sometimes a formmla is too long
to fit comfortably on a single line. It can be continned onto another line by splitting it So that one
of the connectives (A, v, D, or —) appears at the end of the first line (except for comments), or
is the first non-blank character of the continnation line. Formulas may be continued onto as many
lines as necessary by using this convention on cach line.

2.3 Details of Selecting Forrnulas

Several situations did not arise in the example given, bu t need to be mentioned.

In a conjunction, such as A A B A C, pointing the mouse to A will outline the A, pointing to
cither of the A signs outlines the whole conjunction, A A B A C. There is no way to outline just
a picce of the formula, say A A B. If this is necessary for the proof, first use the weakening rule
described below to deduce a new formula with 4 A B replacing A A B A C. Then use the new
formula in it premise. Similar comments apply to disjunctions.

111 a long proof, two premises may be SO far apart that they cannot appear on the same screen.
But typing a scrolling command such as Control- V aborts the deduction command. The solution
is to use the mouse scrolling commands, invoked by moving the mouse to the left border of the
Zmacs screen. Serolling this way does not abort a deduetion command.

2.4 How and When Formulas are Parsed

Before any formula can be used as the premise of a deduction, PTL must parse it to detecmine
the position of cach of its subformulas. Every formmula in a file is parsed when the file is read. (This
will canse a noticeable delay if existing files with many formulas are read.) New or altered formmlas
are parsed when any of the commands initiating a deduction are issued.

The parser is normally case sensitive, so p and P are distinet formulas. 'The coustant true and
false formulas are exeeplions Lo this rule. Any formula with the names true and f also, no matter
how capitalized, will be equivalent to TRUE and FALSE respectively.

Parsing is abandoned if a syntax error is found. The cursor will be positioned at the point
where the error was found, and an error message will be given iii the typo-iii window at the bottom
of the screen. Parsing may be resumed by issuing a deduction command. The parser may also be
invoked using the “Parse Bufler” (super-P) command. This is useful if you expect to find further
errors in the text.

Unary operators are given the highest priority, followed by A, then Vv, then D, That is, the
formmla ~A A B v C D D is interpreted as (((—A) A B) v C) D D. This priority is accepted on

5

input, but when PTL prints out formulas, it inscrts additional parentheses so that the meaning
is clear. The A and Vv operators are treated as variadic, not binary, so additional parentheses are
never needed within conjunctions or disjunctions.

2.5 Dual Rules

Each of the deduction rules of propositional temporal logic has a corresponding dual rule. For
example, the weakening rule allows you to replace a conjunction with positive polarity by one of
its conjuncts. The dual of weakening allows you to replace a disjunction having negative polarity
by one of its disjuncts. In general the dua rule can be stated by taking the statement of a rule and
interchanging “positive polarity” and “ncgative polarity”, “A” and “v”, “0” and “{”, and “true”
and “false”.

A proof containing dual rules can aways be replaced by a proof using ouly standard rules, but
the dual rule proof is sometimes shorter and inore clear.

PTL implements duals of al the deduction rules. However, some of the rules arc unchanged
when dualized, and the ¢ | and § rules are already duals. A dual rule is applied using the same
command as the standard rule. For cexample,the resolu tion commnand applied to a conjunc tion
with posi tive polari ty uses the standard rule. The same command applied to a disjunction with
negative polarity uses the dual of resolution.

2.6 PTL Commands

Simplify Formula (Super-S)
This command replaces a subformula of the existing formula by an equivalent simpler formula
To simplify the whole fornmla, simply select the whole formula
The simplifications used are
o occurrences of frue and fulse are removed, replacing the subformula containing them by

an cquivalend formula, For example, A A B A TRUE will becomne A a I, There are similar
replacements for other operators,

o double negations are removed,

¢ nested conjunctions and nested disjunctions are flattened. For example, A A (B A C)
becomes AANBAC. ’

* Tf no simplification can be made, no new line is written to the file.
Weaken Formaula (Super-W)

This command replaces a conjunction by a subsct of its conjuncts. A [left] click and a [middic]
click have different efleets. [Left] on o conjunct replaces the whole conjunct ion by that formmla.
[Middle] allows you to select more than one of the conjuncts to appear in the final formula. When
you click [middle] the conjunct will be outlined, but you will still be able to elick cither [middle]
or [left] on other conjuncts. When you eventually click [left] a new formula containing ouly the
sclected conjunets will be deduced.

The dual Of the weakening rule will be used the selected formulas are disjuncts instead of
conjuncls. The disjunction must have negative polarity.

6

After clicking [middle] on a number of conjuncts, you can click [left] while not pointing to any
subformula to comnplete the weaken command without adding any further conjuncts.

Distribute Negations (Super-N)

You must sclect a formula whose outermost operator isa - or D.

If the operator is - de Morgan's laws and negation rules for modal operators will be applied to
produce an cquivalent formula with negations appearing only at the lowest level. That is, negations
will only be applied to propositional variables.

If the operator is D, the formmla is replaced by the corresponding digunction then the negation
rules are applied repeatedly to the result. For example, selecting ~A D B will give the conclusion
AV B.

A simpler deduction is performed if this command is preceded by a numeric argument (that is,
by preceding the comnand by “ Control-I” ‘or “ Control-1T”). For negations, the negation will only
be pushed down one level instead of being applied recursively. Implications will be replaced by the
equivalent disjunction, without any further application of the negation rules.

Manual Resolution (Super-Q)

This cornmand impletents the basic resolu tion rule or its dual.

Resolution is presented symbolically in [1] as follows:
R[A{u), B(u)] — A(true) v B(false).

A badi and Manna allow several occurrences of the formula « to be replaced simultancously, but in
PTL only onc occurrence in cach of A and B may be replaced.

[There is a danger in doing this. Similar restrictions in other logical systems destroy the
system’s completeness. While we are not much concerned with completeness here the user
could always type the required conclusion without using any deduction commands at all it is
comforting to know that this system is still complete. To see this, note that the completeness proof
in |] uses ouly the restricted rule. This fact was pointed out by Martin Abadi.]

The user must choose four formlas. First choose two formulas as the conjuncts A and B.
They may be chosen in any order. You may choose two conjuncts within the same conjunction, or
* you can choose two whole formmlas to be A and B.

After choosing A and B, the blinker that outlines the formula you are pointing to will change
to a solid blinker. The next two formulas chosen are the occurrences of w those formulas within
A and B that are to be replaced by true and felse. The first formnula chosen will be replaced by
tree, the secoud by false. The dedneed formula will be added at the end of the buffer.

A pplying this rale is fairly tedions. The nex t command deseribed is an attempt to simplify
Lhis Lask.

Automatic Resolution (Super-R)

This command is an alternative to the resolution comnand of the previous section. Instead
of choosing four formulas, yon are ouly required to choose two. These two formulas must both be
occurrences of the same formmla, and they are taken as the inner formulas of the deduction (called
w in the previous section).

PTL attempts to guess what A and 3 must be to swrround these formmlas, If the two inner
formulas are within the same line, then a formula that contains both the sclected formulas is found.

This must be a conjunction, and the conjuncts containing the selected formulas arc taken as A and
B. If the selected formulas arc in different lines, then those lines arc taken as A and B.

The two sclected formulas must have different polarities. The formula having positive polarity
will be replaced by j&e, and the other will be replaced by true in the conclusion.

This is often the deduction that is desired. For cxample, sclecting the two occurrences of P in
P and (P D Q) will result in the conclusion Q. Also, sclecting the two occurrences of ¢ ina A z A —a
will result in false. There is obviously no guarantee that this is aways a nseful deduction.

This command adds two formulas at the end of the buffer. The first is the resolvent. It will
be followed immediately by its simplification.

The dual resolution rule is also implemented. The formula that has negative polarity is still
rcplaccd by true and the formula with negative polarity by false.
Binary Modality Rules (Super-M).

The six binary modality rules (0O, 0, &, OO, 00O and $Q) and their duals are all
implemented by a single command.

The rule to apply is selected depending on the modal operators appearing in the chosen formu-
las. For al rules except O 10 the order in which the formulas to be resolved upon are chosen is amost
irrelevant to the conclusion drawn. (The ¢ and QO rules will have different, but equivalent,
conclusions if their premises are chosen in a different order.) For the OO rule, if the first choice is
DOu and the second is Owu, the conclusion is [[v).

Unary Modality Rules (Super-E)

The two unary modality rules (O and {) are also implemented by a single command. (The
key binding can be remembered by mentally associating super-E with “expand modal operator”.)
The appropriate rule is chosen according to the operator of the selected formula

These two rules arc duas of one another.
The Induction Rule (Super-I)

The induction rule or its dual is applied by this command. The standard rule states thal if
=(w a u) can be proven, then

Rlw, Qu] = O (~ua O(ua —w)).

There i s no check that the lemma, ~(w A u), is ever proved. The required lemma is printed in
the comment of the conclusion line, unless this deduction is the special case where w = —u.

The dual of this rule requires the lemma w Vo, and its conclusion is D(n D O(w > u)). For
the special case w = -, the conclusion is U(e > Qu).

Distribution Rules (Super-D)

Three distribution rules (for distributing A over A, V and D) and their duals arc implemented
by this command. The formula to be distributed must be chosen first, and the formula to be
distributed over is chosen sccond. If the second formula is o disjunction of more than two teris,
the formula will be distributed to cach of the disjunets. For example, if the first formula is v and
the second isv V w V z, the resull will be (v Av) V (u A w) V (v A).

The dual of distibution distributes Vv over the other operators.

8

Parse Formulas (Super-P)

Whenever any deduction cominand is exccuted, the buffer is first checked for formulas that
have changed sinee they were last parsed. The super-P command allows you to invoke this parsing
process without performing any deduction.

Insert Line Number (Super-L)

This inserts the next available line number at the start of thie next line. If the cursor is already
a the beginning of the line, no new line is created.

Indent for Comment (Control-;)

This is not a PTL command, it is part of standard Zinacs often uscful in PTL. It moves the
cursor to the comment position on a line. If there is no existing comment, a semicolon is typed.

2.7 Summary of Commands

Key Command Name Rules implemented

Super-D Distribute formmla over A, V or D

Super-E Expand Modal Operator 0, ¢rules

Super-1 Induc tion Rule

Super-L Inscr t Line Number

Super-M Modal Resolu tion 1% 0o, &¢, O0.U m) and OO
Super-N Distribute - distributing -

Super-P Parse Formmulas

Super-Q Manual R esolu tion Basic resolation rale

Super-R Automatic Resolution Basic resolution rule simplified
Super-S Simplify Formula truc-falsc rules

Super-W Weakening rules

Cirele Key Type o

Sqnare Key Type O

Diamond Key Type O

Control-; Begin comment, indented

2.8 Parameters

A number of parameters can be set by the user. Note that all of them are in package zwei.
These are not of interest Lo most users, but are listed here for completeness.

def ault-ptl-comment-margin The number of characters to indent a comtnent when a derived
formmla is printed. This applics only to formulas printed by PTL. The indentation used by
the Control-; comand is set by a different Zmacs variable.

ptl-print-names. an association list giving the external forins of the conncetives and operators.

trace-parser. For debugging the parser. If non-pull, a line is printed for cach shift or reduee
I 1
action of the parser.

def ault-ptl-f ont-f ile The bfd file containing the special font for printing formulas.

9

2.9 Fonts

If you list a PTL file without using Zmacs, or if yon edit a PTL file without using PTL mode,
the O and O symbols will not be displayed correctly. This is because PTL mode uses a special
fout, which is set up antomatically when you enter PTL mode.

10

3. PTL Internals

In this and the following four chapters | describe the internals of PTL, and discuss why par-
ticular algorithms were chosen.
Design Goals

Design choices were made with respect to some specific goals. Ease of use was emphasised, and
this led to several carly design decisions. Firstly, the Symbolics lisp machine was chosen because it
allowed the use of a mouse to select formulas for a deduction. This is a more natural interface than
other methods, and is especially necessary in PTL because the formulas being resolved upon can
be nested within other formulas. Sccoxrdly, Zmacs was used for the basic user interface, rather than
building a more specialized interface, because it immediately gave access to powerful text editing
facilitics, multiple window capability, easy storage and retrieval of proofs and allowed the user to
swap between tasks easily.

A sccond goal was to make cfficient use of space. For example, conclusions should share

structure with premises as much as possible. Failing to control space usage leads to more frequent
garbage collections, which slows the machine.

PTL Modules

The PTL software can be divided into 4 pieces, which | will call modules, thought they are not
modules in the usual sense. Each module maintains its own set of data structures and algorithms,
and will be described separately. The modules arc:

1. Functions for manipulating formulas,
2. Command definitions, mousce handler and other interfaces to Zmacs,
3. A parser, and

4. A prettyprinter.

The parser converts formulas into an internal format. The formula manipulation functions use
this internal format, both for input of premises and for output of conclusions. The prettyprinter
converts interual format back into external format for output into the file being edited.

The Zmacs interface (module 2) controls processing by the other modules.

11

4. Formula Manipulation

4,1 Data Structures

There arc two data types used by the formula manipulation softwarc, formulas and occurrences.
Both data types are also used outside the formula manipulator, to communicate between other parts
of the software.

Formulas

Formulas arc the simpler of the two structures. A formula is the internal representation of
a logical formula. It uses a very common representation for formulas: propositional variables are
represented as lisp atoms; compound formulas arc represented as lists, with the car of the list being
the logical conncctive, and the cdr being the list, of argnments. For example A D B is represented
its (IMPLIES A B), AA (B V C) is represented as (AND A (OR B C)), and so on. The atoms TRUE
and FALSE are reserved for use as the constant true and false propositions.

Occurrences of Formulas

In many situations wc need to know where a formula occurs within ano ther formula. The data
structure called an occurrence is nsed to represent this information. For example, the formula A
appears twice in the formula A A QQA, and each instance of A would be represented as a different
occurrence,

QOccurrences are quite complex to define, and some special terms will be needed to describe
them. | will use the term formula for cither the abstract matheinatical object, or its representation
in lisp. This should not cause any confusion. Every formula is either atomnic (consists of a single
propositional variable), or compound. A compound formula is defined by its connective and its
list of arguments. The allowable conncctives are AND, OR, IMPLIES, NOT, ALWAYS, EVENTUALLY, and
NEXT.

When a formula occurs as once of the lines of a proof, that occurreunce is called a top-level
occurrence. If an occurrence is not at the top level, it has a parent occurrence, which is the smallest
occurrence containing the given occurrence. For example, consider the formala w D> $(x VvV y). The
parent occurrence of ¢ is # V y. The pareut of 2 V g in turn is O V y), and the parent of that
formula is w D $(x V y).

I use the term parent formula when the content of the parent ocenrrence, rather than its
position, is being counsidered.

One point needs clarification. | always consider a conjunction or disjunction of more than
two terms to be a single formmla, rather than an abbreviation for a more complex, parenthesized
formula. This means the parent formula of the occurrence of y inz Ay A zisae Ay A 2 (not y A 2,
for example).

The ocenrrence data structure is intended to list the formula, its parent formula, the parent’s
parent, and so on until the top-level is reached. We could propose the recursive definition:

AL oceurrence of a formula is represented by a pair whose
car represents the formula itself, and
cdr is nil if the oceurrence is top-level, or
represents the paren t oceurrence otherwise.

However this definition is not good enongh. It cannot distinguish between the two occurrences
of Ain AA DB A A, for example. To remed y this flaw, suppose we are given a formula, and an

12

occurrence of one of its arguments. Define the tadl of the formula beginning at that argument to
be the list of arguments from the given argument onward. For example, the tail beginning at the
firs Ain A ADBAA s (A B A), while the tail beginning at the second A is (A). When the formula
is represented as a ligt, as described above, this “tail” will realy be one of the tals of the list.

Now we arc able to describe the occurrence data structure.

A top-level occurrence is represented by a list containing a list

con t aining t he formula

Other occurrences are represented by a pair whose
car is the tail of the parent formula, starting at the formula
cdr represents the parent occurrence

Example

Suppose the formula (A A B) D —~C occurs as a line in the proof. This formula is represented
internally as
(IMPLIES (AND A B) (NOT C)).

The occurrence of this formula is a top-level occurrence, and is

((IMPLIES (AND A B) (NOT C)))).

The occurrence of A A B within the formula is represented as

((AND A B) (NOT C)) ((IMPLIES (AND A B) (NOT C)))).

Tlhie occurrence of C is represented as

((C) ((NOT €)) ((IMPLIES (AND A B) (NOT C)))).

Sharing Storage

The oceurrence structure often contains duplicated formulas, and it is natural to try to share
list. strncture between them. To see how this structure can be shared, it is best to give a new
description of occurrences.

The list structure representing a formula is actually a binary tree. Roughly speaking, an
occurrence marks a point within this binary tree. More precisely, if the links in the binary tree
were bidirectional, then an occurrence could be represented by a pointer to one of the cells in
the tree. But there is a disadvantage to making those pointers bidirectional - it would make
it'impossible to share structure between two different, formmlas. Henee, whenever a dednction is
performed, sublormulas of the premises would need to be copied before they could be used in the
conclusion,

An occurrence is an allernative way to implewen t the required bidirectional links. It can be
scen as a list of pointers into the formula structure. The firgt, pointer in the list is to a cell in the list
structure. The second potnter is to that cell’s “parent”, and SO 011. One must be carcful to define
the “parent” correctly. (Recall that we had to revise our first definition of occurrence, becanse it
did not give enough information. One way to characterize this error is by saying that we chose the
wrong definition of “parent™.) Top-level formulas and atomic formulas must be treated as special
sases, because we need to ereate additional cells ou tside the formula itself, but i general this view
of an occurrence is correct.

13

The parser and prettyprinter always create ocenrrences using this model, so that occurrences
nse as little storage 8s feasible. However, the other algorithms manipulating occurrences do not
rely on the sharing.

4.2 Algorit hrns

The operations needed for manipulating formulas arc simple, and will not be mentioned further
here.

We will need several functions on occurrcnccs:

Given an occurrence, return the formula of which it is an occurrence.

Given a.11 oceurrence, find the munber of OO operators in which it is nested, and check
whether it is in the scope of $or Q. A similar operation finds the polarity of an occurrence.

o Given an occurrence and a formula, re t urn the formula that results from replacing the
occurrcnce by the formula

The defini tion of occurrence makes al these operations very simple.

Given an occurrence its corresponding formula is found by taking the caar of the occurrence.
If the formula is compound, its operator and argunent list arc found by taking a further car and
cdr, respectively. (This is not, to say that occurrences are manipulated using car and cdr. All
these operations are actually implemented by appropriate macros.)

Repeatedly taking the cdr of an occurrence will reveal the successive parent occurrences and
the parent formulas are given by taking the caar. Hence, the nummber of (O's in which an occurrence
is nested is casily calculated by stepping through the parent formulas counting how many ()’s are
found.

The polarity of an occurrence can be found in a similar way, though there is a complication
becanse the antecedent of an implication has negative polarity, but the consequent has positive
polarity. The algorithmn can determine which of these two cases holds quite simply. Suppose we
are given an occurrence whose parcut oceurrence i s an implication. If this is an occurrence of
the antecedent, then the car of the oceurrence will be a ligt, holding both the antecedent and the
conscquent. 0 therwise, the car of the occurrence will be a list, holding just the consequent. Now
the parent formmula of an ocenrrence is given by the caadr of the occurrence, and the cdr of this
formula will be a list containing the antecedent and consequent. So, if the cdaadr of the occurrence
is the same as its car, if and only if this isil.11 occurrence of the antecedent.

Determining whether one ocenrrence lies within another is smply a matter of checking whether
the first ocenrrence is a tail of the second.

Finally consider how to replace an occurrenee by a different formula. This opera tion could be
defined so thal it returned an occurrence of the new formula within the changed outermost formula.
However, it is simpler to retuen the outermost formula itself, and this turns out to be suflicient
for onr purposes. (If we nsed destructive operations on occurrences it wonld be a simple matter
to change the given occurrence into an oceurrence of the new formula. However occurrences share
storage between one another, so destructive operations have unwanted side-cffects.)

s o suppose weare given an occurrence and a formula that is to replace this occurrence. If
the oceurrence i s already at the top level, we can return the new formula and stop. Otherwise
we calendate the formula that must replace the parent oceurrence, and call the replace function
recursively. We alecady know the tail of the parent formula, so we can caleulate the formmula that

14

must replace it by first calculating the new tail of the parent formula, then taking the parent
formula, and replacing the existing tail by the new oune. (All this must be done noun-destructively,
but there is still some opportunity to share storage, and this is done wherever possible.)

5. Interface to Zmacs

Zmacs was used for the uscr interface because it made many facilities available to the user for
little cost. However, the various structures and services used by the editor should be used carefully
by PTL to avoid problems caused by changes to Zmacs. | decided to use existing editor structures
wherever possible, rather than defining slightly different ones especially for PTL, and to use editor
functions at the highest level possible.

In accord with these principles, PTL mode shares many functions with lisp mode, but, still,
two Zmacs-related functions had to be specially written to support PTL. The first is the buffer
sectionization algorithm, which determines the boundaries of forrnulas within the buffer. The
second is the group of functions that control sclection of forrnulas using the mouse.

The reader is assumed familiar with the Zmacs internals described in Appendix A of this
report.

5.1 Sectionization

A PTL-mode buffer is sectionized. Standard section-nodes are used for the sections. Sections
belong to one of two classes, one for formulas and one for general text. The definition-type field
defines whether a node holds a formula or text. The function-spec ficld is used to hold the line
number of a formula node.

A formula node begins at the first character on the first line of the formula, the line containing
the line number. The formula ends just, before the carriage return in the last line of the formula
This final carriage return aways begins a new text node. Thus, there is always a text node between
any two formula nodes. If the next line also contains a formula then the text node contains just
the carriage return between the lines, If the next line contains text, the text node inclndes the text
lines as well.

This couvention is adopted because the ouly way that I'TL knows that the region list for a
formula node is valid, is by checking the node-tick against the compile-tick for the node. If two
formula nodes are adjacent, and the user inserts a new line between them, the node-tick of the
first. node will be updated, even though the region lig, is still valid. To avoid unnecessary reparsing,
a formula node is defined to end just before the carriage retuen, If a new line is inserted, the text
node containing the carriage return is updated, not the formula node before it.

(In fact an carlier version of this program made formula nodes read-only to prevent unintended
changes. This was abandoned for two reasons. It, was sometimes inconvenient to use, and it
activated a bug in Zmacs which crashed the editor if one attempted to delete a region containing
one of the read-only nodes.)

5.2 Using the Mouse to Sclect Formulas

When the monse is being nsed to select fornmlas, three operations must be carried out. Firgt,
the physical position of the mouse cursor on the screen must be discovered. Second, this physical
position is used to determnine the oceurrence that is being pointed to. Thirdly, an outline is drawn
around the formula.

Finding the Mousc Position
The mouse cursor position is found nsing the Zmacs internal function mouse-char as described

in Appendix A.

16

Culculating the Formula Being Referenced

To relate the physical position to a formula, cach formnla section has a property named
:msregion-list. The valuc associated with this property is a list of mouse-sensitive regions,
arranged so that the smaller regions always appear before their parent region. This property is
initialized when the formula is parsed, or when anew formmla is printed. Every deduction command
begins by checking that these properties arc current, calling the parser if necessary to update them.

Each mousc-scnsitive region is defined by a st ruct called msregion, which contains two BP’s
marking the beginning and end of the region and a value, which is the occurrence (see above) that
this region represents.

A single formula can occupy several lines of the file. We cannot assume that the surrounding
region’s boundaries will be on the same line as the mouse cursor, so determining whether the mouse
position lies within any region may involve a search through the lines of the buffer. However, Zmacs
provides an internal function, BP-< for just this type of sitnation. It is passed two BP’s, and returns
T if the first BP is earlier in the text than the second, regardless of whether the two BP’s arc on
the same line or not.

So to find the formula being pointed to, first create a temporary BP at the current mouse
position. Then scarch through the region list of the formula node containing that BP, for the first
region surrounding the BP. This region will be the required occurrence.

Outlining Formulas

Single forinulas spanning mmultiple lines of text also affect the outlining of forinulas on the
screen. To outline a multiple line formula, a hollow rectangular blinker is created for cach line of
the formula. Blinkers arc XORed onto the sereen, and the bottom bar of such a blinker coincides
with the top bar of one o011 the next line. Therefore, when several blinkers arc placed on the screen,
their common boundaries cancel cach o ther out, and only the on tline remaiuns.,

The blinkers arc kept on a ligt, and re-nsed rather than being re-created. Normally, all blinkers
on the list are made invisible before beginning a new outline. This is willy the outline appears to
move from one place to another. For persistent blinkers, which are the blinkers outlining the first
of two premises, a separate list is used so that they remain visible un til expli tly switched off.

17

6. Pretty Printing

Since derived formulas may* be too long to be printed on one line, the printing routines must
be able to do more than just translate a formula in internal form into its cxternal form. They must
be able to decide appropriate line breaks.

On the other hand, printing formulas is not so complex that specialized algorithms are needed
for them. So a printing algorithm of medium complexity is required.

The prettyprinter actually used is based on the printer presented by Oppen in [2]. It uses
limited space, and requires few enhancements to print formulas adequately.

6.1 Structured Text

The prettyprinter is passed some structure defined ou the text to be printed, as well as the
text itself. The text is considered as a stream of units, where a unit is defined recursively as either

e A string, or

e A sequence, ug %y . . . U,, Where cach u; is either a unit or a space. (Spaces are optional
line breaks.)
| disallow consecutive spaces and spaces at the beginning or end of a unit.
This structured text is passed to to the prettyprinter as a stream of tokens, where the tokens
can be
e Strings,

e Spaces,

o Brackets, written | and], which group the strings and spaces into logical units.

If a logical unit of text cannot be printed on a single line, it will be split into Several lines.
Fach continuation line will be indented two additional characters from the indentation of the first
line of the logical unit.

If a space token is not converted into a line bresk, it is printed as a single space.
6.2 Printing Algorithm

- Printing can be considered as being divided between two processes, called scan and print.
(Functions called scan and print are not actually implemented. This is only a description of the
algorithim being used.)

The input stream is fed into sean, which caleulates a size for cach token in the input strean,
and then passes the token and its corresponding size on to print. | measure sizes as numbers of
characters here, though the generalization to VariableWidth characters is casy.

Sizes of each Token

The size of a string is the number of characters in the string. The size of a] is zero.

The size of a [is the space required to print everything in the logical uuit, and everything
in units following it up to the next space token, Assmme that no spaces nested within the logical
units are converted to line breaks. For cxample, suppose uy uqugy occurs in the text, where

18

is a space, and cach unit u; contains n; characters. The size of the | that begins the uy unit
will be ny + ny + ny. For uy the corresponding size will be ny + m3 and for uy the size will
be n3.

The size of a space is 1 greater than the size of the string or [that follows it. Hence, the size
of a space is the nnmber of characters that would be needed to print the space, and everything
up to the next space, asswning that no spaces at any lower level of nesting are converted into line
breaks.

How Print Processes the Text

Print takes the stream of text to be printed, together with the associated sizes and prints
the text as follows. When a string token is rcccived, the string is simply printed. When a | is
received the current print position is recorded on a push-down stack, and any new line started
will be indented to the value at the top of the stack, plus 2 spaces. If a] is received this stack
is popped.

When a space token is received the printer must decide whether to convert the space into a
line break. It does this by examining the size associated with the space. If enongh room remains
in the current line to accomodate this length, the space is printed as a space. Otherwise a new
line is begun, indented as described above.

Iinproving Scan’s Performance

Scan calculates the size for cach itemn by holding al items in a FIFO buffer. The first item in
the buffer is passed to print as soon as its size is known. Hence strings and]’s can be passed as
soon as they reach the head of the buffer. ['s and spaces must be held in the buffer until a space
at a high cnongh level of nesting is received.

But how is scan to calculate the sizes of cach item without needing to buffer a great deal of
text? In the worst, case, where the text forms a single logical block, it appears that scan will need
to store all the text before it can be passed to print.

But since an item that has unkuown length is cither a | or a space, print will only use the size
to check whether the item will fit on the enrerent line, Henee print only needs to know that the size
i s larger than the available space. The need to buffer the [indefinitely could be avoided i f scan
were permit ted Lo read print’s variable recording the ammount of space remaining iii the current line.
Scan could then keep track of the minimum space needed to print the contents of the buffer. If
this minimum space exceeded the available space, the first i tem in the buffer could be passed to
the printer inmediately, with a very large size.

Oppen claims ([3]) that with this provision scan will never require more than 3 times the line

width in buffer space. However, he is clearly mistaken. Given any fixed amount of buffer space, an
inpul stream of the form

Il 15uSlus]--- uS]

can be constructed to use up all the buffer space just to store the initial sequence of ['s. This
example cannot be dismissed as one which could not be printed at dl. It prints to the same format

as[SuSu. .. S]

[Oppen’s elaim that this algorithm uses Q(width) space can, however, be rescued by performing
some extra processing. One possibili ty is to cncode consecutive [’s and consccutive |’s so that an
unbroken sequence of bracke ts occupies only once place in the buffer]

19

6.3 Implementation

The printer actually implemented includes a number of extensions to this basic algorithm:
e provision for printing comments as well as the formatted text,
o building a list of the mouse-sensitive regions within the text. (each unit bounded by H

and] will become mouse sensitive.) This provides the :msregion-list required by the
Zmacs interface, as described in chapter 5.

e provision to use formatted output in several different ways by changing the definition of
print. (One such function prints to a Zmacs buffer, another to a string variable, and others
could be defined if necessary.)

20

7. Parsing.

The requirements for a parser are similar to the requirements for a printing algorithm. A
straightforward parser that does not use resources unnccessarily is needed. Since this is a simple
parsing problem, any standard parsing algorithm could be used.

SLR parsing was chosen. The parse table was hand constructed rather than generated using
a parser gencrator, and contains 25 states.

The output generated by the parser is a list of the mouse-sensitive regions within the formula
There is one mouse-sensitive region for each of the subformmulas of the formula. The occurrence
that cach region represents is rccorded with the region, and is available if the region is sclected.
The boundaries of the region must also be rccorded.

7.1 Grammar

(The symbol “VAR” represents any propositional variable.)

1. F — VAR

2. F - (F)

3. F — CONJ

4, F — DISJ

5 F — OF

6. F - OF

7. F — OF

8. F — -F

9. F — FOF
10 CONJ — FAF
11. CONJ — CONJAF
122 DIS] —» FVF
13. DISJ] — DISIVF

The symbol — can be used instead of D.
7.2 Parsing Algorithm Details

Although the list of mousc-sensitive regions will finally be required with inner subformulas
aceurring before outer formulas, it is more convenient to build the list in the opposite order, and
reverse it when this is complete

The parser stack is maintained as a list of frames, cach of which contains a start and end BP
for the unit represented by the frame, and some ‘information about its contents. Each frame also
records the state of the parser a the time the frame was pushed onto the stack. This state is used
in calculating the new s tate after a reduce action.

Many parser states have identical actions for all inputs. This fact is used to encode the parse
table iii a special way o reduce its size.

A sinilar abbreviation is used w© encode the state transition table, which calculates the correct
parser state after a reduction has taken place. Here, rather than having many states with identical
new states, cach state has a valid next state for CON.1 and DISJ if and only if it has a valid next

21

state for F. Further, the state is mapped to state 4 if the next frame contains a CONJ, and to
state 5 if the next frame contains a DISJ. In this case only the next states for a frame containing
F are recorded in the state table, and the values 4, or 5 are substituted by the access function, if
the frame contains a CONJ or DISJ.

For debugging, the variable trace-parser is provided. Setting it to a non-nil value will provide
a trace of the shift and reduce actions taken by the parser.

22

Acknowledgement

| wish to thank Martin Abadi for suggesting this project, and for his many comments and
suggestions.

23

References

[1] Martin Abadi and Zohar Manna. *“Nonclausal Temporal Deduction” in Proc. Conf. on
Logics of Programs, Brooklyn, June 1985. Springer Verlag Lcct. Notes in Comp. Sci.

193. Ed. Rohit Parikh. Also available as Report No. STAN-CS-85-956, Computer Science
Department, Stanford University.

[2] Alfred V. Aho and Jeffrey D. Ullman, Principles of Compiler Design, Addison-Wesley,
1979. '

[3] Derek C. Oppen, Pretty Printing, Report No. STAN-CS-79-770, Computer Science De-
partment, Stanford University, Oct. 1979.

24

Appendix A: Overview of Zmacs Internals

Here, | describe internals of Zwei and Zmacs that arc not currently documented. Further
information can be obtained from appropriate sections of the source code for Zmacs. The reader
who wishes to browse Zmacs source code is advised to learn the Zmacs commands Edit Zmacs, and
Edit Definition.

| assume that the reader is reasonably familiar with Zmacs and has a good knowledge of the
array handling and flavor system of Zetalisp.

All functions and structures mentioned arc contained in the zwei package.
A.1 Data Structure for Storing Text

All text is stored as a set of strings while it is being edited. An entire file is read into virtual
storage when it is opened. Each line of the file is stored as a single (variable length) string. The
lines are chained together through pointers kept in the array leader of the lines.

A position within the text can bc marked by creating a structure called a BP. All BP's contain
a pointer to the line, and the index of a character within that line. The “point” (at which the
cursor appears) is represented by such a BP, but it is not the only BP that exists. In fact, many
BP's are created during an editing session. Many functions create temporary BP's to mark a
place in the text while the function is operating. Other functions create permanent BP’s, which
are intended to remain valid even after their creating function has completed execution. Zmacs
updates permanent BP's automatically whencever text is inserted or deleted. If text is inserted in
a line beforc a permanent BP, it will bc moved so that it still points to the same character. Text
inserted after the BP has no cffect on the BP. A third ficld determines how a BP is to be updated
if text is inserted at the BP itself. A normal BP remains at the same index; a moves BP is moved
by inserting text.

Often text has a logica structure that is independent of its division into lines. Zmacs supports
operations on a logical chunk of text through a structure called a node. Each node contains
a contiguous picce of text, bounded by two BP’'s recorded in the node structure. A node also
contains a time-stamp recording the last update of the node (called node-tick), and may have
other propertics. Nodes may have subnodes up to any depth.

Nodes arc implemented as instances of a flavor. (The mcthods of this flavor are only the
standard ones for retrieving and setting instance variables.) Different kinds of nodes arc built using
the node flavor as a base. Such an extended node that is visible to the user is the buffer, which
contains additional instance variables to store the file name, current cditing mode and position,
cte. '

Auother, less visible, type of node is the section. A typical use of section nodes is to hold the
lisp function definitions in o file. A buffer that, is in LIS ode is partitioned into seclions, cach
section containing one of the lisp definitions. The additional properties of a section include the
time-stamp of last compilation or evaluation of this sce tion, the type of defini tion (function, macro,
flavor, etc.) and the name of the object defined.

A.2 Deflning and Installing Commands

Commands are defined using the def corn macro, which takes four arguments: the command
name, documentation string, options list, and command body.

25

The command name is best explained by examples. The command known to the Zmacs
uscr as “Save File” is defined in a def corn as COM-SAVE-FILE, “Compilc Buffer” is defined as
COM-COMPILE-BUFFER, “Simplify Formula® is defined as COM-SIMPLIFY-FORMULA, and so forth.

The documentation string is the text that will be displayed if the user issues the HELP C
command to get a description of the command.

The options list controls the cffect issuing the command will have on a region if oue is current.
All PTL commands take the default, which is to de-activate the region.

The body is a series of lisp forms to be executed when the command is called. The value
of the final form is used as a hint to the screen update routines. dis-none, for example should
be returned if the command does not change any text. dis-text means that the command has
changed the text displayed.

A command can be used as an extended command (via Meta-X) as soon as it has been defined
with def corn. It can be bound to a particular key using the “Install Command” command, or it
can automatically be associated with an editor mode, by having it placed in the mode’'s command
table,

A.3 Editor Modes

Each editor mode, such as Lisp mode or text mode, is defined by a flavor. This flavor will only
be instantiated once, at the time that the first buffer in that mode is created.

There are some 20 to 30 mecthods that the mode must define, but many of them may be
given defaults by including the base flavor major-mode. These methods define such things as the
format of comments in the cdited text, how matching parentheses are defined, how the buffer is
to be sectionized, and code to be executed when a buffer of the mode is edited or left. A special
command table, *mode-comtab*, may bc set up in this initialization code. This will set up key
bindings that arc valid in any buffer of that mode.

The PTL-mode flavor is based on a copy of Lisp Mode.
A.4 Mouse Interface

The position of the mouse cursor can be detertnined at any time by the function mouse-char.
This must be passed a pointer to the cditor window structure, and returns five values: the character
to which the mouse is pointing, its X and y co-ordinates (in yixcls), the line containing the mouse,
and the index of the character within the line. The window is available as the global variable
window, or as an argmment passed to a blinker handler, as described in the next paragraph.

Normally Zmacs simply draws a box around the character to which the monse points, This
action can be changed by re-binding the variable *global-mouse-char-blinkor-handler* The
function bound to this variable is called cach time the mouse is moved, and it normally is used to
sct blinkers on the screen. The function will be called with seven arguments: a blinker to use, the
current window, and the 5 values histed above to specify the current mouse position. The blinker
handler will be called from within the mouse process, not, from within Zmacs, so it, docs not have
access to local Zmacs variables. However, it does have access to global variables, and can follow
pointers from the line structure that it has been passed.

A nnumber of similar global variables control the documentation string that is displayed at the
bottom Of the sereen, and the character to use for the mouse pointer.

26

