
May 1986 Report No. S’I’AN-CS-86-1114

Optimizing unction-Free4
Recursive inference Rules

bY

Jcffrcy F. Naughton

Department of Computer Science

Stauford University
Stmford, CA 94305

Optimizing Function-Free
Recursive Inference Rules

Jeffrey F. Naughton*
Stanford University

May 1986

Abstract

Recursive inference rules arise in recursive definitions in logic programming systems
and in database systems with recursive query languages. Let D be a recursive definition
of a relation t. We say that D is minimal if for any predicate p in a recursive rule in
D, p must appear in a recursive rule in any definition of t. We show that testing for
minimality is in general undecidable. However, we do present an efficient algorithm
for a useful class of recursive rules, and show how to use it to transform a recursive
definition to a minimal recursive definition. Evaluating the optimized definition will
avoid redundant computation without the overhead of caching intermediate results and
run-time checking for duplicate goals.

1 Introduction
In recent years there has been increasing interest in extending relational database systems-
by adding query languages that allow relations to be defined recursively. Also, there is an
increasing need to apply database techniques to logic programming systems so that they
can efficiently handle large amounts of data. In both cases, recursive inference rules are a
source of power and a source of inefficiency.

- Function-free inference rules are an important sub-class of inference rules. They are par-
ticularly useful in “knowledge base” applications, which deal primarily with relationships
between objects rather than with the structure of individual objects. There is currently a
great deal of effort devoted to finding efficient evaluation algorithms for recursive function-
free inference rules [2,3,6,8,15]. In this paper we consider a related issue: redundancy that
arises from the specification of the rule, independent of the particular evaluation algorithm
used.

*Work supported by NSF grant IST-84-12791 and a grant from the IBM Corporation.

1

The relations in our model can be divided into two groups. The extensional database,
or EDB, is equivalent to a traditional relational database. The intensional database, or
IDB, is a set of inference rules that define relations not stored explicitly in the EDB. These
inference rules are function-free Horn clauses. (The terminology used here follows that of
Reiter [12].) We will use Prolog notation to write these rules.

In this paper we consider only linear recursive rules, that is, rules in which the predicate
in the head appears once in the body. We also require that there be no constants and no
repeated variables in the rule head. A template for such a recursive rule is:

rr : t :- t, Pl7P27 l l l 7 Pn-
The p; need not be EDB predicates - the only restriction is that they cannot be mutually
recursive with t. The p; need not be distinct, but for clarity of exposition we will refer to
pi and pj, i # j, as “different predicates” rather than “different predicate occurrences.”
The recursively defined predicate t must also have some nonrecursive initialization. Unless
noted otherwise, we will assume some generic initialization

re : t :- to.
where all the variables in t appear in to.

Informally, a recursive definition R is minimal if no predicate can be removed from any
recursive rule in R. If R is not minimal, it contains some kind of redundancy. The most
obvious form of redundancy in recursive rules arises because the body, when viewed as a

* relational expression, is redundant.
In the following rule, the second p predicate can be removed.

rl: qx, Y) :- t(X, W), PK w>, 4w Y), PK z>*
This kind of redundancy can be detected and removed by well-known techniques for opti-
mizing expressions of relational algebra [1,4]. However, a recursive rule with a body that
is minimal as a relational expression is not necessarily minimal.

Consider the following pair of rules, defining a relation buys@, Y) of buyers and the
products they buy.

- 7’2: buys(X, Y) :- likes(X, Y), cheap(Y).
r3: buys(X, Y) :- knows(X, W), buys(W, Y), cheap(Y).
In this definition, the cheap predicate can be removed from r3. We say that a predicate
occurrence like cheap in rg is recursively redundant.

Some very similar recursive rules are minimal. In the rules

r4: buys@, Y) :- rich(X), likes(X, Y).
7’5: buys(X, Y) :- rich(X), know(X, W), buys(W, Y).
the rich predicate cannot be removed from r5.

There is an essential difference between cheap in r3 and rich in r5. Any tuple (X, Y) in
the relation buys of r2 and r3 depends on exactly one tuple of cheap for its proof. However,
there is no a priori bound on the number of tuples of rich needed to prove that a tuple
(X, Y) is in the relation buys of r4 and r5.

2

The full definitions of recursively redundant predicates and minimal recursive defini-
t ions follow:

Definition 1.1 Let r be a recursive rule in a set of rules defining a relation t, and let p
appear in r. Then p is recursively redundant if there is some Ic such that no tuple of t
depends on more than k tuples of p for its proof.

Definition 1.2 A recursive definition is minimal if it contains no recursively redundant
predicates.

If every predicate in a recursive rule is recursively redundant, then the recursively
defined relation can instead be defined by a finite number of nonrecursive rules. Thus an
algorithm to find redundant predicates would also solve the “bounded recursion” problem:
given a recursively defined relation, can it instead be defined by a first order expression?

Previous work by Ioannides [7], M’ km er and Nicolas [lo], Naughton [ll], and Sagiv [13],
has solved the bounded recursion problem for various restricted classes of rules. Gaifman [5]
has recently shown that the general case is undecidable. This implies that the “recursively
redundant predicate” problem is also undecidable, that is, there is no algorithm which will
find all recursively redundant predicates in an arbitrary recursive definition.

However, we are able to give a linear-time algorithm that, while always correct, is
not necessarily complete. Furthermore, we identify a useful class of rules for which the
algorithm is complete. The proof of the algorithm suggests a procedure to convert a set
of rules containing a recursive rule to a new set containing an optimized recursive rule. In
the simplest case (as in rules r2 and r3 above) the optimization merely removes predicates
from the recursive rule; in general, it will modify the nonrecursive rules as well. For rules
for which the algorithm is complete, this new recursive rule is guaranteed to be minimal.

2 Expansions and Redundancy
The expansion of an IDB predicate t is the set of all conjunctions of EDB predicates that
can be generated by some sequence of rule applications to t. For recursive predicates, the
expansion is infinite. There is a close connection between recursively redundant predicates
and the minimality of the individual elements of the expansion.

2.1 Expansions of Recursive Definitions
Recall that in this paper, we are dealing with linear recursive rules without constants
or repeated variables in the rule head. Procedure ExpandRule (Figure l), enumerates
the expansion of such definitions consisting of a recursive rule, r,., and a nonrecursive
rule, r,. The output of ExpandRule is the expansion of the recursively defined predicate,
represented by the infinite set S.

3

Give all variables in rules subscript 0;
.-s 0;

C&ring := t;
while true do

S := S U {CurString with r, applied};
CurString := CurString with r,. applied;
increment the subscripts of all variables in r, and r,;

endwhile;

Figure 1: Procedure ExpandRule

Throughout the procedure, the string-valued variable CurString will have exactly one
occurrence of the recursive predicate t. To “apply” a rule r to CurString, replace that
occurrence of t by the right side of r, after the substitutions required to unify it with the
head of the rule. In the initialization, we subscript the variables in the rules so that no
variable appears in both CurString and one of the rules. On each iteration, we increment
the subscripts for the same reason.

Example 2.1 If e is the edge relation of a digraph, then the following rules define the
transitive closure t of the graph.

7-y: t(X, Y) :- e(X, Z), t(Z, Y).
r,: t (X , Y) : - e (X , Y) .
Since e and p are identical in this case, we let e denote the occurrence of e in the recursive
rule, and e’ denote the occurrence in the nonrecursive rule. The first four strings in the
set S are

e’(X, Y),
e(X, Zo)e’(Zo, Y>,

e(X, Z0)+0, &)e’(&, Y),

e(X, &)e(&, &)e(&,Z2)e’(~2, Y).

A string in an expansion may contain multiple occurrences of each predicate a.ppearing
in the recursive rule. We will use “predicate instance” to refer to occurrences of predicates
in the strings of the expansion.

The strings in an expansion are conjunctive queries, a subset of relational expressions.
If a variable V appears in the head of the rule, then V is a distinguished variable; otherwise,

4

it is nondistinguished. If VI, V2,. . . , Vi are the distinguished variables, and WI, W2, . . . , Wj
the nondistinguished variables, then the relation specified by the string plp2 i.. pn is

{(hr/2,.. l 7 K)1 (3Wl, W, l l - 7 Wj)(p l A p2 A -. 0 A p,)}

The recursively defined relation is the union of the relations for the strings in the expansion.
In the next section we will need to decide equivalences between conjunctive queries; to

do this, we use techniques related to tableaux mappings, a tool developed by Aho et al.

PI .

Definition 2.1 A mapping m from the variables of a string sr to the variables of a string s2
is a containment mapping if distinguished variables map to themselves, and if p(X1,. . . , Xn)
appears in si, then p(m(Xl), . . . , m(X,J) appears in ~2.

The following lemma shows the similarity between this mapping and containment map-
pings for deciding the equivalence of tableaux.

Lemma 2.1 If a string s1 maps to a string ~2, then the relation specified by s2 is contained
in the relation specified by ~1.

Proof= The proof follows that of containment mappings for tableaux [l]. 1

Another useful relationship between strings is isomorphism.

Definition 2.2 Two strings are isomorphic if they are identical up to renaming of nondis-
tinguished variables.

There are containment mappings in both directions between isomorphic strings. In any
given set of rules, the number of predicates and distinguished variables is finite. Because
of this, isomorphism is an equivalence relation that partitions all strings of a given length

- into a finite number of equivalence classes. Any two strings from the same equivalence
class specify exactly the same relation.

Because there are a finite number of nonisomorphic instances of the recursive predicate
t, -if we observe the instances of t in the variable CurString in Procedure ExpandRule, we
must eventually see two that are isomorphic. If the number of iterations between these
isomorphic instances is r, there will be a constant 0 such that, for all m > 0, the instances
of t produced on iterations CT + r + i and 0 + mr + i are isomorphic. The constant r is
called the period of the rule.

5

2.2 Recursively Redundant Predicates
Recall the definition of a recursively redundant predicate: Let T be a recursive rule in a
set of rules defining a predicate t, and let p appear in r. Then p is recursively redundant
if there is some k such that no tuple of t depends on more than k tuples of p for its proof.
More formally, p is recursively redundant if there is some k such that every tuple of t has
at least one derivation tree that contains no more than k distinct p tuples.

Containment mapping imposes an order)- on the strings in an expansion as follows:-
If there is a containment mapping from a string si to a string ~2, then si t ~2. If there
are containment mappings in both directions between si and ~2, then we write si z ~2.
A string s in the expansion S is a maximal string if there is no s’ in S such that s’ 2 s
but not s 2 s’. We define a containment sequence to be a sequence of strings, each string
related to the next by a containment mapping.

A useful property that may hold in an expansion is containment-freedom: A set of
strings S is containment-free if for any s in S, if s’ maps to s, then s’ = s.

Theorem 2.1 Let p be a predicate in a recursive rule r defining t, and suppose that in the
expansion S oft, every containment sequence has a maximal element. Then p is redundant
if and only if there is Some k such that for any maximal string s in S, there is a string s’,
produced by eliminating all but k occurrences of p from s, such that s s s’.

Proof: Suppose that there is a k such that for each maximal string si in the
expansion, we can remove all but k instances of p from s; to produce s:, and that

=s; - s$ Because there are containment mappings between si and s:, si defines
the same relation as s;. Furthermore, because every containment sequence has a
maximal element and by definition of “maximal,” the relation for t is completely
defined by the maximal strings. Then the relation for t can also be defined by the
s:, none of which contain more than k instances of p, and p must be redundant.

- Conversely, if p is redundant, then t can be defined by some (possibly infinite)
set of strings, none of which contains more than k instances of p. Let R be such a
set of strings. Assume without loss of generality that R is containment-free.

Let s; be a maximal string in S. Construct a representative database edb as
follows. Define a one-one mapping h from the variables in s; to some set of constants.
Then if q(Vl, I&. . . , I&) appears in si, add the tuple q(h(Vl), h(V2), . . . , h(K)) to
edb. By the definition of edb, if D1, Dz, . . . , D, are the distinguished variables in si,
then h proves that the tuple (h(Dl), h(Dp), . . . , h(D,)) is in the relation returned
by evaluating si over edb.

Because R and S define the same relation, there must be some string r in R such
that evaluating r over edb also returns (h(Dl), . . . , h(Dn)). This implies that there
is a mapping g from the variables in r to the constants in edb that maps tuples of
variables appearing in a predicate p to tuples of constants appearing in the relation

6

for p. Because h is one-to-one, it is invertible. But then g o h-l is a containment
mapping from r to s;. (This is the result of Sagiv and Yannakakis [14] concerning
equivalences between a pair of unions of tableaux: if the relation for a union Ui
contains the relation for a union U2, then every string in U2 must be mapped to by
some string in Ui.) Let g’ = g o h-l.

By similar reasoning, there is some sj in S such that there is a mapping m that
maps Sj t0 T. But then m o g’ maps sj to s;. Because s; is maximal, then either

3 = si or there is mapping from si to sj. Either way, there is a mapping m’ from
s; to r.

Let s: denote the image of g’(r) in si. Because r has at most k instances of p, si
also has at most k instances of p. Since si is a subsequence of si, the identity map
maps s: to si. Also, by definition of s:, m’ o g’ maps si to s:. Thus S{ satisfies the
conditions of the theorem. i

Corollary 2.1 Suppose that p appears in a recursive rule defining t and that the expansion
S oft is containment-free. Then p is recursively redundant if and only if there is some k
such that for every s in S, there is a string s’, produced by eliminating all but k occurrences
of p from S, such that si E s:.

Proof: If an expansion is containment-free, then every string is a maximal string.
The corollary follows from the theorem. 1

Example 2.2 As a simple example, consider the rules r2 and r3 from the introduction.
The expansion of the buys predicate, abbreviating each predicate by its first letter, begins

l(X, WY),
w, WOMWO, Y)c(Y)c(Y),

k(X, Wo)k(Wo, W)l(Wl, y)c(y>c(y>c(y>

All but one of the instances of c(Y) can be removed from any string in the expansion, so
c. is recursively redundant. The expansion of rules r4 and r5 begins

1(X, y>+q7
k(x’, Wo)l(Wo, Y)r(Wo>r(X),

k(X, W,)k(Wl, Wo)l(~~o,Y)~(~~)r(wo)r(x)

This expansion is containment-free, and no predicate can be eliminated from any string,
so r is not recursively redundant. 1

Suppose that every predicate p in a recursive definition of a relation t is recursively
redundant. Then, for each predicate pi, there is a constant ki such that no tuple of t
depends on more than ki tuples of pi. This implies that t can be defined by a union of
strings R such that for every i, no string in R contains more than ki occurrences of pi.
Since there are only finitely many such strings, R must be a finite set.

But then R is a nonrecursive definition of t. This shows that the bounded recursion
problem reduces to the redundant predicate problem. Recently, Gaifman has shown that
the bounded recursion problem is undecidable [5], and various restrictions of the problem
have been shown undecidable by Vardi [16] and by Mairson and Sagiv [9]. Thus we have
proven the following:

Theorem 2.2 There is no algorithm that decides if a recursive definition is minimal.

In spite of this somewhat discouraging result, we are able to give a linear-time algorithm
that, while not identifying every recursively redundant predicate in a rule, never incorrectly
identifies a predicate as recursively redundant. Furthermore, we can identify a useful class
of rules for which the algorithm is complete.

3 The A/V Graph and Branches
In Section 2, we reduced the question of recursive redundance to minimality conditions
on the strings in the expansion of the recursively defined predicate. These minimality
conditions depend on certain properties of the strings. In this section we discuss those
properties, and develop tools to detect them.

3.1 A/V Graphs and Expansions
This subsection summarizes part of a previous paper [ll], so we omit the proofs here.

-
To relate the patterns of variables appearing in the strings of S to the structure of the

rules, we define the argument/variable (A/V) graph:

a For each variable appearing in the rules add a variable node.

i For each argument position in each rule body add an argument node.

l Draw an undirected edge from each argument node to the node for the variable that
appears in that position in the rule. This kind of edge is called an identity edge.

l Draw a directed edge from each argument node corresponding to a position p in the
recursive predicate to the node for the distinguished variable that appears in the p
in the rule head. This kind of edge is called a uni;fication edge.

8

, e t1 e'2

IX y

’ t1
ti

t2

Figure 2: A/V graph for Example 2.1.

The node for a variable X is labeled X, and the node for argument position i of a predicate
p is labeled p’. A node for a distinguished variable is a distinguished variable node; all other
variables nodes are nondistinguished. Because of the one-to-one correspondence between
positions in the bodies of rules and the argument nodes in the A/V graph, we use position
names to refer to both an argument position and the argument node it is represented by.
Similarly, we use variable names to refer to variable nodes.

Many of the subsequent results depend on the existence of certain kinds of paths
through the A/V graph. Some nonstandard terminology arises because we allow the di-
rected edges in an A/V graph to be traversed from head to tail as well as from tail to head;
thus a path in an A/V graph can contain unification edges traversed in either direction.

Example 3.1 Figure 2 gives the A/V graph for the rules of Example 2.1. 1

There is a close relationship between the A/V graph and procedure ExpandRule of Section
2. If a predicate instance first appears through applying a rule on iteration i, then we say

- that predicate instance was produced on iteration i. (The first iteration of the while loop
is iteration 0.) There are two ways a predicate appearing in a string s of S can be produced
on iteration i. It can be added to CurString through applying the recursive rule, or, if s
w-as added to S on iteration i, it can be produced by applying the nonrecursive rule.

. Consider iteration i. At line 8 on iteration i
subscript i.

- 1, the variables in the rules were given
Letting the argument nodes of the A/V graph represent the bodies of the

rules, we represent iteration i by subscripting the labels of the variable nodes by i. (Figure

3(a))*
Because the heads of the rules contain no repeated variables or constants, the unification

can be done by replacing the subscripted distinguished variables by the variables appearing
in the instance of t in CurString. If we consider the argument nodes for t as representing
that instance of t, the variable at the head of a unification edge is replaced by the variable
appearing in the argument at the tail. On iteration 0, because of the initialization of

9

(>a

, e’l

’ t1

eI2 e I1

2.a-1

e12

Y

Figure 3: A/V graph for Example 2.1.

CurString, the arguments contain the distinguished variables. On all other iterations,
they hold the variables that were put there on the previous iteration - in this case, Zi-i
and Y. (Figure 3(b)).

After the substitution, argument a of a predicate instance produced on iteration i will
contain the variable that is the label of the node at the end of its incident identity edge.
In our example, the predicate instance added by the nonrecursive rule will be e’(&r , Y)

. and the predicate instances added by the recursive rule will be e&r, &)t(Zi, Y).

The previous two paragraphs show how we can determine what variable appears in any
position of any predicate instance in the expansion. The following two facts can be proven
by induction:

Fact 3.1 A nondistinguished variable W; appears in position p in a predicate instance
produced on iteration i + k if and only if there is a path from W to p containing k
unification edges, all traversed in the forward direction.

-Fact 3.2 A distinguished variable V appears in position p on iteration i if and only if
there is a path from V to p containing i unification edges, all traversed in the forward
direction.

Any A/V graph can be divided into two kinds of connected components, those contain-
ing *nondistinguished variables and those containing only distinguished variables. (Con-
nected components in A/V graphs can require unification edges to be traversed in either
direction.) Each type of component has a specific structure.

Lemma 3.1 If a connected component in an A/Vgraph contains a nondistinguished vari-
able W, it is a tree, and W is the only nondistinguished variable in the component.

Lemma 3.2 If a connected component contains no nondistinguished variable, that com-
ponent must contain a cycle.

10

Lemmas 3.1 and 3.2 combine with Facts 3.1 and 3.2 to prove that

1. Arguments in connected components that contain a cycle will eventually contain only
the distinguished variables appearing on the cycle.

2. Arguments in connected components that contain no cycles will eventually contain
only subscripted instances of the nondistinguished variable in the component.

Example 3.2 See Figure 2 for the A/V graph for Example 2.1. There are two connected
components in this graph. The first, {t2,Y,e’2}, contains the cycle t2 + Y + t2. Then
Fact 3.2 implies that Y always appears in e’2. The remaining nodes form a tree, with 2 at
the root. By Fact 3.1, 2; appears in e2 and e” on iteration i, and in e1 on iteration i + 1.
I

In the following Subsection, it will be important to know how variables are shared
between the predicate instances in the expansion. Things are complicated by the possibility
of repeated variables in the rule body. Repeated variables give rise to branches in the paths
from variable nodes to argument nodes, and the variable at the root of such paths appears
on all branches. Thus to determine when argument positions share variables, we need to
follow unification edges backward (toward the argument nodes) as well as forward.

To count the net number of forward unification edges in a path, we introduce weights on
the edges of the A/V graph. The weight of an identity edge is 0; the weight of a unification
edge traversed in the forward direction is 1, and the weight of a unification edge traversed
in the reverse direction is -1. The weight of a path in the A/V graph is the sum of the
weights of the edges in the path. With this definition, we have the following lemma:

Lemma 3.3 FOT i 2 max(j, k), a variable appears in position pl of a predicate instance
produced on iteration i +j, and in position p2 of a predicate instance produced on iteration
i + k, if and only if there is a path from from p1 to p2 of weight k - j.

-
The period of the rule, r, can be determined from the A/V graph for the rule.

Lemma 3.4 If there are cycles in the A/V graph for the rule, r is the least common
multiple of the weights of the cycles; otherwise it is I.

3.2 Chains and Branches
In this subsection we discuss some properties of the strings of an expansion that will be
useful in determining redundancy. These properties depend only on the recursive rule.

Definition 3.1 A chain is a sequence of predicate instances pl,pg, . . . ,p,,, such that for
1 < i < n, pi and pi+1 share a nondistinguished variable.

11

Definition 3.2 A branch is a sequence of predicate instances such that for all p and q in
the sequence, there is a chain containing p and q.

The positions in which the shared nondistinguished variables appear are called linking
positions.

Example 3.3 Assuming that X and Y are the only distinguished variables,

P(X, Wo)P(Wo, W>P(w,J)

is a chain of length three. The sequence

Pw5, X>P(X Y)P(Y, w>

contains three chains of length one. The sequence

p(X, wo, zo)q(wo)p(~o, w, &)q(w)P(~l, w2, ~2)Q(Wd

is a branch. 1

By examining the A/V graph for a recursive rule, we can tell what chains (and therefore,
what branches) will appear in the strings of the expansion. Chains depend only on shared

, nondistinguished variables, so the first task is to eliminate from the A/V graph the nodes
for arguments that contain only distinguished variables. By Lemmas 3.1 and 3.2, we can
do this by removing all connected components that contain cycles.

For the second step, we augment the remaining subgraph by adding predicate edges
between adjacent argument nodes of the same nonrecursive predicate. The result is the
augmented A/V graph for the rule.

Example 3.4 The following rule illustrates the concepts that will be developed in this
section.

-f-r: t(X, y> :- t(-% V), P(X, W), !l(W v>, r(X, Y)*
The A/V graph for this rule is given in Figure 4. X appears in a connected component
with a cycle, so we remove the nodes for X, t’, p’, and r? The augmented A/V graph for
the rule is given in Figure 5. 1

The following lemma and its two corollaries show the relationship between the aug-
mented A/V graph for a rule and the branches that appear in its expansion. Recall that
in paths in an A/V graph, unification edges (arcs) can be traversed in either direction.

Lemma 3.5 There is a chain containing an instance of predicate T produced on iteration
i, and an instance of s produced on iteration i + k, if and only if there is a path of weight
k from the arguments of r to the arguments of s.

Proof : Given in [ll]. i

12

Figure 4: A/V graph for Example 3.4

Figure 5: Augmented A/V graph for Example 3.4

Corollary 3.1 Instances of two predicates appear in the same branch if and only if the
argument nodes for those predicates appear in the same connected component.

Proof: By definition, two predicates appear in the same branch if and only if
there is a chain connecting them. 1

Definition 3.3 The rank of a predicate is the weight of a maximal path to an argument
node of the predicate. The span of a branch is the rank of its maximal predicate.

Corollary 3.2 The span of a branch is the maximum weight of any path in the connected
component for the branch.

Proof: Immediate from the definition of span. 1

Two branches in a string are instances of the same branch if the predicates in each appear
i&he same connected component in the augmented A/V graph. A rule produces multiple
branches if there are multiple connected components in the augmented A/V graph for the
rule. An instance of each branch is begun on every iteration. If the span of a branch is k,
the first complete instance of that branch will be produced by iteration k + 1. In addition
to the complete instances of branches, there will also be incomplete instances of branches
produced.

Example 3.5 In Figure 5, there is only one connected component, and it contains all
the argument nodes. This implies that there is a branch (chain, in this case) containing

13

e1 e2

Figure 6: Augmented A/V graph for the recursive rule of Example 2.1.

instances of p, q, and r. There are paths of weight 0 from V and W to the nodes of p and
q, thus p and q are of rank 0. There is a path from V to r2 of weight 1, so r is of rank 1.
The span of the branch is 1.

The third string in the expansion,

P2W W)q2(W, W2(X, V&1(X, W0)ql(W0, vO)n(X, Y),

contains a partial instance of the branch produced on iteration 1 (rl(X, Y)), a complete
instance produced on iterations 1 and 2 (pl(X, Wo)ql(Wo, Vo)r2(X, Vo)), and another partial
instance produced on iteration 2 (pz(X, Wl)q2(W& VI)). This last partial instance will be
completed on iteration 3. 1

If there is a cycle of nonzero weight in a component of an augmented A/V, then there
will be a branch with an infinite span. Such branches will never be completed; in this case
we say the expansion contains unbounded branches.

Definition 3.4 A connected component of an augmented A/V graph is a bounded com-
ponent if it contains no cycle of nonzero weight; otherwise it is an unbounded component.

- Example 3.6 The augmented A/V graph for the recursive rule of the transitive closure
example (Example 2.1), Figure 6, contains an unbounded component. The expansion
contains unbounded branches - for any n, we can find a string in the expansion containing
a branch of at least n instances of e. 1

4 Testing for Redundancy

In this section we show that if a predicate p appears in a bounded component of the
augmented A/V graph, then p is recursively redundant, and that for a useful subset of
recursive rules, only predicates appearing in bounded components are redundant. These
predicates can be found by a linear-time algorithm.

14

4.1 A Sufficient Condition
The following theorem relates redundancy to connected components in the augmented
A/V graph for the recursive rule. (Recall that in a connected component of an A/V
graph, unification edges can be traversed in either direction.)

Theorem 4.1 Let a predicate p appear in a rule r, and suppose that no argument of
p appears in an unbounded component of the augmented A/V graph for r. Then p is
recursively redundant in r.

Proof: If no argument of p appears in an unbounded component of the augmented
A/V graph, then either no argument of p appears in the augmented A/V graph, or
every argument appears in a bounded component. These two cases are covered by
the following two lemmas. b

Lemma 4.1 Let a predicate p appear in a recursive rule r, and suppose that no argument
node of p appears in the augmented A/V graph. Then p is recursively redundant in r.

Proof: If no node of p appears in the augmented A/V graph, then all arguments
of p must appear in cyclic components of the (unaugmented) A/V graph. Then all
arguments of all instances p will contain only distinguished variables. These appear
in the same positions every r iterations; thus all but the first r occurrences of such
a predicate can be removed from any string of the expansion. 1

Lemma 4.2 Let C be a bounded component of the augmented A/V graph for a recursive
rule r. Then all predicates p appearing in C are recursively redundant in r.

Proof: By Theorem 2.1, it will suffice to show that all but a constant number
of the predicates in bounded components can be removed from any string of the
expansion. Let r be the period of the rule, and let 0 be the maximum weight path
in C. Suppose that p appears in C, and that p is of rank j. Claim: in string s,,
n > r + 0, we can remove all instances of p except-

1 l Those produced on iteration 0 through iteration r + j - 1, and

l Those produced on iteration n - (a - j) through n - 1.

Let s’ be the result of doing this for every predicate appearing in C. If bc is the
branch corresponding to the component C, s’ will be s with some complete instances
of bc removed. This will leave T + 0 instances of each predicate in C. We claim
that there are containment mappings between s’ and s.

The identity map maps s’ to s. We can map s to s’ by the containment mapping
h defined as follows:

15

1. If V is a distinguished variable, h(V) = V,

2. If Wi is a nondistinguished variable not appearing in a removed predicate instance,
h(Wi) = Wi (a removed predicate instance is one that appears in s but not in s’.)

3. Let Wi be a nondistinguished variable appearing in a removed predicate instance of
rank j that appeared in s on iteration mr + k + j, m > 0 and 0 ,< k < 7. Then
if WI is the variable that appeared in the corresponding position on iteration k + j,
h(Wi) = W/s

The predicate instances in s excluding those appearing in removed instances of bc
are mapped by h to themselves. If a predicate p is of rank j, then for all m > 0 and
all k, 0 5 k < r, an instance of p produced on iteration mr + k + j is isomorphic to
the instance that was produced on iteration k + j. Thus the removed instances of
bc are mapped to isomorphic instances of the branches that were not removed.

Any of the first Q + r strings produced will contain fewer than CT + r instances
of any predicate. By the above construction, for all p in C, in any later string we
can remove all but 0 + r instances of p. Then p is recursively redundant in r. 1

Example 4.1 Consider the following rules:

t(w, x, Y, 2) :- t,(W, x, Y, 2).
t(w, X, K 2) :- t(X, W P, Q), e(P, 0 4X, Q), b(Z)-

In the A/V graph for the recursive rule (Figure 7), there is a cycle involving X and W of
weight 2, thus r = 2.

In the augmented A/V graph for the recursive rule there are two components. The
argument nodes of e appear in an unbounded component, while all other predicate argu-
ments appear in a component with a maximal path of weight 1. The rank of a is 0, and
the rank of b is 1. Consider the string produced on iteration five. We display it below, one

-branch to a line, one column for each iteration, starting with iteration 0 on the right.

1) to(X, W, P4, Q4) a (X , Q&(Pq, P3) e(fi, fi) e(p29 4) e(fiy ‘O) e(Po7 ‘)

2) b(Q3) a(W, Q3)
13) NQd 4% Q2 >
4 b(Qd 4-v Qd
5) b(Qd a@, &cd
6) b(Z)

Following the construction of the proof of Lemma 4.2, we generate sk by deleting the a and
b predicates appearing on lines 2 and 3. The string s5 can be mapped to sb by mapping
the distinguished variables W, X, Y, and Z to themselves, Qo, Qr, and Q4 to themselves,
93 to Qr, and Q2 to &a. This leaves 3 instances of a and b. 1

16

Figure 7: A/V graph for the recursive rule of Example 4.1

Figure 8: Augmented A/V graph for the recursive rule of Example 4.1

4.2 A Necessary and Sufficient Condition
In general, the converse of Theorem 4.1 fails to hold: some predicates appearing in un-
bounded components are redundant. If the nonrecursive predicates are IDB predicates,
their definition may cause redundancy. For example, if we take the standard transitive
closure rules,

t (X , Y) : - e(X,Y).
t(X, Y) :- t(X, W), e(W, Y).

and add
d e(X, Y) :- a(X), b(Y).

then t is completely defined by the rule
t(X, Y) :- a(X), b(Y).

and e is redundant in the recursive rule.
: Even if the nonrecursive predicates are EDB predicates, interactions between the re-

cursive and nonrecursive rule can make predicates redundant. The pair of rules
t(X, Y) :- b(X), t(X, W), e(W, Y).
t(X, Y) :- b(X), e(W, Y).

can be replaced by the nonrecursive rule alone.
Recently, Vardi [163 has shown that dealing explicitly with the nonrecursive initial-

ization makes the bounded recursion problem undecidable, even for the special class of
recursive definitions containing only one linear recursive rule. Because the bounded re-

17

cursion problem reduces to the minimal recursive definition problem, detecting recursively
redundant predicates is also undecidable for this class of definitions. However, if we require
initialization by a single, arbitrary rule, the following theorem holds.

Theorem 4.2 Let all nonrecursive predicates in r be EDB predicates, and suppose that
there are no repeated nonrecursive predicates in r. Then a predicate p is recursively re-
dundant in r if and only if p appears in a bounded component of the augmented A/V
graph.

Proof: The “if” direction is given by Theorem 4.1.
For the other direction, suppose that b is a branch corresponding to a connected

component C, and that C contains a nonzero weight cycle. Because C is unbounded,
b will be an unbounded branch. Define a level zero predicate instance in b be one
such that there is no predicate instance in b appearing on an earlier iteration. For
k > 0, p is a level k predicate instance in b if p shares a nondistinguished variable
with a level k - 1 predicate instance in b.

To complete the proof we use two facts:

1. In any unbounded branch, there is a level zero predicate instance that contains a
distinguished variable in a linking position.

2. No variable appears twice in any linking position of any predicate in an unbounded
branch.

(The proofs of these facts are straightforward modifications of the proofs of Facts
4.1 and 4.2 in an earlier paper [ll]).

Suppose that h maps s to some subsequence s’ of itself. We show by induction
on level that for all i, if a variable W appears in a level i predicate of instance of b,
then h(W) = W.

- For the basis, i = 0, by the first fact there is a level zero predicate instance p
that contains a distinguished variable V in a linking position. Because there are no
repeated predicates in the body of the rule, the second fact implies that this is the
only instance of p in s that contains V in that position. Then by definition of a
containment mapping, for all variables W in that instance of p, h(W) = W.

Consider some level k predicate instance p. By definition of level, p shares some
nondistinguished variable Wi with a level k-l predicate. By induction, h(Wi) = Wi.
Suppose that Wi appears in position p1 in p. Again by the second fact, this instance
of p is the only one in which Wi appears in p ‘. But then for all variables Wj in p,
h(Wj) = Wj.

Suppose s’ is generated by removing some predicate instance p from s. Let W
be a nondistinguished variable appearing in a linking position p1 of that instance
of p. By the above, if h is to map s to s’, then h(W) = W. But because there are

18

no repeated predicates in the rule body, and by the second fact, there is no other
instance of p that contains W in position p? So s cannot map to s’.

By another result from [ll] we know that in every string of the expansion, some
position tk in the predicate from the nonrecursive rule will share some nondistin-
guished variable W with a predicate instance in b. This variable W will be different
in every string. By an argument similar to the above, we can prove that if h is
to map a string si to another string s2 in the expansion, h(W) = W. But then h
cannot map the instance of to in sr to the instance in ~2.

This shows that the expansion is containment-free, and that no instance of p
can be removed from any string, so by Corollary 2.1, if p appears in an unbounded
component, p is not redundant. u

.

4.3 Detecting Redundant Predicates
In this subsection we present a linear-time algorithm that detects redundant predicates
in an augmented A/V graph. A variant of this algorithm was presented without proof in
Ioannides [7]. There it was used on a different graph, the a-graph, to decide the bounded
recursion problem for a restricted class of rules.

An A/V graph can be converted to an acyclic A/V graph by a straightforward appli-
cation of depth-first search. We assume that the augmented A/V graph is presented in
adjacency list form. Each edge is represented by a pair of directed edges. Associated with
each directed edge is a weight. Both directed edges for a predicate or identity edge have
weight zero; the directed edge corresponding to a forward traversed unification edge has
weight one, while the directed edge for a reverse unification edge has weight minus one.

To prove the correctness of the algorithm, we consider two cases, depending on whether
procedure SearchComp (Figure 9) is called on a vertex of a bounded or unbounded com-
ponent .

Lemma 4.3 If SearchComp is called on a bounded component, SearchComp returns with
cycle set to false.

Proof: Suppose that SearchComp is called on a node of a bounded component,
- and that in the course of searching that component, it visits a node rz twice, with

a different weights each time. Then there must be two paths from the start node
to n. These paths start from the same node, so there must be some shared initial
segment. Let n’ be the last node of this shared initial segment, and let the two
paths from n’ to n be denoted p1 and ~2. Because the weight of n differs along these
two paths, the weights of pl and p2 must differ. Because every path in an A/V
graph can be traversed in opposite directions at opposite costs, the concatenation
of pl with p2 reversed would be a cycle of nonzero weight, which is a contradiction.
Thus every time a node is visited, it must receive the same weight, and line 4 of

19

Input. An augmented A/V graph G = (V, E) represented by adjacency lists L[v], for
v E V. The function w(e(v,u)) re turns the weight for each edge e(v, u).
output. A list of the bounded components in the graph.

cycle:
W:

boolean; /* true if current component contains
array of integer; /* w[u] holds weight of u if visited */

Procedure SearchComp(v, cycle);

begin
1. mark v old;
2. for each vertex u on L[v] do
3. if u is marked “old” and w[u] # weight + w(e(v, u)) then
4. cycle := true;
5. return;
6. else
7. weight := weight
8. 44 := weight;
9. SearchComp(v);
10. endif;
11. endfor;
end;

+ WV, 4);

begin
1. mark all vertices “new”;

2. while there exists a vertex v in V marked “new” do
3. cycle := false;
4. SearchComp(v);
4. if not cycle then
6. : PrintComponent(
7 . endif;
8. endwhile;
end.

a cycle */

Figure 9: An algorithm to detect redundant predicates.

20

SearchComp is never executed, and the initial call to
cycle set to false. i

Lemma 4.4 If SearchComp is called on an unbounded
with cycle set to true.

SearchComp will return with

component, SearchComp returns

Proof: Suppose that there is a cycle of nonzero weight, but that SearchComp
doesn’t find it. SearchComp must reach some node of the cycle first. Let ni be that
node, and number the subsequent nodes in the cycle n2,. . . , n,, where there are
m nodes in the cycle. Let the weight of the path from the root of the depth-first
spanning tree to nl be wi. If SearchComp continues around the cycle in order, it
will again reach nl, this time with a weight 201 + Cg;’ w(e(n;,n;+l)) # wi, and
SearchComp will return with cycle set to true. Let the weights assigned to nl
through n, by of 11owing the cycle in order be 201 through w,. If SearchComp is to
miss the cycle, it must search the component in some other order.

In this new order, the weight assigned to at least one node in the cycle must
differ from the weight would be assigned if SearchComp searched around the cycle
in order. Let ni be the first such node in the cycle, that is, the depth-first search
assigns n;,l weight wi-1, but node n; weight W: # wi. Then the node preceding n;
in the depth-first search must not be n;-1, or else rt; would have received weight
Wi-1 + W(e(?2;-1, ?2;)) = Wi. But then when the edge from n; to n;,r is traversed,
the current weight W: + w(c(n;, n;-1)) = W: + -w(c(n;-1, n;)) will not equal wi-1,
and a nonzero weight cycle will again be detected. 1

Lemmas 4.3 and 4.4 combine to show that the algorithm outputs exactly the predicates
that appear in bounded components. By Theorem 4.1, these predicates are redundant.

5 Optimizing Recursive Definitions
In this section we present an algorithm for optimizing recursive definitions. We assume
that the algorithm has available:

I 1. 0, the maximal span of any bounded component in the augmented A/V graph for
the rule.

2. For each connected component C of the augmented A/V graph, the span crc of that
component and a list of predicates appearing in that component.

3. A list of predicates that apear in the rule but not in the augmented A/V graph.

4. r, the period of the recursive rule.

21

The first two items can be computed by a straightforward modification of the algorithm of
the previous section. A depth-first search will find the components of the (unaugmented)
A/V graph that contain cycles, and the weights of these cycles. (This uses the fact that
each component of an A/V graph contains at most one cycle.) This can be used to compute
r, and to produce the list of predicates in item 3.

The optimization converts a set of rules R to a new set of rules R’ in which recursively
redundant predicates have been removed from the recursive rule. It works as follows:
Generate the first 0 + 7 strings of the expansion of R. Add to R' the rules

ri: t :- Si.

for 0 < i < a+~.
The remaining rules in R' are constructed from string s~+~. Let the set Pr contain the

instances of predicates p in so+7 such that

l p appears in a connected component C of finite span QC,

l pisofrank j,

l p was produced on iteration i, 0 5 i < r + j - 1.

Let the set P2 contain the instances of predicates p in so+7 such that

, l p doesn’t appear in the augmented A/V graph for r, and

l p was produced on the first r iterations.

and let the set P3 contain all the instances of predicates p in s~+~ such that

l p appears in a connected component C of finite span OC,

l pisofrank j,

l p was produced on iteration i, o + r - (a~ - j) < i < o + r - 1.
-
Let the set & be the instances of predicates in s@+~ that appear in unbounded components
of the augmented A/V graph.

create a new predicate t�, where t� has the same number of arguments as t, and add
the rule

ru+7: t :- WV’2,Q-
where the instance of t� has the same variables as the instance of t in string s~+~ of the
expansion. Also add the rule

7-g : t’ :- t&Pa.
where to contains distinguished variables as in the original nonrecursive rule, and where the
nondistinguished variables in the instances in Pa are replaced by distinguished variables as
necessary so that the instances share variables with the same arguments of to as they did
in sO+7. Finally, add a new recursive rule

22

rtt : t’ :- t',Ql,--- ,Qn-
where the body of rtl is the body of the original recursive rule, with t replaced by t’,
and with the predicates appearing in bounded components of the augmented A/V graph
removed. For any variable V appearing in a position tti the head of rtl but not in the body,
replace the variable appearing in tti in the body of rtl by V.

Theorem 5.1 The new rules define the same relation as the old.

Proof: Let si, for i 2 0, be the strings of the expansion of the original rules, and
let sI , for i >, 0, be the strings of the expansion of the new rules. We prove the
theorem by showing that for i > 0, si s si.

For i < CT + 7, s: = si, so, trivially, si s si. Consider some string si, where
i 1 0 + 7. The string s: was generated by one application of T,+,, i - (a + 7)
applications of rt8, followed by one application of rt;. We claim that there are
containment mappings between s: and si.

For any predicate p appearing in unbounded branches, the first 0 + 7 instances
of p appear in the body of rule ra+7, and the remaining instances will be generated
by the i - (a + 7) applications of rule rtt. This means that the predicate instances
in unbounded branches will be identical in s: and si.

Let p be a predicate of rank j appearing in a component C with a bounded
span 0~. By the construction in the proof of Lemma 4.2, all instances of p in si
are redundant except for those produced on iterations 0 through r + j - 1, and
on iterations i - (a~ - j) and i - 1. The first group appear in the set PI, so they
will also appear in rule Ye+,, and therefore in string si. Instances of predicates in
the second group appear in the set Pa, and therefore in rt:, . After the unifications
required to apply rt;, these instances added to s: will be isomorphic to those in si.

The only other predicates in si are those that do not appear in the augmented
A/V graph. By the construction in the proof of Lemma 4.1, all instances of these
predicates can be removed except those appearing on the first r iterations. But
these predicate instances are group P2, and therefore appear in r,+, and also in s:.

Thus the strings s: are isomorphic to the strings produced by removing redun-
dant predicates from the si as in the proofs of Lemmas 4.1 and 4.2, so for all i > 0,

tSi E Si. I

Example 5.1 We return to the rules of Example 4.1,

t(W,X,Y, 2) :- to(W,X,Y, 2).
t(W, 4 Y, 2) :- t(X, W P, &), e(P, Y>, 4% Q), GO

Here r = 2, and there is only one bounded branch, so 0 = a~ = 1. String s,+, is string
~3, the fourth string generated. The first four strings of the expansion are

23

top5 x’, y, 2)
to(x, W PO, Qo)e(Po, 04-T Qo>V>

t,(W,X, PI, Q+(Pl, Po)a(W, Q$(Qo)e(Po, Y)a(X, Qo)W
to@, W, P& Q&(Ps, P&(X, Q$ol)e(Pl, Po)a(W, Qd~(Qo>e(fiJMX~ QdV)

Then PI = {b(Q1),a(~Q1),b(Qo),a(X,Qo>,b(~)}, p2 is empty, P3 = {a(X,Qd}, and
Q = (e(P2, PI), e(Pl, PO), e(Po,Y)}. The new rules are:

rg: t(w, x, Y, 2) :- to(W, x, yt 2).
7’1: t(w, x, Y, 2) :- to(X, W, PO, Qo), e(Po, Y), a(X, Qo), b(Z)-
r2: t(W,X,Y,Z) :- to(X,~~,P~,Q,),e(Pl,P~),a(W,Q1),b(Qo),e(Po,Y),a(X,Qo),b(Z).
7’3: t(W, X, Y, 2) :- t’(X, W, P2, Qs), e(P2, PI), e(P1, PO), e(Po,Y),

b(Ql), a(W Qd, I, 4X9 &oh b(Z)*

rtl : t’(W, X, Y, 2) :- to(W, x, Y, Z), a(W 2).
r$ t’(W,X,Y,Z) : - t’(X,W,R,Z),e(R,Y).

(Here for clarity we have renamed the nondistinguished variable appearing in rule r+) The
sixth string generated by the new rules, displayed one branch per line and with predicates
grouped by the iteration on which they appeared, is

1) to(X, W,Rl,Q2) a(W,Q2)e(Rdh) e(Ro&) e(fiJ%) e(Phfi) @d)
2) b(Ql> 4X, &I >
3) b(Qd 4X, Qo >
4) b(Z)

* This string is isomorphic to the sixth string of the original rules, after removing the re-
dundant complete branches. I

Theorem 5.2 If the original recursive rule contained no repeated nonrecursive predicates,
then -the new recursive rule rtj is minimal.

Proof: If the original recursive rule contained no repeated nonrecursive predi-
cates, then the algorithm presented in Subsection 4.3 will be a correct and complete
procedure for detecting redundant predicates. The transformation above removes
all predicates that algorithm says are redundant; thus rtl must contain no recursively
redundant predicates. i

Although the new recursive rule is minimal,, the new nonrecursive rules may not be
minimal as tableaux. There are two reasons for this. First, if the rule produces multiple

24

bounded branches, not all branches will have an upper bound of 0. Second, if the original
nonrecursive rule already contains an instance of a recursively redundant predicate, it may
interact with the recursive rules to create redundancy.

Because only the nonrecursive rules can be non-minimal, the new set of rules generates
an expansion in which each string contains at most a small constant number of redundant
predicates. This is a great improvement over the original rules, which can generate expan-
sions with arbitrarily many redundant predicates. The bodies of the nonrecursive rules are
relational expressions, so to further eliminate redundancy they can be minimized by the
tableaux techniques developed by Aho et. al [l].

Example 5.2 Here are the rules introduced in the introduction, abbreviating each pred-
icate by its first letter.

b(X, Y) :- 1(X, Y), c(Y).
b(X, Y) :- k(X, Z), b(Z, Y), c(Y).

For these rules, r = 1, and CT = 0. PI and P3 are empty, P2 = {c(Y)}, and Q = {k(X, Zo)}.
The new rules are

ro: b (X , Y) : - l(X,Y),c(y).
rl: b(X, Y) :- k(X, ZO), b’(Zo, Y), c(Y), c(Y)*

, rb;: b’(X, Y) :- 1(X, Y).
rbl: b’(X, Y) :- k(X, Z), bf(Z, Y).

Rule r1 contains a redundant c predicate, so each string of the expansion will also contain
a redundant c predicate. They can be removed by optimizing the body of the rl as a
tab leau. 1

The number of rules added by this transformation will be B + 7. The constant o is
bounded above by the number of arguments in the recursive predicate. The constant r is

_ equal to the least common multiple of the weights of cycles in the A/V graph. It is difficult
to give an analytic expression for r, but in the worst case it can grow exponentially in the
number of arguments in the recursive predicate. However, even if there are 6 arguments,
r -5 6. In practice, people rarely write predicates of many arguments. In fact, a reasonable
assumption is that the arity of the predicates in the system is bounded, so we expect that
the number of rules added will be small in any realistic application.

Most of the proposed evaluation algorithms for recursive rules can be viewed as tech-
niques for evaluating the expansion of the rules. If the algorithm does not cache results of
subgoals and check each new subgoal to see if it has already been solved, it will repeatedly
solve redundant subgoals. If the same algorithm is run on the optimized rules, it will avoid
this redundant computation, without any run-time overhead.

Acknowledgement: I’d like to thank John Hershberger, Yehoshua Sagiv, and Jeffrey
Ullman for many helpful discussions on this material.

25

References

PI

PI

PI

PI

PI
PI

VI

PI

PI

- WI

WI

Alfred V. Aho, Yehoshua Sagiv, and Jeffrey D. Ullman. Equivalence of relational
expressions. SIAM Journal of Computing, 8(2):218-246, 1979.

Alfred V. Aho and Jeffrey D. Ullman. Universality of data retrieval languages. In
Proceedings of the Sixth ACM Symposium on Principles of Programming Languages,
pages 110-120, 1979.

Francois Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D. Ullman. Magic sets
and other strange ways to implement logic programs. In Proceedings of the ACM
SIGACT-SIGMOD Symposium on Principles of Database Systems, 1986.

Ashok K. Chandra and Philip M. Merlin. Optimal implementation of conjunctive
queries in relational data bases. In Conference Record of the Ninth Annual ACM
Symposium on Theory of Computing, pages 77-90, 1977.

Haym Gaifman. January 1986. NAIL! seminar, Stanford University.

Lawrence J. Henschen and Shamin A. Naqvi. On compiling queries in recursive first
order databases. JACM, 31(1):47-85, 1984.

Yannis E. Ioannides. Bounded recursion in deductive databases. Technical Re-
port UCB/ERL M85/6, UC Berkeley, February 1985.

Michael Kifer and Eliezer L. Lozinskii. A framework for an efficient implementation
of deductive databases. 1985. Unpublished manuscript.

Harry G. Mairson and Yehoshua Sagiv. February 1986. NAIL! seminar, Stanford
University.

Jack Minker and Jean M. Nicolas. On recursive axioms in relational databases. In-
formation Systems, 8(l):l-13, 1982.

Jeffrey F. Naughton. Data independent recursion in deductive databases. In Proceed-
I ings of the ACM SIGACT-SIGMOD Symposium on Principles of Database Systems,

1986.

[12] Raymond Reiter. On closed world databases. In Herve Gallaire and Jack Minker,
editors, Logic and Databases, pages 55-76, Plenum Press, New York, 1978.

[13] Y h h S ge OS ua a iv. On computing restricted projections of representative instances. In
Proceedings of the ACM SIGACT-SIGMOD Symposium on Principles of Database
Systems, pages 171-180, 1985.

26

[14] Y h h S ~1e OS ua a l v and Mihalis Yannakakis. Equivalences among relational expressions
with the union and difference operators. JACM, 27(4):633-655, October 1980.

[15] Alle n 8nV G Ide er. A Message Pabng framework for Logical Query Evaluation. Tech-
nical Report STAN-CS-85-1088, Stanford University, 1985.

[16] Moshe Y. Vardi. February 1986. NAIL! seminar, Stanford University.

27

