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INDUCTIVE KNOWLEDGE ACQUISITION
FOR RULE-BASED EXPERT SYSTEMS

Abstract
The RL program was developed to construct knowledge bases automatically in rule-based expert
systems, primarily in MYCIN-like evidence-gathering systems where there is uncertainty about
data as well as the strength of inference, and where rules are chained together or combined to
infer complex hypotheses. This program comprises three subprograms: (1) a program that
learns confirming rules, which employs a heuristic search commencing with the most general
hypothesis; (2) a subprogram that learns rules containing intermediate concepts, which exploits
the old partial knowledge or defines new intermediate concepts, based on heuristics; (3) a
program that learns disconfirming rules, which is based on the expert’s heuristics to formulate
disconf irming rules. RL’s validity has been demonstrated with a performance program that
diagnoses the causes of jaundice.

1 Introduction
An inductive learning program, named RL (for “rule learning”), has been developed for
constructing and maintaining knowiedge bases (KB) in expert systems. This program differs
from other inductive concept learning programs in that it can define useful new concepts
which are not in the initial vocabulary in order to fill in possible missing links in a complex
reasoning network. In addition, RL possesses two other distinct features. First, each learned
rule is assigned a number representing “degree of certainty” (see Appendix A); second,
disconfirming rules are learned as well. The learning method employed in this program is
described in general terms, illustrated with its application to the problem of learning rules that
correctly diagnose causes of jaundice. The performance program which uses these rules for
diagnosis is called JAUNDICE.’

. The problems discussed in this paper, which RL addresses, are:

l Given: A case library. Find: A set of rules that can correctly diagnose these and
similar cases. (See Section 2.)

l Given: A faulty conclusion from the performance program. Find: Improvement to
the KB in order to achieve a correct conclusion. (See Section 3.)

l Given: A case library. Find: Rules that predict exclusion from a class
(disconfirming rules). (See Section 4.)

l Given: A case library. Find: Rules that chain together using intermediate concepts.
(See Section 5.)

a

In the case library, each case (training instance) is represented by a frame with two basic slots:
a feature set (i.e., a set of feature-value pairs), and a correct classification. The goal of the
first problem is to construct a KB which can diagnose all (or most) cases correctly; the second
problem is to update the KB when a new case with a faulty diagnosis appears.
In order to solve the first problem, a method which performs a heuristic search from the most
general hypothesis is developed; this method, described in Section 2, is a model-driven method
that processes all data at once. In order to solve the second problem of updating the KB, a
“focusing mode” of learning (described in Section 2.4) is developed. When the performance
program makes a faulty conclusion, rules which can achieve a correct conclusion are first
learned with this focusing mode. The KB is then edited by comparing the learned rules with
the old rules.
As in Meta-DENDRAL [Buchanan 78aJ. a half-order theory of the domain guides the learning
program by providing some semantic, as well as syntactic constraints on the learned rules. In
RL, this rule-forming knowledge is encoded as rule models and function templates [Davis and

‘JAUNDICE is modeled after MYCIN, but was constructed from LISP. rather than from within EMYCTN,  in order
to allow changing parts of the program as needed for the development of RL.
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Buchanan 771. For example, some knowledge in TEIRESIAS-style function templates2 allows
association of predicates such as “SAME” and “NOTSAME” with attribute-value pairs.
Semantic information, e.g., about incompatible features, is not used in the present program.
The knowledge they provide is essential to make the machine-learned rules more uniformly
encoded and more meaningful. The advantages brought about by this rule-forming knowledge
are four-fold:

l It indicates the required components to add such that rules learned
the rules written by human experts. For example, a rule learned is:

will conform to

"if P, then C"

but a rule written by human experts may contain a screening clause:

"if C is unknown, and P, then C".

l It tells about the commonly used predicates for a certain attribute.
l It guides generating code for newly learned rules in compliance with the old coding

in the KB. Therefore, the new rules can be used by the inference engine once they
are learned and can thereby be evaluated immediately to see their effects on the
system performance (upgrading or degrading).

l It provides other common sense; e.g., mutual exclusivity and relative priorities
among attributes. In the LHS of a rule, it allows no two conjuncts that are
mutually exclusive of each other; also, the conjuncts should be ordered according to
priority. If the failure of one conjunct will make other conjuncts meaningless, then
this conjunct should be placed first. In JAUNDICE, for instance, it is logical to
place the conjunct “LFT is known” before “SGOT is elevated*’ and “SGPT is
elevated” because if “LFT is not known”, then no data are available for “SGOT”
and “SGPT”.

Rule-forming knowledge is synthesized from rules already in the KB, but can actually be
formulated directly by experts as the initial knowledge for the learning system to construct a
KB from nothing.
Section 3 describes learning intermediate knowledge, which is important for constructing a KB
with good accuracy and understandability. Section 4 describes learning disconfirming rules.
Section 5 describes how to combine all the methods developed to construct a KB with both
confirming and disconfirming knowledge, including intermediate knowledge. Finally, we
describe results in which learned rules are tested in the context of diagnosing the causes of
jaundice.
a

1.1 The Case Library Used to Learn Rules for JAUNDICE
Though the methods we developed are general, we use the medical domain of jaundice as the
main I experimental domain. There are 72 cases in the initial case library; a feature base with
81 medical features (some binary, others with multiple values) is used for describing cases;
every case in the case library has been assigned a correct diagnosis. Descriptions of cases,
concepts, or hypotheses in the search space are represented by feature sets, sets of feature and
value pairs: e.g., { . . . . . . . (SGOT 250) (SGPT 200) (Alk-P 25).....}. The temporal characteristics are
also encoded in to features; e.g., (disease-course rapid-down hill).

%‘his  is currently embedded in Lisp code.



1.2 Overview of the Rule Space for JAUNDICE
The number of rules in the rule space is about 102? Thus the space is much too large to
search exhaustively.3 The space is searched systematically by stepwise  generation of successors
using the specialization rules Sl-S3. The rules of generalization are applied later for
refinement. Section 2 discusses the procedure and heuristics for pruning the search space. The
rules of generalization used are listed as follows:4 (notation “G>” means “replaced by a more
general form”)
Gl. Dropping conditions:

{(Ai Vi) (Aj Vj)} G> CW VW

Based on this rule, generalization is done by removing some feature-value pairs from the
feature set.
G2. Climbing up the value hierarchy tree:

If Vi implies Vk, and Vj implies Vk,
then,

{(Ai VW

This rule states that a value can be replaced by a more general value in order to cover more
instances in the same class.
G3. Taking minimum or maximum:

G>

This rule is designed for numerical parameters and can be understood by the following
example. For two patients with the disease ‘*hepatitis”, if one patient’s data includes “SGOT =
200”. and the other’s includes show “SGOT = 400”,  then it may be hypothesized that “SGOT 2
200” implies “hepatitis”. Depending on the distribution of values among the normal and
diseased populations, “taking minimum” or “taking maximum” rule is chosen. In the
application of RL to jaundice, this rule is made domain-specific by adding the following
heuristic: if the high range of values suggests disease, then use the “taking minimum’* rule; if
the low range of values suggests disease, then use the “taking maximum” rule.
G4. Creating new symbols: In Section 3, we will describe how to define new symbols for
higher level abstraction when indicated by some heuristics.

- GS. Introducing disjunction:

E (Ai Vi) (Aj Vj)(Ai Vi) (Aj Vk) 3
G> {(Ai Vi) (Aj Vj-or-Vk)}

To avoid trivial disjunction, this rule is invoked only under certain circumstances. If two case
descriptions have the same values in every important feature and differ in the values of one
less important feature -- and rules Gl - G4 cannot be successfully applied -- then use G5.
Rules of specialization are duals of the generalization rules. There are three rules

31f all 81 features were merely binary, there are 281 or about 1024 feature sets. Each can be associated with any of
about 10 disease categories. The single heuristic of looking only at rules with six or fewer features cuts the rule space

to about 1012 rules since there are about 3 x lo9 combinations of 81 features taken six at a time and each

combination can have 26 possible values.

4Rules of generalization used in learning from examples can be seen in [Michalski 83a]. But, in JAUNDICE, we
also add some domain specific rules.
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corresponding to Gl, G2, and G3 above (where the notation “S>” means ‘*specialization*’ of
concept descriptions or the LHS of rules),
Sl. Adding conditions:

{(A, v,n s> {(A, VI) (Aj VjH

S2. Climbing down the value hierarchy tree: In the tree, the highest level nodes are the most
general values or descriptions: the lowest level nodes are the most specific values or
descriptions. For example, the value “2” is more specific than the value “even”, and the value
“even” has infinite successors: . . . . -2, 0, 2, 4 ,...
S3. Closing interval: If the value is numerical and the interval is too open, then it can be
specialized by closing the interval as follows.
"b" is the next higher marking level of "a*.

For example, a description ((SGOT 150))  is too general for the disease “Cholangitis” and can
be specialized into ((SGOT [SO 300 1)) or ((SGOT 1300)); however the latter is not medically
accurate.
The duals of G4 and G5 are not used.
The main features of RL are summarized in Table 1. Not all are discussed in the present
paper. See [Fu 851 for details.

Table 1. Summary of the RL Program

Paradigm:

Representation
of training instances:

Representation
of learned concepts:

Rules of generalization:

Rules of specialization:

Intended applications:

Validation:

Efficiency enhancement:

Noise elimination:

Learning from examples

Feature Sets

MYCIN-like rules and
meta-rules with degrees
of certainty

1. Dropping conditions
2. Climbing up the value

hierarchy tree
3. Taking minimum or

taking maximum
4. Creating new symbols
5. Introducing disjunction

1. Adding conditions
2. Climbing down the value

hierarchy tree
3. Closing interval

Expert systems in general

JAUNDICE
(REFEREE)

CONDENSER
Heuristics

Noise filter
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Before using RL to construct a KB for JAUNDICE, we hand-coded a set of rules that gave as
accurate diagnoses as we felt possible on clinical evidence alone (i.e., without laboratory tests
and specialized procedures). It contains 141 diagnostic rules and an additional 80 taxonomic
and causal rules. The hand-coded version of JAUNDICE was used as a reference point for
performance (see Sec. 6). It was also abstracted to define the half-order theory for RL. As an
alternative, the half-order theory could have been constructed without reference to the hand-
coded KB -- and would be in practice where the KB is yet to be formulated. But we believed
there was less bias in automatically abstracting it from a set of rules than in constructing it
manually.
In order to avoid unnecessary risk and cost, the RL program is designed to keep the learned
rules small (i.e., mention no unnecessary features), and keep them maximally specific while
sufficiently general (i.e., the most specific rules in the version space)? Thus the procedure
minimizes false positive errors (incorrect diagnoses). A subprogram, called CONDENSER [Fu
85], removes unnecessary features, thus enhancing the efficiency of learning. It also considers
cost and risk associated with features, thus increasing the clinical relevance of the diagnostic
rules. Another subprogram, called the noise filter [Fu SS]. removes error-sources (noise)
associated with learning as much as possible by optimization with respect to prediction errors.
Neither CONDENSER nor the noise filter is described here. The meta-rules used for control
can also be learned, but this is also described elsewhere. [Fu and Buchanan 841

2 Learning an Initial Knowledge Base
This learning method, performing a heuristic search from the most general hypothesis, is
model-driven and is designed to learn multiple disjunctive concepts (i.e., there are multiple
concepts and there are multiple rules for each concept).

Given: A case library.

Find: A set of rules that can correctly diagnose
cases like those in the case library.

Note that the ultimate goal is that the. learned rules should diagnose cases outside the case
library used for training; therefore, the learned rules should be sufficiently general and specific.
Since we use a set of training instances to estimate the “true” boundaries (i.e., rules) separating
positive and negative instances, the learned rules will be associated with some degree of error.
The errors concerned here are false prediction errors; i.e., the extent to which rules make wrong

- predictions. We particularly desire to minimize false positive predictions (in which negative
instances are classified as positive) because of reasons described in Section 2.2. Therefore, this
learning method is intended to discover rules that describe a group of positive training
instances in a maximally specific fashion. A learned rule will tend to be overly generalized
(overgeneralization implies false positive predictions) if there are no adequate negative training
instances to constrain or guide generalization properly [Carbonell 831. Hence, the strategy of
finding maximally specific rules will be even more useful when few negative training instances
are available.
There are domain dependent constraints for rules. The learning method searches for rules
which are maximally specific without breaking the constraints. The constraints, as in the half-
order theory in Meta-DENDRAL, are based on the domain knowledge. For learning in
JAUNDICE, the constraints are defined as follows:

5Because of the involvement of uncertainty and disjunction, the term “version space” denotes the set of all plausible
hypotheses with respect to a certain criterion, rather than the set of all hypotheses that are consistent with all training
instances observed so far.
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1. The LHS of a rule should have fewer than seven conjunc&
2. A rule should cover (be matched by) at least 20% of the positive training instances

of the class for which we want to learn classification or diagnostic rules.’
3. The (absolute value of) “degree of certainty” of a rule should be at least 0.4. That

is, the prediction should be reasonably certain.
4. A rule should not match more than 10% of all negative training instances.l

The first two constraints
minimal specificity.

define minimal generality whereas the last two constraints define

2.1 Procedure
In a case library, if we want to learn rules for a certain class, then label all cases in that class
as positive instances and label other cases as negative instances. Inasmuch as the goal is to
construct a KB covering all classes in the case library, each instance will be labelled as a
positive instance of some class at a certain stage during the whole learning process.
The learning procedure includes four main steps described below. As in Meta-DENDRAL,
negative instances of partial rules are not considered until the algorithm finds plausible rules
based on positive evidence alone.
matching.

The reason for this in both programs is the cost of

l step & Starting from the most general version, “NIL”, search for the maximally
specific hypotheses (LHS’s) that do not break two following constraints: the
number of conjuncts should be less than seven (adjustable), and each hypothesis
should cover at least 20% (adjustable) of positive instances. The hypotheses, thus
found, are joined with the class name to form raw rules. Since the constraints
merely involve positive instances, only positive instances are considered in this step.
Since the search involves only specialization, only the specialization rules Sl-S3 are
used in this step.

l step 2, Match all rules from step 1 against all cases in in the training set and prune
those rules which are assigned degrees of certainty smaller than 0.4 (adjustable), or
which cover more than 10% (adjustable) of negative instances. Negative instances
are considered in this step for calculating degree of certainty (refer to Appendix A).

l step & Optimize each raw rule by iteratively applying generalization operators
(generalization rules G~oG~)~ until a local optimum is reached (through hill-
climbing). The local optimum is the state with minimal prediction error under the
following constraints: the local optimum should not cover more than 10% of
negative instances as mentioned in step 2, and the difference of degree of certainty

d between the local optimum and the initial state (the raw rule) should be within
0.15. The latter constraint stems from the argument that, in EMYCIN-based
systems especially, rules with small differences in CFs are adding very little to one
another.

6This constraint takes into account the grain size of concepts used in rules. In MYCIN and in the hand-coded
version of JAUNDICE. rules usually have fewer than seven components in the LHS.

‘This is domain dependent. If there should be only one rule that covers all the positive instances, then the rate of
coverage should be 100% ideally. But we assume there are multiple disjunctive concepts to be learned (as in Meta-
DENDRAL); so it is unlikely that a single rule will cover all instances. As another example, in diagnosing acute
appendicitis, the rules should be more general to cover more positive instances because the mortality of this disease is
high whereas the surgical risk is small; therefore the threshold should be set higher.

8Though.  ideally, a rule should not match even a single negative instance. this is however not probable because of
uncertainty in the descriptions and classifications of cases in the case library. It is also noted that, in EMYCIN-based
systems, for instance, a case in class A, which is covered by rule B inferring class B. will still be classified correctly if
rule A, which infers class A and covers this case, overrides rule B; recall the phenomenon of hypothesis competition in
such systems.

90nly Gl-G3 were used in learning rules for JAUNDICE.
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. step &. If all positive instances are covered or the rate of uncovered positive
instances is below a certain threshold or the number of iterations has reached a
certain threshold, then exit. Otherwise, go to step 1 and reset the constraints in
step 1 as follows:

1. Reduce the rate of coverage for positive instances; for example, the first
iteration uses 20%, the second iteration uses 1096, and so on.

2. The hypotheses should cover at least one of the uncovered positive instances.
3. The number of conjuncts is still kept under seven.

If the constraints used in the procedure are properly chosen, only a few iterations are required,
provided that the training instances are not too noisy.
The search in step 1 proceeds as follows:

l substep 1.1. Initialize the hypothesis space H with the most general version as
follows: set H := ( NIL }.

l substep 1.2. Generate new hypotheses by specializing each hypothesis in H in all
possible minimal ways (i.e., specialize as little as possible). Each predecessor
hypothesis may have more than one successor hypothesis. The specialization may
be done by either adding a new feature with its most general value using rule Sl, or
replacing a feature value by a more specific value using S2 or S3. Figure 1 shows
part of the search tree.

7



Figure 1. Part of the search tree.

NIL

A\
{ ( A l  Vl)} {(AZ V2)) {(Aa “3))

 0 8 80 8 0.
7a v~yigg;

((Al VW)
(A2 V2)

Suppose the system is learning classification rules for “class A” instances. then the hypothesis generation in

the above diagram can be formulated as:

instances => class A instances

instances with (Xl Vl) = > class iZ instances

instances with (M Vll) = > class II instances

. . . . .

instances with (;I1 VI 1) slnd (X2 V2) = > class I! instances

Note: For the feature “Al”, “Vll” is more specific than “Vl”
in the value hierarchy tree.



l Since the number of conjuncts may not exceed six, the depth of the search tree is
mainly affected by (but not the same as) the depth of the value hierarchy tree, and
its breadth is affected by the breadth of the value hierarchy tree and the number of
the available features. Inasmuch as the search space may be huge, heuristic search
is necessary. The heuristics used will be described next.

l substep 1.3. If a successor hypothesis is justified (i.e., does not violate the
constraints defined by minimal generality, as described in step l), then retain it in
H and prune the predecessor hypothesis. If a successor hypothesis is not justified,
then prune it. If no successor hypothesis is justified, then output the predecessor
hvnothesis as a raw new rule and remove the predecessor hypothesis from H. Also,
remove redundant hypotheses during the search.

l Repeat substep 1.2 and substep 1.3 until H is empty.

If a hypothesis is pruned, it indicates that the number of conjuncts is greater than six or the
positive instances covered are less than 20% of all positive instances. Successors
(specializations) of this hypothesis will also be unjustified because specialization neither causes
more instances to be covered nor causes the number of conjuncts to drop. Therefore, pruning
unjustified hypotheses will not hurt the completeness of the search for desirable rules.
There must be a procedure to determine whether a rule is matched by an instance. An
instance matches a rule when the instance makes the premise (LHS) of the rule true. Matching
naturally depends on the representation language which, in our scheme, is a feature set
representation.
Step 4 is designed for handling more special cases (or exceptional cases) which are not covered
by rules learned in the first iteration. With more iterations, the learned rules become more
specific and cover a smaller number of positive instances. The final result will be the union
of results from all iterations.
The search space (i.e., the space of all possible rules) is formidable if the number of feature-
value pairs is large. In our work, the search space is reduced to reasonable dimensions by:

1. Reducing the number of features used to form rules. This is accomplished by a
program named CONDENSER, which is not described here. See [Fu 851.

2. Using heuristics to prune the search space.

The size of the search tree after adding heuristics may be estimated as follows:

B+B2+B3+. . .+BD,

where B L " x wmax

and B: Number of successors of a hypothesis.
D: Depth of the tree.
n: Total number of features involved.
Wmax: Maximal width of value hierarchy

trees among all features.
dmax: Maximal depth of value hierarchy

trees among all features
(numerical features depend on the
number of intervals defined).

The number of successors of a given partial hypothesis depends on the number of features
already involved in it and the number of features which can be added to it (recall the
specialization process in substep 2).
Notice that the system parameters, such as “the minimal coverage of positive instances”
(defined to be 20% for learning rules in JAUNDICE), can be adjusted for different domains.
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2.1.1 One Example

Figure 2. The search tree of applying the “search from the most general hypothesis” method to
one example.

NIL

{ (GPT 250 >}
0

{(Alk-P 24)

0
((GPT 2300) )
(Alk-P 24)

0
((GPT 2300)
(Alk-P [4-10-J)

} (W 2300) }
(Alk-P 110)

0: Justified node
0: Unjustified node
GPT= Glutamate Pyruvate Transaminase
Alk-P= Alkaline Phosphatase
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Here, an example taken from JAUNDICE is used to demonstrate the search process in the
procedure described above. For simplicity, we assume only four cases in the case library, only
two features in the descriptions of the cases, and only two diagnostic categories.

Casel: Hepatitis, GPT 1200) (Alk-P 8))
Case2: Hepatitis, GPT 450) (Alk-P 6))
Case3:.Calculous-jaundice, (GPT 200) (Alk-P 20))
Case4: Calculous-jaundice, (GPT 60) (Alk-P 8))

The value hierarchy tree rests with the domain knowledge. In JAUNDICE, the specialization
of a numerical feature is done by specialization rule S3.
Now, the search tree of learning rules for “Hepatitis” is diagrammed in Figure 2. In the half-
order theory, the values of “GPT” are marked off in three ranges defined by levels at 50 and
300, and the most general value is assumed to be “250”; the values of “Alk-P” are marked off
by three ranges defined by levels of 4 and 10, and the most general valuelo is assumed to be
“14”. In Figure 2, the output raw rule is as follows:

Rl: {(GPT 2300) (Alk-P [4 lo])} => Hepatitis

This raw rule then goes through steps 2 and 3 described above.

2.2 Areas of Application
Inasmuch as this learning method is initially focused on systems with EMYCIN-like
frameworks, its applicability is expected in domains where EMYCTN can apply, e.g., medical
examples, such as MYCIN, PUFF, HEADMED, CLOT, and nonmedical examples, such as
SACON [Buchanan and Shortliffe 841. However, from the methodological viewpoint, this
method can be applied in domains where there are multiple disjunctive conceptsll and is
particularly useful when:

l uncertainty is involved, or,
l false positive predictions are to be minimized, or,
l negative training instances are of limited availability.

Determinism (or exactness) of a domain will not preclude the use of the method described here
since such a domain is merely an extreme case of an imprecise domain, where “degree of

M

10In the JAUNDICE experiment described in Sec. 6.. the most general value for any numerical feature is “Lo”.
11A disjunctive concept in our context is a category predicted by multiple rules.
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certainty” is quantized into two levels: “yes” and ,,no”.12 With respect to achieving accuracy df
performance, false negative predictions (cases which are not predicted to be any pre-defined
category) are more advantageous than false positive predictions (incorrect predictions) since for
the former, a diagnostic system (or person) will continue to request desired (or missing)
information which helps to attain a prediction. For example, assume there is only one rule in
the KB as follows: “Al & A2 => Class C”. Then an instance in class C with Al and no
information on A2 will not be predicted to be in Class C (a false negative). However, a
diagnostic system may continue to gather information about the attribute A2. In medicine, a
physician might argue that, sometimes, a false negative diagnosis will be hazardous owing to
delayed therapy; however, even without a (specific) diagnosis, a therapy can still be instituted
immediately under the worst assumption (default therapeutic decision) while more information
is being gathered for arriving at a diagnosis. However, in some cases, minimizing false
negative predictions is desirable, and finding the most general rules may be necessary.
The next issue is, why and when are negative instances of limited availability? Accurate case
libraries are not always readily available, and observing new cases may be time-consuming or
expensive. Generating a case library from first principles or intuition may not be
straightforward or may introduce unwanted bias. In medicine, for example, training instances
that can be generated hypothetically by human experts are limited to more typical or simpler
cases; more complex cases usually can only be obtained by clinical observation. In a relatively
unexplored domain, or preference is to obtain instances is by observation.

2.3 Comparison and Disctission

2.3.1 Comparison with Related Work
For comparison, we pick up some important prototypes from the machine learning work in AI
which also deal with learning multiple concepts or multiple rules. They include Meta-
DENDRAL [Buchanan 78b], AQll [Michalski 781, and ID3 [Quinlan 83 J.
Meta-DENDRAL  is similar to the above developed method in the following aspects:

1. both are model-driven learning systems, performing a heuristic search from the
most general hypothesis;

2. both are intended to discover rules that are sufficiently general to cover new cases
and sufficiently specific to avoid many false positive predictions;

3. both consider positive training instances first, and then negative training instances;
4. both use a half-order theory to constrain the search.

However, the output of the two programs may differ because of different heuristics used in the
search.
cii terion”,

The RULEGEN program in Meta-DENDRAL  assumes that the ‘*improvement
which compares one hypothesis with its successors with respect to plausibility,

increases monotonically; therefore a cleavage rule will be formed from the hypothesis space if
the improvement criterion reaches a local maximum [Buchanan 78b]. In contrast, the method

%he system parameters in the procedure described in Section 2.1 have to be changed as follows:

B If disjunction does not occur,

b Set the minimal coverage rate of positive training instances to be “100%” or near 100%.

b Set the minimal degree of certainty of a rule to be “1”.

b Set the coverage rate of matching negative training instances to be “0%” or near 0%.

B If disjunction exists,

b The minimal coverage rate of positive training instances is domain dependent

b Set the minimal degree of certainty of a rule to be “1”.

b Set the coverage rate of matching negative training instances to be “0%” or near “0%“.

12



described above does not assume so, and a rule will be formed only if it is maximally specific
without breaking the constraints defined by minimal generality. In other words, the method
seeks boundary conditions of a region bounded by the pre-defined constraints instead of
seeking a local optimum. The rationale behind this is twofold:

1. unless the heuristic function used increases monotonically, the local maximum (or
minimum) is not necessarily the most desirable result:

2. as described earlier, it is desirable to minimize false positive predictions. Finding
the most specific rules in the version space is the most important solution if
negative training instances are not easily available.

AQll uses the Aq algorithm [Michalski 751 and differs from the above method in the
following aspects. AQll uses the version space approach of data-driven learning. In terms of
the version space defined by [Mitchell 781, AQll discovers rules in the G set (the most
general rules in the version space) while RL’s method discovers rules in or near the S set (the
most specific rules in the version space). l3 If the version space converges such that G = S,
both methods will achieve the same result. There are two possible weak points for the AQll
algorithm in EMYCIN-like frameworks:

1. If there are no adequate negative training instances to update the G set, the rules in
it will be overly general and cause more false positive predictions. However, if we
can ascertain that we have adequate negative training instances to guide the
generalization, finding the most general rules is more advantageous in the aspect of
reducing the cost of using rules because these rules tend to have a smaller number
of features.

. 2. With the AS algorithm, the set of rules found is incomplete. This is due to the fact
that the AS algorithm repeatedly applies the candidate elimination algorithm with a
portion of positive training instances removed during each iteration, and the
procedure is terminated when all positive training instances are covered by a set of
rules, rather than when all desired rules are found (refer to [Michalski 751 and
[ Michalski 781).

The difference between RL’s method and the ID3 algorithm is derived from different
representation schemes. The ID3 algorithm uses decision trees instead of production rules to
represent knowledge. The weakness of the ID3 algorithm in EMYCIN-like frameworks
includes the following aspects:

1. The decision tree representation is more restrictive than the production rule
representation. For example, if we transform the decision tree, which is constructed
by the algorithm, into a set of rules, then rules will rigidly share at least one
common feature that occupies the first decision node. The distinction would be

a less, however, if the algorithm were intended to discover a set of decision trees.
2. Search is incomplete because, to construct the desired decision tree, features are

selected on the basis of their discriminating ability with respect to some criterion.
However, note that conjunction of two trivial features may be significant.

- 3. ID3 will fail if uncertainty is involved; i.e., some positive instances and negative
instances share an identical set of feature-values.

3 Improving an Existing Knowledge Base
In order to improve a KB on the basis of experience, a different mode of learning, called the
“focusing mode,” has been developed. It focuses on a single instance -- usually an important
false positive or false negative -- to guide the learning system to improvements in the KB.
The task is formulated as follows:

13Note that if we say rule A is more general than rule B, it means every time rule B succeeds, rule A also succeeds,
but not vice versa; the generality has little to do with the degree of certainty associated with rules.
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Given: 1. A misdiagnosed case* by the performance system.
2. A case library.

Find: Rules which can correctly diagnose the misdiagnosed case,
along with most of the other instances in the case library.

l : Misdiagnosis may include failure to make any diagnosis.

There are two solutions for this problem: finding confirming rules to support the correct
diagnosis (or the expert’s diagnosis), and finding disconfirming rules to reject the system’s
misdiagnoses. The former is described here; the latter is described in Section 5. Notice,
however, the rules found should be relevant, i.e., they should satisfy (be matched with) the
specified case.

3.0.1 Procedures
The focusing mode of learning uses the method described in Section 2.1 except for the one
additional constraint that the rules should satisfy (be matched with) the specified instance.
First, label the misdiagnosed case as a “positive instance” associated with the correct diagnostic
category. Then classify the case library into positive and negative instances, based on whether
or not they have been assigned to the same category as the specified instance. For example, If
a case, CaseOl, is misdiagnosed by the system as disease B whereas it should be disease A, then
all cases diagnosed as disease A in the given case library are labelled as “positive instance”
along with the misdiagnosed case; and all other cases are labelled as. “negative instance”. The
learning task is to learn LHS’s of confirming rules whose RHS is “disease A”, being certain
that Case01 is covered by the new rules.
The procedure includes the same four main steps, as described in Section 2.1, with minor
changes noted in italics:

step 1. Starting from the most general version, “NIL,,, search for the maximally
specific hypotheses (LHS’s) that do not break three following constraints: the
hypotheses should satisfy (be matched with) the specified instance, the number of
conjuncts should be less than seven, and each hypothesis should cover at least 20%
of positive instances. The hypotheses, thus found, are joined with the class name to
form raw rules. Since the constraints merely involve positive instances, only
positive instances are considered in this step.
step 2. Match all rules from step 1 against all cases in the training set and prune
those rules which are assigned degrees of certainty smaller than 0.4, or which cover
more than 10% of negative instances. Negative instances are considered in this step
for calculating degree of certainty (refer to Appendix A).
step 3. Optimize each raw rule by iteratively applying generalization operators until
a local optimum is reached (perform a hill-climbing search, so to speak). The local
optimum is the state with minimal prediction error under the following constraints:
the local optimum should not cover more than 10% of negative instances as
mentioned in step 2, and the difference of degree of certainty between the local
optimum and the initial state (the raw rule) should be within 0.15. The latter
constraint stems from the argument that, in EMYCIN-based systems especially, rules
with small differences in CFs are adding very little to one another.

l step 4. If there are rules learned or the number of iterations has reached a certain
threshold, go to exit. Otherwise, go to step 1 and reset the constraints in step 1 as
follows:

1. The hypotheses should satisfy (be matched with) the specified instance.
2. Reduce the rate of coverage for positive instances; for example, the first

iteration uses 20%. the second iteration uses lo%, and so on.
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3. The number of conjuncts is still kept under seven:’

The detailed search procedure is the same as that described in Section 2.1.
There are two outcomes of this learning: success and failure. If there are rules learned, then
one might ask why the learning system did not find them when the KB is initially constructed
by using the batch-processing learning (described in Section 2.1). In the first place, the
specified case may be an exceptional one and the rules that are consistent with it can cover
only a small number of other positive instances; thus those rules dealing with this exception
may not be found during the initial KB construction. Secondly, the initial training set may
not be a representative sample of cases in the category of interest.
On the contrary, if there are no rules learned, what does this mean? Since the objective of
this learning is to find rules that are consistent with the specified instance and most of other
instances, when this procedure finds no rules there must be an inconsistency between the
specified instance and the others, or there must be missing data. This could happen, for
example, if the expert provided the wrong diagnosis.
Incompatibility might occur between the old rules in the knowledge base and the rules found
with the focusing mode. For instance, some old rule is more general, or more specific, or
conflicting with some new rule. In this case, the new rules may be tried to replace the
incompatible old rules to see whether the performance will be improved. But convergence is
not guaranteed (see [Fu 851 for more detailed discussion).

4 Learning Disconf irming Rules
Disconfirming rules are rules which deny some facts. They can be traced back to MYCIN
[Buchanan and Shortliffe 843, in which rules with negative CFs are called disconfirming rules

in contrast to confirming rules with positive CFs. In our scheme, we use a degree of certainty
like CFs to represent uncertainty. An example of a disconfirming rule is as follows:

-0.7
“P => A” Or

0.7
“P => -A”

This rule says if “P” exists then “A” is disconfirmed with the degree of certainty 0.7.
There are two basic approaches to forming disconfirming rules, both of which have been
implemented:

1. From high frequency evidence: If some piece of evidence (clinical manifestations in
medicine) frequently appears in a hypothesis (clinical diagnosis), then the absence
of that evidence tends to deny the mentioned hypothesis [Miller, Pople, and Meyers
82-J.

2. From mutual exclusiveness or incompatibility among facts: If some evidence, E,
supports a hypothesis X which is mutually exclusive with another hypothesis Y, then
E tends to disconfirm the hypothesis Y.

For the first approach, in an extreme case, if some evidence appears in a hypothesis under all
circumstances, then the absence of that evidence definitely denies the mentioned hypothesis. It
is called a pathognomonic finding in medicine. The statement may be rephrased as follows:

P(e/h) = 1 <=> P(-h/-e) = 1

But, if P(e/h) is not 1, then it is not necessary that P(e/h) = P(-h/-e); and each conditional
probability depends on the distribution of the evidence over h and -h. It is dangerous to use
only P(e/h) to estimate P(-h/-e) unless we know the distribution. It is noteworthy that in
MYCIN, the CF, though related to probability, is nevertheless different from probability in
some aspects [Buchanan and Shortliffe 841. And, it is misleading to use probability to
measure directly the degree of belief or disbelief. In clinical practice, it is often believed to
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be true that if a clinical manifestation frequently appears in one disease, then the absence of
that manifestation tends to disconfirm that disease. As an example in JAUNDICE, SGPT is
always elevated in the disease: acute hepatitis, and the absence of SGPT elevation makes acute
hepatitis unlikely. Another example of a disconfirming rule formed by the first approach is as
follows:

If there is no history of gall bladder disease,
then it is unlikely (-0.5) that the disease is
calculous-jaundice.

This rule is derived from the observation that some history of gall bladder disease always exists
if the jaundice is caused by gall stone.
The issue of overdisconfirmation can be solved by assigning a lower degree of certainty to a
disconfirming rule (unless P(e/h) = 1). For instance, in JAUNDICE, we use a simple mapping,
such as this:

if attribute A always (corresponding to the degree of certainty in the range 0.8 L
CF < 1)) appears in disease X, then the absence of attribute A often (corresponding
to the degree of certainty around 0.5) rules out disease X.

By so doing, confirming rules usually override disconfirming rules to make conclusions if both
succeed.
The second approach may be represented as a rule:

If e => hi and hl => -hZ, then e => -h2.

This approach involves more semantics than the first. Statements about
incompatible concepts (e.g.,
"denying tree,"

hl => -h2) are represented in a so-called

the program.
which is part of the half-order theory given to

gtetimes, a disconfirming property can propagate along a relational chain (e.g., causal links);
:

If el => 82, 82 => -63, and -83 => -h, then el => -h.

The uncertainty may also propagate: the degree of certainty of a path is the product of the
involved links.
Learning disconfirming rules can also focus on a specified case (focusing mode). For example,
if a case is misdiagnosed as disease B while it should be diagnosed as disease A, then, with the
approach from high frequency evidence, disconfirming rules can be formed to disfavor disease
B by- using feature-values that are absent in the specified case but frequently present in the
cases correctly diagnosed as disease B.

5 Learning Intermediate Knowledge
In expert systems, hierarchical reasoning can provide better accuracy and understandability
[Clancey 831. Descriptions of intermediate states partially summarize and categorize subsets

of the data and thus allow a reasoning system to reason from initial data to final conclusions
in orderly stages. In MYCIN, for example, an inferred intermediate state of the patient is
“compromised host”, i.e., a person whose immune system has been lowered. It is neither a
piece of primary, observed data (called here a low level node or LN) nor a final diagnostic
category (called here a high level node or HN). Using intermediate nodes (INS) allows the
reasoning to proceed in smaller steps. It also allows the system to exploit the familiarity of
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some INS for purposes of explanation [Clancey 831. Finally, INS may provide a partial
interpretation of the data that is useful even when insufficient data are available for a
complete interpretation. The reasoning hierarchy may be diagrammed as Figure 3.

HN: high level node (e.g., diagnostic category)

4?
0
l

IN:

intermediate level nodes (e.g., descriptions of
intermediate states)

IN:
l
0

fi

LN: low level node (e.g., observational data)

Figure 3. Multi-level reasoning network.
intermediate levels.

Note that there may be several

Intermediate nodes can be names of (a) generalized findings (e.g., clinical syndromes, which
often start out as almost arbitrary labels for collections of findings); (b) generalized diagnostic
classes (e.g., MYCIN inferred “meningitis” before it inferred “bacterial meningitis*‘); (c)
intermediate concepts that are neither final solutions nor primary data (e.g., “compromised
host” in MYCIN).
In building a knowledge base for an expert system, it is useful to include INS for the three
reasons just cited. If the knowledge base is built through knowledge engineering, an expert can

* supply the appropriate INS. If it is constructed automatically, however, the learning program
must be able to supply the INS if the cases from which it learns are described in terms of LNs
and categorized in terms of HNs. Thus the problem we are addressing in this paper can be
described as:

Given: A set of training instances associating LNs and HNs
(written LN -> HN).

Find: Rules of the form LN => IN and IN => HN
consistent with the training instances.

In the above formulation, “->” represents a specific association in a training instance; “=>”
represents general inferential knowtedge  (a rule). That is, we intend to learn general
intermediate knowledge from a set of very specific descriptions. (Note that “LN” can be a
conjunction of more than one feature.) Practically, this is an important issue and worthwhile
to explore because, for instance, medical records are often described only by clinical
manifestations and disease diagnoses, where discussion of the involved intermediate mechanisms
is limited or missing.
Two sets of learning methods are described below to cover two important cases:

1. Intermediate nodes already exist in the initial vocabulary and are used in some rule
(or in the half-order theory);

2. Intermediate nodes are pot in the initial vocabulary.

In the first case, the learning task involves exploiting the old partial (incomplete) intermediate
knowledge to learn new intermediate knowledge; the partial knowledge may exist between LN
and IN, or between IN and HN, or both. The task in the second case is comparatively more
abstract and constructive, because it involves creating and defining new intermediate concepts
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which are not provided in the original vocabulary. In inductive concept learning, automatically
adding new symbols is one way to mitigate the bias induced by a fixed language [Utgoff 821.
We focus here on learning diagnostic rules that include intermediate concepts (i.e.’ LN => IN
and IN => HN). We first describe the learning techniques when the intermediate concepts are
already in the initial language (Section 5.1) and then describe the method when the
intermediate concepts are not in the language (Section 5.2).

5.1 Intermediate Concepts Already in the Initial Vocabulary
In this section, we assume there is some knowledge about the intermediate nodes (IN) including
partial but not complete knowledge about their relationship with other nodes at other levels
(LN or HN). We also assume each training instance is characterized only by LN and HN and
not by IN. If each training instance is characterized by intermediate level concepts (IN) as
well as by low level descriptions (LN) and high level concepts (HN), we can apply machine
learning algorithms level by level and discover new knowledge in different levels.
Basically, two methods are used to search the space of connections of LNs to INS and INS to
HNs: bottom-up and top-down. The bottom-up method relies on existing knowledge of the
form “LN => IN” and “IN => LN” (written together as “LN <=> IN”). The top-down method
relies on the existing knowledge of “IN <=> HN”. Therefore, if only knowledge of linkages
between LNs and INS is available, only the bottom-up method can be used: likewise if only
knowledge of linkages between INS and HNs is available, only the top-down method can be
used. If knowledge of both types is available (but incomplete, otherwise there is nothing to be
learned), both methods can be applied and the results will be the union of results from each
method. A third method called “bidirectional extension” employs these two basic methods
bidirectionally and sequentially in order to construct more complex hierarchical concepts.

5.1.1 Bottom-Up Learning
If knowledge of the form “LN => IN” is available, the bottom-up method is applied. The task
of learning under this situation is described as follows:

Given: 1. A set of training instances
(or a set of LN -> HN);

2. Associations from the
half-order theory linking LN and IN,
in the direction of LN => IN.

Find: Rules of the form IN => HN,
consistent with the training instances.

Each training instance is represented as a set of LNs and is classified on the basis of some
HN. Remember that HN is a class name (or a category in medicine). The basic idea behind
this method is to generalize from instances of the same HN. In the JAUNDICE experiments,
rules in the form of “LN => HN” are first learned by the method described in Section 2 from
the given set of training instances; then we treat this set of rules as another set of training
instances (more general than the original training set, of course) and apply the following
procedure to learn intermediate rules.
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Suppose there are n HNs: Hl, H2, . ..Hi. . ..Hn. in the set of final hypotheses. The algorithm
proceeds as follows:
For i=l to n, Do:

l step 1. Label all instances associated with the class of Hi as positive instances and
label other instances as negative instances.

l step 2. Generalize from positive instances by using the concept hierarchy- tree (in
the half -order theory). The generalization should:

o be maximally specific to avoid over-generalization;
o be tested against negative instances.

Intermediate nodes are involved and intermediate links (IN => HN) are discovered
during the process of generalization via hierarchy (see the following example).

Step 2 proceeds as follows:

l substep 2.1. Initialize the hypothesis space H with the set of all positive instances;
i.e., each positive instance represents one hypothesis in H. For example, if hl is the
first instance of class Hi, we formulate one hypothesis in H as follows: hl => Hi.
Each hypothesis in H is associated with a degree of certainty, which is estimated
from the statistics among instances.

l substep 2.2. For each hypothesis hi in H (starting from the head of H), do the
following:

o Form set H’ by finding all hypotheses in H with the same range of degree of
certainty (+0.15) as hi (H’ excludes hi).

o For each element hj in H*, find the common maximally specific generalization
(called hk) of hi and hj. hk is plausible if it does not break the following
constraints: its associated degree of certainty is at least 0.4 and in the same
range as hi’s and it should not cover more than 10% of all negative instances.
l4 If it is plausible, then retain hk, put it in the end of H, and prune hi
from H. If no element in H’ can form a plausible generalization (without
breaking the constraints above) with hi or H* is an empty set, then output hi
as a new rule and prune it from H.

l substep 2.3. Remove redundant hypotheses from H.
l substep 2.4. Repeat substeps 2.2 and 2.3 until H is empty.

This data-driven algorithm differs from the version space approach [Mitchell 781 in that this
algorithm considers not only that there may be multiple rules for each concept but also that an
instance may be covered by several rules instead of a single rule. This technique is extended
from the technique of climbing the generalization tree, which is used in other work, such as
[Winston 701 and [Michalski 83b). However, we emphasize a concept hierarchy instead of a

value hierarchy. Moreover, uncertainty may be involved in the hierarchy.
In the following simplified example, we assume that no uncertainty is involved and that two
hypotheses are mutually exclusive. (Both assumptions can be removed.)

“%e do not cons’lder the minimal generality here because, as stated earlier, this method is applied to the set of rules
learned; therefore they are already sufficiently general.
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Example 1. Suppose there are three instances (Xl, X2, X3)
in the instance space as follows:

Xl: Ll -> Hl
X2: L2 -> Hl
X3: L3 -> H2

A simple hierarchy is given by five rules,
given two INS (M and N) in the vocabulary
and shown schematically as follows:

M N

Ll L2 L3

The following are two possible generalizations from Xl and X2:
Gl: M => Hl
62: N => Hl

62 is not justified because if it is true,
then L3 => N => Hl, contradicting X3.
Thus, the new rule is: Gl: M => Hi.

In JAUNDICE, for example, the two rules, “esophageal varices => hepatic cirrhosis” and
“ascites  => hepatic cirrhosis”, may be generalized into “portal hypertension => hepatic
cirrhosis” by using the existing knowledge, “esophageal varices => portal hypertension” and
“ascites  => portal hypertension”.

51.2 Top-Down Learning
If knowledge exists linking INS and HNs, the technique of top-down learning can be applied.
The task is formulated as follows:

Given: 1. A set of training instances.
(or a set of LN -> HN):

2. Associations from the
half-order theory linking IN and HN,
in the direction of HN => IN.

Find: Rules of the form LN => IN,
consistent with the training instances.

In order to learn rules of the form “LN => IN”, we may first, based on the available
knowledge of “HN => IN”, re-label training instances (rules) such that they have new class
names which are IN instead of HN. The algorithm used in learning “LN => HN” is then
applied to the transformed instances, and the results will be of the form “LN => IN” which is
consistent with the training instances.
In JAUNDICE, for example, three diseases “acute hepatitis”, “chronic hepatitis”, and “hepatic
cirrhosis”, can be transformed into a common intermediate pathological category,
“hepatocellular injury”, and the inference rules for “hepatocellular injury” are learned from the
same case library by the same learning method we use to learn the inference rules for each
disease.

51.3 Bidirectional Extension
This strategy combines the bottom-up and top-down methods to learn more complex
hierarchical concepts. Consider a four-level hierarchy as follows:
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LN => IN ,*ve, r => INlevele => HN

Suppose we have the knowledge of “LN <=> INlevell” and “INlevel <=> HN” (see Figure 4) and
each training instance is described by “LN -> HN”.

HN 0 0 0

IN2
I

0
\

00

0

Figure 4. Diagram of the bidirectional extension strategy. Solid links represent
existing knowledge; dotted links represent knowledge to be explored.

We can first learn “INlevel => HN” by the bottom-up method which exploits the existing
knowledge of “LN <=> INlevell”. Then we treat all links of “INlevell => HN” as another set of
training instances, and we can learn rules of the form “INlevell => INlevcllL” by the top-down
method which exploits existing knowledge of “INlevelZ <=> HN”. Thus, we obtain all
inferential knowledge “LN => INlevel => INlevel => HN” from a set of training instances by
extending the knowledge of only “LN <=> INlevell” and “INlevelZ <=> HN”. . . If we view this
learning task as a search, it actually alternates between bottom-up and top-down search.
Whether the procedure starts bottom-up or top-down does not matter if we assume the training
instances are correct and complete. In a domain with uncertainty, consider when inconsistency
occurs in the following three instances (Hl and H2 are mutually exclusive): (Ll & Hl), (Ll &
H2), and (L2 & Hl), and assume we have existing knowledge as follows: Ll => 11, L2=> 11, Hl
=> 111, and H2 => 112; then starting with the top-down method, we can first find the following
consistent intermediate knowledge: L2 => 111, whereas starting with the bottom-up method, we
find no consistent intermediate knowledge. In the current implementation, we ignore such
inconsistency.
In the example of a four-level hierarchy, we can still obtain knowledge of all levels by using
the bottom-up method alone if only the knowledge of “LN <=> INlevell” and “INlevell <=>
IN level2” is available, or by using the top-down method alone if only the knowledge of “IN,eve,2
<=> HN” and “INlevel <=> IN,eve,2” is available. Hence, it is possible to obtain even more
complex hierarchical concepts by applying these two methods sequentially, depending on the
available knowledge.
One example cited from JAUNDICE is as follows. Initially, there are three rules in the form
o f  “LN => HN”: “malaise => hepatitis**, “fatigue => hepatitis”, and “poor appetite =>
hepatitis”. These rules are generalized to the form of “INlevel => HN” by using the bottom-up
method: “constitutional symptoms => hepatitis”. This rule subsequently results in another rule
in the form of “IN,eve,l => INleve12” by using the top-down method: “constitutional symptoms
=> hepatocellular injury”.

5.2 Intermediate Concepts not in the Initial Vocabulary
Sometimes intermediate concepts are not already specified in the initial vocabulary, so it is
necessary to create and define them. The key issues are when and how to create new
intermediate concepts. Two techniques are introduced: naming taxonomy points and naming
swi tchover points.
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5.2.1 Technique of Naming Taxonomy Points
We assume there are n classes of objects or concepts in the instance space. The algorithm
proceeds as follows:

l step 1: Construct a taxonomy tree on the basis of a similarity or dissimilarity
measurement. One way of measuring dissimilarity is based on the sum of (the
absolute value) of the differences of weighted individual features” (though non-
linear functions can also be tried). First, based on domain knowledge, select some
important features and assign them weighting factors. Second, calculate the
difference between the average value of an individual feature for the given two
classes. If the feature values are not numerical, transform them into numerical
values on the basis of domain knowledge. In medicine, this is a feasible approach
because the clinical feature values can be quantized according to their clinical
severity. (However, in some domains, symbolic measurements may be necessary.
One example of clustering by a non-numerical technique is seen in [Michalski
83a].) For example, in JAUNDICE, the elevation of the serum enzyme is quantized
into 0, 1, 2 and 3, representing normal, mildly-elevated, moderately-elevated and
highly-elevated. Third, calculate the sum of the differences of weighted individual
features. Using different dissimilarity functions (i.e., using different features or
different weighting factors) may yield different results. So, it is possible to build
more than one taxonomy tree.

Example 2. Computation of dissimilarity between two diseases in a library of four cases.
The weights of the two features used are assumed equal here for simplicity.

Instancel: (GOT 2) (Alk-P 0 -> Disease A
Instance2: (GOT 3) (Alk-P 1 -> Disease A
Instance3: (GOT 1) (Alk-P 2 -> Disease B
Instance4: (GOT 2) (Alk-P -> Disease B

(where 0 - normal
1 = mildly abnormal
2= moderately abnormal
3 3 severely abnormal)

Compute as follows:

Average value for GOT:
Disease A: 2+3/2=2.5
Disease B: 1+2/2=1.5

Average value for Alk-P:
Disease A: 0+1/2=.5
Disease B: 2+2/2=2

Dissimilarity(A & B)q6255-1.5)  + (20.5)
.

Then we set up a criterion to group different classes in a common category if their
mutual dissimilarities are smaller than a certain threshold. The criterion should be
set in a way such that one class will not be grouped in two different categories. In
a taxonomy tree, the tip nodes are HN in our terminology, and each non-tip node
(excluding the root node) represents an IN.
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l step 2: Assign a symbol to every intermediate node in the taxonomy tree, and thus
create new intermediate concepts (IN) (see Figure 5).

HN: Class1 Class2 Cl ass3 Cl ass4 Cl ass5 Cl ass6

GOOOA
IN:

LN: _ Cl L2 L3

Figure 5. Suppose a simple taxonomy tree is built, the intermediate taxonomy
points are named as GOOOA and GOOOB.

l step 3: Apply the top-down method (described previously to learn the knowledge of
the form “LN => IN”.) The taxonomy tree gives us knowledge about “HN => IN”.
For example, in Figure 5, “if X is a member of class 1 then X is in category
GOOOA”.

l step 4: Learn knowledge of the form “IN => HN” which is the link from IN (or
mixed IN and LN) to HN by the following procedure:

o First’ Learn discrimination rules for different classes (HN) under the same
intermediate category (i.e., under a higher taxonomical category) after
removing all instances which do not belong to it. Thus, these rules are “local”
rules in the sense that they are only good for a certain intermediate category.
For example, in Figure 5, we may learn classification rules for class 1 and
class 2 in the category GOOOA by removing all instances that are not in the
category GOOOA. Suppose we obtain such a classification rule for class 1 as
follows:

“If an object has attribute Ll
then it belongs to class 1.”

o Second, we actually can write a more specific rule as follows:

“If an object is in category GOOOA
and has attribute Ll

then it belongs to class 1.”

The algorithm *may be applied level by level, and the results will become hierarchical; i.e., LN
=> INIeveI1 => INlevel => . . . . => HN.
In JAUNDICE, by applying this technique to 72 cases, we found five concepts (see Table 2).
Four symbols, after medical interpretation, were found to correspond to “hepatocellular injury”,
“cholestasis”, “intrahepatic jaundice”, and “extrahepatic jaundice.” (These terms were used in
rules in the hand-coded version of JAUNDICE, but this was not known to the learning
program.) A fifth term, “hemo-gilb”, was found because two diseases, “hemolysis” and
“congenital conjugation defect (e.g., Gilbert’s disease)” are similar and under the same
taxonomy point. Though clinically meaningful (corresponding to negative bilirubinuria), the
concept “hemo-gilb” bears little pathophysiological meaning.
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Symbols Medical Interpretation*

Neosyml
Neosym2
Neosym3
Neosym4
Neosym 5

Cholestasis
Extrahepatic jaundice
? Hemo-gil b
Hepatocellular injury
Intrahepatic jaundice

*The interpretation depends on the diseases (HNs)
and features (LNs) linked by the symbol. Neosym3
is the one term not already used in the rules
and its interpretation is not as medically clear
as the others.

Table 2. New symbols created by the technique of
symbolizing taxonomy points.

Note that this technique is intended to discover new intermediate concepts, but the concepts
may have already been in the vocabulary. Hence, after new symbols are created, they should be
checked to determine whether they are semantically equivalent to the old symbols? Of course,
this depends on the size of the case library, so we may want to keep redundant concepts
around for a while on the assumption that future cases may further differentiate them.

5.2.2 Technique of Naming Switchover Points
The technique of naming switchover points is motivated by the observation that intermediate
cpncepts often serve as switchover points in a reasoning network. One heuristic behind this
technique is:
HRl:  I f i) There are subsets of n LNs and m HNs, such that

ii) All n LNs have (confirming) links to fi m HNs, and
iii)31 and m>l and mn>4.

then it is worthwhile to define a common intermediate node.
This heuristic is also represented in Figure 6.

HN Hi HZ HN Hl H2

=> IN I

:LN i l L2 L3 LN Ll L2 -L3

Figure 6. Creating new intermediate nodes at switchover points.

If one set of LNs (call it set L) and one set of HNs (call it set H) satisfy this rule, then many
subsets of set L and any subset of set H can also satisfy this rule. Thus we determine that the
intermediate node be defined on the basis of the largest sets (subsets or supersets of set L and
set H) of LNs and HNs which satisfy this rule. The third condition of this heuristic is, in

%hecking for semantic equivalence must be done by hand at the moment.
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fact, the threshold of the complexity of the relationship between LN and HN for defining new
symbols. We deliberately chose this threshold because of the fact that, for a given situation
which satisfies this rule, descriptions of the inference behavior are simplified by adding a
common intermediate node while all links from LNs to HNs are maintained via the
intermediate node (i.e., no links from LN to HN are added or removed). For example, in
Figure 6, there are 6 links (LN => HN) initially and 5 links (LN => IN and IN => HN) after
introducing an intermediate node. Consider a case where there are 10 LNs and 10 HNs and
10x10=100 links initially; only 20 links are needed after introducing a common intermediate
node. But if n=l or m=l or nm=4 (e.g., n=2 and m=2), the descriptions of inference behavior
will not be simplified by adding a common intermediate node. However, the descriptions of
inference behavior may become complicated rather than simplified when so many intermediate
nodes are introduced and there are overlaps of the associated sets of LNs and HNs among
them (note that each newly defined intermediate node has one set of LNs and one set of HNs
associated with it). Though complication is worthwhile if more understandability and better
accuracy are gained, we might attempt to control the number of the newly defined intermediate
nodes (concepts) by adjusting the threshold of complexity for defining them (i.e., adjusting the
third condition of the described heuristic rule).
Creating a new intermediate node will face another problem if uncertainty is involved. For
the example shown in Figure 6, the final degree of certainty of Hl and H2 concluded from Ll,
L2 and L3 should remain approximately the same before and after introduction of
intermediate concepts. The degrees of certainty are assigned to new links in such a way as to
preserve these final degrees of certainty?
In our experiment, heuristic rule HRl is applied to a set of rules (LN => HN) which are
learned from training instances (LN -> HN), and can be applied recursively, as long as there
are plausible switchover points, to form a multi-level network. By applying this technique to
the jaundice domain, nine symbols were created, which are shown in Table 3.

Symbols Medical Interpretation*

Neosyml
Neosym2
Neosym3

Neosym4
Neosym5
Neosym6
Neosym7
Neosym 8
Neosym9

Benign hepatic pathology+
Cholestasis
Chronic liver failure
Complete biliary obstruction+
Extrahepatic jaundice
Hepatobiliary pathology
Hepatocellular injury
Inflammation+
? Liver cachexia+

*The interpretation is made by observing the involved
feature (LN) and diseases (HN).

+These  symbols are outside the initial vocabulary.
The interpretation of Neosym9 is not as clear at
that of the others.

Table 3. New symbols created by the technique
of symbolizing switchover points.

Among these nine symbols, four symbols are outside the vocabulary of the hand-coded KB and
five symbols are semantically equivalent to some old symbols. (As before, the old vocabulary
was not used except for the LNs and HNs.) It is also noticed that there is some overlap of the
results from the techniques of naming taxonomy points and naming switchover points. The

16Because  there are fewer links among concepts after introducing intermediate terms, we have fewer unknown CFs
on the LN X> IN and IN I> AN links than we had known CFs on the LN => HN links. Thus we can find
approximate solutions, but cannot always satisfy all equations with precision.



fact that most of the created symbols are medically meaningful is expected because an
intermediate symbol is created only when there is a complex but regular relationship between
LN and HN and most of these have been named in the last 2500 years of medicine.

5.3 Related Work
Related work on creating new terms includes EURISKO [Lenat 831, BACON [Langley 831, and
Utgoff’s program [Utgoff 821. The main difference is our explicit attempt to discover new
intermediate concepts to construct a reasoning hierarchy. From the viewpoint of establishing a
conceptual hierarchy, the most representative related work in AI is [Michalski 83a]. However,
it differs from our work in two important aspects. First, our work deals not only with
conceptual clustering but with finding intermediate links. Second, because each training
instance is also characterized by a high level concept besides low level descriptions, the search
for the meaningful intermediate concepts is constrained bidirectionally (from LN and from
HN) while this is not true for [Michalski 83a].
We expect the methods described here can be easily extended to non-medical domains. In
learning intermediate knowledge, we use a general concept hierarchy; and the heuristics we use
to discover intermediate knowledge are not specific to medicine.

6 Results
This section describes the application of RL to constructing a hierarchical knowledge base for
the domain of jaundice. We encoded a training set of 72 jaundice cases from the medical
literature, using 81 features and 12 disease categories. From this case library, we constructed a
knowledge base using a combination of the techniques described above.
The procedures are as follows:

l step 1. Learn the direct inference rules (LN => HN) from the given set of training
instances (the method is described in Sections 2 and 4).

l step 2. Starting from partial or no intermediate knowledge, explore the intermediate
knowledge by all methods that include bottom-up, top-down, bidirectional
extension, naming taxonomy point, and naming switchover point, as much as
possible. Two things are expected: first, some methods may not work because of
incomplete knowledge, e.g., the bottom-up method cannot be adopted when
knowledge of the form “LN <=> IN” is missing; second, the results from different
methods may be redundant. The first problem is handled simply by abandoning the
methods that can’t apply.
removing redundancy.

The second problem can be solved by checking and
The symbols created by naming taxonomy points and

naming switchover points must be interpreted before checking redundancy with old
- symbols and new symbols already created. The interpretation can be made

automatically by observing the involved LN and HN (see Tables 2 and 3). At this
stage, the knowledge base under construction has the knowledge of three types: LN
=> IN, IN => HN, and LN => HN.

l -step 3. Replace direct rules (LN => HN) by intermediate rules (LN => IN, and IN
-=> HN) if they are equivalent. By “equivalent”, we mean the same conclusion (HN)
with the same strength (degree of certainty, allowing an error of 0.15) can be
reached, given a set of low-level features (LN). For instance, in JAUNDICE, a
direct rule “negative bilirubinuria and elevated urobilinogen => hemolysis” can be
replaced by the rule “negative bilirubinuria and elevated urobilinogen =>
overproduction of bilirubin” and the rule “overproduction of bilirubin =>
hemolysis”. Note that one direct rule may be replaced by several intermediate rules.

After this procedure, the knowledge base contains hierarchical concepts, but will also contain
some simple associations of the form “LN => HN” which cannot be explained by intermediate
concepts.
The KB constructed automatically has 232 rules including 112 rules with intermediate concepts.
We then compared this new knowledge base with an old knowledge base of 141 rules, which
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was built by manually encoding medical knowledge from textbooks and journals and is also
hierarchically structured. First, we tested each knowledge base on the original 72 cases; the
diagnostic accuracy of the new vs. the old knowledge base is 97.2% vs. 84.7%. But since the
new knowledge base is based on these 72 training cases, its better performance is expected.
Therefore, we further tested the knowledge base on 68 additional cases obtained from Stanford
Medical Center. These cases received liver biopsy in 1978 and were not all diagnosable from
clinical parameters alone. The diagnostic accuracy of the new vs. old knowledge base is 72.1%
vs. 76.5%. We then removed all non-diagnosable cases among these 68 cases?’ On the 42
remaining diagnosable cases, the diagnostic accuracy is 83.3% vs. 88.1%. The result of a paired
t test shows tA.434, which indicates that there is no significant difference between results
obtained from the new KB and the old KB (see Table 4). The 5% difference in results may be
ascribed to the fact that many more cases than 72 are needed to learn rules for even a well-
circumscribed domain. Textbooks, after all, encode summaries of considerably more
experience.

Training set
for automatic
learning
(72 cases)

l e s t  s e t
(68 cases)

Test set with
clinically
diagnosable*
cases only
(42 cases)

Old KB New KB
(141 rules manually (232 rules automatically

encoded from textbooks) learned)

84.7% 97.2%

76.5% 72.1.%

08.1% 83.3%

*Among the 68 test cases, 42 cases are diagnosable clinically
(refer to text description).

Table 4. Diagnostic accuracy of automatically learned rules.

If we turn off the intermediate knowledge learner and learn only direct rules (i.e., only step 1
described above is turned on), we obtain a knowledge base of 185 (direct) rules; this knowledge
base without intermediate knowledge can save execution time to some extent if compared with
the knowledge base of 232 rules (since the average system execution time is roughly
firoportional  to the number of rules in the knowledge base), but the diagnostic accuracy tested
by the 42 diagnosable liver biopsy cases drops to 61.9% (vs. 83.3% if intermediate knowledge is
added). Here, we may notice there is a tradeoff between execution time and quality of
performance. We further notice that cases which can be diagnosed correctly by the knowledge
base with intermediate knowledge and cannot be diagnosed correctly without intermediate
knowledge are cases with incomplete data. It seems clear that intermediate knowledge can
improve the system’s predictive power particularly if only partial information is available.
Moreover, intermediate knowledge provides better understandability. For instance, the

I’By “non-diagnosable” we mean the pre-biopsy diagnosis made by the physician who sent the biopsy did not
coincide with the biopsy diagnosis. Note that not every clinical case is clinically diagnosable because a disease may be
in its incipient stage without full manifestation. Although some error may be introduced by using the diagnosis of the
attending physician as a “gold standard”, this is preferable to the bias that would have been introduced if we had
selected the cases that were not diagnosable from clinical parameters alone.
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incorporation of intermediate knowledge can explain ‘the underlying pathological and
anatomical mechanisms of jaundice and make the diagnosis more convincing. Based on the
above considerations, learning intermediate knowledge is justified and desirable in expert
systems.
We also tested RL in a non-medical domain as a check on its generality. The REFEREE
program [Haggerty 841 is an EMYCIN system designed to critique journal articles using a KB
of about 200 rules. Rules learned by RL from a case library were shown to have about the
same predictive power as the hand-coded rules (see [Fu 851 for details).

7 Conclusion
We believe a model-driven learning strategy is preferable to a data-driven strategy in rule
based systems for the following reasons.

l Completeness: The heuristics used in pruning the rule space in RL still allow
systematic search of the rule space (see Section 2.1). Intuitively, since our goal is to
discover all desirable rules, a model-driven search in the rule space (whose size is
approximately the power set of the set of all descriptors used to describe rules) will
tend to be more complete than a data-driven search in a subspace of the rule space.

l Noise immunity: Model-driven learning systems are more immune to noise than
data-driven learning systems [Dietterich 831. Because model-driven techniques are
intended to find rules that are good in a global sense (i.e., there is a global
criterion to evaluate rules), the effect of noise associated with the individual data
(e.g., false positive or false negative training instances) can be mitigated under the
assumption that the imperfect training instances are the minority.ll In contrast,
data-driven techniques handle the instances one at a time, and thus have more
difficulty with noise associated with the data. One false positive instance will force
a rule to be overly generalized while one false negative instance will force a rule to
be overly specialized.

l Multiple fines of reasoning: In EMYCIN-based systems, conclusions are reached by
combining several different rules that use different sets of features and develop
different lines of reasoning. Several simple rules are used rather than a single long
rule. For example, in JAUNDICE, the number of conjuncts  in the LHS of a rule is
restricted below seven. The combinatorics of successively generalizing from
instances, where each instance has more than seven attributes, become prohibitive
-- especially when multiple lines of inference have to be maintained.

l Efficiency: In a domain with multiple disjunctive concepts, if a model-driven
method is used, the search space will be roughly the power set of the set of all
descriptors involved. If a data-driven method is used, the search space can be

- roughly estimated from the power set of the set of all positive instances since the
system has to determine which group of instances should be hypothesized together.
If the number of descriptors is greater than the number of positive instances, it
may be more efficient to use a data-driven approach (if we ignore the

disadvantages described above). Nonetheless, in real practice, the number of
I positive instances is often greater than the number of the descriptors. Furthermore,
-the CONDENSER program can reduce the number of features during learning in
order to enhance efficiency [Fu 851.

The ultimate goal of this work is to develop a domain-independent program that can construct
a reliable knowledge base in domains where (a) multiple disjunctive rules need to be learned,
(b) case data may not be 100% reliable, (c) disconfirming rules may be of value, and (d)
intermediate concepts may be of value for accuracy and understandability. The major
contribution of this work is the method of learning intermediate-level concepts from a set of
training instances that are described only by low level features and high level concepts and not
by any intermediate concept.

?his assump tion often holds: if not, then no inductive method can learn good rules.
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The effectiveness of the RL program, as demonstrated in JAUNDICE and REFEREE, confirms
the value of the model-driven learning strategy. Although our philosophy favors finding the
most specific rules in the version space, the RL program can be modified to find the most
general rules by generalizing rules as much as possible so long as the performance is
maintained. In turn, it confirms the power of heuristic search for rule formation as also
demonstrated by Meta-DENDRAL [Buchanan 78b). However, the success of inductive methods
still rests with a reasonably good set of training instances and an adequate language.
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I. Degree of Certainty

Approaches to inexact reasoning (reasoning under uncertainty) include probabilistic methods
(e.g., Bayesian statistical approach used in [Warner 64]), fuzzy set theory [Zadeh 651, CF
model [Buchanan and Shortliffe 841, Dempster-Shafer theory ( [Shafer 761 and [Barnett 813).

Most of them have been applied to medical decision making. Another approach introduced
here, called “degree of certainty”,
and Shortliffe 841.

is a variation of the CF model used in MYCIN [Buchanan

In this work we represent uncertainty with a real number, ranging from -1 to 1, which is much
like MYCINs CF except that probability and importance of evidence are kept separate here.
Assignment of a degree of certainty to a rule in the knowledge base is based on an expert’s
estimate, which is the integration of many factors, including probabilistic knowledge and
attitude (bias). The degree of certainty is defined as follows:

degree of certainty (h, e) - P(h/e)S(h, e)

where,
h: hypothesis
8: evidence, or pattern of attributes (e,)
P(h/e): probability of h, given e
S(h, e): semantic importance (strength) of e for h

S(h, e) is a strength factor and may be viewed as a weighting factor assigned to evidence “e”
for a given hypothesis “h”. In the absence of other information, S(h, e) is proportional to the
sum of predictive values of all attributes ei in the evidence set, e. Predictive value of a single
attribute, ranging from 0 to 6, reflects statistical knowledge and importance of that attribute
for a given hypothesis.1g

For confirming evidence,

Mapping: C Predictive value(h, e,l e)S(h,

<2

1

2 3)
3 4)
4 5)
5 6)

26-

.4

.6

.8

.9

.95
1

See [Fu 851 for further details.
Degree of certainty of different pieces of evidence can be combined according to CF
combining function in MYCIN [Buchanan and Shortliffe 841 or Dempster-Shafer theory as in
[Gordon 841. Moreover, degree of certainty and CF are related in the following ways. For a

confirming evidence “e”, if P(h)-0 and we assign S(h, e)=l, then:

P(h/e) = CF(h, e) = degree of certainty(h, e)

If P(h) f 0, by properly choosing S(h, e), degree of certainty can still approximate CF. The

“The assignment of a predictive value for a pattern, based on the predictive values of individual features. is similar
to decision making in systems built in EXPERT [Kulikowski and Weiss 821, where combinations of different numbers
of major and minor criteria may yield different conclusions. Each criterion is a symptom or a sign or a laboratory
test For instance, rheumatic fever can be diagnosed with a pattern of two major criteria or a pattern of one major
plus two minor criteria.
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main feature of “degree of certainty** is the incorporation of an explicit strength factor which
can reflect an expert’s attitude toward evidence (e.g., conservative or aggressive) in a Specific
domain.
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