
March 1986 Report No. STAN-B-86- 1125
A1s.o numbered KS L-86-22

The CAOS System

bY

Kric Schoen

Department of Computer Science

Stanford University
Stanford, CA 94305

Knowledge Systems Laboratory
Report No. KSL-86-22

The CAOS System

Eric Schoen

Department of Computer Science
Stanford University
Stanford, CA 94305

March 1986

Abstract

The CAOS system is a framework designed to facilitate the development of highly concurrent real-
time signal interpretation applications. It explores the potential of multiprocessor architectures to
improve the performance of expert systems in the domain of signal interpretation.

CAOS is implemented in Lisp on a (simulated) collection of processor-memory sites, linked by a
high-speed communications subsystem. The “virtual machine” on which it depends provides remote
evaluation and packet-based message exchange between processes, using virtual circuits known as
~lnum~. To this presentation layer, CAOS adds (1) a flexible process scheduler, and (2) an object-
centered notion of ugenfs, dynamically-instantiable entities which model interpreted signal features.

This report documents the principal ideas, programming model, and implementation of CAOS.
A model of real-time signal interpretation, based on replicated uabstraction” pipelines, is presented.
For brne applications, this model offers a means by large numbers of processors may ,be utilized
without introducing synchronization-necessitated software bottlenecks.

The report concludes with a description of the performance of a large CAOS application over
various s&s of multiprocessor configurations. Lessons about probiem decomposition grain size,
global problem solving control strategy, and appropriate services provided to CAOS by the underlying
architecture are discussed.

‘

Contents

1 Introduction and Overview 3

2 An Overview of CARE 5
2.1 The CARE Programming Model . 6

3 The CAOS F’ramework 7
3.1 The Structure of CAOS Applications . 7.

3.1.1 Pipelining . 8
3.1.2 Replication . 8

3.2 AnExample.. . 9

4 Programming in the CAOS Framework 13
4.1 Declaration of agents . 13
4.2 Initialization of agents . 14
4.3 Communications Between Agents . 16

4.3.1 Sending messages. 16
4.3.2 Detecting Lost Messages . 18
4.3.3 Sending to Multiple Agents . 18

4.4 Communications Between Processes . 18
4.5 What CAOS Offem Over CARE . 18

5 The Runtime Structure of CAOS 20
5.1 General Design Principles . 29

5.1.1 Extending the Notion . 20
5.2 The CAOS Site Manager. 22
5.3 The CAOS Agent . 23
5.4 TheCAOS Process . 2 4
5.5 Flow of Control . 25

5.5.1 Input Processing 25
5.5.2 Creating Processes . 2 6
5.5.3 Requesting Remote Values . 26
5.5.4 Answer Processing . 2 6

1

5.5.5 Reawakening Suspended Processes . 26
5.5.6 Completing Computation _ 27

6 Results and Conclusions 28
6.1 Evaluating CAOS . 28

6.1.1 Expressiveness . 2 8
6 . 1 . 2 EfBciency . 2 9
6.1.3 Scalabil i ty. 2 9

6.2 Evaluating ELINT Under CAOS . 3 0
6.3 Unanswered Questions . 3 3

A Mergesort: A Simple CAOS Application 34
A.1 The rergrrort Source Code . 35

B Implementing the CAOS Framework 43
B:l General Progr amming Issues . 43
B.2 Interface toCARE . 44

B.2.1 CARE Data Structures . 44
B.2.2 CARE Functions and Macros . 45

B.3 The CAOS Support Environment . 46
B . 3 . 1 HerbLisp . 46
B.3.2 Sage.Lisp . 47
B.3.3 Datatype.Lisp and Priority-QueueLisp . 5 0

B.4 Instrumentation for CAOS . 54
B.4.1 Scrolling-Text-PaneLLisp . 54

B.5 CAOS Structures and Macros . 56
B.6 Declaring CAOS Agents . 5 9
B.? Initializing a CAOS Application . 61
B.8 The CAOS Runtime System . 6 3

Chapter 1

Introduction and Overview

This report documents the CAOS system, a portion of a recent experiment investigating the potential
of highly concurrent computing architectures to enhance the performance of expert systems. The
experiment focuses on the migration of a portion of an existing expert system application from a
sequential uniprocessor environment to a parallel multiprocessor environment.’

The application, called ELINT, is a portion of a multi-sensor information fusion system, and was
written originally in AGE[2], an expert system development tool based on the blackboard paradigm.
For the purposes of this experiment, ELINT was reimplemented in CAOS, an experimental concurrent
blackboard framework based on the explicit exchange of messages between blackboard agents.

CAOS, in turn, relies on services provided by the underlying machine environment. In the present
set of experiments, the environment is a simulation of a concurrent architecture, called CARE [5].
CARE simulates a square grid of processing nodes, each containing a Lisp evaluator, private memory,
and a communications subsystem; message-passing is the only means of interprocessor communica-
tion. .

CAOS is principally an operating system, controlling the creation, initialization, and execution
of independent computing tasks in response to messages received from other tasks. Figure 1.1
illustrates the relationship between the various software components of the experiment.

The following chapter briefly describes the salient features of the CARE environment. Chapter 3
discusses the ideas behind the CAOS framework. Chapter 4 stimmarizes the CAOS programming
environment, and Chapter 5 describe its implementation. The final chapter details the results of
our experiments. Finally, Appendix A contains a simple CAOS example, and Appendix B presents
a detailed, low-level look at the implementation of CAOS.

‘This raeardr WM supported by DARPA Contract F30602-85-C-0012, NASA Ames Contract NCC 2-22tM1, and
&kg Contrst w266875. Eric Scboen WM supported by 8 fdowship from NL Induacria.

3

I ELINT I

CAOS

CARE

HELIOS

ZETALISP

LISP MACHINE

Figure 1.1: The relaticmshi~ between ELINT, CARE, and CAOS

4

Chapter 2

An Overview of CARE

CARE is a highly-parameterized and well-instrumented multiprocessor simulation testbed, designed
to aid research in alternative parallel architectures. It runs executes within Helioe, a hierarchical,
event-driven simulator which has been described elsewhere (31.

A typical CARE architecture is a grid of processing sites, interconnected by a dedicated communi-
cations network. For example, the research discussed in this paper was performed on square arrays
of hexagonally connected processors (e.g., each processor is connected to six of its eight nearest
neighbors, excluding processors at the edges of the grid).

Each processing site consists of an eooluotor, a general-purpoee processor/memory pair, and
an openrfor, a dedicated communications and process scheduling processor which shares memory
with the evaluator. Application-level computations take place in the evaluator, a component which
ia treated as a “black box” Lisp processor. No portion of its interior is simulated; the host Lisp
machine serves as the evaluator in each processing site. The operator performs two duties. As a
communications processor, it is responsible for routing messages between processing sites. As a
scheduling processor, it queues application-level processes for execution in the evaluator (we discuss
the scheduling mechanism in greater detail below). The operator ia simulated and instrumented in
great detail.

CARE allows a number of parameters of the processor grid to be adjusted. Among these param-
eters are: the speed of the evaluator, the speed of the communications network, and the speed of
the processswitching mechanism. By altering these parameters, a single processor grid specification
can be made to simulate a wide variety of actual multiprocessor architectures. For example, we can
experiment with the optimal level-of-granularity of problem decomposition by varying the speed of
both process-switching and communications.

Finally, CARE provides detailed displays of such information as evaluator, operator, and com-
munication network utilization, and process scheduling latencies. This instrumentation package
informs developers of CARE applications of how efficiently their systems make use of the simulated
hardware.

5

2.1 The CARE Programming Model
CARE programs are made up of processes which communicate by exchanging messages. Messages
flow acroes &~NM, virtual circuits maintained by CARE. The following services are used by CAOS:

New Proce~: Creates a new process on a specified site, running a specified top-level function. A
new stream is returned, enabling the “parent” of the process to communicate with its “child.”
Pointers to the stream may be exchanged freely with other known processes on other sites.

New Stream: Creates a new stream whose target is the creating process.

Peat Packet: Sends a message across a specified stream to a remote process.

Accept Pa&et: Returns the next message waiting on a specified stream. If no message is waiting
when this operation is invoked, the invoking process is suspended and moved into the operator
to await the arrival of a message.

Memory in each processing site is private. Ordinarily, intro-memory pointers may not be ex-
changed with processes in other situ. However, any pointer may be encapsulated in a nmotc-
addreuu, and may then be included in the contents of a mesaage between sites. A remote addrew
dear not permit direct manipulation of remote structures; instead, it allows a process in one site to
produce a local copy of a structure in another site.

Scheduling on a CARE node is entirely cooperative, and is based on messagepassing. The message
exchange primitives port-packet and rccopt-packat form the basis of process scheduling. A
process wishing to block (yield control of the evaluator) does 90 by calling accept-packet to wait
for a packet to arrive on a stream. The application program’s scheduler awakens the process by
calling port-packet to send a packet to the stream. The process ia placed on the queue of processes
waiting for the evaluator, and eventually regains control. The CAOS scheduler, which we describe
in Section 5.3, ia implemented in terms of this paradigm.

Chapter 3

The CAOSfiamework

CAOS is a framework which supports the execution of multi-processor expert systems. Its design
ie predicated on the belief that future parallel architectures will emphasize limited communication
between processors rather than uniformly-shared memory. We expected such an architecture would
favor coarsqrained problem decomposition, with little or no synchronization between processors.
CAOS is intended for use in real-time data interpretation applications, such as continuous speech
recognition, passive radar and sonar interpretation, etc [7,11].

A CAOS application consists of a collection of communicating agcnfq each responding to a number
of application-dependent, predeclared messages. An agent retains long-term local state. Further-
more, an arbitrary number of processes may be active at any one time in a single agent.

Whereas the uniprocessor blackboard paradigm usually implies pattern-directed, demon-
triggered knowledge source activation, CAOS requires explicit messaging between agents; the costs
of automatically communicating changes in the blackboard state, as required by the traditional
blackboard mechanism, could be prohibitively expensive in the distributed-memory multiprocessor
environment. Thus, CAOS is designed to express parallelism at a very coarse grain-size, at the
level of knowledge source invocation in a traditional uniprocessor blackboard system. It supports
no mechanism for finer-grained concurrency, such as within the execution of agent processes, but
neither does it rule it out. For example, we could easily imagine the methoda which implement the
mesaages being written in QLisp [8], a concurrent dialect of Common Lisp.

3.1 The Structure of CAOS Applications
A CAOS application is structured to achieve high degrees of concurrency in two principal manners:
pipelining and replication. Pipelining is most appropriate for representing the flow of information
between levels of abstraction in ti interpretation system; replication provides means by which the
interpretation system can cope with arbitrarily high data rates.

3.1.1 Pipelining
Pipelining is a common means of parallelizing tasks through a decomposition into a linear sequence
of independent stages. Each stage is assigned to a separate processing unit, which receives the
output from the previous stage and provides input to the next stage. Optimally, when the pipeline
reaches a steady-state, each of its processors is busy performing its assigned stage of the overall
task.

CAOS promotes the use of pipelines to partition an interpretation task into a sequence of inter-
pretation stages, where each stage of the interpretation is performed by a separate agent. As data
enters one agent in the pipeline, it is processed, and the results are sent to the next agent. The data
input to each successive stage represents a higher level of abstraction.

Advantages of Pipelining

Sequential decomposition of a large task is frequently very natural. Structures as disparate as
manufacturing assembly lines and the arithmetic processors of high-speed computing systems are
frequently based on this paradigm.

Pipelining provides a mechanism whereby concurrency is obtained without duplication of mech-
anism (that is, machinery, processing hardware, knowledge, etc). In an optimal pipeline of n prc+
ceasing elements, element 1 is performing work on task t + n - 1 when element 2 is working on task
t + n - 2, and so on, such that element n is working on task t. As a result, the throughput of the
pipeline is n times the throughput of a single processing element in the pipeline.

In the case of CAOS applications, the individual agents which compoee an interpretation
‘pipeline” are themselves simple, but the overall combination of agents may be quite complex.

Disadvantages of Pipelining

Unfortunately, it is often the case that a task cannot be decomposed into a simple linear sequence
of subtasks. Some stage of the sequence may depend not only on the results of its immediate
predecessor, but also on the results of more distant predecesson, or worse, some distant successor
(e.g., in feedback loops). An equally disadvantageous decomposition is one in which some of the
processing stages take substantially more time than others. The effect of either of these conditions
is to cause the pipeline to be used less efficiently. Both these conditions may cause some processing
stages to be busier than others; in the worst case, some stages may be so busy that other stages
receive no work at all. As a result, the n-element pipeline achieves less than an n-times increase in
throughput. We discuss a possible remedy for this situation in the following section.

3.1.2 Replication
Concurrency gained.through replication is ideally orthogonal to concurrency gained through pipelin-
ing. Any size processing structure, from individual processing elements to entire pipelines. is a
candidate for replication. Consider a task which must be performed on average in time t, and a
processing structure which is able to perform the task in time T, where T > t. If this task were
actually a single stage in a larger pipeline, this stage would then be a bottleneck in the throughput of
the pipeline. However, if the single processing structure which performed the task were replaced by

T/t copies of the same processing structure, the effective time to perform the task would approach
t, as required.

Advantages of Replication

The advantages of replicating processing structure to improve throughput should be clear; n times
the throughput of a single processing structure is achieved with n times the mechanism. Replication
is more costly than pipelining, but it apparently avoids problems zssociated with developing a
pipelined decomposition of a task.

Disadvantages of Replication

Our works leads us to believe that such replicated computing structures are feasible, but not with-
out drawbacks. Just as performance gains in pipelines are impacted by inter-stage dependencies,
performance gains in replicated structures are impacted by inter-structure dependencies.

Consider a system composed of a number of copies of a single pipeline. Further, assume the
actions of a particular stage in the pipeline affects each copy of itself in the other pipelines. In an
expert system, for example, a number of independent pieces of evidence may cause the system to
draw the same conclusion; the system designer may require that when a conclusion ia arrived at inde-
pendently by different means, some measure of confidence in the conclusion is increased accordingly.
If the inference mechanism which produces these conclusions is realized aa concurrently-operating
copies of a single inference engine, the individual inference engines will have to communicate between
themaelvea to avoid producing multiple copies of the same conclusions. A stringent consistency re-
quirement between copies of a processing structure decreases the throughput of the entire system,
since a portion of the system’s work is dedicated to inter-system communication.

3.2 An Example
We cloa this chapter by describing the organization of ELINT, illustrating the benefits and drawbacks
of the CAOS framework applied to this problem. ELINT is an expert system whose domain is the
interpretation of passively-observed radar emissions. Its goal is to correlate a large number of radar
observations into a smaller number of individual signal emitters, and then to correlate those emitters
into a yet smaller number of clusters of emitters. ELINT is meant to operate in real time; emitters
and clusters appear and disappear during the lifetime of an ELINT run. The basic flow of information
in ELINT is through a pipeline of the various agent types, which we now describe in detail.

0 bservation Reader

The observation reader is an artificat of the simulation environment in which ELINT runs. Its purpose
i.a to feed radar observations into the system. The reader is driven off a clock; at each tick (1 ELINT
“time unit”), it supplies all observations for the associated time interval to the proper observation
handlers. This behavior is similar to that of a radar collection site in an actual ELINT setting.

9

0 bservat ion Handler

The observation handlers accept radar observations from associated radar collection sites (in the
simulated system, the observations come from the observation reader agent). There may be a large
number of observation handlers associated with each collection site. The collection site chooses to
which of its many observation handlers to pass an observation, based on some scheduling criteria
such ss random choice or round-robin.

Each observation contains an externally-assigned number to distinguish the source of the obser-
vation from other known sources (the observation id is usually, but not always, correct). In addition,
each observation contains information about the observed radar signal, such ss its quality, strength,
line-of-bearing, and operating mode. The observation does nof contain information regarding the
so&cc’s speed, ftight path, and distance; ELINT will attempt to determine this information as it
monitors the behavior of each source over time.

When an observation handler receives an observation, it checks the observation’s id to see if it
already knows about the emitter. If it does, it passes the observation to the appropriate emitter
agent which represents the observation’s source. If the observation handler does not know about the
emitter, it asks an emitter manager to create a new emitter agent, and then passes the observation
to that new agent.

Emitter Manager

There may be many emitter managers in the system. An emitter manager’s task is to accept
requests to create emitters with specified id numbers. If there is no such emitter in existence when
the request ia received, the manager will create one and return its “address” to the requesting
observation handler. It there is such an emitter in existence when the request is received, the
manager will simply return its address to the requestor. This situation arim when one observation
handler requests an emitter than another observation handler had previously requested.

The reason for the emitter manager’s existence is to reduce the amount of inter-pipeline do
pendency with respect to the creation of emitters. When ELINT creates an emitter, it is similar
to a typical expert system’s drawing a conclusion about some evidence; sa discussed above, ELINT
must create ib emitters in such a way that the individual observation handlers do not end up each
creating copies of the same emitter. Consider the following strategies the observation handlers could
use to create new emitters:

1. The handlers could create the emitters themselves immediately. Since the collection site
may pass observations with the same id to each observation handler, it is possible for each
observation handler to create its own copy of the same emitter. We reject this method.

2. The handlers could create the emitters themselves, but inform the other handlers that they’ve
done this. This scheme breaks down when two handlers try simultaneously to create the same
emitter.

3. The handlers could rely on a single emitter manager agent to create all emitters. While this
approach is safe from a consistency standpoint, it is likely to be impractical, as the single
emitter manager could become a bottleneck in the interpretation.

10

4. The handlers could send requests to one of many emitter managers, chosen by some arbitrary
method. This idea is nearly correct, but does not rule out the possibility of two emitter
managers each receiving creation requests for the same emitter.

5. The handlers could send requests to one of many emitter managers, chosen through some
algorithm which is invariant with respect to the observation id. This is in fact the algorithm
in use in ELINT . The algorithm for choosing which emitter manager to use is based on a
many-to-one mapping of observation id’s to emitter managers.’

Emitters

Emitters hold some state and history regarding observations of the sources they represent. As each
new observation is received, it is added to a list of new observations. On a regular basis, the list
of new observations is scanned for interesting information. In particular, after enough observations
arc received, the emitter may be able to determine its heading, speed, and location. The first time
it is able to determine this information, it asks a cluster manager to either mutch the emitter to
an old cluster or create a new cluster to hold the single emitter. Subsequently, it sends an update
message to the cluster to which it belongs, indicating its current course, speed, and location.

Emitters maintain a qualitative confidence level of their own existence (posstblc, probable, and
positive). If new observations are received often enough, the emitter will increase its confidence level
until it reaches poaitiue. If an observation is not received in the expected time interval, the emitter
lowers its confidence by one step. If the confidence falls below possible, the emitter “deletes” itself,
informing its manager, and any cluster to which it is attached.

Cluster Managers

The cluster managers play much the same role in the creation of cluster agents as the emitter
managers play in the creation of emitters. However, it is not possible to compute an invariant to
be used as a many-to-one mapping between emitters. If ELINT were to employ multiple cluster
managers, the best strategy for choosing which of the many managers would still result in the
possible creation of multiple instances of the “same” cluster. Thus, we have chosen to run ELINT
with a single cluster manager. Fortunately, cluster creation is a rare event, and the single cluster
manager has never been a processing bottleneck.

As indicated above, requests from emitters to create clusters are specified as match requests
over the extant clusters. Emitters are matched to clusters on the basis of their location, speed, and
heading. However, the cluster manager does not itself perform this matching operation. Although it
knows about the existence of each cluster it has created, it does not know if the cluster has changed
course, speed, and/or direction since it was originally created. Thus, the cluster manager asks each
of its clusters to perform a match.

If either none of the clusters responds with a positive match, a new cluster is created for the
emitter; if one cluster responds positively, the emitter is added to the cluster, and is so informed of
this fact; if more than one cluster responds positively, an error (or a mid-air collision) must have
occured.

‘The aAg0rith.m computes
a particuisr manager.

the observation id module the number of emitter managen, and maw that number to

11

Clusters

The radar emissions of clusters of emitters often indicates the actual behavior of the cluster. Cluster
agents, therefore, apply heuristics about radar signals to determine whether the behaviors of the
clusters they represent are threatening or not. This information, along with the course parameters
of each radar source, is the uoutputn of the ELINT system. A cluster will delete itself if ail constituent
emitters have been deleted.

12

Chapter 4

Programminginthe CAOS
Framework

CAOS is package of functions on top of Lisp. These functions are partitioned into three major classes:.

l Those which declare agents.

l Those which initialize agents.

l Those which support communication between agents.

We now describe the CAOS operators for each of these classes.

4.1 Declaration of agents
Agents are declared within an inheritance network. Each agent inherits the characteristics of its
(multiple) parents. The simplest agent, vanilla-agent, contains the minimal characteristics re-
quired of a functional CAOS agent. All other CAOS agents reference vanilla-agent either directly or
indirectly. Another predeclared agent, process-agenda-agent, is built on top of vanilla-agent,
and contains a priority mechanism for scheduling the execution of messages.

Application agents are declared by augmenting the following characteristics of the base or other
ancestral agents:

Local Variables: An agent may refer freely to any variable declared local. In addition, each local
variable may be declared with an initial value.

$fessages: The oniy messages to which an agent may respond are those declared in this table. This
simplifies the task of a resource allocator, which must load application code onto each CARE
site.

13

(dofagent agent-name (parent1 . . . pannt,)
(10cll~~8 uarioblel - - - variable,)
(marrage message1 - - - message,)
(8~bolically-rof oreaced-agents ogcnt! . . - agent,))

Figure 4.1: The basic form of dof agent

S~boljcslly Referenced Agents: Some agents exist throughout a CAOS run. We call such agents
sfatic, and we allow code in agent message handlers to reference such agents by name. Before
an agent begins running, each symbolic reference is resolved by the CAOS runtimes.

There are a number of additional characteristics; most of these are used by CAOS internally, and
we will document these in the next chapter.

The basic form for declaring a CAOS agent is def agent. It has the form illustrated by Figure 4.1.
The tit element in each sublist is a keyword; there are a number of defined keywords, and their
use in an agent declaration is strictly optional. An agent inherits the union of the keyword values of
ita parents for any unspecified keyword. Of those keywords which um specified, some are combined
with the union of the keyword valuer of the agent’s parents, and others supersede the values in the
parenb. Figure 4.2 contains the declaration of the emitter agent, one of the most complex examples
in ELXNT.

As we disc- in the next chapter, dof agent forms are translated by CAOS into Flavors doff lavor
forms [4]. CAOS messages are then defined using the dofnothod function of ZETALISP. These methods
are free to reference the local variable declared in the defagont expression.

4.2 Initialization of agents
The initial CAOS configuration is specified by the caor-initialize operator, which takes the form
illustrated by figure 4.3; for example, figure 4.4 is ELINT'S initialization form.

The first portion of the form creates the static agents. In figure 4.4, a static agent named l I-
gotcha-handlu-1, an instance of the class l l-obrervatioa-handler, is created on the CARE site
at coordinates (1,2) in the processor grid.

The second portion of the form ia a list of LISP expressions to be evaluated sequentially when
CAOS’~~ initialization phase is complete. Each expression is intended to send a message to one of the
static agents declared in the tt part of the form. These messages serve to initialize the application;
in figure 4.4, the initialization messages open log files and start the processing of ELINT observations.

Agents may also be created dynamically. The croato-agent-inrtanco function accepts an
WIagent class name and a location specification, the romoto-addroar of the newly-created agent

is returned. While dynamically created agents may nol be referenced symbolically, their remote-
address’s may be exchanged freely.

‘Currently, agenu may be created at or near rpecified CARE rites. CAOS makes no attempt at dynumk 14
balJmcing.

14

(d&agent el-emitter (process-agenda-agent)
(localvara

(procaaa-agenda '(al-undo-collection~id~a~or
al-change-cluster-association
l l-emitter-update-on-time-tick
l l-initialize-emitter
l l-update-emitter-from-observation))

(last-observed -1000000)
(cluster-manager Jcluater-manager-O)
manager
id
tw
obaorred
fixer
last-hording
lut-mod.
coafidonco
cluator
new-observations-since-time-tick-flag
id-•rrorr
gc-flag)

(~0868gSS
l l-updato-emitter-from-obaemation
al-initialize-emitter
l l-chaago-cluster-association
l l-undo-collection-id-uxor)

(r~bolicllly-refer~c~-Santa
l l-collection-r0port.r~
l l-correlation-repotier-0
l l-threat-reporter-0
l l-cluster-manager-O
l l-cluator-manager-l
l l-clueor-manager-2
l l-big-ear-handler
el-gotcha-handler
l l-omittor-trace-reportor-0))

Figure 4.2: The l mittor agent

15

(c a o a - i n i t i a l i z e
((agent - name1 agent - class stte - address)

. . . >
initial
. . . >I

message

Figure 4.3: The basic CABS initialization form

4.3 Communications Between Agents
Agents communicate with each other by exchanging messages. CAOS does not guarantee that mes-
sages reach their destinations: due to excessive message traffic or processing eiement failure, mea-
sages may be delayed or lost during routing. It is the responsibility of the application program to
detect and recover from lost messages. Commensurate with the facilities provided by CARE, mes-
sages may be tagged with routing priorities; however, higher priority messages are not guaranteed
to arrive before lower-priority messages sent concurrently.

Two classes of messages are defined: those which return values (called value-desired messages),
and those which do not (called side-e#ecf messages). The value-desired-messages are made to return
their values to a special cell called a future. Processes attempting to access the value of a future are
blocked until that future has had its value set. It is possible for the value of a future to be set more
than once, and it is possible for there to be multiple processes awaiting a future’s value to be set.2

4.3.1 Sending messages
The CARE primitive post-packet, which sends a packet from one process to another, is employed
in CAOS to produce three basic kinds of message sending operations:

post: The post operator sends a side-effect message to an agent. The sending process supplies
the name or pointer to the target agent, the message routing priority, the message name and
arguments. The sender continues executing while the message is delivered to the target agent.

post-future : The post-future operator sends a valut-desired message to the target agent. The
sending process supplies the same parameten as for $oat, and is returned a pointer to the
future which will eventually by set by the target agent. As for post, the sender continues
executing while the message is being delivered and executed remotely.

A process may later check the state of the future with the foturo-•atiaf ied? operator, or
access the future’s value with the value-future operator, which will block the process until
the future has a value.

post-value: The post-value operator is similar to the post-future operator; however, the send-
ing process is delayed until the target agent haa returned a value. post-value is defined 1x1
terms of post-future and value-future.

2FwureswendsousedinQ Lisp and Multilisp [9]. The HEP Supercmputa (61 implemented a simple version of
futurea 4u a proctrr syncbronizatioa mechanirm.

16

(caoa-init ialize
((al-observation-reader-0 el-observation-reader (2 2))
(al-big-ear-handler-1 al-observation-handler (1 1))
(el-big-ear-handler-2 el-observation-handler (1 1))
(ol-gotcha-handler-l al-observation-handler (1 2))
(el-gotcha-haudl or-2 rl-observation-handler (1 2))
,(ol-emitter-manager-O el-emitter-manager (2 1))
(el-emitter-manager-1 el-emitter-manager (2 2))
(010collection-rapofler-0 l l-collection-reporter (1 2))
(ol-correlation-reporter-0 al-correlation-reportor (1 3))
(al-throat-roportor-0 al-threat-reporter (1 3))
(el-uittar-trace-reptier- l l-emitter-trace-repofier

(3 2))
(010cluator-trace-reporter-0 al-cluster-trace-reporter

(3 1))
(ol-clwtor-manager-0 l l-cluster-manager (2 1)))
((post l l-obrorvation-roador- nil

'ol-open-obaorration-f ile
*dint-data-f ilo+)

(p o st l l-collection-reporter-0 nil
Dol-initi81izo-rqxxter t
"01int:r0port8;c011~cti0n8.0utput~~)

(post l l-correlation-roportor-0 nil
Jol-iaitializa-raporte~ t
"01int:r0port8;c0rr01ati0n8.0utput")

(post l l-throat-roport0r-O nil
'ol-initialize-roportor t
"olint:reporta;throata.output'@)

(post l l-emitter-trace-reporter-0 nil
'~itialize-trace-robber t
"01int:r0port8;amitt0r.trace8")

(post l l-cluatar-trace-reportor- nil
‘initialize-trace-reporter t
"a1int:r0port8;c1u8t0r.trac08")))

Figure 4.4: The initialization declaration for ELINT.

17

4.3.2 Detecting Lost Messages
It is poesible to detect the 1~ of value-desired messages by attaching a timeout to the associated
future. The functions post-clocked-future and post-clocked-value are similar to their untimed
counterparts, but allow the caller to specify a timeout and timeout action to be performed if the
future is not set within the timeout period. Typical actions include setting the future’s value with
a default value, or resending the original message using the report operator.

4.3.3 Sending to Multiple Agents
There exist versions of the basic posting operators which allow the same message to be sent to
multiple agents. 3 mtaltipqat sends a side effect message to a list of agents; multipost-future and
mltipoat-vtiuo send a valued&red message to a list of agents. In the latter case, the associated
future is actually a list of futures; the future is not considered set until all target agents have
responded. The value of such a message is an association-list; each entry in the list is composed of
an agent name or rmoto-rddroaa and the returned message value from that agent. There exist
clocked versions of these functions (called, naturally, multipost-clocked-future and multipoat-
clockd-value) to aid in detecting lost multicast messages.

4.4 Communications Between Processes
Processes in each agent communicate using the shared local variables declared in the agent. Be-
sides sharing previously computed results this way, processes may also share the results of ongoing
computations.

Consider the following scenario: within an agent, some process is currently computing some
answer. At the same time, another process begins executing, and realizea somehow that the answer
it necdb to compute is the same answer the other process is dready computing. The second process
could take one of two actions: it could continue computing the answer, even though this would
mean redundant work, ok it could wait for the first process to complete, and return its answer. The
second approach is feasible, but it does tie up resources in the form of an idle process.

The CAOS operators attach and my-handlo offer a third alternative solution. If a process
knows it may ultimately produce an answer n&cd by more than one requesting agent, it obtains
its “handle” (Section 5.4) by calling my-handlo, and places it in a table for other processes to
reference. Any other process wishing to return the same answer as the first calls attach, with the
first process’s handle as argument. The first process returns its answer to all requesting agents
waiting for answers from the other processes, and the other processes return no value at all.

4.5 What CAOS Offers Over CARE
CAOS is a large system. It is reasonable to ask what advantages there are to programming in CAOS

as opposed to programming in CARE. We believe there are three major advantages:

3 Neither CA0s nor CARE currently support a predicated mrllicarl mode, wherein mesaages would sent to all
went8 mtirfying a particular predbte; message8 ChLl Only be sent to a fully-Swfied ligt Of agenta.

10

Clarity: The framework in which an agent is declared makes explicit its storage requirements and
functional behavior. In addition, the agent concept is a helpful abstraction at which to view ac-
tivity in a multiprocessing software architecture. The concept lets us partition a flat collection
of processes on a site into groups of processes attached to agents on a site. CAOS guarantees
the only interaction between processes attached to different agents is by message-passing.

Convenience: The programmer is freed from interfacing to CARE’S low-level communications prim-
itives. As we said earlier, CAOS is basically an operating system, and as such, it shields the
programmer from the same class of details a conventional operating system does in a conven-
tional hardware environment.

Fletibility: Currently, CARE schedules processes in a strict first-in, first-out manner. CAOS, on the
other hand, can implement arbitrary scheduling policies (though at a substantial performance
cost; we discuss this in Chapter 6).

19

Chapter 5

The Runtime Structure of CAOS

CAOS is structured around three principal levels: site, agent, and process. Two of these levels-site
and process-reflect the organization of CARE; the remaining (agent) level is. an artifact of CAOS.
We discuss first the general design principles underlying CAOS, and then describe in greater detail
the functions and structure of each of CAOS'S levels. Appendix B offers a complete guide to the
algorithms and data structures employed in CAOS.

5.1 General Design Principles
The implementation of CAOS described in this paper is written in ZETALISP, a dialect of Lisp which
runs on a number of commercially available single-user Lisp workstations. ZETALISP includes an
object-oriented programming tool, called Flavors, which has proved to be a very powerful facility
for structuring large Lisp applications.

In Flavors, the behavior of an object is described by templates known as clus~cs. An insiancc,
a representation of an individual object, is created by instantiating a class. Instances respond to
messages defined by their class, and contain static local storage in the form of instance vanablcs.
Classes are defined within an inheritance network; each instance contains the instance variables and
responds to the messages defined in its class, as well as those of the classes from which its cl=
inherits.

An appropriate usage for Flavors is the modelling of the behavior of objects in some (not nec-
essarily real) world. For example, CAOS site and agents structures are realized as Flavors instances.
The characteristics to be modelled are codified in instance variabh and message names. In a well-
&signed application, messages and variables are consistently named; thus, the implementation of a
particular behavior is totally encapsulated in the anonymous function which responds to a message.

5.1.1 Extending the Notion
In some sense, a Flavors instance is an abstract data type. The instance holds state, and provides
advertised, public interfaces (messages) to functions which change or access its state. The internal
data representation and implementations of the access functions are private.

20

In Flavors, the abstract data type notion is unavailable within an individual instance. Frequently,
the individual instance variables hold complex structures (such as dictionaries and priority queues)
which ought to be treated as abstract data types, but there exist no common means within the
standard Flavors mechanism for doing so.

CAOS, however, supports such a mechanism, by providing a means of sending messages to instance
variables (rather than to the instances themselves). The instance variables are thus able to store
anonymous structures, which are initialized, modified, and accessed through messages sent to the
variable. Similar mechanisms exist in the Unit Package [14] and in the STROBE system [13], both
frameworks for representing structured knowledge.

The CAOS environment includes a number of abstract data types which were found to be useful
in supporting its own implementation. The most commonly used are:

Dictionary: The dictionary is an association list. It responds to put, get, add, forget, and ini-
tialize messages.

Sorted Dichonary: The sorted-dictionary is also implemented as an association list, and responds
to the same messages as does the standard dictionary. However, the sorted-dictionary invokes
a user-supplied priority function to merge new items into the dictionary (higher-priority items
appear nearer the front of the dictionary). This dictionary is able to respond to the greatest
message, which returns the entry with the highest priority, and to the next message, which
returns the entry with the next-highest priority IM compared to a given entry.

The sorted-dictionary is used primarily to hold time-indexed data which may be collected
out-of-order (e.g. when data for time n + 1 may arrive before data for time n).

Hash Dictionary: The hash-dictionary is implemented with a hash table, and responds to the same
messages as the unsorted association list dictionary.

Queue: The queue data type is a conventional first-in, first-out storage structure. The put message
enqueues an item on the tail of the queue, while the get message dequeues an item from the
head of the queue.

Priorjty Queue: The priority-queue data type supports a dynamic heapsort, and is implemented as a
partially-ordered binary tree. It responds to put, get, and initialize messages. Associated
with the queue is a function which computes and compares the priority of two arbitrary queue
elements; this function drives the rebalancing of the binary tree when elements are added or
deleted.

-Monitor: A monitor provides mutual exclusion within a dynamically-scoped block of Lisp code. It
is similar in implementation to the monitors of Interlisp-D and Mesa (lo].

If the monitor is unlocked, the obtain-lock message stores the caller’s process id as the
monitor’s owner, and marks the monitor as locked; otherwise, if the monitor is locked, the
obtain-lock message places the caller’s process id on the tail of the monitor’s waiting queue,
and suspends the calling process.

The release-lock message removes the process id from the head of the monitor’s waiting
queue, marks the monitor’s owner to be that id, and reschedules the associated process.

21

Monitors are normally accessed using the with-monitor form, which accepts the name of
an instance variable containing a monitor, and which cannot be entered until the calling
process obtains ownership of the monitor. The with-monitor form guarantees ownership of
the monitor will-be relinquished when the calling process leaves the scope of the form, even if
an error occurs.

5.2 The CAOS Site Manager
The site manager consists of a Flavors instance containing information global to the site-information
needed by all agents located on the site. In addition, the site manager includes a CARE-k+Vd
process which performs the functions of creating new agents and translating agent names into agent
addresses, as described below.

The following instance variables are part of the site manager:

iacoriag-stream: This instance variable contains the CARE input stream address on which the site
manager process listens for requests. Agents needing to send messages to their site manager
may reference this instance variable in order to discover the address to which to direct site
rt?CpMS.

static-agent-stream-tablo: This instance variable is a dictionary which maps agent names into
the CARE streams which may be used to communicate with the agents. The entries in this
dictionary reflect statically-created agents; new entries are added as the result of now-initial-
agoat-online messages directed to the site (see below). The dictionary is used to resolve agent
namotc+address requests from agents created locally.

uarorolvod-agent-stream-tablo: The site manager kcepr track of agent names it is not able to
translate to addruses by placing unsatisfiable requert-rynbolic-rof erence requests in this
dictionary. The keys of the dictionary are unresolvable agent names. As the agent names
become resolvable, the unsatisfied requests are satisfied, and the corresponding entries are
removed from the dictionary.

After the initialization phase of a CAOS application has completed, there will be no entria in
this dictionary in any of the sites.

local-agentr: This instance variable is a dictionary whose keys are the names of agents located
on the site, and whoa values are pointers to the Flavors instances which represent each agent.
locaL-agents is used only for debugging and status-reporting purposes.

fro.-procor8-queuo: When a CARE process which was created to service a request finishes its
work, it tries to perform another task for the agent in which it was created. If the agent
has no work to do, the process suspends itself, after enqueuing identifyin’g information in this
instance variable, which holds a queue abstract data type. When any agent on the same
site needs a new process to service some request, it checks this queue first; if there are any
suspended (free) processes waiting in this queue, it dequeues one and gives it a task to perform.
If this queue is empty, the agent asks CARE to create a new process.

22

The site manager responds to the following messages:

new-initial-agent-onl~e: As each static agent starts running during initialization of a CAOS
run, it broadcasts its name and CARE input stream to every site in the system, using this
message. The correspondence between the sending agent’s name and address is placed in
the static-agent-stream-table dictionary for future reference by agents located on the
receiving sites. If any agents have placed requests for this new agent in the unresolved-
agent-stream-table, messages containing the new agent’s name and address are sent to the
waiting agents.

request-symbolic-ref oronce: Whenever a static agent is created, it runs an initialization func-
tion, which among other t=ks, caches needed agent name-to-address translations. For each
translation, the agent sends this message to its site manager. If the site manager can resolve
the name upon receipt of the message, it responds immediately; otherwise, it queues the re-
quest in the unresolved-agent-stream-table, and defers answering until it is able to satisfy
the request. The requesting agents waits until it has received the answer before requesting
another translation.

make-now-agent: This message is sent to a site to cause a new agent to be created during the
course of a CAOS run. The site manager creaks the new (dynamic) agent and returns the
agent’s input stream to the sender of this message. The newly-created agent is not placed
in the static-agent-stream-table; thus, the oniy way to advertise the existence of such a
dynamically-created agent is by the creator of an agent passing the returned input stream to
other agents.

5.3 The CAOS Agent
As discussed above, CAOS agents are implemented aa Flavors instances. Their class definitions
are defined by transiating defagent expressions into defflavor expressions. CAOS itself defines
two basic agent classes: vanilla-agent and procerr-agenda-agent. vanilla-agent defines the
minimal agent; procerr-agenda-agent is defined in terms of vanilla-agent, but adds the ability
to assign priorities to messages. ’ These basic agents are fully-functional, but lack domain-specific
“knowledge,” and cannot be used directly in problem solving applications.

As stated in the previous chapter, a CAOS agent is a multiple-process entity. Most of these
processes are in created in the course of problem-solving activity; we refer to these a8 user processes.
At runtime, however, there are dways two special processes associated with each CAOS agent. One
of these processes monitors the CARE stream by which the agent is known to other agents. The
other participates in the scheduling of user processes. We shall refer to the first of these processes
as the agent input moniior, and to the second of these processes as the agent scheduler. We explain
in detail the functioning of these two processes in the next section.

We describe here the role of important instance variables in a basic CAOS agent:

‘Th.ir ir important for spplications in which one agent must respond rapidly to a poeting from another agent.
Assigning a message a high priority will came that m-e to be procd ahead of any other messages with lower
priorities

2 3

self-address : This instance variable is an analogue of Flavors’ self variable. Whereas self is
bound to the Flavors instance under which a message is executing, self-address is bound to
the stream of the agent under which a CAOS message is executing. Thus, an agent can post a
message to itself by posting the message to self-address.

runnable-process-stream: This instance variable points to the stream on which the scheduler
process listens. Processes which need to inform the scheduler of various conditions do so by
sending CARE-level messages to this stream.

running-proceaaea: This variable holds the list of user processes which are currently executing
within the agent. The current CARE architecture supports only a single evaluator on each site.
CAOS tries to keep a number of user processes ready to execute at all times; thus, the single
CPU is kept as busy as possible.

nxanabla-process-list: A priority queue containing the runnable user procc3ses. As a process is
entered on the queue, its priority is calculated to determine its ranking in the partial ordering.
There are two available priority evaluation functions: the first computes the priority based
soiely on the time the process entered the system; the second considers the assigned priority of
the executing message before considering the entry time of the process. These two functions
are used to implement the scheduling algorithms of the vanilla-agont and the proceaa-
agond8-agent, respectively.

l choduler-lock: The scheduler data structures are subject to modification by any number of
processes concurrently. The scheduler-lock is a monitor which provides mutual exclusion
against simultaneous access to the scheduler database.

5.4 The CABS Process
In this section, we describe the mechanism by which CAOS user processes are scheduled for execution
on CARE sites. User processes are created in response to messages from other agents. Associated
with each user process is a data structure called a runnable-item. The runnable-item contains
the following fields:

mossage-name;arga;id;answer-targets. l These fields store the information necessary to han-
dle a message request and send the resulting answer back to the proper agents.

for-effect: This field is a boolean, and indicates whether the message is being executed for effect
or value. This corresponds directly to the source of the message coming from a post operation
or a post-future operation.

state: This field indicates the state of the process. The possible states that a process may enter,
and the finite state machine which defines the state transition are discussed in the next section.

context: This field contains a pointer to the CARE stream upon which the process waits when it
not runnable. A process (such as the scheduler) wishing to wake another process simply sends
a message to this stream. The suspended process will thus be awakened (by CARE).

2 4

t ime-stamp: This field contains the time at which the process entered
the functions which calculate the execution priority of processes.

the system. It is used by

The CAOS scheduler’s only handle on a process is the process’s runnabla-item. In fact, the
only communication between a user process and the CAOS scheduler consists of the exchange of
runnable-item’s.

5.5 Flow of Control
In the following, we detail how a user process, the CAOS input monitor, and the CAOS scheduler
interact to process a message request from a remote agent. For purposes of exposition, we assume
the following sequence of events:

1. An agent, agent-l, executes a post
for the message named message-a.

operation, with agent-2 as the target. The posting is

2. agent-2 receives and executes the posting. In orderto complete the
it must perform a post-value operation to a third agent, agent -3.

execution of message-a,

We begin at the point where agent-l has performed its post operation.

5.5.1 Input Processing
The input monitor process handles requests and responses from remote agents. When the message
from agent-l enters agent-& its input monitor creates a new nuurable-item to hold the state of
the request. The message name, arguments, id, and answer targets are copied from the incoming
message into the rannable-item. The runnable-item’s state is set to never-m, and its time
stamp is set to the current time. In order to queue the message for execution, the input monitor
takes one of two actions.

Lf the agent’s mumable-process-list is empty, the -able-item is sent in a message to
the agent scheduler process (by sending the item in a message to the stream whose address is
found in the agent’s rannable-process-stream instance variable). When the agent’s runnable-
process-list is empty, the scheduler process is guaranteed to be waiting for messages sent to
the scheduler stream, and hence, will be awakened by the message sent from the input monitor.
The scheduler then computes the priority of the message, and places the runnable-item in its
rannablr-process-list.

If the agent’s rannable-process-list is nof empty, the input monitor computes the message’s
priority and places the raPnable-iten on the runnable-process-list itself. When the queue is
not empty, it is guaranteed that the scheduler will examine the queue sometime in the future to
make scheduling decisions; thus, it is not necessary to send any messages to the scheduler to inform
it of the existence of new processes.

25

5.5.2 Creating Processes
Eventually, the newly-created runnabla-item will reach the head of agent-z’s runnable-process-
lirt. At this time, there is still no process associated with the item, so the scheduler creates a
process using the faciiities of CARE, adds the process to the running-proce8rer list, and passes it
its rapnable-iter. The process will eventually gain control of the evaluator, and will set the state
of its runnablo-itar to runaing. It then begins executing the requested posting.

5.5.3 Requesting Remote Values
At some point, the process executing on agent-2 requires a value from agent-a, and performs
a port-value operation to acquire it. The process looks up the address of agent-3, and posts
a message which contains the appropriate message name, arguments, id, and answer target. The
ao88ago-id unambiguously identifies the futurr upon which the process will be waiting for the
value to be returned. The answer target is the agent’s own self-address; when the answer is
received by the input monitor process, it will be forwarded to the appropriate future, and the
process will be reawakened.

In the meantime, the process sets its state to 8ospanded, removes its -able-item from the
rruuriag-procas~er list, and appends it to the list of processes already waiting for the future to be
sa ti& ed. l If the ruanablo-procrsr-lirt is not empty, the suspending process wakes the process
at the head of the queue. 2 The suspending process then waits for a message on its wakeup stream,
the stream whose address is in the context field of its rrurnablo-it8n.

5.5.4 Answer Processing
Some time later, agent-3 will have completed its computations, and will have returned the desired
answer to agent-2. The answer will be received by agent-2’s input monitor process, which will
recognize the input a8 a value to be placed in a future. The input monitor sets the value field of the
appropriate future, and moves the runnablo-items of the processes waiting on the future to the
mLmuLblo-proc.88-li8t.

If the queue wad previously empty, the agent must have been (or will soon be) entirely idle; thus,
the rturnable-it- are sent to the scheduler in a message, causing the scheduler to be reawakened.
If the queue was not previously empty, the agent must be busy, so the items are simply added to the
queue according to their priorities. In both cases, the runnablo-ituar are placed in the runnable
state.

5.5.5 Reawakening Suspended Processes
When the ruanablo rrurnabl8-it88 reaches the head of agent-2’s -able-proce88-list, a
message (which contains no useful information) is sent to its associated process’s wakeup stream.
As a result, process eventually wakes up, gains control of the evaluator, and sets its state to running.

2 In effect, the proc ese takea on the role of the scheduler. Although the system would continue to work with only
a designated scheduler proceu performing scheduler duties, thir urangement permita achedtins to take place with
mi&md latency. Aa a result, fewer evduator cycles F wasted waiting for the Kheduk process to run the next user
process.

26

5.5.6 Completing Computation .

A process may perform any number of post, post-future, or post-value operations during its
lifetime. Eventually, however, the process will complete, having computed a value which may or
may not be sent back to the requesting agent. If the process was suspended for any portion of its
lifetime, another process may have attached to it; in this case, the process may have more than one
requesting agent to which to return an answer.

Before the process terminates, it examines the head of the ruaaable-process-list. If the
queue is empty, the process simply goes away. If the runnable-item at the head of the queue is
-able, it sends the appropriate message to awaken the associated process. Finally, if the item
is never-nzn, the process makes itself the process associated with this new runnable-item, and
executes the new message in its own context .3 Barring this possibility, the process “queues” itself
on a free process queue associated with the site manager; when a new process is needed by an agent
on the site, one is preferentially removed from this queue and recycled before a entirely new process
is created. This way, processes, which are expensive to create, are reused as often as possible.

jThir is another situation in which an application PIVCW performs scheduling duties.

27

Chapter 6

Results and Conclusions

The CAOS system we have described has been fully implemented and is in use by two groups within
the Advanced Architectures Project. CAOS runs on the Symbolics 3600 family of machines, as weil
as on the Texas Instruments E’fonr Lisp machine. ELINT, as described in Section 3.2, has also
been fully implemented. We are currently analyzing its performance on various size processor grids
and at various data rates.

6.1 Evaluating CAOS
CAOS is a rather special-purpose environment, and should be evaluated with respect to the pm
gramming of concurrent real-time signal interpretation systems. In this chapter, we explore CAOS’S
suitability along the following dimensions:

0 Expressiveness

l Efficiency

l Scalability

6.1.1 Expressiveness
When we ask that a language be suitably erpn~siuc, we ask that its primitives be a good match
to the concepts the programmer is trying to encode. The programmer shouldn’t need to resort to
low-level “hackery” to implement operations which ought to be part of the language. JVe believe
we have succeeding in meeting this goal for CAOS (although to date, only CAOS’s designers have
written CAOS applications). Programming in CAOS is programming in Lisp, but with added features
for declaring, initiaiizing, and controlling concurrent, real-time signal interpretation applications.

28

6.1.2 Efficiency

CAOS has a very complicated architecture. The lifetime of a message, as described in Section 5.5,
involves numerous processing states and scheduler interventions. iMuch of this complexity derives
from the desire to support alternate scheduling policies within an agent. The cost of this complexity
is approximately one order of magnitude in processing latency. For the common settings of simu-
lation parameters, CARE messages are exchanged in about 2-3 milliseconds, while CAOS messages
require about 30 milliseconds. It is this cost which forces us to decompose applications coarsely,
since more fine-grained decompositions would inevitably require more message traffic.

We conclude that CAOS does not make efficient use of the underlying CARE architecture. X
compromise, which we are just beginning to explore, would be to avoid the complex flow of control
described in Section 5.5 in agents whose scheduling policies are the same as CARE'S (FIFO). In such
agents, we could reduce the CAOS runtimes to simple functional interfaces to CARE. We anticipate
such an approach would be much more efficient.

6.1.3 Scalability

A system which scales well is one whose performance increases commensurately with its size. Scal-
ability is a common metric by which multiprocessor hardware architectures are judged: does a
lOO-processor realization of a particular architecture perform 10 times better than a lO-processor
realization of the same architecture? Does it perform 5 times better? Only just as well? Or Worse?
In hardware systems, scalability is typically limited by various forms of contention in memories,
busses, etc. The lOO-processor system might be slower than the lO-processor system because all
interprocessor communications are routed through an element which is only fast enough to support
10 processors.

We aek the same question of a CAOS application: does the throughput of ELINT, for example,
increase as we make more processors available to it? This question is critical for cAos-based real-time
interpretation systems; our only means of coping with arbitrarily large data rates iS by increasing
the number of processors. Section 6.2 discusses this issue in detail.

We believe CAOS scales well with respect to the number of available processors. The potential
limiting factors to its scaling are (11, increased software contention, such as inter-pipeline bot-
tlenecks described in Section 3.1.2, and (Z), increased hardware contention, such as overloaded
processors and/or communication channels. Software contention can be minimized by the design
of the application. Communications contention can be minimized by executing CAOS on top of
an appropriate hardware architecture (such as that afforded by CARE); CAOS applications tend to
be coarsely decomposed-they are bounded by computation, rather than communication-and thus,
xommunications loading has never been a problem.

Unfortunately, processor loading remains an issue. A configuration with poor load balancing, in
which some processors are busy, while others are idle, does not scale well. Increased throughput is
limited by contention for processing resources on overloaded sites, while resources on unloaded sites
go unused. The problem of automatic load balancing is not addressed by CAOS; agents are assiqed
to processing sites on a round-robin basis, with no attempt to keep potentially busy agents apart.

2 9

ELINT Control Type/Gnd Size
Performance NC cc 1 cc CT CT CT
Dimension 4 x 4 4x416~6 2 x 2 4 x 4 6 x 6

FALSE ALARMS 1 0 0 0 0 0
REINCARNATION 4 9 4 2 2 0 0 0
CONFIDENCE LEVEL 19 2 0 9 0 8 9 9 3 9 5
FIXES 4 8 4 2 9 9 100 100 100
FUSION 0 0 7 7 a5 80 89

Table 6.1: Quality of ELINT performance of various grid sizes and control strategies (1 ELINT time
unit = 0.1 seconds).

6.2 Evaluating ELINT Under CAOS
Our experience with ELINT indicates the primary determiner of throughput and answer-quality is
the strategy used in making individual agents cooperate in producing the desired interpretation. Of
secondary importance is the degree to which processing load is evenly balanced over the processor
grid. We now discuss the impact of these factors on ELINT'S performance.

The following three strategies were used in our experiments:

NC: This strategy represenb limited inter-agent control. No attempt is made to prevent concurrent
creation of multiple copies of the “same” agent (this possibility arises when multiple requests
to create the agent arrive simultaneously at a single manager). As a result, multiple, non-
communicating copies of an abstraction pipeline are created; each receives a only portion of
the input data it requires. The NC strategy was expected to produce poor results, and was
intended only as a baseline against which to compare more reaiihic control strategies.

CC: In this strategy, the manager agents assure that only one copy of a agent is created, irrespective
of the number of simultaneous creation requests; all requesters are returned pointers to the
single new agent. Originally, we believed the CC (for “creation control”) strategy would be
sufficient for ELINT to produce correct high-level interpretations.

CT: The CT (“creation and time control”) strategy was designed to manage skewed views of real-
world time which develop in agent pipelines. In particular, this strategy prevents an emitter
agent from deleting itself when it has not received a new observation in a while, yet some
observation-handler agent has sent the erittor an observation which it has yet to receive.

Table 6.1 illustrates the effects of various control strategic and grid sizes. The table presents
six performance attributes by which the quality of an ELINT run is measured.

False Alarms: This attribute is the percentage of critter agents that &LINT should not have hy-
pothesized as existing.
ELINT was not severely impacted by false alarms in any of the configurations in which it was
run.

30

Control Simulated Time (set)

‘This run was far from completion when it WM halted due to excessive accumulated wall-clock time.

Table 6.2: Simulated time required to complete an ELINT run (1 ELINT time unit = 0.1 seconds).

Control Message Count

Table 6.3: Number of messages exchanged during an ELINT run (1 ELINT time unit = 0.1 seconds).

GRID

SIZE 1x1 2 x 2 3 x 3 4 x 4 5 x 5 6 x 6
SIMULATED

TIME (SCX) 9.42 3.20 1.49 0.74 0.52 0.56

Table 6.4: Overall Simulation Times for CT Control Strategy (1 ELINT time unit = 0.01 seconds,
debugging agents turned off).

31

Reincarnation: This attribute is the percentage of recreated emitter agents (e.g., emitters which
had previously existed but had deleted themselves due to lack of observations). Large numbers
of reincarnated emitters indicate some portion ELINT is unable to keep up with the data rate
(i.e., the data rate may be too high globally, so that all l laiiters are overloaded, or the data
rate may be too high locally, due to poor load balancing, so that some subset of the emitters
are overloaded).

The CT control strategy was designed to prevent reincarnations; hence, none occurred when
CT was employed on any size grid. When CC was used, only the 6 x 6 grid was large enough
for ELIN.T to keep up with the input data rate.

Confidence Level: This attribute is the percentage of correctly-deduced confidence levels of the
existence of an onitter.
The correct calculation of confidence levels depends heavily on the system being able to cope
with the incoming data rate. One way to improve confidence levels was to use a large processor
grid. The other was to employ the CT control strategy, since fewer reincarnations result in
fewer incorrect (e.g., too low) confidence levels.

Fixes: This attribute is the percentage of correctly-calculated fixes of an l mittor.

Fixes can be computed when an emitter has Seen at least two observations in the same time
interval. If an uittar is undergoing reincarnation, it will not accumulate enough data to
regularly compute fixes. Thus, the approaches which minimized reincarnation maximized the
correct calculation of fix information.

Fusion: This attribute is the percentage of correct clustering of emitter agents to cluster agents.

The correct computation of fusion appeared to be related, in part, to the correct computation
of confidence leveis. The fusion process is also the most knowledge-intensive computation in
ELINT, and our imperfect results indicate the extent to which ELINT'S knowledge is incomplete.

We interpret from Table 6.1 that control strategy has the greatest impact on the quality of
results. The CT strategy produced high-quality results irrespective of the number of processors
used. The CC strategy, which is much more sensitive to processing delays, performed nearly as well
only on the 6 x 6 processor grid. We believe the added complexity of the CT strategy, while never
detrimental, is only beneficial when the interpretation system would otherwise be overloaded by
high data rates or poor load balancing.

Tables 6.2 and 6.3 indicate that cost of the added control in the CT strategy is far outweighed
.by the benefits in its use. Far kss message traffic is generated, and the overall simulation time is
reduced (In Table 6.2, the last observation is fed into the system at 3.6 seconds; hence, this is the
minimum possible simulated run time for the interpretation problem).

Finally, Table 6.4 illustrates the effect of processor grid size when the CT control strategy is
employed. This table was produced with the data rate set ten times higher than that used to
produce tables 6.1-6.3; the minimum possible simulated run time for the interpretation problem is
0.36 seconds. The speedup achieved by increasing the processor grid size is nearly linear with the
square root of the size; however, the 6 x 6 grid was slightly slower than the 5 x 5 grid. In this last,
case, we believe the data rate was not high enough to warrant the additional processors.

32

6.3 Unanswered Questions
CAOS has been a suitable framework in which to construct concurrent signal interpretation systems,
and we expect many of its concepts to be useful in our future computing architectures. Of principal
concern to us now is increasing the efficiency with which the underlying CARE architecture is used.
In addition, our experience suggests a number of questions to be explored in future research:

l What is the appropriate level of granularity at which to decompose problems for CARE-like
architectures?

l What is the most efficient means to synchronize the actions of concurrent problem solvers
when necessary?

l How can flexible scheduling policies be implemented without significant loss of efficiency?
What is the impact on problem solving if alternate scheduling policies are not provided?

We-have started to investigate these questions in the context of a new CARE environment. The
primary difference between the original environment and the new environment is that the process
is no longer the basic unit of computation. While the new CARE system still supports the use of
processes, it emphasizes the use of coniczfa: computations with less state than those of processes.

When a context is forced to suspend to await a value from a stream, it is aborted, and restarted
from scratch later when a value is available. This behavior encourages finograined decomposition
of problems, written in a functional style (individual methods are small, and consist of a binding
phase, followed by an evaluation phase).

In addition, CARE now supports arbitrary prioritization of messages delivered to streams. As a
result, it is no longer necessary to include in CAOS its complex and expensive scheduling strategy.
Early indications are that the new CARE environment with a slightly modified CAOS environment
performs between two and three orders of magnitude faster than the configuration described in this
paper.

Acknowledgements
My thanks to Harold Brown, Bruce Delagi, and Reid Smith for reading and commenting on earlier
drafts of this paper. Bruce Delagi, Sayuri Nishimura, Russell Nakano, and James Rice created and
maintain the CARE environment. Harold Brown defined the behavior of the CAOS operators, ported
ELINT from AGE to CAOS, and collected the results which appear in Section 6.2. Finally, I wish to
thank the staff of the Symbolic Systems Resources Group of the Knowledge Systems Lab for their
excellent support of our computing environment.

33

Appendix A

Mergesort: A Simple CAOS
Application

Mergesari is an efficient sorting algorithm. It is simple, and well-suited to a concurrent, message-
passing implementation. As mergesor is not a real-time application, we need not be concerned with
the effects of any data rate. Further, its run time is determined entirely by the size of the input; it
is not sensitive to initial sorting of the data.

Our algorithm recursively subdivides the input list into two half-size lists, until lists of length 2
are obtained. These lists are then trivially sorted, and recombined in sorted order as the recursion
is unwound. We exploit the concurrent CABS architecture by implementing the recursion as post-
raluo messages sent to other agents. Each processor contains a single morgerrort agent. Agents are
assigned in a globally round-robin order, and are created when necessary by a mergesort-manager;
we employ one manager per column in the processor grid (this makes use of a natural invariant
which lets us replicate managers-see our discussion of this approach within ELINT, in Section 3.2).
The algorithm adapts automatically to different processor grids.

Table A.1 illustrates l ergerort's runtime on different processor grids and on various input
length. morgoaort is well-known to require O(n log n) time on a uniprocessor; similar analysis
indicates morgorort should require O(n) time on an “‘infinite” number of processors.’ On a grid
of size 1, morgorort implements a very expensive approach to a conventional mergesort (examine
the leftmoet column of the table); however, on a sufficiently large grid, the algorithm distributes
computation acroes enough processors efhciently enough. to achieve nearly O(n) time (as seen in
diagonal boundary of the table).

Table A.1 also illustrates the effects of choosing too small a grain-size for CAOS. mergesort is
dominated by both communication and agent creation costs. It took substantially longer to sort an
&element list on 4 processors than on 1 processor. Most of this time WZU-J spent waiting for answers
from merge8ort-manager agents.

1 h iPfinite number of proce~~~~ b a dlicient number to prevent any runnrble “process” from having to wait for
a free pro4xaor; in our implementation of mcVeI0~. this number ir n/2. Shapiro’s implementation in Concurrent
Prolog achieved O(n) time with O(logn) process0m [12).

34

Processor Gnd Size
n 4 9 16 25 36c 11 1 [1 1

Table A.l: mergesort runtimes (in milliseconds) on various processor grids and input sizes.

A..l The mergesort Source Code
This section contains the source code for mergesort, It is intended to show the flavor of program-
ming in CAOS with a relatively simple example. We show first the code which declares and executes
within the rorgesort and nergarort-manager agents.

35

;;; Global variables controlling assignment of agents to sites
. . .# , ,
;;; If we were strict, this wouldn't be possible, since we're
l ** making use of the fact that momor in each rite really isn't"8
;;; distributed. However, we do this to force round-robin
;;; allocation.
(defconst *last-x* 1)
(defconst *last-y* 1)
(dofconat *array-width* 1)
(def conat *array-height* 1)

;;; Define the ba8ic mergesort agent
(dofagent nergeaorter (vanilla-agent)

(documentation "& agent which can perform a level of mergesorting")
(rymbolically-referenced-agent8
((merge8orter-l-l) morgeaorter)
((morgoaort-manager-l) norgorort-manager)
((norgoaort-manager-2) mrrgerort-managar)
((rrrgerort-manager-3) nergerort-manager)
((rorgorort-manager-41 morgeaort-manager)
((rorgerort-manager-6) morgwaort-manager)
((norgorort-manager-61 mergarort-manager))
(iXl8t~CO-V~8
(known-rotiorr vp-slot value nil datatypo SSdictionary)
(manager8 vp-8lot value '((1 . morgerort-manager-l)

(2 l mer geso r t-ma na ger -2)

(3 - mergerort-manager-31
(4 l morgesort-manager-4)
(5 . mergerort-manager-61
(6 ' margsaort-manager+))

datatypa #Sdictionsry))
(mo8aager-methods (merge8ort :mergeaort>))

3 6

. . .# , # The initialize method clears the dictionary of site-agent

. . .8 8 a mappings prior to the start of each ~UL.
(defmethod (mergesorter :initialize) (&rest ignore)
(send self Jlcnown-aorters :initialize))

*** The next-neighbor method returns a stream to a sorting agent, , J
. . .I J # which will perform half of the next lower-level recursive sort.
(defmethod (mergesorter :next-neighbor) (>

(let ((next-location-site
(multiple-value-bind (x y> (next-x-and-y)

l * x and y hold site coordinates for the next agent.
ii.nd (lookup-site x y) :caro-site>>>>

(let ((maybe-known-agent
l * chock the dictionary for a site-agent mapping.J 8
(sand solf Jknoun-sorters :got next-location-site)))

(cond (maybe-kn own-agent maybe-known-agent)
(t (lot ((next-location

(sand nSXt-lOCatiOn-8itS :lOCatiOn))>
l * Don't knew the mapping. Ask a manager.JJ
(rend sdf 'kIkOWIL-8OrtSrS :pot

next-location-site
(port-vaho (send self Jmanagers :get

(first next-location))
nil
:now-agent (first next-location)
(second next-location>>>>>>>>>

37

(dafmethod (mergesorter :mergesort) (&rest list)
(cond ((eq (length list) 2)

;; Trivial case. Lists of length 2.
'(,(nin (first list) (second list))

,(max (first list> (second list))))
(t (lot+ ((f irrt-neighbor (sand self :nSxt-neighbor))

(rocond-neighbor (send self :naxt-neighbor)))
;; Rocurro: divide the list and sort both halvor.
;; u80 port-fUttu0 to Start each half.
(firrt-future
(hxpr-funcall #Jpo8t-future first-neighbor nil

: marge8ort
(copylist (first-half list))))

(rocond-future
(loxpr-fuacall #J=post-futuro second-neighbor nil

:margS8ort
(copylist (second-half libt)))))

;; Combin. the sortwi Sublirt8.
;; raBaS-future block8 until the half finishor.
(do ((01 (raluo=faturS first-faturo)

(cond ((null 02) (cdr 01))
((or (null 01) (> (first 01) (first 02)))
01)
(t (c dr l l)>>>

(02 (vlluo-future second-future)
(cond ((n u l l 01) (cdr a211

((or (null 02) (> (first 02) (first 01)))
02)

(t (c& e2))))
(rorult nil)>
((and (null 01) (null 02)) result)

(cond ((and 01 02)
(rotq result (nconc result

(list (min (first 01)
(first 02))))))

(01 (rotq result (nconc result
(list (first el>>)>>

(t (setq result (nconc result
(list (first 02))))))))))

;;; Function to maintain globally round-robin agent-site
; ; ; allocation.
(dofun next-x-and-y (>

38

(multiple-value-progl (values *last-x* *last-y*)
(when (> (incf *last-x*) *array-width*)

(setq *last-x+ 1)
(when (> (incf *last-y*) *array-height*)

(setq *last-y* 1)))))

;;; Return the first half of a list.
(dofun first-half (list)

(loop for i from 1 to (// (length list) 2) as d in list
collect 0))

;;; Return the second half of a list.
(defun second-half (list) (nthcdr (// (length list) 2) list))

l ** Define the mergesort-manager. These agents, located one, # 8
-*- par column in the processor grid, are responsible fo rI I 8
;;; creating new mergesort agents upon requo8t.
(def agent mergeaort-manager (vanilla-agent)
(documentation "An agent to create other morgesorters")
(ia8tauce-rars agent-array)
(me88age8-methods (new-agent :new-agent)))

;;; The initialize method clears the manager's mapping of
;;; (x,y) coordinates to morgesort agent.
(defrethod (mergeaort-manager :initialize) (mar-x max-y)

(sotq agent-array (make-array (list (l+ max-x> (l+ maz-y)))))

l ** The new-agent method returns the agent already at,#D
;;; (x,yL or creator a new agent at (x,y> and returns it.
(d&method (mergesort-msnager :new-agent) (x y)

(cond ((aref agent-array x y>>
(t (let ((the-new-agent (create-agent-instance

'morge8orter
(list x y))>)

(aset the-new-agent agent-array x y)
the-new-agent)>>>

3 9

This next section of code is the CAOS initiaiization file which produced the runtime numbers dis-
played in Table A.l:

(defcon8t *the-original-list*
J(8 7 4 1 2 8 5 3 16 12 9 11 1s 13 10 14
32 22 30 21 28 19 26 18 24 31 22 29 20 29 26 17
64 63 62 61 60 59 34 33 68 57 56 66 54 63 52 61
60 49 48 47 46 46 44 43 42 41 40 39 38 37 36 36))

(defconrt *the-current-list+ nil)

(caor-initialize
((mugerortu-l-l rorgerorter (1 1))
(mugerort-managu-1 mergerort-manager (1 1))
(morgraort-wager-2 mugerort-manager (2 1))
(mugeaort-mauagu-3 mugorort-ranagu (3 1))
(mugesort-managu-4 rergerort-manager (4 1))
(mugorort-m8nagu-6 rorgosort-managrr (6 1))
(ruga8ox%-maaagu-6 rugerort-manager (6 1)))

((with-open-file (log "x~:8choon.qaort;q8Ort.lOg~ :write)
(8Otq *the-current-list* +ths-original-lirt*)
(loop with #tart-time for j from 6 down-0 1 do

(forrrt log "'&Sorting the list:'&-S"
rtho-currant-list*)

(loop for i from 1 to j do
(mltipo8t-raluo

'(mugorort-manager-l mugesort-manager-2
mugerort-managu-3 mugerort-manager-4
morgorort-m8nagu-6 mergerort-manager-6)

nil :initialize i i)
(pat-value rugosortu-l-1 nil :initialize)
(fornrt log @@'&Starting 'D processor sort at 'D"

(* i i) (caor-time>)
(8Otq 8tart-tir. (caor-tir.))
(lexpr-funcall #'port-value l ugosorter-l-l nil

:mugosort *the-current-lirt+)
(forut log "'LFini8hed at 'D. That took 'D 18"

(cao8-timo)
(* (- (caos-tire) start-tin.1 1.0~6)))

(setq *the-current-list* (first-half *the-current-list*>>))))

4 0

We conclude with the log file produced by this mergesort execution:

Sorting the list:
(6 7 4 1 2 8 6 3 16 12 9 11 15 13 10 14 32 22 30 21 28 19 26 18 24 31
22 29 20 29 25 17 64 63 62 61 60 59 34 33 58 57 56 55 54 53 52 51 50
49 48 47 46 45 44 43 42 41 40 39 38 37 36 35)
Starting 1 processor sort at 9803527
Finished 1 sort at 151163188. That took 1413.5966 msprocessor
Starting 4 processor sort at 157430828
Finished 4 sort at 248600531. That took 911.697 msprocessor
Starting 9 processor sort at 254848384
Finished 9 processor sort at 330631571. That took757.83185 ms
Starting 16 processor sort at 337017977
Finished 16 sort at 401035492. That took 640.1752 msprocesror
Starting 25 processor sort at 407972369
Finished 25 sort at 461663705. That took 536.9133 msprocorror
Starting 36 processor sort at 468137724
Finished 36 sort at 519648649. That took 514.10926 msprocessor
Sorting the lirt:
(6 7 4 1 2 8 5 3 16 12 9 11 16 13 10 14 32 22 30 21 28 19 26 18 24 31
22 29 20 29 25 17)
Starting 1 procersor sort at 526138721
Finirhed 1 sort at 606424159. That took 802.8544 msprocesror
Starting 4 processor sort at 613038166
Finished 4 sort at 673646208. That took 606.07043 Ipaprocorror
Starting 9 processor sort at 680223869
Finishod 9 sort at 726796432. That took 465.72562 maprocessor
Starting 16 procorsor sort at 733697221
Finishod 16 sort at 776848166. That &ok 431.50943 maprocessor
Starting 25 processor sort at 783606683
Finishod 26 sort at 830669664. That took 470.64078 msprocessor
Sorting the lirt:
(6 7 4 1 2 8 5 3 16 12 9 11 16 13 10 14)
Starting 1 procorror sort at 837629049
Finished 1 sort at 883646903. That took 460.17856 maprocessor
Starting 4 procesror sort at 890496880
Finished 4 processor sort at 929338867. That took 388.41986 ma
Starting 9 processor sort at 936242285
Finished 9 processor sort at 971092553. That took 348.5027 ms
Starting 16 procasror sort at 978109126
Finish& 16 processor sort at 1012524715. That took 344.15588 ms
Sorting the list:
(6 7 4 1 2 8 6 3)
Starting 1 processor sort at 1019622193

41

Finished 1 processor rort at 1046974695. That t o o k 273.52502 ms
Starting 4 procrusor sort at 1054797480
Finished 4 procesror sort at 1094619241. That took 397.2176 ma
Starting 9 processor sort a t 1101682612
Finishod 9 procesror sort at 1125786372. That took 242.0376 ms
Sorting the list:
(6 7 4 1)
Starting 1 processor sort at 1132929674
Finished 1 proosror sort at 1145004341. That took 120.746666 ms
Starting 4 processor sort a t 1152132853
Finishod 4 procoaror rort at 1166264559. That took 141.31706 ms
Sorting the list: ,

(6 7)
Starting 1 procorsor sort a t 1173665420
Finishod 1 procorror sort at 1176647734. That took 30.82314 ms

4 2

Appendix B

Implementing the CAOS
Framework

This appendix is a guide to the source files which implement the CAOS system. The descriptions
which follow are at a much greater level of detail than those in Chapter 5, and are intended primarily
for readers of the source code, as a supplement to the embedded documentation. It is assumed that
readers of this appendix have a familiarity with Lisp (principally ZETALISP or CommonLisp), and
have read Chapter 5.

B.1 General Programming Issues
All data structures are implemented with the dof otruct mechanism. def struct accepts a descrip
tion of the desired data structure, and produces a number of macro definitions which serve to create
new instances of the structure, and access and modify fields of the structure. For example, a ship
data structure may be defined as having fields name, position, and course. New instances of ship’s
are created by calling make-ship; the fields of the ship structure are accessed by calling ship-name,
ship-posit ion, and ship-course. A field may be modified by embedding a field access function
in a setf expression.

The CAOS system is intended for use in ZETALISP-compatible environments. The system was
developed originally on the Symbolics 3600 family of workstations, and was later ported to the
Texas Instruments Ezplonr workstation. These machines each support a ZETALISP programming
environment, but are not completely source-code compatible.

Source-level incompatibilitie are handled by use of the ir+ and #- reader macros. An occur-
rence of #+Symbolics in a source file causes the next s-expression- to be read only when the file is
being loaded into a Symboiics workstation; an occurrence of X-Symbolics prevents the following
s-expression from being loaded into a Symbolics workstation. Similar read-time conditionals for the
TI environment are introduced by It+TI and s-T1 constructs.

4 3

B.2 Interface to CARE
In order to function properly under the CARE simulator, all CAOS code and CAOS applications must
be loaded into the care-user symbol package. This package is defined to inherit from CARE those
symbols (e.g., functions, variables, and macros) which comprise the exported CARE programming
interface.

B.2.1 CARE Data Structures
The following CARE-defined data structures are used CAOS:

[Stl=uclure]

A ruoto-address is the global encapsulation for the address of a data structure located
on a particular processor. It may be thought of as extending the address space of a site
with additional address bits that identify the site in the processor grid.
remote-address’s contain two fields: rite and local. The site field identifies the site
on which the structure Dointed to by the local field resides.

sit. [Sfruchwc]

A rite represents one of the processing nodes in the grid. An instance of a site
structure is actually an instance of a site flavor, and hence, fields of a sit? are accessed
by sending Flavors messages. The following are messages relevant to CAOS: :location,
which returns the (t, y) coordinate of the site in the grid; :x-sit., which returns the z
coordinate of the site; and : y-sit., which return8 the y coordinate.

+l.u. [Shciure]

A quouo implements FIFO storage, and is used in a number of places within CARE.
In particular, packet8 arriving on a CARE atroar are stored in a quouo. The quouo
structure has the following relevant fields: length, body, tail. The length field stores
the number of entries which are currently in the queue; the body field points to a list
which implement8 storage for the queue; the tail field points to the last element of the
body of the queue, and allows new entries to be appended to the end of queue in O(1)
time (Access to the head of the queue also requires O(1) time).

atroam [slruclure]

A strou is a virtual circuit which carries data (in the form of pa&is) between processes.
Operations on streams are performed by the fun?tions port-packet and accept-packet,
which are described below. The packotr field of a stream contains the queue of packets
which have arrived on the stream. The proportiea field of a stream contains an arbitrary
property list; CAOS uses the property list to store information to help the function which
prints out streams in a human-readable fashion. Other fields of the stream are not
relevant to CAOS.

44

PrOCOSS [Structure]

A process is the basic unit of computation in CARE . The innards of a process are
of no concern to CAOS; however, it should be noted that the speciai variable ***car.-
process*** is always bound to the process structure of the process currently executing.

B.2.2 CARE Functions and Macros
The following functions and macros are used by CAOS:

port-packet &optional form &key . . . [Macro]

The macro port-packet is used to create new streams and new processes, and to ex-
change messages between processes. If called with no arguments, it returns a new stream
instance. All other post-packet options are controlled by the existence of various key-
words in ita argument list: When keyword arguments are supplied, the first argument
to post-packet is evaluated to form the message to be sent.
The following keyword options are employed by CAOS:

to: The value of the to keyword is a stream or list of streams to which the message will
be sent.

for.: The value of the for keyword is a stream or list of streams. When the message is
received remotely, the value of this keyword will appear in the clients field of the
message.

for-snow-strem, PrOCOSS: These two keywords always appear together in an argu-
ment list, and take no arguments. They are included in a call to post-packet
to create new processes. The first argument in such a call is a form to evaluate
remotely to start the process. This call also requires a to keyword argument, which
must be a remote-address; the process is created on the site indicated by the site
field.
The value of the call is a atrear. A call to accept-packet on this stream will
return a packet whose value field is the default stream supplied to the newly-
created process.

after: The value of the after keyword is a time interval, in microseconds. When this
keyword is supplied, the message will be delivered after a corresponding delay. The
purpoee of the keyword is to provide for a means of implementing fimeouia. A
process can cause a packet to be posted to a stream only after a specified interval;
when this packet arrives, any processes waiting on the stream will be awakened.
CAOS implements “clocked futures” using this mechanism.

tagged: The tagged keyword provides a means of tagging the message with a user-
supplied value; its principal use is in debugging and message tracing.

uith-packet-bindings sham-form bindinga &body forms

4 5

[Macro]

The with-packet-bindings macro evaluates &earn-form, which must return a stream.
It then picks the first packet from the stream (or blocks the calling process until a packet
arrives), and (lambda) binds portions of the packet to the variables specified in btndrngs.
The format of bindings is a list. The first variable name in the list is bound to the
contents of the message; the second is bound to the clients of the message (e.g., the
streams specified by the for keyword in the call to post-packet). Additional variables
may be bound to fields which are not relevant in the discussion of CAOS.

accept-packet stream [Function]
The macro with-packet-bindings is defined in terms of this function. a&opt-packet
is called with stream bound to a stream, and returns the first packet waiting in the
stream (or blocks the calling process until a packet is available).

dofprocors [Macro]

The dafprocqra macro is syntactic sugar for dofun. Any function which is to be the
top-level of a c~~~-proccss should be defined using dOfprOCa88. The last argument
in the argument list of a function defined by defprocerr will be bound to the default
stream for the process; thus, any function defined with defprOCO88 must have at least
one argument.

B.3 The CAOS Support Environment
In Chapter 5, we described an extension to Flavors which implements abstract data type support for
instance variables. The files horbr . li8p, rage. lirp, datatypo .lisp, and priority-queue. lisp
comprise the framework which includes abstract data type support. In addition, these files contain
code which implements a sort of inheritance of default values of instance variables, and code which
implements substructure for instance variables:

B . 3 . 1 HerbsLisp
This file implements a form of inheritance of list-structured default values of instance variables. The
Flavors class hierarchy forms a taxonomy; classes defined far from the root of the taxonomy are
more specialized than those defined near the root. Within a class, methods can be combined with
methods of the same name in ancestral classes in quite a few ways. Unfortunately, Flavors provides
no means of combining inherited values.

Consider the example of Figure B.l. The Flavor class flavor-3 is defined as a subclass of classes
flavor-l and flavor-l. Both flavor-l and flavor-? define an instance variable called iv-a.
What value does flavor-3 inherit as the default for iv-a?

In normal Flavors, flavor-3 would inherit ’ (a b c) as the default value. However, there are
situations in which the proper value to inherit for iv-a might be ‘(a b c d a f). The dsfherb
macro, defined in herbs. lisp, enables this sort of inheritance.

Figure B.2 illustrates three possible inheritance modes for the default value of iv-a in flavor-3.
In the first example, the default value of iv-a will be J (a b c d l f 1. In the second example, its
value will be J (a b c d e f g h i). In the final example, its value will be J (b d f 1.

4 6

(dafflavor fl avor-1 ((iv-a ‘(a b c>>> (11

(defflavor flavor-2 ((iv-a ‘(d e f>>> 0)

(defflavor flavor-3 () (flavor-l flavor-2))

Figure B. 1: Multiple inheritance example.

(defherb f l avor -3 ((iv -a + nil>> 0)

(dofhorb flavor-3 ((iv-a + ‘(g h i>>> (>>

(defhorb flavor-3 ((iv-a - ‘(a c 0))) ())

Figure B.2: defherb examples.

B.3.2 Sage.Lisp
This file implements structured and abstract data type support for instance variables. Both facilities
depend on storing special-purpoee structures, known as vp-Ilot’s, in instance variables. Descrip-
tions of the vp-slot structure, and the important functions which access it, follow (many of the
concepts used here come from the Strobe system [13]):

IQ-8lOt [Sructure]

A vp-slot contains three primary fields. The value field holds the “value” of the slot.
The datatypo field holds an indication of what sort of objects will reside in the vtiuo
field of the slot. Finally, the U8Or-def iPOd-f aCOt field holds an association list of
arbitrary facet names and values; new facets may be added at any time.
A v-slot may be thought of as a value with arbitrary annotations (All slots are an-
notated with a datatypo facet). These annotations might permit a program to re85on
about the contents of the slot when necessary.

getf acet object slot &optional (fucet ‘value) errorjIg novalueflg [Fwiction]

The function getfac8t returns the value of facet in s/of of object. Facet defaults to
va~ud, which retrieves the value field of the vp-slot. Other acceptable bindings for
facet are datatype, plus any facet in the urar-d8f ined-facets field of the slot. If the
facet doesn’t exist, and the value of errorflg is non-nil, a fatal error will occur. If the
value of the facet is *novalue*, and novafueflg is nil, the value returned from getfac8t
will be nil; otherwise, it will be the value found in the facet.

putfac8t object slot &optional (facet ‘value) (value ‘*novalue*) errorjIg [Function]

47

The function putfacet puts value into facet of slot of object. If the facet doesn’t exist,
it is first created. If the slot doesn’t exist (e.g., the instance variable named dot doesn’t
exist, or doesn’t contain an object of type vp-slot) and emrj?g is non-nil, a fatal error
is signalled.

#, [Recder MacmJ

Unfortunately, by placing vp-slot structures in instance variabhs of Flavor instances, it
becomes impossible to simply get the “value” of the instance variable (since the value is
now a vp-slot). The t, reader macro is a piece of syntactic sugar which expands to the
form (vp-slot-value . . .>, and hence, retrieves the valu4~ field of the slot. Therefore,
references to instance variables which contain slots can be preceded by #, to retrieve the
actual value of the slot.

A number of macros are defined in terms of these
from examination of the source code.

basic functions; their function should be clear

Abstract Data Type Support

Abstract data type support for instance variables is implemented by forwarding messages sent to
vp-riot’s to the objects pointed to by their datatype fields. Consider the example in Figure B.S.
The inclusion of the : gottablo-in8t8acr-vriab~88 option in the definition of flavor-l causes
instances of flavor-l to repond to : iv-a m&ages (note the ‘ : ’ in the message name); instances
of flavor-i do not respond to the iv-a message.

Normally, when a message for which no method is defined is sent, an error occurs; however, it is
possible to define an :unclaimod-rothod method for a Flavors class. The :unclai.med-method is
invoked when an undefined message is sent. The fiie rag.. lirp defines a Flavors class, aage-cla88,
which has just this sort of :unclaiaed-method.

When an undefined message is sent to a Flavors instance which has rage-class as an ancestor,
the following steps are taken:

1. If the message is actually the name of an instance variable in the instance, the message name
is evaluated (using syaoval-in-instance) to retrieve the value of the variable.

2. If the value of the variable is a structure of type vp-8lot, a message is sent to the Flavors
instance stored in the datatypo field of the slot. The message name is taken from the first
“argument” of the unclaimed message. The arguments in the message are the Flavors instance
to which the message was originally sent, the name of the instance variable to which the
m-age was sent, and all but the first of the original arguments of the unclaimed message,

Now consider the course of events when (sand instancw 1 ’ iv-a : got J b) is evaluated:

1. The message iv-a is received by instance-l.

2. instance-1 doe8 not handle the message iv-a, so -the message is forwarded to the
: unclaimed-method method defined by sage-clarr.

48

(defflavor association-list (> 0)

(defmethod (a s s o c a t i o n - l i s t :get) (in s tance i v key)
(cdr (a88q k8y (gOtVdlU0 instance iv)>>>

(defvar a88n-instance (make-instance Ja880ciation-li8t))

(dafflavor f l a v o r - l
((i v - a (make-vp-8lot v a l u e ‘((a . 1) (b . 2) (c . 3))

datatype assn-instance) > >
(8ag8-Ch88)
:gettable-instance-variablea)

(dofvar iIl8tZbIlCO-1 (m a k e - i n s t a n c e ‘f l a v o r - l))

Figure B.3: A Flavor containing a slot

3. The :unclaimed-aothod code evaluates iv-a in the context of instance-l, and discovers the
value to be a structure of type vp-slot. It then effectively evaluates the following: (send
a88YPiIl8tallCO :get in8taIKO-1 'iv-a ‘b).

4. The :gat method of association-list is called. It uses its first two arguments to retrieve
the association list from the value field of the vp-rlot to which the message was originally
directed. It then uses its third argument to return the value of an association from the list.

5. The value returned by the :get method of the vp-slot’s datatype is returned as the value of
the original message.

A number of macro6 are defined for the convenience of programmers:

dafdatatype [Macro]

Defines a new Flavors class suitable for use as an abstract data type. This is syntactic
sugar for a combining doff lavor and dafnothod into one textual unit,. For example,
the above definition of association-list could have been made by evaluating:

(defdatatype association-list "Implemant8 a - l i s t d i c t i o n a r i e s . ‘*
(:get (instance iv key)

(cdr (a88q key (getvalue instance iv)))))

[Reader Macro]

49

This reader macro accepts the name of a datatype class, and returns an instance of the
class. If no instances of the class have been created, it creates one and stores it in a hash
table (*sage-datatype-hash-table*). This reader macro is used in creating slots:

(defflavor f lavor - l
((i v - a (nalto-vp-slot v a l u e ‘((a . 1) (b . 2) (C . 3))

datatypo #$association-list)))
0)

B.3.3 Datatype.Lisp and Priority-Queue.Lisp
These files use the facilities defined by saga. lisp and herbs. lisp to define a number of useful
abstract data types. In general, these ADT’s respond to an : initialize message to initialize
themselves to an “empty” state, a :pot message to add items to themselves, and a : get message
to remove items from themselves.

[Abstract Data Type]

The queue data type implements FIFO storage in an instance variable. The current
implementation uses lists maintained by the tconc function, defined in datatypo. lisp.
The : initializa message empties the queue, the :put message enqueues entry on the
end of the queue, and the :got message dequeues an entry from the front of the queue.
If the instance variable in which the queue resides has a aax-length facet, entries are.
added to the queue if-and-only-if the current length of the queue is less than the specified
maximum length.
Two values are returned by a :put message. The first value is t if there was room
to append the new entry; the second value is the value appended to the queue. Two
vaiuea are alao returned by the :gat message. The first is the value found at the head
of the queue; the second is nil if the queue was empty before the message, or t if it was
non-empty.
All operations defined for a queue require 0(1) time.

d i c t i o n a r y [Absfmct Doio 7’ypc]

The dictionary is a fuller version of the association-list ADT described above.
The : put and : get operations require O(n) time, and hence, suggest the dictionary
datatype be used when the number of entries is expected to be small. In addition to
:initializo, :put, and :get messages, the dictionary also responds to the following
messages:

.. add key value [Dafoi ype Message]

Adds value as an additional value to be associated with key. A :get message on key will
subsequently return lists of two or more values. Requires O(n) time.

: forget key

50

[Daf ai ype Message]

Removes the entry associated with key from the dictionary. Requires O(n) time.

: map function [Datatype Message]

Applies fvnction to each entry in the dictionary. Function must be a function of two
arguments; the first argument will receive the key of an entry, and the second will receive
the value of the key. Requires O(n) time.

:aeo-id [Dutuf ypc Message]

Returns a key which is guaranteed not to be in the dictionary. This is currently imple-
mented using geasym, and as such, requires 0(1) time.

:aumber-of -eatries [Data2 ype Message]

Returns the number of entries in the dictionary. Requires O(1) time.

:all-entrier [Daialype Message]

Returns all of the entries in the dictionary, in association-list format. Requires O(1)
time.

s o r t e d - d i c t i o n a r y [A6shct Data Type]

The sorted-dictionary is a variant of the dictionary which keeps its entries in sorted
order, as defined by a user-supplied comparison function. It responds to the same mes-
sages as does the dictionary. The time complexity of operationa defined for a rorted-
dictioaary are equivalent to thoee defined for a dictionary.
The comparison function must be a predicate of two. arguments, and must return t if-
and-only-if the first argument is ugreater” than the second argument. For example, if
the keys represent timestamps, and the dictionary is to keep the keys sorted in ascending
order, the comparison function can be specified as SD <, the lersp function.
In addition to the messages defined by the dictionary data type, the sorted-
dictionary aIso responds to these messages:

:greatest-entry [Dof at ype Message]

The :greatart-entry message returns the key having the “greatest” value, as defined
by the comparison function. Because the dictionary is kept in sorted order, this operation
requires only 0(1) time.

:aext-entry n [Dadai ype Message]

The :next-entry message returns the key of the entry having the next “greatest” value
to that of n. This is an O(n) operation.

hash-dictionary

51

[Abstract Data Type]

The hash-dictionary is a dictionary implementation which is based on hash tables,
rather than wciation lists. It responds to the same messages as does the dictionary
ADT. Its advantage over the dictionary is that insertion, lookup, and deletion opera-
tions are all of 0(1) time complexity; however, the enumeration message, : &l-entries,
is of O(n) time complexity.

monitor [Abstract Dota Type]

The monitor data type is a special purpose ADT which aids in the implementation of
lexically-scoped mutual exclusion. Storage for the monitor is implemented by a monitor
structure:

monitor . [Stl%ctun]

The monitor structure contains two fields: owner, which points to the procorr which
currently owns the monitor; and waiting-processor, which is a queue of processes
waiting to obtain ownership of the monitor.

: mator wakeup-stream [Dot at ype Message]

A process wishing to enter a region of mutual exclusion sends this message. If the
monitor is unowned, the owner is set to the value of ***car.-procera***, and the
caller is allowed to enter the region of mutual exclusion.
If the monitor is currently owned, a dotted pair, consisting of the value of ***care-
procosr**+ and wakeup-stream, is enqueued on the oaiting-procersos queue of the
monitor. The caller then calls accept-packet in order to suspend execution. When the
caller’s request reached the head of the queue, a packet will be sent to wakeup-sfnam,
restarting the suspended caller.

: oxit [Datatype Message].
The : oxit message relinquishes ownership of the monitor, and restarts the next process
waiting to obtain it (if any).
If the waiting-processor queue is non-empty, the first entry on the queue is dequeued.
The entry contains the procorr handle of the waiting process, which is placed in the
ouaor field of the monitor, and the stream upon which to send the wakeup message. *
If the queue is empty, the owner field of the monitor is set to nil, so that the monitor
is marked as unowned.

with-monitor monitor-name &body jams [Macro]

This macro implements an error-protected, lexically-scoped mutual exclusion. Monitor-
name must be the name of an instance variable in the Flavors instance currently bound
to self which holds a monitor. Upon entry to this macro, an : l nt or message is sent to
the monitor to gain entrance. The expressions in forms are then executed under unoiad-
protect protection, such that if an error occurs during their execution, the monitor is
guaranteed to be released.
This macro is equivalent to the uith.monitor macro of Interlisp-D.

52

without-monitor monrtor-name &body forms [Macro]

This macro is intended to be used within the scope of a with-monitor form. Its purpose
is to temporarily release ownership of the monitor specified by monrtor-nome (using the
:exit method), and then to reobtain it (using the : enter method) after the forms in
forms have been executed. Typically, forma will contain an expression that causes the
calling process to suspend for some period of time (or until a packet arrives on some
stream).
This macro is similar in spirit to the monitor. await. event macro of Interlisp-D

prigrity-queue [Abstract Data Type]

The priority-queue data type and the code needed to implement it are contained on
the file priority-quouo. lisp. The build of this file is a set of ZetaLisp routines which
implement a dynamic, Heapsort-style priority queue. The implementation is derived
hrn algorithms DELETEMIN and INSERT, from section 4.11 of [l]. Insertion and deletion
from this queue both require O(nlogn) time.

priority-queue [Structure]

The priority-quouo structure implements storage at the nodes of the partially-ordered
binary tree. It has fields loft-child, right-child, and itrr. In addition, for conve-
nience, it has a priority-function field which stores the priority-computing function
for entries in the tree.

exchange-nodaa fop boffom

This macro exchanges the contents of nodes fop and bottom.

i n se r t - in -queue quette n o d e

[Macro]

[Functron]

This function inserts node, an instance of a priority-queue structure, into the tree
rooted by queue. It recursively descends into the tree, heading for the leftmost free node
at the lowest level of the tree (creating a new level if necessary). As it unwinds from
the recursion, it exchanges nodes as necessary to maintain the partial order. The value
returned from this function is the new root of the tree, which may have changed.

rebalance-queue queue

This function rebalances the tree rooted at queue after its root has been removed.

remove-from-queue queue

[Funct:on]

[Fundron]

This function removes the item from the partially-ordered tree rooted at queue, and
rebalances the tree to maintain the partially-ordered invariant. It returns two values:
the value found at the root, and a pointer to the new root of the tree.

5 3

sof tiog-spec ::= (key-spec . sorting-spec) 1 ail
key-spec ::= (key-name . field-spec-fist)
field-spec-fist ::= (field-spec . field-spec-list) 1 nil
field-spec : : = (field-computation . predicate)
field-computation ::= field-arg 1 (field-op . field-arg-list)
field-arg-list ::= (field-arg . field-arg-list) 1 ail
fiefd-op ::= any-lisp-f nnct ion
key-name ::= any-lisp-symbol
field-arg ::= field-number 1 ‘any-valued-lisp-symbol
field-number ::= my-lisp-int l ga r
predicate ::= any-lisp-predicate

Figure B.4: BNF Grammar for declaring sorting functions.

Waite (0 (* 0 93) 1) . <))
(:yant (2 . alphaJaaap))
(:tuk (3 . <)))

Figure B.5: A sarnpie sorting specification.

8.4 Instrumentation for CAOS
The CARE system comes supplied with a wide variety of “instrument panels” which report how
various components of the simulated execution architecture are being utilized. Much of CAOS was
defined prior to the existence of these instruments, and the file Pravda. lisp contains vestigial
remnants of an interim clros-based instrumentation package. This package is no longer in use,
and it will not be documented here, although it is partof the CAOS sources. There are, however,
cAos-specific instrument panels which are still in use. These panels are documented in this section.

B.&l Scrolling-Text-Panel.Lisp
The file scrolling-t art-pano . lisp contains an instrument which displays information in a sorted
order in a ZETALISP-defined window known as a tv: scroll-window. Such windows are designed
to display a structured representation of data; new lines of information may be added or deleted
dynamically, and the window may be scrolled vertically if more information is being displayed than
can fit in the window.

The scrolling-text-pan.1 is a tr: scroll-uiadov whose sorting order and display formatting
commands are specified by a simple, declarative grammar. The declaration of the sorting function
is specified in the :sort -2 -by instance variable of the panel; the formatting function is specified
by the :printed-by and : f ormatted-by instance variables. We first describe the grammar as it
pertains to sorting.

5 4

The sorting grammar is described in BNF format in Figure B.4; 1 an example from CAOS appears
in Figure B.5. Unquoted numbers used in field-number positions refer to corresponding elements of
a vector in which information which drives the sorting and display functions resides.

The sorting declaration in Figure B.5 constructs three sorting functions, indexed respectively by
the keywords : rite, : agent, and : task. The : site sorting function is compiled into the following
pieces of Lisp code:2

(defun foo-site-sorter (item-1 item-2)
(let ((entry-l (array-leader item-l (l+ tv:scroll-item-leader-offset)))

(entry-2 (array-leader item-2 (I+ tv:acroll-item-leader-offset))))
(< (+ (* (nth 0 entry-l) 16) (nth 1 entry-l))

(+ (* (nth 0 entry-2) 16) (nth 1 entry-2)))))

The :agent sorting function is a refined version of the : site sorting function. It expands into:

(difun foo-agent-aorta (item-1 item-2)
(let ((entry-l (array-luder itu-1 (l+ tv:scroll-item-leader-offset)))

(entry-2 (array-leader item-2 (l+ tr:acroll-item-lucier-offset)))
(key-2 (array-leader item-2 tv:scroll-item-ludu-offset)))

(cond ((foo- site-sorter itu-l itu-2) t)
((oqull itu-l itu-2)
(cond ((muq key-2 '(:sito)) nil)

(t (alphaleaap (nth 2 entry-l) (nth 2 l try-2))))))))

The : tuk sorting function is further refined, and expands to:

(dofun foo-task-sortor (itom-l item-21
(lot ((oatry-l (array-ludor itom-l (l+ tr:acroll-itu-ludor-off8.t)))

(utry-2 (array-leador item-2 (l+ ttzscroll-item-ludu-offsot)))
(key-2 (array-loader itu-2 tv:scroll-item-leader-offsot)))

(cond ((foo-agent-rortor item-l item-21 t)
((equal itu-1 itu-2)

(cond ((nuq key-2 '(:sito :agent)) nil)
(t (< (nth 3 entry-l) (nth 3 utry-2))))))))

We now discuss the language with which formatting functions are defined. Lines of text are
output to scrolling-text-panels with the function .format, in order to use this function, we
must have a way of choosing both format control strings and the expressions which are evaluated
to generate arguments for these control strings.

‘In this figure, and in Figure B.6, tokens in this font are non-terminals, and tokens in-this font are terminals.
Occurrencea of u. ” are Lisp “consing dots;” t bus. where the grammar would ordinarily demand statements of the
form (A . (b . (c . nfl))), it is acceptable to supply the form (a b c).

2’I’he aqpmentr itom- and item-2 are bound to instances of tr : scroll-line-it a structures. The inter-
nd represent&ion of these structure8 is UfIimpOrtMt, except that arbitrary application-progam information may
be stored in their orroy Icoder sectioru. The !imt word of available storage in the array leader is found at
tr:8croll-it--l~~d~ro+is.t.

55

prin t-spec : : = (key-spec . print-spec) 1 nil
key-spec : : = (key-name . field-spec-list)
field-spec-list ::= (field-computation . field-spec-Iis t) 1 nil
field-computation ::= field-arg 1 (field-op . field-arg-list)
field-arg-list ::= (field-arg . field-arg-list) 1 nil
field-op ::= any-li8p-function
key-name ::= any- l i sp-symbol
field-arg ::= field-number 1 J any-valued-lisp-symbol
field-number ::= any-lisp-integer

Figure B.6: BNF Grammar for declaring printing functions.

((:aito . “SITE--D- ‘,*a)
(:agant . ” ‘A ‘A ('D ~pll, 'D wait)“)
(:tark . 1' 'A 'A ‘A”))

((:8ito 0 1)
(:agent 2 (car 3) 4 6)
(:ta8k 4 3 6))

Figure B.7: A sample formatting specification

Format control strings are chosen by indexing into an association list stored in the formatted-
by instance variable of the panel. Lisp expressions which generate the arguments for format are
created by parsing expressions defined by the grammar in Figure B.6 and are found in the printed-
by instance variable of the panel. The contents of these two instance variables, in an example from
the CAOS instrumentation, is illustrated by Figure 8.7. The panel defined by the specifications
in Figure B.5 and B.7 will display sites in column-major order; within each site, agents will be
displayed alphabetized by name; within each agent, tasks will be displayed ordered by arrival time.
For example:

SITE-l-1
NERGESORT-KAIACER-1 INITIALIZED (0 mm, 0 uait)
IIERGESORTER-1-l IIITlALIZED (1 maa, 3 wait)

RUIIIIG 346700 IEICHBOR
IEVER-RUI 346792 HERGESORT

SITE-l-2
MERGESORTER-l-2 IIITIALIZED (0 mn, 0 wait)

B.5 CAOS Structures and Macros
The file cardaim. lisp contains macro and structure definitions for the rest of the CAOS system.

56

[Structure]

The request-mesaage structure is a list
using the various post operators of CAOS.

which defines the contents of messages sent

response-message [St7-?.Lcture]

The response-message structure is a
as responses to value-desired messages.

list which defines the contents of messages sent

caos-time [Macro]

This macro retrieves the current simulator time, which is measu
units. Presently, this figure is measured in 10 nanosecond units.

red in simulator clock

rannable-item [Structure]

The -able-item is the CAOS scheduler’s handle on a process. Most of its structure
was described in Section 5.4. The panel-ontry field holds the tv:scroll-window line
entry of the process.

c o n t r a c t [Resoume]

Resources are Lisp objects which must be explicitly allocated and deallocated. This is
counter to the normal Lisp philosophy, but is quite useful when the extent of an object is
known. The advantage of declaring objects as resources is that large numbers of unused
copies of the objects aren’t accumulated to be reclaimed only when the garbage collector
is run. The contract resource allocates and deallocates -able-it em’s.

care - s i t e - scro l l ing -pane l - en try [Structure]

This structure is the vector which holds information for sorting and formatting care-
site entries in the scrolling-text-panel. In figures B.5 and B.7, this structure is
referenced by printing and sorting specifications keyed by : site. The fields of the
structure are:

x, y: Coordinates of the site in the processor grid.

state: The condition of the site.

a g e n t - s c r o l l i n g - t e x t - p a n e l - e n t r y [Structure]

This structure is the vector which holds information for sorting and formatting agent
entries in the scrolling-text-panel. It is referenced by printing and sorting specifi-
cations keyed by : agent. The fields of this structure are:

x,y: Coordinates of the site upon which the agent is located.

nsme: The name of the agent.

57

state: The condition of the agent.

arun: The number of runnable tasks in the agent.
nmait : The number of suspended tasks in the agent.

t a s k - s c r o l l i n g - p a n e l - e a t r y

This structure is the vector which holds the information for sorting and formatting task
(process) entries in the scrolling-text-panel. This structure is referenced by printing
and sorting specifications keyed by : task. The fields of the structure are as, follows:

x, y: Coordinates of the site upon which the task is executing.

name: The name of the agent in which the task is executing.

entry-time: The simulator time at which the task started.

stat.: The current state of the task..
message : The name of the message being executed by the task.

future . [Stlwctun]

A future is a special object which represents a
remote computation. It has the following fields:

promise of a value to be returned bY a

rtioo: When the future has a value, it is placed in this field.

ug-id: The unique id of the message which associated with the computation which
wiII return a value to this future.

wait ing-procorsas : The number of processes waiting for the future to have a value.
waiting-process-list: The list of processes waiting for the future, in tconc format.

siaglo-usignnont : A boolean field; true if the future can only be assigned a value
once.

original-rossage: The contents of the rrquost-rossago message sent to start the
remote computation which will return a value to this future. Used when a clocked,
single-assignment future is reposted.

destinationa: The destination agents to which the original message was sent; used by
rqost.

multi-future [Structure]

A multi-future is a collection of futures. It is returned by the value-desired, multipost-
style messages. A multi-future contains a lists of satisfied and unsatisfied futures.
Initially, all futures in a multi-future are unsatisfied; as values of remote computations
are received, unsatisfied futures are given values and moved to the list of satisfied futures.

58

B.6 Declaring CAOS Agents
The file czardecl . lisp contains routines to declare sites and agents.

defrite [Macro]

This macro makes it possible to declare Flavor classes which implement site-global stor-
age within CAOS. dof rite is defined in terms of dofhorb, and thus, it is possible to define
instance variables within site instances which support abstract data type operations.
It is conceivable that if CAOS were ever implemented on a heterogeneous array of pre
cessors, there would be a number of site types, perhaps defined in a taxonomy.

v a n i l l a - s i t 0

Instances of
ing instance

v a n i l l a - s i t
variables:

0 implement site global storage. Each instance has the follow-

[Site]

s ta t i c -agent - s t roar - tab lo : Contains a dictionary which maps static (named) agents
to their input stream addresses.

~orolv~-agent-strew-table: Contains a dictionary which maps the names of
remote agents not yet known during initialization to the addresses of streams in
local agents which have requested the addresses of the unknown remote agent.

local-agoatr: A dictionary which maps the names of local age& to their addresses.

fro.-procor8-quota.: A queue which holds information allowing free processes to be
reused in preference to creating new processes.

cam-sit.: Holds a pointer to the CARE site structure for the site upon which the
car.0site is located.

locale: Holds a CARE-defined structure which is created by make-locale, and which is
updated by updata-locah. Each call to update-loctio modifies the structure so
that a call to locale-sita returns the least-recently-referenced site in the locale.
This is a simple approach to load-balancing.

incoming-rtream: Holds the stream upon which the site manager listens for site-
oriented requests.

defageat-keyword [Macro]

This macro defines the syntax for a new keyword used in a call to def agent (see below).
The keywords described in Chapter 4, plus a number of keywords not described, are all
declared through the use of dotagent-keyword.

def agent [Macro]

The dofagent macro, which is defined in terms of dofherb, is the basic form by which
new agents are declared. It is described in detail in Chapter 4.

59

def agent-method [hiacro]

The defageat-method macro is syntactic sugar for defmethod, but has the advantage
of being able to define the same method for multiple message names.

clock [Abdract Data Type]

The clock ADT responds to the :rearm, : tick, Tad : stop messages. The value field
of a vp-slot of the clock datatype holds a list of messages to be executed when the
clock “fires.”

vanilla-agent

The vanilla-agent is the most basic agent in the system. It has the following instance
variables:

local-process-stream-table: A dictionary which maps from a procors handle to a
utility rtroam the process uses to wait for wakeup messages

outstanding-message-table: A dictionary which maps from ids of messages to their
amociated futures.

ruanablo-procoss-list: A priority queue which implements the scheduling policy de-
fined for the agent. .

scheduler-lock: A monitor data type which is used to implement mutual exclusion
around routines which modify the agent scheduler database.

procorr-table: A dictionary which maps from CARE procors handles to CAOS
maaablo-itoas.

solf -address: The stream upon which the agent’s input process listens for requests
and responses from other agents.

priority-queue-coatart: Holds information for creating nodes in the runnable-
proces8-list priority-queue.

car.0r ito : Points to the care-site structure for the site upon which the agent is
located.

rymbolic-aare: Holds the name of the agent. Statically-created agents are named by
the application program; dynamically-created agents are named by CAOS, using
geasyn.

agent-scheduler.l Holds the CARE process handle of the process which is currently
performing the duties of the agent scheduler.

muming-procasseu: Holds a list of mutable-item's which represent processes handed
off to CARE for execution.

s~bolically-referenced-agents. Holds a list of other agents to be referenced by
name by methods executing within the context of the agent.

60

in i t ia l - forms: A list of expressions to be evaluated after CAOS has been initialized.
The purpose of these forms is to initialize an application.

:select-proces8-iii 0 item-l item-t [Method of vanilla-agent]

This method implements FIFO scheduling of tasks within an agent. It is called as the
priority function for the priority-queue stored in the -able-process-list. Pri-
orities are derived by comparing the time-stamp fields of item-l and item-d, which are
runnabla-it em’s.

process-agenda-agent wF4

The process-agenda-agent is a subclass of vanilla-agent. It differs from vanilla-
agent in that certain message names may be given execution priorities. Such priorities
are defined by specifying message names in order in a list stored in the process-agenda
instance variable; messages at the front of the list have higher priority than those at the
end of the list.

: select-process-agenda-timestamp item-l item-2 [Method of procers-agenda-agent]

This method implements “agenda-based” schedulihg of tasks in an agent. It is the prior-
ity function for the -able-process-list. Priorities are derived by first comparing
the rossage-name fields of item-l and item-e if these fields are the same, the function
then compares the time-stamp fields, as in the FIFO scheduler above.

B.7 Initializing a CAOS Application
The file czarinit . lisp contains the code which initializes CAOS at the start of a run. Initialization
occurs in two distinct phases: one, stutic, before the CARE simulator is started, and the other,
dynamic, just after.

The first set of functions, macro, and methods in csariait . lisp is involved in static initializa-
tion. During this phase, the application initialization file (see Figure 4.4 and Appendix A) is read
and interpreted. As a result of interpreting this file, all statically-declared agents are created on the
appropriate sites, and the messages which initialize the application once CAOS is running are stored
away.

: iait [:after Method ofcare-site]

During the static phase, new instances of care-site Flavor instances are created. The
: hit method is primarily responsible for initializing all of the abstract data types which
are part of the care-site.

: iait [: af ter Method of vanilla-agent]

When a new agent instance is created, the : iait method initializes a number of ab-
stract data type, and also adds an entry to the appropriate cue-sito’s local-agents
dictionary.

61

make-initial-agent agent-class global-name care-site [Macro)

This macro is invoked when the caor-initialize form is interpreted. Aged-class is
the name of an agent class as defined by def agent. Global-name is the name by which
this instance of the agent class will be known throughout the processing grid. Core-sate
is a tweelement list specifying the z and y coordinates of the cara-sito upon which
the new agent will be created. When the macro is executed, an instnace of agent-class
with name globe&name is created on ccn-site.

in i t i a l -agent -record [Structure]

This structure defines the a three-tuple with fields name, clarr, and location. Instances
of this tuple make up the aged-instances argument to the caos-initialito macro
(below). The initial-ageat-record also defines the argument list to make-iaitial-
agoat.

caos-initialize agent-instances initial-message9 [MUCTW]

Calls to this macro are the means by which CAOS applications are initialized. Agent-
instances is a list of initial-agent-record structures. hifidmessagcs is a list of
expressions to be evaluated when CAOS has finished initializing.
When a caor-iaitializo form is evaluated, four major activities occur.

1. All statically-declared agents are created by mapping over ugent-instances and call-
ing uko-initial-agent on each element.

2. An agent of class initial-agent is defined. The initial-agoat class is a subclass
of raailla-agoat which makes reference to all other statically-declared agents.

3. An instance of the initial-agent class, called OO? is created on site (1, 1).

4. The initial-messages argument is used to define an : init id-f arm method for the
class iaititi-agoat.

The remainder of ctuiait .lirp is devoted to dynamic initialization. The necessary site and
agent instances were created during the static phase; during the dynamic phase, these structures
must be linked up with CARE. Dynamic initialization consists of starting the site manager processes
in each of the sites, starting the input monitor and scheduler processes in each of the agents, and
exchanging the names and addresses of each of the agents in order to resolve symbolic references.
Dynamic initialiaation is completing by sending agent 007 an : iritial-f arm message.
at--czar iniiializer-dnam [Process]

The St&-czar process is the first process run once CARE starts. It drives all dynamic
initialization tasks, as follows:

1. Creates a site manager process in each site.
2. Waits for

requests.
each site manager process to return the address upon which it listens for

62

3. Creates a process on each site that contains a statically-declared agent, whose task
is to initialize those agents.

4. Waits for each site containing statically-declared agents to indicate its agents are
initialized.

5. Sends the : initial-f oxm message to the agent named 007.

rtart-8ite initializer-sham site-stream [Process]

This process ti the CAOS site manager. Upon start-up, it sends the value of site-stream
to initializer-stnam (upon which the start-czar process is waiting). It then enters an
endless loop in which it responds to service requests directed to site-stream. The specific
services implemented by the site manager were discussed in Section 5.2.

atart-agent8 all-can-sites-list start-agents-stnfam [Process]

This process is responsibie for initializing statically-declared agents on each site. For
each agent, it does the following:

1. Starts the input monitor process.

2. Broadcasts a :nou-initial-agent-0~~0 message, containing the agent’s name
and the address upon which its input monitor process listens, to all other site
managers in the grid (the value of d-con-sites-list).

3. For each agent named in the agent’s s~bolically-refrranc~-agenta instance
variable, sends a : request-symbolic-ref oreace message to the site manager, and
wait8 for a response.

4. Sends a message to the start-czar process indicating that the site is ready to run.

B.8 The CAOS Runtime System
The file czar. lisp contains the “runtimen system for CAOS. The functions documented in sections
4.3 and 4.4 are implemented by in this file. In what follows, we document those functions upon
which the functions in these sections depend.

agendize futun [Defun-Method of vanilla-agent]

This is the low-level function used to suspend a process until future receives a value.
It sets the calling process’s state to :surpondod, adds the process’s rrmnablo-itor to
the list of processes waiting for futun, sets the context field of the runnablo-item to
be the process’s wakeup stream, and sends to itself the :rorchedule message, which
invokes the scheduler to put the process to sleep. Upon waking up, it sets the process’s
state to : running, and returns to its caller (typically, value-future).

n u l t i-agendize multi-future [Defun-Method of vanilla-agent]

63

This function is the multi-future version of agondizo.

*remote-address-enumerating-functions+ [Vanable]

This variable holds an association list which maps ZETALISP data types into a function,
which when applied to an object of the associated type, returns a list of remote addresses.
This allows application programs built on top of CAOS to represent collections of agents
in forms other than lists.

coorce-dostination de&stream [Defun-Method of vanilla-agent]

This function coerces dest-shorn, which may be a remote address, a future, or the name
of an instance-v&able in solf into a stream.
If dcst-sham is a romoto-address, it is returned unmodified. If de&stream is a symbol,
it is evaluated in the context of self, and is expected to evaluate to a rsmoto-address
(this is the mechanism by which application programs are able to refer to statically-
declared agents by name). Finally, if dest-stream is a future, coerce-destination
calls value-future to retrieve the destination remote-address.

list-of-ramoto-addr.8808 list [Defun-Method of vanilla-agent]

This is the enumerating function for lists of remote addresses.

ennmorat e-dart iaat ions nmote-addresses

This function uses *rsmots-address-snumsrating-functions*
addresses into a list of remote-address’s.

[Defkn-Method of vanilla-agent]

to coerce nmote-

stream-send dest-shorn priority flogs message args [Defun-Method of vanilla-agent)

This function is a common subfunction used by CAos-defined posting operators. It uses
the facilities of CARE to send message and aqs to dest-stream with CARE priority priority.
Hogs ia a list which controls the operation of atream-sand. The following symbols may
be included in flogs:

:no-return -Causes strssm-send to send a side-effect message.

:ratrun-future -Causes stream-send to create a future, assign it a unique identifier,
send the message with self-address as the return address, and return the new
future to the caller.

:rsturn-multi-future --tike :rsturn-future, but causes strem-sand to create and
return a multi-future instead of a futaro.

.. single-assignment -causes stream-send to create a hglc-assignment future, a
future whose vaiue can only be set once.

make-and-initialize-futUre type [Defun-Method o/ vanilla-agent)

64

This function creates a new future of type type (either future or multi-future). It also
generates a unique identifier for the future in the agent’s outstanding-massage-table,
and places the future in the table, keyed by the unique identifier.

format-stream-request id stream message args [Functaon]

This function formats a message and its arguments for transmission to another agent.
Id is the unique id of the message; stream is the stream to which answers should be
directed.

agent-input-process agent request-stream [Process]

This process is the process which monitors solf-address for requests and responses
from other CAOS agents. It is created exactly once per agent, and performs the following
initialization steps:

1. Sets solf-address to the value of request-stream.
2. Creates the agent scheduler process.

3. Arms all clocks in the agent.

After initializing the agent, agont- input-process enters a loop, in which
messages directed to solf-addross ? and then processes them accordingly.

it waits for

: handle-request request for-efiect [Method ofvanilla-agent]

This method is invoked by the input monitor process when a request message is received.
It allocates a new runnable-item, and fills in its fields by copying from request, a
request-msssage structure.
It then sends the new zunnable-item to the scheduler process. If the scheduler is
idle when this method is invoked, the runnable-item is sent to the process in a CARE
message (this reawakens the idle scheduler); otherwise, the rrrPnabl.0item is simply
enqueued on the agent’s runnablo-process-list.

: handle-response response [Method of vanilla-agent]

This method is invoked when the input monitor process encounters a rsponso-message.
It first checks if the response is directed towards a future or a multi-future. In the
latter case, it calls upon the :handls-multi-reponse method to process the response.
In the former case, it does the following:

1. If the future associated with the response is a single-assignment future, the future
is removed from the agent’s outstanding-message-table.

2. The value is removed from the response, and placed in the value field of the future.

3. The satisfied field of the future is set to t.

4. The :run-processes method is invoked, which restarts all processes waiting on
the future.

6 5

: handlo-mult i-reponss multi-future vofue source [M e t h o d o f vanilla-agent]

This method is called when a response to a multi-future is received. Source is a cons
of the sending agent’s name and self-address; individual future’s in the multi-future
may be keyed by either.
The method uses source to find the appropriate future in the multi-future’s
uasatisfisd-future list, and places value in its value field. If the multi-future
is in :aay wakeup mode, all processes waiting on the future are reawakened; if the
multi-future is in : all mode, the waiting processes are reawakened only if there are
no more unsatisfied future’s.

agent-schsduler ogent schcdulerIprocessIstreom [Process]

This process is the CAOS scheduler process for agents. It is written as a loop which
performs the following operations:

1. If the scheduler hss previousiy determined that there are no runnable processes, or
if there are requests waiting in the -able-process-strsam, the scheduler tries
to get the next request from the rrurnablo-procrss-stream. If neither condition
is true, the scheduler skips to step 3, below.

2. If the message is a symbol, it is the name of a clock which has just ticked; in this
csse, the scheduler sends the : tick message to the clock.
If the message is a ruaaablo-itom, it is a request to the scheduler to perform an
operation on the associated process. To be sent to the scheduler, the state of the
process must be either :suspondsd or :novor-run. In either csse, the scheduler
adds the item to the runnablo-process-list.

3. The scheduler next tries to hand to CARE for execution as many processes as it can.
The number of processes it is allowed to run at any one time is determined by the
valueofmmbor-of-running-agent-procossos*. *

4. Finally, the scheduler checks to see if any special conditions are outstanding. One
special condition is that the user has requested a breakpoint (e.g., to perform some
debugging with the CARE clock shut off). The other special condition is that it
is about to be too late to perform an immediate garbage collection; in this case,
the scheduler shuts off the CARE clock, and calls gc-immodiatsly, the ZETALISP
function which invokes the garbage collector.

: add-to-raPnable-process-list item [Method of vanilla-agent]

This method enqueues a rrmnabls-item on the agent’s runnabls-process-list. If the
CAOS instrumentation package is enabled, it also adds a line representing the process to
the scrolling-text-panel.

:chooso-next-runnable-item [Method ofvanilla-agent]

66

This method removes the highest-priority rannable-itsm from the runnable-procsss-
list, unless the number of processes already handed to CARE is greater than or equal
to *number-of -agent-running-processes*. I
If the CAOS instrumentation package is enabled, and an item was removed from the
queue, this method also removes the line representing the process from the scrolling-
text-panel.

: schedule-next-process return-new-items [Method ofvanilla-agen2)

This method is called by the scheduler process to hand the highest-priority process to
CARE for execution. If the state of the process is :nevar-nan, the : create-new-process
method is invoked to create a new process. If the state of the process is :-able, th$
process is reawakened by calling the function resume-old-item.

:rsschsdule firfun [Method of vanilla-agent]

This method is invoked to suspend a process until future has a value. It first updates
the CAOS instrumentation, then tries to run as many processes as possible (to keep the
processor ~b busy as possible), and then suspends, waiting for a packet on its wakeup
stream. Upon reawakening, it updates the CAOS instrumentation once again, and returns
to its caller (typically agsndito).

: croato-now-process rrrnnoble-item [Method ofvanilla-agent]

This method is called to create a new application-level process. It preferentially recycles
a process waiting in the fro.-process-quouo of the cue-sits associated with the
agent. If there are no free processes available, it creates a new process using the, facilities
OfCARE.

mossago-handler agent mnnable-item wokctrp-shorn

AII CAospostings are executing in processes in which
This process is a loop, which does the following:

[Process]

msssags-handler is the top-level.

1. Executes the message and arguments contained in runnobie-item, an instance of a
aablo-item.

2. TXes to pull the next runnablo-item in state :never-run off the runnabls-
process-list. If there is such an item, message-handler returns to step 1 with
runnoble-item set to the new zunnable-item.

3. Otherwise, the process queues itself on the frse-process-qusuo of its associated
cars-sit., to be reused later. It does this by calling the function wait-for-an-
itsm.

czar-initialize dimensions file ouz-display [Function]

This function is called to start CAOS. It initialize a number of global variables, sets
up the CAOS instrumentation, and reads the file, the application file which contains the
caos-initialize form.

6 7

Bibliography

[l] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Dofa Structure and Algorithms. Addison-Wesley,
1983.

[2] N. C. Aieilo, C. Bock, H. P. Nii, and W. C. White. Joy of AGE-ing. Technical Report, Hew&tic
Programming Project, Stanford University, 198 1.

[3] H. Brown, C. Tong, and G. Foyster. PALLADIO: An Exploratory Environment for Circuit
Design. IEEE Computer, 16, December 1983.

[4] H. I. Canon. Flavors: A Non-Hicnwchical Approach fo Object-Oriented Programming. Tech-
nical Report, A.I. Lab, Massachusetts Institute of Technology, 1981.

[S] B. A. Delagi. The CARE User Manual. Technical Report, Knowledge Systems Laboratory,
Stsnford University, 1986. In preparation.

[6] Denelcor, Inc. Heferogeneous Element Processor: Ptinciples of OpcWion. February 1981.

[7] L. D. Erman, F. Hay-Roth, V. R. Lesser, and D. R. Reddy. The Hearsay-II Speech Under-
standing System: Integrating Knowledge to Resolve Uncertainty. ACM Computing Surveys,
12:213-253, June 1980.

[8] R. P. Gabriel and 1. McCarthy. Queue-Based Multiprocessing Lisp. In Confennce Record of
the 1981 ACM Symposium on Lisp and Functional Programming, August 1984.

[9] R. H. Halstead, Jr. Implementation of MultiLisp: Lisp on a Multiprocessor. In Conference
Recod of the 1984 ACM Symposium on Lisp and Functional Pwgramming, August 1984.

[lo] 8. W. Lampson and D. D. Redell. Experience with Processes and Monitors in Mesa. Commu-
nicationa of the ACM, 23(2):105-117, February 1980.

[ll] V. R. Lesser and D. D. Corkill. The Distributed Vehicle Monitoring Testbed: A Tool for
Investigating Distributed Problem Solving Networks. The AI Magattne, 15-33, Fall 1983.

[12] E. Y. Shapiro. Lecture Notes on the Bagel: A Systolic Concurrcni Prolog Machine. Technical
Memorandum TM-0031, Institute for New Generation Computer Technology, November 1983.

6 8

[13] R. G. Smith. Structunzd Object Programmtng :n Strobe. Technical Report SYS-84-08,
Schlumberger-Doll Research, March 1984.

[14] R. G. Smith and P. Friedland. Unit Packuge User’s Guide. Technical Report HPP-W-28,
Heuristic Programming Project, Stanford University, December 1980.

69

