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Abstract
CAREL is a Lisp implementation designed to be a high-level interactive systems

programming language for a distributed-memory multiprocessor. CAREL insulates the user

from the machine language of the multiprocessor architecture, but still makes it possible for

the user to specify explicitly the assignment of tasks to processors in the multiprocessor

network. CAREL has been implemented to run on a TI. Explorer Lisp machine using

Stanford’s CARE multiprocessor simulator [ Delagi 861.

CAREL is more than a language: real-time graphical displays provided by the CARE

simulator make CAREL a novel graphical programming environment for distributed

computing. CAR-EL enables the user CO create programs interactively and then watch them run

on a network of simulated processors. As a CAREL program executes, the CARE simulator

graphically displays the activity of the processors and the transmission of data through the

network. Using this capability, CAREL has demonstrated its utility as an educational tool for

multiprocessor computing.

1. Context
CAREL was developed within the Advanced Architectures Project of the Stanford Knowledge

Systems Laboratory. The goal of the Advanced Architectures Project is to make knowledge-

based programs run much faster on multiple processors than on one processor. Knowledge-

based programs plaie different demands on a computing system than do programs for

numerical computation. Indeed, multiprocessor implementations of expert systems will

undoubtedly reqyire specialized software and hardware architectures for efficient execution.

The Advanced Architectures Project is performing experiments CO understand the potential

concurrency in signal understanding systems, and is developing specialized architectures to

exploit this concurrency.

. The project is organized according to a number of abstractIon layers, as shown in Figure l-1.

Much of the work of the project COllSMS of deslgnlng  and lnlp~emrnt~ng languages to spar1 [he

semantic gap between [he applications l,?)er and the hardware nrchltecture.

The  design and implementation of C,AREL depends  malnl) on the hardware architecture

level. The other levels will be ignored in this sunjnl:!r!,, but are described briefly in the full

paper. At the hardware level. the prO)eCt is CO~~c~n~KlflIl~  011 a ClaSS of multiprocessor

archi tecrures. The class is roughly defined as hllk1D. large gr,?ln,  locally-connected, distributed
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Where is the potential concurrency in signal
understanding tasks?

Problem-solving
frameworks

How do we maximize useful concurrency and
IIIinimiZe SerialiZatiOn  in problem-solving
architectures7

Knowledge-representation How do we develop knowledge representations to
and inference maximize parallelism In inference and search?

Systems programming How can a general-purpose symbolic programming
language language support concurrency and help map

multi-task programs onto a distributed-memory
multiprocessor7

Hardware architecture What multiprocessor architecture best supports
the concurrency in signal understanding tasks?

Fig& 1-I: Multiple layers in implementing signal understanding expert
systems on multiprocessor hardware

memory multiprocessors communicating via buffered messages. This class was chosen to match

the needs of large-scale parallel symbolic computing with the constraints imposed by the desire

for VLSI implementation and replication. Like the FAtM-1 project [Davis and Robison 851,

we consider each processing node to have significant processing and communication capability

as well as a reasonable amount of memory - about as much as can be included on a single

integrated circuit (currently a fraction of a megabit, but several megabits within a few years).

Each processor can support many processes. As the project progresses, the detailed desigtl of

the hardware architecture will be modified to support the needs of the application as both

application and architecture are better understood.

The hardware architecture level is implemented aS a Simulation running on a (uniprocessor)
l .

Lisp machine. The simulator, called CARE for “Concurrent ARray Emulator” (sic), carries out

the operation of the architecture at a fevel sufficiently detailed to capture both instruction run

times and communication overhead and latency. The CARE simulator has a programmable

instrumentation facility which permits the user to attach “probes” to ally object or collection of

objet& in the simulation, and to display the data and hrstorrcaj  summarres on “instrunlentsP*  on
.

the Lisp machine screen. Indeed, the display of the processor grid itself is olle such

instrument.
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The CAREL (for CARE Lisp) language is a distributed-memory variant of QLAbiSDA

[Gabriel and McCarthy 841 and an extension of a Scheme subset [Abelson and Sussman 85-J.
CAREL supports futures (like Multilisp [Halstead 841). truly parallel LET binding (like

QLAMBDA), programmer or automatic specification of locality of computations (like Par-Alfld
[Hudak and Smith 861 or Concurrent Prolog [Shapiro 84j.’ and both static assignment of

process to processor and dynamic spread of recursive computations through the network via

remote function call. Despite the length of this list of capabilities, CAREL is perhaps best

described as a high-level systems programming language for distributed-memory multiprocessor

computing.

The CAREL environment provides both accessibility and visibility. CAREL is accessible

because, being a Lisp, it is an interactive and interpreted language. The user may type in

expressions directly and have them evaluated immediately, or load CAREL programs from files.

If the multiprocessing features are ignored, using CAREL is just usrng Scheme. The

multiprocessing extensions in CAREL are derived from those of QLAMBDA. For example,

PARALLEL-LET is a simple extension of LET which computes the values for the LET-

bindings concurrently, at locations specified by the programmer or determined automatically.

CAREL gains its visibility through the CARE simulator: CAREL programmers can watch

their programs execute on a graphic display of the multiprocessor architecture. Figure 5-l

shows CARE and CAREL with a typical six-by-six grid of processors. A second window on

the Lisp machine screen is used as the CAREL listener, where programs are entered. As a
CAREL progk runs, the simulator illuminates each active processor and each active

communication link. The user may quickly gain an understanding of the processor usage and

information flow in distributed CAR EL programs. CARE instruments may also be used to
gather instantaneous and historical data about the exection  of CAREL programs.

The rest of the paper is divided into a discussion of the philosophy of CAREL, a description

of the language CAREL. and some rllustrared  examples of CAREL in actron on the CARE

simulator.
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3. Philosophy and Design
The CAREL language was developed with a number of assumptrons in mend. The following

assumptions are stated very briefly for this summary but appear in expanded form in the full

paper:

1. CAREL (like Multilisp) was designed to augment a serial Lisp with “discretionary”

concurrency: the programmer, rather than the compiler or the run-time support

system, decides what parts of a program will be concurrent. CAR EL provides

and explicit processes [Filman andparallelism through both lexical elaboration

Friedman 841.

2. Similarly, CAREL was designed to provide d iscretionary locality: the programmer

also decides where concurrent routines will be run. A variety of abstract

mechanisms are provided to express locality in terms of direction or distance or

both.

. 3. CAREL generally implements eager evaluation: when a task is created, it is

immediately started running, even if the result is not needed immediately. When

the result is needed by a strict operator, the currently running task blocks unt11 the

result is available.

4. CAREL is designed to automatically manage the transfer of data, including

structures, between processors. CAREL supports general methods to copy lists and* .
structures from one processor to another, and specialized methods to copy programs

and environments.

5. CAREL is designed to maintain “archrtectural fidelrty”:  aI1 Communrcation  of both

data and executable  code is explrcrtly handled  by the simulator so that all costs of

communicatiorl may be accounted for.

6. CAREL provides certain spec1aliLed "Soft archlrccturtts”.  such ;ts pipeJlIIes,  Ovtfrl;lLeda

on the processor network.

7. Through CARE, CAR EL graPhrc31’y drsPla>s the runtrme behavior of executing

programs.



5

8. Finally, and unfortunately, CAREL ignores resource- management, including the

problem of garbage collecting data and processes on multiple processors. Resource

management is a very important problem, but CAREL doesn’t yet have a solution

for it. CAREL currently depends on the memory management of the Lisp machine

on which it

4. The Language
This section presents a language description of CAREL and examples - with graphics - of its

use. The functions and special forms of CAREL were selected roughly as the union of the

capabilities of QLAMBDA (as extended for distributed memory) and Par-Alfl. There has been

no attempt as yet to create a minimal but complete subset of CAREL.

On top of Scheme subset, CAREL supports the following functions and special forms:

PARALLEL-LET: a special form for parallel evaluation of LET binding. Optionally, the

programmer may specify the locations at which the values for binding are to

be eval ua ted.

PARALLEL-LAMBDA: a special form to create asynchronously running closures. Optionally,

the programmer may specify the location where the closure is to reside. The

closure may also include state variables so that it’s behavior may vary over

time.

PARALLEL: a parallel PROGN, evaluating the component forms concurrently.

PARALLEL-iW!Y:  a parallel mapping function which applies a single function

arguments at multiple locations, returning a list of the results.

MULTICAST-MAY: a parallel mapping function which evaluates the same form

to multiple

at multiple
locations and gathers up the values returned in the order in which they are

returned.

FUTURE: a special form specifying a form to be evaluated and the site at which the evaluation

should take place. Returns 8 future ~llc;lpSu~~ting  the value that will

eventually be returned.

TOUCH/FORCE:  a function to force a future to give up its value.

ON: evaluates ;1 form at a specified location. Equivalent to (TOLKII (FUTURE . ..)).
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In addition, CAREL supplies the following datatypes:

FUTURE-OBJECT: a datatype to encapsulate a value to be returned eventually after computing

at a specified location

REIMOTEYADDRESS: a pointer to an object at a remote site

LOCATION: grid coordinates, neighbor/polar coordinates, or a keyword (:ANY, :ANY-

NEIGHBOR, :ANY-OTHER)

The following describes the syntax of CAREL’s functions and special forms, and gives

illustrated examples of their use. Certain expressions are used repeatedly in the paragraphs that

follow, so their definitions appear first:

location-form is any

in the CARE network.

form that evaluates to something that can be interpreted as a location

body is an arbitrary I ist of forms.

PARALLEL-LET:

(PARALLEL-LET parallel? bindings . body)

parallel? is an arbitrary form, used to control the parallelism of the evafuaiion

bindings is a list of triples (variable value-form location-form)
AS in QLAMBDA, parallel? is used to control whether the bindings should indeed be

evaluated in parallel. If parallel? evaluates to () Or #!FALSE, then the PARALLEL-LET is.
evaluated as an.ordinary  LET, with the bindings being evaluated in (an unspecified) sequence,

and the body being evaluated in an environment including those bindings.

If parallel? evaluates to T or #!TRUE, then the location-forms are evaluated concurrently

and the concurrent evaluation of the value-forms is begun. The variables are immediately

bound to the future-objects correspoildh0 to the values LO be returned, and the evaluation of

the body is begun. The body may block temporarily on unfinished futures.

In all these cases, the value returned by the PaAR;lLLEL-LET is the (forced) value of the last

form in the body.

PARAI,I,EI,-l,,~iClnnt\:

(PARALLFX-I,AlVBDA parallel.7 args /ocation-form state-bindings

. body)
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Evaluating a PARALLEL-LAMBDA sets up a closure  at a remote site specified by location
and returns a function of the specified arguments. When this function is applied, the list of

evaluated arguments is sent to the remote closure, the remote evaluation is initiated, and a

future is immediately returned. The remote closure created by PARALLEL-LAMBDA contains

some state variables, bound in state-bindings. A state variable is changed by applying the

PARALLEL-LAMBDA function to the arguments (:SET variable-name value).

parallel? is used, as in PARALLEL-LET, to determine whether parallelism is actually

employed.

PARALLEL:

(PARALLEL . body)

The PARALLEL special form initiates the concurrent evaluation of the forms in the body.

Control returns from PARALLEL when all of the forms have been evaluated. The value

returned by PARALLEL is undefined.

PARALLEL-MAP:

(PARALLEL-MAY function-form arguments-form locations-form)

funcfion-form  evaluates to a function of one argument

arguments-form evaluates to a list, each member of which is to be used as an argument to

the function

locations-form. evaluated to a list of locations.

PARALLEL-MAP, like MAP, applies a function repeatedly to arguments dra; from a list

and returns a list of results. Unlike MAP. PARALLEL-YAP performs the function

applications remotely, and returns a list of futures that will eventually evaluate to the results.

MULTICAST-VAP:

(/kl UI,TICAST-&1X P function-form locutions-form 1

MULTICAST-MAP invokes a functron of no arguments at each location in a list of

locations. MULTICAST-YAP  Immttdlately  returns ;I list of futures corresponding to the values

that will eventually be returned. Since the funwon called takes no arguments, the values

returned can be different only if they depend on the local state of the processor at the location

of evaluation, as embodied in the “global” environment  of that processor.



MULTICAST-iVfAP-NO-REPLY:

(MULTICAST-MAP-NO-REPLY function-form locations-form)

MULTICAST-MAP-NO-REPLY invokes a function of no arguments at each location in a

list, but does not cause results to be returned. The value returned by MULTICAST-MAP-NO-
REPLY is undefined.

PIPELINE:

(PIPELINE stage1 . . . stagen)

where a stage ‘is:

(name args location-form state-vatiables . output-forms)
For each stage expression, PIPELINE establishes a remote-closure at the specified location.

and then links the remote closures so that the output of one stage becomes the input of the

next stage. The linked closures form the working part of the pipeline. PIPELINE then returns

a function which, when applied, passes its arguments on to the first stage of the pipeline and

immediately returns a future which will eventually contain the result that comes out of the

pipeline. To ensure that the results that comes out of the pipeline correspond one-for-one

with the sets of arguments that went in, the future-object to hold the result is created

atomically with the entry of the arguments into the pipeline and is passed along with the data

through the pipeline.

5. Some Ekimples
PARALLEL-LET:

. . .. . . This subroutine concurrently  performs trivial computations at the four

. . .. * . corner neighbors of a given location  and collects the results.. . .9 9 *
(define (cycle-corners-l start-location)

, (parallel-let t ((xl (list I 2) (nelqhbor 0 start-location))
(x2 (list 3 4) (neighbor 2 (nelqhbor 1 start-location)))
x3 (llst 5 6) (neighbor 3 start-location))
x4 (list 7 8) (nelghoor  5 (nelgnbor 4 start-locatlon))))

(append xl x2 x3 x4)))

:;; CYCLE calls the subroutlne starting at the current processor. . .1 * .
(define (cycle) (cycle-corners-l .here*))
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PARALLEL-MAP (see Figure 5-l):
::: FOUR-CYCLE calls the CYCLE program at four different locations
. . .. . . in the processor grid.
9 . I

(define-(four-cycle)
(parallel-map cycle-corners-l

Figure 5- 1: PARALLEL-MAP: Execution of the FOUR-CYCLE program.
Active processors are displayed in inverse video. Active

communications links are drawn as lines joing particular ports of the
processor nodes. The processors hand-annotated with asterisks are the

cycle ten ters. Each processor is at a different point in the cycle.

PARALLEL-LAMBDA:
. . .. . * This creates a process at some other node in the network.. . .. * * returning an object which, when applied as a function to two
. . .
* l . arguments, evaluates a linear expression on those arguments.. . .. * .
(define (linear-evaluator al bl)

(parallel-lambda t (x y) ':any-other ((a al) (b bl))
(+ (* a xl (* b Y))))

MUI,TICAST-slap-NO-RE~‘I,Y  (see Figure 5-2):
. . .
I . . This activates the processor at each location in SITES.. . .
(deflne (activate-locations sites)

(multicast-map-no-reply (lambda () *here*) sites))

kWI,TICAST-MAP (see Figure 5-3):

;;; This sends a message to each location in the list SITES. asking It
;;; to return its location.

(define (Identify-yourself sites)
(multicast-map (lambda () *here@) sites))
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Figure 5-t: MULTICAST-MAP-NO-REPLY: Samples from the execution of the
ACTIVATE-LOCATIONS program, showing how the multicast message 1s

distributed and how the processors receiving the message are
activated. Since no reply is required, the computation just dies out

once the distributed programs are run.

PIPELINE:

;:; This sets up a pipellne across the bottom and up the right-hand
;;; side of the processor array. This trivial pipeline simply adds
. .,,; 1 to the input value at each stage and passes the result on to. . .. . . the next stage. It also prints out the result at each stage.
. . .* * . usdng a printing mechanism  "outside" the simulation.. . ., s 9

a 1)) (print (.+ a WI

6. Irnplcn~cntation
CAREL is implemented by a “semicircular”’ illterPre[er. implemented in Zetalisp and

drawing heavily on the CARE simulator. Some details  Of the tmpkmentation are provided in

the full paper. These include the’ representation Of CAREL datatypes,  the use of a “global”

I Semlclrcular.  nut mclacirculnr, bcccruse IL IS Implrmen~crd in Lisp. but nul in CAREL.



Figure 5-3: MULTICAST-blAP: Samples from the execution of the IDENTIFY-YOURSELF
program. The multicast method is distributed as in Figure 5-2, but iI1

this example the processors must send a value back to the requesting process,
The network becomes congested 3s c?ll the processors respond then

gradually returns to rest ;1s  the messages reach their destination.
The notion of a network “hot-spot” is clearly demonstrated.



Figure 5-4: PIPF.LIT\iE: Samples from the execution  of programs constructing and
using a CAREL software pipeline. The pipeline runs along the bottom

and up the right side of the processor array. The pIpehe is

constructed in two passes- The first pass (a) establishes  a process
a[ each sire and the second pass Ib) links  the processes together.

The execution  of the pipeline 011 L1 Sillgle  ar@umerlt  (c) shows data
flowwg through the plpelille us&0 onI? Ioc~I COmmUlllCclt~O~~.  The l;lst

figure (d) shows multiple data I[CmS may flowlflg through  the
pipeline simultaneOuSlY9 keeplrlg multiple processors $usy.
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environment (full copies of which exist at each processor) and processor-local environments,

and the interface to the CARE hardware simulator.

7. CAREL and Other Langugges
CAREL was strongly influenced by three other languages: QLAMBDA [Gabriel and McCarthy

841, Par-Alfl [Hudak and Smith 861, and Actors [Agha 851. QLAMBDA provided the idea of

having two kinds of parallelism (which Filman and Friedman called parallelism by lexical

elaboration and parallelism by explicit processes). CAREL addresses the question, “What would

QLAMBDA look like on a distributed-memory multiprocessor?**.

Par-Alfl provided the notion of a dynamic variable Self that a process could use,

reflectively, to determine where it was executing. The part of CAREL chat implements

parallelism by lexical elaboration is very similar CO Par-Alfl. CAREL adds the ability to deal

with proceties as first class objects.

Actors continues to serve as the “right thing” in the domain of languages for parallel

symbolic computing. Calculating the difference between what CAREL can do and what Actors

should do is always a valuable source of ideas for improvement. CAREL provides one

particular set of primitives for describing both concurrency and locality. These primitives are

powerful enough to implement a wide variety of interesting programs, but still provide less

concurrency, less capability for managing synchronication,  and less theoretical elegance than

Actors. For example, CAREi enforces synchronization at the inputs and outputs of a function

or closure: when APPLY is invoked, all the arguments must have been pre-evaluated, and

multiple outputs are considered to be generated in a single list. In the Actor language SAL

described by Agha, the inputs to an Actor may arrive at any time and in any order and

outputs likewise may be generated asynchronously. Furthermore, Actors promise to make

process management as invisible as memory management is in Lisp.

The pian for CAREL is to migrate it toward an Actor language. The CARE architecture is

very close in spirit to the Actor approach. and would provide a nearly ideal environment for

implementing Actors.
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