
August 1986 Hcport No. STAN-CS-86 1129

Beta Operations: Efficient Implementation of a
Primitive Parallel Operation

bY

lCv:rn It. Cohn ;III~ fk~~mcy W. H;lddad

Department of Computer Science

Sl;~r~Tcml lltiivcrsily
Sl;lllthrtl, CA 94305

-- .,’
-- .:
-.-d
__

Beta Operations: Efficient implementation of a
primitive parallel operation

Evan R. Cohn’ Ramsey W. Haddad
Stanford University St anford University

Abs t rac t

We will consider the primitive para.llel operation of the Connection
Machine, the Beta Operation. Let the input size of the problem be N
and output size M. We will show how to perform the Beta Operation
on an N-node hypercube in O(log N + log’ h1) time. For a fi x fi
mesh-of-trees, we require O(log N + a) time.

1 Introduction

The ever decreasing cost of computer processors has created a great interest
in multi-processor computers. However, along with the increased power that
this parallelism brings, comes increased complexity in programming.

One approach to lessening this complexity is to provide the programmer
with general purpose parallel primitives that shield him from the structure of
the underlying machine. In The Connection Machine [HiS5], Hillis suggests
the Beta Operation as a parallel primitive for his hypercube-based machine.
In this paper we shall explore efficient ways to perform this operator on
several different well known architectures including the hypercube. We then
present some lower bounds associated with the problem.

1.1 The Beta Operation

For a two-argument function, F, and an array of values, C = [co,. . . , c,], let
us define the F-reduction of C as the natural (APL style) reduction, except
with no specified evaluation order. That is

. F/[co] = co;

l F / ☯c o , . . -7 c m] = F (F / ☯c ,,c?ri].F/[~?r~+~,...,~n,]) for some 0 5
i < m, and some permutation YK

We are given an F, and N pairs, (go, vo), . . . , (gN-1, ‘UN-~), as input to
a Beta Operation. The gj’s should be thought of as group numbers and the
vj’s as data. Let us call the collection of (g, v)-pairs with the value g = i, the
i-block. Occasionally, we will also use the term i-block to refer to the set of
processors holding the (g, v)-pairs of an i-block when no misunderstanding
can result. Let G = {i 1 3j, gj = i} (that is, G is the set of the i’s such
that block i has at least one element). If s; is the array of v-values from the
i-block then a Beta Operation computes the values y; = F/s;, for i E G.

Note that with our definition of the F-reduction of a block, performing
a Beta Operation is ill-defined unless F is commutative and associative.

There are two slightly different formulations of the Beta Operation. In
both formulations, each processor j initially contains a pair, (gj, vj). In
the first formulation, the IGl non-trivial (i, y;) pairs end up in sorted order
(according to i) in the first IGl processors. In the second formulation, at the
end of the operation, each y; appears at processor i.

This difference is generally unimportant since output of the first type
can be converted to that of the second type output with a single monotone
routing. For all the networks that we’ll consider, the time to perform a Beta
Operation will dominate the time of a monotone routing.

2 Hypercube

We focus first on N processor hypercube systems, where there is a known
bound on ICI. We shall discuss the necessary modifications for the case
when IGl is unknown in Section 4. For simplicity, we shall assume that IGl
is a power of 2. It is true that 2;-l < IG[5 2i for some i. If we assume
that IGl is really 2i, the algorithm will work with the same asymptotic time
complexity. Let N = 2” and IGl = 24. ’

2.1 The Generic Step

In each step of this algorithm, we will conceptually break the hypercube
into smaller hypercubes. Vc’e then perform the Beta Operation on all of the

‘The special cases where q doesn’t divide n evenly or ICI” > N can be treated by
trivially modifying the algorithm given.

2

subcubes in parallel by applying the following sequence of subroutines.

Sort. We sort the (g, w)-pairs in the subcube by g-value.

Reduce. For each distinct g, we combine the pairs with that g into a single
(g, v)-pair, by applying the function F to the associated w-values.

Compact. We route the resulting (g, w)-pairs (5]G] of them) into the
lowest numbered processors of the subcube, retaining their sorted-by-
g order.

We will organize the algorithm such that at the end of step i in Phase
2, there will be (g, u)-pairs only in the IV/]GJi+” processors with binary
representations:

(i+2)q n-(i+2)q
n-
0 . ..() *...* .

By the end of the last step (i = n/q-3) of this phase, we will have performed
the Beta Operation on the whole hypercube.

2 . 2 Phase 1

We break the N processors into IV/]G13 hypercubes of]G]” nodes each such
that hypercube j has binary representation:

For each hypercube we perform the following:

Sort. We use the odd-even merge sort to sort by g-value.

Reduce. Using O(log]G]) distribution-from-leaders [U84], we can combine
the ICI3 (g, v)-pairs into one (g, w)-pair per distinct g. Since this reduc-
tion takes the same time as the above sorting subroutine, O(log2 IG]),
it suffices for asymptotic analysis. Nevertheless, for various reasons
that will become clear later, it is important to decrea,se the time taken
by this step to O(log ICI). Tlle reduction can be done efficiently as
follows.

3

2.2.1 Efficient Hypercube Reduction

Let us call the largest hypercube contained in an i-block the central
block (CB). (If an i-block has two largest hypercubes that can’t be
merged because their addresses are of the form (k).l l *j and (k+l).O.*j,
then always choose the lower numbered one.) We show in Lemma 2.1
below that the CB for an i-block of size s, 2j+2 - 1 > s > 2j+l - 2,
must be of size 2J’ or 2j+*. The reduction takes 3 steps.

Step 1. All the processors in a particular i-block determine if they
are part of the CB for that i-block or not.

Step 2. All the processors, pk, not in the CB for their i-block, send
their (g, w)-pairs to either pk+lCBl, p&lCBl, or &-2.lCBl depending
on which of these is an address in their i-block’s CB.

Step 3. In para,llel, each of the Cl3’s reduces all of its (g, v)-pairs to
a single value.

In Step 1, each processor checks the two processors on either side to
determine if it is the first or last processor in its i-block. Then, with
two distribution-from-leaders, each processor can be told the numbers
of the first and last processors in its i-block. Using this information a
processor can determine if it is part of the CB in constant time. Step
2 is exectued as follows. There are at most ICBl - 1 elements in the i-
block before the first element in the CB. If this were not the case then
the first ICB(elements would constitute the CB. There are at most
2 a ICBl - 1 elements after the CB, or the CB would be twice as big.
The processors who are not part of the CB can send their pairs over
to the a,ppropriate processors of the CB with three montone routing
steps. Step 3 is straightforward. The total time for all three steps is
O(log N).

Lemma 2.1 The C B for an i-block of size s, 2j+2 - 1 > s > 2j+r - 2,
must be of size 2j or 2j+l.

Proof: Clearly I CB) can be no bigger than 2j+‘.

Assume that we have a CB of size 2h, where 0 5 h 5 j - 1, with
addresses of the form (k) . *h, with k even. The element at location
(k - 1) . Oh is not in the i-block, because then the hypercube starting

4

at this address would be the CB. The element at location (k + 1). lh is
not in the i-block, because otherwise concatenating the blocks (k) . *’
and (b + 1) . & would give us a CB of size 2h+1. Thus s 5 3 l 2h - 2,
which is a contradiction for all h’s in the range specified.

Simlarly, we get a cont.radiction if we assume that we have a CB of
size 2h with addresses of the form (k) . *h, with k odd. m

Compact. Consider the (g, v)-pairs left by the reduce stage. By means
of a prefix operation we can compute, for each (g, v)-pair, how many
(g, v)-pairs are in lower numbered processors. Then we can compact
via a monotone routing.

2 . 3 P h a s e 2

Steps i = 1 through i = n/q - 3:
We break the N/IGI’-l lowest numbered processors into N/ 1 Gli+3 hyper-

cubes of ICI” nodes each, such that hypercube j has binary representation:

(i-l)qAnz

0 . ..O *...* j .

Note that with this choice of partitioning the hypercube, each subcube has
0111~ PI2 (a+-~airs. This is because before Step i only the processors with
a,ddresses of the form:

xAn--(i+Z)q

0 . ..() *...* y--- .

contain (g, v)-pairs. For each subcube, perform the following:

Sort. We can use the Nassimi-Sa.hni sort [NSS2], to sort the lG’12 (g, w)-pairs
by g-value.

Reduce. It is easiest to view the ICI” node hypercube as a lG’12 x lG12
matrix, pij, with the processors arrayed in order of increasing proces-
sor number (in row-major form). Initially, only the first row contains
(g, v)-pairs. Using a prefix operation, we can determine which proces-
sors are the leftmost processors in their i-block. Call these the Zeaclers.
We start by broadcasting the contents of each first row processor, prj,
to the column j. Then each processor, pjj, broadcasts to row j. Fi-
nally, in the columns of the leaders, F is applied to those v-values
whose corresponding g-values match the leader’s.

5

f

Compact. As in Phase 1, consider the (g, V) pairs left by the reduce stage.
Move all of these pairs to the first row. All the processors that don’t
contain one of these pairs set their g-value to infinite. We can then
compact by sorting on g-value using the Nassimi-Sahni sort.

2.4 Time Analysis

The sort step of Phase 1 takes O(log’ ICI) time. The reduce and compact
subroutines of Phase 1 both ta.ke O(log ICI) time. In every step of Phase 2,
each of these subroutines takes O(log ICI) t ime. There are O(log N/ log ICI)
such steps so Phase 2 takes time O(logN). Thus, the overall time for the
algorithm is O(logN + log2 ICI).

3 Mesh-of-Trees

We first note that the Beta Operation can be performed easily in time
O(a) on a fl x 0, N-processor mesh system, even if IG] is not known
beforehand. This upper bound is tight since there is an obvious lower bound
of Q(n) time even when IGl is given. In the case of mesh-of-trees (MOT)
our results are for the fl x 0,0(N) processor MOT system where there
is a known bound on ICI. 2

3.1 The Generic Step

The generic steps in Phases 2 and 3 will be essentially the same as the
generic step of the hypercube algorithm. The essential difference is that
the size of the sub-MOT’s we work on will grow each step. Remember that
in the hypercube, for the steps in Phase 2, we were always working with
sub-hypercubes of a single size (ICI” nodes each). Another minor difference
is that each sort-reduce-compress step is preceded by a routing step.

We start Phase 1 by performing the Beta Operation 011 sub-h40T’s with
side dm. In Phase 2 we increase the size of the sub-MOT’s considered un-
til the number of processors is equal to the square of the number of remaining
(g, u)-pairs in each sub-MOT. In Phase 3 we can then quickly increase the
sub-MOT size to fl x fi.

2As was the case with the hypercube, we shall disregard the special cases when divisions,
square roots and logarithms produce non-integral values. Although these cases present no
special problems, dealing with them introduces needless clutter.

G

3.2 Phase 1

Break the N processors into N/4(GI sub-MOT’s with side d4v[. We can
perform the Beta Operation on these sub-MOT’s using just the mesh con-
nections. Note that this can be done without knowing IGl beforehand. We
simply sort on the g-values and reduce the resulting i-blocks to single values.

3.3 Phase 2

Steps i = 1 through 3q/2 - 1:

Route. Immediately before Step i, the MOT is divided into N/(4ilGl) sub-
MOT’s with sides of length Jfi. The first [@QJ?l rows of each
such sub-MOT contain the 5 IGl different (g,v)-pairs, compacted to
the left. For convenience, these initial rows of the sub-MOT shall
henceforth be called the non-trivial-part (NTP). We start step i by
conceptually clumping 4 contiguous sub-MOT’s into a single square
sub-MOT with twice the side length. We first shift up the NTP’s of
the two lower blocks so that they are contiguous to the NTP’s of the
upper blocks. This results in a sub-MOT with side Jm having

a NTP occupying the first 2 [Jm] rows.

Sort. We can then sort this new NTP using the odd-even merge sort out-
lined in Theorems 3.2 and 3.1.

Reduce. For each group number there are up to four different (g, w)-pairs.
We can combine these to produce one (g, v) pair in O(log ICI).

Compact. All processors not holding one of these pairs set their g-values
to infinite. We then sort again on group number so that the NTP is
compacted in the first IGl spaces (in the row-major sense).

At the end of this phase, we have N/IG14 sub-MOTs of side lG12, each
with no more than IGl non-trivial (g, v)-pairs.

3.4 Phase 3

Steps i = 1 through log(n/2q - 1)
In each step i we will increase the side of the sub-h1OT from IG12’-‘+1

to IGl .2’+1 The last step will leave us a single MOT with side &V. Notice

7

that in each sub-MOT, the number of processors will always be equal to the
square of the number of non-trivial (g, w)-pairs.

The route-sort-reduce-compact stages are performed in each sub-MOT
as follows:

Route. At the beginning of step i we have sub-MOT’s of side)G12i-‘+1,
each with no more than IGl non-trivial (g, w)- pairs. We will conceptu-
ally clump lG12’ of these sub-MOT’s into sub-MOT’s of side IG12i+1.
Consider each such sub-MOT of side (G12’+’ as being composed of
PI 2‘-’ columns of width IG12i-1 .+l In the routing step we move the
NTP’s from all the sub-MOT’s in each column into the controllers3 in
that column as a preliminary to sorting.

Sort. For each clump we have a sub-MOT of lG12’t1+2 processors and
ICI 2’+1 non-trivial (g, v)-pairs. Thus we can sort within each clump
using the standard MOT algorithm [U84].

Reduce. The reduce step looks very much like the standard MOT sorting
algorithm. First, every controller checks to see if the group number it
contains is the leftmost such group number. As with the hypercube
algorithm we shall call such processors leaders. Next, each controller
broadcasts its value to its entire row and column. Finally, in the
columns of the leaders, F is applied to the v-values whose correspond-
ing g-values match that of the column’s leader.

Compact. Another sort will then compact the values. It is assumed as
always that non-leader controllers have infinite g-values.

3 .5 Timing

We use the following theorems in analyzing the time required to perform
the algorithm for the Beta Operation on the MOT.

Lemma 3.1 An arbitrary partial permutation routing of s elements that
start and end on the leaves of a complete binary tree with m leaves can be
performed in time 0(s + log m).

Proof: Let 5’1,. be the elements that need to be routed from the left
half of the tree to the right half. Similarly define $1, S’ll and S,.,.. We

3We follow the lead of Ullman [U84] in viewing the root of the ith column tree and ith
row tree as being a single node. We shall refer to this node as the ith controller.

8

can pipe the elements of Sl, to their destinations in time O(ISl,.l + log m).
Similarly, the elements of S,l can be routed in time 0(I ST1 I + log m). To
route the elements of S/l, we actually break it into two consecutive routings.
In the first, the elements are routed from their starting locations in the left
half of the tree to locations on the right, and then in the second they are
routed from the right half back to their destinations on the left. This takes
time 0 (I Sll I + log m). Similarly, the elements in S,, can be routed in time
O(lS,,l +log m). Since s = IS,ll+ ISl,i + ISll(+ IS,,.l, the overall routing can
be done in time O(s + logm). 4

Lemma 3.2 Given an MOT of side m with all elements contained in the
first s rows. In time O(s + log m), we can achieve any permutation in which
the elements’ final destinations are also within the first s rows.

Proof: Let Ri,j be the row of the destination of the element that starts
in row i, column j; similarly, Ci,j is the column of the destination. We apply
Lemma 3.1 three times. It’s applied first to the columns, then to the rows
and then to the columns of the MOT such that each element from (i, j)
follows the permutations: (i, j) + (i + j mod m, j) + (i + j mod m, Ci,j) +
(Ri,j,Ci,j)Q Each of these three permutation operations can be performed
in O(s + log m) time yielding the desired result. 1

Theorem 3.1 Consider a MOT with side m. Assume that it is divided
vertically into two halves and that the first s (1 5 s 2 m) rows on the left
side contain the sorted list, A, and the first s rows on the right side contain
the sorted list, B. Then we can merge these two lists, with the results ending
up in the first s rows, in time T(s, m) = O(s + log mlog2s).

Proof: This can be done with odd-even merge.

Step 1. In step 1 we separate out the odd-position A’s (Aodd) from the
even-position A’s (A e,,en) so that Aodd occupies the first s/2 rows and
A even occupies the s/2 rows starting at row m/2. This can be done in
the manner of Lemma 3.2 in time cr(s + log na). Simultaneously, we
separate the B’s.

Step 2. In step 2 we exchange the positions of Aodd and Be,,,. This can
also be done in time c2(s + log m).

9

Step 3. We now want to merge lists that are stacked vertically. Consider
the m/2 x m/2 square in the upper left. We separate out the even-
position Beven (Beveneven) and the odd-position B,,,, (Bevenodd). The
even positioned B,,,,, ‘s go on the left and the odd ones on the right.
Simultaneously, separate the B&s, the Aeven’s and the Aodd’s. This
can be done in time cs(s + log m).

Step 4. We exchange Beveneven and Aevenodd. Simultaneously, exchange
B

Oddo dd a nd Ao a deven l
This can be done in time cd(s + log m).

Step 5. We now have 4 sub-MOTs with side m/2 and s/2 rows. Recursively
merge these in time T(s/2, m/2) yielding the four lists ABcveneyen,
A B eVenodd 7 ABoddeven 7 and ABodd,dd -

Step 6. We interleave ABeveneven with ABeven,dd. By merely swapping ad-
jacent list elements we are left with the sorted list ABe,,, . Simultane-
ously, we can interleave ABoddeven with ABOddodd, yielding the sorted
list ABodd after the value swapping. Lastly, interleave ABe,,, with
ABodd and do any needed value swapping. This can be done in time
c5(s + log m).

Basis. If s = 1 then we can sort in time O(logm).

Induction Step. Let S = So. Let cs = cl+c2+cs+c4+cs. Then T(So,772) <
T(se/2,m/2)+ cs(se +logm). Thus T(s,m) = O(s+logmlog2s).

Theorem 3.2 Consider a MOT with side m. Assume that there are O(ms)
numbers in the first s rows. We can sort this list with the results ending up
in the first s rows, in time T(s, m) = O(s + log mlog’ 2s).

Proof: We use a merge sort. First divide the MOT into four sub-
MOTs of side m/2. Using routings of the type in Lemma 3.1, distribute
the numbers into the first s/2 rows of each sub-MOT. Recursively sort in
these sub-MOTs in time T(s/2, m/2). We then merge the four sorted lists
together using the methods outlined in Theorem 3.1. Hence, T(s,m) =
T(s/2, m/2) + c(s + log m log 2s). Solving this recurrence yields the time
bound c l a imed a,bove. 1

10

The first phase will take time O(m). For step i of the second phase,
the time is determined by the sorting. By application of Theorem 3.2 we
can see that the second phase will take time

oc3E2 [Jm] t log J-log2 2 [Jm] >
i=l

= q/ii t log4 PI> = q/h.

The third phase will take time O(C~~“‘2q)log lG12’+‘) = O(n). Thus the
overall time is O(log N + m).

4 Determining the Output Size

The time taken by the algorithms given above is a function of both the
input size, N, and the output size, IGl (for convenience let M = ICI). The
algorithms that are given assume that M is known. Thus the question arises,
what do we do if we don’t already know M?

For a large class of problems, and Beta Operations appear to be one
of them, the problem of determining the output size, M, is essentially as
complex as the problem of computing the output given the output size.
While it would be possible to develop separate algorithms to determine the
output size, we will exhibit below a general scheme that enables one to
determine M and solve the problem in time proportional to that required
for solving the problem given M.

4.1 Iterative Guessing

We will use a strategy of iterative guessing that depends on having an algo-
rithm, call it Algorithm A, with the following properties:

l The running time is t(N, Q), w lere1 Q is a given bound on the output
size.

l If Q 2 M, then the algorithm works correctly and produces the ap-
propriate output of size M.

l If Q < M, then the algorithm can detect the error (within time
t(K Q>)-

11

l t(N, Q) is monotonically nondecreasing in Q.

(These restrictions can be relaxed, but they are sufficient for our purposes.)
Using Algorithm A, we can create a new algorithm, Algorithm B, that

can solve the problem without knowing M beforehand. Algorithm B will
sequentially try the guesses (gr ,92, . . .). That is, it will first run Algorithm
A with Q = gi. If this first guess is too small, it runs it with Q = g2, then
Q = g3, etc... until Algorithm A finally succeeds.

It is clear that an arbitrary choice of gi’s will not result in an efficient
algorithm. Let us presumptuously define an eficiently-convergent guess se-
quence and then justify the name. Let us denote the minimum output size
possible for any input by Men. An efficiently-convergent guess sequence,
(go7 91, . . .) for the function t(N, Q) is a sequence such that:

90 = Mmin
clt(N, gi-1) L t(N, gi) I c2t(N, gi-1)
1 < Cl 5 c2

where cl and c2 are independent of i, but can be chosen in a fashion that
depends on the sequence of 9;‘s.

Theorem 4.1 Assume that we are given an algorithm for ‘problem P given
M ’ that has all the properties enumerated above. Then if we are given a cor-
responding eficiently-convergent guess sequence, we can create an algorithm
to solve “P not given M ’ , in time i(N, M) where i(N, M) = O(t(N, M)).

Proof: The given algorithm for ‘P given M is our ‘Algorithm A’. To
solve the problem ‘P not given M’, we run ‘Algorithm B’. Let gS be the
guess for Q on which the Algorithm A finally succeeds.

From the properties of Algorithm A, it follows that g,-1 < M 5 gS.
Hence,

t(N,gs) I &Us--1)
I w(K M).

Also,

clt(N, gi-1) I t(N, gi)

12

f: clt(N, gi-1) 5 f: t(N, gi)
i=2 i=2

V,g1) t g(cl - l)t(N,gi) 5 t(N,g,)
i=l

From the definition of our algorithm for ‘P not given M’,

s q-1
=%(N, M).

Since it is trivially true that

it follows that i(N, M) = O(t(N, M)). Note that the optimal choice of
Cl = c2 = 2 yields a factor of 4 slowdown in the worst case. 1

4.2 Application of Method

Lemma 4.1 For t(N,Q) = c(log N + log2 Q), the guess sequence go = 1,

$7; =
&iqigi for i > 0 is eficiently-convergent with cl = c2 = 2.

Since the algorithm described in Section 2 satisfies the properties enu-
merated in Section 4.1, the corollary below follows from the above lemma
and Theorem 4.1.

Corollary 4.1 Beta Functions on IGl groups can be computed in time
O&g N t log2 ICI) on a hypercube, without prior knowledge of ICI.

Lemma 4.2 For t(N, Q) = c(log N + a), the guess sequence go = 1,
gi = ((2i - l)log N)2 for i > 0 is eficiently-convergent with cl = c2 = 2.

13

Since the algorithm described in Section 3 satisfies the properties enu-
merated in Section 4.1, the corollary below follows from the above lemma
and Theorem 4.1.

Corollary 4.2 Beta Functions on IGl groups can be computed in time
w%N + l/m on a MOT, without prior knowledge of ICI.

5 Lower Bounds

In this section, we will prove some lower bounds, given our formulation of the
Beta Operation, and relate them to the areas and times for the algorithms
and architectures discussed above. Note that while in the other sections of
this paper we use the word model of computation, here we use the bit model
of computation.

The input is N pairs of numbers, (go, ve), (gr, VI), . . . , (gN-1, VN-I), each
of which is in the range 0 to N - 1. Let Gi = {vj I gj = i}. For all i such
that]G;] > 0, we output (i, yi) in sorted order (according to i) where yi is
the F-reduction of G;. As above, let G = {i I]Gi] > 0). Let u10 be the
smallest member of G; similarly, let w; (i <]G]) be the (i + 1)-th smallest
member of G. Define xi = y~i; that is, .q is the y-value of the (i + 1)-th
output. We will refer to the the j-th bit of xi as zi,j. (Similarly for the g’s.)

5.1 A Lower Bound on Area

(The structure of this lower bound proof closely follows the one for sorting
in [U84].) First we will show that

Lemma 5.1 In a when- and where-determinate circuit that performs the
Beta Operation correctly for any IGl, none of the output bits zi,j (for i <
N - 1) can be output before all of the input bits gi,j (for j > 0) have been
read.

Proof: Assume, to the contrary, that zptq (p < N - 1) is output before
g,.,s (s > 0) is read. We construct two possible inputs. Fix every g and v,
except g, , as follows

l Choose a t # r. Set gt = p + 1; vt = 2q.

0 Set all other 2.7; = 0.

14

l For all i (other than i = t and i = T) choose a value of gi (different
from p and p + 1) in such a way that Vj, 0 5 j < p, 3 such that
gi=3-

The two possible inputs yielded by setting either g,. = p or gT = p $ 2”
produce different values for the bit z~,~. Yet zPtq is output before gr,9 is read
- c o n t r a d i c t i o n . I

Theorem 5.1 Any when- and where-determinate circuit that can perform
a Beta Operation on N inputs must have A = R(N log N).

Proof: (This proof assumes N is even. The proof for N odd is simi-
lar.) We will construct a family of inputs of size (N/2)! each with different
outputs. For all i, fix V; = i. For i 2 N/2, fix gi = 2i - N + 1. NOW,
we allow the remaining inputs, go,. . . , gN+r to be any permutation of the
even numbers less than N.

Focus on the time just before the first Zi,j (for i < N - 1) is output. The
circuit has already read all of the bits that differ between the elements of
our family of inputs. Hence, all inputs read subsequently will be the same
for any element of our family. Since the circuit must still produce (N/2)!
different outputs, it must have at least (N/2)! states and hence at least
log((N/2)!) = 0(N log N) bits and area. 1

5.2 An AT2 Lower Bound

(The structure of this lower bound proof closely follows the one found in
[Ho851 .)

Theorem 5.2 Any when- and where-determinate circuit that can perform
Beta Operations for any M = IGl requires AT2 = fl(NM log N), where N
is the number of input pairs.

Proof: If there is an input pad that reads R(Mf12) bits of the vi’s then
T = 0(M1i2). This, coupled with the above theorem, implies our AT2
bound.

If no pad reads R(M112) bits, then we may partition our circuit into a
set of blocks B with IBI = O(w) so that

l each block in B has area 0(&) and perimeter 4 O(Js);
*We use “perimeter” to mean the perimeter not including the external boundary of

the circuit.

15

l each block in B reads at most O(M) bits of the v;‘s.

Such a collection of blocks is obtained by first cutting the circuit into
O(w) blocks exh of perimeter O(Ja) (Lemma 2.3 of [1!84]). Then

a n o t h e r O(nfm) cuts suffice to ensure that each resulting block reads at
most Imax = O(nI) bits of the vi’s*

Two statements are true of the above set of blocks:

l At least half of these blocks produce less than twice the average num-
ber, O(g), of the output z; bits for i < M.

0 Let Iave be defined as N log IV/II31 = O(M). More than half of the
blocks read at least 2I,,, - Imax input bits.

Note that we can stay within our block cutting rules and still make our
blocks small enough so that 2I,,, - Imax = R(M). Thus, there is some
block, b E B, that:

l reads at least 21 = R(M) input bits from 12 of the vi’s (assume without
loss of generality that these are from ve, . . . , ZI/~-~);

l has perimeter 0(,/z);

l produces 13 = O(q) of the z; output bits with i < M.

We may then construct a fooling set as follows. Let

V = {(i, j) 1 b reads in bit j of Vi}

Z = (; 1 b outputs a bit of xi, and i < M}.

For each 1 5 i 5 Z2, choose a. distinct oi such that oi $ 2 and 0 5 oi < M
(note that we can stay within our block cutting rules and still make our
blocks small enough so that Z2 + la < AI - 1). Let c = h4 - 12. Choose
Pl,*‘-, PC (each < M) to be distinct from each other and the ai’s. Choose
the 9;‘s as fOl.lOWS

9i = ai

gi+lz = Pi7

gi = Pl,

for i = 1 to 22
for i = 1 to c
for all other i.

16

And the vi’s as

bit j of vi = 0 or I, for (i, j) E V
bit j of vi = 0, for (i, j) $! V

Each of our 2’1 choices for the input yields a different configuration of the
output bits outside of b. As Zr = Q(M), the fooling set is of size 2”t”). This
yields the bound ,/&$$7’ = Q(M), that is, AT2 = R(NMlogN). 1

6 Conclusions

We showed in Section 2 that the Beta Function Problem can be solved
in time O(logN + log2]G]) on a hypercube. We can achieve this same
time bound on a shuffle-exchange graph. In Section 3, we showed that the
problem can be solved in time 0(JTz=l + log N) on a mesh-of-trees. The
resulting AT2 bound of N log2 N(IG] + log2 N) is within a few log N factors
of the lower bound of AT2 = 0(N]G] log N) shown in Section 5 even after
accounting for the word model vs. bit model distinction. In Section 4 we
showed that in a wide variety of cases, including the ones above, the time
bounds can can be achieved even when]G] is not known beforehand.

Several variations on the Beta Function Problem are possible. As de-
scribed in Section 1, at the end of the Beta Operation, either the]G] non-
trivial (i, y;> pairs end up in the first]G] processors or else each yi appears
at processor i. In some applications it may be appropriate to end the com-
putation with every processor holding the reduction, ys, corresponding to
the group of its original (g, v)-pair. This problem is like computing]G] inde-
pendent census functions [LV81] in parallel. Let us call it the Beta/Census
Problem. This can be implemented by first computing the yg’s and then
running the Beta Operation in reverse. One can run the Beta Operation in
reverse if a trace of the forward Beta Operation was stored in the network.
In general, this may be costly in terms of memory (=area). Fortunately,
the algorithms demonstrated in this paper can be augmented to solve the
Beta/Census Problem with only a constant factor increase in time and area.

It is interesting to note that the Beta Operation can be done probabilis-
tically on the hypercube in time O(log N). Remember that the O(log2 /Cl)
term comes solely from the sorting subroutine in Phase 1. If we use Flashsort
[RV83] to sort, the bound obviously follows.

Acknowledgements

The authors would like to thank Jeffrey D. Ullman for many constructive
discussions and comments.

References

[BH82] Borodin, A. and Hopcroft, J., “Routing, Merging and Sorting on
Parallel Models of Computation”, Proc. 14th ACM STOC, 1982.

[CS85] Cole, R. and Siegel, A., “Optimal VLSI circuits for Sorting”, Tech-
nical Report 172, Computer Science Department, NYU, September
1985.

[GMU] G Id hl go SC a er, L., Mayr, E. and Ullman, J., Parallel Computation,
in preparation.

[Hi851 Hillis, D., The Connection Machine, MIT Press, 1985.

[Ho851 Hochschild, P., Ph.D. Thesis, Stanford University: “Resource-
Efficient Parallel Algorithms,” Tech. Report STAN-CS-85-1073,
July 1985.

[LV81] Lipton, R. and Valdes, J. , “Census functions: an approach to VLSI
upper bounds,” Proc. 2lst IEEE FOCS, 1981.

[NS82] Nassimi, D. and Sahni, S., “Parallel Permutation and Sorting Al-
gorithms and a New Generalized Connection Network,” JACM, vol
29, No. 3, July 1982.

[RV83] Reif, J. and Valiant, L., “A Logarithmic Time Sort for Linear Size
Networks,” Proc. 15th ACM STOC, 1983.

[U84] U l l m a n , J . , Computational Aspects of VLSI, Computer Science
Press, 1984.

18

