
Processor Renaming in
Asyncia ronous Environments

OY

Department of Computer Science

3

PROCESSOR RENAMING IN ASYNCHRONOUS ENVIRONMENTS 5

Amotz Bar-Noy
Hebrew University, Jerusalem, Israel

and
David Peleg $

Stanford University, Stanford, California

September 86

Abstract

Fischer, Lynch and Paterson [FLP] proved that in a completely asynchronous system
“weak agreement” cannot be achieved even in the presence of a single “benign” fault.
Following the direction proposed in [ABDK], we demonstrate the interesting fact that
some weaker forms of processor cooperation are still achievable in such a situation, and
in fact, even in the presence of up to t < n/2 such faulty processors. In particular, we
show that ~2 processors, each having a distinct name taken from an unbounded ordered
domain, can individually choose new distinct names from a space of size n + t (where n is
an obvious lower bound). In case the new names are required also to preserve the original
order, we give an algorithm in which the space of new names is of size 2t(n - t + 1) - 1,
which is tight.

5 Part of this work was done while the authors were visiting IBM Almaden Research
Center, San-Jose.

$ Supported in part by a Weizmann fellowship and by grant ONR N00014-85-C-0731

1

The problem of reaching agreement in distributed systems was the focus of many
studies in the last few years. One aspect of this research is understanding the limitations
of asynchronicity. In a fundamental paper, Fischer, Lynch, and Paterson [FLP] proved
that in a completely asynchronous system n processors cannot achieve “weak consensus”
in the presence of faults. This holds even if at most one processor may become faulty,
and even in the mild form of failstop fault, i.e., when a processor may not start or may
suddenly stop functioning.

1. Introduction

This negative result and later stronger versions of it [DDS] left the impression that
in the presence of faults one cannot expect to reach any nontrivial goal that requires
participation of several processors. In this paper we follow the observations of [ABDK],
indicating that there are some nontrivial goal functions which may be achieved in a com-
pletely asynchronous system, even in the presence of up to t < n/2 such faulty processors.
We present an algorithm for the problem of reducing the name space of the processors,
raised in [ABDK].

This problem can be described as follows. Each of the 72 processors initially has a
unique name taken from an unbounded ordered domain (w.1.o.g.) the integers). Throughout
we identify the processors with their old names, and denote them by p, Q, etc. We want ‘an
algorithm that enables each correct processor to choose (within a finite number of steps)
a new name from a space of size N, where N depends only on 72 and t, such that one of
the following requirements hold:

a. Uniqueness: every two new names are distinct.

b. Order preserving: If p < q then the new name of p is smaller than the new name of q.

Naturally, we are interested in having an algorithm requiring the smallest possible
N. We refer to the version of the problem requiring the first property m the uniqueness
problem, and to the version with the second property as the order preserving problem.

- These problems have also some practical significance, as the complexity of some dis-
tributed algorithms depends on the size of the names of the processors. One such example
is the algorithm for the Choice Coordination Problem [RI.

Note that the original names of the participating processors are not known to all
processors in advance. Otherwise, there exists a trivial solution: assuming the old names
arepi <p2 < . . . < pn, let p; choose i as its new name. This meets both requirements with
N = n. We further assume that once a processor decides on a name, it will not change it,
otherwise one can again present a trivial solution.

We adopt a model similar to that of [FLP]. The distributed system is composed of rz
asynchronous processors P connected through a completely asynchronous communication
network. Every processor can directly send messages to all the others, i.e., the network
is complete. In an atomic step a processor either sends a message or reads a message.
Every messa#ge arrives its destination within a finite but unbounded amount of time, and

2

it arrives exactly as it was sent. The communication system does not maintain the original
order of the messages, so a message m2 may arrive before message ml, even if ml was sent
before m2.

During the run of the system, processors might become faulty and stop working. We
make the standard assumption that at most t processors may become faulty, i.e., perform
only a finite number of atomic steps, and the rest (called correct) must continue forever.
The two parameters n and t are known in advance to all of the processors.

Our results hold also for the case of “omission” faults, and are conceivably extendable,
via standard techniques, to the case of malicious faults with authentication and the general
malicious case (with appropriate restrictions on n vs. t).

We represent the asynchronous behaviour of the system using the concepts of a
“scheduler” and a “postman”. For every run, the scheduler creates an infinite sched-
ule S = (Pjl 7 Pjz 7 . ..). The processor pjk makes the It’s atomic step in the system. The
postman holds all the messages that were sent, and must deliver them within a finite num-
ber of steps. Whenever a processor tries to read a message the postman decides whether
or not to deliver it a message, and which message to deliver from among the messages that
were sent to this processor. We say that an algorithm solves a given problem in a com-
pletely asynchronous system if the algorithm correctly solves the problem for an arbitrary
scheduler and postman.

The main results of this paper are algorithms for the two versions of the renaming
problem. For the uniqueness problem, our algorithm yields new names from a space of
size n + t (where 72 is an obvious lower bound). This improves the algorithm presented in
[ABDK], h’ hw K results in a space of size nt. A simple probabdistic version of our algorithm
yields a name space of size 72. For the order preserving problem, we get a new name space
of size 2+ - t + 1) - 1, which tightly matches the lower bound.

The rest of the paper is organized as follows. In section 2 we give some lower bounds
concerning the two problems. Both algorithms for the uniqueness problem and for the order
preserving problem use the same schematic frame which is described in section 3. This form
of presentation enables us to separate the discussion of issues of partial correctness from
those of termination. The specific details of the algorithms for the uniqueness problem
and the order preserving problem are described in sections 4 and 5, respectively.

2. Lower Bounds

Theorem 2.1: There is no algorithm for solving the naming problems in a completely
asynchronous system, if n < 2t.

Proof: Assume to the contrary that n = 2t and there is an algorithm A which
solves one of the above problems. Look at the schedule S = (~1, . ..pt.pl, pt, . ..).
which is legal because only t processors pt+l , . . . , pn are faulty (perform a finite num-
ber of steps). Algorithm A should let the t operating processors choose distinct names
for every set of initial names. Since the original name space is unbounded and the

3

space of the new names is finite, there exist two sets of processors’ names, say ~1, pt
a nd a , l --, q t where p1 # q1 such that A ass igns p1 and q1 the same new name
when the corresponding sets of processors participate with the appropriate schedules,
SP = (~1, pt, pl , pt, . ..) and S, = (q1 , qt, q1, qt, . ..). Now look at the schedule
s = (Pl, 4%Pl, -.*,Pt, “‘) Ql, -.qt, Ql, **a, . ..>. in which the first appearance of q1 is after
PI ? “”pt have chosen their names (this must happen within a finite number of steps). The
postman delays all messages sent between the two sets of t processors until all the pro-
cessors choose names (and again this occurs after a finite number of steps). For processor
q1 (resp., ~1) the schedule S, (resp., SP) is indistinguishable from the schedule S. Hence,
they both choose the same name; a contradiction. 1

An argument similar to the proof of Lemma 2.1 implies that one cannot design an
algorithm in which processors stop after they choose new names, because once n - 2t
processors choose new names, the last t processors, which may start running after that
decision, cannot choose correctly.

Hence, in our algorithms we assume that n >_ 2t+ 1 and that every processor continues
to cooperate after it chooses its name, to help the others.

Theorem 2.2: Every algorithm for solving the uniqueness problem requires N 2 n.

Proof: : We must have n different names for the n possibly correct processors that may
want a new name. 1

Theorem 2.3 [ABDK]: Every algorithm for solving the order preserving problem Te-
quires N >2t(n-t+l)-1. 1

Remark: The lower bound of Thm. 2.3 holds also if the system is synchronous, but we
do not know when a processor makes its first step.

3. The Schematic Algorithm

In this section we describe a schematic algorithm for the renaming problem. For the
time-being we do not specify the structure of new names, the order relation on new names
or the criteria for choosing a name, but rather give a general strategy for the process of
selecting names and study its properties.

Throughout the algorithm each processor p maintains an ordered vector V containing
information about the processors (old names) of which it knows. The processors dynami-
cally update their vectors V by exchanging them with all the others. Each processor also
maintains a counter c which is the number of processors that have indicated having the
same set V.

Since t processors might be faulty, a processor cannot expect to get more than n - t
messages from different processors (including itself). Thus, after receiving c = n - t

4

identical copies of the vector V, it makes no sense to wait for more information (which
might never arrive), and the processor should take some action. This observation leads us
to defining the basic notion of a stable vector.

Definition 3.1: A vector V is stable with respect to a processor p in a given run of the
algorithm if p has received n - t messages containing identical copies of V (including its
own copy). V is stable if it is stable w.r.t. some processor p.

The algorithm is based on the following general strategy. A processor is requires to
reach a stable vector V, and then to suggest a name based on V. Then the processor
exchanges information once more with the other processors, until it reaches a stable vector
again. Now the processor has to review its suggestion, by checking whether it is currently
valid. In case the new information validates the suggestion, the processor now decides
on its name. Otherwise (e.g., if the same name was suggested by some other processor
simultaneously, or some other problem arises), the processor has to make a new suggestion
and repeat the process.

The issues that arise in this type of an algorithm are partial correctness, namely
whether the algorithm guarantees that any names which are actually chosen obey the re-
quirements of the problem, and termination, namely whether all correct processors even-
tually get to choose a new name. The schematic algorithm presented here is partially
correct in this sense, but its termination properties depend on the specific details of the
name structure and name selection procedures.

Data structures

The information maintained by processors during the execution of the algorithm con-
sists of vectors V containing an entry for each known processor. Each entry contains
several components, including the following:

1. p, the old name of the processor.

2. xP, a new name suggested by p.
-

3. JP, a counter of the name suggestions.

4. bP, a “decision” bit, which is 1 if p already decided on a name and 0 otherwise.

-5. L,, the list of old names appearing in the vector by which xP was suggested.

We should comment that each of the specific algorithms derived for our problems uses
only part of the above information. In particular, the algorithm for the uniqueness problem
does not need the L, component, and the algorithm for the order preserving problem can
do without the xP, JP and b, components. However we include all of them in the schematic
algorithm for unified presentation.

. Throughout the rest of the paper we use the following notation with respect to vectors
V. Denote by Do(V) the subvector containing exactly the entries in which b = 0 (i.e., the
entries of processors that have not yet decided on a name). Let P(V) be the set of
processors (old names) in V, and let X(V) be th e set of new names in V. Denoting the

5

space of new names by NS, let free(V) = NS - X(V) be the set of free (unsuggested)
names in V. As a rule, sets of (old or new) names are always taken to be ordered. We
informally refer to the number of entries in V (=I P(V) I) as 1 V I, and say p E V or x E V
as a shorthand for p E P(V) or x E X(V), respectively.

Suppose a processor p suggests a name xP on the basis of a stable vector V. This
vector is henceforth referred to as the choice vector of xP, and the list P(V) of old names
(to be inserted into future vectors as LP) is called the choice list of xP. Similarly, I V I
and the index of p in V are referred to as the choice length and the choice index of xP,
respectively.

The vectors are ordered by increasing order of the old names p. Initially, the vector
held by p contains only one column corresponding to p itself, with all components except
the first set to the appropriate null values.

We need a certain partial ordering on vectors. This ordering reflects the accumulation
of knowledge in the processors. Intuitively, V > V’ means that V is more updated than
V’. The ordering is defined as follows.

Definition 3.2: For- two vectors VI, V2, we say that VI 5 I-42 iff for every processor p,
p E VI + (p E V2 and JP in V2 is no smaller than JP in VI).

The current validity requirement

Suppose a processor p has suggested a name xP for itself, exchanged information
with the other processors and reached a stable vector V. This name xP has to satisfy the
requirement that it is currently valid. This requirement, later referred to as the requirement
of current validity, or requirement CV, translates into the following conditions:

In the uniqueness case: The name xP is different from any other suggested name
xg E X(V) .

-In the order preserving case: The name xP preserves the ordering with respect to
any other entry in the vector. I.e., for every q, if xg E X(V), then xP < xq iff p < q. (Note
that these may be different name spaces and order relations.)

The schematic algorithm A

/* For a processor p. Counter c counts the number of identical copies of V p gets. */
0. Construct an initial V (with one entry - for p).
1. /* sending a new vector */

a. send V to every other processor.
b . c+l.

2. Wait until you receive a message V’
a. if V’ < V then /* V’ contains old information */

return to 2
b. if V’ $ V (i.e., there is some q E V’ s.t. q 4 V or Jq in V is smaller than in V’). then

update V
return to 1

c. if V = V’ then /* heard of another identical copy */
U--c+1

_ if c < n - t then return to 2 else goto 3.
3. /* V is a stable vector */

If previously suggested a name xP, and this name satisfies requirement CV then
a. decide on xP
b . b,+l
c. send V to every other processor
d. goto 5.

4. /* needs to suggest a new name “/
a.
b.
C.

d.
e.
f.

test for condition CA to decide whether to suggest a name. If “no” return to 2.
suggest a name xP using procedure PA.
insert xP to V
Jp +- Jp + 1
update L, if necessary.
return to 1.

_ 5. /* echo sta,ge - helping other processors */
continue for ever:

a. read a message V’
b. update V if necessary.
c. send V to every other processor.

. Note that condition CA and procedure PA are left unspecified.

7

Partial correctness

We need some lemmas concerning the order relation on vectors. The first trivial
observation follows directly from the definition of the algorithm A.

Lemma 3.1: FOT every processor p and for every run of A, the set of vectors held by p
during the run is totally ordered. 1

In fact, this ordering corresponds directly to the time ordering in which these vectors
were held by p.

Lemma 3.2: In any run of A, the set of stable vectors is totally ordered.

Proof: Assume V and V’ are two incomparable stable vectors obtained in the same run.
V is stable w.r.t. some processor, so this processor received copies of V from at least n - t
distinct processors. The same holds for V’. Since n >_ 2t + 1, there is some processor p
that sent both V and V’. Hence p held both vectors at different stages of the run, which
contradicts Lemma 3.1. 1

We now prove the following partial correctness claim with respect to the schematic
algorithm.

Lemma 3.3: If p and q have decided on new names xP and xq respectively, then these
.names satisfy the requirements of the problem.

Proof: Assume that xp and xq do not satisfy the requirement of the problem. Let VP
(resp. Vq) be the s at ble vector which p (resp. q) held when deciding upon its new name.

If VP < Vq then the name xp must appear also in V& since p never changes its suggested
name after decision. Therefore the choice of xq by q is invalid, as it conflicts requirement
CV. A similar contradiction follows from assuming Vq < VP or V’. = I& I

-4. The Uniqueness Problem

In this section we describe an algorithm for the uniqueness problem and prove its
correctness.

The new name space is UNS = (1,. . . , n + t}, and we use an instance of the schematic
algorithm. We have to specify the details of step 4 of the algorithm, particularly condition
CA and procedure PA.

Suppose p obtains a stable vector V and let T be the index of p in Do(V).

Condition CA: If T > t + 1 then “no” /* do not suggest any name */

Procedure PA: Let xp t (free(v))(r).

Partial correctness follows from the proof of the schematic algorithm. It is also clear
that whenever a process has to suggest a name, such a name is available, since always

8

I free(V) I> t + 1, hence no processor “gets stuck”. It remains to prove termination. This
requires us to show that every correct processor eventually gets to decide on a new name.
We prove this by assuming the opposite and deriving a contradiction.

Assume the existence of a run (scheduler plus postman) in which some of the correct
processors p continue running forever with bp = 0. Let us introduce the following notation.
Denote by Di the set of all processors p that decide on a name along the run (i.e., that
switch to b, = 1 and stop increasing Jp at some point), and let Do = P - D1. Our
hypothesis is that Do contains at least one correct processor. Denote by F, F 2 Do, the
set of all processors p that stop increasing Jp (but remain with bp = 0) from some point
on, and let W = Do - F.

Lemma 4.1: W # 0.

Proof: Assume to the contrary that W = 0, or F = Do. Consider the point of time
by which all processors reached their final J. The information exchanged from that point
on does not change, so at some later point all correct processors obtain a stable vector.
Consider the smallest correct processor in Do (there is such a processor by our general
hypothesis). Its index in Do is at most t + 1, so by the rules of the algorithm it will suggest
a new name and increase its J; a contradiction. I

Consequently, let po be the smallest processor (old name) in W.

Since W # 0, the set of stable vectors obtained during the run is infinite. From some
point on, all these vectors V satisfy the following properties:

1. their length is I V I= k for some k 2 n - t (which does not change afterwards), and

2. all processors in D1 U F have reached their final J value (hence they do not suggest
any new names afterwards, and in particular, all processors in D1 already have b = 1).

Let VL be the first stable vector with the above properties (where by “first” we mean
smallest according to the ordering defined earlier for vectors). Hereafter we refer to every

- stable vector V > VL as a limit vector. Note that for all limit vectors V the subvector
Do(V) is fixed and the set of processors in it, P(Do(V)), is exactly Do.

Denote the index of po in the set Do by TO. By the rules of the algorithm it is clear
that for every p E W, the index of p in the set Do is at most t + 1. In particular,

Lemma 4.2: TO 5 t + 1. I
Let us now classify the names in UN S as follows. Let X0, (resp., XF) denote the set of

(final) new names suggested by processors in D1 (resp., F), and let G = UNS-(XD, UXF).
Intuitively, G is the set from which the processors of W continuously attempt to choose
names. For every stable limit vector V let Xw(V) denote the set of new names suggested
by the processors of W in V. Note that for every limit vector V, G = free(V) U Xw(V).
Assume that G is ordered, and let G = {xi, x2,. . . } . For every stable limit vector V and
for every name x E free(V), denote by f(x) its index in free(V). Clearly f(x;) < i.

9

There is a later point in time after which every processor in IV have already suggested
a name based on a limit vector. Hence there is a future point in which po holds a stable
vector VL in which the choice vector of every name in X,(V’) is a limit vector.

Lemma 4.3: In every stable vector V 2 VL, either x,,-, E free(V) 0~ xro is suggested only

bY PO.

Proof: Assume to the contrary that x,-~ appears in V as a name suggested by some
q E W, q # PO. Then q suggested xrO according to some stable limit vector V’. But then
f (q-J I f0 in f ree(V’),so q could not have suggested it, as its index in Do is strictly
larger than ~0. 1

Therefore, upon seeing V& po either decides immediately on x,.,, as its name (in case
x,-~ appears as its suggested name in VL) or it suggests x,, now and decides on it upon
obtaining the next stable vector.

It follows that po does decide on a new name, contradicting the assumption that
po E Do. This proves

Lemma 4.4: In every run of the algorithm, all the correct processors eventually decide on
new names. I

Theorem 4.5: There is an algorithm for the uniqueness problem which uses the names
I1 7”‘7 n+t}. I

We remark that one can construct a simplified probabilistic version of this algorithm,
in which the new name space is of size 72, and processors suggest new names at random
from the set free(V) with equal probability. For such an algorithm, partial correctness is
handled just as before, and (expected) termination can be proved by standard probabilistic
arguments.

5. The Order Preserving Problem-

5.1. The Algorithm

-We first give a simplified version of the algorithm, which makes the proof easier but
yields a larger name space than is implied by the lower bound. Later we indicate how to
shrink the name space further, so as to match the lower bound. The name space, OPNS,
contains names which are of the following form. Each name x consists of a sequence of
t + 1 numbers, < xn-t,xn-t+i,. . . , xn >, where 0 5 x; 5 72 and 0 5 xj - x; < j - i for all
j > Z such that both xj and xi are nonzero. We sometimes call such names legal sequences.

The rightmost nonzero entry in a name x, SK, plays an especially important role in
the description of the algorithm. In every suggested name x, this I< corresponds to the
choice length of x, and x~ itself is the choice index of x.

We define a partial order on the name space OPNS as follows.

10

Definition 5.1: Let x1 =< xkwt,. . . ,xi > and 22 =< xiBt,. . . ,x2, > be two names in
OPNS, with choice lengths Ki and IiT2, respectively. Without loss of generality assume
Kr > I<z. We say that x1 > x2 iff x;-~ > xx, > 0.

The order relation is not defined for every pair of names in OPNS, but the algorithm
guarantees that names that are actually chosen in any specific run are always ordered.

Again we use an instance of the schematic algorithm. We have to specify the process
of suggesting a name. Initially for every p, xP is the all-zero tuple. Suppose p obtains a
stable vector V of length K in which it is in the r’th entry. The condition CA is always
“yes”, that is, a processors never “passes” the opportunity to suggest a name. The name.
suggestion procedure PA is defined as follows. New suggestions always update previous
ones, in the sense that some zero entries are changed into nonzero ones (but nonzero entries
do not change again). Specifically,

(1) if x; = 0 then xg t r.

(2) for every x’ E X(V) whose choice length and choice list are K’ and L’ respectively, if
XpKI = 0 then x&, + ac, where a! is the unique integer satisfying L’(a - 1) < p < L’(a).

Again, partial correctness follows from the proof of the schematic algorithm. It is
also clear that whenever a process has to suggest a name, the procedure PA does not “get
stuck”. It remains to prove termination.

Lemma 5.1: If V and V’ are stable vectors of the same length then P(V) = P(V’).

Proof: Immediate from Lemma 3.2 and Definition 3.2. 1

Lemma 5.2: Suppose a processor p obtains a stable vector V in which its suggested name
xp violates requirement CV w.r.t. a suggested name xq, whose choice length is Ii’. Then
xph. = 0.

- Proof: Assume that xg = a! # 0. Then a describes the index of p in P(V) for some
stable vector V of length I<. Let V’ be the choice vector of xq. Since 1Ti’ is the choice length
of xq, I V’ I=I v I, so by Lemma 5.1 P(V’) = P(V). Let ,G’ be the index of q in P(V’)
(P = xi-). By the choice of cy, p > q iff ac > ,8, or, iff XT’ > xk, which, by the definition
of the ordering on OPNS, holds iff xP > xq, which means that xP and xq do not violate
requirement CV, contradicting the assumption of the lemma. 1

Lemma 5.3: In every run of the algorithm, every correct processor decides on a new name
after at most t + 1 suggestions.

Proof: In every suggestion made by p;, at least one entry in xi changes from zero to a
nohzero value, and there are only t + 1 entries. Therefore a processor cannot make more
than t + 1 suggestions. Since processors that decide do not change their entries any more,
and processors with b = 0 do not make any changes (new suggestions) before obtaining a
new stable vector, it is clear that as long as there are processors with b = 0, some of them

11

will eventually obtain a stable vector and either decide or make a new suggestion, until all
processors decide. I

5.2. Reducing the name space

In this section we slightly modify the algorithm, and then show that the number of
different possible sequences that processors can choose is 2’(n - t + 1) - 1.

Definition 5.2: A complete legal sequence , or CLS, i s a legal sequence
< x,-t, XK, 0, 0 > such that for all rz - t < i 5 K, x; # 0.

L e m m a 5.4: Every legal Sequence < xn-t, xK,o, 0 > can be extended into a CLS
< x1,-1, x’K,O, . ..O > such that if xj # 0 then x5 = xj. I

We now modify step 3a of the algorithm to be: Choose a CLS yP which is an arbitrary
extension of xP and decide on yP.

Lemma 5.5: The modified algorithm is still correct.

Proof: We have to show that for every two processors p and q, the names yP and yq
preserve the same ordering as the original xP and xq. Let Ii&, (resp., J$) be the choice
length of xP (resp., xq). These lengths remain the same in yP and yq, as no entries to
their right are changed. Assume w.1.o.g. that KP 2 Kq. It follows that xk and xk are
nonzero, so they are not changed in yP and yq. Thus, the same ordering is ireserved.* I

Let us now analyze the size of the resulting name space. Every CLS
X =< x,-t ,..., xK,o ,..., 0 > can be encoded by a sequence < r, ~1, Q >, where
ei E {O,l} and k = I{ - (n - t). This encoding is obtained by taking r = xn-t and
E; = Xn-t+i - Xn-t+i-1. The total number of possible names now becomes

N L (n - t + 1) 2 2” = (n - t + 1)(2”+’ - 1).
k=O

This value is already less than twice the value of the lower bound given in Thm. 2.3. We
now proceed to reduce this value further and match it with the lower bound. This is done
by &owing that one can actually do with only about half the above sequences, e.g., those
whose last bit is 0.

Define C as the class of all CLS’s x =< an-t,oy.O, O > such that I-C > n-t and
QK-1 < ah’.

For every x =< on-t, oK,O, 0 >E C, let

. f(>2 =< On-t, Ck!m- I, am + 1, am+1 + 1, .=-, CUK-1 + 1, CWK, 0, 0 >,

where m is the maximal index s-t. am-1 = oym, if exists, and m = n - t otherwise. Note
that f(x) is a CLS and f(x) 4 C.

12

Lemma 5.6: Let x E C and let y = f(x)
no other processor decides on y.

Proof: The claim follows from the fact
length and the same choice index, so they

Lemma 5.7: Let x E C and let y = f(x)

as above. If some processor p decides on x then

that the names x and y have the same choice
cannot be chosen together in the same run. I

as above. If some processor p decides on x then:

a. For every CLS z, if some processor q decides on z then z is comparable with y and
z>yiffz>x.

b.’ For every CLS z E C, if some processor q decides on z and w = f(z), then w is
comparable with y and w > y iff w > x.

Proof: For the first claim, assume that some processor q decides on z, and let K, be the
choice index of the name z. We distinguish between the following two cases.

z < 2: If K, < K then “K, < xKK, 5 YK,. Otherwise, ZK < XK = YK. In both cases it
follows that z < y . _

z > x: This case is divided further into three subcases.
(1) K, > K: Then ZK > XK = yK which implies z > y.-
(2) K’, < m: Then ZKZ > xKK, = yK, (because x and y are identical up to the m - l’th

entry), so z > y.
(3) I{ > K, > m: If zK, > ?.JK, then immediately z > y. Otherwise, we get a contradiction- -

to the maximality of m as follows. In this case, zK, = XK* = yK, - 1. The choice list
of q could not have contained p, because if it did then the K,‘th entry in the name
suggested by p would have to be different than a&. Therefore, the first stable vector
obtained by p was of length m’, m’ > K, 2 m, which implies that XmIl = xmtt-i for
some m < m” 5 m’, contradicting the definition of m.

The second claim follows from a slightly more involved case analysis, based on similar
considerations. I

We now modify the algorithm once more, changing step 3a of the algorithm to be:
Choose a CLS yP which is an arbitrary extension of xP. If yP 4 C then decide on it.
Otherwise, decide on f (yP).

Lemma 5.8: The modified algorithm is still correct.

Proof: We have to show that for every two processors p and q, the final names chosen by
p and q preserve the ordering of yP and yq, which by Lemma 5.5 is identical to the ordering
of the original xP and xq. This follows directly from the last two lemmas. I

Finally we re-analyze the size of the resulting name space. Using the encoding de-
scribed earlier, There are two cases:

13

1. If k = 0 then there are n - t possible CL%.

2. If k > 1 then ek = 0 according to lemma 5.6, and there are (n - t + 1)2k-1 possible
CLS’s (since if p does not appear in the list with length n - t and his name is greater
than all the name in that list then r = n - t + 1).

The size of the new name space is thus

N = (n - t) + (n - t + 1) 2 2’-l = 2t(n - t + 1) - 1.
i=l

Theorem 5.9: There is an algorithm for the order preserving problem which uses the
names { 1,. . . , 2t(n - t + 1) - 1). I

Acknowledgements

We wish to thank C. Attiya, M. Ben-Or, D. Dolev, D. Koller and N. Linial for helpful
discussions.

References

[ABDK]

PSI
a

PW

PI

H. Attiya, A. Bar-Noy, D. Dolev and D. Koller, Borderline Cases in Asynchronous
Achievability, Tech. Report 86-11, August 1986, Dept. of Computer Science, the
Hebrew Univ. of Jerusalem, Israel.

D. Dolev, C. Dwork and L. Stockmeyer, On the Minimal Synchronism Needed
for Distributed Consensus, Proc. 24th Symp. on Foundations of Camp. Science,
1983.

M.J. Fischer, N.A. Lynch, M.S. Paterson, Impossibility of Distributed Consensus
with one Faulty Processor, Proc. 2nd Symp. on principles of Database systems,
1983.

M.O. Rabin, The Choice Coordination Problem, Acta Informatica 17, (1982),
pp. 121-134.

14

