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ABSTRACT
Dnt,nlog programs, i.e, Prolog programs without function symbols, axe considered.
It is assumed t.hat a. variable appearing in the hea.d of a. rule must also a.ppea.r in the
body of the rule. The input of a pr0gra.m is a set of ground atoms (which axe given
in addition to the progra.m’s  rules) and, therefore, can be viewed as an assignment of
relat,ions  to some of the progra.m’s  predicates. Two programs are equiva.lent  if they
produce the sa.me result for all possible assignments of relations to the estensional
preclicat,es (i.e., the predicates that do not a,ppear as heads of rules). Two programs
a.re uniformly equivalent if they produce the sa.me result for all possible assignments
of initial rela.tions  to all t,he predicates (i.e., both estensiona,l  a.ncl intentional). The
equivalence problem for Dakalog  programs is known to be undecidable. It is shown
t,hat uniform equivalence is decida.ble,  and an algorithm is given for minimizing a
Da.ta.log  program under uniform equivalence. A technique for removing parts of a
pr0gra.m that axe redundant under equiva.lence  (but not under uniform equivalence)
is developed. A proceclure for testing uniform equivalence is also clevelopecl for the
case in which the database satisfies some constra.ints.

I. Introduction

Horn-clause programs without function symbols, a.lso known as DataJog programs, are an
important part of deductive (or logical) clata.ba.ses  (Gallaire and h/linker  [19’i8]). Recent
works has-e addressed the problem of finding efficient evaluakion  methods for queries es-
pressecl  as Datalog  programs$ (e.g., Bancilhon et al. [1986a], Henschen a,ncl Na.qvi [ 19841,
Iiifer and Lozinskii [1986], Lozinskii [1985], McKay and Sha.piro  [1981],  Rohmer and Le-
scoeur [1985], Sac& and Zaniolo [ 19863, Ull ma,n [1985], Van Gelcler [1986]).  It is importzmt
to remember that database applications usually require finding all the answers to a query,
and when there are no function symbols, it is possible to find all the answers in finite time
by a na.ive bottom-up computation. However, that requires retrieving a.11 the tuples of the
relations specified in the program. Therefore, a common theme in many of the proposed
methods for efficient query evaluation is to use the constants specified in the query in order
to restrict the size of intermediate results as soon as possible.

In t.his paper we take a complementary a*pproach to the one just mentioned, and
investigat.e  the question of how to remove redundant parts from a Datalog program. A
redundant part in a program is either a redundant rule or a redundant atom in the bocly
of a rule. In most cases, removing redundant parts can only reduce the time needed t,o
evaluate the query, because it reduces the number of joins done during the evaluation.
For esa.mple,  if the query is going to be computed the “ma.gic  set” method of Bancilhon

‘- On a leave of absence from Hebrew University. \Vork  supported by a grant of AT&T Foundation, a
grant of IBM Corp., and an NSF grant IST-W-12791.

$ See also Bancilhon and Ramakrishnan  [198Gb] for a thorough review of this subject.
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et al. [19S6a], then removing reclunclant  parts can only speed up the computation. Some
works (e.g., Chakravarthy et a,l. [19S6],  Finger [19S6]?  King [lSSl]> 1lave also considered the
opposite approach, namely, optimizing a program by adding more conjuncts to the body
of a rule. This is usually useful when it is required to find only one a.nswer to a query ( :IS
opposed to finding all the answers). In some cases, it could be useful even if all the answers
are required. For exa.mple,  if the intersection of two reMions is to be computed and the
database has a third relation tha.t  contains this intersection, then it may be better to
compute the intersection of a,11 three relations rather than just the original two (whether it
is indeed better depends upon the sizes of the three relations, the size of their intersection,
and the available indices). As already sa.icl, in this paper we develop methods for finding
redundant parts of a program and removing them. Our ideas, however, can also be used
to determine when a recluncla,nt  atom can be added to t’he body of a rule and, therefore,
they can also be incorporated in the type of optimizakion  that adds conjuncts rather than
removes them.

Usually, a Datalog  program gets as input relations for the extensional predicates,
namely, those predica#tes  that do not appear as heads of rules, and the answer consists of
relations for the intentional predicates, namely those that appear ?s heads of rules. The
process of optimization requires finding a progra,m of least cost, which is equivalent to
the original one, that is, for all possible inputs, the optimized program and the origina,
one have the same output. However, the equiva,lence  problem for Datalog programs is
undecidable (Shmueli [ 19861)) as is the problem of whether a pr0gra.m has a* reduncla.nt
rule Gaifman  [1986]).

We propose the notion of uniform equivalence which is defined as follows. Two pro-
grams are uniformly equiva.lent  if they have the same output for all inputs, where a possible
input for a program is an assignment of initial relations to the extensional a,s well as the
intentional predicates, ancl the program computes the final relations for the intentional
prec1icates.t Clearly, uniform equivalence implies equivalence, but the converse is not true.
We show how to minimize a program under uniform equivalence; that is, we give an algo-
rithm that removes all redunda.nt  rules and all redundant atoms from the remaining rules
while preserving uniform equivalence. The algorithm has an exponential running time
in the worst case, but the time is esponential only in the size of the program, which is
typically much smaller than the size of the database. Therefore, minimizing a program is
expected to reduce the total time spent on optimization and evaluation. As an example,
given- the rule

: G(x,y,t) :- qx, LO, 2 ), A@, LJ), A(tu, Z)) A( z, z), A( 2, y).

our algorithm determines that the atom A(w, y) is redunda.nt  and, consequently, the rule
can be replaced with

G(x, y, 2) :- G(x, LO, z), A(zu, z), A@, z), A@, y).

To fully appreciate the importance of the algorithm, one should realize that optimization
under uniform equivalence, is the only one that can be done locally. In comparison, if

t Clearly, for each intent,ional  predicate, the final relation contains the initial one, and for each esten-
siona.1 predicate, the final relation is t,he same as the initial one.



a subset of the rules of a program P is replaced with an equivalent (but not uniformly
equivalent) subset of rules, then the resulting program is not necessarily equivalent to P.

We also give a technique for minimizing Datalog programs under equivalence. Since
this is an undecidable problem, it is clear that our technique ma.y not find all the pa.rts of
a program tha.t  are redundant under equiva.lence. However, we believe that this technique
is going to be useful in many practical situations. For example, our technique ca.n ea,sily
show that in the pr0gra.m

G(x,z) :- *4(x,2).
G(x,z)  : -  G(x,y), G(y,z), A(y,w).

the a,tom  -4( y, LO), in the second rule, is redundant and can be removed without changing
the result.

II. Basic Definitions

We consider Datalog programs, i.e., Prolog programs having only predicates, variables and
constants. Function symbols as well as other features of Prolog (e.g., lists, cuts, arithmetic
operations) are not permitted. A Datalog  program  is a set of rules (also known as Horn-
clause rules). Each rule has a head, appearing on the left-hand side of the symbol :-, and
a body, appearing on the right-hand side of the symbol :-. The 1lea.d  of a rule is a single
atomic formula or simply atom, that is, a predicatet  with either a variable or a constant in
each argument position. We assume that consta.nts are integers. For esa.mple, Q(.r, y, 3.10)
is an a-torn, where Q is a predicate, z and y are variables a.nd 3 and 10 are constants. The
body of a rule is a conjunction of atoms.

Example 1: The following is a program with two rules.
G(x, z) :- A(x, 2).
G(x, s) :- G(x, y), G(y, r).

The input to t,his program is A and the output, G, is the transitive closure of A. 0
We conveniently denote a conjunction of atoms (e.g., in the body of the second rule)-

by separating the atoms with commas rather than with the “logical and” symbol A.
We do not consider rules with an empty head; rules of these form are used in logical

databases to express integrity constraints.
We assume that every variable in the head of a rule must also appear in the body

(th fere ore, rules with an empty body are not allowed unless the head has only constants
and no variables). Thus, if we want to write rules for the predicate ,4nc(x, y), whose
meaning is that x is an ancestor of y, we cannot write the rule Anc(x, x) :-, whose meaning
is that everybody is his own ancestor. This does not present any real restriction, as far as
databases a.re concerned, since each variable is assumed to be bound to a finite set. For
exa.mple,  in the rule Anc(x, x) :-, variable x is bound to the set of all persons mentioned
in the database. Thus, the rule Anc(x,x)  :- can be replaced with Anc(x,x)  :- Person(x).

t In traditional database terminology, a preclicate  is called a relation scheme.
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III. Computing a Program

A relation (I for a preclicate Q is a set of ground atoms of Q, i.e., atoms having only
const.ants (and no variables), e.g., Q(34,3,13,15).  Unless otherwise stated, we assume
that relaltions  are finite. A collection of relations, such a,s a cla,ta.ba.se, can be viewed a.s a
single set consisting of a.11 the ground atoms of these relations. If (11, . . . , qn are relations
for the predicates Q1, . . . , Qn, respectively, then (~1,. . . , qTL)  denotes their union,t namely,
the set containing the ground atoms of all the (1;. The set (41,. . , , qn) is also called an
irlterpreta tion or a structure.

A predicate is intention& in a given program P, if it aSppears  as the head of some rule
in P. An intentional predicate is supposed to be evaluated by the pr0gra.m P. A predica,te
is extensional if it does not appear in the head of any rule.

A progra,m P has a,n associa,ted  directed graph, called the dependence graph, that has
a nocle  for each predicate of the program, and an edge from predicate Q to preclica.te  R
whenever predicate Q is in the body of some rule and predicate R is in the head of that
same rule. Progra,m  P is recursive if its dependence graph has a cycle. A preclicate Q is
recursive in pr0gra.m P if there is a path from Q to itself. Note that recursive predicates
a.re intenbiona,l,  but an intentional predicake  is not necessarily recursive. Finally, a rule is
recursive if the dependence gra.ph  has a cycle that includes the predicate from the rule’s
head ancl a, predicate from the rule’s body. In paxticular,  a rule is recursive if the predicate
in the rule’s head amppears  also in the body.

The input for a program P is a relation for each extensional predicate, and it is
iallecl the extensional database (abbr. EDB). T he output computed by P is, in principle, a
relation for each intentional predicate, and it is called the intentional data.base  (abbr. IDB).
To simplify notCation,  we formally define the output to be both the EDB and the IDB, and
simply call it the database (abbr. DB). Note t.hat the EDB-part of the output is the same
as the input.

Now we are going to describe how the output can be computed. The ground atoms of
the DB are known facts. Initially, the known facts are those in the EDB. A program’s rule
states that if some facts are known, then another fact can be deduced from them. Newly
deduced fa.cts  become ground atoms of the IDB (and hence of the DB) and, so, the rules
ian be usecl once a.gain to deduce more new facts. Formally, a rule 1’ is used to deduce
a new fa,ct by instantiating its variables to constants, i.e., substituting a constant for all
occurrences of each variable. If under the instantiation, each a,tom  in the body of rule r
becomes a ground atom of the DB, then the instantiated head of the rule is added to the
IDB.:
Example 2: Consider the program of Esa.mple 1 and suppose that the EDB is the follow-
ing set of ground atoms: {A(l, 2), A( 1,4), A(4,l)).  Initially, the IDB is the empty set.
If, in the first rule, we instantiate x to 1 and z to 2, then the body of the rule becomes
&4( 1,2), which is a ground atom of the EDB. Therefore, G( 1,2) is added to the IDB. Two
similar. instantiations of the first rule add G( 1,4) and G(4,l)  to the IDB. As for the second
rule, the instantiation of x to 1, y to 4, and z to 1 produces the ground atoms G( 1,4) and

t Note t.hat this definition of the union is more general than the definition of the union operator in
relational algebra.



G(4. 1) in the hotly of the rule. Since both are a.lreacly in the DB, the instantiateed  heacl.
G( 1, l), is a~l~letl  to the IDB. Similarly, instantiating both ,r and t to 4 and v to 1 J-iclltls
G(4.4). Finally, G( -1,2) is obtained when x is instantiated to 4, 9 to 1, and z to 2. No
more grountl atoms can be produced by any inst8antia,tion,  and so, the DB

-i-4(1.% --1(l.Q --I(-1.  I>, G( 1. ‘3), G( 1,4). G(4,1), G( 1, I), G(4,4>,  G(4,3>

is t.he wlt.put, of the pr0gra.m for t.he above EDB. •I
If the input for a, program consists of finite relations, then the output is also a. set,

of finite relat.ions. Computing the output by repeatedly instantiating rules, until no new
groxmtl  atoms can be generated, is known as bottom-up computation. For a fixed program,
t,his method runs in polynomial time in the size of the EDB.

Let, P be a program n-it*11  the est.ensiona.1  predicates El, . . . , E,, and the intentional
predicates 11, . . . . I,,, . Given an EDB (~1, . . . , e,,), where ea.ch ek is a relakion  for Ek, the
DB computccl by P is denoted by P( (el , . . . , e,)). Recall that P( (elf . . . , en)) is a set’ of
ground a t,oms, and the EDB-part of P((el, . . . , e,)) is the same as the input.

Sometimes we n-oultl  like to view P a,s a progra,m whose input is both an EDB and an
IDB. The output is, computed as defined earlier, i.e., by repeatedly instantiating rules until
no new ground atoms can be added to the IDB. Clearly, the output is a DB that conta.ins
t.he input. \Vhen  P is viewed as a program whose input is both an EDB (el , . . . , e,,) and
a11 IDB (i,, . . . , &,,), the output of P is denoted by P( (el, . . . ? e,, 21,. . . , irn)).
Example 3: Let P be the program of Esa.mple 1. In Example 2, we have comput.ed  the
out,pllt  of P for the input. {A4(1,2),  ,A( 1, A), -A(A,  1)). It is easy to see that the out,put of
P for t.he input, { --I( 1,2). .A( 1. A)? G(4, 1)) is the sa.me as the one computed in Exampk
2. but, with the ground atom .4(4, 1) oniit~tecl.  •1

IV. Equivalence, Uniform Equivalence, and Models

Let, P1 and PL be programs wit,11 the same set of extensional predicates and the same
set, of intentional predicat,es. Program PI contains Pz, written Pz C PI, if for a.11 EDBs
( Cl,....- c,,), the output of PI contains that of Pz, i.e., Pz((el,. . . ,e,>) C Pl( (~1,. . . ,tll)).
In traclit,ional  database terminology, it means that for each predicate Q, the relation for Q
in the DB Pz( (cl,. . . , en)) is a subset of tlle relation for Q in the DB PI ( (el , . . . , e,J ).

Program PI and Pz are  equivdcnt, writ ten  Pz G PI, i f  Pz C PI and PI C PL.
Equil-alcnc t simply mea,ns  that the two programs have the sa.me output whenever they are
ii\-en the same EDB as input.

Program PI rkforml,y contains Pz , written P2 s’” PI, if for all pairs of an EDB
( fly..., e,)) and an IDB (iI,. . . , &,,), the following containment holds:

P2((el ,..., e,,,il,..., i,,,)) C PJ(el,..., e&l ,... &))

.
Program PI and Pz are uniformlSv equilralent,  written Pz -u PI, if P2 cl‘ P, and

P, &IL Pz. Uniform equivalence means that the two progra,ms  have the same output
whenever t.hey are given the same input, where the input may also include ground atoms
for some  intentiona. predicates.



Proposition 1: Uniform conta.inment implies containment.
Proof: If P,( (~1,. . . , e,,, il,. . . , i,,,))  2 P,((el, . . . , ejl, il, . . . . i,,,)) for all (q, . . . , e,J and
( il,. . . , i,,,). then in particular, for all EDBs (el, . . . , e,)

PJ(el,...,  e,t,0 )..., 0)) cP,((eI,...,et,,0,...,0))

where 0 denotes t’he empty relation. Therefore, &( (el,. . . , e,,)) 2 J’l((el, . . . , e,)) for all
EDBs (q,. . . , E’,) mci, so, P2 c PI. cl

Example 4: This example shows that equivalence does not a.lways imply uniform equiv-
a,lence.  Let PI be the program of Esample 1, and let Pz be the following program.

G( s, t ) :- A(.r, 3).
G( s, z ) :- A(.r, y), G(lJ, s).

Both progra.ms  compute t.he transitive closure of ,;1 when the input has only ground atoms
of A7 i.e., they are equiva.lent. Moreover, as we shall see later, PI uniformly contains P2.
But Pz does not uniformly contain PI. To see this, suppose that the input is the empty
rela.tion  for A a.nd some nonempty  relation g for G, such that g is not the transitive closure
of itself. Then, the output of P2 is the same as the input, i.e., g, while the output of PI is
the transitive closure of g. Thus, containment does not always imply uniform containment.
c l

A DB (el,. . . , e,,&, . . . ,i,,,) is a model of P if

( el,..., cn,il  ,.... i,,,) = P((el,. . . , ctl, h,. . . 7 h))

that is, no new ground atoms are generated when the program P is a.pplied  to the given
DB.  Let  M(P) 1c enote the set of all models of P. It is well known that the set ,1(P) is
closed under intersection, and the output of P, given a,n input (el , . . . , elL, il, . . . , i,,), is
t’he minima.1 model of P that contains the input (Van Emden and Kowalski [1976]).

e The above results imply that two programs are equiva.lent if they have the same set
of models t,hat are minima.1 with respect to the 1DB.t Uniform equivalence is similarly
cha.racterized in terms of models. Programs PI and P2 are uniformly equivalent if they
have. the saCme set of models, i.e., M( PI) = ,il/l( P2). The following proposition, whose proof
is given in t.he a.ppendis, is a characterization of uniform cont,ainment. Note that uniform
containment means containment of the sets of models in the opposite direction.
Proposition 2: P2 GIL PI s M(P,) C_ M(P,).

When discussing uniform containment of two programs PI and Pz, it is not necessary
to assume that they have the same set of predicates, provided that an input is any set of
ground atoms for the predicates appearing in either PI or Pz. It is even possible for an
estensional predicate in one program to be an intentional predicate in the other program.

t .A model d is minimal  wit.h respect to the IDB if there is no proper subset d’ of d which is also a
model and has t,he same EDB as d.
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Example 5: Let PI be the pr0gra.m  of Example 1, mcl let P? be obt,ained form PI by
adding the rule A( .r, Z) :- ,-I( x, g), G(y, J). Note that progwn  Pi, 1la.s  only intentional
preclicat*es and, so, it is meaningful only if it 1na.y ha.ve a nonempty  IDB a.s input. Since
every rule of PI is also a rule of P2, it is easy to verify that P,(d) C P2( d) for every DB
tE consisting of ground atoms for -4 and G. Therefore, there is lmiform containment, i.e.,

Lye conclude this section wit,11 a. simple observation that further illustrates the relation-
ship between containment and uniform containment, and shows tha,t  sometimes equivalence
implies uniform equivalence. Given programs PI a,nd Pz, we can construct progra.ms PI
a.ncl Pi such that, P2 G” PI if and only if Pi C Pi. The programs Pi a.ncl Pi are obtained
by adding rules t,ha.t give arbitrarv  initial va.lues to the intentiona. predicates. The rulec
added for a.11 intentional predicatei  B( x1, . . . , .r,,) is simply 23(.x1,  . . . , .c,) :- Bo(zl, . . . , .rrE),
where B0 is a, predicate that, does not appear in any other rule. Note that if PI and Pz
already ha.ve  a rule of t.he form B( .2’1 , . . . , x,,) :- G( x1 , . . . , ;I’,,), where G appears only in
this rule, then there is IHI need t,o a.dcl t*he rule for 13. In particular, if for every intentiona,
predicate B, bot,h PI and Pz already have a. rule of the form B(xl, . . . ,x,) :- G(zl,. . . ,x,),
where C: appears only in this rule, then P2 c” PI if a.nd only if P2 C PI.

V. Optimizing Recursive Programs

In t,his paper we consider a particular type of optimiza.tion, namely, removing redundant
atoms from the body of a rule, a.nd removing redunda.nt  rules from a program. This
optimization is useful, since it reduces the number of joins needed to compute the output.
The problem of opt,imizing  non-recursive programs has been solved, bot,h  for the case of
single-rule programs (Aho,  Sagiv and U11ma.n [19W], and Chanclra~  and Merlin [19’76])  and
for the case of programs wit.11 many rules (Sagiv a.ncl l-annaka.kis  [1980]). Essentia,lly, it
has been shown that a progranl  consisting of non-recursive rules has a unique equiva,lent
program with a minima.1 number of rules a.ncl a minimal number of atoms in the body
of each rule. Optimizing recursive programs, however, is considerably harder. In fact,
t,here  can be no algorithm for optimizing recursive progra.ms. L kce equivalence of recursive
programs is undecidable (Shmueli  [1X6]), as is the problem (A whet,her  a rule is redundant

M in a given recursive program, i.e., t,he problem of whether a rule ca.n be deleted while
preserl-ing  equiva,lence  (Gaifma.n [ 19S6]). Tllese uncleciclability results are valid even if we
consider only linear programs, i.e., programs in which the body of each rule has at most
c?ne recursive predicate.

In Section VII, we shall show tlha.t recursive programs ca,n be opt,imized under uniform
equivalence, i.e., we shall give an a.lgorithm that finds redundant atoms in the body of a
rule, as well as redundant rules in a. program, and removes them while preserving uniform
equivalence. The final result is a program with neither an atom nor a rule that ca.n be
deleted while preserving uniform equivalence. Unlike the non-recursive case, however, the
fina.l result of this optimization is not necessa,rily  unique (i.e., it may depend upon the
order in which atoms and rules are consiclered for deletion).

In Section XI, we shall describe a more elaborate procedure that can remove redundant

t If B is int.entional  only in one of the programs PI and Pz, then we still add the rule for B to bot.h  of
them.



atoms while preserving equivalence, but not! uniform ecluivalence.  This procedure is not,
completely a.lgorithmic. since it has to lise some simple heuristics: a.ntl, of course, it cannot
always remove  all at.oms  that are rcdunclant under equit-alcnce. We believe, however, that
this procetliirc  is going to be an important tool for optimizing Datalog  progranlt-.

VI. Testing Uniform Contaiument  and Equivalence

Test,ing  -\I( P, ) C M( P2) (ancl, by Proposition 2, t.esting P2 CT1 PI) is conceptua.lly  simple
and can be clone by t,he cl~.se process (Maier  et al. [197’9]).  Originally the chase n-as
used to t,est  implicakions of database dependencies, and recently it has been noted by
C’osmaclakis  and Kanellakis  [1X6] tl1a.t t,he chase can a,lso test uniform conta,inment  of
Datalog  programs with only one predicate. It is easy t,o see, however, that the same is true
for programs with many predicates.

Xote that M( P,) C M( Pi ) ‘fI and only if for all rules r of Pz, M( PI ) C M(r), beca.use
a DB d is a model of Pz if and only if it is a, model of every rule r of Pz . Therefore, by
Proposi t!ion 2, P2 GIL P, if and only if for all rules 7’ of P2, r Cl’ p1 (note tha,t r is a single
rule program).

We will now showy how to test 1’ C ” PI, where r is a single rule. Let r be the rule 11 :- b,
i.e., 12 is the head and b is the bocly. In order to test whether r C” PI, we have to consider
the atoms of b as an input DB for PI. Technically, the a,toms  of b axe convert,ed  into a DB
by substituting distinct constants for t,he vaxiables  of r and, as a result, b becomes a. set
of ground atoms. The uniform containment r E’” PI holds if and only if PI (be) contains
the ground atom h 0, where
1. 0 is a one-to-one substitution tha,t  maps ea.41 variable of r to a dist’inct  constant8  that

is not already in I’,
2. b61 is t,he set of ground a.toms  obtained from b by substituting according to 0, and
3. 1~0 is the grouncl akom  obtainecl  from 17. by substitut.ing  according to 8.
Example 6: Consider a.ga,in  progra.ms  PI and P2 of Esa,mples  1 a.nd 4. Recall that PI is

G(s, z) :- A(x. 2).
qs, 2) :- qr, t-J),  qy, 2).-

and Pz is
G(:c,z) : -  A(s,z). -

_ G(.r,z ) :- A(s, y)? G( y, 2).

1Ve are now going to show that Pz c“ PI. First, the variables of P2 have to be instantiated
to clist.inct constants. In order that the instantiation be visible throughout the example,
we use the subscript 0 to denote constants, that is, vasiable  x is instantiated to a consta.nt
denoted by ~0, variable y is instantiated to the constant ~0, and z to ~0. The rules of P2
must be considered one by one. So, consider the first rule of P3, denoted rl, i.e.,

The instantiat.ecl body of r1 is the DB { A4(.ro,  co)}. When PI is a.pplied  to this DB, the
result is {G(.ro,zo),  A(s0 , zo )}. Since the result contains the instantiated head of 1.1 , it
follows that r1 5’” PI.
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Now consicler  the second rule of P2 , denot8ed  r2, i.e.,

G( A’, 3 ) :- A(.r, y), G( y, z).

The instantiated l~ocl~-  of 1.2 is the DB { -A( ~0, ~0 ), G’( 90, ~0 )}. The first rule of P, can
l,e applied to -4( x0, 90 ) to produce G(x0, .3/o >, a.nd then an application of the second rule
gives G( x0 . 20 ). Thus, t,he instant)iatecl  head of 1.2  (i.e., G’(xa , z0 )) is in the result, and so.
7‘:! 2” P, . Since P, uniforml>-  conkins  every rule of P2, it follows tha,t  P2 CT’ P, .

Nest,, we will show t,hat PI g7L P2. Consider the second rule of P,, denoted s, i.e.,

G(.r, 2) :- G( x, y), G(y. 2).

The instantiated body is t.he DB { G’( d-0, .3/o ), G( ~0, -0 )>. No new ground akoms are pro-
duced when P2 is applied to this DB. Therefore, s g” Pz mcl, so, PI 9’” P2. •I

Example 7: Let, P, be the program

and P, 1x2 the program

G( J’, y, 2) :- G( .F, 111, z), A( zu, z), A(z. z), A( 2, y).

Since the body of t.he rule of P2 is a subset of the body of the rule of PI, it is c1ea.r  that
P, 2” P2. We Grill show that P2 C_” PI and, hence, PI G“ P2. The instant.ia.ted  body of
t.he single rule of P2 is the DB

{C(T’ .2-o, 100,  -“o ), =wO,JO)? -+o,~o), J+o,yo))

TVe first apply PI to this DB by instantiating the va.ria.bles  of PI as follows. Variable ;c is
instantiat.ecl t.o ~0, variable w t,o ~0~ and both z a.nd y to -0. It is easy to check that, under
this instantiation, the body of the rule of PI becomes a. subset of the DB and, therefore,
the ground a tom G( x0 , ~0 , z. ) is added to the DB. Now we a.pply  PI a.ga.in  by instantiaking
A: to .I’~, both 11)  and z to zo, and y to yo, and the result is G(x:o, :3/o,  SO ‘), which is t,he
instantia.ted  head of the rule of P2. Therefore, Pz cl1 PI. 0

- VII. Minimizing Programs Under Uniform Equivalence

Having an algorithm for testing uniform equivalence m&es it possible t*o optimize Datalog
programs in two wa,ys. The first one has just been illustraked in Example 7, a,nd it involves
eliminating redundant atoms from the body of a rule in the following way. Consider a rule
r: and let i: be the result of deleting one of the atoms in the body of r. If P 2” r, then rule
12 can be replaced wit,h  ?, since it follows that ? =U r (note that 1’ C_jL  1’ is t,rivially  true).
When r is replacecl  with +, the process continues with 1=, that is? another a.tom in the body
of ? is clelet.ecl  and if the resulting rule is uniformly contained in ?, then ,r^ is replaced with
that rule. The steps are summarized in the algorithm of Fig. 1. The final result is a rule
which is unifc ,* .tly equivalent to the original one, but without any I*edundant  atoms? i.e.,
atbms that can be deleted while preserving uniform equivalence. In proving the correctness
of the algorithm, the only nontrivial point is to show t,hat no atom has to be considered
more than once. In other words, if some atom CY is not redundant when it is considered
for the first t,inie,  tllien  subsequent clelet,ions  of other atoms cannot make cy reclunclant~.  We



shall formally prove this cla,im in the appendix Genera.lly,  the fina. result of the a.lgorithm
is not unique and may depend upon the order in which atoms acre considered.

begin
repeat

let cy be an atom in the bocly of r that ha.s not yet been consiclerecl;
let i: be the rule obtained by deleting cy from r;
if i: E” 1’ then replace r with +;

until ea.& atom has been considerecl once;
end.

Fig. 1. Minimizing a rule r.

Example 8: Consider programs p1 a.nd P2 of Example 7. Each one of these programs has
a single rule, and the rule of P2 is obta,ined from tha,t  of PI by deleting the atom d(~, y).
In Example 7, it is shown that P2 &” PI. Thus, if we execute the algorithm of Fig. 1
with the rule of PI as input, then it is going to be replaced with the rule of P2. It is easy
to show that the rule of P2 does not have any redundant atom. Therefore, the algorithm
terminates with the rule of P2 as the minimal form of the rule of PI. •I

Redundant rules can be removed from a progra.m P similarly to the elimination of
reclunda,nt akoms from the body of a rule. A rule is deleted from P to obtain a, pr0gra.m
p, and if r 2’” p, then P 2 i) and, so, rj can replace P. In order to minimize a program
P, we first minimize ea,ch rule by removing its redundant atoms, and then remove all
redundant rules. However, the following situation is possible. An atom in some rule 1’ of P
may not be redundant if r alone is considered, but may be redundant if all the rules of P
are considered. In other words, in order to minimize a rule r of P, we modify the a.lgorithm
of Fig. 1 by replacing the test 1: C” r in the if statement with ? &” P. The complete
algorithm for minimizing a program P is given in Fig. 2. In the appendix, we prove that
the final result of the algorithm has neither redundant rules nor redundant atoms. The
only nontrivial part of the proof is showing that no rule or atom has to be considered more
than once; the proof relies on the fact that at first each rule is minimized and only then
redundant rules are removed. The final result of the algorithm is not necessarily unique.

VIII. Tuple-Generating Dependencies

A tuple-generating dependency (abbr. tgd) ( Beeri and Vardi [ 19843, Fagin [ 19821, Yan-
nakakis and Papadimitriou [ 19821) is a formula of the form VS&/+) + $+,y)],  where
2 and y a,re vectors of variables and both $1 and $2 are conjunctions of atoms. We write
a tgd without the quantifiers, e.g., G(y, Z) + G(y, W) A C(W) instead of VyV.dw[G(y, z) -+
G(y, 6) A C(w)]. U niversally quantified variables are those appearing in the left-hand side
of the formula (these variables can also appear in the right-hand side). Existentially quan-
tified varia.bles  are those appearing only in the right-hand side of the tgd. Note that the
tgds considered in this pamper are untyped.
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begin
for each rule r do

repeat
let ok be an a,tom in t’he body of ‘r that 1la.s not yet been considered;
let ? be the rule obtained by delet.ing Q from r;
if 1’ cl‘ P then replace 1’ with P;

until each a.tom has been considered once;
repeat

let r be a rule of P that has not yet been considered;
let i) be the program obtained by deleting rule r from P;
if r C” p then replace P with i);

until each rule has been considered once:
end.

Fig. 2. Minimizing a program P.

As usual, we say that a DB cl satisfies a tgd T if for every instantiation 8 of the uni-
versally quantified variables, the following is true: If the left-hand side of r is instantiated
by 8 to ground atoms of d, then the right-ha,ncl  side of T can also be instantiated to ground
atoms of cl by extending 8 to an instantiation of all the variables of r.
Example 9: Consider the tgd G(z, y) -+ A(y, z) A A(z,x),  and the DB proclllcetl  in
Esa.mple 2; recall that G is the transitive closure of A, and the DB is

{A&z), -4(1,4),  &4(4,1),  G(V), G(1,4)7 G(4,1),  G&l), G(4,4),  G&2)}

If we instantiate both n: and y to 4, then the instantiated left-hand side, G(4,4),  is a
ground atom of the DB. We can now choose to instantiate z to 1, and as a result, the
instantiated right-hand side consists of ground atoms, A(4,l) and A&4), that axe in
the DB. The DB, however, does not satisfy the tgd, since instantiating x to 4 and v.
to 2 converts the left-hand side to a ground atom of the DB, but there is no possible
instantiation of z that also converts the right-hand side to ground atoms of the DB. The
tgd G(x, y) --) G(x, Z) A A(z,  y>, on the other hand, is satisfied by the DB. For example, if
x is instantiated to 1 and y to 2, then instantiating z to 1 converts the right-hand side to
ground atoms of the DB. 0

Let S be a set of DBs. We say that program PI uniformly contains Pz over S, written
pz c: PI7 if P,(d) c PI(d) for all DBs d E S. In most cases we assume that S is the set
of all DBs satisfying a given set T of tgds, and we usually denote this set by SAT(T).

Tuple-generating dependencies are important in Datalog, because in many cases opti-
mizing a program requires looking only at DBs that satisfy some tgds. One case is when the
EbB satisfies some constraints that can be expressed as tgds. Using constraints in order
to optimize programs has already been investigated (e.g., Chakravarthy et al. [1986]).  We
will show how to use tgds in a more general way. Essentially, we will give a proof procedure
for showing P2 C:,,(,) PI, and develop a technique for removing redunclant at,oms  from
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a, program P by doing the following steps. First, we have to show tha.t P2 CtVAl,(,, P,
for some suitable T, where Pz is obtained from PI by deleting an atom a from &me rllle.
Second, we have to show that P2 CgblTCT)  P, implies Pz C PI. If we show both, then it
follows that, ~2 is redundant in PI , evkn if it is not redundant uncler uniform equivalence.
This optimization technique will be described in detail later. In the remainder of this sec-
tion, we will describe t,lie first part of a procedure for cletermining whether P2 ~~Abi7.c TJ P,.
The correctness of this proceclure  is proved in the appendix.

Considering Proposition 2, it comes as no surprise that in order to show P2 ctfiT(TJ
P, , we ha.ve to show SAT( 7’) n M( PI ) s M( P )2 , i.e., every model of P, that satisfies T is
also a model of P2. Moreover, the chase process can be easily modified to show that. As we
shall see later, however, SAT(T) n M( PI ) C iU(P3) alone does not imply P2 sts ALlTcTl P,;
and in t,he nest section we ~1~11 describe a second step that is needed in order to conclude
that R2 cgATCT) PI.

In or&k to test whether SAT(T) n M(P, ) C M( P2), we have to consider each rule r
of Pl and show t,hat when both PI and T are applied to the body of r, the result includes
the head of 1’. Applying the tgds of T to a DB is similar to the application of rules, since
tgds are also Horn clauses.

We will now describe how to apply the tgds in greater detail. There are two types
of tgds: fill1  tgds, namely, tgds without esistentially quantified va,riables,  and embedded
tgcls, namely, tgds that have some existentially qua.ntified  varia.bles.  As illustra,ted by the
following esa.mple,  applying a full tgd to a. DB is just the same as a.pplying a, rule.
Example 10: The tgd A@, :y, 2) A B( UT, z , vJ ) -+ A( .c, y, v) A T( 20, :y, z) is full. Applying it
to a. DB is t,he sa.me as applying the following two rules. Note tl1a.t each of these rules has
the left-hand side of the tgcl as its body, and one of the atoms in the right-hand side of
the tgd as it,s head.

A(:r, y, v) :- A(s, y, z), B( (0, lJ, v).
T( w, y? z) :- A(a, y, t), B(,w, y, v). Cl

An eml~ecldecl  tgcl has existentially quantified va,ria.bles  and, therefore, in order to
apply it we have to use Skolem functions. We follow the approach of cla.taba,se  theory and
-view Skolem functions as nulls, i.e., unknown values. We denote nulls as dl, . . . , S;, . . . .

A tgcl T is applied to a DB as follows. Suppose that 0 is an instantiation of the
universally quantified variables of r, such that 6 shows that the DB violates T. That is,
0 converts the left-hand side of T to ground atoms of the DB, and there is no extension
of &that also converts the right-hand side of T to ground atoms of the DB. For each
existentially quantified variable of r, we choose a unique null 6, (which is not already in
the DB) ancl extend 8 to an instantiation that maps each existentially quantified variable
to its corresponding null. The instantiated atoms of the right-ha.nd side of T are added to
the DB. For example, if T is the tgd G(x, y) -+ ,4(x, w) A G(ro,  y) and the atom G(3,2) is
in the DB, then we add 43,623)  and G(&, 2) (provided, of course, that the DB contains
neithek  623 nor a pair of atoms of the form A(3, e) and G(e, 2), where e is either a constant
or a. null). The atoms 43,623) and G(&, 2) simply mean tha,t  there is some consta,nt c
such that 43, c) a.ncl G( c, 3) are in the DB, but the actual value of c is unknown.

The combined npplica.tion  of a program P and a set of tgcls T is denoted [P, T]. We
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apply [P,T] t o a DB cl until no new atoms ca.n be added to the DB, a,ncl the final reslllt
is tlenotecl  [P, T](d). Clearly, [P, T](d) is both a model of P ancl a DB thak  satisfies T.
Since the application of tgcls may acid nulls that are not already in the DB, some sets of
tgds can be applied t,o a.11 initial DB forever. Note t,hat once a.11 a.tom with nulls is added
t.o t,lx DB, then it is viewed as a ground a.tom and nulls are viewed as consta.nts, a.s far as
applications of rules a.nd t,gds are concerned.
Example 11: Let PI be the program

G(.c, 2) :- A(x, 2).
G( .I-, s ) :- G(x, Y), Q, 4, -I.

and let, Pz be t,he pr0gra.m
G( .r, 2) :- A(x, z).
G( .r, z) :- G(x, y), G(y, 2).

It. is easy to show that PI C_lL P2. We will show tl1a.t  SL4T( T) n M( PI) C M(P, ), where
T consists of the single clependency  :

G( cr, z) ---) A( It:) ,w )

The rules of P2 have to be considered one by one; we start by instantiating the first
rule of P3 and, so, its body becomes the DB {A(.eo , zo)}. Now we have to apply [P,, T] to
this DB, a.nd the result is { A4(:xo,  zo), G(xo, so)} (note that only the first rule of PI can be
applied to this DB). This result contains the instantiakecl head of the first rule of P2.

Nest, consider the DB {G(so,yo), G(yo,zo)}, which is the insta,ntiatecl body of the
second rule of P2. At first, t.he only possible applicakion of [PI, T] is to a+pply the tgcl of T.
If the left-hand side of the tgcl is instantiakecl to G( 90, so ), then this insta.ntiakion cannot
be extended to any instantiation that converts the right-hand sicle to a ground atom of the
DB and, therefore, A(yo, 61) is added to the DB. Simila,rly,  the left-hand side of the tgd
can be instantiated to G(xo, yo), which results in adding A(so, 62) to the DB. Now, the
body of the second rule of PI can be instantiated to G(.co, yo),  G(yo, ZO), A(y&), and
so G( .1:0.:0) is a.clded  to the DB, thereby showing that the instantiated head of the second
rule of P2 is in the result. Thus, we have shown that SAT(T) n M(P,) C M(P,). In the
nest sect.ion,  we will use this fact in order to conclude that P2 Cz,,(,) PI.

Showing P2 C tATtTJ PI is useful, because it implies Pz C PI by the following simple
argument (the argument is given here informally, a.ncl will be given forma.lly  in Section S).
A4pplying  program PI (or Pz) to an EDB, which is given as input, is the same as applying
PI (or 1?>)  to the preliminary DB,$ i.e., the DB consisting of the input and the ground
atoms generated by the initialization rules (an initialization rule is a rule whose body
has only extensional predicates). Since PI and Pz have the sa.me initialization rule, they
have the same preliminary DB for every EDB; a.nd it is easy to see that the preliminary
DB satisfies T. Therefore, P2 SEAT(T) PI implies Pz C PI. Cleaxly,  PI C Pz and, so,
Pl,rP2. I t t hus of 11ows that the atom A(y, w) in the second rule of PI is redundant under
equivalence, although it is not redundant under uniform equivalence. 0

$ \Vhen PI (or P.,)  is applied to the preliminary DB, t.he  initialization rules are redundant and can be
ignorecl.
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IX. Preserving Tuple-Generating Dependencies

As stated earlier, SAT(T) n M( PI ) C M(P,)  alone  does not imply Pz ctATITj P,, AS
shown in the appendix, however, if we also show tha’t PI preserves T, then Pz ~~,ATCTj  P,
follows. We sa,y that PI preserves T if PI(d) E SAT(T) for all DBs cl E SAT(T).

It is not known whet,her there is a, proof procedure for showing that a program P
preserves a set of tgcls T. In this section we will describe a process that may efficiently
show, in ma,ny practica.1  ca.ses,  that P preserves T. The idea is to show that if we start with
a DB cl E SAT(T), then ea.ch iteration in the bottom-up computation of P(d) preserves
T. To espress the idea more formally, we need the following definitions. Applying P non-
recursively tofa DB cl mea,ns  applying it only to the ground atoms of d, a,nd not to grouncl
a.toms  generated from cl by previous a.pplications. When P is applied non-recursively, we
clenote  it as P”. Clea.rly, the result of applying P” to a DB d, denoted P”(d), is

{ h6J 1 for some rule /z :- b of P and substitution 8, the atoms of b0 are in d}

Note that by our previous definitions, the output of P(d) contains the input cl. In com-
parison, P”(d) contains only the atoms generated by applying the rules non-recursively
to d, but does not necessarily contain the atoms of d. This notation is just a matter of
convenience, and should not cause any confusion.
Example 12: Let P be the program

G(x, z) :- A(x, z).
G(x, z) :- G(x,y),  G(y,z).

and let d = {-A&2),  G(2,3),  G(3,4)}. P”(d) i s  {G(lJ), G(2,4)},  whereas  P(d)  i s
{A&2), G(2,3),  G(3,4),  G&2), G(1,3),  G(2,4), G&4)}.  0

Our idea is to show that P preserves T by showing that P preserves T non-reclzrsively,
that is, (d, PR(d))  E SAT(T) for all d E SAT(T) (recall that (cl, Pn(d)) is the union of
cl a,nd P” (cl)). Note that if P preserves T non-recursively, then P preserves T. The
converse, however, is not necessa.rily  true, thak  is, P may preserve T without preserving it
non-recursively.

Proving that P preserves T non-recursively is done by a variant of the chase process
that was originally proposed by Klug and Price [1952].  This process is complete for proving
non-recursive preservation of T, that is, it terminates with a positive answer if indeed P
preserves T non-recursively, but it may loop forever if T has embedded tgds and the answer
is negative. Before fully defining this process, we illustrate it on a simple example.
Example 13: Consider the following recursive rule, denoted r,

G(v) :- G(x,y), G(y,z), /Q,w).

and let r be the tgd
*G(x, z) + A(x, w)

In order to show that r preserves r non-recursively, we will attempt to prove the opposite
by trying to construct a counterexample, and if we fail to do so, then r preserves T non-
recursively. A counterexa,mple,  in t)his particular case, is a DB cl E SAT(T) such that
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($, ?*“(tZ))  violates T. The DB (d,rn(c2)) violates T if it has a grourd  a.tom G( x0, 20 ) that
exhibits a violation of T, that is, a ground atom G(xo, zo> such that for all ~0, t,he DB
(tl, 7.” (cl)) does not have a ground atom of the form A( ~0, ~0). A ground atom G’( ~0, -0 )
of (cl, I*” ( cZ)) that exhibits a. violation of r must be in r’“(cl)  (it caIlIl0t be in (IT,  since
cl E SAT(r)). Tllerefore, we will try to build a counteresaniple by first assuming tl1a.t.
G(xo, z. ) is in 1.” (n), and then adding atoms to cl that are neeclecl  in order to
(1) have the atom G(.~o, 20) in r”(cZ),  and
(3) make CZ sakisfy  r.

The a.tom  G(xo , -0) can be in rn( d) only as a result of applying r.” to cl. By unifying
eo, z. ) with the 1lea.d  of 7*, we ca.n determine which ground atoms must be in cl! in order
to produce G( ~0, ~0).  In this particular case, the unificakion shows tha.t  d must have the
following atoms:

where yo and q are some I.x.)nst,a.nts.
Since d satisfies T, it is possible to apply the tgd r to cl. Applying T to G(Q), yo) yields

A(.ro, b1 ), and applying it to G(yo, 20) yields A(yo, 62). Note that these applications result
in ground a.toms that  must be in d (as opposed to applications of rn that produce ground
atoms in P(d)). B asically, the a.pplications of r correspond to inferences implied by the
fact that d satisfies r and by the fact that certain ground atoms are known to be in cl. In
principle, the tgcl T should be a.pplied repeatedly to the atoms of cl (both the atoms that

. have originally been in d a.nd those a.dded to d by previous a.pplications of the tgcl). In
this particular case, the tgcl can be applied only to the ground atoms originally known to
be in cl (i.e., those proclucecl  by unifying G(xo, 20) with the 1lea.d  of r>. Consecluent.ly, the
ground atoms that must be in cl ase

c:(.co, yo), qgo, =o), Jqyo, 1uo), +o, w, alo,~2).

Among them there is A(zo, Sl), which shows that G(zo, ~0) does not exhibit a violation of
r. Therefore, there is no counterexample (cl, r”(d)) and, so, r preserves r non-recursively.
El

. We can now generalize the above esample to an arbitraxy  P and T. In order to prove
that P preserves T non-recursively, we do the following for each T E T. First, the left-hand
side of T is instant#iatecl  by replacing each variable with a distinct constant. The ground
atoms of the instantiaked  left-hand side are treated according to one of the following two
mses:
(i) Ground atoms of extensional predicates become part of cl.
(2) Ground atoms of intentional predicates become part of Pn(cZ).
For each ground atom cv in P"(cZ), we should add to cl some atoms that produce CL when P
is a.pplied non-recursively to d. In general, there are many ways to add atoms that produce
CV. Each possible way is determined by some rule with a head that can be unified with cy.
Thus, we should consider all possible combinations of unifying the ground atoms that have
been added to P"(d) with heads of rules (if there are 72 ground atoms in P"(d) and each
can be unified with 772 rules, then there are nm combination to consider). Essentially, we
have to show that for each possible combination, there is no violation of T. So, consider
one possible combination that Lmifies each ground atom cy of an intentional predicate G
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(in the instantiated left-hand side of T) with the head of some rule 1’ for C?. As a result
of the tmifica.tion,  the varia,bles  of r that appear in the head are instantiated to constants,
In order t,o convert the the body of 1’ to ground a,toms, the rest of the variables of r are
instantiated to new clistinct consta.nts, and the grouncl atoms of be body a.re added to d.
In summary, cl contains a.ll the ground atoms bhat  a.re either
(1) a.toms  of extensional predicates from t’he instantia.ted  left-hand side of the tgd r, OI

(2) atoms (extensional or intentional) from bodies of rules that have been unified with
atoms of intentional predicates from the left-hand side of T.

-4s for P”(cZ), it contains atoms of intentiona. preclica.tes from the instantiated left-hand
side of T.

111  the second step, the tgds of T (all of t’hem - not just T) are applied to CZ to produce
more ground atoms that must be in cl. The t$gcls  are a.ppliecl repeatedly, until no more
ground atoms can be generated from esist<in g ones (and, consequently, cl becomes a DB
that satisfies T).

In the third step,i the program P is applied non-recursively to C-Z to get P”(cZ).
In the final step, we should check whether (d, P”(d)) satisfies r. In order to check

that, it is sufficient to consider the insta,ntia.tecl  left-hand side of r (which is part of P”(d)),
and check whether it exhibits a violation of T in (cl, P”( cl)). N o violation is exhibited if the
instantiation of the left-hand side can be extended to a11 instantiation that also includes the
existentially quantified variables1 of T, such tl1a.t the right-hand side of r becomes a subset
of (d. P”(cZ)). In fa.ct, it follows that there is no need to compute all of P”(d); instead,
it is sufficient to determine whether (d, P”(d)) contains ground a.toms  showing that the
insta.ntia,ted  left-hand side of T does not e&bit  a violation. For clarity of presentation,
however, we will continue to use the step tha,t  computes P’“(d).

The pr0gra.m  P preserves T non-recursively, if for a.11 T f T and for a.11 combinat,ions
of unifying the insta,ntiated  left-hand side of T with rules’ hea.ds of P, no violation of T is
exhibited.

In Esample 13, the left-hand side of the tgd T has only one atom and there is only
one rule; therefore, there is only one combination to check, and as has been shown, it does
not eshibit a violation. The steps for checking whether P preserves T non-recursively
are summarized in Fig. 3. Finer cleta.ils  of the algorithm are explained in the nest two
para,gra.phs.

The step of applying T to d may not terminate if new nulls a.re repeatedly introduced.
It is still possible, however, to terminate the inner loop in finite time (for any particular
choide of T E T and any particular choice of rules for T) if no violation of T is exhibited. In
order to achieve that, the last three steps of the inner loop should be interleaved as follows.
First, T is applied to d to produce some more new at,oms  tha,t  must be in d. Next, P”(d)
is computed a.gain, since its value  ma.y  have cha.nged a,s a result of the new atoms that
have just been added to d. The third step is t*o check whether the instantiated left-hand
side of T exhibits a violation in the current (d, P”(d)). If no violation is exhibited, then T

is preserved and there is no need to continue. If a violation still exists, then the previous

i In Esample 13, this step is redundant and, hence, has been omitted.

$ Recall that the existentially quantified variables of a t,gd are those appearing only in the right-hand
side.
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begin
repeat

make cl enipt,y;
choose a T E T;
let 6 map the universally quantified varia.bles  of T to distinct constants;
instantiate  the left-hand side of T according to 8;
add the instantSiatecl  atoms of estensiona.l  predicates to cl;
repeat

choose a rule for each instantiated atom of an intentional preclica.te;
unify each a tom with the hex1 of the rule chosen for it,

and aclcl  the instantiated body to cl;
apply the tgcls of T to cl:
compute P” ((Z);
check whether t’he instantiated left-hand side

exhibits a. violation of T in (cZ, P”(cZ));
until a violation has been exhibited or

all combinations of choosing rules have been examined;
until a, violat,ion  ha,s been exhibited or all T E T have been chosen;
if a. viola.tion  has been exhibited

then P does not preserve T non-recursively
else P preserves T non-recursively

end.

Fig. 3. Procedure for testing non-recursive preserva.tion  of T.

steps should be reiterated.
-4s already saicl,  each atom of an intentional predicate, in the instantia,ted  left-hand

side of T, is unified with the 1lea.d  of some rule. This has the effect of testing whether T is
satisfied when a,toms  of intentional predicates in its left-hand side are restricted to be in
P’+Z). In Esample 13, t,here  is a single atom in the left-hand side of T, and therefore, T is-
satisfied in (~1, P” (,I)) if the following is shown:
( 1) T is sa,tisfiecl  in (cZ, P” (cl)) w hen the left-ha,nd side is restricted to be in P”(cl), and
(2) T is sa,tisfied in (cl, P’“(cl)) when the left-hand side is restricted to be in d.
Pa,rt ( 1) has been shown in Example 13 by unifying the left-hand side with the head of I*.
Pa.rt. (2) fo 11ows immediately from the fa.ct that d satisfies T. The situation, however, is not
that simple if the left-hand side of T has more than one a.tom of an intentional preclicate.
In this case, we have to check that r is also satisfied when some atomst  are in P”(cl), while
others are in cl. Thus, we shoulcl consider more combinations than stated earlier. The
combina.tions are all those in which an atom of an intentional preclicate in the left-hand
side of T is either unified with the head of some rule or is assumed to be in d (without,.
of course, being unified with a.ny rule). If an atom is unified with the head of some rule,

t The atoms referred to are, of course, the instantiated atoms of intentional predicates in the left-hand
side of T.



then the atom becomes par: of P’“(cl), while the instantiated body of the rule becomes
part of cl. We can still stick to the old definition of the combina,tions to be considered
if for each intentional predicate Q, we add a trivial rule of the form: Q(:ri, . . . , x,,) :-
Q(q, . . . , .z ,l ). From now on we will assume that each program is a,ugmentecl  with these
trivial rules (although usua,lly we do not explicitly write these rules as part of the program).
Therefore, t’he combinat~ions  to be considered are the sxne as defined originally, tIllat) is, a.
combination unifies ea,ch atom of an intentional predicate with the hea,d  of some rule.
Example 14: Consider again the program Pr given in Example 11:

G(x, 3) :- A(x, 2).
G( .I-. 2) :- G( d, y ), G(y, t), A(y, 20).

a.nd the tgcl 7:
G(x, z) + A(s, eo)

We will show that Pi preserves T = {r } non-recursively, and hence it a,lso preserves T.
Combining this with the fact SAT(T) n M(P, ) C M( Pz), which was shown in Example
11, implies that Pz C$,,(,) PI. Let G(zo, zo ) be the instantiated left-ha,nd  side of T. In
Example 13, we have shown that no violation is exhibited when G’(.ro, ~0) is unified with
the head of the second rule of PI. Similarly, there can be no violation when G( ~0, ~0) is
unifiecl with the trivial rule G(x, z) :- G(x, z).$ The last case to consider is unifying with
the rule:

G(x, 3) :- A(x, 2).

As a result of unifying G’( ~0, 20) with the hea.d of the above rule, cE becomes t,he DB
{ A( ~0, -lo)}. The tgds of T ca.nnot be a.pplied to cZ. Nest, by applying P,ll to tl, we get that
P;‘(d)  is {G(ro, ~0)). Since A(x0,20)  is in (d, P?(d)), no violation of T is eshibitecl  ancl,
therefore, PI preserves T, as was cla,imecl.  0
Example 15: Let r be the same rule as in Example 13, that is

G(x, z) :- G(r, y), G(y, z), A(y, 20).

and let the tgd T be
G( x, y) A G(y, 2) -+ A(y, w)

We will show that r (i.e., the program consisting of r) preserves r non-recursively. Recall
that -we should trea,t the program as if it also has the trivial rule

G(x, z) :- G(x, 2).

and, hence, there are four possible combinations of unifying the atoms in the left-hand side
of T with rules’ heads. So let

G(.ro, yo), W/o,  -“o >
.

$ As a general rule, there can be no violation if the left-hand side of the tgd has only one atom of an
intentional predicate and the unification is done with a trivial rule, because the whole instantiated
left-hand side becomes part of d, which is assumed to satisfy 2’. The trivial rules have to be used
only when we deal with a tgd that, has more than one atom of an intentional predicat,e  in its left-hand
side (see Example 15).



be the instantiated left-hand side of r, ancl consider t’he following four combinations.
Combination 1. G(zo, ~0) is unified with the head of 1’ a,ncl, c?.s a result, the following

ground atoms (i.e., those from the body of T) are in cl:

and G( 90, 20) is unified with the head of t,he trivia.1 rule, which a.clcls the following atom t,o
d:

Q/o, --0)

Now T = {r} should be a,ppliecl to cl ancl, actually, only the following a.pplication is
jjossible. The left-hand side of r is instantia,tecl to the following ground atoms of cl:

G(YI, YO),  G(Yo, 30)
Since this instantiation cannot be esrencled to one that also converts the right-hand side to
ground atoms of cZ, the ground a,tom  A4( yo, 61) is added to cZ. Note that no more applications
of T are possible after this one. The atom A&, &) of cl shows that no violation of T is
exhibited in (d, m(d)) for the combination being considered.

Combination 2. G(.Q, yo ) is unified with the heacl of the trivial rule and, as a result,
the following groutid atom is added to d:

G(XO,YO)
and G(yo, ~0) is unified with the head of ?*, a.nd the following ground atoms are added to
cl:

G(Yo,YI), Gkwo), 4/wo)

Now T = (7) is a.pplied  to d. &4ga.in,  t,here  is only possible application, which is obta.inecl
by instantiating the left-ha,ncl  side of r to the following grouncl  atoms of d:

G(xo,Yo),  G(YO,YI)
This instantiation adds A(yo,51) to d, and this ground atom shows that no violakion  of T
is eshibited in (d, rn($)).

w Combination 3. G(xo, yo) is unified with the head of r, and the following ground
atoms are added to cl:

G(xo,yl),  G(YI,Yo), A(YWO)
and G( yo , ~0) is also unified with the head of r, and the following ground atoms a,re added
to cl:

G(Yo,Y:!), G(Y~,zo),  4~2;~)
Now T = (7) is applied to cl by instantiating the left-hand side of r to the following ground
atoms of d:

G(YI,Yo), G(Yo,Y~)
a&d, as result of this instantiation, A( yo, 61) is added to d. The atom A( yo, 61) shows that
no violation of r is exhibited in (d, rn( d)) for the combination being considered.

Combination 4. Both G(xo, yo) and G(yo, 20) are unified with the head of the trivia.1
rule ancl, therefore, become part of d. Clearly, there ca.nnot be a violation in this case,



since d satisfies T.
Since no couibinatic-)n  cshibi t s a violation, )’ preserves T. Cl

Example 16: C’onsider  t,he rlzle 11
G(.r, z ) :- A(.r, y), G( lJ, z), G( lj. w). C’(w).

ancl t,he following t ql. cleuot ed T
G(y, 2) + G( y, w) A C’(w)

To show that r preserves T non-recursively, we insta,ntiate  the left-hand side of T to

and unify it with the head of r. Consequently, the following grouncl atoms are in ~1:

Note that in this case, t,he tgcl r ca.nnot be a.pplied  to cl to produce new atoms. But when
r is applied non-recursively to d, the DB r”(d) becomes equal to

G( yo , ad. G( yo +_ZJ’O )

To see that G(go, ~0) is in F(4),  not,e  that tChis atom was unified with the hea.cl of 1’ and
the instantiated bocly became a pa.rt of d. To see that G(y0, ~0) is in Y” (cl), instantiate
the variables of 7’ ass  follows. Instantia.te  s to yo, y to ~1, and both z and w to ~0.

The ground atoms G( yo, ~0) a.ncl C( ~0) show that (cl, rn (d)) does not viola.te T when
the left-hand side is instantiattlcl to G( yo, ~0). Thus, r preserves T. 0

X. Determining Equivalence

In this section we will show how it is sometimes possible to infer that P2 C_ PI from the fact
that P2 Cl4TcTJ PI. Later we will discuss how to use this technique in order to optimize
programs. i3ut first we neecl some definitions. -4 rule r of a program P is an initialization
rule if t,he body of r ha.s  only est,ensional predicates. P” is the pr0gra.m  consisting of the
initialization rules of P. Note that P’ is a non-recursive program. Given an EDB tl as
an input for P, we define Pi(d) to be the set of ground atoms generated by applying Pi
to cl (since P’ is a non-recursive program, P’(d) is defined in the same 1va.y a,s applying a
program non-recursively, i.e., Pi(d) does not include cl). The prelinlinaqv  DB for an EDB
d is (cl. P’(d)).

Example 17: Let P be the program
G(x, z) :- ,-1(x, z).
G(:r, 2) :- G(s, y), G(y,z).

a n d  l e t  cl =  {A(l,2), ,-1(2,3),  A(3,4)).  P’(d) i s  {G(l,Z), G(2,3),  G(3,4)},  a n d  t h e
preliminary DB for cl! is { -4( 1,2), .4(3,3), A(3,4), G( 1, 2), G(2,3), G(3,4)}. 0

In the nest example, we illustrate how to infer P2 E PI from P2 Ct,,(,) P, .

Example 18: Consider again t’he two progra.ms  of Exa,mple 11. Recall that PI is the
pr0gra.m



G(.r,  2) :- A(.?-.  J).
G( .l’, 2 ) :- G( .I-, y), G( y, z), A(y, ,lO).

and Pz is the program

Clearly, P, &” p2. T:; Example 11 we have shown that SAT(T) n AJ( p1 ) C ,\I( P3 ), where
T consists of the single tgd

G( x, z) -+ A( .z: , ‘11,  )

and in Example 14 we have shown tha.t  p1 preserves T. Consequently, P CL2 -SAT(T) Pl-
In t,his example, we will show that Pz 2 PI and hence PI z Pz, since PI cfL P2 (and so
PI 2 I%).

First., we will show that for every EDB cl, the preliminary DB, (cl, P:(d)), samtidies  T.
Recall tellat  P; consists of the rule

G(x, z) :- A(2, z).

Essent,ially,  the pkocedure  of Fig. 3 is used to show that (d, Pi(d)) satisfies T. There
are, however, two important changes. First, we do not assume that cl sakisfies  T and,
t,herefore,  we omit the step in which the tgds of T are a.ppliecl to cl. Second, cl is an
EDB given as an input to PI and, so, it does not have a.ny grouncl atom of an intentional
predicate. Therefore, we do not add to the program Pi the trivial rules (i.e., rules of the
form Q(.rl,.  . . , .7:.) :- Q(.x~,  . . . , :rn)) for the intentional preclicakes.

Thus, we s&t by instantiating the left-hand side of the only tgcl in T, a.ncl the result,
is G( x0, zo ). There is only one rule in P; and, hence, only one combination of unifying the
inst.a.ntiated  left-hand side with heads of rules. This unification results in cl being the DB
1-u* 2-0, ~0,). Since ,4(x0 , ~0) has just been shown to be in (d, P;‘(d)), no violation of the
t,gcl is eshibit,ecl  ancl, therefore, the preliminary DB of PI satisfies T.

PI and Pz have the same initialization rule and, consequently, their preliminary DBs
are the same (when given the same EDB as input). Therefore P2 C!L,,(,) PI implies

- p> 2 PI, since t,he preliminary DB satisfies T. 0
To sum up the a.pproach illustrated in the above example, showing Pz C PI entails

showing the following:
.( 1) SAT(T) n M(P,) s M(P,).
I(?) PI preserves T.
(3) For all EDBs cl, programs PI and Pz have the same preliminary DB.
(4) The preliminary DB always satisfies T.
Part ( 1) can be shown using the chase process described in Section VIII. Part (2) is shown
using the process summarized in Fig. 3. Part (3) requires showing tha.t  Pi and Pi are
equivalent. Equivalence of non-recursive programs is the same as uniform equivalence and,
thus, there is an algorithm for showing that (i.e., the one described in Section VI). In fact,
equiva,lence  of non-recursive programs is the same as equivalence of unions of tableaus
(Sagiv and Yannakakis  [1979]). Part (4) can be shown by the procedure of Fig. 3 with t’he
following moclificat  ions. First, the step of applying the tgcls of T to cl is removed. Second,



the program (i.e, Pi) is not augmented with trivial rules for the intentional predicates.
The above recipe for showing Pz 2 PI has some drawbacks that may limit its appli-

ca,bility.  First, it is not always clear how to find a set of tgds T for which (l)-(4) hold.
Voreover,  the fact that Pz E PI does not necessarily imply that there is such a T. Seconcl,
the procedure for testing (1) (or (2)) t ermina,tes  in finite time if the answer is positive, but
ma,y loop forever if the answer is negative. Nevertheless, we believe that in many practical
cases this approach is useful in optimizing programs.

We end this section with an important comment on conditions (l)-(4)  above. Actually,
it is not necessary to consider the preliminary DBs of both PI and Pz. Instead, it is
sufficient to consider only the preliminary DB of PI a,nd show that it satisfies T. In ot,her
words, conditions (3) and (4) can be replaced with the following condition:
(3’) The preliminary DB of PI satisfies T.
The reason for that is as follows. We know that Pz G EATcTj PI and we wa,nt  to conclude
that P2 C_ PI, that is, we want to show that if cl is an EDB, then P&Z) C PI(d). So, let d’
be a preliminary DB of PI obtained from cl, i.e., cl c d’; and suppose that d’ satisfies T.
Since P2 G~AT(T) PI and d’ satisfies T, it follows that

Pz(d’)  C PI@‘) (4

But Datalog  progra.ms  are monotonic and, therefore,

P2(d) 2 P2(d’)

because d c cl’. Moreover, d’ is a preliminary DB of PI, i.e., it is obtained by applying
some rules of PI to cl and, hence,

PI(d) = P&l’) ,(0,

Fm-n (4, I% and (C) it follows that

p2(4 C_ PI(d)

When defining the preliminary DB, it is not necessary to choose the one generated by
the initialization rules. Instead, it is sufficient to consider any set of rules of PI and aapply
it a fi;ued number of times to the initial EDB given as an input. Applying a given set of
rules a fised number of times (even if the rules are recursive) can be expressed in terms of
non-recursive rules and, hence, testing whether the preliminary DB satisfies T can be clone
as described earlier (i.e., a,s described for a preliminary DB created by the initialization
rules).



XI. Optimizing Under Equivalence

In Exa.mple lS, we have shown that the a.tom LA(y,  w) is redundant in the recursive rule
of PI. Note tha,t  this cannot be shown using the algorithm of Fig. 2, because &A( v, W)
is not reclunclant  under uniform equivalence. Compared to optimization under uniform
equiva.lence, it is less clear how to ca,rry  out this type of optimization a.lgorithmica.lly.
The problem is how t,o fincl a. tgd that shows the redundancy of A(?J,  w). In pract,ice,
the appropria.te approa.ch  is to use some heuristics. In trying to generalize Exa,mple  lS,
note that the tgd used in tha.t  exa.mple,  i.e., G(s, Z) -+ A(z, w), has the property t1la.t  the
following can be shown very easily.

SAT(T) n M(P,) c M[P,)

Recall that T consists of the above tgd and P2 is obtained from PI by removing A(y, zo)
(see Example 1s for more cleta.ils).  More specifically, a single application of T to the body
of the recursive rule of P2 makes that body identical to the body of the recursive rule of
PI and, in effect, shows (1).

The above idea, for choosing a tgd can be phrased in terms of the following syntactical
properties. In order to make the following properties as clear as possible, recall tha.t  the
rule that has been optimized in Example 18 is

G(x, 41) :-  G(x, y), G(y,z),  A(y,w).

and the chosen tgcl can also be written as G(y, Z) + A(y, w), i.e., it consists of a,toms
appearing in the body of the above rule and having the following properties.
(1)

l(2)

(3)

The left-hand side of the tgd has the sa.me predicate as the head of the rule being
optimized.
If the tgd has a variable ‘w that appears only in its right-hand side, then all the atoms
(from the rule’s body) t,hat  contain w are in the right-hand side of the tgd.
All the va.riables  of the tgd that appear only in its right-hand side are not in the rule’s
head.

Once a tgd has been chosen, the next step is to test whether the atoms in the right-hand
side of the tgd are redundant in the rule’s body.

It is not difficult to devise heuristics that look for a tgd satisfying the above properties.
Once a tgd is found, it remains to check the conditions specified in the previous section.

-This is just a matter of syntactical manipulation, which is conceptually easy. The only
‘problem is that it may not terminate. The common way of handling an optimization
process that may run too long is to spend on optimization a predetermined amount of
time. As a last example, we illustrate the above ideas.
Example 19: Consider the following program.

G(x, s) :- A(x, z), C(z).
.

G(v) :- J&Y),  WY, 4 G(Y, 4, C(w).

Clea.rly, a candidate tgd for showing redundancy is
G(y, z) + G( y, 20) A C(w)
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which will be denoted by 7~ Let PI be the original program. and let Pz be the one obtained
by cleleting  .-I( y, 11:)  and C(W) from the bocly of the recursive rule of PI. Clearly, P, E’” P2.
We will show that Pz 2 PI by showing the following:
( 1 )  SAT(T)  f-l AI E M(P,).
(‘3) PI IIreserves r.
(3’) The prtliminarv DB of PI satisfies T..
It is easy t,o show that (1) holds. In Example 16, it was shown that the recursive rule of
PI preserves T. Since 7’ has a single tgd with only one atom in its left-hand side, (3’)
and the fact that the recursive rule of PI preserves T imply (2). Thus, it only remains
to show tha.t  (3’) holds. So let G(yo, ~0 ) be the instantiated left-hand side of the tgd r.
Unifying it with the head of the rule of Pf produces the DB {A(go,  zO), C( ZO)}. The
vrouncl atoms C:(yo,  so) and C(Q) show that there is no violation of r, when its left-handh
side is instant,ia.tecl  to G(yo, ~0). Thus. the preliminary DB satisfies r. We can, therefore,
conclude that the atoms A( y, 10) and C(W) are reduncla’nt in the recursive rule of PI. 0

XII. Conclusion and Open Problems

We haxe given a.n algorithm for minimizing Datalog  programs under uniform equivalence.
This minimiza,tion reduces the number of joins needed to find all the answers to a query.
We have also given a4 algorithm for testing uniform containment (and hence also uniform
equivalence) of programs, which may be useful when other types of optimizations  are
considered. The results on uniform containment and minimization can be extended to
batalog  programs with stratified negation, a,nd in a forthcoming paper, we will describe
how it is clone.

We ha.ve  considered the problem of testing uniform containment when the DB satisfies
some constknts  that are expressed as tuple-generating dependencies. P2 C’&,(,) PI is
implied by the following two conditions:
(1) SAT(T) n M(P,) g M(P2).
(2) PI preserves T.
Condition (1) ca*n be tested by the chase process of Section VII, which always terminates
with the correct answer if there are only full tgds. If there are also  embedded tgds, then
<he chase may not terminate when (1) is not true. As for condition (2), the procedure of
Section VIII can prove it in some, but not all, cases in which it is true. That procedure may
not terminate if there are embedded tgcls. There is, however, an important case in which
(2) is: obviously true, na.mely,  when the tgds have only extensional predicates on the left-
lia.nd: side (condition (2) is true in this case, because the eva.luation  of PI never adds new
ground a.toms  of extensional predicates). In particular, if the tgds espress constraints that
the EDB satisfies, then they have only extensional predicates; and in this case, the chase
process (for testing condition (1)) can be used to transform a program to an equivalent
one that ma.y be more efficient, as done, for example, by Chakrava.rthy et al. [ 19S6].

We have also shown how to use the procedures for determining (1) and (2) in order to
optimize programs under equivalence. Some heuristics are needed to carry out this type
of optimization, but we believe that this optimization technique can be applied easily a,nd
usefully in prxtice.

Some open problems remain. First, it is important to characterize cases in which
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the t,he procedures for testing (1) and (2) are guaranteed to terminate. It is easy to gii-e
ad-hoc generalizations based on examples shown in t.his paper. However, is it possible to
find some nontrivial cases:)

-4nother important open problem is to characterize cases that have algorithms foI
finding t,gcls  that show redundancy whenever some atoms are redundant, or at least, when-
ever recluntlancy ca.n be shown by some tgds. If no algorithms can be found, then more
heuristics should be developed for finding tgcls  that may show redundancy.
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Appendix

I. Correctness of Testing Uniform Containment

We first prove two lemmas about the relationship between uniform conta.inment of two
programs and conta,inment of their sets of models. Proposition 2, which is stated in Section
IV, follows as a. special case of these lemmas. Similar lemmas, but for a very restricted
class of rules, were proved by Beeri et al. [19Sl].

Let S denote a set of DBs. Note that S can be any set, and not necessarily the set of
DBs that satisfy some set T of tgds. For a program P, the set P(S) consists of all outputs
for inputs in S, that is, P(S) = {P(d) 1 d E S}. Recall  that M(P) is the set of all models
of P.

Lemma 1: P3 CE PI * SnM(P,) C M(P,).
Proof: Suppose that P2 C: PI. Let d E S n M(P,). TVe c a.lm that the following is true:1 *

d c P,(d) & PI(d) = cl (1)

In proof, the left containment holds, because the output of every program contains its
input. The right Containment holds, since P2 cz PI and cl E S. The equality holds,
because cl E M(Pl ). T here ore,f (1) implies that d E AI( 0
Lemma 2: P2 CE PI e P , ( S )  nM(P,) c_ M(P,).-
Proof: Suppose that P,(S) n M(P,) C M(P,), and let d E S be an input for P2 (d is
not necessarily a model of P2). Let dl = PI(d) and d2 = P&Z). We have to show that
cl2 z cll. Since dl E PI(S) n M( PI), it follows that dl E M( P2). Therefore, d2 2 dl, since
~22  is the minimal model of P2 that contains d and, cleaxly,  dl is also a model of Pz that
contains d. •I

The previous two lemmas imply the following corollary. Proposition 2 is a special case
of this corollary when S is the set of all DBs.
Corollary 1: Let PI be a program and S a set of DBs such that PI(S) C S. Then
P2 c; PI w SnM(P,) c iM(P,).  0

- Note that if S is the set of all Dl? satisfying the tgds of some T, i.e., S = SAT(T),
then PI (S) C S means that PI preserves T.

Clearly, SAT(T) n M( PI ) C_ M( Pz) if and only if SAT(T) n M( PI ) C M(r) for all
rules r of P2, because a DB is a model of P2 if and only if it is a model of r for all rules r
Gf P2. The chase process, described in Section VIII, tests SAT(T) n M(P) C M(r), and
the following theorem proves its correctness. Recall that in order to perform this process,
the body of r has to be viewed as a DB, and this is accomplished by instantiating the
variables of r to distinct constants according to some substitution 8. -41~0  recall that the
combined application of a program P and a set of tgds T, which is explained in Section
VIII, is denoted by [P, T].
Theorem 1: Let r be the rule h :- b, i.e., h is the head and b is the body, and let 8 be
a one-to-one mapping of the variables of r to constants that do not already appear in r.
Then

he f [P,T](be)  e SA4T(T) n M(P) c &I(r)



Proof: The main idea of the proof is the same as in h/Ia,ier  et al. [lS’i9].  First, we assume
that SAT(T) n M( P ) 2 n1( r ) and will show t,hat 120 E [P, T] (be). So, consider the DBs
be a,nd [P, T]( be). Clearly, [P, T](be) E SAT(T) n ;1I(P), since [P, T](M) is ciefined to
be the DB obtained from be by applyin g the rules of P and tgcls of T until no rule or
tgcl can be a.ppliecl  anymore. Therefore, [P , T] (be) E M( r ), because we have assumed
SAT(T) n M(P) 2 M( I’).

We will now show that [P, T] (be) E M( r ) implies he E [P, T]( be), which is what we
have to prove. By definition, the DB [P,T](bO) conta,ins  be. If we apply r to be, it is
immediately clear that 128 E r(be), because lwhen  the body of r is instantia.ted  accorcling
to 8, it becomes be and, therefore, he is in the output. But [P,T](bB)  is assumed to be
a model of r and, so, a.pplying r to [P, T](be)  cannot generate any new atom. Therefore,
he E [P, T](be), because applying r to be, which is contained in [P, T]( be), produces he.

We will now prove the other direction, namely, we assume that h8 f [P, T]( be). and
will show that SAT(T) n M(P) s M(r). So, let d be any DB in SAT(T) n IV(P). We
have to show that d E M(r). To b low-1 that, we consider an arbitrary substitution p that
instantiates the body of r (i.e., b) to ground atoms of cl. Now, to complete the proof, we
have to show that hp is also in d. But h6’ E [P, T]( be) and, so, there is a sequence of
substitutions 91,. . . , pn that shows he f [P,T](be), that is, for each i there is either a
rule of P or a tgd of T, such that when the rule or tgd is instantiated according to v;, a
new atom is generated, and the last application (i.e., the one for yn) generates he. Thus,
it follows that p o 8-l o pl,. . . . p o 8-l o P,~ is a sequence of instantiations that shows that

. [P,T](d) contains hp. But d E SAT(T) n M(P) implies d = [P,T](d) and, so, hp is in cl.
c l

Note that if T has embedded tgds, then the DB [P, T](be) may be infinitet  and,
therefore, there is no bound on t’he time it ma.y  take to clisover that [P, T](bB) conta.ins  /70
(although he will be discovered within a finite time if it is indeed in [P, T] (be)). Moreover,
if [P,T](bO) does not contain he, then it ma.y  be impossible to determine this fact just by
computing [P, T](bB), since the computation may be infinite. Also note that if [P, T](bO)
does not contain he, then it could be that the only DBs d, such that d E SAT(T) n M(P)
a,nd d 6 M(r), are infinite. In other words, if T includes embedded tgds, then the direction

a + in Theorem 1 is true provided that the set of all possible DBs include both infinite
and finite DBs. Clea.rly,  if there are no tgds at a.ll, then we have the following important
corollary of Theorem 1, which is the proof of correctness for the algorithm for test.ing
uniform containment that is given in Section VI. This algorithm always terminates.
Corollary 2: Let r be a rule with head h and body b, and let 8 be a one-to-one ma,pping
of t’he variables of r to constants that do not already appear in r. Then

he E P(be) U i%!!(P) C M(r)

II. Correctness of Testing Non-Recursive Preservation of Tgds

The procedure of Section IX for testing whether a program P preserves non-recursively
a set T of tgds is also based on the chase. It is similar to the one described by Klug

t This happens when repeated applications of embedded tgds create ground atoms wit.h  new nulls.



a.nd Price [ 19S2], and we shall not prove it forma.lly  here. Suffices to say that if the
procedure either determines t,hat P does not preserve non-recursively some r E T or does
not terminate, then it actually constructs a DB d such that d satisfies T and (cl, P”(d))
violates T. Note that t$he  procedure may not terminate only if T ha,s embedded tgds, and in
this ca.se  t,he countereszmple  d is infinite. If the procedure determines that P preserves T
non-recursiz-ely,  then it essentially does that by constructing for each potential violation of
some T E T, a canonical DB in which that violation does not exist, and that canonical DB
can be mapped homomorphically into any other DB that might exhibit the same violation.
Therefore, no viola,tion  is possible.

III. Correctness of the Algorit 11m for Minimizing Programs

Theorem 2: The a.lgorit,hm  of Section VII for minimizing programs under uniform
equiva,lence  is correct.
Proof: Essentia.lly, we have to show that no atom or rule has to be considered more than
once. So, let Pr be the final program produced by the algorithm. We have to show that
PI has neither redundant rules nor redunda.nt  atoms. We will first show that Pr does not
have a.ny recluncla@ rule.

Suppose that some rule r is redundant in Pf . Let P denotes the program at the
beginning of the iteration in which rule r was considered for deletion; a.nd let i) and pf
denote programs P and Pf , respectively, with r removed. Clearly, P and Pf are uniformly
equivalent, since the algorithm deletes while preserving uniform equivalence. Since r has
not been deleted permanently, r g” p. Let h a,nd b be the head and body, respectively, of
rule r, and let 8 be a one-to-one mapping of the variables of r to constants not already in r.
We ha,ve  128 6 &!d), since r g u F, and we also have he E F!( be), since r is redundant in
Pf. But this is a contradiction to Pf(bB) c P(bO), which follows from the fact that everyA e.
rule of Pf is also a rule of P (note that here we have used the fact that redundant atoms
are deleted before redundant rules and, therefore, a rule that appears in Pf has exactly
the same body a.lso in P; if some rule had appeared in Pf with some atoms deleted from
its body, as compared to P, it would have been impossible to infer i;(be) & p(be)). Thus,- we have shown tha,t  Pf does not have any redundant rule.

Now suppose that some rule r of Pf (i.e., the final program) has a redundant atom
a in its body. P denotes the program at the beginning of the iterations in which cy was
considered for deletion. Let h be the head of r, and let b and b, be its bodies in P and Pf ,
respectively (note thak every atdm of bf is also in b). The bodies & and & are obtained from
bf and b, respectively, by deleting a. Let 8 be a one-to-one mapping of all the variables
of r to constants not already in r. Since a! has not been deleted permanently, he 4 P(k).

n

Since cy is redundant in Pf, it follows that he E P,(b,B). But this is a contradiction, since
Pf E” P and, therefore, Pf(&p3) s P@), b necause bfe C 80, and Datalog  programs are
monotone, that is, adding more atoms to the input does not remove any atom from the
output. Thus, we have also shown that PI does not have any redundant atom. 0
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