March 1986 Report No. STAN-CS-86-1132

Optimizing Datalog Programs

by

Ychoshua Sagiv

Department of Computer Science

Stanford University
Stanford, CA 94305

OPTIMIZING DATALOG PROGRAMS
Yehoshua Sagivy
Stanford University

ABSTRACT

Datalog programs, i.e, Prolog programs without function symbols, are considered.
It is assumed that a. variable appearing in the head of a. rule must also appear in the
body of the rule. The input of a program is a set of ground atoms (which are given
in addition to the program’s rules) and, therefore, can be viewed as an assignment of
relations to some of the program’s predicates. Two programs are equivalent if they
produce the same result for all possible assignments of relations to the estensional
predicates (i.e., the predicates that do not appear as heads of rules). Two programs
are uniformly equivalent if they produce the same result for all possible assignments
of initial relations to all the predicates (i.e., both extensional and intentional). The
equivalence problem for Datalog programs is known to be undecidable. It is shown
that uniform equivalence is decidable, and an algorithm is given for minimizing a
Datalog program under uniform equivalence. A technique for removing parts of a
program that axe redundant under equivalence (but not under uniform equivalence)
is developed. A procedure for testing uniform equivalence is also developed for the
case in which the database satisfies some constraints.

I. Introduction

Horn-clause programs without function symbols, also known as Datalog programs, are an
important part of deductive (or logical) databases (Gallaire and Minker [1978]). Recent
works has-e addressed the problem of finding efficient evaluation methods for queries ex-
pressed as Datalog programsi (e.g., Bancilhon et al. [1986a], Henschen and Naqvi [1984],
liifer and Lozinskii [1986], Lozinskii [1985], McKay and Shapiro {1981], Rohmer and Le-
scoeur [1985], Sacca and Zaniolo [1986], Ullman [1985], Van Gelcler [1986]). It is important
to remember that database applications usually require finding all the answers to a query,
and when there are no function symbols, it is possible to find all the answers in finite time
by a naive bottom-up computation. However, that requires retrieving a.11 the tuples of the
relations specified in the program. Therefore, a common theme in many of the proposed
methods for efficient query evaluation is to use the constants specified in the query in order
to restrict the size of intermediate results as soon as possible.

In this paper we take a complementary approach to the one just mentioned, and
investigate the question of how to remove redundant parts from a Datalog program. A
redundant part in a program is either a redundant rule or a redundant atom in the body
of a rule. In most cases, removing redundant parts can only reduce the time needed to
evaluate the query, because it reduces the number of joins done during the evaluation.
For example, if the query is going to be computed the “magic set” method of Bancilhon

~On a leave of absence from Hebrew University. Work supported by a grant of AT&T Foundation, a
grant of IBM Corp., and an NSF grant IST-W-12791.

1 See also Bancilhon and Ramakrishnan [1986b] for a thorough review of this subject.

et al. [1986a], then removing redundant parts can only speed up the computation. Some
works (e.g., Chakravarthy et al. [1986], Finger [1986], King [1981]) liave also considered the
opposite approach, namely, optimizing a program by adding more conjuncts to the body
of a rule. This is usually useful when it is required to find only one answer to a query (as
opposed to finding all the answers). In some cases, it could be useful even if all the answers
are required. For example, if the intersection of two relations is to be computed and the
database has a third relation that contains this intersection, then it may be better to
compute the intersection of all three relations rather than just the original two (whether it
is indeed better depends upon the sizes of the three relations, the size of their intersection,
and the available indices). As already said, in this paper we develop methods for finding
redundant parts of a program and removing them. Our ideas, however, can also be used
to determine when a redundant atom can be added to the body of a rule and, therefore,
they can also be incorporated in the type of optimization that adds conjuncts rather than
removes them.

Usually, a Datalog program gets as input relations for the extensional predicates,
namely, those predicates that do not appear as heads of rules, and the answer consists of
relations for the intentional predicates, namely those that appear as heads of rules. The
process of optimization requires finding a program of least cost, which is equivalent to
the original one, that is, for all possible inputs, the optimized program and the original
one have the same output. However, the equivalence problem for Datalog programs is
undecidable (Shmueli [1986]), as is the problem of whether a program has a redundant
rule Gaifman [1986)).

We propose the notion of uniform equivalence which is defined as follows. Two pro-
grams are uniformly equivalent if they have the same output for all inputs, where a possible
input for a program is an assignment of initial relations to the extensional as well as the
intentional predicates, and the program computes the final relations for the intentional
predicates.i Clearly, uniform equivalence implies equivalence, but the converse is not true.
We show how to minimize a program under uniform equivalence; that is, we give an algo-
rithm that removes all redundant rules and all redundant atoms from the remaining rules
while preserving uniform equivalence. The algorithm has an exponential running time
in the worst case, but the time is esponential only in the size of the program, which is
typically much smaller than the size of the database. Therefore, minimizing a program is
expected to reduce the total time spent on optimization and evaluation. As an example,
given- the rule

“G(z,y,2) - Gz, w, 2), Alw, y), A(w, 2), A(2, z), A(2, y).

our algorithm determines that the atom A(w, y) is redundant and, consequently, the rule
can be replaced with

G(z,y, 2) - G(z, 0, 2), A(w, 2), A(z, 2), Az, y)-

To fully appreciate the importance of the algorithm, one should realize that optimization
under uniform equivalence, is the only one that can be done locally. In comparison, if

t Clearly, for each intentional predicate, the final relation contains the initial one, and for each exten-
sional predicate, the final relation is the same as the initial one.

2

a subset of the rules of a program P is replaced with an equivalent (but not uniformly
equivalent) subset of rules, then the resulting program is not necessarily equivalent to P.

We also give a technique for minimizing Datalog programs under equivalence. Since
this is an undecidable problem, it is clear that our technique may not find all the parts of
a program that are redundant under equivalence. However, we believe that this technique
is going to be useful in many practical situations. For example, our technique can easily
show that in the program

G(z,z) - A(z,2).
G(z,z) : - G(z,y), G(y,2), Ay, w).

the atom A(y, w), in the second rule, is redundant and can be removed without changing
the result.

Il. Basic Definitions

We consider Datalog programs, i.e., Prolog programs having only predicates, variables and
constants. Function symbols as well as other features of Prolog (e.g., lists, cuts, arithmetic
operations) are not permitted. A Datalog program is a set of rules (also known as Horn-
clause rules). Each rule has a head, appearing on the left-hand side of the symbol :-, and
a body, appearing on the right-hand side of the symbol :-. The head of a rule is a single
atomic formula or simply atom, that is, a predicatef with either a variable or a constant in
each argument position. We assume that constants are integers. For example. Q(z, y. 3.10)
is an atom, where Q is a predicate, x and y are variables and 3 and 10 are constants. The
body of a rule is a conjunction of atoms.

Example 1: The following is a program with two rules.

G(z, z) - Az, 2).
G(z, 2) - G(z, y), G(y,).

The input to this program is A and the output, G, is the transitive closure of A. [

We conveniently denote a conjunction of atoms (e.g., in the body of the second rule)
by separating the atoms with commas rather than with the “logical and” symbol A.

We do not consider rules with an empty head; rules of these form are used in logical
databases to express integrity constraints.

We assume that every variable in the head of a rule must also appear in the body
(th erefore, rules with an empty body are not allowed unless the head has only constants
and no variables). Thus, if we want to write rules for the predicate Anc(z, y), whose
meaning is that x is an ancestor of y, we cannot write the rule Anc(z, Xx) :-, whose meaning
is that everybody is his own ancestor. This does not present any real restriction, as far as
databases are concerned, since each variable is assumed to be bound to a finite set. For
example, in the rule Anc(z, x) :-, variable x is bound to the set of all persons mentioned
in the database. Thus, the rule Anc(z,z) :- can be replaced with Anc(z,x) :- Person(x).

t In traditional database terminology, a predicate is called a relation scheme.

I1l. Computing a Program

A relation ¢ for a preclicate Q is a set of ground atoms of Q, i.e., atoms having only
constants (and no variables), e.g., (34,3,12,15). Unless otherwise stated, we assume
that relations are finite. A collection of relations, such as a database, can be viewed as a

single set consisting of a.11 the ground atoms of these relations. If ¢;, ..., ¢, are relations
for the predicates (1, . . ., Qn, respectively, then (¢1,. . ., g,) denotes their union, namely,
the set containing the ground atoms of all the ¢;. The set (¢1,. . , , ¢n) is also called an

interpreta tion or a structure.

A predicate is intentional, in a given program P, if it appears as the head of some rule
in P. An intentional predicate is supposed to be evaluated by the program P. A predicate
is extensional if it does not appear in the head of any rule.

A program P has an associated directed graph, called the dependence graph, that has

a node for each predicate of the program, and an edge from predicate Q to predicate R
whenever predicate Q is in the body of some rule and predicate R is in the head of that
same rule. Program P is recursive if its dependence graph has a cycle. A preclicate Q is
recursive in program P if there is a path from Q to itself. Note that recursive predicates
are intentional, but an intentional predicate is not necessarily recursive. Finally, a rule is
recursive if the dependence graph has a cycle that includes the predicate from the rule’s
head and a predicate from the rules body. In particular, a rule is recursive if the predicate
in the rule head appears also in the body.
) The input for a program P is a relation for each extensional predicate, and it is
called the extensional database (abbr. EDB). The output computed by P is, in principle, a
relation for each intentional predicate, and it is called the intentional database (abbr. IDB).
To simplify notation, we formally define the output to be both the EDB and the IDB, and
simply call it the database (abbr. DB). Note that the EDB-part of the output is the same
as the input.

Now we are going to describe how the output can be computed. The ground atoms of
the DB are known facts. Initially, the known facts are those in the EDB. A program? rule
states that if some facts are known, then another fact can be deduced from them. Newly
deduced facts become ground atoms of the IDB (and hence of the DB) and, so, the rules
can be used once again to deduce more new facts. Formally, a rule r is used to deduce
a new fact by instantiating its variables to constants, i.e., substituting a constant for all
occurrences of each variable. If under the instantiation, each atom in the body of rule r
becomes a ground atom of the DB, then the instantiated head of the rule is added to the
IDB."

Example 2: Consider the program of Example 1 and suppose that the EDB is the follow-
ing set of ground atoms: {A(1, 2), A(1,4), A(4,1)}. Initially, the IDB is the empty set.
If, in the first rule, we instantiate x to 1 and z to 2, then the body of the rule becomes
A(1,2), which is a ground atom of the EDB. Therefore, G(1,2) is added to the IDB. Two
similar. instantiations of the first rule add G(1,4) and G(4,1) to the IDB. As for the second
rule, the instantiation of x to 1, y to 4, and z to 1 produces the ground atoms G(1,4) and

+ Note that this definition of the union is more general than the definition of the union operator in
relational algebra.

G(4. 1) in the hotly of the rule. Since both are already in the DB, the instantiated head.
G(1, 1), is added to the IDB. Similarly, instantiating both & and = to 4 and y to 1 vields
G(4.4). Finally, G(4,2) is obtained when z is instantiated to 4, y to 1, and z to 2. No
more ground atoms can be produced by any instantiation, and so, the DB

{A(12)0 A1), 4(4.1), G(1. 2), 6(1.4), G(4,1), G(1. 1), G(4.4), G(4.2))
is the output of the program for the above EDB. I

If the input for a program consists of finite relations, then the output is also a. set
of finite relations. Computing the output by repeatedly instantiating rules, until no new
ground atoms can bhe generated, is known as bottom-up computation. For a fixed program,
this method runs in polynomial time in the size of the EDB.

Let P be a program with the extensional predicates E;, . . . , E,, and the intentional
predicates I;..... |, . Given an EDB (¢4, . . ., e,), Where each ej is a relation for Ey, the
DB computed by P is denoted by P((e;, . .., e,)). Recall that P({ey, . . . , €,)) is a set of
ground a toms, and the EDB-part of P({e;, . . .,) is the same as the input.

Sometimes we would like to view P as a program whose input is both an EDB and an
IDB. The output is computed as defined earlier, i.e., by repeatedly instantiating rules until
no new ground atoms can be added to the IDB. Clearly, the output is a DB that contains
the input. When P is viewed as a program whose input is both an EDB (e, , . . . , e,) and
an IDB (i1, ..., {y),the output of P is denoted by P((e1,. .., €ny21,-. ., im)).

Example 3: Let P be the program of Example 1. In Example 2, we have computed the
output of P for the input. {4(1,2), A(1, 4), A(4, 1)). It is easy to see that the output of
P for the input, { 4(1,2). A(1. 4), G(4,1)} is the same as the one computed in Example
2. but with the ground atom A(4, 1) omitted. =1

IV. Equivalence, Uniform Equivalence, and Models

Let P, and P, be programs with the same set of extensional predicates and the same
set of intentional predicates. Program P; contains P, written P, C P, if for a.11 EDBs
(€1, .. e). the output of P, contains that of P», i.e,, Pa({e1,.. ., en)) € Pi({e1,.. ., €n)).
In traditional database terminology, it means that for each predicate Q, the relation for ()
in the DB Py((e1,.. ., €,)) is a subset of the relation for Q inthe DB Py ({e1, ..., €n)).

Program P; and P, are equivalent, written P, = Py, if P, C Py and P, C P,.
Equivalence simply means that the two programs have the same output whenever they are
given the same EDB as input.

Program P, uniformly contains P, , written P, C* P,, if for all pairs of an EDB
(e1,...,€,) and an IDB (iy,. . ., im), the following containment holds:

PQ((el,...,en,il,...,in,))gpl((el,...,en,il,...,im))

Program P; and P, are uniformly equivalent, written P, =* P,, if P, C* P; and
P, C* P,. Uniform equivalence means that the two programs have the same output
whenever they are given the same input, where the input may also include ground atoms
for some intentiona. predicates.

Proposition 1: Uniform containment implies containment.

Proof: If Py({e1,..., €0 i1, -, im))C Pi({e1,. .., €n i1, ... 1m))forall {e1,...,¢,)and
(i1,..., tm). then in particular, for all EDBs (e1, ..., e,)

Py((ery..venB,...,0)C P((e1,...,€0,0,...,0))

where §§ denotes the empty relation. Therefore, Py((e1,. . ., en)) C Pi({e1, .. ., &) for all
EDBs(ey,...,€n) and, so, P, € P;. cl

Example 4: This example shows that equivalence does not always imply uniform equiv-
alence. Let P, be the program of Esample 1, and let P, be the following program.

G(a,z) - Az, 3).
G(*l?~:) - ‘4(;1'1 y)* G(ya S)'

Both programs compute the transitive closure of A4 when the input has only ground atoms
of A, i.e., they are equivalent. Moreover, as we shall see later, P; uniformly contains P;.
But P, does not uniformly contain P;. To see this, suppose that the input is the empty
relation for 4 and some nonempty relation g for G, such that g is not the transitive closure
of itself. Then, the output of P, is the same as the input, i.e., g, while the output of P, is
the transitive closure of g. Thus, containment does not always imply uniform containment.
cl

A DB (€e1,...,€ni1,...,im)is a model of P if
<61,...,G.H,il,...“L.m>:P((€1,.. . ,€7q,i1,., .«l‘.m>)

that is, no new ground atoms are generated when the program P is applied to the given
DB. Let M(P)clenote the set of all models of P. It is well known that the set M(P) is
closed under intersection, and the output of P, given an input (€1, ..., ensity. .., Im), iS
the minima.1 model of P that contains the input (Van Emden and Kowalski [1976]).

) The above results imply that two programs are equivalent if they have the same set
of models that are minima.l with respect to the IDB.{ Uniform equivalence is similarly
characterized in terms of models. Programs P, and P, are uniformly equivalent if they
have. the same set of models, i.e., M(P,) = M(P,). The following proposition, whose proof
is given in the appendix, is a characterization of uniform containment. Note that uniform
containment means containment of the sets of models in the opposite direction.

Proposition 2: P, C* P, &< M(P,) C M(P,).

When discussing uniform containment of two programs P; and P, it is not necessary
to assume that they have the same set of predicates, provided that an input is any set of
ground atoms for the predicates appearing in either P, or P;. It is even possible for an
estensional predicate in one program to be an intentional predicate in the other program.

+ A model d is minimal with respect to the IDB if there is no proper subset d”of d which is also a
model and has the same EDB as d.

Example 5: Let P be the program of Example 1, and let P, be obtained form P; by
adding the rule A(z, z) - A(x. y), G(y,). Note that program P, has only intentional
predicates and, so, it is meaningful only if it may have a nonempty IDB as input. Since
every rule of P is also a rule of P, it is easy to verify that P,(d) C P,(d) for every DB
d consisting of ground atoms for A4 and G. Therefore, there is uniform containment, i.e.,
P ctp,. U

We conclude this section with a. simple observation that further illustrates the relation-
ship between containment and uniform containment, and shows that sometimes equivalence
implies uniform equivalence. Given programs P; and P>, we can construct programs P|
and Pj such that, P, C* P, if and only if P, € P|. The programs P and P, are obtained
by adding rules that give arbitrary initial values to the intentiona. predicates. The rule
added for an intentional predicate} B(xy,..., rn)issimply B(x1,..., ¢,):- Bo(z1,.. ., x,),
where B, is a, predicate that, does not appear in any other rule. Note that if P, and P
already have a rule of the form B(xy, ..., x,) - G(x1,...,;l3), where G appears only in
this rule, then there is no need to add the rule for B. In particular, if for every intentional
predicate B, both P; and P, already have a. rule of the form B(z1,...,2,) - G(zy1,...,2p),
where G appears only in this rule, then P, C* P, if and only if P» C P;.

V. Optimizing Recursive Programs

In this paper we consider a particular type of optimization, namely, removing redundant
atoms from the body of a rule, and removing redundant rules from a program. This
optimization is useful, since it reduces the number of joins needed to compute the output.
The problem of optimizing non-recursive programs has been solved, both for the case of
single-rule programs (Aho, Sagiv and Ullman [1979], and Chandra and Merlin [1976]) and
for the case of programs wit.11 many rules (Sagiv and Yannakakis [1980]). Essentially, it
has been shown that a program consisting of non-recursive rules has a unique equivalent
program with a minima.l number of rules and a minimal number of atoms in the body
of each rule. Optimizing recursive programs, however, is considerably harder. In fact,
there can be no algorithm for optimizing recursive programs. - ‘nce equivalence of recursive
programs is undecidable (Shmueli [1086]), as is the problem o1 whether a rule is redundant
in a given recursive program, i.e., the problem of whether a rule can be deleted while
preserving equivalence (Gaifian [1986]). These uncleciclability results are valid even if we
consider only linear programs, i.e., programs in which the body of each rule has at most
one recursive predicate.

In Section VII, we shall show that recursive programs can be optimized under uniform
equivalence, i.e., we shall give an algorithm that finds redundant atoms in the body of a
rule, as well as redundant rules in a. program, and removes them while preserving uniform
equivalence. The final result is a program with neither an atom nor a rule that can be
deleted while preserving uniform equivalence. Unlike the non-recursive case, however, the
final result of this optimization is not necessarily unique (i.e., it may depend upon the
order in which atoms and rules are considered for deletion).

In Section XI, we shall describe a more elaborate procedure that can remove redundant

 If B is intentional only in one of the programs P; and P., then we still add the rule for B to both of
them.

atoms while preserving equivalence, but not uniform equivalence. This procedure is not,
completely algorithmic, since it has to use some simple heuristics: and, of course, it cannot
always remove all atoms that are redundant under equivalence. We believe, however, that
this procedure is going to be an important tool for optimizing Datalog progras.

VI. Testing Uniform Containment and Equivalence

Testing M(P,) C M(P,) (and, by Proposition 2, testing P, C* P,) is conceptually simple
and can be clone by the chase process (Maier et al. [1979]). Originally the chase n-as
used to test implications of database dependencies, and recently it has been noted by
Cosmadakis and Kanellakis [1986] that the chase can also test uniform containment of
Datalog programs with only one predicate. It is easy to see, however, that the same is true
for programs with many predicates.

Note that M(P,) € M(P,) ifand only if for all rules r of P, M(Py) C M(r), because
a DB d is a model of P, if and only if it is a model of every rule r of P . Therefore, by
Proposi tion 2, P, C* P, if and only if for all rules » of P, r C" P, (note that r is a single
rule program).

We will now show how to test » C" P,, where r is a single rule. Let r be the rule % :- b,
i.e., his the head and b is the bocly. In order to test whether r C* P,, we have to consider
the atoms of b as an input DB for P,. Technically, the atoms of b are converted into a DB
by substituting distinct constants for the variables of r and, as a result, b becomes a. set
of ground atoms. The uniform containment » C* P, holds if and only if P, (08) contains
the ground atom h 6, where
1. 8 is a one-to-one substitution that maps each variable of r to a distinct constant that

is not already in r,
2. bB is the set of ground atoms obtained from b by substituting according to 6, and
3. h@ is the ground atom obtained from h by substituting according to 6.

Example 6: Consider again programs Py and P» of Examples 1 and 4. Recall that P; is

G(z, z) - Az, z).
) G(z, z) - G(z, y), G(y, =).
and P, is
G(x,z): - Az, z). -

G(x,z) - Az, y), Gy, z).

We are now going to show that P, C* P,. First, the variables of P, have to be instantiated
to distinct constants. In order that the instantiation be visible throughout the example,
we use the subscript 0 to denote constants, that is, variable z is instantiated to a constant
denoted by g, variable y is instantiated to the constant y,, and z to zp. The rules of P,
must be considered one by one. So, consider the first rule of P,, denoted ry, i.e.,

* Gz, z) - Az, 2).

The instantiated body of ry is the DB { A(wo, z0)}. When P, is applied to this DB, the
result is {G(zo,20), A(x¢, 20)}. Since the result contains the instantiated head of ry , it
follows that r, C* P,.

Now consider the second rule of P, , denoted 7, i.e.,
Glu,z) - A(ecy). Gly, 2).

The instantiated hody of r, is the DB { A(xo, yo), G(Yo, =0)}. The first rule of P, can
he applied to A(2y, yo) to produce G(xo, yy), and then an application of the second rule
gives G(.ry. zy). Thus, the instantiated head of rq (i.e., G(xg, o)) is in the result, and so.
r, C* P, . Since Py uniformly contains every rule of P,, it follows that P, C* P, .

Nest,, we will show that P, " P,. Consider the second rule of P;, denoted s, i.e.,
Glr,z) - G(x.y), Gy, 2).

The instantiated body is the DB { G(x¢, yo), G(yo, =0)}- No new ground atoms are pro-
duced when P, is applied to this DB. Therefore, s " P, and. so, P, " P,. =I

Example 7: Let, P, be the program

Glroy.z) - Glaeow, z). A(w,y), A(w,), A(z,2), 4(z,y).
and P, he the program

Glr.y.z):-G(r,w.z), Alw, 2), A(=, 2), A(z, y).

Since the body of the rule of P, is a subset of the body of the rule of P, it is clear that
P, C* P,. We will show that P, C* P; and, hence, P, =* P,. The mstantiated body of
the single rule of P, is the DB

{G(‘EO\ o, 2o)3 ‘4(LU()a:O)v ‘4(30720)7 A(301 yO)}

We first apply P, to this DB by instantiating the variables of P, as follows. Variable x is
instantiated to .ry. variable w to wy, and both z and y to zy. It is easy to check that, under
this instantiation, the body of the rule of P, becomes a. subset of the DB and, therefore,
the ground a tom G(g, 2, 2o) is added to the DB. Now we apply P, again by instantiating
r to xy, both w and = to zp, and y to yp, and the result is G(xg, Yo, 2o), Which is the
instantiated head of the rule of P,. Therefore, P, C* P,. []

VII. Minimizing Programs Under Uniform Equivalence

Having an algorithm for testing uniform equivalence makes it possible to optimize Datalog
programs in two ways. The first one has just been illustrated in Example 7, and it involves
eliminating redundant atoms from the body of a rule in the following way. Consider a rule
i and let # be the result of deleting one of the atoms in the body of r. If # C* r, then rule
r can be replaced with 7, since it follows that 7 =* r (note that r C" 7 is trivially true).
When r is replaced with r, the process continues with 7, that is, another atom in the body
of r is deleted and if the resulting rule is uniformly contained in 7, then r is replaced with
that rule. The steps are summarized in the algorithm of Fig. 1. The final result is a rule
which is unifc .ly equivalent to the original one, but without any redundant atoms? i.e.,
atbms that can be deleted while preserving uniform equivalence. In proving the correctness
of the algorithm, the only nontrivial point is to show that no atom has to be considered
more than once. In other words, if some atom « is not redundant when it is considered
for the first time. then subsequent deletions of other atoms cannot make « redundant. We

9

shall formally prove this claim in the appendix Generally, the final result of the algorithm
is not unique and may depend upon the order in which atoms are considered.

begin

repeat
let & be an atom in the body of » that has not yet been consiclerecl;
let + be the rule obtained by deleting « from r;
if 7 C* r then replace r with 7;

until each atom has been considered once;

end.

Fig. 1. Minimizing a rule r.

Example 8: Consider programs P, and P, of Example 7. Each one of these programs has
a single rule, and the rule of P, is obtained from that of P, by deleting the atom A(w, y).
In Example 7, it is shown that P, C* P,. Thus, if we execute the algorithm of Fig. 1
with the rule of P; as input, then it is going to be replaced with the rule of P,. It is easy
to show that the rule of P, does not have any redundant atom. Therefore, the algorithm
terminates with the rule of P, as the minimal form of the rule of P,. =l

Redundant rules can be removed from a program P similarly to the elimination of
redundant atoms from the body of a rule. A rule is deleted from P to obtain a program
P and if r C* P then P =* P and, so, P can replace P. In order to minimize a program
P, we first minimize each rule by removing its redundant atoms, and then remove all
redundant rules. However, the following situation is possible. An atom in some rule r of P
may not be redundant if r alone is considered, but may be redundant if all the rules of P
are considered. In other words, in order to minimize a rule r of P, we modify the algorithm
of Fig. 1 by replacing the test # C* r in the if statement with + C* P. The complete
algorithm for minimizing a program P is given in Fig. 2. In the appendix, we prove that
the final result of the algorithm has neither redundant rules nor redundant atoms. The
only nontrivial part of the proof is showing that no rule or atom has to be considered more
than once; the proof relies on the fact that at first each rule is minimized and only then
redundant rules are removed. The final result of the algorithm is not necessarily unique.

VIIl. Tuple-Generating Dependencies

A tuple-generating dependency (abbr. tgd) (Beeri and Vardi [1984], Fagin [1982], Yan-
nakakis and Papadimitriou [1982]) is a formula of the form Vz3y[;(Z) — ¥2(Z,)], where
I and y are vectors of variables and both ; and 1, are conjunctions of atoms. We write
a tgd without the quantifiers, e.g., G(y, z) = G(y, w) A C(w) instead of VyVz3w|[G(y, z) —
G(y, w) A C(w)]. Universally quantified variables are those appearing in the left-hand side
of the formula (these variables can also appear in the right-hand side). Existentially quan-
tified variables are those appearing only in the right-hand side of the tgd. Note that the
tgds considered in this paper are untyped.

10

begin
for each rule r do
repeat
let o be an atom in the body of r that has not yet been considered;
let 7 be the rule obtained by deleting « from r;
if 7 C* P then replace r with r;
until each atom has been considered once;
repeat
let r be a rule of P that has not yet been considered;
let P be the program obtained by deleting rule r from P;
if r C* P then replace P with]3;
until each rule has been considered once:
end.

Fig. 2. Minimizing a program P.

As usual, we say that a DB d satisfies a tgd 7 if for every instantiation 6 of the uni-
versally quantified variables, the following is true: If the left-hand side of 7 is instantiated
by 8 to ground atoms of d, then the right-hand side of 7 can also be instantiated to ground
atoms of d by extending 6 to an instantiation of all the variables of 7.

Example 9: Consider the tgd G(z, y) — A(y, z) A A(z,z), and the DB produced in
Example 2; recall that G is the transitive closure of A, and the DB is

{A(1,2), A(1,4), A(4,1), G(1,2), G(1,4), G(41), G(1,1), G(4,4), G(4.2)}

If we instantiate both = and y to 4, then the instantiated left-hand side, G(4,4), is a
ground atom of the DB. We can now choose to instantiate z to 1, and as a result, the
instantiated right-hand side consists of ground atoms, A(4,1) and A(1,4), that are in
the DB. The DB, however, does not satisfy the tgd, since instantiating = to 4 and y
to 2 converts the left-hand side to a ground atom of the DB, but there is no possible
instantiation of z that also converts the right-hand side to ground atoms of the DB. The
tgd G(z, y) — G(z, z) A A(z,y), on the other hand, is satisfied by the DB. For example, if
x is instantiated to 1 and y to 2, then instantiating z to 1 converts the right-hand side to
ground atoms of the DB. [

Let S be a set of DBs. We say that program P; uniformly contains P, over S, written
P, C¢ Py, if P,(d) C P;(d) for all DBs d € S. In most cases we assume that S is the set
of all DBs satisfying a given set T of tgds, and we usually denote this set by SAT(T).

Tuple-generating dependencies are important in Datalog, because in many cases opti-
mizing a program requires looking only at DBs that satisfy some tgds. One case is when the
EDB satisfies some constraints that can be expressed as tgds. Using constraints in order
to optimize programs has already been investigated (e.g., Chakravarthy et al. [1986]). We
will show how to use tgds in a more general way. Essentially, we will give a proof procedure
for showing P, ggAT(T) P,, and develop a technique for removing redundant atoms from

11

a program P by doing the following steps. First, we have to show that P, C% amery B
for some suitable T, where P, is obtained from P; by deleting an atom o from some rule.
Second, we have to show that P, C¢ AT(T) P, implies P, C P;. If we show both, then it
follows that « is redundant in P, , even if it is not redundant under uniform equivalence.
This optimization technique will be described in detail later. Inn the remainder of this sec-
tion, we will describe the first part of a procedure for determining whether P, C P,.
The correctness of this procedure is proved in the appendix.

Considering Proposition 2, it comes as no surprise that in order to show P, C% AT(T)
P, , we have to show SAT(T)NM(P,) CM(P,), i.e., every model of P, that satisfies T is
also a model of P,. Moreover, the chase process can be easily modified to show that. As we
shall see later, however, SAT(T) N Al(P,) € M(P,) alone does not imply P, C% arr) Pr
and in the nest section we shall describe a second step that is needed in order to conclude

that P, C‘&‘HT) P.

In order to test whether SAT(T) N M (P,) € M(P,), we have to consider each rule 7
of P, and show that when both P, and T are applied to the body of r, the result includes
the head of r. Applying the tgds of T to a DB is similar to the application of rules, since
tgds are also Horn clauses.

We will now describe how to apply the tgds in greater detail. There are two types
of tgds: full tgds, namely, tgds without esistentially quantified variables, and embedded
tgcls, namely, tgds that have some existentially quantified variables. As illustrated by the
following example, applying a full tgd to a. DB is just the same as applying a rule.

S{I T)

Example 10: The tgd A(z, y,) A B(w,y,v) — A(z.y,v) A T(w,y,) is full. Applying it
to a. DB is the same as applying the following two rules. Note that each of these rules has
the left-hand side of the tgcl as its body, and one of the atoms in the right-hand side of
the tgd as 1ts head.

.-l(ilf, Y. U):' yv")v (lb‘, y,v).
T(w,y,z):- Y, z), B(w, y, V). U

An embedded tgcl has existentially quantified variables and, therefore, in order to
apply it we have to use Skolem functions. We follow the approach of database theory and
-view Skolem functions as nulls, i.e., unknown values. We denote nulls as 6, ..., 6;,....

A tgel 7 is applied to a DB as follows. Suppose that € is an instantiation of the
universally quantified variables of 7, such that 6 shows that the DB violates . That is,
converts the left-hand side of 7 to ground atoms of the DB, and there is no extension
of 'that also converts the right-hand side of 7 to ground atoms of the DB. For each
existentially quantified variable of 7, we choose a unique null é; (which is not already in
the DB) and extend # to an instantiation that maps each existentially quantified variable
to its corresponding null. The instantiated atoms of the right-hand side of = are added to
the DB. For example, if + is the tgd G(z, y) — A(z, w) A G(w, y) and the atom G(3,2) is
in the DB, then we add A(3,é23) and G(d23, 2) (provided, of course, that the DB contains
neither é23 nor a pair of atoms of the form A4(3, e) and G(e, 2), where e is either a constant
or a. null). The atoms A(3,823) and G(d23, 2) simply mean that there is some constant ¢
such that A(3, c) and G(¢, 3) are in the DB, but the actual value of ¢ is unknown.

The combined application of a program P and a set of tgcls T is denoted [P, T]. We

12

apply [P.T] to a DB d until no new atoms can be added to the DB, and the final result
is denoted [P, T](d). Clearly, [P, T](d) is both a model of P and a DB that satisfies T.
Since the application of tgcls may add nulls that are not already in the DB, some sets of
tgds can be applied to a1l initial DB forever. Note that once an atom with nulls is added
to the DB, then it is viewed as a ground atom and nulls are viewed as constants, as far as
applications of rules and tgds are concerned.

Example 11: Let P; be the program

G(x, z) - Az, 2).
G(x,z) - G(z, y), Gy, 2), Aly,w).

and let P, be the program
G(z,z) - Az, 2).
G(2, 2) = Gla, y), G(y, =).

It. is easy to show that P, C* P,. We will show that SAT(T) N M(P,) C M(P,), where
T consists of the single dependency :

G(z,z) =2 A(z,w)

The rules of P, have to be considered one by one; we start by instantiating the first
rule of P, and, so, its body becomes the DB {4(xo, z0)}. Now we have to apply [P;, T] to
this DB, and the result is { A(zo, 20), G(x0, z0)} (note that only the first rule of P, can be
applied to this DB). This result contains the instantiakecl head of the first rule of P,.

Nest, consider the DB {G(zo,y0), G(yo,20)}, Which is the instantiated body of the
second rule of P,. At first, the only possible application of [P,, T] is to apply the tgcl of T.
If the left-hand side of the tgcl is instantiakecl to G(yg, 2o), then this instantiation cannot
be extended to any instantiation that converts the right-hand side to a ground atom of the
DB and, therefore, A(yg, 6;) is added to the DB. Similarly, the left-hand side of the tgd
can be instantiated to G(zo, yo), Which results in adding A(zo, é;) to the DB. Now, the
body of the second rule of P, can be instantiated to G(zo, ¥o), G(¥o, 20), A(yo,01), and
so G(&g.z0) is added to the DB, thereby showing that the instantiated head of the second
rule of P, is in the result. Thus, we have shown that SAT(T) N M(P,) C M(P,). In the
nest section, we will use this fact in order to conclude that P, ggﬁAT(T) P,.

Showing P, C gAT(T) P, is useful, because it implies P, C P; by the following simple
argument (the argument is given here informally, and will be given formally in Section S).
Applying program P; (or P,) to an EDB, which is given as input, is the same as applying
P, (or P,) to the preliminary DB, i.e., the DB consisting of the input and the ground
atoms generated by the initialization rules (an initialization rule is a rule whose body
has only extensional predicates). Since P, and P, have the same initialization rule, they
have the same preliminary DB for every EDB; and it is easy to see that the preliminary
DB satisfies T. Therefore, P, C5) Py implies P2 C Py. Clearly, P, C P, and, so,
Py = P,. Itthus fdlows that the atom A(y, w) in the second rule of P; is redundant under
equivalence, although it is not redundant under uniform equivalence.]

t When P, (or P,) is applied to the preliminary DB, the initialization rules are redundant and can be
ignorecl.

13

IX. Preserving Tuple-Generating Dependencies

As stated earlier, SAT(T) N AM(P,) C M(P,) alone does not imply P, ggAT(T) P. As
shown in the appendix, however, if we also show that P; preserves T, then P, gg.ATm P,
follows. We say that P, preserves T if P,(d) € SAT(T) for all DBs d € SAT(T).

It is not known whether there is a proof procedure for showing that a program P
preserves a set of tgcls T. In this section we will describe a process that may efficiently
show, in many practical cases, that P preserves T. The idea is to show that if we start with
a DB d € SAT(T), then each iteration in the bottom-up computation of P(d) preserves
T. To espress the idea more formally, we need the following definitions. Applying P non-
recursively to'a DB cl means applying it only to the ground atoms of d, and not to ground
atoms generated from cl by previous applications. When P is applied non-recursively, we
denote it as P™. Clearly, the result of applying P™ to a DB d, denoted P’(d), is

{ h8 | for some rule h :- b of P and substitution 8, the atoms of b6 are in d}

Note that by our previous definitions, the output of P(d) contains the input d. In com-
parison, P’(d) contains only the atoms generated by applying the rules non-recursively
to d, but does not necessarily contain the atoms of d. This notation is just a matter of
convenience, and should not cause any confusion.

Example 12: Let P be the program

G(z, z) - Az, z).
G(‘Tv Z) - G(‘Lay)v G(y,Z)

and let d = {A(1,2), G(2,3), G(3,4)}. P(d) is {G(1,2), G(2,4)}, whereas P(d) is
{A(1,2), G(2,3), G(3,4), G(1,2), G(1,3), G(2,4), G(1,4)}. O

Our idea is to show that P preserves T by showing that P preserves T non-recursively,
that is, (d, P*(d)) € SAT(T) for all d € SAT(T) (recall that (d, P™(d)) is the union of
d and P™ (cl)). Note that if P preserves T non-recursively, then P preserves T. The
converse, however, is not necessarily true, that is, P may preserve T without preserving it
non-recursively.

Proving that P preserves T non-recursively is done by a variant of the chase process
that was originally proposed by Klug and Price {1982]. This process is complete for proving
non-recursive preservation of T, that is, it terminates with a positive answer if indeed P
preserves T non-recursively, but it may loop forever if T has embedded tgds and the answer
is negative. Before fully defining this process, we illustrate it on a simple example.

Example 13: Consider the following recursive rule, denoted r,
G(r,z) - G(z,y), Gly,2), A(y,w).
and let T be the tgd
‘G(z,z) — A(z, w)
In order to show that r preserves = non-recursively, we will attempt to prove the opposite

by trying to construct a counterexample, and if we fail to do so, then r preserves r non-
recursively. A counterexample, in this particular case, is a DB d € SAT(7) such that

14

(d, r™(d)) violates T. The DB (d,r"(d)) violates T if it has a ground atom G(g, zp) that
exhibits a violation of r, that is, a ground atom G(zg, z) such that for all wg, the DB
(d, r™ (cl)) does not have a ground atom of the form A(zg, wo). A ground atom G(xo, 2o)
of (d, r" (d)) that exhibits a. violation of 7 must be in r*(d) (it cannot be in d, since
d € SAT(7)). Therefore, we will try to build a counteresaniple by first assuming that
G(z9,29) is in r" (d), and then adding atoms to d that are needed in order to

(1) have the atom G(xy, o) in r*(d), and

(3) make d satisfy r.

The atom G(zo , z9) can be in r™*(d) only as a result of applying r" to d. By unifying
G(xg, zo) With the head of r, we can determine which ground atoms must be in d in order
to produce G(wy, z). In this particular case, the unification shows that d must have the
following atoms:

G(l*o,yo)v G(yo, z0). A(yo,wo)

where yp and wy are some constants.

Since d satisfies -, it is possible to apply the tgd 7 to d. Applying + o G(2¢, yo) yields
A(zo, 61), and applying it to G(yo, z0) Yields A(yo, 02). Note that these applications result
in ground atoms that must be in d (as opposed to applications of r"™ that produce ground
atoms in P(d)). Basically, the applications of 7 correspond to inferences implied by the
fact that d satisfies 7 and by the fact that certain ground atoms are known to be in d. In
principle, the tgcl 7 should be applied repeatedly to the atoms of d (both the atoms that
have originally been in d and those added to d by previous applications of the tgcl). In
this particular case, the tgcl can be applied only to the ground atoms originally known to
be in d (i.e., those produced by unifying G(zg, zo) with the head of r). Consequently, the
ground atoms that must be in d ase

G(zo, yO)a G(yO’ z0), A(y(h wo), A(‘TO’ 61)7 A(yo,éz)-

Among them there is A(zg, 61), which shows that G(zg, z9) does not exhibit a violation of
7. Therefore, there is no counterexample (d, r*(d)) and, so, r preserves T non-recursively.
0

We can now generalize the above esample to an arbitrary P and T. In order to prove
that P preserves T non-recursively, we do the following for each + € T. First, the left-hand
side of r is instantiated by replacing each variable with a distinct constant. The ground
atoms of the instantiated left-hand side are treated according to one of the following two
cases:
(1) Ground atoms of extensional predicates become part of d.
(2) Ground atoms of intentional predicates become part of P™(d).
For each ground atom « in P™(d), we should add to d some atoms that produce o when P
is applied non-recursively to d. In general, there are many ways to add atoms that produce
«a. Each possible way is determined by some rule with a head that can be unified with «.
Thus, we should consider all possible combinations of unifying the ground atoms that have
been added to P"(d) with heads of rules (if there are n ground atoms in P"(d) and each
can be unified with m rules, then there are nm combination to consider). Essentially, we
have to show that for each possible combination, there is no violation of . So, consider
one possible combination that unifies each ground atom « of an intentional predicate G

15

(in the instantiated left-hand side of » with the head of some rule r for (. As a result
of the unification, the variables of r that appear in the head are instantiated to constants,
In order to convert the the body of » to ground atoms, the rest of the variables of r are
instantiated to new distinct constants, and the ground atoms of the body are added to .
In summary, d contains all the ground atoms that are either

(1) atoms of extensional predicates from the instantiated left-hand side of the tgd 7. o1
(2) atoms (extensional or intentional) from bodies of rules that have been unified with

atoms of intentional predicates from the left-hand side of -.

As for P"(d), it contains atoms of intentiona. predicates from the instantiated left-hand
side of r.

In the second step, the tgds of T (all of them - not just) are applied to d to produce
more ground atoms that must be in d. The tgds are applied repeatedly, until no more
ground atoms can be generated from existing ones (and, consequently, d becomes a DB
that satisfies T).

In the third step,7 the program P is applied non-recursively to d to get P"(d).

In the final step, we should check whether (d, P"(d)) satisfies 7. In order to check
that, it is sufficient to consider the instantiated left-hand side of 7 (which is part of P’1d)),
and check whether it exhibits a violation of + in {(d, P"(cl)). No violation is exhibited if the
instantiation of the left-hand side can be extended to an instantiation that also includes the
existentially quantified variablesi of r, such that the right-hand side of 7 becomes a subset
of (d, P"(d)). In fact, it follows that there is no need to compute all of P’{d); instead,
it is sufficient to determine whether (d, P’(d)) contains ground atoms showing that the
instantiated left-hand side of + does not exhibit a violation. For clarity of presentation,
however, we will continue to use the step that computes P*{d).

The program P preserves T non-recursively, if for a.11 + € T and for a.11 combinations
of unifying the instantiated left-hand side of + with rules” heads of P, no violation of r is
exhibited.

In Esample 13, the left-hand side of the tgd + has only one atom and there is only
one rule; therefore, there is only one combination to check, and as has been shown, it does
not eshibit a violation. The steps for checking whether P preserves T non-recursively
are summarized in Fig. 3. Finer details of the algorithm are explained in the nest two
paragraphs.

The step of applying T to d may not terminate if new nulls are repeatedly introduced.
It is still possible, however, to terminate the inner loop in finite time (for any particular
choice of + € T and any particular choice of rules for n if no violation of + is exhibited. In
order to achieve that, the last three steps of the inner loop should be interleaved as follows.
First, T is applied to d to produce some more new atoms that must be in d. Next, P’{d)
is computed again, since its value may have changed as a result of the new atoms that
have just been added to d. The third step is to check whether the instantiated left-hand
side of + exhibits a violation in the current (d, P’1d)). If no violation is exhibited, then -
is preserved and there is no need to continue. If a violation still exists, then the previous

1 In Esample 13, this step is redundant and, hence, has been omitted.

1 Recall that the existentially quantified variables of a tgd are those appearing only in the right-hand
side.

16

begin
repeat
make d empty;
choose a 1 € T;
let # map the universally quantified variables of T to distinct constants;
instantiate the left-hand side of T according to 8,
add the instantiated atoms of extensional predicates to cl;
repeat
choose a rule for each instantiated atom of an intentional predicate;
unify each a tom with the head of the rule chosen for it,
and add the instantiated body to cl;
apply the tgcls of T to cl:
compute P" (d);
check whether the instantiated left-hand side
exhibits a. violation of T in {d, P"(d));
until a violation has been exhibited or
all combinations of choosing rules have been examined,;
until a violation has been exhibited or all T € T have been chosen;
if a violation has been exhibited
then P does not preserve T non-recursively
else P preserves T non-recursively
end.

Fig. 3. Procedure for testing non-recursive preservation of T.

steps should be reiterated.

As already said, each atom of an intentional predicate, in the instantiated left-hand
side of r, is unified with the head of some rule. This has the effect of testing whether + is
satisfied when atoms of intentional predicates in its left-hand side are restricted to be in
P"(d). In Esample 13, there is a single atom in the left-hand side of +, and therefore, 1 is
satisfied in (d. P" (d)) if the following is shown:

(1) + is satisfied in (d, P™ (cl)) when the left-hand side is restricted to be in P™(d), and
(2) + is satisfied in (cl, P"™(d)) when the left-hand side is restricted to be in d.

Part (1) has been shown in Example 13 by unifying the left-hand side with the head of r.
Part (2) follows immediately from the fact that d satisfies r. The situation, however, is not
that simple if the left-hand side of + has more than one atom of an intentional predicate.
In this case, we have to check that 7 is also satisfied when some atomst are in P™(d), while
others are in d. Thus, we should consider more combinations than stated earlier. The
combinations are all those in which an atom of an intentional preclicate in the left-hand
side of r is either unified with the head of some rule or is assumed to be in d (without,
of course, being unified with any rule). If an atom is unified with the head of some rule,

t The atoms referred to are, of course, the instantiated atoms of intentional predicates in the left-hand
side of T.

17

then the atom becomes part of P"(d), while the instantiated body of the rule becomes
part of cl. We can still stick to the old definition of the combinations to be considered
if for each intentional predicate Q, we add a trivial rule of the form: Q(zy, . . ., a,) :-
Q(r1,..., v »). From now on we will assume that each program is augmented with these
trivial rules (although usually we do not explicitly write these rules as part of the program).
Therefore, the combinations to be considered are the same as defined originally, that is, a.
combination unifies each atom of an intentional predicate with the head of some rule.

Example 14: Consider again the program P given in Example 11:
G(z, 3) - A(z, 2).
G(2.2) - G(. ¥): Gy, z), Ay, w).

and the tgcl 7:
G(z, z) — Az, w)

We will show that P; preserves T = {7 } non-recursively, and hence it also preserves T.
Combining this with the fact SAT(T) N M(P;) C M(P,), which was shown in Example
11, implies that P, QgAT(T) P,. Let G(zo, 29) be the instantiated left-hand side of 7. In

Example 13, we have shown that no violation is exhibited when G(zo, o) is unified with
the head of the second rule of P;. Similarly, there can be no violation when G(xy, 20) is
unified with the trivial rule G(z, z) :- G(z, z).} The last case to consider is unifying with
the rule:
G(x, 3) :- Az, 2).

As a result of unifying G(o, z0) with the head of the above rule, d becomes the DB
{A(zq, z0)}. The tgds of T cannot be applied to d. Nest, by applying P;" to d, we get that
P} (d) is {G(xo,20)}. Since A(zg,20) is in (d, P{'(d)), no violation of 7 is exhibited and,
therefore, P, preserves T, as was claimed. J

Example 15: Let r be the same rule as in Example 13, that is
G(z, 2) - G(z, y), Gy, z), Ay, w).

and let the tgd - be
G(z,y) AG(y, =) — A(y, w)

We will show that r (i.e., the program consisting of r) preserves 7 non-recursively. Recall
that .we should treat the program as if it also has the trivial rule

G(z, z) - G(z, 2).

and, hence, there are four possible combinations of unifying the atoms in the left-hand side
of + with rules” heads. So let

G(I07 3/0)7 G(y[), :0)

1 As a general rule, there can be no violation if the left-hand side of the tgd has only one atom of an
intentional predicate and the unification is done with a trivial rule, because the whole instantiated
left-hand side becomes part of d, which is assumed to satisfy T'. The trivial rules have to be used
only when we deal with a tgd that, has more than one atom of an intentional predicate in its left-hand
side (see Example 15).

18

be the instantiated left-hand side of 7, and consider the following four combinations.
Combination 1. G(xg, yo) is unified with the head of r and, as a result, the following
ground atoms (i.e., those from the body of r) are in d:

G(xo,y1), G(y1,90), A(y1,wo)
and G(yq, o) is unified with the head of the trivia.l rule, which adds the following atom to
da:

G(yo, 30)

Now T = {7} should be applied to d and, actually, only the following application is
possible. The left-hand side of 7 is instantiated to the following ground atoms of cl:

G(yla yO)a G(y07 30)

Since this instantiation cannot be extended to one that also converts the right-hand side to
ground atoms of d, the ground atom A(yg, 1) is added to d. Note that no more applications
of T are possible after this one. The atom A(yg, 61) of cl shows that no violation of - is
exhibited in (d, r*(d)) for the combination being considered.

Combination 2. G(xo, yo) is unified with the head of the trivial rule and, as a result,
the following ground atom is added to d:

G(fco,yo)
and G(yo, o) is unified with the head of r, and the following ground atoms are added to
d:

G(yo,y1), G(y1,20), A(y1,wo)
Now T = {7} is applied to d. Again, there is only possible application, which is obtained
by instantiating the left-hand side of 7 to the following ground atoms of d:

G(l'anO)a G(y07yl)
This instantiation adds A(yo,61) to d, and this ground atom shows that no violation of 7
is eshibited in (d, r*(d)).

Combination 3. G(zo, yo) is unified with the head of r, and the following ground

atoms are added to d:

G(zo0,y1), G(y1,%0), A(y1) wo)

and G(Yo, zp) is also unified with the head of r, and the following ground atoms are added
to d:

G(yo,y2), G(y2,20), A(y2,w1)
Now T = {r} is applied to d by instantiating the left-hand side of 7 to the following ground
atoms of d:

G(yl-,yo)a G(ymyz)

and, as result of this instantiation, A(Yo, 61) is added to d. The atom A(yo, 61) shows that

no violation of 7 is exhibited in (d, r*(d)) for the combination being considered.
Combination 4. Both G(zo, yo) and G(yo, z¢) are unified with the head of the trivia.l

rule and, therefore, become part of d. Clearly, there cannot be a violation in this case,

19

since d satisfies T.
Since no combination exhibi t s a violation, » preserves 7. ci

Example 16: Consider the ruler
G(e,z) - Ale.y), G(y, =), Gly.w), C(w).

and the following t ¢d, denot ed 7
G(y,2)— G(y,w) A C(w)

To show that r preserves + non-recursively, we instantiate the left-hand side of + to
G(yo.20)

and unify it with the head of ». Consequently, the following ground atoms are in d:
A(yo,y1), G(y1--0)s Gly1,wo), C(wo)

Note that in this case, the tgcl 7 cannot be applied to d to produce new atoms. But when
r is applied non-recursively to d, the DB r” (d) becomes equal to

G(yo,z0), G(yo.wo)

To see that G(yo, =) is in r"*(d), note that this atom was unified with the head of » and
the instantiated body became a part of d. To see that G(yo, wo) is in r" (cl), instantiate
the variables of r as follows. Instantiate 2 to yo, y to ¥, and both z and w to wy.

The ground atoms G(yo, wo) and C'(we) show that (d, r™ (d)) does not violate + when
the left-hand side is instantiated to G(yg, z¢). Thus, r preserves r. [

X. Determining Equivalence

In this section we will show how it is sometimes possible to infer that P, C P; from the fact
that P, gé.n\('r) P,. Later we will discuss how to use this technique in order to optimize
programs. But first we need some definitions. A rule r of a program P is an initialization
rule if the body of r has only extensional predicates. P* is the program consisting of the
initialization rules of P. Note that P’ is a non-recursive program. Given an EDB d as
an input for P, we define Pi((l) to be the set of ground atoms generated by applying P!
to d (since P! is a non-recursive program, P{d) is defined in the same way as applying a
program non-recursively, i.e., P*(d) does not include d). The preliminary DB for an EDB
dis (cl. Pi(d)).

Example 17. Let P be the program
G(z, z) - Az, 2).
G(x, z) - G(z, y), G(y, 2).

and let d = {4(1,2), 4(2,3), A(3,4)}. Pi(d) is {G(1,2), G(2,3), G(3,4)}, and the
preliminary DB for d is { 4(1,2), A(2,3), 4(3,4), G(1, 2), G(2,3), G(3,4)}. I
In the nest example, we illustrate how to infer P, C P; from P, ggAT(T) P, .

Example 18: Consider again the two programs of Example 11. Recall that P; is the
program

20

).

G(r, z):- Az, =
- Ly ?])7 G(Ys Z)a A(l/) w)'

G(u.z) - G(
and P, is the program
Glr,z) - Az, 2).

Glaz) = Glay), Gly,=).

Clearly, P, C" P,. 7. Example 11 we have shown that SAT(T) N M(P,) C AL(P,), where
T consists of the single tgd
G(x,z) = A(r,w)

and in Example 14 we have shown that P, preserves T. Consequently, P, CSar(T) P;.
In this example, we will show that P, € P; and hence P; = P», since P, C* P, (and so
P C Py).

First, we will show that for every EDB d, the preliminary DB, (d, P{(d)), satisfies T.
Recall that P} consists of the rule

Gz, z) - Az, 2).

Essentially, the procedure of Fig. 3 is used to show that (d, Pj(d)) satisfies T. There
are, however, two important changes. First, we do not assume that cl satisfies T and,
therefore, we omit the step in which the tgds of T are applied to cl. Second, d is an
EDB given as an input to P; and, so, it does not have any ground atom of an intentional
predicate. Therefore, we do not add to the program P} the trivial rules (i.e., rules of the
form Q(ry,..., 2n)- Q(zy, ..., ¥,)) for the intentional predicates.

Thus, we start by instantiating the left-hand side of the only tgd in T, and the result,
is G(vy, 20). There is only one rule in P{ and, hence, only one combination of unifying the
mstantiated left-hand side with heads of rules. This unification results in d being the DB
{A(x0, z0)}. Since A(zy, z0) has just been shown to be in (d, Pj(d)), no violation of the
tgd is exhibited and, therefore, the preliminary DB of P, satisfies T.

P; and P, have the same initialization rule and, consequently, their preliminary DBs
are the same (when given the same EDB as input). Therefore P, gg”m P, implies
P, C Py, since the preliminary DB satisfies T. [

To sum up the approach illustrated in the above example, showing P, C P, entails
showing the following:

(1) SAT(T) N M(P,) C M(P,).

(2) P, preserves T.

(3) For all EDBs cl, programs P, and P, have the same preliminary DB.

(4) The preliminary DB always satisfies T.

Part (1) can be shown using the chase process described in Section VIII. Part (2) is shown
using the process summarized in Fig. 3. Part (3) requires showing that P} and P; are
equivalent. Equivalence of non-recursive programs is the same as uniform equivalence and,
thus, there is an algorithm for showing that (i.e., the one described in Section VI). In fact,
equivalence of non-recursive programs is the same as equivalence of unions of tableaus
(Sagiv and Yannakakis [1979]). Part (4) can be shown by the procedure of Fig. 3 with the
following modificat ions. First, the step of applying the tgcls of T to d is removed. Second,

21

the program (i.e, P{) is not augmented with trivial rules for the intentional predicates.

The above recipe for showing P, C P, has some drawbacks that may limit its appli-
cability. First, it is not always clear how to find a set of tgds T for which (1)-(4) hold.
Moreover, the fact that P, C P; does not necessarily imply that there is such a T. Second,
the procedure for testing (1) (or (2)) terminates in finite time if the answer is positive, but
may loop forever if the answer is negative. Nevertheless, we believe that in many practical
cases this approach is useful in optimizing programs.

We end this section with an important comment on conditions (1)-(4) above. Actually,
it is not necessary to consider the preliminary DBs of both P; and FP;. Instead, it is
sufficient to consider only the preliminary DB of P; and show that it satisfies T. In other
words, conditions (3) and (4) can be replaced with the following condition:

(3% The preliminary DB of P, satisfies T.

The reason for that is as follows. We know that P, C g‘AT(T) P, and we want to conclude

that P, C P, that is, we want to show that if d is an EDB, then P2(d) € P;(d). So, let d'
be a preliminary DB of P; obtained from d, i.e., ¢l C d? and suppose that d’ satisfies T.
Since P, gg‘AT(T) P, and d” satisfies T, it follows that

Py(d") C Pi(d') (4)
But Datalog programs are monotonic and, therefore,
Py(d) C Py (d') (B)

because d C d'. Moreover, d”is a preliminary DB of Py, i.e., it is obtained by applying
some rules of P; to d and, hence,

- Py(d) = A(d) (C)
From (A), (B), and (C) it follows that
Py(d) C Py(d)

When defining the preliminary DB, it is not necessary to choose the one generated by
the initialization rules. Instead, it is sufficient to consider any set of rules of P; and apply
it a fixed number of times to the initial EDB given as an input. Applying a given set of
rules a fised number of times (even if the rules are recursive) can be expressed in terms of
non-recursive rules and, hence, testing whether the preliminary DB satisfies T can be clone
as described earlier (i.e., as described for a preliminary DB created by the initialization
rules).

o
[SV)

XI. Optimizing Under Equivalence

In Example 18, we have shown that the atom A(y, w) is redundant in the recursive rule
of P;. Note that this cannot be shown using the algorithm of Fig. 2, because A(y, w)
is not redundant under uniform equivalence. Compared to optimization under uniform
equivalence, it is less clear how to carry out this type of optimization algorithmically.
The problem is how to find a. tgd that shows the redundancy of A(y, w). In practice,
the appropriate approach is to use some heuristics. In trying to generalize Example 18,
note that the tgd used in that example, i.e., G(z, z) — A(z, w), has the property that the
following can be shown very easily.

SAT(T) N M(P,) C M(P,) (1)

Recall that T consists of the above tgd and P, is obtained from P; by removing A(y, w)
(see Example 18 for more details). More specifically, a single application of T to the body
of the recursive rule of P, makes that body identical to the body of the recursive rule of
P, and, in effect, shows (1).

The above idea for choosing a tgd can be phrased in terms of the following syntactical
properties. In order to make the following properties as clear as possible, recall that the
rule that has been optimized in Example 18 is

G(z,) - G(z, y), G(y,2), Ay, w).

and the chosen tgcl can also be written as G(y, z) — A(y, w), i.e., it consists of atoms

appearing in the body of the above rule and having the following properties.

(1) The left-hand side of the tgd has the same predicate as the head of the rule being
optimized.

(2) If the tgd has a variable w that appears only in its right-hand side, then all the atoms

(from the rules body) that contain w are in the right-hand side of the tgd.

(3) All the variables of the tgd that appear only in its right-hand side are not in the rule%
head.

Once a tgd has been chosen, the next step is to test whether the atoms in the right-hand

side of the tgd are redundant in the rules body.

It is not difficult to devise heuristics that look for a tgd satisfying the above properties.
Once a tgd is found, it remains to check the conditions specified in the previous section.
-This is just a matter of syntactical manipulation, which is conceptually easy. The only
Problem is that it may not terminate. The common way of handling an optimization
process that may run too long is to spend on optimization a predetermined amount of
time. As a last example, we illustrate the above ideas.

Example 19: Consider the following program.
G(z, z) - Az, z), C(z).
G(z,z) - A(z,y), G(y, 2), G(y, w), C(w).
Clearly, a candidate tgd for showing redundancy is
G(y, z) = G(y, w) A C(w)

23

which will be denoted by 7. Let P; be the original program. and let P, be the one obtained
by deleting A(y, w) and C'(w) from the body of the recursive rule of P;. Clearly, P, C* P,.
We will show that P, C P; by showing the following:

(1) SAT(T)n M(P,) C M(P,).

(2) P, preserves r.

(3) The preliminary DB of P, satisfies 7.

It is easy to show that (1) holds. In Example 16, it was shown that the recursive rule of
P; preserves T. Since T has a single tgd with only one atom in its left-hand side, (37
and the fact that the recursive rule of P; preserves T imply (2). Thus, it only remains
to show that (3% holds. So let G(yo, 20) be the instantiated left-hand side of the tgd 7.
Unifying it with the head of the rule of P} produces the DB {A(yo, z0), C(20)}. The
ground atoms G(yg, =) and C(zo) show that there is no violation of 7, when its left-hand
side is instantiated to G(yo, 2z0). Thus. the preliminary DB satisfies 7. We can, therefore,
conclude that the atoms A(y, w) and C(w) are redundant in the recursive rule of P;. []

XIl. Conclusion and Open Problems

We have given an algorithm for minimizing Datalog programs under uniform equivalence.
This minimization reduces the number of joins needed to find all the answers to a query.
We have also given an algorithm for testing uniform containment (and hence also uniform
equivalence) of programs, which may be useful when other types of optimizations are
considered. The results on uniform containment and minimization can be extended to
Datalog programs with stratified negation, and in a forthcoming paper, we will describe
how it is clone.

We have considered the problem of testing uniform containment when the DB satisfies
some constraints that are expressed as tuple-generating dependencies. P, ggAT(T) P is
implied by the following two conditions:

(1) SAT(T) N M(P,) C M(P,).

(2) P, preserves T.

Condition (1) can be tested by the chase process of Section VII, which always terminates
with the correct answer if there are only full tgds. If there are also embedded tgds, then
the chase may not terminate when (1) is not true. As for condition (2), the procedure of
Section VIII can prove it in some, but not all, cases in which it is true. That procedure may
not terminate if there are embedded tgcls. There is, however, an important case in which
2 is obviously true, namely, when the tgds have only extensional predicates on the left-
hand’ side (condition (2) is true in this case, because the evaluation of P, never adds new
ground atoms of extensional predicates). In particular, if the tgds espress constraints that
the EDB satisfies, then they have only extensional predicates; and in this case, the chase
process (for testing condition (1)) can be used to transform a program to an equivalent
one that may be more efficient, as done, for example, by Chakravarthy et al. [1986].

We have also shown how to use the procedures for determining (1) and (2) in order to
optimize programs under equivalence. Some heuristics are needed to carry out this type
of optimization, but we believe that this optimization technique can be applied easily and
usefully in practice.

Some open problems remain. First, it is important to characterize cases in which

24

the the procedures for testing (1) and (2) are guaranteed to terminate. It is easy to give
ad-hoc generalizations based on examples shown in this paper. However, is it possible to
find some nontrivial cases:)

Another important open problem is to characterize cases that have algorithms for
finding tgds that show redundancy whenever some atoms are redundant, or at least, when-
ever recluntlancy can be shown by some tgds. If no algorithms can be found, then more
heuristics should be developed for finding tgds that may show redundancy.

Acknowledgments

The author thanks Jeff Finger, Georg Gottlob, Paris [Kanellakis, Michael Kifer, Dave Maier.
Oclecl Shmueli, Jeff Ullman, and Allen Van Gelder for helpful comments and discussions.
References

A. V. Aho, Y. Sagiv, and J. D. Ullman [1979]. “Equivalences among relational expressions,”
SIAM J. Computing, 8:2, pp. X8-246.

F. Bancilhon, D. Maier, Y. Sagiv, and J. D. Ullman [1986a]. “Magic sets and other strange
ways to Implement Logic Programs,” Proc. Fifth ACM SIGACT-SIGMOD Symp. on
Principles of Database Systems, March 24-26, Cambridge, Mass., pp. 1-15.

F. Bancilhon and R. Ramakrishnan [1986b]. “An amateur’s introduction to recursive
query processing strategies,” Proc. ACM SIGMOD ht. Conf. on Management of Data,
May 28-30, Washington, D.C., pp. 16-52.

C. Beeri, A. 0. Mendelzon, Y. Sagiv, and J. D. Ullman [1981]. “Equivalence of relationa.
database schemes?”” SIAM .J. Computing. 10:2, pp. 352-370.

C. Beeri and M. Y. Varcli [1984]. “A proof procedure for data dependencies,” J. A CM.
31:4, pp.718-741.

U. S. Chakravarthy, J. Minker, and J. Grant [1986]. “Semantic Query Optimization:
Additional Constraints and Control Strategies,” Proc. First Int. Conf. on Expert Database
Systems, April 1-4, Charleston, S. C., pp. 259-269.

A. li. Chanclra and P. M. Merlin [1976]. “Implementation of conjunctive queries in
relational databases,” Proc. Ninth ACM SIGACT Symp. on Theory of Computing, May,
pp. 77-90.

S. S. Cosmadakis and P. C. Kanellakis [1986]. “Parallel evaluation of recursive rule
queries,” Proc. Fifth ACM SIGACT-SIGMOD Symp. on Principles of Database Systems.
March 24-26, Cambridge, Mass., pp. 280-293.

R. Fagin [1982]. “Horn clauses and database dependencies,” J. ACM, 29:4, pp. 952-983.

J.). Finger [1986]. “Exploiting constraints in design synthesis,” Ph.D. Thesis, (in
preparation), Department of Computer Science, Stanford University, Stanford, CA 94305.

H. Gaifman [1986]. Private communication.

H. Gallaire and J. Minker (eds.) [1978]. Logic and Databases, Plenum, New York.

25

L. J. Henschen and S. A. Naqvi [1984]. “On compiling queries in recursive first-order
databases,” J. ACM, 31:1, pp. 47-85.

M. liifer and E. L. Lozinskii [1986]. “Filtering data flow in deductive databases.”
Proc. Int. Conf. on Database Theory, Sept. S-10, Rome, Italy.

J. J. King [1981]. *“Query optimization by semantic reasoning,” Ph.D. Thesis, (also
Rept. No. STAN-CS-81-857), Department of Computer Science, Stanford University,
Stanford, CA 94305.

A. Klug and R.. Price [1982]. “Determining view dependencies using tableaux,” ACM
Trans. on Database Systems 7:3, pp. 361-380

E. L. Lozinskii [1985]. “Evaluating queries in deductive databases by generating,” Proc. 9th
IJCAIL pp.173-177.

D. Maier, A. 0. Mendelzon, and Y. Sagiv [1979]. “Testing Implications of Data
Dependencies,” ACM Trans. on Database Systems 4:4, pp. 455-469

D. McKay and S. Shapiro [1981]. “Using active connection graphs for reasoning with
recursive rules ,” Proc.. 7th IJCAI pp. 368-374.

J. Rohmer and R.. Lescoeur {1985]. “The Alexander Method: A Technique for the
Processing of Recursive Axioms in Deductive Databases,” Bull Internal Report.

D. Sacca and C. Zaniolo [1986]. “On the implementation of a simple class of logic queries
for databases,” Proc. Fifth ACM SIGACT-SIGMOD Symp. on Principles of Database
Systems, March 24-26, Cambridge, Mass., pp. 16-23.

Y. Sagiv, and M. Yannakakis [1980]. “Equivalences among relational expressions with the
union and difference operators,” J. ACM, 27:4, pp. 633-655.

0. Shmueli [1986]. “Decidability and expressiveness aspects of logic queries,” unpublished
manuscript, Computer Science Dept., Technion - Israel Institute of Technology, Haifa
32000, Israel.

.J. D. Ullman [1985]. “Implementation of logical query languages for databases.” ACM
Trans. on Database Systems 10:3, pp. 289-321

M. H. Van Emden and R. A. liowalski [1976]. “The semantics of predicate logic as a
programming language,” J. ACM, 23:4, pp. 733-742.

A. Van Gelder [1986]. “A message passing framework for logical query evaluation,”
Proc. ACM SIGMOD Int. Conf. on Management of Data, May 28-30, Washington, D.C.,
pp. 155-165.

M. Yannakakis and C. H. Papadimitriou [1982]. “Algebraic dependencies,” J. Com-
put. Syst. Sci., 25, pp. 2-41.

26

Appendix

I. Correctness of Testing Uniform Containment

We first prove two lemmas about the relationship between uniform containment of two
programs and containment of their sets of models. Proposition 2, which is stated in Section
IV, follows as a. special case of these lemmas. Similar lemmas, but for a very restricted
class of rules, were proved by Beeri et al. [1981].

Let S denote a set of DBs. Note that S can be any set, and not necessarily the set of
DBs that satisfy some set T of tgds. For a program P, the set P(S) consists of all outputs
for inputs in S, that is, P(S) = {P(d) | d € S}. Recall that M(P) is the set of all models
of P.

Lemma 1: P, CY{ P, = SNM(P,) C M(P,).
Proof: Suppose that P, C% P;. Let d € S N M(P;). We claim that the following is true:

d CP(d) C Py(d) = d (1)

In proof, the left containment holds, because the output of every program contains its
input. The right Containment holds, since P, C% P, and d € S. The equality holds,
because d € M(P,). Therefore, (1) implies that d € M(P,). [

Lemma2: P,CY{P, <= P,(S) NM(P,) C M(P,).

Proof: Suppose that P,(S) N M(P,) C M(P,), and let d € S be an input for P, (d is
not necessarily a model of P,). Let d; = P,(d) and d» = P,(d). We have to show that
dy C d,. Since dy € P,(S) N M(P,), it follows that d; € M(P,). Therefore, d» C d;, since
ds is the minimal model of P, that contains d and, clearly, d; is also a model of P, that
contains d. =l

The previous two lemmas imply the following corollary. Proposition 2 is a special case
of this corollary when S is the set of all DBs.

Corollary 1: Let P; be a program and S a set of DBs such that P,(S) C'S. Then
P, C% P, &< SNM(P,) C M(P,). O

Note that if S is the set of all DB satisfying the tgds of some T, i.e., S = SAT(T),
then P, (S) C S means that P, preserves T.

Clearly, SAT(T) N M(P,) C M(B,) if and only if SAT(T) N M(P,) C M(r) for all
rules r of P, because a DB is a model of P, if and only if it is a model of r for all rules r
of P,. The chase process, described in Section VIII, tests SAT(T) N M(P) € M(r), and
the following theorem proves its correctness. Recall that in order to perform this process,
the body of r has to be viewed as a DB, and this is accomplished by instantiating the
variables of r to distinct constants according to some substitution 8. Also recall that the
combined application of a program P and a set of tgds T, which is explained in Section
VIII, is denoted by [P, T].

Theorem 1. Let r be the rule h :- b, i.e., h is the head and b is the body, and let 8 be
a one-to-one mapping of the variables of r to constants that do not already appear in r.
Then

hé € [P,T)(b6) <= SAT(T) N M(P) C M(r)

[SV]
-1

Proof: The main idea of the proof is the same as in Maier et al. [1979]. First, we assume
that SAT(T) N AL(P) C M(r) and will show that h6 € [P, T] (b6). So, consider the DBs
b and [P, T](b8). Clearly, [P, T](b8) € SAT(T) N M(P), since [P, T](b6) is defined to
be the DB obtained from 06 by applying the rules of P and tgcls of T until no rule or
tgcl can be applied anymore. Therefore, [P , T] (be) € M(r), because we have assumed
SAT(T) N M(P) C M(r).

We will now show that [P, T'] (b8) € M(r) implies h8 € [P, T](be), which is what we
have to prove. By definition, the DB [P,T](b8) contains be. If we apply r to b6, it is
immediately clear that hf € r(b6), because when the body of r is instantiated according
to 6, it becomes b6 and, therefore, R is in the output. But [P,T}(b6) is assumed to be
a model of r and, so, applying r to [P, T](bf) cannot generate any new atom. Therefore,
h8 € [P, T)(b8), because applying r to b8, which is contained in [P, T](be), produces h6.

We will now prove the other direction, namely, we assume that h6 € [P, T](be). and
will show that SAT(T) N M(P) C M(r). So, let d be any DB in SAT(T) N M(P). We
have to show that d € M(r). To sliow that, we consider an arbitrary substitution p that
instantiates the body of r (i.e., b) to ground atoms of d. Now, to complete the proof, we
have to show that hp is also in d. But h6 € [P, T](b8) and, so, there is a sequence of
substitutions ¢1,. . . , ¢y, that shows h8 € [P, T](b), that is, for each 7 there is either a
rule of P or a tgd of T, such that when the rule or tgd is instantiated according to ¢;, a
new atom is generated, and the last application (i.e., the one for ,) generates hf. Thus,
it follows that p0 8~ 0¢y,.... p0671 0 ¢, is a sequence of instantiations that shows that

. [P, T)(d) contains hp. But d € SAT(T) N M(P) implies d = [P,T](d) and, so, hp is in cl.

cl

Note that if T has embedded tgds, then the DB [P, T](b6) may be infinitef and.
therefore, there is no bound on the time it may take to clisover that [P, T](b6) contains hf
(although h8 will be discovered within a finite time if it is indeed in [P, T] (be)). Moreover,
if [P, T)(b8) does not contain hf, then it may be impossible to determine this fact just by
computing [P, T](b6), since the computation may be infinite. Also note that if [P, T)(b6)
does not contain k8, then it could be that the only DBs d, such that d € SAT(T) N M(P)
and d € M(r), are infinite. In other words, if T includes embedded tgds, then the direction
<= in Theorem 1 is true provided that the set of all possible DBs include both infinite
and finite DBs. Clearly, if there are no tgds at all, then we have the following important
corollary of Theorem 1, which is the proof of correctness for the algorithm for testing
uniform containment that is given in Section VI. This algorithm always terminates.

Corollary 2: Let r be a rule with head h and body b, and let § be a one-to-one mapping
of the variables of r to constants that do not already appear in r. Then

hé € P(bF) <> i%!'(P) C M(r)

Il. Correctness of Testing Non-Recursive Preservation of Tgds

The procedure of Section IX for testing whether a program P preserves non-recursively
a set T of tgds is also based on the chase. It is similar to the one described by Klug

1 This happens when repeated applications of embedded tgds create ground atoms with new nulis.

28

and Price [1982], and we shall not prove it formally here. Suffices to say that if the
procedure either determines that P does not preserve non-recursively some 7 € T or does
not terminate, then it actually constructs a DB d such that d satisfies T and (cl, P"(d))
violates 7. Note that the procedure may not terminate only if T has embedded tgds, and in
this case the counterexample d is infinite. If the procedure determines that P preserves T
non-recursively, then it essentially does that by constructing for each potential violation of
some r € T, a canonical DB in which that violation does not exist, and that canonical DB
can be mapped homomorphically into any other DB that might exhibit the same violation.
Therefore, no violation is possible.

I1l. Correctness of the Algorit hm for Minimizing Programs

Theorem 2: The algorithm of Section VII for minimizing programs under uniform
equivalence is correct.

Proof: Essentially, we have to show that no atom or rule has to be considered more than
once. So, let Pf be the final program produced by the algorithm. We have to show that
P has neither redundant rules nor redundant atoms. We will first show that Pf does not
have any redundant rule.

Suppose that some rule r is redundant in Pf . Let P denotes the program at the

beginning of the iteration in which rule » was considered for deletion; and let P and Pf
denote programs P and Pf , respectively, with r removed. Clearly, P and Pf are uniformly
equivalent, since the algorithm deletes while preserving uniform equivalence. Since r has
not been deleted permanently, r * P. Let h and b be the head and body, respectively, of
rule r, and let 9 be a one-to-one mapping of the variables of r to constants not already in r.
We have hf ¢ P(b6), since r € * P, and we also have hf € Pf(b6), since r is redundant in

P;. But this is a contradiction to Pf(bG) C P(b8), which follows from the fact that every

rule of Pf is also a rule of P (note that here we have used the fact that redundant atoms
are deleted before redundant rules and, therefore, a rule that appears in Pf has exactly
the same body also in P; if some rule had appeared in Pf with some atoms deleted from

its body, as compared to P, it would have been impossible to infer Pf(b9) - P(bH)). Thus,
we have shown that P, does not have any redundant rule.

Now suppose that some rule r of Pf (i.e., the final program) has a redundant atom
« in its body. P denotes the program at the beginning of the iterations in which o« was
considered for deletion. Let h be the head of r, and let b and b¢ be its bodies in P and P, ,
respectively (note that every atdm of b¢ is also in b). The bodies i)f and b are obtained from
bf and b, respectively, by deleting a. Let 6 be a one-to-one mapping of all the variables
of r to constants not already in r. Since a has not been deleted permanently, h8 ¢ P(k).
Since « is redundant in P, it follows that k8 € Pf(bf9). But this is a contradiction, since
Pf =" P and, therefore, Pf(l’;fe) C P(EQ), because ?JfB C 139, and Datalog programs are
monotone, that is, adding more atoms to the input does not remove any atom from the
output. Thus, we have also shown that Pf does not have any redundant atom. []

29

