
Ikccm her 1986 Report No. STAN-CS-86- 1137

The Leaf
File Access Protocol

History and Specification

Jcffrcy Mogul

Department of Computer Science

St;~nfortl llnivcrsity
St;lnfwd, Cd\ 94305

The Leaf
File Access Protocol

History and Specification

Jeffrey Mogul
Department of Computer Science

Stanford University

1 December 1986

The Leaf File Access Protocol

History and Specification

Jeffrey Mogul
Department of Computer Science

Stanford University

Abstract

Personal computers are superior to timesharing systems in many ways, but they are in-
ferior in this respect: they make it harder for users to share files. A local area network
provides a substrate upon which file sharing can be built; one must also have a protocol
for sharing files. This report describes Leaf, one of the first protocols to allow remote
access to files.

Leaf is a remote file access protocol rather than a file transfer protocol. Unlike a file
transfer protocol, which must create a complete copy of a file, a file access protocol
provides random access directly to the file itself. This promotes sharing because it allows

- simultaneous access to a file by several remote users, and because it avoids the creation
of new copies and the associated consistency-maintenance problem.

The protocol described in this report is nearly obsolete. It is interesting for historical
reasons, primarily because it was perhaps the first non-proprietary remote file access
protocol actually implemented, and also because it serves as a case study in practical
protocol design.

The specification of Leaf is included as an appendix; it has not been widely available
outside of Stanford.

Key words
systems

and phrases: Leaf, Sequin, rem0 te file access protocols, distributed systems, network file

i

THELEAFFILEACCESSPROTOCOL

Table of Contents
1 Introduction
2 History of Leaf

2.1 Antecedent Protocols
2.2 Origins of Leaf
2.3 Implementations and Uses of Leaf
2.4 Subsequent Protocols
3.2 Sequin Layer

3 Overview of the Leaf protocol
3.1 Layering
3.3 Leaf data abstractions

4 Evaluation of Leaf
4.1 What is different about Leaf?
3.4 Leaf operations
4.2 What did Leaf get right?
4.3 Where did Leaf go wrong?
4.4 What is missing from Leaf?
4.5 Leaf performance

References
Acknowledgements
Appendix I. Specification of Leaf and Sequin Protocols

1.1 Introduction _
1.2 Sequin
1.3 Leaf Data Types
1.4 Leaf Operations
I.5 Leaf Timeouts and Locks
1.6 Acknowledgements

Appendix II. Filters on Sequin Sequence Numbers

1
2
2
2
3
4

5”
5

i
6
6
7
8
9
9

11
11
15
15
15
17
19
24

THELEAFFILEACCESSPROTOCOL

List of Figures
Figure I-l : Format of a Sequin packet
Figure l-2: Format of first word of a LeafOp
Figure l-3: Format of a LeafAddress
Figure l-4: Format of a IfsString
Figure l-5: Format of LeafOpenMode field
Figure l-6: Format of LeafOpen and LeafOpen Answer
Figure l-7: Format of LeafClose and LeafClose Answer
Figure l-8: Format of LeafRead and LeafRead Answer
Figure l-9: Format of LeafWrite and LeafWrite Answer
Figure I-IO: Format of LeafReset and LeafReset Answer
Figure I-1 1: Format of LeafParams
Figure l-12: Format of LeafError

16
17
18
19
20
20
20
21
22
22
23
24

THELEAFFILEACCESSPROTOCOL

List of Tables
Table 1: Relative performance of Leaf and Pup/BSP FTP
Table 2: Relative performance of Pup/BSP FTP and IP/TCP FTP
Table 3: Leaf operation rate as a function of packet size

IO
10
11

1 Introduction

Personal computers are superior to timesharing sys-
tems in many ways, but they are inferior in this
respect: they make it harder for users to share files.
A Local Area Network (LAN) provides a substrate
upon which file sharing can be built; one must also
have a protocol for sharing files. This report
describes Leaf, one of the first protocols to allow
remote access to files.

When computer networking arose, computers were
few and far between. The simplest way to share files
across high-delay long-haul networks was to move an
entire file; a File Transfer Protocol (FTP) is used for
this purpose. FTP is quite useful, but true sharing
requires more than this.

The trouble with FTP is that it creates a copy of the
file at the destination host. This means that:

l Updates to the copy are not automatically
reflected in the original. This complicates
sharing, because two users may have different
views of the file if one of the copies is updated.
If both copies are updated, there may be no
consistent view of the file; this makes it impos-
sible to use FTP for shared databases.

l Making a complete copy is wasteful if only
part of the file is needed. FTP is best suited to
applications that read the entire file; some ap-
plications need access only to a small part of a
file, usually because the file is a random-access
database. Even applications that use sequential
text files might read only part of a file. Copy-
ing a huge file in its entirety when only a few
bytes are of interest wastes significant proces-
sor time; if the application runs on a worksta-
tion, the copy might not fit at all on the local
disk.

l Copying an entire file imposes a high initial
latency from the time the user asks for the file
until the first byte is available; most FTP im-
plementations require that the entire file be
copied before the user can reliably access the
first bytes. This reduces the opportunity for
parallelism between file transfer (which often
leaves the workstation processor idle for usable
periods) and file processing, such as parsing or
display.

In spite of these problems, several successful systems
have been constructed using whole-file copy for
workstation access to shared files. Examples include
the VICE file system, part of the Andrew system [l&l,
and the Cedar File System [26]. These two systems
succeed not by solving the problems of whole-file
copies but by avoiding them; their applications re-
quire neither simultaneous sharing nor large files.

Instead of making a copy of a file at the site where
the application runs, we can take a different ap-
proach: leave the file where it is, and perform file
access operations over the network. This mechanism
is called Remote File Access (RFA). RFA solves the
problems associated with making file copies;
moreover, it allows the use of diskless workstations,
resulting in cheaper, smaller, quieter, and cooler
machines that can live unobtrusively on desks with-
out sacrificing functionality or performance.

RFA can be implemented using a general-purpose
remote operation protocol, such as Remote Procedure
Call (RPC) or simpler message-based services. It can
also be done using a File Access Protocol (FAP), a
special-purpose protocol for RFA. While RPC-based
systems have become quite popular, FAPs have the
advantages that they can be based on simpler
mechanisms; they do not depend on the availability
of a remote invocation protocol, and they do not suf-
fer from the costs of protocol layering.

Leaf was one of the first FAPs usable in a
heterogeneous environment. My intent is not to push
Leaf as the best way of doing RFA, for clearly it is
not. Rather, I will relate the history of the Leaf
protocol, and attempt to extract useful lessons about
file access, protocol design, heterogeneous systems,
and in general the process and context of computer
systems design.

I begin in section 2 by covering the history of Leaf
in as much detail as is now available, almost a decade
after it began. Section 3 gives a technical overview
of Leaf, describing the operations it supports and the
protocol architecture. In section 4 I evaluate the
protocol according to several criteria. Appendix I
contains the specification of the Leaf protocol, for
although Leaf is fairly widely used, the specification
has never been generally available.

1

THELEAFFILEACCESSPROTOCOL

2 History of Leaf

In this section, I examine the historical context of
Leaf. It is not always clear where various ideas first
arose, or who first thought of them; the citations
given are the best I was able to find.

Leaf was an evolutionary step in the design of net-
work file access. Earlier protocols did not allow user
programs to perform those operations on remote files
that could be performed on local files; the semantics
of local and remote files differed. More recent
designs not only allow local and remote files to be
treated the same, but provide exactly the same
“syntax” (programming interface); some follow the
transparency paradigm to the point where local and
remote file access are indistinguishable. Leaf falls
between these two points; while programs must use a
different mechanism to access remote files, essen-
tially all the operations that an application can use
locally can also be used remotely.

2.1 Antecedent Protocols
Almost from the beginning of computer networks,

there have been file transfer protocols (FTPs). The
fist FTP for the ARPAnet was proposed in 197 1 [2].

. File transfer over networks was a significant im-
provement over previous methods, such as magnetic
tape. Given the relatively low bandwidth and high
latency of early networks, and the lack of applica-
tions that could make direct use of networking, users
were satisfied to use a FTP utility program to transfer
files.

Relatively soon, however, proposals were made to
support direct access by application programs to
remote files. The UCSB network file system [33],
proposed for the ARPAnet the same month as the

a first ARPAnet FTP, was a partial step in this direc-
tion. It only supported sequential access; write
operations could only append to the end of a file, not
modify existing contents, but read operations could
start at arbitrary offsets, after use of a skip operation
to position the read pointer.

A more general File Access Protocol (FAP) was
proposed for the ARPAnet in 1973 [7]. The AR-
PAnet FAP supported random access, including
modification of existing data. It was recognized that
“FAP (to as large as degree as is practical) should
allow remote users to access files in the same way as
local users may” [31]. Although it was also recog-
nized, ‘to meet this goal, that “FAP should provide
means for a remote user to acquire certain status and
‘descriptor’ information about a given file” [31], it is
not clear if the protocol design was ever changed to
support this. The ARPAnet FAP was never imple-

mented nor was any other proposed for the ARPAnet
or Internet communities [24].

By 1976, Digital Equipment Corp. had done the
first implementations of the Data Access Protocol
(DAP), part of the Digital Network Architecture
(DNA) [6] and now part of DECNET. DAP provided
random access to remote files, and was meant for use
in heterogeneous networks. Since the original im-
plementations were for the RT-11 and RSX- 11M
operating systems, both of which are more suited to
technical computing than for use as workstation or
timesharing systems, DECNET did not come into
wide use for several years. While support for
heterogeneity was an explicit goal of DNA, it is
proprietary and so has only been implemented for
Digital’s operating systems, and even there does not
provide complete semantic or syntactic transparency.
Still, DAP may well have been the first
heterogeneous file access protocol implemented.

While file access protocols were struggling to be
born in the early 197Os, work began on true dis-
tributed systems: systems composed of a number of
hosts on a local area network on which processes
could run and communicate without much regard to
host boundaries. Perhaps the first of these was the
Distributed Computing System (DCS) [9], whose file
system was distributed among various hosts on a
network [S]. The symmetrical organization of a dis-
tributed file system contrasts with the client-server
asymmetry of remote file access. (Although in both
kinds of systems, one host can be both client and
server, in a distributed file system the distinction be-
tween local and remote file service isn’t as
important.)

2.2 Origins of Leaf
Our story now moves to Xerox Palo Alto Research

Center (PARC). By 1975, PARC had developed both
the Alto [30], one of the first personal workstations,
and the Ethernet [13], a high-bandwidth, low-latency
local area network. The combination of these new
technologies made it feasible to experiment with
workstations manipulating files stored on server
hosts.

The first such experiment at PARC was the
Woodstock File System (WFS) [27], designed in
1975. WFS allowed clients to read and write ar-
bitrary pages of files, create and delete files, and lock
files against simultaneous writes. WFS also provided
access to properties of both files and individual
pages; properties included system-maintained infor-
mation such as timestamps, as well as client-defined
properties. Clients invoked WFS through unreliable
Pup [4] datagrams; client code was expected to retry

2

THE LEAF FILE ACCESS PROTOCOL

an operation until a response packet was received
from the server.

WFS was designed to be simple and reliable.
Operations were atomic, and WFS retained no state
between operations other than what it stored in the
file system. The communication protocol was con-
nectionless, each packet sent and acknowledged in-
dependently. There was no directory mechanism;
files were identified by UIDs rather than by names.
Finally, there was no protection mechanism; any
client had full access to all files.

In 1977, a new file system was written for the Alto.
This file system, called IFS (Interim File System, al-
though it is still in use almost a decade later [5]), is
similar to many timesharing system file systems;
users are authenticated using passwords, and files are
protected against unwanted access. IFS includes a
directory system; files are identified by names rather
than low-level identifiers.

.

IFS supports FTP but did not originally support
remote random access to files. The WFS protocol
was thus reimplemented on the IFS server, as WIFS,
providing WFS clients the ability to store their files
on the IFS. However, because WFS did not support
file names or protection, WIFS files were disjoint
from normal IFS files; WIFS and IFS users could not
share files.

In addition to its lack of naming and protection, the
WFS protocol had efficiency problems. Because each
request was independent, the system could not op-
timize disk transfers of many contiguous pages. Be-
cause each network packet was independent, WFS
could not avoid the use of one acknowledgement
packet for each data packet, and could not transmit
multiple packets before stopping to wait for an ack-
nowledgement. WFS used sequence numbers to

- avoid acting on delayed duplicate packets, but did not
use them otherwise.

As a response to the problems with WIFS and the
WFS protocol, Dave Boggs of PARC designed the
Page-Level Access Protocol (PLAP), but it was never
implemented. In 1978, Steve Butterfield of the
Xerox Advanced Systems Division (ASD), driven by
ASD’s need for a file access protocol and inspired by
the PLAP, designed the Leaf and Sequin protocols.
Leaf turned out to be a desirable middle ground be-
tween the simplicity of the PLAP and other, more
complex designs created at PARC during the same
period. ASD had practical needs and Leaf was a
practical solution.

Curiously, although Leaf was a novel protocol at
the time, and was used by a number of Xerox ap-
plications, not only was nothing published about it

but Xerox did not write down a Leaf specification for
internal use. Some of us at Stanford University
thought Leaf might be useful; Xerox had donated an
IFS and a number of Altos to Stanford, and we had
implemented most of the Pup protocols for Unix and
TOPS-20 hosts. Xerox offered to describe Leaf to us
if we would write the specification. In February of
1981, Brian Reid and I spent a day with Ted Wobber,
then with Xerox Systems Development Division
(SDD), who provided me then and in subsequent dis-
cussions with enough information to write down a
specification.

2.3 Implementations and Uses of Leaf
The first implementation of a Leaf server, and the

only one done within Xerox, was written for the IFS
by Steve Butterfield in 1979. Once the server was
running, Ted Wobber took it over and maintained and
improved it for a couple of years. Because no written
specification existed, the IFS implementation served
to define the protocol.

A number of different applications within Xerox
included a Leaf client. These client implementations
were usually written from scratch (based on folklore
and reading the code of other implementations) be-
cause of the different programming languages and
environments used for the applications. The
Grapevine system [3] used Leaf to maintain log files;
the Laurel mail-reading program, which ran locally
on users’ workstations, allowed users to store their
old messages remotely via Leaf. Users of InterLisp-
D workstations [34] could access remote files using
Leaf; some versions of SmallTalk [l l] had a similar
ability. There a few other minor Leaf applications.

At Stanford, once the specification was available,
several different Leaf implementations were started.
The most involved work was done for Unix, in 1981,
by a group of graduate students: Frank Boyle, Doug
Hartman, John R. Craig, and Eric Aubery (many
other people at Stanford, Xerox, and USC-IS1 im-
proved the code over the following years). The first
implementation was a client package that could be
called from Unix programs; it presented a bare inter-
face to the Leaf operations. This client package was
ported to the MC68000, and in 1982, Mike Nielsen
wrote code to emulate the Unix file system calls
using Leaf. By using this library, one could port
many Unix programs to diskless workstations with-
out major modifications.

Nielsen used Leaf through this mechanism to
provide a preliminary file system for a multi-
processor operating system [20]. Remote file access
was entirely transparent to the user, except for access
to file properties (see section 4.4). Although he ul-

3

THE LEAF FILE ACCESS PROTOCOL

timately implemented a local disk-based file system,
he continued to use Leaf for disk backups and for
moving files between the local disk and remote file
systems.

Also in 1981, the first version of a Leaf server was
written for Unix. Because Leaf embodies features
specific to the IFS, it is not easy to implement it
exactly on top of the Unix file system. The Unix
server does not support any file locking; originally, it
did not support file version numbers or leader-page
access, since Unix has neither versions nor leader
pages. However, the most important client for this
server turned out to be Xerox InterLisp-D worksta-
tions, whose users wanted full IFS compatibility. In
1982, Craig Rogers at USC-IS1 wrote code to emu-
late leader page reads by deducing what fields the
client was trying to read and extracting the ap-
propriate data out of the Unix inode structure; leader
page writes were ignored. Later that year, Gabriel
Robins at IS1 modified the server to encode IFS ver-
sion numbers in Unix file names. Judging from the
occasional complaints about the Unix Leaf server, it
is still widely used at this writing, by sites both at
Stanford and elsewhere.

By the end of 1981, Eric Schoen of Stanford’s
SUMEX-AIM group had implemented a Leaf server

. for TOPS-20. This implementation was sufficiently
complete to support InterLisp-D workstations, and
was used by several sites outside of Stanford. It too
is still in use at Stanford, at least.

2.4 Subsequent Protocols
As one of the first general-purpose file access

protocols implemented, Leaf was a novelty. In that
respect, it was long overdue by its introduction in
1979. Being overdue, it was almost out-of-date; the
state of the art in systems design had passed it by.-

One problem with Leaf is that it was based on Pup,
a proprietary protocol that has become nearly ob-
solete even within Xerox. To demonstrate that Leaf
was-sufficiently independent of Pup that it could be
used with other transport layers, Frank Boyle
designed the Reliable Internet Protocol (RIP), to
replace the Sequin protocol used by Leaf (see section
3 for more on the relationship between Leaf and
Sequin). RIP was based on the Internet Protocol
(IP) [23] instead of Pup; the Leaf protocol layer was
used unchanged. A client implementation of RIP was
done but it was never actually used.

.
Today we would not design a new protocol for file

access, or indeed for any remote facility not em-
bedded in a specific distributed system. Instead, we
would define a procedural interface and then use a

general-purpose communication mechanism (such as
Remote Procedure Call (RPC) [19] or a message-
passing IPC) to invoke this interface. Some designs
following this model include the CMU CFS [l] and
Sesame [32] file system, Sun Microsystems’ Network
File System [25], and the Xerox Filing Protocol [35].

Although various RPC designs have been proposed
for the ARPA Internet community, none have been
adopted as a standard. Perhaps for this reason, there
have not been any standards proposed for remote file
access since the FAP of 1973. The Sun NFS protocol
has largely filled the gap; although it is not really a
general-purpose protocol, it provides nearly trans-
parent access for Unix systems, and most worksta-
tions in the IP community are now Unix-based.

At Xerox, attention was focused less on these syn-
tactic issues and more on semantic issues; that is,
what functions a file system should provide. A
central theme to these efforts was the use of trans-
actions, which were not supported in Leaf. The
Xerox Distributed File System (XDFS) also known
as Juniper [14], was built at about the same time as
Leaf; it too can be seen as a successor to WFS, but
concentrating on WFS’s features for supporting
databases reliably rather than file access. XDFS,
however, did not prove useful for either database or
file access, and this led to the design of Alpine [5].
Alpine was meant as a replacement for both XDFS
and the IFS (and hence Leaf); it was intended to run
fast, support transactions, and used RPC instead of a
specially-tailored protocol. Although Alpine was im-
plemented, it has not yet entirely replaced the IFS.
This may be because of the successful use of the
whole-file-copy paradigm at Xerox, currently em-
bodied in the Cedar File System [26].

The Chaosnet [17] family of protocols was
developed in the late 1970s at MIT, in parallel with
and almost completely uncontaminated by the work
at Xerox. Chaosnet never caught on outside of MIT
and Symbolics Inc., which by 198 1 had produced the
Chaosnet FILE protocol [28]. This evolved into
NFILE [29], which is independent of Chaosnet and
can be based on any suitable byte-stream protocol.
NFILE provides much the same capabilities as Leaf,
but follows a sequential-access model with an opera-
tion to set the file pointer, instead of a true random-
access model. Although it includes explicit data
transfer operations, it appears that in normal opera-
tion NFILE is used to set up streams which are then
treated by Lisp machine programs the same as
streams to local files; remote data transfers are im-
plicit. NFILE, like Leaf, uses an unsynchronized
full-duplex communications mechanism, instead of a
synchronous mechanism such as RPC. This creates
far more complexity in NFILE than it does in Leaf:
while Leaf operations carry explicit file offsets and

4

THELEAF FILEACCESS PROTOCOL

thus are relatively independent of each other, NFILE
uses a separate operation to change the file pointer,
thus requiring resynchronization before each random-
access data transfer.

3 Overview of the Leaf protocol

In this section I sketch the Leaf protocol, to il-
lustrate both its capabilities and its structure. For a
more detailed specification of Leaf, see appendix I.

3.1 Layering
There are three interesting layers in the Leaf ar-

chitecture. The lowest layer is the Pup intemet
datagram protocol, described by Boggs et al. [4].
Pup datagrams are checksummed to detect data cor-
ruption, but are otherwise unreliable and potentially
unsequenced.

The second layer is the Sequin protocol. Sequin,
used only with Leaf, is a connection-based protocol
that provides reliable, sequenced, duplicate-free, full-
duplex packet transmission. Sequin supports multi-
packet windows, so that bulk data transfer can be
done without individual acknowledgement of every
packet. Sequin, in effect, cleans up the Pup datagram
abstraction so that a Leaf client and server can ignore
the inherently unreliability of the lower layers. This
results in two advantages over the unreliable
datagram transport used by Leaf’s predecessor, WFS:

l Reliability mechanisms are centralized in one
piece of code, instead of being replicated in the
client code for every operation.

l Sequin’s multi-packet windows reduce the
need for acknowledgement packets when read-
ing large amounts of data.e

The final layer is the Leaf protocol itself. All Leaf
operations involve a single request message and one
or more reply messages. Each Leaf message is con-
tained in one Sequin datagram. Leaf is entirely
client-synchronous; the server may not initiate any
operations.

The layering between Sequin and Leaf is relatively
clean, with one exception. Leaf locks open files
against conflicting access; these locks may be broken
if the server believes the client has failed. Failure
detection is done using a timeout mechanism, and
since Leaf is client-synchronous, an idle connection
is maintained in the Sequin layer. The choice of
timeout interval may depend on the particular ap-
plication, so a Leaf operation allows a client to set the
server’s Sequin timeout interval.

5

3.2 Sequin Layer
Sequin is symmetrical; the client and server follow

the same protocol. However, client implementations
are not expected to receive, and need not support,
requests for opening connections.

Each Sequin packet is transmitted as exactly one
Pup datagram. A Sequin packet contains four header
fields; these are overlaid on a field of the Pup header,
blurring the boundary between these two layers. The
Sequin header contains both received and send se-
quence numbers; this “piggy-backing” of ack-
nowledgements on data packets makes separate ack-
nowledgement packets unnecessary. Another header
field indicates the buffering available at the receiver,
thus providing simple flow control.

The final header field specifies the function of a
packet within the Sequin protocol. Most packets are
data, to be passed up to the Leaf layer. Other packet
types control connection creation, maintenance, and
destruction; connections are closed using a 3-way
handshake to avoid half-closed connections.

3.3 Leaf data abstractions
Leaf views files as arrays of bytes rather than

pages. This makes Leaf useful in environments with
a variety of page sizes. Since Leaf operations are not
constrained to start on a page boundary or transfer
complete pages of data, Leaf clients are independent
of file server page sizes.

Leaf was designed for use with the Xerox IFS file
system. Consequently, Leaf supports an idiosyncrasy
of the IFS: read and write operations may be per-
formed at negative byte-offsets. This is used to ac-
cess the “leader page” of IFS files, which contains
information about the file such as its creation date,
owner, protection, type, etc. The IFS permits write
access to only a few fields of the leader page.

Leaf operations have other IFS-derived
idiosyncrasies, some of which are hard to emulate in
a server written for another file system (such as Unix
or TOPS-20). IFS stores multiple versions of files, so
Leaf allows clients to specify file version numbers
when opening or creating files. Leaf also supports
both exclusive-writer and multiple-writers lock
policies; clients are responsible for synchronizing
writes in the latter case.

Files are identified by sting names, not UIDs. Leaf
itself imposes no syntax on file names, although the
Unix Leaf server converts between IFS and Unix file
name syntaxes if it suspects that the client is using
IFS syntax. A name is used only when opening a
file; subsequent operations are done on a temporary

THELEAFFILEACCESSPROTOCOL

“file handle” created when the file is opened. Au-
thentication is done at the same time; the client must
supply a valid user name and password. The use of
file handles means that authentication and name
translation need only be done once.

Because all Leaf file operation messages specify a
file handle, it is possible to access several files simul-
taneously over one Sequin connection; it is even pos-
sible for several users of one client host to share a
Sequin connection to a server host.

3.4 Leaf operations
All Leaf operations are initiated by the client send-

ing a packet to the server. For each operation, there
is a corresponding Answer packet that is returned by
the server if the operation is successful; otherwise,
the server returns an Leaflrror packet that indicates
what went wrong. Most operation packets and cor-
responding Answer packets carry a file handle. Since
there is no other identification information in the
Answer packets, the client must rely on the sequenc-
ing provided by Sequin to correctly match Answers
with requests.

Leaf operations can be divided into three
categories: file handle management, data transfer,

. and connection management. File handle manage-
ment includes operations to open a file, close a file,
and force the file server to flush buffered data to the
disk. Files can be created as a consequence of the
open operation; there is also an operation to delete a
file.

The two data transfer operations read and write file
data. Data transfer can start at any offset from the
beginning of the file. Write requests must fit in one
packet, containing up to 512 data bytes. A read
operation may request an arbitrary amount of data;

- the server returns the data in one or more Answer
packets, as necessary.

Connection management includes operations to
change timeouts and maximum packet sizes. If a con-
nection times out but neither client nor server fails,
the client may reset the connection and then continue
to use it.

4 Evaluation of Leaf

Leaf is a mixed success. While it was never well-
known outside the Pup community, nor has it served
as a model for subsequent protocols, it was and is
useful for a remarkably wide range of applications.
What lessons can we learn from Leaf? In this sec-
tion, I look at how Leaf differs from what came be-
fore and what came later; what it got right and what it
got wrong; and how well it performs.

4.1 What is different about Leaf?
A system is said to be network-transparent if it

does not matter to a client program whether a
resource is on the same host or a remote host.
Transparency is the most important conceptual dif-
ference between the earliest file transfer protocols
and recent distributed or network file systems such as
LOCUS [22] and VICE [181. True transparency ex-
ists only when remote and local resources are named
in the same way, and when remote performance and
reliability are no worse for remote resources than for
local resources. Even without performance or name
transparency, users may still benefit from semantic
transparency, the ability to perform the same opera-
tions on remote objects as they can on local objects,
and syntactic transparency, use of the same opera-
tions (programs or procedures) to perform these
operations remotely and locally.

FTP is not transparent. At best, it can transparently
support certain forms of whole-file copy operations;
it cannot by itself support most file operations
provided by any modem file system.

Leaf is half-way to transparency. The semantics of
Leaf operations are substantially the same as those
provided by a local file system, but the syntax is dif-
ferent. Leaf’s message-based, request-reply syntax
can be hidden under a layer providing a procedural
abstraction, but it would be hard to see Leaf itself as
syntactically equivalent to a local file system. Name
transparency also is only available through the use of
another layer, and in a heterogeneous environment it
may not be possible to hide such differences as case-
significance and version numbering.

Whether or not Leaf provides performance trans-
parency depends heavily on how it is used. In section
4.5, we will see that Leaf performance is about an
order of magnitude slower than a local disk in a well-
designed file system, so it would appear that Leaf (or
any similar mechanism) cannot be performance-
transparent.

There are two situations where Leaf can approach
performance transparency. The first is where a

powerful personal computer has, for economic
reasons, a slow local disk drive or little memory for
disk buffers. In this case, the speed of a high-
performance disk drive attached to a server host with
lots of buffer memory might more than compensate
for the cost of network communication. This prob-
ably is feasible only over a local area network, be-
cause it depends on relatively low-latency com-
munication.

The second such situation is when Leaf is used for
random access. Local file system throughput is con-
siderably less for random access than for sequential
access, but this makes no difference in cost of net-
work operations. For example, the Fujitsu M2351
“Eagle” disk drive has an average access time of
about 25 milliseconds, typical of popular high-
capacity drives. The time required to perform a Leaf
request/reply operation over an Ethernet is com-
parable; in this case remote operations take about
twice as long as local ones. It is easier to reduce the
network communication costs than it is to reduce the
disk latency time, so in principle it should be possible
to make remote random access nearly indistinguish-
able from local random access.

Leaf makes little provision for reliability. It has a
“close transaction” operation that simply guarantees

. all file modifications have been forced from buffer
memory onto the server’s disk, but there is no way to
provide failure atomicity within Leaf. (To be fair,
neither the IFS file system nor most timesharing sys-
tems do any better.) Leaf is also notably less secure
than local access, since user passwords and file data
are all transmitted in the clear over easily-tapped
Ethemets.

There are other ways to do network file access that
differ in spirit from Leaf. Leaf, like many of the
systems mentioned in section 2.4 (for example Al-

e pine, Sesame, the Xerox Filing Protocol), are con-
structed according to the client-server model. Dis-
tributed systems such as LOCUS follow an
“integrated” model, in which it is not possible to
identify individual servers in isolation from the rest
of the operating system. There are also semi-
integrated systems, such as Sun’s NFS, in which the
server can be separated from the Unix kernel but
there is no practical way to remove the client from
the kernel.

The level of integration determines how strongly
the architecture is layered. Within the client-server
model, one finds cleanly-layered abstractions, and
usually cleanly-layered implementations. A system
following the integrated model might not have a
layered implementation. The disadvantage of layer-
ing is decreased performance; the advantage is that it
encourages the construction of heterogeneous sys-

THELEAFFILE ACCESS PROTOCOL

terns, by forcing protocol designers to take advantage
of nothing in the environment beyond what is
provided by other layers.

4.2 What did Leaf get right?
Leaf was successful primarily because it was a

good match to its environment: a loosely-coupled lo-
cal network of workstations and servers without
strong security requirements. More specifically, Leaf
is useful because it is not tied to a particular file
system, but rather is sufficiently general to be usable
with a wide variety of client and server systems.

The features of Leaf that make it so generally useful
include:

Random access: Most files are accessed sequen-
tially most of the time, but random access does take
place; one study found that 20% of all file opens
were for non-sequential access [12], and another
study found that more than 30% of data bytes were
transferred non-sequentially [21]. This makes it im-
portant to maintain the distinction between a sequen-
tial access and a sequential-access mechanism. It is
possible to perform efficient sequential access using a
random-access mechanism; the converse is not pos-
sible. Since both random and sequential access are
necessary, Leaf’s random-access mechanism is
clearly more general than sequential-access
mechanisms such as FTP.

Random access is useful in another way: it frees file
access from the stream paradigm imposed by many
operating systems. It is hard to extend streams across
the boundary between two different operating sys-
tems without running into inconvenient flow control,
synchronization, and connection management issues.
Leaf does not entirely avoid this problem, since it
uses the Sequin packet-stream protocol instead of a
message protocol or RPC, but the programmer’s view
of the Leaf operations is not forced into the stream
paradigm.

Unconstrained file naming: File naming is an
area where file systems differ widely. One approach
is to separate directory service from file service; a
client translates a file name using the directory ser-
vice, then presents the resultant UID to the file ser-
vice to identify the file. The advantage of this
scheme is that it is possible to construct a uniform
naming environment over a variety of systems.
Many existing file systems, however, do not provide
externally visible UIDs for files, but rather have in-
tegrated directory systems, which makes it hard to
separate these functions in access protocols.

Leaf takes the simple, if non-transparent approach

7

THELEAFFILEACCESSPROTOCOL

of passing uninterpreted file names from the client to
the serving file system. Although this means that
clients do not see a uniform name syntax across a
variety of servers, it also means that Leaf can be used
with any file system with explicit file names or iden-
tifiers.

Leaf includes support for optional file version num-
bers, which are treated as part of the file name. Nor-
mally they can be omitted in the expectation that the
file system defaults to the right version, but there is
an ambiguity when a file is opened for writing:
should a new version be created, or should the latest
version be reopened for modification? Leaf’s version
number support allows a client to specify how to
resolve this ambiguity, if the server supports versions
at all.

Minimal shared state: Leaf requires a server to
maintain relatively little information about clients be-
tween client operations. This simplifies both the
protocol and its implementation. Although a server
might maintain additional state information to im-
prove performance, it needs-only to maintain a map
between file handles and the files they refer to, as
well as several bytes of Sequin connection state. In
particular, the server does not store a “file pointer”
indicating where in a file the next data transfer will

. start, nor does it record authentication information
about clients. Instead, file addresses are passed ex-
plicitly with each data transfer request, and authen-
tication information is passed each time a file is
opened.

A file handle serves both to identify the file in ques-
tion and record the fact that the holder of the file
handle has been properly authenticated. (Leaf’s
limited security goals make it unnecessary to guard
against stolen file handles.) The lack of additional
server state means that if the server crashes and res-

- tarts, the client can continue simply by re-opening the
file and obtaining a new file handle. It also means
that the server need not devote much storage space to
each open file; this was important because Leaf
originally ran on a 16-bit host.

Simple implementation: The features listed here,
including unconstrained file naming and limited serv-
er state, help to make Leaf relatively easy to imple-
ment on existing systems, both clients and servers.
Although there is some complexity associated with
Sequin’s flow control and sequencing mechanisms,
Sequin is about as simple as a reliable protocol can
get, and a minimal implementation can be even
simpler if it limits its window size to one packet.
Above the Sequin implementation, a Leaf client re-
quires no additional asynchrony (all Leaf operations
are client-synchronous), and a Leaf server can be
single-threaded if performance is not critical.

8

Simplicity of implementation means that Leaf clients
and servers can be gotten off the ground quickly; the
implementations can then be refined for better perfor-
mance without disrupting users.

Leaf operations are required to fit into a single
packet. This is the right compromise between con-
venience and implementability: it is not hard to
program a loop to transfer large buffers using mul-
tiple Leaf operations, but it would have complicated
the Leaf protocol to make it transport larger buffers.
Also, since a Leaf write operation is contained in one
packet, a Leaf server need not buffer writes in
memory but may immediately transfer them to disk.

4.3 Where did Leaf go wrong?
With a decade of hindsight, it is easy to identify

design mistakes in Leaf. As I wrote in section 2.4,
today we would design Leaf as a procedural interface
for use via RPC, instead of a set of message formats
for use with a special-purpose transport protocol.
When Leaf was designed, however, RPC was not
really an option; the design is not so much flawed as
outdated.

If we accept the basic premises under which Leaf
developed (the Pup protocol family, a low-security
environment, semantic but not syntactic
transparency), the greatest problem with Leaf is that
it is a “success disaster”; it succeeded too well, so
that users have come to rely on it more than the im-
plementors wanted. Obsolete Pup and Leaf im-
plementations must be maintained as long as there is
no widely-available alternative to Leaf.

Although it was not hard to produce simple im-
plementations of Leaf servers for timesharing sys-
tems, both the Unix and TOPS-20 servers run into
difficulty when many files are open at once. This is
not a flaw with the design of Leaf, but rather with the
use of timesharing systems designed before network-
ing became important. Unix, for example, assumes
that a single process will need only a relatively small
number of open files. The Leaf server process on
Unix can handle about a dozen open files per connec-
tion before it must start temporarily closing file
descriptors. Since it records the name of the file
associated with a file handle, the server can later
reopen the file (unless it has been renamed in the
interim) but this descriptor “swapping” results in
severe performance reduction.

One flaw in the Sequin protocol is that all packets
to the Leaf server on a given host go to the same Pup
socket. This makes it harder to demultiplex multiple
connections each to its own server process; although
it is possible to demultiplex packets based on the

client’s address, this complicates the server im-
plementation and might not be possible in some en-
vironments.

Another blemish in Sequin is its re-use of a Pup
header field for the 4-byte Sequin header. This does
not cause any operational problems, but it violates the
layering aesthetic. On the other hand, it leaves four
more bytes available for carrying data. Since the Pup
architecture severely limits packet lengths, a Leaf
operation can carry at most about 512 bytes of data.

4.4 What is missing from Leaf?
Although Leaf operations are semantically much

closer than those of FTP to the operations of a local
file system, several functions are notably lacking.
These fall into three categories: database support, file
properties, and directory enumeration.

Database support includes facilities such as record
locking, update logging, and transaction support. Al-
though Leaf’s random-access mechanism is intended
for use on simple databases, these advanced facilities
would be hard to implement across a wide range of
file servers.

Afile property is some piece of information about a
file not stored as part of its contents; other terms are
“file attributes” or “file status.” Although many
useful programs do not need access to file properties,
some programs do. For example, the m&e
program [lo] (used under Unix to control
compilation) needs to know when source and object
files were last modified. Remote access to a fiie is
not truly transparent unless the file’s properties are
available as well as its contents.

Essentially all modem file systems record file
properties, but each system stores a slightly different

- set, and there is little uniformity in how these
properties are accessed. A transparent file access
protocol must deal with both problems; Leaf avoids
the issue entirely. In its original environment, this
did not cause problems, because Leaf allows clients
to read and write the “leader page” of an IFS file,
where its properties are stored. This is inadequate as
a general solution. For more on file properties, in-
cluding a discussion of their use in heterogeneous
environments, see my thesis [151.

One could argue that a file access protocol should
not provide operations on directories. However,
since Leaf uses file path names instead of lower-level
file identifiers, it already effectively provides
’ ‘lookup, ’ ’ ‘ ‘enter, ’ ’ and ‘ ‘remove’ ’ operations on
directory entries. What it does not provide is a way
to list the entries in a remote directory. Within the

THELEAFFILEACCESSPROTOCOL

Unix model, this is not a necessary operation, since a
directory is a file and can be read and listed by a
program that knows its structure. In a heterogeneous
environment, this confusion between the directory
abstraction and its implementation is unacceptable,
for it means that a client must be able to decode the
directory representation of any arbitrary file system.
Since Leaf doesn’t tell the client what kind of file
system is running on the server (and shouldn’t have
to), it is almost impossible for clients to decode serv-
er directories. The lack of a directory enumeration
operation in Leaf seriously reduces its utility.

The TOPS-20 Leaf server implementation extended
the Leaf specification with the notion of an indexable
file handle, which allows the LeafOpen operation to
iterate over a set of files specified by a wild-carded
file name. This feature was never used; instead, the
Inter-lisp-D workstation (which is the primary remain-
ing client for the Unix and TOPS-20 servers) uses the
Pup FTP protocol to perform directory enumeration.
This workaround has the advantage that it will work
with any server that supports both Leaf and FTP; it is
not limited to a particular implementation of the Leaf
server.

4.5 Leaf performance
The potential performance of the Leaf protocol, as

opposed to the actual performance of a Leaf im-
plementation, should not be significantly lower than
other file access or transfer mechanisms. Leaf uses
the minimum number of network packets to perform
anything except file writes, given that each operation
is explicitly acknowledged and that the maximum
packet size is constrained by the Pup architecture.
Explicit acknowledgements are a practical require-
ment; for most operations they return necessary infor-
mation, and for file writes they allow synchronization
and some assurance that a write succeeded.

Less potential performance on long file writes
would be improved if a write operation could transfer
buffers longer than 512 bytes; this limit means that
Leaf incurs the overhead of an acknowledgement
packet for each buffer, even though the client might
be willing to settle for a single aclmowledgement of a
much longer transfer. Also, Leaf’s performance on
all data transfers would be nearly doubled if it could
use 1500-byte packets on an Ethernet instead of the
576-byte packets required by Pup.

With these theoretical limits in mind, we can com-
pare the performance of an implementation of Leaf to
implementations of other file transfer protocols. The
measurements presented here are meant to be indica-
tive rather than exact. They were all made using
clients and servers running on Vax computers with

9

THE LEAFFILE ACCESS PROTOCOL

the 4.2BSD Unix operating system, and all were con-
ducted using a 10 Mbit/set Ethernet.

The protocol implementations for both Leaf and the
Pup Byte Stream Protocol (BSP) are entirely in user
code; they make use of a special kernel mechanism
called the packet filter [16]. This mechanism makes
it easy to implement and modify network software,
but reduces performance by up to a factor of 6. Thus,
these measurements can only indicate the relative
performance of Leaf and the Pup/BSP FTP im-
plementations, not the best obtainable performance
with this hardware.

Table 1 compares the performance of Leaf and
Pup/BSP FTP between a pair of Vax-11/78Os, and
where the client is on a Vax-I l/750 and the server is
on a Vax-1 l/780. In all cases, the client is reading a
file of about 100 Kbytes from the server.

Window Transfer rate Relative
Protocol (packets) (bytes/s@ performance
Vax-H/780 to Vax-U/780:
Leaf 1 11659 0.61
Leaf 4 21789 1.14
Pup/BSP F T P 1 19125 1

Vax-U/780 to Vax-H/750:
Leaf 1 10362 0.63

‘Lmf 4 19795 1.21
Pup/BSP F T P 1 16375 1

Table 1: Relative performance of
Leaf and Pup/BSP FTP

Leaf performance clearly depends on the window
size. A large window size avoids many ack-
nowledgement packets and similarly reduces the
number of context switches. On client read opera-
tions, an ideal implementation of Leaf should have
about the same performance as an ideal implemen-

- tation of FTP. On client write operations, the re-
quired aclmowledgement per packet places Leaf at a
theoretical disadvantage to FTP.

The FTP implementation appears to be about 20%
slower than the Leaf implementation even when both
use a 4-packet window; this may be due to a policy
difference on delayed acknowledgements. A Leaf
client normally withholds acknowledgment until all
the packets for a multi-packet read answer have been
received and processed (the acknowledgement is pig-
gybacked on the next operation). In the BSP
protocol, acknowledgements are specifically re-
quested by the sender when it thinks it has filled the
receiver’s advertised window. The receiver, which
responds immediately with an acknowledgment, may
not yet have been able to pass all the received data to
its client and so may have to advertise a

10

“temporarily” smaller window to the sender. Once
the receiver gets behind the sender, the window may
seldom open up to its full size, and the transfer will
be less efficient than it could be.

(The original code in both the Unix Leaf server and
client package does not correctly handle multi-packet
reads. The utter absence of complaints about this
strongly implies that no existing Leaf client uses this
feature, and all Leaf users have therefore put up with
half the potential performance.)

How is the performance of the Unix Leaf im-
plementation affected by the implementation ar-
chitecture, especially by implementation outside the
Unix kernel? We can get a rough idea of by compar-
ing Pup/BSP FTP to IP/TCP FTP, a similar protocol
implemented within the 4.2BSD kernel. Table 2
shows the relative performance of these two
protocols; the kernel-resident code is four to five
times faster. While it is not entirely safe to extrapo-
late this ratio to the Leaf protocol, it is reasonable to
assume that a kernel-resident Leaf implementation
would be several times faster than the current Unix
implementation.

Transfer rate Relative
Protocol (bytes/set) performance
File transfer between two Vax-11/780s:
Pup/BSP 19125 0.20
IP/TCP 95306 1

File transfer from Vax-111780 to Vax-U/750:
Pup/BSP 16375 0.24
IP/TCP 67558 1

Table 2: Relative performance of
Pup/BSP FTP and IP/TCP FTP

To put these transfer rates into perspective, they
should be compared to the rate of local disk I/O. A
Vax-1 l/780 with a fast disk drive, running 4.2BSD,
can read from its disk about 275 Kbytes per second;
this is more than an order of magnitude faster than
Leaf, and about three times as fast as IP/TCP FTP. In
practice, the difference is less severe: sequential ac-
cess to large files is not the dominant mode of
timesharing file systems. Most files are short [21]
and much of the work done by a file system is over-
head, for disk allocation and name translation [121.
The added cost of remote access is much less notice-
able for access to short files.

We want low latency for short operations when
Leaf is used for random-access or access to short
files. Since each Leaf file operation carries a file
offset, the network performance of the Leaf protocol
is nearly independent of whether it is used for se-
quential transfer or random access; we can therefore

THE LEAFFILE ACCESS PROTOCOL

estimate the round-trip
from bulk transfer rates.

latency for Leaf operations

Table 3 shows the Leaf operation rate as a function
of packet size, for read operations between two
Vax- 11/75Os. The operation rate decreases more
steeply than it should with increasing packet size,
perhaps because the Unix Leaf implementation re-
quires copying the data several times.

Buffer size (in bytes)
512 -256 64 16

Time (seconds) 14.39 21.88 64.57 238.77
Rate (byteskec) 7964 5238 1775 480
Operationshec 15.6 20.5 27.7 30.0
mSec/operation 64.3 48.9 36.1 33.3

Table 3: Leaf operation rate
as a function of packet size

The time it takes to perform a remote operation can
be divided up into disk time, the time required to
perform disk I/O for the operation, and network time,
the time required to transfer data across the network.
Since the Leaf server averages 5 to 10 milliseconds
of disk I/O per Leaf operation, the implication of
table 3 is that it takes from 30 to 50 milliseconds of
network time to perform a Leaf operation. As men-
tioned in section 4.1, typical access times for large
disk drives are around 25 milliseconds. Inexpensive
hard disk drives such as might be attached directly to
a personal computer have access times of 50 to 100
milliseconds; floppy disk drives are even slower.
Given these figures, remote random access to a high-
performance disk via Leaf should be faster than local
access to an inexpensive disk.

It should be noted that the measurements in this
section were made under conditions of light load on
both client and server processors. Performance

- degrades roughly in proportion to processor load, and
disk I/O load on the server also has an effect.

Acknowledgements

Many people contributed to the work described in
this report, and many others provided assistance in
tracing the history of Leaf and related protocols. I
would especially like to thank (in alphabetical order)
Dave Boggs, Jeremy Dion, Keith Lantz, Jim
Mitchell, Brian Reid, Mark Roberts, Eric Schoen,
Dan Swinehart, David Plummer, Jon Postel, Ed Taft,
and Ted Wobber. Steve Butterfield deserves special
mention, not only for his help in the preparation of
this report, but because without him Leaf would not
exist.

References

VI

PI

131

r41

151

[61

[71

PI

M. Accetta, G. Robertson,
M. Satyanarayanan, and M. Thompson.
The design of a network-based central file

system.
Technical Report CMU-CS-80- 134, Depart-

ment of Computer Science, Camegie-
Mellon University, August, 1980.

Abhay Bhushan.
A File Transfer Protocol.
RFC 114, Network Information Center, SRI

International, April, 197 1.

A. Birrell, R. Levin, R. Needham, and
M. Schroeder.
Grapevine: An exercise in distributed comput-

ing.
Communications of the ACM 25(4):260-274,

April, 1982.
Presented at the 8th Symposium on Operating

Systems Principles, ACM, December
1981.

D.R. Boggs, J.F. Shoch, E.A. Taft, and R.M.
Metcalfe.
Pup: An internetwork architecture.
IEEE Transactions on Communications

COM-28(4):612-624, April, 1980.

Mark R. Brown, Karen Kolling, and Edward
A. Taft.
The Alpine File System.
TOCS 3(4):261-293, November, 1985.

G. E. Conant and S. Wecker.
DNA: An architecture for heterogeneous

computer networks.
In Proc. 3rd International Conference on

Computer Communications, pages
618-625. International Council on Com-
puter Communications, August, 1976.

John Day.
A Proposed File Access Protocol

Specification.
RFC 520, Network Information Center, SRI

International, June, 1973.

D. J. Farber and F. R. Heinrich.
The structure of a distributed computing sys-

t e m - The distributed file system.
In Proc. 1 st International Conference on

Computer Communications, pages
364-370. ACM/IEEE, October, 1972.

11

THE LEAF FILE ACCESS PROTOCOL

PI

mu

WI

WI

[I31

* 1141

u51

- W51

Cl71

D. J. Farber, J. Feldman, F. R. Heinrich,
M. D. Hopwood, K. C. Larson, D. C. Loomis,
and L. A. Rowe.
The Distributed Computing System.
In Proc. Fall COMPCON, pages 31-34.

IEEE, March, 1973.

Stuart I. Feldman.
Make - A Program for Maintaining Com-

puter Programs.
Software-Practice and Experience

9(4):255-265, April, 1979.

A. Goldberg and D. Robson.
Smalltalk-80: The Language and its

Implementation.
Addison-Wesley, 1983.

Christopher A. Kent.
Cache Coherence in Distributed Systems.
PhD thesis, Purdue University, August, 1986.

R. M. Metcalfe and D. R. Boggs.
Ethernet: Distributed packet switching for lo-

cal computer networks.
Communications of the ACM 19(7):395404,

July, 1976.
Also CSL-75-7, Xerox Palo Alto Research

Center, reprinted in C&80-2.

J. G. Mitchell and J. Dion.
A comparison of two network-based file ser-

vers.
Communications of the ACM 25(4):233-245,

April, 1982.
Presented at the 8th Symposium on Operating

Systems Principles, ACM, December
1981.

Jeffrey C. Mogul.
Representing Information About Files.
PhD thesis, Stanford University, March, 1986.

Jeffrey Mogul, Richard Rashid, and Michael
Accetta.
A Facility for Rapid Prototyping of Network-

ing Software.
1987.
In preparation.

David A. Moon.
Chaosnet.
Memo 628, Artificial Intelligence Laboratory,

Massachusetts Institute of Technology,
1981.

WI

WI

lm

WI

ml

P31

~41

1251

James H. Morris, Mahadev Satyanarayanan,
Michael H. Conner, John H. Howard, David
S. H. Rosenthal, and F. Donelson Smith.
Andrew: A Distributed Personal Computing

Environment.
Communications of the ACM 29(3): 184-20 1,

March, 1986.

Bruce J. Nelson.
Remote Procedure Call.
PhD thesis, Carnegie-Mellon University,

1981.
Also Technical Report CSL-8 l-9, Xerox Palo

Alto Research Center.

Michael J. K. Nielsen.
Design and performance evaluation of a

multi-computer system for timesharing
environments.

PhD thesis, Stanford University, 1984.

John K. Ousterhout, Herve Da Costa, David
Harrison, John A. Kunze, Mike Kupfer, and
James G. Thompson.
A Trace-Driven Analysis of the UNIX 4.2

BSD File System.
In Proc. 10th Symposium on Operating Sys-

tems Principles, pages 15-24. ACM,
December, 1985.

Published as Operating Systems Review
19(5).

G. Popek, B. Walker, J. Chow, D. Edwards,
C. Kline, G. R&sin, and G. Thiel.
LOCUS: A network transparent, high

reliability distributed system.
In Proc. 8th Symposium on Operating Sys-

tems Principles, pages 169- 177. ACM,
December, 198 1.

Proceedings published as Operating Systems
Review 15(5).

Jon Postel.
Internet Protocol.
RFC 791, Network Information Center, SRI

International, September, 198 1.

Jon Postel.
Private Communication.
1986

Russel Sandberg, David Goldberg, Steve
Kleiman, Dan Walsh, and Bob Lyon.
Design and Implementation of the Sun Net-

work Filesystem.
In Proc. Summer USENIX Conference, pages

119-130. 1985.

12

THELEAFFILEACCESSPROTOCOL

[26] Michael D. Schroeder, David K. Gifford, and
Roger M. Needham.
A Caching File System for A Programmer’s

Workstation.
In Proc. 10th Symposium on Operating Sys-

tems Principles, pages 25-34. ACM,
December, 1985.

Published as Operating Systems Review
19(5).

[27] D. Swinehart, G. McDaniel, and D. Boggs.
WFS: A simple shared file system for a dis-

tributed environment.
In Proc. 7th Symposium on Operating Sys-

tems Principles, pages 9-17. ACM,
December, 1979.

[28] Chaosnet FILE Protocol.
Symbolics Inc., Cambridge, Ma., 1981.

[29] Release 6.1 Patch Notes.
99803 1 edition, Symbolics Inc., Cambridge,

Ma., 1985.

[30] C. P. Thacker, E. M. McCreight,
B. W. Lampson,R. F. Sproull, and
D. R. Boggs.
Alto: A personal computer.
In D. P. Siewiorek, C. G. Bell, and A. Newell

(editor), Computer Structures: Principles
and Examples, pages 549-572. McGraw-
Hill, 1982.

Also CSL-79-11, Xerox Palo Alto Research
Center.

[31] Bob Thomas.
Comments on File Access Protocol.
RFC 535, Network Information Center, SRI

International, July, 1973.

[32] Mary R. Thompson, Robert D. Sansom,
Michael B. Jones, and Richard F. Rashid.
Sesame: The Spice file system.- Technical Report CMU-CS-85-172, Depart-

ment of Computer Science, Carnegie-
Mellon University, December, 1985.

[33] James E. White.
Network Specifications for USCB’s Simple-

Minded File System.
RFC 122, Network Information Center, SRI

International, April, 197 1.

[34] INTERLISP reference manual.
Xerox Special Information Systems,

Pasadena, California, 1983.

[35] Xerox File Protocol.
XNSS 108507 edition, Xerox Network Sys-

tems Institute, Palo Alto, California, 1985.
(Draft edition).

13

THE LEAF FILE Access PROTOCOL

14

THE LEAFFILE ACCFISS PROTOCOL

Appendix I. Specification of Leaf and Sequin Protocols

This specification was set down starting in early 1981; the last substantive changes were made on August 17, 1982.
Aside from changes in formatting and minor editing, that version is here reproduced verbatim.

1.1 Introduction
Leaf is a protocol that allows clients to access remote files via servers. It is distinct from FTP in that, whereas FTP
supports copying entire files from one host to another, Leaf supports read and write random access to files on a
server. Leaf does not create copies of a file; operations are performed on the original file. The Leaf protocol is
intended to provide some amount of security and reliability, and to provide for some simultaneous access to shared
files.

The Leaf protocol uses the Pup-based Sequin protocol as a transport mechanism. Sequin is a connection-based,
full-duplex, sequenced, duplicate-free, reliable packet protocol. What this means is that the two communicating
parties (a client and a server) maintain some state information not explicitly contained in the packets such that every
packet is guaranteed to arrive exactly once at its destination. Further, packets arrive in the order they are sent.
[Note: Leaf requires a bidirectional packet stream, but not a full-duplex one.] Sequin includes a timeout mechanism
that handles the problem of crashed hosts.

1.2 Sequin
Sequin is’ a packet-based protocol; that is, users of Sequin send and receive packets. A Sequin packet is formatted as
a Pup packet (see the Pup specification [4]), except that the PupID field of the packet is redefined to contain four
bytes of Sequin-specific information (see figure I-l). The Sequin header bytes are:

Send Sequence This byte starts at 0, and is incremented by one after every packet sent that contains data.
Control packets do not increment the sequence number.

Receive Sequence This byte also starts at 0, and is the Send sequence number that you are awaiting; it implicitly
acknowledges the receipt of all lower sequence numbers. The Send Sequence number of a
control packet must match your receive sequence number in order to be processed; that is, a
control packet cannot be processed until all preceding data packets have been received.

Allocate Specifies the total buffering available at the receiver. This specifies how many unacknowledged
sequence numbers can be sent. To decrease the probability of sequence errors going undetected
because of wrap-around, Allocate should not be greater than about 30. This may vary over the
lifetime of a connection, so each end should pay attention to its partner’s Allocate byte.

- Control This byte can take on a number of values, indicating the packet’s function within the Sequin
protocol:

0 = SequinData Indicates that this packet contains data for the next higher level protocol.
1 = SequinAck Acknowledges a data packet without returning more data, thus allowing

the sender to release buffer space. Also acknowledges a SequinNop.
2 = SequinNop Used to maintain activity on a connection, to prevent a timeout.
3 = SequinRestart Means “retransmit everything for which you have not received an

acknowledgement.” Used, for example, if a packet is received out of
order.

.

4 = SequinCheck A check is a request for acknowledgement, so that you can see what your
partner’s sequence numbers are. This is useful if you are expecting a
reply and either your request or your reply was dropped. If the request
was dropped, resend it. If the reply was dropped, you must do a restart.
[This is obsolete, and SequinNop should be used instead* .I

‘Obsolete operations are described in this specification so that the actions of older implementations may be understood.

15

THE LEAF FILE Access PROTOCOL

PUP
Header

(20 bytes)

MSB LSB

Pup Length

Transport Control

Allocate Receive Sequence

Control Send Sequence

Destination Network Destination Host

Destination Socket -

Source Network Source Host

Source Socket

(0 to 532 bytes) Contents

- - -P’;szble’ - -I Garbage Byte

Pup Checksum

Sequin
Overhead

(PupID Field)

Destination
Port

Source
Port

Two &bit bytes

Figure I-1: Format of a Sequin packet

5 = SequinOpen Opens a connection. Both sequence numbers should be reset. This may
carry data, thus it must advance the send sequence number. This is
always sent from a client to a server, and the Pup Source Socket in the
packet is the one on which the client will listen for all further packets (i.e.,
the client’s Port identifies the connection.) Unlike the RTP protocol
(which is not used with Sequin), the server does not return a unique
socket to the client. All packets from the client to the server are directed
to the server’s “Well-known Socket.”

6 = SequinBreak Shuts down a connection immediately; intended to indicate that a client is
exiting IU)W. This elicits a SequinBroken in response.

7 = SequinClose Used to put a full-duplex connection into a “closed” state, in preparation
for a SequinDestroy. [Note: obsolete.]

8 = SequinCIosed Acknowledges a SequinClose. mote: obsolete.]
9 = SequinDestroy Sent to close a connection. The receiver of this should then send a

SequinDallying, and wait for a SequinQuit from the sender, timing out
after a while.

10 = SequinDallying Response to SequinDestroy.
11 = SequinQuit Response to SequinDallying. Either party goes away after receiving or

sending one of these.
12 = SequinBroken Sent to indicate that “all is lost.” This is a courtesy, sent before the

world comes to an end.

16

THELEAFFILE ACCESS PROTOCOL

Since Sequin packets contain the Allocate and Receive Sequence numbers “piggybacked” on the outgoing data,
users need not send special acknowledgement packets if there is data going in the other direction.

Since the Send and Receive Sequence numbers are represented as 8 bits, they will wrap around. For this reason, a
heuristic of some sort is needed to determine the meaning of the difference between sequence numbers. For an
example, see appendix II.

For simple implementations of clients, the following rules help:
1. If the Allocate byte is zero, it should be interpreted as if it were one (i.e., only one unacknowledged

packet at a time.)

2. The receipt of “the latest duplicate” is taken to be an implicit restart, thus allowing a simple im-
plementation to merely resend after a timeout.

To avoid dire consequences related to crashed hosts, Sequin includes the notion of a timeout. Unfortunately, this
interacts somewhat with the Leaf protocol, because the Leaf protocol uses Sequin timeouts to implement file locks.
(See section I.3 for more details.) If there is no activity on a connection for a period (10 minutes for the IFS
implementation), it enters the “timed out” state. In “timed out” state, file locks can be broken, and, if the system
is halting, connections can be closed. (Note that Sequin locks are broken only on demand, i.e. if another user wants
to use a file while the connection is timed out.) After a further period (12 hours for the IFS), the connection is
broken and the locks are released. If the client resumes activity during this “grace period,” unbroken file locks are
still secure.

1.3 Leaf Data Types
Leaf is based on a packet format known as a LeafOp. There may be one or many LeafOps sent in one Sequin
packet, but a LeafOp must be totally contained within one Sequin packet, and is therefore limited by the conven-
tional bounds on the size of the data portion of a Pup (532 bytes).

The Well-Known Pup socket for Leaf servers is 43s. Leaf/Sequin packets are always of Pup Type 260,.

Each LeafOp begins with one word that contains a LeafOpCode, a flag indicating whether it is a request or an
answer, and the length (in bytes) of the LeafOp, inclusive of the header word. The format is shown in figure I-2.
The Answer flag is set if the LeafOp is an answer, and clear if it is a request.

15 11 10 9 0

Leaf OpCode Answer Length of LeafOp in bytes

0 4 5 6 15

Figure I-2: Format of first word of a LeafOp

17

THELEAFFILEACCESSPROTOCOL

File addresses within LeafOps are represented by LeafAddresses, whose format is shown in figure I-3. The fields
are:

Mode This field places some restrictions on the allowable addresses for a write operation. It can take the
values:

0 = Anywhere
1 = NoHoles

No restrictions; any Leaf address is legal.
Forbids any address such that after the completion of the write, there will be a
“hole” in the resulting file, i.e., a section that has never been written.

2 = DontExtend On a write operation which would necessitate the extension of the file, write only
as much as will fit into the unextended file. An error indication will not be
returned; however, the byte count returned in response to the write will reflect the
actual number of bytes written.
When this mode is used for a read operation that attempts to read past the end of a
file, an error is not returned. For all other modes, an error is returned when reading
past the end of a file.

3 = CheckExtend If a write operation would necessitate the extension of the file, do not start it, and
report an error.

If present in a write operation, indicates that this write establishes a new end-of-file position. In other
words, the last byte of this write is the last byte of the file. This is useful for truncation of files.
The byte offset from the front of the file; the low 16 bits are in the second word, and the high 13 bits
are right-justified in the first word. The interpretation of this 29-bit field is somewhat host-specific, for
historical reasons:

EOF

Address

l Norm2 Host: treat the 29-bit field as an unsigned integer. This supports files up to 512
Mbytes long.

l IFS or IFS emulation: The IFS implementation of Leaf allows negative byte addresses in
files, used for accessing the “Leader Page” of a file. The IFS ignores the two high order
address bits (bits c3:4> of the first word). If the address is greater than 2**26, then it is
treated as a U-bit negative address. Note that write access is only permitted to restricted
fields of the leader page (CREATE-DATE and FILE-TYPE).

15 14 13 12 0
I

Mode EOF High bits of byte address in file

I I
0 1 2 3 15

First word
,c 0

Low bits of byte address in file

0 15

Second word

Figure I-3: Format of a LeafAddress

Strings within LeafOps are in @String format; an IfsString starts with one word containing the string length in
bytes, followed by characters representing the string. Odd length strings are followed by a garbage byte to fill out
the final word. (See figure I-4.)

Open files are referred to by Filehandles, which are 16-bit objects.

18

THELEAFFILE ACCESS PROTOCOL

Length in bytes

Data bytes

Possible Garbage Byte

Figure I-4: Format of a IfsString

1.4 Leaf Operations
Leaf OpCode 1 = Leaf’Open
This is used to open a file for further access. Note that one may have any number of open files under one Leaf
connection. The format is shown in figure I-6. The filehandle field should be 0. The LeafOpenMode (shown in
figure I-S) has a lot of subfields:

Read Indicates that the file will be read from.
Write Indicates that the file will be written to. It is legal for both Read and Write to be set.
Extend Indicates that the file will be extended. In general, Extend should be equivalent to Write.
Multiple If set, allows “wild card” filename specifications. This should be zero, since it is currently

unimplemented by IFS/Leaf.
Create Indicates that the file should be created. Operations on non-existent files will give appropriate

errors, and it is not reasonable to try to Create and Read a file without Writing it.
Explicit Version Number

This is used with the filename part of the LeafOpen. It can take on the values:

0 = None Consider it an error if there is a version number in the filename.
1 = Old The version number must refer to an existing version; the usual case for a

read. [Not implemented in IFS/Leaf.]
2 = NextOrOld

The version number must be that of an existing file, or else the next avail-
able version number; the usual case for a write. [Not implemented in
IFS/Leaf.]

3=Any Any legal filename, with or without a version number, is allowed.
In general, use None or Any.

Version Number Default
Controls rules for determining the file version number in the absence of an explicit version
number:

0 = DontDefault
Presumably, this means that there should have been an explicit version num-
ber.

1 = Lowest Use the lowest extant version.
2 = Highest Use the highest extant version (the current file).
3 = Next Use the next version number.

19

THELEAFFILE ACCBS PROTOCOL

Multiple Writers When set, opens the file in “write-share” mode, allowing multiple (simultaneous) writers to a
file. The only correct setting of the mode bits for opening a file in this mode is: Extend and
Create clear; Read, Write, and Multiple Writers set. Multiple write-share opens are allowed,
but they may not be mixed with non-write-share opens. The size of a file may not be changed
while it is open in write-share mode. User processes are responsible for insuring correctness of
sequences of writes.

Note: If Create is set or the version number default is Next (thus requesting creation of a new version), an error will
result unless the LeafOpenMode specifies normal writing; i.e., Write is set and Multiple Writers is not.

15 14 13 12 11 10 9 8 7 6 5 4 3 0
\ I I

Version
Read Write Extend MuWe Create

Explicit
Version Not Multiple

Unused
Number l!sEr Used Wti ters

I I I

0 1 2 3 4 5 6 7 8 9 10 11 12 15

Figure I-5: Format of LeafOpenMode field

The rest of the LeafOpen LeafOp consists of five IfsStrings, in order, the usemame and password under which the
file is to be accessed, the connect-directory and password, and the filename. The filename, if relative, is with
respect to the connect-directory, in the usual manner.

The answer to a LeafOpen contains the filehandle to be used for further access to the open file, and a LeafAddress
that represents the length of the file. There is one further word, which is unused and should be ignored.

LeafOpen = 1 0

FileHandle = 0

LeafiIpenMode

UserName

UserPassword

ConnectName

ConnectPassword

File Name

LeafOpen = 1 1

FileHandle

File Length

Ignore

Figure I-6: Format of LeafOpen and LeafOpen Answer

Leaf OpCode 2 = LeaKlose
Both LeafClose, and its expected answer, contain the filehandle of the file to be closed; see figure I-7.

Figure I-7: Format of LeafClose and LeafClose Answer

20

THE LEAF FILE ACCESS PROTOCOL

Leaf OpCode 3 = LeafDelete
LeafDelete allows a file open in “Write” mode (not “Write-share” mode) to be deleted. The LeafDelete LeafOp
contains the filehandle of the file to be deleted; the Answer is identical, but has the Answer bit set. (The format of
LeafDelete and its answer is the same as for LeafClose, except for the OpCode field.) warning: Do not try to
delete a file open only for reading.]

Leaf OpCode 4 = LeafCloseTransaction
This is similar in all respects to LeafClose except that the specified file handle is not destroyed (and may thus be
used in further operations). In particular, the request/answer format is identical to that for LeafClose, except for the
LeafOpCode. The effect of LeafCloseTransaction is to cause the server to write to disk all buffered information
relevant to the specified file handle, including all outstanding writes and changes in file length. Thus, it is useful
when a client wishes to insure that changes to a file have been committed to stable storage; this is not, however, a
true ‘ ‘atomic transaction.’ ’

LeafCloseTransaction has no effect on files opened for reading only. Excessive use of this operation may lead to
inefficiency, since it causes cached data to be flushed.

Leaf OpCode 5 = Leafbuncate
This is an obsolete operation. A file can be truncated by doing a zero-length write with the EOF bit set in the
LeafAddress.

Leaf OpCode 6 = LeafRead
This is used to read from a file. The LeafOp contains the relevant filehandle, the LeafAddress of the first byte to
read, and the length (in bytes) of the data to be read; see figure I-8. If the length of a read cannot be contained in
one LeafOp, several LeafRead answers may be returned. Each answer to a LeafRead contains the filehandle, the
LeafAddress of the first byte returned in this packet, the number of bytes remaining to be read inclusive of those in
this packet, and the data itself (filled, if necessary, with a garbage byte.) (E.g., for a 2400, byte LeafRead, the
lengths returned would be 2400,, 14OOs, and 400s. The maximum number of data bytes in a LeafRead Answer is
lO@J, [54)1.)

LeafRead = 6 0

FileHandle

LeafAddress

Length in bytes

LeafRead = 6 1

FileHandle

LeafAddress

r- Length in bytes

Figure I-8: Format of LeafBead and LeafRead Answer

Leaf OpCode 7 = LeafWrite
This is used to write to a file. The LeafOp contains the filehandle, starting LeafAddress, the length in bytes, and the
data; see figure I-9. The answer contains the filehandle, starting address, and the length (the length actually written,
in the case of “DontExtend” L&Addresses.) A LeafWrite must be contained within a single Sequin packet.

Leaf OpCode 8 = LeafReset
If a Leaf connection is “Broken” (i.e., a lock has been broken), it must be Reset before any further operations can

21

THELEAF-FILEACCESSPROTOCOL

LeafAddress

Length in bytes

LeafAddress

Length in bytes

Figure I-9: Format of LeafWrite and LeafWrite Answer

take place (otherwise, these operations will return the “BrokenLeaf’ ’ error code). The LeafReset contains (see
figure I-10) a ResetHosts word which should be one of three values:

0 Reset the connections from this host; this should not be used lightly from a multi-user system.
mote that Leaf was designed for use on personal computers.]

1 Reset this connection.
-1 Reset connections from all hosts under this usemame; this should not be used lightly!

’ The rest of the LeafReset LeafOp contains two IfsStrings, the usemame and the password used when ResetHosts =
-1. The expected response is a LeafReset Answer, whose second word is meaningless. A LeafReset with
ResetHosts = 1 on an unbroken connection is a No-op.

LeafReset 5 8 0

ResetHosts

UserName

Password

Figure I-10: Format of LeafReset and LeafReset Answer

Leaf OpCode 9 = LeafNoOp
This is obsolete.

Leaf OpCode 11 = Leaffarams
This is used to set various parameters for the Sequin connection; as such, it violates the ideal of a clean separation of
layers. It is a variable-length request, containing one to three data words (see figure I-l 1):

MaxPupData Sets the maximum Pup data size (in bytes) for all future Pups on this connection; the default
(and maximum) is 532; the minimum is 10.

22

THE LEAF FILE ACCESS PROTOCOL

FileTimeout Sets the “file lock” timeout in units of 5 seconds; the default is 10 minutes. The server need
not allow the lock timeout to be raised above the default value; if this is attempted, the timeout
will be set to the default, and no error will result.

ConnectionTimeout
Sets the Sequin connection timeout in units of 5 seconds; the default is 12 hours.

A zero value for any of the parameters implies that the system default should be used.

The response to a LeafParams includes one word of data, whose purpose is currently undefined.

LeafParams = 11 0

MaxPupDataLength

FileLockTimeout (opt.)

ConnectionTimeout (opt.)

Figure I-11: Format of LeafParams

Leaf OpCode 0 = LeafError
This LeafOp indicates that an error has occurred. The LeafError LeafOp contains an error sub-code, and ethos the
LeafOpCode and filehandle from the offending LeafOp; see figure I-12. The error subcodes are:
SubCode SubCode Name
116 IllegalLookupControl
201

* 202
203
204
205
206
207
208
209
210
211
212
213- 214
215
216
217
218
2-19
220
1001
1010
1011
1012
1013
1014
101’5
1016

Reason
“Multiple” bit set in LeafOpen mode
illegal filename
illegal character in filename
illegal use of “*”
illegal version number

NameMalformed
IllegalChar
IllegalStar
IllegalVersion
NameTooLong
IllegalDIFAccess
FileNotFound
AccessDenied
FileBusy
DirNotFound
AllocExceeded
FileSystemFull
CreateStreamFailed
FileAlreadyExists
FileUndeletable
Usemame
Userpassword
FilesOnly
ConnectName
ConnectPassword
BrokenLeaf
BuddingLeaf
BadHandle
LeafFileTooLong
IllegalLeafTruncate
AllocLeafVMem
IllegalLeafRead
IllegalLeafWrite

not allowed to access Directory Information File

file protection violation
file already open in a conflicting way
no such directory
disk page allocation exceeded

probably disk error in file
rename “to” file already exists

failures from login or connect
failures from login or connect
failures from login or connect
failures from login or connect
failures from login or connect
file lock timeout has occurred
unimplemented Leaf Op
bad file handle presented

semi-fatal IFS filesystem error

23

THE LEAF FILE ACCESS PROTOCOL

Error LeafOpCode

Error FileHandle

Figure I-12: Format of LeafError

1.5 Leaf Timeouts and Locks
Normally, Leaf allows one writer or multiple readers of any given file. (If the file is opened in write-share mode,
multiple write-share opens are allowed.) A file is implicitly locked against conflicting access when it is opened, and
access locks are checked upon subsequent opens. Locks are released when files are closed, or Leaf connections are
reset.

Since a locked file cannot be accessed over other connections, if a host crashes, it might be difficult to recover. For
this reason, all locks are subject to timeouts. Basically, a timeout occurs if there is no Sequin activity over a
connection during a specified period. This means, among other things, that if more than one file is open under one
connection, and if even one file is being accessed often enough to prevent a Sequin timeout, then the locks on all of
the open files will remain secure, even if no activity occurs on the other open files. On the other hand, if a
connection enters the timed-out state, and subsequently another connection opens a file open under this connection,
the locks on all files will be broken. The timeouts are meant to protect against crashed connections, but not
necessarily against crashed user processes communicating via these connections.

Since a Leaf server never sends unprompted packets to a client, the client must periodically send something to the
server to indicate that it is still alive (a SequinNop will suffice). For the same reason, if a client accidentally times
out a connection, but comes back to life after a lock has been broken, it will receive a LeafError (code =
BrokenLeaf) when it tries to do any operation; it must do a LeafReset to clear this condition.

There is no notion in Leaf of a per-file lock being broken; the locks are maintained on a per-Sequin connection
basis. It is not unreasonable to maintain just one open Leaf file on each of several Sequin connections; this
effectively gives per-file locking.

- 1.6 Acknowledgements
This specification is largely based on information provided by Ted Wobber, of Xerox SDD. He has patiently
answered questions and made comments on drafts of this paper, but the responsibility for errors is entirely mine.
Other people who have contributed their efforts to this paper, and especially to its accuracy, are Brian Reid, Keith
Lantz, Eric Schoen, and Mark Roberts.

24

THE LEAFFILE ACCESS PROTOCOL

Appendix II. Filters on Sequin Sequence Numbers

When a Sequin packet is received, the receiver must compare the Send Sequence number in the packet to its own
Receive Sequence number, to determine if the packet is in the proper order. If the numbers are equal, this test has an
obvious form. Unfortunately, since the sequence numbers are stored in a byte, they wrap around, and if the two
numbers differ by much, it is hard to tell what this signifies.

In the IFS implementation of Sequin, the method used is as shown below (the code is a pseudo-Pascal that allows
for sub-ranges in case statements; most actions are shown as comments):

const SequenceMax = 377B;

type SequenceStatus = (equal, previous, ahead, duplicate, outofrange);
SequenceNumber = O..SequenceMax;

function SequenceCompare(x,y:SequenceNumber):SequenceStatus;
begin

case (x-y) of
0: return(equa1);
-1: return(previous);
-lOOB.. -2: return(duplicate);
l..lOOB: return(ahead);
else: return(outofrange);

end;
end;

begin
case SequenceCompare(IncomingSendSeq, OurReceiveSeq) of

outofrange: (* Sequin is broken, abort connection *);
ahead: (* Request retransmission of unacked packets *);
duplicate: (* Drop packet *);
previous: (* Treat as if incoming control

were SequinRestart, then fall through *);
equal: (* fall through *)

end;
case SequenceCompare(IncomingRecSeq, PreviousIncomingRecSeq) of

outofrange: (* Sequin is broken, abort connection *);
previous: (* Drop packet *);
duplicate: (* Drop packet *);
ahead: (f Release packets awaiting retransmission,

fall through *);
equal: (* fall through *);

end;

PreviousIncomingRecSeq := IncomingRecSeq;

(* process packet received *);
end.

25

