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Abstract

We show that highlights in images of objects with specularly reflecting surfaces provide
significant information about the surfaces which generate them. A brief survey is given of
specular reflectance models which have been used in computer vision and graphics. For our
work, we adopt the Torrance-Sparrow specular model which, unlike most previous models,
considers the underlying physics of specular reflection from rough surfaces. From this model
we derive powerful relationships between the properties of a specular feature in an image
and local properties of the corresponding surface. We show how this analysis can be used
for both prediction and interpretation in a vision system. A shape from specularity system
has been implemented to test our approach. The performance of the system is demonstrated
by careful experiments with specularly reflecting objects.

1. Introduction

When light is incident on a surface, some fraction of it is reflected. A perfectly smooth
surface reflects light only in the direction such that the angle of incidence equals the angle
of reflection. For rougher surfaces, e.g. the surface of a metal fork, specular effects are
still observable. In this paper we analyze the properties of specular reflection from rough

- surfaces.
There are numerous reasons why the study of specular reflection deserves serious

attention in computer vision. Specular features are almost always the brightest regions
in. an image. Contrast is often large across specularities; they are very prominent. In
addition, the presence or absence of specular features provides immediate constraints on
the positions of the viewer and light sources relative to the specular surface. Also, as we
will show, the properties of a specularity constrain the local shape and orientation of the
specular surface.

An ability to understand specular features is valuable for any vision system which must
interpret images of glossy surfaces. This work, motivated by experience with ACRONYM
[4], began in order to provide the SUCCESSOR system with the capability to reason about
specular reflection from metal parts in the ITA project [6]. Images of these parts typically
contain large specular regions (Figure 1).
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Figure 1. Typical Image Containing Specularities

We examine what information can be inferred from an image of a rough surface by
considering the physics of specular reflection. Particular emphasis is placed on finding
symbolic quasi-invariant relationships which will hold in many different situations (e.g.
different source, viewer configurations). In contrast to many intensity-based vision algo-
rithms, we compute a small number of local surface statistics based on the properties of a
relatively large number of pixels in an image. This allows us to observe predicted features
and infer local surface shape in noisy intensity images and in cases where available specular
models do not completely characterize the physics of specular reflection.

2. Review of Previous Work

Researchers in computer graphics have used increasingly realistic specular models.
Several of these models will be discussed in the next section. In computer vision, however,
relatively few attempts have been made to exploit the information encoded in specularities.
Ikeuchi [16]  employs the photometric stereo method [24] and uses distributed light sources
to determine the orientation of patches on a surface. Grimson [ll] uses Phong’s specular
model [18] to examine specularities from two views in order to improve the performance of
surface interpolation. Coleman and Jain [7] use four-source photometric stereo to identify
and correct for specular reflection components. In more recent work, Blake [2] assumes
smooth surfaces and single point specularities to derive equations to infer surface shape
using specular stereo. He shows that the same equations can be used to predict the
appearance of a specularity on a smooth surface when using a distributed light source.
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Takai, Kimura, and Sata 1221 describe  a model-based vision system which recognizes objects
by predicting specular regions. As specular models and insights improve, we expect to see
more work which makes use of the properties of specular reflection.

3, Specular Reflectance Models

Given a viewer, a surface patch, and a light source, a reflei=tance  model quantifies
the intensity the viewer will perceive. General reflectance models represent the perceived
intensity I as a sum of two reflection components

I = IO + Is (1) .

In rcprcscnts the intensity of diffusely reflected light and Is represents the intensity of
specularly reflected light. In this paper we restrict our attention to the Is reflection
component.

We note that it is typically easy to separate the Is reflection component from the
ID reflection component in an image. There arc several distinctive properties of specular
reflection. Over most. of a surface Is is zero, but in specular regions 1s is usually very
large relative to 1~. in regions where the specular component is nonzero,  IS changes much
more rapidly with surface geometry than ID. Furthermore, the color of the Is reflection
component is almost always different from the color of the 1~ reflection component.

Before discussing the various specular reflectance models, WC introduce the reflection
geometry (Figure 2). We consider a viewer looking at a surface point P which is illuminated
by a point light source. Define

V = unit vector from P in direction of viewer
Z = unit surface normal at P
1, = unit vector from P in direction of source
E = !+I:

Ilv+Ql
(unit angular bisector of V and Z)

- cy = cos-’(Z - fI) (the angle between IV and 17)

12igure  2. The Reflection Geometry
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In describing specular models, we consider illumination from a single point light source.
In principle, we lose no generality using this approach. In situations involving distributed
light sources, we only need to integrate the effects of an equivalent array of point sources.
A discussion of the geometry of extended sources is given in [14].

The simplest specular model assumes thaJ sQeculari$es  only occur where the angle of
incidence equals the angle of reflection and L, N, and V all lie in the same plane. This
corresponds to the situation Q = 0 in Figure 2. Unless the surface is locally flat, this
model predicts that specularities will only be observed at isolated points on a surface. A
few experiments, however, show that this model is inadequate for most real surfaces. Not
only are observed ‘specular features usually larger than single points, but highlights often
occur in places which are not predicted by this model.

An empirical model for specular reflection has been developed by Phong [18] for com-
puter graphics. This model represents the specular component of reflection by powers of
the cosine of the angle between the perfect specular direction and the line of sight. Thus,
Phong’s model is capable of predicting specularities which extend beyond a single point.
While Phong’s model gives a reasonable approximation which is useful in some contexts,
the parameters of this model have no physical meaning. It is possible to develop more
accurate models by examining the physics underlying specular reflection.

The Torrance-Sparrow model [23], developed by physicists, is a more refined model
of specular reflection. This model assumes that a surface is composed of small, randomly
oriented, mirror-like facets. Only facets with a normal in the direction of H contribute
to Is. The model also quantifies the shadowing and masking of facets by adjacent facets

* using a geometrical attenuation factor. The resulting specular model is

Is = FDA 0

where

F = Fresnel coefficient
D = facet orientation distribution function
A = geometrical attenuation factor adjusted for foreshortening

We will analyze the effects of each factor in the model in the next few paragraphs. The
results we present in this paper are derived from equation (2).

The Fresnel coefficient F models the amount of light which is reflected from individual
facets. In general, F depends on the incidence angle and the complex index of refraction
of the reflecting material. Cook and Torrance [8] have shown that to synthesize realistic
images, F must characterize the color of the specularity. The Fresnel equations predict
that F is a nearly constant function of incidence angle for the class of materials with a
large extinction coefficient [21]. T his class of materials includes all metals and many other
materials with a significant specular reflection component.

. The distribution funrtion D describes the orientation of the micro facets relative to the
average surface normal N. Blinn [3] and Cook and Torrance [8] discuss various distribution
functions. All of these functions are very similar in shape. In agreement with Torrance
and Sparrow we use the Gaussian distribution function given by
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where K is a normalization constant. Thus, for a given cy, D is proportional to the b&ion
of facets oricntcd  in the direction f?. The constant m indicates surface roughness and is
proportional to the standard deviation of the Gaussian. Small values of m describe smooth
surfaces for which most of the specular reflection is concentrated in a single direction. Large
values of m are used to describe rougher surfaces with larger differences  in orientation
between nearby facets. These rough surfaces produce specularitics which appear spread
out on the rcflccting surface. Figure 3 shows the effect of different values of m.

i n c i d e n t  r a y reflected rays

---__________ .~----

Figure 3a. Specular Distribution for Small m

Figure 3b. Specular Distribution for Large m

The factor A quantifies the effects of a geometrical attenuation factor G corrected for
foreshortening by dividing by (fi - Q).



A = G
-
N.V 0

G is derived by Torrance and Sparrow in [23]. They assume that each specular facet
makes up one side of a symmetric v-groove cavity. From this assumption, they examine
the various possible facet configurations which correspond to shadowing or masking. The
expression is

We will show that in applications+ it is tften possible to use a simpler expression for G.
Let ,u be the angle between N and V. As p increases from 0 to t, the viewer gradually

sees a larger part of the reflecting surface in a unit area in the view plane. Therefore, as p
gets larger, there are correspondingly more surface facets which contribute to the intensity
perceived by the viewer. We take this phenomenon into account in (4) by dividing by
iiv.

4. Shape from Specularity

In this section, we demonstrate how we can use (2) to determine local surface proper-
* ties from specularities. In almost all situations we do not require the full generality of (2)

to infer these local properties. Our first assumption is that F is a constant with respect to
viewing geometry. This is a very good approximation for metals and for many other mate-
rials. We can further simplify (2) by bo serving that the exponential factor in (3) changes
much faster than any of the terms of A. Therefore, except for a small range of angles near
grazing incidence, A can be considered constant across the specularity. We will discuss
the consequences of this assumption later. Hence, the form of (2) used to determine local
surface properties is

where I<’ is a constant.

I Referring again to the geometry of Figure 2, we assume that the Iiewer ?nd light
source are distant relative to the dimensions of the surface. Therefore V and L may be
regarded as constant; hence their angular bisector G is also constant. We assume that
the positions of the viewer and light source are known. Finally, since the distance from
the viewer to the surface is large, we can approximate the perspective projection of the
imaging device with an orthographic projection.

4.1; Inferring Local Surface Shape

For a surface M on which the Gaussian curvature is locally nonzero, we will be able to
locate a single point PO of maximum intensity in the image of the specularity. From (6) we
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see that this point corresponds to the local surface orientation ff = g (i.e. ar = 0). Given
such a surface where I? is known, we can immediately determine the surface orientation
at PO.

Figure 4 shows a typical intensity surface for a specular image.

I:igurt 4. Specular  intensity Surface for a Curved Surface

The level sets arc image curves of constant specular intensity. yb corresponds to cr = 0.
As predicted try (6), spccuiar  intensity decreases <as WC move away from PO.

After  locating Po, w*c can transform the specular  intensity image to the cy angle image.
Consider cquntion (cj. If /’ is the specular intensity corresponding to an arbitrary image
point f” near P0, then the angle (Y at the surface point imaging to I” is given by

1 I J
I’

0 = 7n - In -
K’

(7)

We- see that (Y is dctcrmincd only up to sign. This will cause the sign of the normal
curvature computed at PO to be ambiguous. In applications, this ambiguity can usually
be resolved by considering other cues. From (7) we can compute the absolute value of ar
corresponding  to each point P’ in a neighborhood of PO- The image of lrrl values is called
the Q angle image.

From the Q angle irnagc,  WC can compute local curvature properties of the surface. Let
?;b(M) bc the tangent space to M at PO. To compute curvatures, we take a finite number
n of straight lint sampltx  of the a angle image intersecting f’o. To insure uniform angular
resolution on the surface,  thcsc samples must be taken in equally spaced directions in
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Tp,(M).  In general,  equally spaced directions in the image  will not correspond to equally
spaced directions  in the tangent space. Thus, given a direction in the tangent space to the
surface at PO,  we need to determine  the corresponding direction in the image.

Consider a 3-D coordinate system such that the viewer  is looking down the z-axis and
PO is at the origin (Figure  5).

: At P we have E = fT so that the vector 17 is norrnai to the tangent space to the
surface at P. We choose to define angles in tllc tangent space in the counterclockwise
sense fromy = 0 and in the half space x > 0. Dcnotc the normal to the surface at P by
Z = (Is,,  lVz,  Ij3). The tangent space to the surface at 1’ is given by



i

To simplify the notation let

Ii-1 =  &-, I&! =  g& (10)

Let 8 be the angle of interest in the tangent space. The goal is to find a unit vector
?r = (21, yi , Z- ) which 1’les in the tangent space and makes an angle 8 with Vo. The angle
8 provides the constraint

From (8) we must require

and since VI is a unit vector we have

x; + y; +21” = 1 (13).

The equations (ll), (12), (13) may be
0. Briefly, the solution is

solved uniquely for xl, ~1, z1 in the half space x 2

21 = -32 + JR; - 4R1R3
24 (14)

-X1&
Yl = 44

g2
-7

N2
(16)

where

RI = Cl C5” + C2 - c3c5 (174

R2 = --2&c4& + c&4 (174
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case
c4 = r

1

c5 = 2 (18e)
1

A special case occurs when $2 = 0. For this case we use (11) - (13) to arrive at

-iVlcose
z1 =

I<& - I&ii4 (19)

case - zl bird
x1 =

IX-1 (20)

y1 =  j/m ( 2 1 )

We use (14) - (21) to compute the components of VI.
Assuming an orthographic projection and examining the geometry of Figure 5, we see

that the x1, y1 components of VI give us the projected vector we are seeking in the image.
Let 8’ be the image angle corresponding to VI. Then

01 = tan-l ( y’>
Xl

(22)

The next step is to use the a! image to compute the normal curvature of the surface
in the direction 8. The normal curvature is computed by taking a straight line L in the
cy image which intersects PO and is in the direction 8’. Under orthographic projection, L
will project to a line L’ in T&U). T he oa is to compute the normal curvature of theg 1
curve C c M where C is the orthogonal projection of L’ onto M. Since C projects to a
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line in Tp,,(M), the magnitude of the geodesic curvature ]K, ] of C is 0 [17].  Thus local
changes in Q! along C are due primarily to normal curvature along C. We compute the
normal curvature rc, in the direction 8 by

da
Kn =-

ds (23)
PO

where s is arc length in the direction 8. In other words, we are differentiating the a image
along L with respect to arc length on the surface. From the local character of specularities,
we see that, to a very good approximation, arc length on the surface is equal to length in
Tpo(M). Therefore, length in the image and arc length on the surface are related by the
scale factor JR. Thus, computing normal curvature on the surface has been reduced
to differentiation in the Q! image.

If we let 0 vary in the range 0 < 8 5 2n we can compute Kn in any number of directions
at PO. The principal curvatures of M at PO are defined to be the maximum and minimum
values Of tCn; the corresponding directions are called the principal directions. Hence, using
this technique it is possible to describe M locally to second order in terms of principal
curvatures and principal directions. In the context of shape from shading [13], Bruss[5]
and Deift and Sylvester [9] examine the assumptions required to generate higher order
surface descriptions from an CY image.

4.2. Special Cases

In this subsection we examine specular reflection from special classes of surfaces.
In 4.2.1. and 4.2.2. we consider surfaces which are locally singly curved and planar
respectively. For these surfaces, the Gaussian curvature is locally zero. In 4.2.3. we
examine the case of corners and edges where surface normal is discontinuous but where
specularities are frequently observed.

4.2.I.Singly Curved Surfaces

If one principal curvature of a surface is zero in a specular region (i.e. the surface is
locally singly curved), we will not be able to infer immediately the local orientation as we

- did for a doubly curved surface. To understand why, consider Figure 6. Figure 6 shows a
viewer looking at a tilted cylinder. To make the example concrete, assume that i is such
that g = I? For this configuration there will be no point on the surface for which cv = 0
(recall that @ is essentially constant), yet we will still observe a specularity in the image
if at some point a! is small enough to give a significant value for 1s in (6). Define 4 to be
the smallest value of a for a given surface-source-viewer configuration. Figure 7 shows a
specularity generated by a cylinder which is oriented so that 4 is 20’. Note that a specular
model which assumes a smooth surface would not predict a specularity for this case.
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We observe that it is typically easy to detect that a surface is singly curved at a
specularity. This is because we will observe a line of maximum intensity (along the line of
zero curvature) instead of the point maximum we observe for the doubly curved case.

Figure 8 is a plot of Is for a singly curved surface in a direction perpendicular to the
lines of zero curvature as we change 4. It is worth noting that both the magnitude and
shape of Is change as 4 increases. Consequently, it is possit>lc  to rccovcr significant local
shape information for this class of surfaces.

0.4

0.1

0

4.2.2.Pianes

For a ptannr  surfzcc, N is constant. IIcncc, recalling our kasic assurn~>tions,  I-5 is
constant across a plane. If the plane is oricntcci such tllat CY is small  enough, then  a viewer
will perceive an 1s rcflcction  component. As with the singly curved surface, the magnitude
of the perceived intensity will depend on CY. If cr is not suficicntly  small,  then fs will be
zero at all points on the plane. These observations provide us with two useful  pieces of
information:

1. Glossy surfaces which don’t generate  specularitics over a range of orientations arc
firobat)ly planar.

2. Surfaces Mrhich  produce a spccularity of constant interlsity  over a 2-D region in the
image arc locally I)Ianar.



4.2.3. Corners and Edges

Specularities  are often observed  at places  of discontinuous  surface normal on an object.
Typical examples of these discontinuities are edges and corners on a polyhedron. For an
ideal edge on a polyhedron, the surface normal is discontinuous across the edge (Figure 9).

For an ideal edge joining two planes, we should not expect to observe a specularity
unless either IV, or $2 is oriented in a direction which is sufhcicntly close to the perfect
secular  direction 17. But for this case, as discussed in 4.2.2., we would expect to observe
a spread out specular feature on one of the two planes joined by the edge. So why do we
frequently see specular reff ections along edges ? On real polyhedra, surface normals are
usually continuous across edges. Instead of t&e normal vector changing discontinuously,
the normal usually changes smoothly from Iv1 to /j, by taking values which are linear
combinations of IV, and jvz. As WC cross an edge, the surface normal moves rapidly through
a large range of angles. If any of these normals is oriented in a direction sufficiently near
the direction 17, WC will observe a specularity. Therefore, WC often observe a specularity
on an edge. Figure 10 shows an image of an edge spccularity.
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Figure 10. Image of an Edge Specular&y

l’he situation is similar for trihedral vertices. As with edges, the normal vector is usually
;:ontinuous at a corner. For trihedral vertices, the normal vector typically takes on values
w‘hic?l 2~2 linear combinations of the three normals corresponding to the three planes
defining the vertex.

‘;rcL;: experiments with polyhedra, we have developed a useful model for the behavior
of surface normal across edges. Define r to be the edge sharpness parameter and assume
the coordinate system of Figure 11. PI and I’2 denote two planes intersecting to form an
edge.

- Lv 1

Figure 14. The Geometry of a Rounded Edge
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The y axis is aligned in the direction of & and the origin+s a distance r from PI such that
the normal to the surface PI begins to t+urn  ayay from N1 when x becomes positive. The
model for the normal as it turns from IV1 to N2 is

l? = -# + “lf2 for 0 < x < r(i?- - 1 x lif 12 (24)
r r

In other words, the normal is assumed to turn through a curve of constant curvature
:. Here the parameter r is used to specify the sharpness of the edge. Small values of r
indicate sharp edges, while larger values of r indicate more rounded edges. Figure 12 shows
the profile of a specularity across a sharp 90’ edge which is similar to the profile predicted
by the continuous normal variation of (24).

I I I I 1 I ,
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Figure 12. Specular Intensity Profile Across an Edge

4.31  P r e d i c t i n g  A

In the previous analysis we have assumed that over most configurations of viewer,
source, and surface the adjusted geometrical attenuation factor A of (4) will have a small
constant value across the specularity. For large angles of incidence, however, the character
of A changes remarkably (Figure 13). In particular, for large angles of incidence (glancing
incidence) we see that

1. A becomes large relative to its value for other incidence angles (Figure 13).
2. A causes a shift in the peak of the specular profile toward larger angles of incidence.
3. A causes the specular profile to be unsymmetric as a function of CY.
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It is not surprising that when these effects are present in an image, they are rather easy to
detect. For this reason, it is useful to make qualitative predictions about A in applications
where large angles of incidence are possible.

40

A
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20

10

0 1 I 1 1 1 I
0 0 25 OS 0 15 1 1 IS 1,s

INCIDENCE  ANGLE (RADIANS)

Figure 13. Plot of A as function of incidence angle

5. T h e  L a b o r a t o r y  S e t u p

A laboratory arrangement has been set up to test the derived relationships (Figure
14). This section of the paper describes the laboratory setup. Section G examines factors
which must be considered to successfully interpret real images. In Section 7, we describe
an implemented system which has been used to infer loca! surface properties from spccu-
larities. Section 8 presents experimental results.

Figure 14. The l,at,oratory  Setup



To insure accurate measurements, the experiments are conducted on a 4x6 foot optical
table. High precision rotation and translation stages are used to position the objects being
viewed. A h 1 ga o en light source with a 5 mm wide filament is placed 20 feet from the
object surface to approximate a point source. Monochromatic image data is obtained
using a video camera and an image digitizer. A 210 mm lens is used with the video camera
to obtain high resolution across the specularity. The resulting images are in the form of
256x256 arrays of pixels. Each pixel has eight bits of gray level resolution. A precise
positioning device has been built to position the camera relative to the surface. Camera-
object distances of at least 24 inches are enforced to insure that the assumed distant object
condition is met. Using this setup, it is possible to obtain more than 40 pixels across a
specular feature which is less than a centimeter wide on the surface. Metal cylinders and
spheres of varying curvature are used to test the predicted relationships (Figure 15).

- Figure 15. Some Experimental Specular Surfaces

6. Practical Considerations

1 This section examines factors which must be considered to enable a shape from spec-
ularity system to successfully interpret real images.

6.1. Gaussian Blur

Unfortunately, the formation of an image by an optical system introduces some amount
of degradation. We can model this degradation as a convolution with a spatially invariant
Gaussian point spread function [I]. The standard deviation of this blur is typically less
than one pixel. For small specular features, taking into account the effects of this blur
allows a more accurate determination of surface shape.
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Our system uses a module called BLURINVERT to deblur the input specular image.
For general ‘L-dimensional functions, inverting Gaussian blur is an unstable process. How-
ever, an explicit deblurring convolution kernel has been derived under certain assumptions
in [15].  The 1-D continuous version of the kernel is given by

2 (N-l)/2

MN(x) = ;;!2k c (-l)khc(x) (25)k o=

where N is an odd integer denoting the order of the kernel and H2k is the Hermite  poly-
nomial of degree 2k. Larger values of N give better deblurring filters (i.e. they recover
exactly a larger space of blurred input functions), but are more costly to compute. The
value of N that is chosen in applications depends on the intensity characteristics of the im-
ages that will be processed by the system. Using a 2-dimensional discrete version of (25),
the BLURINVERT module allows our system to produce accurate shape descriptions from
small specular features in images.

6.2. Quantization Effects

On a surface of high curvature, it is unlikely that we will measure the correct maximum
specular intensity K’ in (6). The problem is that for highly curved surfaces we are unable
to shrink a pixel down to where the surface area it images is approximately planar. Even
within the single pixel of maximum intensity, Q! is changing and cannot be considered

- constant. Hence the intensity value at the maximum pixel will be an average specular
intensity over a small range of cy and will not give the true K’ of (6). This must be
corrected for in applications. An artifact of this phenomenon is that measured K’ seems
to increase as surface curvature decreases. It follows that if we wish to measure K’ for a
material, we should use a surface of small curvature, ideally a plane.

Since specularities are usually the brightest features in images, specular intensities are
often too large to be represented in the number of bits per pixel allowed by the digitizing
hardware or within the dynamic range of the camera. If this is the case, the specularity is
truncated. Figure 16 shows I for a truncated specularity. The obvious way to deal with
this situation is to avoid it. One avoidance technique is to take multiple images in which
differing amounts of light are allowed to reach the camera. This can be achieved either by
adjusting the lens aperture or by using filters. Another possible solution is to control the
illumination to eliminate the possibility of truncation.
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Figure 16. A Truncated SpccuIarity

If inferences must be made from a single image, then it is arguably better to allow
truncation to occur. In the case where input images have eight bits per pixel, intensities will
range from o to 255. In many applications it is possible to weaken the incident illumination
so that no truncation occurs. In doing this, however, we cause pixels on the 1~ curve which
previously had significant specular intensities (on the truncated specular feature) to have
negligible specular intensities. The net effect of eliminating truncation is to decrease the
width of the specular feature and make measurements more susceptible to small errors.

*

7.  A Shape from Specularity System

_ A system has been implemented which computes local surface properties from images
of specular surfaces 1121. The system currently stands alone, but will be used in the more
general context of the SUCCESSOR vision system. The shape from specularity system
is primarily designed to perform the computations described in Section 4. This section
describes the implementation of the system.

7.1. Overview of System Structure

At a high level of abstraction, the problem is best solved in two steps. The first step is
to deblur  the input specular intensity image. The second step is to compute local surface
properties from the image  resulting from step 1.
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The system designed to solve the problem preserves this two step structure. Figure
17 is a diagram of the modules in our system with arcs indicating module interactions.
From this diagram we see that there is a clean separation between the deblurring task and
the task of computing local surface properties. First the main program invokes a function
called BLuRINVERT  to deblur the input image. After the deblurring task is completed,
the function CURVATURES is called to compute local surface properties. The next two
subsections give overviews of the BLURINVERT and CURVATURES functions.

I

MAIN PROGRAM

BLURINVERT CURVATURES

r 1
OEBLUR CONVOLVE LOGIMAGE PROJECT SAMPLE LINEAR

Figure 17. System Structure

7.2. O v e r v i e w  o f  B L U R I N V E R T

The Bt,l!ltIXV~lW  function is used to deblur the Gaussian blurred input image.
‘This is nccomptishctt  in two stages. First, the deblurring convolution kernel is generateda
by I)E:BI,UIt.  Then the CONVOLVE function is called to perform the convolution of the
blurred  input image with the constructed deblurring kernel. Two functions are used by
DEBLUR  to ma.nipulatc the Hermite  polynomials required to generate the deblurring filter.
The function II 11=RMITE  uses a dynamic programming scheme to compute coefficients of
iti! Iicrmitc  polynomials up to some specified degree. The function IfEVAL  is uzd to

evaluate Ifcrmitc  polynomials at fixed values of the polynomial parameter.

7.3.  Overv iew of  CURVATURES

Given a debiurrtd  specular intensity image, the CURVATURES function  computes
the principal curvatures and directions of the surface at specular points. CURVATURES
firsi uses t.he  function LOGIMAGE  to transform the intensity image into the (Y angle image
of Section 4. The CURVATURES function then systematically computes l-D curvature at
different directions In the tangent.  space to the surface. The function PROJECT is used
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to compute the metric transform between the tangent space to the surface and the image.
This is necessary to insure that the system samples the angle image at equidistant angles
on the surface. The function SAMPLE is used to sample the a! angle image in a specified
direction. Finally, the function LINEAR is used to compute the least squares curvature
given the data generated by PROJECT and SAMPLE.

8. Experimental Results

The system described in Section 7 has consistently generated accurate surface descrip-
tions from images of specular surfaces. In this section we give examples of our system’s
performance on real images of metal objects illuminated by a point source. Figures 18(a),
19(a), and 20(a) are images of circular cylinders of varying radii. Each cylinder is oriented
such that its axis is perpendicular to the axis of the imaging device. Figure 21(a) is the
image of a sphere. The actual statistics of the surfaces are given in Table 1. The dotted
lines in the images indicate the direction of maximum curvature as determined by the
system. Figures 18(b), 19(b), 20(b), and 21(b) are plots of intensity along the dotted lines
in 18(a),  19(a), 20( )a , and 21(a). Note that in Figure 21 the specularity is truncated, but
we are still able to compute accurate surface statistics. Table 2 gives the second order
surface statistics computed by the system. Error represents the percent of error in the
computation of the largest curvature of the surface. The small errors can be attributed
to quantization effects, noise introduced during the measurement process; and the various
simplifications made to the specular model.

9. Summary and Implications

Understanding specular reflection is important for any vision system which must in-
terpret a world containing glossy objects. Using a model developed by optics researchers,
we have shown that we can accurately predict the appearance of specular features in an
image. In addition we have shown how to compute the local orientation and principal
curvatures and principal directions of a specular surface by examining image intensities
on a specularity. These statistics give a complete local characterization of the surface up
to second order. Unlike previous work, our derivations have included the effects of surface

- roughness and microstructure on the appearance of specular features.
A system has been implemented which computes local surface properties from images

of specular objects. A laboratory setup has been arranged which allows us to capture
irn-ages to test our system. The system has consistently produced accurate surface descrip-
tions despite the fact that the high intensity and small spatial extent of specularities makes
measurements difficult. Significant aspects of the implementation are discussed in Section
7. Examples of experimental results are given in Section 8.

The ability to predict intensity-based features such as specularities opens up inter-
esting possibilities for model-based vision. Previous model-based vision systems have re-
stricted their predictions to the structure of edges which will be observed for a given model.
An ability to predict intensity-based features will significantly enhance the top-down ca-
pabilities of a model-based vision system. Clearly it is advantageous to be able to make
stronger predictions about an image by using additional information about the imaging
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.
Object /cl 01 n2 02

l

cylindcrl 0286 O-0 0.0 12571
cylindcrz OAOO o-o 0.0 1.571
cylindcrj 1333 I o-o O-0 1.571
sphcrq 0500 - 0.500 -. >

Table 1. Actual Surface Statistics

,
Object

7
tit 4 K2 02 Error

cylindcq 0.297 0 . 0 0 . 0 0  1 1.571 323%

cylindeq- 0.397 0.0 0.00 1 1.571 0.9%
cylindcq 1 .xX 0.0 O-002 1.571 1.7%
spt’c’c~ 0.514 0.0 0.534 1.571 2.8%\ - - - *

Table 2. Computed  Surfncc .Statistics

process. Another important advantage of predicting intensity-based features is that this
prediction can provide strong guidance to low level intensity-based visual processes. By
making predictions about the appearance of intensity patches in an irnage we can hope to
further unify the goals of the low icvcl and high level mechanisms of a modci-based vision
system.

e More important than being able to predict the appearance of specu)arities  from sur-
face models is our system’s ability to invert the process. WC have shown how to inier
locatl  second order surface shape from specular irnagcs- This capability provides a vision
system with strong generic information about a surface in a scene using strictly bottom-up
proccssi ng. Inferring shape information from spccularity is particularly important when
viewing metal  surfaces because other shape cues such as shading and texture are often not
present. For other kinds of surfaces, shape information from specularity can be combined
with shape information obtained using other cues to improve the 3-D surface descriptions
generated by a vision system.
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