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Abstract

The problem of arranging a set of physical objects according to a set of constraints is
formulated as a geometric constraint satisfaction problem (GCSP), in which the variables are
the objects, the possible locations of the objects are the possible values for the variables, and
the constraints are geometric constraints between the objects. A GCSP is a type of multi-
dimensional constraint satisfaction problem in which the number of objects and/or the number
of possible locations per object is too large to permit direct solution by backtrack search. A
method is described for reducing these numbers by refinement along two dimensions. The
number of objects is reduced by refinement of the structure, representing a group of objects as
a single abstract object before considering each object individually. The abstraction used
depends on domain specific knowledge. The number of locations per object is reduced by
applying node and arc consistency algorithms to refine the accessible volume of each object.
Heuristics are employed to control the order of operations (and hence to affect the efficiency
of search) but not to change the correctness in the sense that no solutions that would be found
by backtrack search are eliminated. Application of the method to the problem of protein
structure determination is described.
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1 Introduction

Current generation expert systems are able to perform reasonably well in heuristic
classification problems such as medical diagnosis, fault diagnosis, etc. [Clancey 85]. A different
type of problem is constraint satisfaction. In general a constraint satisfaction problem (CSP)
involves the assignment of values to a set of variables subject to constraints [Dechter 85].
Example problems that have been formulated in this way include N-queens and line labelling
in computer vision [Waltz 75].

The computational complexity of these problems depends both on the number of variables
. and the number of possible values per variable. If these numbers are small enough then direct
solution by backtrack search, possibly involving learning [Dechter 86], is feasible. (Backtrack
search is essentially a method for enumerating all possible solutions). If the numbers are too
large then filtering algorithms such as node, arc and path consistency may. be applied prior to
backtrack search in order to reduce the number of possible values per object [Mackworth 77).

In general these methods have been applied to problems in which the values for the variables
are one-dimensional scalars, such as the row number for a queen in the N-queens problem, or
the label type for the line labelling problem. However, there are many problems which may be
formulated as multi-dimensional constraint satisfaction problems, in which the possible values
for the variables are vectors. For example, each variable may be a frame or object-class, and
the range of possible values for the variable may be mapped to the possible attribute value
pairs defining the set of allowed object-instances within the object-class. The number of
dimensions for the value vector is the number of attributes for the object. A single solution to
the multi-dimensional constraint satisfaction problem is then a list of one object-instance per
object-class, such that the constraints between object-classes are satisfied, while the complete
solution is the list of all such individual solutions. Since an attribute of an object may itself
be an object, the possible values of the attribute may themselves be vectors representing object~
instances of the object-class defining the attribute. The number of possible values for the top
level objects is therefore the cross product of all possible values for the attributes, each of

. which may in turn be the cross product of its own sub-attributes. Thus, the total number of
possible values for the top level objects can become too large for direct solution by backtrack
search, even after the application of network consistency algorithms.

An important type of multi-dimensional constraint satisfaction problem is the class of
spatial, or geometric constraint satisfaction problems (GCSP), which may also be described as
arrangement assembly problems [Hayes-RothB 86a]. A GCSP may be formulated as a CSP in
which the variables are geometric objects, the values are the possible locations of those objects
in space (in general six-dimensional vectors with three position components and three
orientation components), and the constraints are binary or n-ary geometric constraints between
the objects. In object-attribute-value terminology the geometric objects are the object-classes,
the six-dimensional locations are six attributes of the objects, and the possible object-instances
are the possible locations of the geometric objects in space. A solution to a GCSP is a list of
one location per object such that all the constraints are simultaneously satisfiable. The
complete solution is all such lists of locations. Since space is infinitely decomposable the
solution must be a representative sample, at some reasonable sampling resolution compatible
with the computational resources.

Examples of GCSP’ include construction site planning, furniture arrangement, bathroom
design [Willey 81], landscape design, robot assembly, and protein structure determination
[Buchanan 85]. Temporal reasoning can also be thought of as a geometric constraint
satisfaction problem, in which the objects are events and the locations are one-dimensional
time intervals [Allen 83].

GCSP’ may be design problems (in which the constraints are design considerations) or data
interpretation problems (in which the constraints are measured data). In both cases it is often
desirable to retain all solutions compatible with the data in order to study the effect of
sequentially introducing or retracting constraints. For example, in designing a furniture
arrangement there may be certain necessary constraints such as the requirement that the
television be visible from the couch. If all solutions compatible with this constraint are found
first then it may become clearer how to introduce additional, aesthetic constraints in order to



narrow the possible arrangements further. For data analysis the data may not be complete
enough to determine a unique solution, but it may be desirable to determine all solutions
compatible with the data before introducing more theoretical constraints to narrow the range
of possibilities.

In this paper we describe a method, called heuristic refinement, for geometric constraint
satisfaction problems in which a representative set of all possible solutions is desired. The
method should also be extendable to other types of multi-dimensional constraint satisfaction
problems. Although the search space is too large for direct backtrack search, our working
hypothesis is that the number of representative and useful solutions is small enough to be
enumerated. If this hypothesis is true then the goal is to find efficient means for searching the
solution space which do not eliminate any arrangements that would be found in a backtrack
search. The method is described in the context of a system, called PROTEAN, which is being
developed for determination of three-dimensional protein structure from experimental
constraints [Buchanan 85, Altman 86, Duncan 87, Hayes-RothB 86b, Brinkley 86, Lichtarge
86).

2 Elements of the Heuristic Refinement M ethod

The goal of the heuristic refinement method (applied to geometric constraint satisfaction
problems and embodied in the PROTEAN program) is to enumerate (at a reasonable sampling
resolution) all conformations of a set of objects compatible with a set of constraints. Since the
complexity of backtrack search depends primarily on the number of objects and the number of
locations per object, PROTEAN first attempts to reduce these numbers in three main ways
before performing backtrack search:

1. representing objects and constraints at several levels of abstraction.

2. using- constraint satisfaction algorithms to limit the number of possible
" " conformations that must be enumerated.

3. employing heuristics to decide the order of operations to perform.

The effect of these techniques is that the objects are refined along two main dimensions: that
of structure and that of accessible volume. The structure is first imprecisely determined at an
* abstract level before being refined to a more precise but computationally expensive level. The
rationale is that there is no reason to immediately consider all the individual objects in a
subgroup of locally highly constrained objects since the relative placement of those objects will
not change radically in the final structure. If these objects are represented by a geometric solid
defining the minimum enclosing volume of the vast majority of structures of this type, then
the volume of space occupied by that solid determines bounds on the positions of the objects
within that solid. These bounds can drastically limit the amount of search required when the
solid is refined to its constituent parts. The representation of a group of objects by a single
abstract object corresponds to the imposition of a structural model, which embodies certain
additional theoretical constraints. The degree to which the additional constraints eliminate
solutions that would be found without the imposition of the model is the degree of bias
inherent in the model. The PROTEAN framework aims to allow the human user (or an expert
system) to explicitly choose the degree of bias, thereby trading off efficiency for completeness.

The other main refinement dimension is accessible volume. All solid objects are initially
considered to be located within some infinite region of space with respect to one of the solids,
which is chosen to be a fixed anchor. The region of space occupied by each solid is called its
accessible volume. The accessible volume of each solid is first reduced from all of space to the
volume compatible with the fixed anchor, given the constraints between the solid anchoree and
the anchor. The accessible volumes of each anchoree are then further reduced by incrementally
applying constraints with other anchorees. Reduction of the accessible volumes in this way
corresponds to the application of node and arc consistency algorithms to a geometric constraint
network [Mackworth 77].

Different subparts of the object may be assembled separately in this way, each with respect to



a fixed anchor. The subassemblies may then be corn bined into a larger whole by incorporating
constraints between the subassemblies.

Each of these operations results in reduction of the accessible volumes of the individual
subparts of the object, leading to accessible volumes that are small enough so that 1) the solid
level conformations can be effectively enumerated by backtrack search, or 2) the solids can be
refined to their subparts. These individual operations are possible because the local constraints
between individual objects, when acting together, are able to adequately constrain the overall
conformation. Each local operation causes a correct reduction of the accessible volume of the
relevant solids in the sense that no locations are eliminated that would be found in an
exhaustive enumeration (except for locations eliminated by bias in the structural model), yet
the search is much more efficient since inaccessible volumes are eliminated before the
exhaustive enumeration is done.

Although each possible reduction in accessible volume is correct, there are always many
possible such actions that may be taken. For example, decisions must be made as to which
subparts of the object to assemble separately, which to make the global anchor, and which
anchorees to consider together first. Poor decisions as to which actions to take can lead to such
inefficiency that the program will not arrive at an answer within a reasonable time. Thus, the
order of refinement operations requires intelligence, supplied either by the human user or by a
set of heuristics encoded in an expert system.

3 The Heuristic Refinement Method Applied to Protein Structure Deter mination

In the following sections we discuss an application of the heuristic refinement method to the
problem of protein structure determination. The current representations and actions of
PROTEAN are described, followed by an example of the use of these actions to assemble an
abstract representation of a protein. The choice of these actions is made by an experienced user
of the system. Our attempts to encode heuristics in an automatic system for assembling
-geometric objects in the most efficient manner is described elsewhere [Hayes-RothB 86a].

3.1 The Protein Structure Deterruination Problem

Proteins perform a wide range of functions in living organisms, ranging from chemical
catalysis to signal transduction. The three-dimensional structure of a protein determines its
function [ Fersht 77]. Accurate determination of protein structure would greatly increase our
understanding of basic biological mechanisms, and should allow custom design of proteins for
new types of materials, drugs and other industrial products [Tucker 85].

Amino acids are the building blocks of proteins. The twenty different amino acids are linked
in sequences to form proteins (much like different colored beads on a string). The sequence
of amino acids of a particular protein is its primary structure, which may contain from five to
more than a thousand amino acids. Subsequences of amino acids within a primary structure
often arrange themselves in recognizable repeating patterns to form secondary structures. For
example, part of the chain of amino acids may form a helix with a characteristic pitch and
rise:  the alpha-helix. The final three-dimensional configuration of all the atoms in the
-protein is its tertiary structure. Methods to identify the primary and secondary structures have
been developed, but the problem of determining how they associate to form the tertiary
structure is largely unsolved, and is the problem addressed in this research.

The tertiary structures of the relatively few proteins whose structures are known have been
obtained from X-ray crystallography [ Blundell 76], which gives accurate three-dimensional
coordinates of each constituent atom. However, many proteins do not form crystals, in which
case other, less precise structural information must be used, such as the volume and shape of
the molecule, indications of which atoms are on the surface, and proximity information for
pairs of atoms.

Proximity information can be obtained from the Nuclear Overhauser Effect (NOE) observed
in nuclear magnetic resonance experiments [ Wutrich 76]. This effect provides evidence that



two atoms are within a certain distance of each other (usually 2-5 angstroms).  Structure
determination methods that utilize NOE information generally employ optimization procedures
to produce a single structure consisting of atomic coordinates [Kuntz 79]. However, the NMR
data is usually not complete enough to determine a unique solution, and in fact more than one
solution may exist since the protein may have internal motion [Welch 82]. It is therefore
undesirable to prematurely rule out alternate structures.

The goal of retaining all tertiary structures compatible with the data, as well as the fact that
the NOE constraints are binary, allows us to formulate the protein tertiary structure
determination problem as a binary geometric constraint satisfaction problem in which the
number of objects, the number of possible locations per object, and the dimensionality of the
search space are too large to permit direct solution by backtrack search. The heuristic
refinement method is therefore used to refine the protein along the structural and accessible
volume dimensions in order to allow backtrack search to be employed.

3.2 Refinement Along the Structural Dimension

The secondary structure of a protein consists of groups of atoms that form reasonably regular
geometric objects. Thus, these groups may be represented at an abstract level since the entire
group moves more or less as one unit when the gross topology of the protein is being
determined. PROTEAN therefore first represents groups of locally constrained atoms as a
small number of geometric solids defining the minimum enclosing volume of the individual
atoms. The locations of these solids determine bounds for more refined solutions at the atomic
level.

Figure 1 shows solid level representations of three alpha helices as cylinders defined within
local coordinate systems. The positions of backbone atoms (such as the carbon atoms Cl and
C2 in the figure) may be defined with respect to this local coordinate system using known
parameters of a helix. These analytic equations are additional theoretical constraints reflecting
the-structural model associated with the assumption of an ideal helix. Intervening unstructured
sequences of amino acids are called random coils and are represented as spheres centered on
the middle amino acid of the sequence with radius equal to half the length of the coil. The
only theoretical constraint introduced in this case is the assumption that the amino acids
comprising the coil are covalently linked together with a certain maximum distance between

. the linked amino acids. Although this assumption is more likely to be true than the assumption
of ideal helices, it does not produce as great an increase in efficiency since the locations of the
component backbone atoms are only known within the volume of the sphere.

If one solid is chosen to be a fixed anchor, then the location of any other solid (an
anchoree) with respect to the anchor coordinate system is defined by the location of the local
coordinate system of the anchoree. A location is a six-dimensional vector (three position
components and three orientation components). Given the location of the solid the anchor
coordinates of the fixed po’ints may be calculated by a suitable transformation, thereby
allowing points on separate anchorees to be related to each other by means of the anchor
coordinate system.

The main source of binary constraints for PROTEAN are NOE measurements, which state
that two atoms are within 2 to 4 angstroms of each other. At the solid level these constraints
are’abstracted to state that the backbone carbon atoms involved in the NOE must be within a
fixed distance range (D in figure 1). If the NOES involve random coils then the distances are
referred to the center of the coil coordinate system by adding an appropriate amount to the
al lowed distance range.

A pair of locations of two solid objects are tested for compatibility as shown in figure 1.
The two objects are placed in their respective locations, the backbone atom points are
transformed to anchor coordinates, and the distance between the points is calculated. If this
distance is not within the allowed range then the locations are not compatible and one or both
may possibly be eliminated. If the distance range is satisfied then any other binary constraints
are checked in the same way, accepting the locations only if all the constraints are
simultaneously satisfied.



3.3 Refinement along the Accessible Volume Dimension

Figure 2 shows a geometric constraint network corresponding to the solid level representation
of objects and constraints. Each solid object is a node in the constraint graph and each
conjunctive set of binary constraints is an arc. The numbers on the arcs are the number of
binary constraints inferred from the data.

If one of the objects (say H1) is chosen to be a fixed anchor, then a single solution to this
geometric constraint satisfaction problem consists of one location per object, relative to the
fixed anchor, such that all the constraints are simultaneously satisfied. We call such a solution
a coherent instance.

A straightforward approach to generating coherent instances would be to enumerate all
possible locations of the anchorees with respect to the anchor and check each one for
simultaneous compatibility with the constraints. However, even though the number of solid
objects is small compared to the number of atoms there are still too many possible locations
per object to allow solution by enumeration or backtrack search. Therefore, PROTEAN
employs network consistency algorithms [Mackworth 77] to reduce the number of locations per
object, thereby performing refinement along the accessible volume dimension.

At the beginning of problem solving each anchoree is initially assumed to be located within
some large region of the six-dimensional location space with respect to the anchor, typically a
64 angstrom cube. This region is called the accessible volume of the anchoree, and is
represented (implicitly at first) as a list of discrete locations sampled at some resolution
(typically 2 angstroms for the position component and 30 degrees for the orientation
component).

The first network consistency algorithm applied is node consistency, which is achieved by a
procedure we call anchoring, shown schematically in figure 3. Conceptually, each possible
location in the original “infinite” accessible volume of an anchoree is generated, then tested for
compatibility with the anchor, using any constraints with the anchor, Only those locations
satisfying the constraints are retained in an explicit location table. All rejected locations could
never be part of a coherent instance since the constraints with the anchor would not be
satisfied. The resulting list of locations may be displayed graphically as a halo of points
showing the accessible volume of the anchoree with respect to the anchor. In practice the
constraints are used to limit the search, using the fact that the distance constraints determine
maximum possible values for the position components of the location.

The second network consistency algorithm employed is arc consistency, which is achieved by
multiple applications of a procedure we call yoking, shown schematically in figure 4. A pair of
accessible volumes is arc consistent if for each location in the accessible volume of the first
object there is at least one location in the accessible volume of the second object such that the
constraints between the two objects are satisfied. The yoke procedure examines all pairs of
locations within the two accessible volumes, retaining only those that satisfy the arc consistency
condition. The procedure is called multiple times until the number of locations in all
accessible volumes does not decrease further.

3.4 Heuristic Control

* At any time in the assembly process there are many operations that may be performed,
although not all of the operations outlined above are always possible. For example, at the
beginning of the problem solving it is necessary to decide which groups of atoms to consider
as solid objects and which to leave as atoms, which sets of constraints to check first, and which
groups of solids to consider as a partial arrangement. Within a partial arrangement it is
necessary to decide which object to make the anchor, and the order of anchoring, yoking, and
coherent instance generation. If a partial arrangement turns out to be unconstrained it may be
necessary to consider al ternate partial arrangements before com bining partial arrangements.

Each one of the potential actions leads to a partial solution of the problem that is correct in
the sense that it does not eliminate any conformations that would be present in the final
atomic solution. However, it is our hypothesis that different choices of actions will result in



different degrees of efficiency in finding the solutions, and that unintelligent choice of actions
may lead to unacceptably long execution times. As an extreme example, the option should
always be available to refine the protein to the atomic level and to perform backtrack search
to find the solution conformations. However, for any reasonable sized protein this procedure
could take on the order of years and hence should not be performed. In PROTEAN the choice
of which action to perform next is determined either manually or with the aid of a blackboard
system called BB1 [Hayes-Roth 85]. At any time in the problem solving process the feasible
geometric actions are represented as executable knowledge sources. Control knowledge sources
employ heuristics to determine the best action to perform next. More details on the operation
of the heuristic control portion of PROTEAN and on an implementation of an abstract
Iang]uage for con trolling arrangement assembly problems are described elsewhere [ Hayes-RothB
86a].

4 An Example: Assembly of a Small Protein

Figure 2 shows a constraint network representing a single partial arrangement for a small
protein at the solid level. This protein has 51 amino acids, three alpha helices and 4
intervening random coils. Analysis of NMR data from this protein produced 14 NOE
constraints and 6 covalent constraints (points that are near each other because they are close to
each other in the primary sequence) [Jardetzky 84]. These constraints were abstracted by
PROTEAN to solid level binary constraints distributed according to the numbers shown on the
arcs of the graph. In general a larger number of constraints between two objects results in
fewer locations of one object with respect to the other.

LOCATIONS LOCATIONS LOCATIONS CPU TIME

*OBJECT POSSIBLE SEARCHED FOUND (SECONDS)

H2 1185408 39432 943 9

H3 1185408 170324 121 24

RC2 1428 4 3 <1

RC1 1428 249 186 <1

RC3 1428 263 48 <1

RC4 1428 329 41 <1
Table | :  Results of anchoring six objects to helix 1 (H1)

For the anchoring operation H1 was heuristically chosen to be the fixed anchor because it
was the largest helix and had the greatest number of constraints to other objects. The system
then chose to anchor helices H2 and H3, followed by each of the random coils in order of
" increasi ng size.

Table 1 shows the results (including timings) of anchoring each of the six anchorees to HI.
In “the case of the helices the three position components of the six-dimensional location space
were sampled within a 64 angstrom cube centered about the origin of the anchor coordinate
system. The three orientation components were sampled at 30 degree increments. For the coils
only a three-dimensional search for the coil center was required since the coils are rotationally
symmetric. The number of compatible locations for each anchored object ranged from 3 to
943, or 0.01% to 13.0% of the possible locations. Optimization of the search program allowed
only a small percentage (from 0.2% to 23%) of the possible locations to actually be searched.

Once the six solid objects had been anchored the following yoke operations were possible,
reflecting the binary constraints between anchorees shown in figure 2: RCI-H2, H2-H3, H2-
RC4, RC3-H3, and H3-RC4. Table 2 shows the results, including timings, of successive
iterations of the yoke procedure for the six anchorees. In this demonstration all 5 of the
possible yokings were performed on the next iteration when any location table changed for an



H2 H3 RCI RC2 RC3 RC4 TIME
Anchoring 943 121 186 3 48 41 35
Iteration 1 114 11 114 3 6 22 19
Iteration 2 21 11 113 3 6 17 3
Iteration 3 21 11 113 3 6 17 3

Table 2:  Results of three iterations of yoking,
. numbers of locations, time is CPU time in seconds

anchoree, After 3 such iterations no location tables changed, so arc consistency was achieved.
The most dramatic drop in location table size was seen in H2, initially anchored with 943
locations, but retaining only 21 locations after being yoked 3 times to H3 and RC4. Other
location tables were also pruned significantly.

Figure 5 is a 3D display of part of the final arc consistent network, showing halos for the
three helices H1, H2 and H3, as well as a single coherent instance generated by backtrack
search from the final network. These locations are constrained enough to provide meaningful
biochemical information about the topology of the molecule. Detailed analysis of the accuracy
and precision of these and other results are described elsewhere [Lichtarge 86 3.

5 Discussion

This paper describes a method for approaching geometric constraint satisfaction problems,
and presents an example of a partial implementation of the method for protein structure
determination. Other publications expand on this method and show its application to more
complex proteins as well as other arrangement problems [Buchanan 85, Altman 86, Duncan
87, Hayes-Roth8 86b, Brinkley 86, Lichtarge 86].

The results show that refinement along the structural and accessible volume dimensions
reduces the num ber of objects and the number of possible locations per object to the point
that solid level solution by backtrack search is feasible. The application of additional
structural knowledge allows this refinement to be accomplished without losing too much
information. The solid level accessible volumes, together with the solid representations, can
also be used to obtain the initial accessible volumes of the individual atoms of the protein.
These accessible volumes will be much smaller than the initial accessible volumes obtainable
without the solid level solutions. The atoms, together with their accessible volumes and the
initial constraints, constitute the original atomic level constraint satisfaction problem, in which
the variables are the atoms and the values are the accessible volumes of the atoms. The initial
step of solving the constraint satisfaction problem at the solid level results in a smaller
number of possible values for each atom, leading to a small enough problem to be solved by
consistency algorithms and backtrack search. If the size of the problem becomes small enough
then memory-intensive algorithms such as path consistency [Mackworth 77) or backtrack with
‘earning [Dechter 86] may be employed to further increase the efficiency of the geometric
constraint satisfier.

An important goal of the heuristic refinement method is to ensure that each refinement
operation produces correct results in the sense that it does not eliminate any solutions that
would be found by backtrack search. Heuristics are mainly employed to improve the efficiency
of the search while retaining correctness. However, in general this complete separation of
heuristic efficiency from correctness cannot be maintained since the imposition of a structural
model implies the introduction of theoretical constraints which represent an idealization of
reality. In fact no helix is actually in the shape of a cylinder although most helices come very
close to that ideal. Nevertheless, for complex problems the introduction of simplifying
assumptions is necessary in order to allow the problem to be solved in a reasonable amount of



time. These assumptions are the result of applying domain specific knowledge and are almost
certainly an important component of human intelligence as well.

Although the heuristic refinement method has been developed in the context of protein
structure determination, it should have direct application to other types of geometric constraint
satisfaction problems. In fact many problems are simpler than the protein structure problem
in one or more ways: the number of objects or the number of possible locations per object
may be smaller, the dimensionality of the solution may be less, or the need to find all
solutions may be reduced. However, in all cases the basic operations of heuristic refinement
along the structural and accessible volume dimensions may be employed by suitable alterations
to the parameters of the program.

For example, the location of each object in a furniture arrangement consists of two position
components and one rotation component, making this a three-dimensional spatial constraint
satisfaction problem. Further, the number of possible locations per object may be reasonably
small since the possible orientations may be limited. Given two possible locations for two
pieces of furniture any binary constraint that can be formulated as a geometric predicate may
be included in the constraint tester. For example, predicates may require that two pieces of
furniture be touching, or that there is a line of sight between the couch and the television.
Groups of highly constrained pieces may be considered as single objects, for example an end
table and a couch that are always kept together.

The notion of heuristic refinement should also be generalizable to other types of multi-
dimensional constraint satisfaction problems since the grouping of objects is a ubiquitous
activity. In complex real-world situations it is necessary both for humans and computers to
group objects in order to reduce the number of entities that must be considered. In order to be
useful the grouping should impose an abstract structure or model on the individual objects, in
the form of theoretical constraints, such that the large number of objects may be replaced by a
more concise description. The adequacy of the model for problem solving depends on its
ability to increase efficiency while still satisfying the original constraints. Decisions as to
which objects to group together and which mode! to impose are made with the aid of domain-
specific knowledge learned From experience. The adequacy of these decisions seems to be an
important factor in determining the amount of intelligence exhibited by a human or by a
computer.
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Figure I:  Secondary structures represented as solids within local
coordinate systems. Distance constraints are abstracted to distances D

between fixed points Cl and C2 on solids. RC1-RC4 are random coils,
HI-H3 are helices.
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Solid level geometric constraint network. The nodes are geometric
solids, the arcs are constraints. Numbers on the arcs are
the number of conjunctive constraints.



Figure3: Anchoring of Helix2 and Helix3 to Helix1
results in accessible volumes
defined by only those locations compatible with the anchor Helix1
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Figure4: Yoking of Helix2 and Helix3 results in accessible volumes in which
each location for Helix2 is compatible with at least one for Helix3, and ,
vice versa
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Figure5: 3D display of arc consistent solid level helix halos, and a single
coherent instance.






