January 1987 Report No. STAN-(CS-87- 1144
Also numbered KS1.-87-07

Considerations for Multiprocessor Topologies

by

Gregory ‘1. Byrd and Bruce A. Delagi

Department of Computer Science

Stanford University
Stanford, CA 94305







Considerations for Multiprocessor Topologies*

Greg Byrd!
Knowledge Systems Laboratory
Stanford University
Stanford, CA 94305

Abstract

Choosing a multiprocessor interconnection topology
may depend on high-level considerations, such as the
intended application domain and the expected num-
ber of processors. It certainly depends on low-level
implementation details, such as packaging and com-
munications protocols. We first use rough measures of
cost and performance to characterize several topolo-
gies. We then examine how implementation details
can affect the redlizable performance of a topology.

1 Introduction-Design Con-
straints and Opportunities

The base for development of general purpose mul-
tiprocessor systems as for computer systems today
generaly is given by the design constraints and op-
portunities established by evolving semiconductor de-
sign and manufacturing processes. The VLS| design
medium brings a new perspective on cost: switches
are cheap; wires are expensive. In modern micropro-
cessors, communication costs dominate those associ-
ated with logic. Power and cooling budgets are spent
" driving wires and overwhelmingly, chip area is dedi-
cated to wiring rather than logic {17]. To an increas-
ing degree, the dominant delays are associated with
driving lines rather than the accomplishment of logic
functions per se. One implication is that, all other
things being equal, smaller, simpler processors can be
expected to have shorter operation cycles than larger,
more complex designs [18]. They are aso likely to be
available in a more recent, higher performance base
technology.

*This work was supported by DARPA Contract F30602-
85-C-0012, NASA Ames Contract NCC 2-220-S1, and Boeing
Contract W266875.

Supported by an NSF Graduate Fellowship and by the
Stanford Dept. of Electrical Engineering.

Bruce Delagi
Worksystems Engineering Group
Digit al Equipment Corporation
Maynard, MA 01754

At the system level, the consequence of relatively
expensive communication is that performance is en-
hanced if the design establishes that whenever a lot
of information has to move in a short time, it does
not have to move far. Significant locality of high
bandwidth links is a goal. Among the highest band-
width links in a computer system is that connecting
the processor and memory. Early computer systems
separated these pieces and put a bottleneck between
them to accommodate the packaging realities of the
time: processors were implemented with electronic
means, memory with magnetic, and their power re-
quirements and EMI characteristics were best dealt
with separately. There are new realities now: close
coupling of processors with local memory is preferred.

With these design congtraints in mind, we consider
a multicomputer implementation based on a set of
processor/memory pairs connected by a communica-
tions topology. Many topologies have been proposed
[8] and have been compared in terms of theoretical
cost and performance measures [16]. We argue, how-
ever, that the redizable performance of these topolo-
gies are closdy linked to details of system packaging.

2 Interprocessor Connection

Topologies

Connection schemes between processing sites can be
compared with respect to their cost and performance
as a function of the number of sites connected. For
a particular connection scheme, if the cost grows no
faster than the number of sites and the performance
grows at least as fast, that scheme can be described
as scalable. A rough measure of cost is the number of
input-output ports required for connection. A rough
measure of performance is the number of links in the
topology divided by the largest number of links that
must be traversed, and thus occupied to accomplish
a transmission, in order to get from one node in the

AIOF



network to another. This indication of the bound on
the number of independent, concurrent transmissions
we will cal the concurrency of the network.

For some topologies, the concurrency of a network
may understate performance as actually experienced
in a given application: to the extent that there is
locality of reference in transmissions, the number of
links actually traversed may be better approximated
by a constant than some function of the number of
connected sites. Network concurrency may also over-
&ae performance of one topology with respect to an-
other: to the extent that the time to traverse links
is not the same for all topologies, those that have
non-uniform link costs (perhaps due to physical dis-
tance considerations applied to the realized lengths
of links) will deliver less performance than the con-
currency measure suggests. This is because in these
cases, logical adjacency due to high dimensionality
is merely apparent-embedding the topology in the
dimensionality of space available tends to incur just
those expenses related to physical distances that the
topology was expected to eliminate.

2.1 Topologies With Scalable Con-
currency

Several topologies are shown in Table 1 which have
scalable concurrency. As the number of sites is in-
creased, the network grows enough to support the
consequential additional traffic. In fact, by this mea-
sure of performance, the last three of these four
topologies scale performance equally well. However,
as will be described, there are other considerations to
weigh.

In the crossbar and completely connected topolo-
gies, the number of ports, a first approximation to
cost, grows quadratically with the number of nodes
in the network. Weighing cost and concurrency, then,
we might prefer the banyan and boolean k-cube (also
known as “hypercube”) topologies.

By these measures, there does not seem to be a
clear-cut choice between the banyan and the hyper-
cube. A more sophisticated measure of cost would
take into-account the area required for laying out the
topology in a plane [11]. The banyan may have a
dight edge in this category’, but both layouts require

“The area required to lay out a hypercube in a plane is
0 (n?) [2], where n is the number of processors. Since “banyan”
actually denotes a class of interconnections it is difficult to
make a general statement about its layout. However, let us
consider a particular banyan network, the omega network {10],
which is logn stages of perfect shuffle connections. The per-

fect shuffle has area 0( Q};ﬁ) [15], so we would expect log n

n3

perfect shuffles to require area 0( ), which is a slightly

logn

relatively long wires, which is undesirable if link tran-
sit time dominates switching time.2

A major difference between the two topologies is
that switching and routing are centradized at the pro-
cessor in the hypercube, whereas the switching in the
banyan is distributed throughout the network. To
the extent that storage is required at the switch (as
in [3]), it becomes more economica to centralize the
switch and utilize the local storage of the processor.
For this reason, we prefer the hypercube.

2.2 Topologies With Scalable Cost

There are aternative topologies not as richly con-
nected as those just considered. The topologies in
Table 2 al have fixed degree connectivity, so they all
have scalable cost as measured by port count. Un-
fortunately, none of them has scalable concurrency.
So, at least among the ten representative topolo-
gies discussed, there is no topology that has cost-
performance characteristics intrinsically superior to
al the others.

Concurrency for the ring and the bus topologies
does not increase at all as the number of processors
increases. Given no guarantee of transmission source
to target locality, these seem unsuitable for systems
with a large number of processors (e.g., > 100).

The perfect shuffle and cube-connected cycles
(CCC) topologies emulate the O(log n) latency of the
hypercube, but the number of links is linear with
the number of processors, so concurrency does not
scale. Also, if we measure cost in terms 9f layout
area, the cost of the perfect shuffle (O( ﬁ’ﬁ)) and

CCC (O(ﬁ;—;}—n)) [15] do not scale and so will not be
considered further.

The tree, grid, and torus topologies all have fixed
degree connectivity and have the optimum O(n) area
requirement.The tree has a dlightly better *capacity
measure and a lower latency bound. Note, however,
that the tree provides no alternate communication
paths (useful in network balancing and defect toler-
ance) and has a bottlenecking root.® Connections
might be added to provide alternate paths, but, as
we-will see in the next section, physical link consid-
erations may make the grid or torus a better choice.

better bound than for the hypercube. Other types of banyans,
with different fan-in, fan-out, and connectivity characteristics
might have even smaller bounds.

2See Section 3.

3 We might be able to deal with this by increasing the band-
width of the links as we proceed toward the root, for example
with “fat trees” {12].

Page 9



3 Link Costs-Examining The
Free Lunch

Most studies of topologies assume a constant cost
for link traversals as the number of links increases.
This is a useful approximation if the time to drive
and receive link signals is constant with link length
and large compared to signal transit time on the link.
However, this is increasingly not a good assumption
both as the underlying feature size of the compo-
nent technology decreases and as we consider larger
numbers of sites in a system. Given a fixed circuit
feature size, topologies with scalable concurrency, as
discussed in Section 2.1 suffer increased link lengths
and thus longer signal transit times-with possibly
increasing drive times—as the number of processors
increases. Alternatively, given a fixed volume of cir-
cuits in these topologies and decreasing circuit feature
size, the number of processors in the system increases
but so does the ratio between link lengths and feature
size. Thus relative to the circuit delay times which
are dependent on (and decrease with) circuit feature
size, the link transit times become increasingly a more
important consideration.*

Topology has to be viewed as a dependent variable
determined principally by the packaging technology
of the system. As an example, consider the recursive-
H layout for the binary tree (Figure 1) under the
assumption that link transit time dominates switch-
ing time. Now consider the grid in Figure 2, which
can be laid out in the same area. If transit times
dominate, then shorter links and more switching sites
will likely shorten the point-to-point communications
cycle time and improve the realized capacity of the
network.” Furthermore, additional data paths allow

“The dependence of communication delays on signalling
lengths as circuit feature size decreases depends on assump-
tions made on the thickness and thus the resistivity of asso-
ciated interconnects. Uniform scaling leads to relative sig-
‘nalling times that increase quadratically with distance [19)].
Detailed analysis of the equations of voltage and current in
VLSI wire implementations (including consideration of the
non-linear characteristics of signal drivers) demonstrated lin-
ear dependences [1] but were done assuming that the inter-
connect (and field oxide) thicknesses did not decrease at all
while all other dimensions scaled with the circuit feature size
of the technology [ 17]. Another approach imagines a hierarchy
of interconnect of increasing thicknesses with distance [13] to
achieve signalling times that grow only with the logarithm of
the distance. Yet another approach accepts resistive links but
given control over both minimum and maximum wire lengths
and use of high impedance receivers, notes that it is possible
to counter dispersive losses with reflective voltage doubling at
the receiving end of a point to point link [9].

5The assumption made here is that the message routing is
relatively independent of the computing activities at a process-
ing site, so there is no penalty associated with being routed at
a processing site rather than a switch.

dynamic routing of messages, and additional comput-
ing resources make the grid potentially more powerful
than the tree.

Though the torus appears to suffer from extremely
long wires which “wrap around” the edges, a simple
renumbering of the processors in a grid brings each
one within two hops of its logical neighbors® (see Fig-
ure 3). Thus, we can effectively create a torus by
changing the routing algorithm of a grid. Alterna-
tively, we could keep the original torus connections
and lay out the processors as in Figure 3(b), result-
ing in links which are at most twice as long as those
for a grid. In the remainder of the paper, we will
speak of the grid bearing in mind construction of the
torus in these terms.

4 A Packaging Example

We are now faced with two topologies: one with
scalable performance—the hypercube-and one with
scalable cost-the grid. The arguments presented
above suggest that, all else being equal, the communi-
cation cycle time for the hypercube would be greater
than that of the grid, due to its long links. Even so,
the average message latency of the hypercube may
still be smaller, due to its high connectivity. To get
a better understanding of the relative performance of
the two systems, we should examine how they might
actually be implemented in near-future technology.

In the mid-1990's we would expect a 0.5-pm MOS
fabrication process to be available [7]. We will assume
that the complexity of our processor is comparable
to today’s typical 32-bit microprocessor. The Mi-
croVAX 78032 chip [4], for example, is implemented
in 3-um technology; it measures about 8.5 mm on
a side. Using 0.5-um technology, we could expect a
similar processor to require around 1.5 mm on a side.
Let us allow 256K bytes (2M bits) of local memory
for our processor. Fujitsu's megabit RAM using 1.4-
pm technology takes 54.7 mm? [6]. If the dimensions
of the Fujitsu chip are about 10 mm by 5.5 mm, then
a 0.5-pm version would be 3.6 mm by 2.0 mm. Two
of these (since we want 2M bits) would be around
3.6 mm by 4 mm. As an approximation, then, each
processing element, including a processor, 256K bytes
of loca memory, and switching and routing circuitry
could be expected to fit onto a 5 mm x 5 mm piece
of dlicon.

Even as devices shrink, die sizes continue to grow.
By the mid-90’s, the state-of-the-art chips may be
as large as 15 mm on a side. Each chip would be
expected to have 400-600 1/0 pads [14]. Therefore,

8 This approach is attributed to R. Zippel.



we could put up to nine processing sites on a single
die.

The dice could be flip-mounted on a silicon [5]
or ceramic [9] substrate with thin-film transmission
lines and integrated capacitors. In (9], the maximum
length for 5-pum-thick lines is around 20 cm, so we
will assume a 10x10 cm module size, on which we can
easily place up to 36 dice. We will assume on the
order of 1000 I/O pins per module [5].

Consider first packaging a (32x32) 1024-element oc-
ta grid, in which each processor is connected to eight
neighbors. With nine processors (arranged as a 3x3
grid) on a die, 32 (bi-directional) communication links
must come off the chip through the 1/0O pads, so no
more than 18 pads could be used per channel. A mod-
ule can carry 324 processors, arranged as an 18x18
grid. The entire system, then, could fit on four mod-
ules (with room to spare). The communications links
from two sides of the 18x18 grid (105 bidirectional
channels) must go off-module. Thus, each channel
could use 10 pins-one pin for clock and status infor-
mation and four for data, in each direction.

Now consider a 1024-element hypercube (a “10-
cube’). To dlow for more complex wiring and easier
packaging, we will assume that each die contains eight
processors, and each module will hold 32 dice, for
a total of 256_ processors per module. (Extra space
might be used to provide redundant processors for
fault tolerance.) Again, only four modules are re-
quired to package al 1024 processors. Each processor
has ten bidirectional links to its logical neighbors. If
the eight processors on a die are wired as a 3-cube,
then seven channels from each processor must go off-
chip. Five of these channels are connected to other
processors on the same module, but two must go off
the module. With only ~ 1000 I/O pins for 512 bidi-
rectional channels, it appears that a I-bit combined
control/data stream is all that can be supported for
the hypercube communications. If we decrease the
number of processors per die to four (and possibly
add more memory), we can use separate wires for
control and data but the wires will be longer.

Note that in both cases the module pin-out is the
limiting factor for channel width, rather than the chip
pin-out. If more off-module 1/O pins are available,
things will look better, but there will <till be around
a 5-to-1 ratio of the number of required off-module
channels in the hypercube as compared to the grid.
As mentioned before, the average interconnect length
for the grid will be much shorter than that for the
hypercube. Therefore, the grid offers shorter (i.e.,
faster) and wider communication paths than the hy-
percube when implemented in projected near-future
technology.

5 Beyond Topology

As the previous example indicates, the electrica and
physical characteristics of the circuit packaging in a
system may dictate the scheme used to wire the nodes
together. In addition, the communications protocol,
that is, the actual signalling on the links are an im-
portant component of achievable performance. There
are many relevant details-for example:

e« Dynamic routing, selecting available links as
needed, is useful in balancing load and thus al-
lows more of communication resources of the sys
tem to be well used throughout a computation.

e Cut-through routing, making a routing decision
on the fly as a packet is received, reduces buffer
requirements in the system and minimizes la-
tency experienced in network transit.

e Locd flow control, signaling transmission delays
back to the source based on local blockage in-
formation, together with single “word” buffer-
ing and transmission validation at each network
input and output port alows the source to com-
plete a validated transmission in a time that does
not depend on the size of the network.

e Point to point multicast, sending (approxi-
mately) the same packet to multiple targets
using common resources to the largest degree
possible-coupled with dynamic, cut-through
routing, flow control, and word level buffering
and transmission validation-provides “virtual
busses’ precisely as and when they are needed.

A point-to-point protocol utilizing these mechanisms
is described in (3].

6 Conclusion

Communications performance of practical systems
depends first of al on available packaging technology
and second on protocol considerations. No topology
considered here has both scalable cost and perfor-
mance, so the topology chosen must be in the context
of the number of processors targetted. For a thou-
sand processors or so, given the assumptions on mid-
1990's technology discussed earlier, the grid (or torus)
seems an appropriate choice. The performance of the
grid will depend on the signalling protocol and will
be best predicted through application simulations de-
tailed enough to relect design decisons made a that
level.

Pace 4



References

[1] G. Bilardi, M. Pracchi, and F. P. Preparata.
A critique and an appraisal of VLSl models of
computation. In H. T. Kung, B. Sproul, and
G. Steele, editors, VLSI Systems and Compu-
tations, pages 81-88, Computer Science Press,
Inc., Rockville, MD, 1981.

[2) G. Brebner. Relating routing graphs and two-
dimensional grids. In P. Bertolazzi and F. Luc-
cio, editors, VLSI: Algorithms and Architectures,
pages 221-231, Elsevier Science Publishers B.V.,
Amsterdam, 1985.

[3] G. T. Byrd, R. Nakano, and B. A. Delagi. A
Point-to-point Muticast Communications Proto-
col. Technical Report KSL-87-02, Knowledge
Systems Laboratory, Stanford University, Jan-
uary 1987.

[4] D. W. Dobberpuhl, R. M. Supnik, and
R. T. Witek. The MicroVAX 78032 chip, a 32-
bit microprocessor. Digital Technical Journal,
(2):12-23, March 1986.

(5] Capt. B. J. Donlan, J. F. McDonad, R. H. Stein-
vorth, M. K. Dodhi, G. F. Taylor, and
A. S. Bergendahl. The wafer transmission mod-
ule. VLSI Systems Design, 7(1):54-58, 88-90,
January 1986.

[6] Electronic News, July 1,1985.

[7] C. K. Lau, et. al. A high performance half-
micron gate CMOS process for VLSI. In Pro-
ceedings of the 1985 International Conference on
Computer Design: VLSI in Computers, |EEE,
October 1985.

~[8] T. Feng. A survey of interconnection networks.
Computer, 12-27, December 1981.

[9] C. W. Ho, D. A. Chance, C. H. Bajorek, and
R. E. Acosta. The thin-film module as a high-
-performance semiconductor package. IBM Jour-
nal of Research and Development, 26(3):286-
296, May 1982.

{10] D. H. Lawrie. Access and alignment of data in
an array processor. IEEE Transactions on Com-
puters, C-24( 12):1145-1 155, December 1975.

[11] C. E. Leiserson. Area-Efficient Graph Layouts
(for VLSI). Technical Report CMU-CS-80-138,
Carnegie-Mellon University, August 1980.

[12] C. E. Leiserson. Fat-trees: univeral networks
for hardware-efficient supercomputing. In Pro-
ceedings of the 1985 International Conference on
Parallel Processing, pages 393-402, |EEE, 1985.

[13] C. Mead and M. Rem. Minimum propagation
delays in VLS. In Caltech Conference on VLSI,
pages 433-439, January 1981.

[14] D. Nelsen. Personal Communication.

[15] F. P. Preparata and J. Vuillemin. The cube-
connected cycles. a versatile network for paral-
lel computation. Communications of the ACM,
24(5):300-309, May 1981.

(16] D. A. Reed and H. D. Schwetman.  Cost-
Performance bounds for multimicrocomputer
networks. IEEE Transactions on Computers, C-
32( 1):83-95, January 1983.

[17] C. L. Seitz. Ensemble architectures for VLSI—
a survey and taxonomy. In 1982 Conference on
Advanced Research in VLSI, MIT, January 1982.

[18] C. L. Seitz. Experiments with VLSI ensemble
machines. Journal of VLSI and Computer Sci-
ence, 1(3), 1984.

[19] C. L. Seitz. Self-timed VLS| systems. In Cal-
tech Conference on VLSI, pages 345-355, Jan-

uary 1979.
Number | Longest
Topology of Ports Path Concurrency
Completely connected O(n?) o(1) O(n°)
Crosshar O(n?)® 0(1) O(n)
Banyan O(nlogn) | O(logn) O(n)
Boolean k-cube (n = 2% || o(nlogn) | 0(log n) O(n)

2The number of links is O(n).

Table 1: Scalable Concurrency Topologies. [n = #
processors)

Sumber |Longest

Topology of Ports Path Concurrency Area

[ Ring O(n) | O o) O(n)

Globd bus | O(n) o) Oo(l) ! O(n)
Perfect shuffle O(n) | O(logn) | O( o) Of E"r};—n)
Cube-connected cycles || O(n) | O(logn) | O(z25) O(52r)

Binary tree O(n) | Ollogn) | O(z=) | O(n)

Grid/Torus O(n) | O(/n) 1 O(/n) | Ofln)

Table 2: Scalable Cost Topologies. [n = # proces-
sors|

Pace §




Figure 1: Recursive-H binary tree.

il

iﬂﬂﬂwbttoiti

iiiiiiiiiiii

LT
LT
e
T
IO
e
T TT
IO
T L
e
T IO
T T
T
T I

qgﬁﬁﬁhnptti
SR e e e

L e
G
oy

™
L

RSN e i e g e g

[y
L
I‘I
l‘l
s
!
l‘l
I‘I
it
i
ulhity
I‘l
i
LLE
L LT

a
I
.‘
L
i
T
e
ii
Lo
]
]
]
]
]

T
-E
T
T
T

SR
P O
T
P O O

0
‘
I L]

'ﬂb

[_J_

Figure 2: Two-dimensional grid.

—_— = ey = = e —

T

S

ST

b

Ss0Hfs-a2 a3 -l as T T0He7 6ﬂllm
Seeeeen b“#+++++
ool el

T s ey

—
Y

~—

Figure 3: Torus (a) and renumbered grid (b).



