
Report No. WA N-G-87- 1146
Also numbered ML-87-02

A Point-to-Point Multicast
Communications Protocol

bY

Gregory T. Byrd, Russell Nkmo, Rrucc A. Magi

Department of Computer Science

Stanford University
Stanford, CA 94305

Knowledge Systems Laboratory
Report No. KSL-87-02

January 1987

A Point-t o-Point Mult icast
Communications Protocol

Gregory T. Byrdt
Department of Electrical Engineering

Stanford University
Stanford, CA 94305

Russell Nakano
Department of Computer Science

Stanford University
Stanford, CA 94305

Bruce A. Delagi
Worksystems Engineering Group
Digital Equipment Corporation

Maynard, MA 01754

Abstract

Many network topologies have been proposed for connecting a large num-
ber of processor-memory pairs in a high-performance multiprocessor system. In
terms of performance, however, the communications protocol decisions may be
as crucial as topology. This paper describes a protocol to support point-to-point
interprocessor communications with multicast. Dynamic, cut-through routing
with local flow control is used to provide a high-throughput, low-latency com-
munications path between processors. In addition. multicast transmissions are

- available, in which copies of a packet are sent to multiple destinations using
common resources as much as possible. Special packet terminators and selec-
tive buffering are introduced to avoid deadlock during multicasts. A simulated
implementation of the protocol is also described.

Contents
1 Introduction 1

2 Components 2

3 Protocol Overview 4
3.1 Packets . 4
3.2 Packet nansmission . 4
3.3 Flow Control . 6
3.4 Deadlock Avoidance . 7

4 The Protocol
4.1 Deadlock Avoidance Mechanisms
4.2 Generic Component Description
4.3 Operator .

4.3.1 Sending a Packet .
4.3.2 Receiving a Packet .

4 . 4 Fifebuffer .
4.5 Net-Input .

4.5.1 Commit Mode .
4.5.2 Abort Mode .

4.6 Router .
4 .7 Net-Output .

5 CARE Implementation
5.1 Operator .
5 . 2 Fifo-buffer .
5.3 Net-Input .
5.4 Router .
5.5 Net-Output .
5.6 Results .

9
9

10
11
12
12
13
15
17
18
18
2 0

22
2 3
2 4
2 6
2 8
2 8
2 9

6 Conclusion 29

29References

List of Figures
1 Components of a CARE siie. 3
2 Organization of a packet. 4
3 Network component interconnections. 5
4 Example of deadlock in a multicast. 8
5 Generic network component. 11
6 A state transition diagram. 11
7 Fife-buffer state diagram. 14
8 Net-input state diagram. 16
9 Net-output state diagram. 21 ..
10 Implemented fife-buffer output state diagram. 2 5
11 Implemented net-input state diagram. 2 7

List of Tables
A Packet terminators. 4’
B Flow-control signals. 6
C Communication cycle phases. 7
D Input and output ports. 11
E Input states for fifebuffer. 13
F States for net-input. 15
G Routing tables. 19
H States for net-output. 2 0

1 Introduction
Many network topologies have been proposed for connecting a large number of
processor-memory pairs in a high-performance multiprocessor system [l]. These
topologies are often evaluated in terms of the average number of hops traversed
by a packet, for example. However, the network performance may depend as
much on its communication protocol as on its physical topology. For example,
suppose the average number of hops in a network is M and the average packet
length is N. In a store-and-forward network, the transmission time of a packet
would be proportional to M x N. If cut-through switching is used, however,
the transmission time would be proportional to M + N, a significant difference
for relatively large values of M or N. An appropriate communications protocol,
then, is crucial if the full benefits of a topology are to be realized.

The protocol described in this paper is designed to fully utilize network
resources. Dynamic, cut-through routing with local flow control is used to pr*
vide a high-throughput, low-latency communications path between processors.
In addition, a multicast facility is provided, in which copies of a packet are sent
to multiple destinations, using common resources as much as possible.

Dynamic routing means that the communications channel to be used is the
sen at transmission time, based on what channels are available. The alternative,
static routing, would prescribe a specific channel for every destination-if that
channel were not available, the transmission would be blocked. Dynamic rout-
ing, by adapting to current channel usage, attempts to balance the network
load. It is especially useful when the communications traffic is unpredictable or
variable over time [2]. Balancing the load allows more of the communications
resources of the system to be well used throughout a computation.

Cut-through routing [3] means that a routing decision is made on the fly, as a
packet is received, rather than first buffering the entire packet and then deciding
what to do with it.’ This reduces buffering requirements in the system, since the
packet does not need to be stored at intermediate points in the transmission.2
Kernami and Kleinrock [5] demonstrate that the cut-through approach outper-
forms both circuit switching and message switching (store-and-forward) when
the communication paths are short, network utilization is relatively high, and
messages are fairly small.

Flow control, in general, is any mechanism which attempts to regulate the
flow of information from a sender to match the rate at which the receiver can
accept it [6]. In this protocol, a transmission may be blocked and resumed in
the event of network congestion. If an output channel becomes blocked, the
sender stops sending data and halts the flow of data from upstream. When the
channel becomes unblocked, the transmission is continued from where it was

’ A related concept is staged circuit switching, described in [a].
‘Cut-through awitching u described in [3J requires that the packet be completely buffered

if the output channel is blocked. In this protocol, no further data will be received from
downstream until the channel becomes available. Thus, packet buffering is not required.

1

halted. The flow control mechanism is local, because actions are taken based on
the state of the downstream component rather than global information about
the entire network.

Multicast transmissions in a point-to-point network allow a packet to be
sent to multiple destinations, using common resources as much as possible. The
packet is replicated as needed, and subsets of the original target list are assigned
to the copies. Thus, “virtual busses” are available precisely as and when they
are needed. Selective buffering and special packet terminators allow potential
deadlock conditions in multicasts to be detected and avoided.

The network components which define the protocol are introduced in Sec-
tion 2, and the protocol itself is described in Sections 3 and 4. Finally, Section 5
describes an implementation of the protocol in the CARE simulation system.

2 Components
This section defines the network components used by the protocol. The protocol
is defined by the behavior of these components and the values that are passed
among them. Of course, these components do not necessarily correspond to
distinct physical entities in a machine which implements this protocol-they are
merely a useful means of specifying the functional behavior of such a machine.

The site component corresponds to a processor-memory pair in the target
machine. In particular, a site contains an operator, an evaluator, a router,
some local storage, and some network interface components, which are called
net-inputs and net-outputs (see Figure 1).

The euulucrtor is the part of the site which executes application code. The
evaluator can request network activity, but otherwise has no role in the network
behavior of the system, so very little will be said about it in this paper.

The operufor is responsible for handling system-level activity, including com-
munication. In the target machine, it would create packets to be sent over the
network and accept transmissions destined for its associated processor. The
operator and evaluator communicate through shared local memory. The details
of this communication will not be addressed in this paper.

The site components which interface directly to the network are called net-
inputs and net-outputs. On each site, there is a net-input/net-output pair con-
nected to the operator, for local packet origination and delivery, as well as a
pair for every communication channel to the network.3 We will refer to the pair
connected to the operator as the “local” net-input and net-output.

The net-input is responsible for accepting a packet, making connections (us-
ing the router) to one or more net-outputs, and sending it on its way. The
net-output is concerned with delivering the packet to a particular location, ei-
ther the local operator or the next site on the transmission path. Note that,

3The exact number
work topology.

of net-inputs/net-output pail?3 required by a site depends on the net-

2

Figure 1: Components of a CARE site.

because of cut-through routing, net-inputs and net-outputs are only required to
have enough storage for one word of a packet, rather than the entire packet.

The router connects all the net-inputs on a site to all the net-outputs. When
it receives a packet from a net-input, it determines the destination (or destina-
tions) and makes the connection to the appropriate net-output (or net-outputs).
Also, flow control information from the net-outputs are relayed by the router to
the appropriate net-input.

A pair of buffers, called fife-bufers, queue packets between the operator and
local net-input and net-output. The upstream fifo-buffer queues packets from
the network to the operator; the downstream queues packets from the operator
to the network.

3

3 Protocol Overview
3.1 Packets
Figure 2 shows the organization of a packet. The first part a packet is devoted
to the target entries. Each entry contains a target address, a pointer to data
within the packet, and flags indicating the last target in the list.

Following the target addresses are zero or more words of data and a one-
word packet terminator. There are three distinct packet terminators, as shown
in Table A, which are used by the operator to determine the status of the
packet .4

...
Target Entry n

Figure 2: Organization of a packet.

Terminator Meaning
:end-of-packet Normal packet termination.
:abort-packet Packet is to be discarded by operator.
:local-end-of-packet Treat as :end-of-packet, except ignore-

all packet targets other than the local site.

Table A: Packet terminators.

3.2 Packet Transmission

The transmission path of a packet is shown in Figure 3. First, an evaluator
requests a packet transmission. The operator then sends the packet (through
a buffer) to the local net-input. For the moment, assume that there is only
one target for the packet. (This is called a unicust transmission.) The router
then decides which net-output should receive the packet, based on the tar-
get address and the availability of net-outputs, sets up a connection between
the local net-input and the selected net-output, and begins the transfer of the

4 As described in Subsection 4.3.

Interconnection Network
f i

I’
,,,...l.........,

‘1.I
‘i, Router :i‘...I.....................,.....................d’

b

I
bownstreas

Fifo-
Buffer

Operator

9,,,....,.. .

I
I I’ ‘1

RouterI ‘.I..........................~’()

,
Local
Net-

output

\
Upstream ownstrea

Fifo-
Buffer P

Fifo-
Buffer

Site-2

Figure 3: Network component interconnections. Packets travel in the direction
marked by arrows. Flow control information flows in the opposite direction.

packet. Each non-local net-output is physically connected to a net-input on a
(logically) neighboring site. When available, this net-input accepts the packet,
and its router sends the data to the local net-output, if the target has been
reached, or to another net-output, if not. This continues until the target has
been reached, where the local net-output delivers the packet to the operator
(through a fife-buffer). The operator can then perform whatever operation is
specified by the packet, such as storing the value in memory or queueing some
operation for the evaluator, for example.

If the packet has more than one target, the router may split it-that is, it
may send (essentially) the same packet to several net-outputs. This is called
a multicast transmission. Each transmitted packet contains a distinct subset
of the targets of the original packet. The copying operation is done during
transmission, one word at a time, as opposed to buffering the entire packet and
making copies. If one branch of the multicast is blocked, the net-input sends
pad characters down the other branches until valid data may be sent down all
the paths. The pad characters are thrown away when received by a fifo-buffer..

3.3 Flow Control

Flow control information, in the form of status signals, flows in the direction
- opposite to packet transmission. There are four distinct status signals, as shown

in Table B. The status signals are used to indicate to the upstream component
whether the packet or packet terminator can safely be transmitted.

A ‘free signal means that the component is not currently involved in a
transmission and is ready to receive data. An ‘open signal is used when the
component is involved in a transmission and is ready to receive the next word of
the packet. If the transmission becomes blocked for some reason, a ‘wait signal
is sent upstream to temporarily halt the flow of data. Finally, the ‘abort-
request signal indicates that a potential deadlock condition has been detected
and the transmission may be aborted. Details about how these signals are
generated and interpreted will be presented in Section 4.

Status Meaning
‘free Available to receive packet.
‘open Packet header has been received; available

to receive more data.
‘wait Busy or network is blocked; do not send

more data.
‘abort-request Potential deadlock detected.O

OOnly a fife-buffer may originate the ‘abort-request signal.

Table B: Flow-control signals.

6

I Component I Odd Phase Even Phase

Latch status from
downstream and Open status latch to

Net-Input conditionally open data allow status information
latch to allow data to to flow upstream.

flow downstream.

Latch status from
Open status latch to downstream and

Net-Output allow status information conditionally open data
to flow upstream. latch to allow data to

flow downstream.

Table C: Communication cycle phases.

A communicafion cycle consists of two major phases’ (see Table C). During
one phase, a component latches the status signal from downstream. Based
on that signal, it may open its data latch to allow data from utstream to
flow downstream. Otherwise, it holds the previously latched data. During the
other phase, the component opens its status latch to allow status information
(perhaps modified by the component) to flow upstream. The cycles of adjacent
network components (e.g., net-inputs and net-outputs) are arranged so that one
component is latching the status information while the downstream component
is determining the status for the next cycle. Thus there cannot be a race between
the latching of data and the status signal which controls it.

3.4 Deadlock Avoidance

The existence of packet multicasts introduces the possibility of deadlock. A
packet traveling through the network acquires the use of network resources
(e.g., net-inputs and net-outputs) and simultaneously excludes the use of those
resources by other packets. Without special attention paid to the possibility of
deadlocks, it is possible that resources are consumed to perform the multicast,
but completion of the multicast is not possible because the resources acquired
are insufficient.

If only unicast transmissions were allowed, this kind of deadlock would not
occur. Assuming that a packet cannot be infinitely long, a blocked unicast
packet will eventually either acquire the network connection that it needs or
be (temporarily) stored at the local site (freeing up any upstream resources for

‘Any necessary signal serialization would occur within a major phase.

Multicast A

a - Net-lnpuc

a I Net-Oucpul

El
I Fife-Buff=

-Multicast B

Figure 4: Example of deadlock in a multicast.

this packet). . In other words, any resource that is acquired will eventually be
released.

Figure 4 illustrates an example of how multicast deadlock can arise. Sup-
pose we have two multicast transmissions, call them A and S, with common
destinations, site-l and site-2 Suppose that one of the packets from multicast
A has already gained access to the local net-output on site-l. A packet from
multicast B has similarly gained access to the local net-output on site-b For
multicast A to continue, it needs to gain access to the local net-output of site-2;6
for f3 to complete, it needs to gain access to the local net-output on site-l. Also,
neither of the multicasts can release the resources it has already required until
the transmission is completed. Since each multicast has acquired a resource
that the other needs, a deadlock results.

In order to recover from such a situation, the system must:

l Detect a potential deadlock condition, such as the situation described
above; .

l Back out of the unsafe condition (by aborting one or more transmissions,
thereby releasing some set of resources); and

6The transmission cannot continue because the net-input cannot send any words until
all branches of the multicast are ready to receive it. Since the branch waiting for the local
net-output of site-2 is blocked, none of the branches may proceed.

8

l Retransmit the aborted packets later, when the network is (hopefully) less
congested.

Whenever a packet is split for multicast, the protocol requires that a copy of
the original packet (with a complete target list) be sent to the local net-output.
This packet will then be stored in a fifebuffer, so that it may be retransmitted
in the case that the current multicast must be aborted due to deadlock.

The packet terminator has two roles in deadlock avoidance. First, a fife-
buffer can detect a potential deadlock if the packet terminator has not been
received in a “reasonable” amount of time.7 Second, the packet terminator in-
dicates to all operators which received the packet what should be done with
it. For example, a multicast is aborted by sending the :abort-packet termi-
nator downstream-all operators which receive a packet with this terminator
will ignore the packet. Also, the operator which receives the copy of the original
packet can tell whether it needs to be retransmitted by looking at its terminator.
More details will be presented in the next section.

These actions are sufficient to prevent persistent deadlock during multicasts.
However, since there is finite storage in the system, a scenario can be constructed .
in which all the storage becomes committed and no packets can be delivered.
The protocol does not prevent this type of resource exhaustion. The assumption
is made that the designed capacity of the system is sufficient for its applications.

4 The Protocol
This section provides a detailed description of the behavior of each of the net-
work components. First, however, we present the details of the deadlock avoid-
ance mechanisms, so that the behavior of individual components can be under-
stood in the context of an overall transmission.

4.1 Deadlock Avoidance Mechanisms

The protocol
as follows:

mechanisms which allow deadlocks to be detected and avoided are

1. If a packet has multiple targets, before a router can split the packet for
multicast, the local net-output must be available. This is to insure that a
connection to the fife-buffer is possible, so that the packet may be stored
for possible retransmission.

(a) The local net-output is sent a copy of the packet which contains a
complete target list (rather than a subset). This assures that the
packet may be retransmitted to all of its targets if the multicast is
aborted.

7See Subsection 4.1.

(b) If the local net-output is unavailable, then the packet may be sent,
but only to a single target. The intent is that a packet sent in this
fashion will either visit each target site individually, or will eventually
reach a site with an available local net-output and be multicast to
the remaining sites on the packet target list.

2. Upon receiving the front end of a packet, the fife-buffer starts a timeout
pr0cedure.s If the timeout occurs before the packet terminator is received,
the fife-buffer asserts the ‘abort-request signal upstream on the flow
control line.

(a) When a net-input currently engaged in a multicast receives an
‘abort-request (from a downstream fife-buffer) before it sends the
packet terminator, the net-input goes into abort mode.

(b) Net-inputs which are not involved in a multicast ignore the ‘abort-
request signal; net-outputs merely pass an ‘abort-request up-
stream.

3. In abort mode, the net-input performs several actions:

.
(a) All connected non-local net-outputs are sent the :abort-packet ter-

minator, and they are disconnected from the net-input. This signals
any downstream operator to ign0r.e the packet when it is received.
At this point, only the connection to the local net-output is active.

(b) The ‘open flow control signal is sent upstream to unblock the packet
transmission.

(c) When the packet terminator arrives at the net-input, the packet ter-
minator that is received is passed on to the local net-output. The
:abort-packet terminator causes the local operator to discard the
packet. The :end-of-packet terminator will result in retransmission,
if the original target list contained remote (not local) sites.

4.2 Generic Component Description
Next we describe the behavior of individual components. Most of the com-

ponents are described as finite state machines which have input ports, output
ports, and internal state variables. The input and output ports are used to
pass packets and flow control information-packets flow downstream, flow con-
trol signals flow upstream. The ports and their functions are shown in Table D.
Figure 5 shows a “generic” network component, with its input and output ports.

*The intent is to determine when the packet terminator has not arrived in a “reasonable”
amount of time. This might actually be a timer, where the interval is some function of the
expected packet length, or it might be some threshold limit for the number of consecutive pad
characters a f&b&&r will accept. The details are not specified by the protocol documented
here.

10

packet-in status-out

Component

packet-out status-in
Figure 5: Generic network component.

I P0l-t I Function 1
1 racket-in I Packet data from upstream component.
fiket-out I Packet data to downstream component.

status-in Flow control from downstream component.
status-out Flow control to upstream component.

Table D: Input and output ports.

The behavior of most of the components can be described in terms of states
and transitions between those states (i.e., a state machine). It is often useful to
illustrate the states and transitions in a state transition diagram, as in Figure 6.
The transitions are labelled with the condition used to trigger the transition,
and the status signal to be sent upstream (through the status-out port) when
the transition is made.

CONDITION/ signal

Figure 6: A state transition diagram.

4 . 3 Operator

The operator sends and receives packets through the network and through the
memory it shares with the evaluator. Thus, it has more than one set of ports for

11

packet communication. To avoid confusion, the ports it uses to communicate
with the network are prefixed network- (e.g., network-packet-in), while the
ports used for communication with the evaluator are prefixed evaluator- (e.g.,
evaluator-packet-in). Only network communication will be discussed in this
paper.

With respect to the network, both the upstream and downstream compo-
nents of an operator are fifo-buffers. The upstream fife-buffer queues packets
from the local net-output and sends them to the operator. The downstream
fife-buffer queues packets from the operator and sends them to the local net-
input.

Two state variables are used by the operator for network communications:

1. network-buffer: Used to temporarily store an incoming packet from the
network.

2. network-buffer-status: Indicates whether the packet in the network-
buffer has been serviced (‘new or ‘old).

4.3.1 Sending a Packet

The operator has a queue of operations, or requests, which it services in order
of arrival. If the head of this queue is a packet to be sent out into the network,_
and network-status-in is ‘free, indicating that the downstream fife-buffer is
ready to accept a packet, the operator sends the packet (with an :end-of-packet
terminator) through the network-packet-out port.

4.3.2 Receiving a Packet

A packet arrival at the operator is signalled by the appearance of data on
the network-packet-in port. The network-status-out port is set to ‘open,
which signals to the upstream fifebuffer to keep sending packet data until the
packet terminator arrives. The packet data is stored in the network-buffer.

The arrival of an :end-of-packet signifies that the packet transmission was
successful. Network-buffer-status is set to ‘new, signifying that the data
in the temporary buffer should be looked at. At some later time, the operator
services the packet and sends a ‘free signal to the incoming fifo-buffer (through
network-status-out), indicating that another packet may be received, and
network-buffer-status is set to ‘old, so that the packet is not serviced twice.

If the operator notices that some or all of the target addresses of the received
packet do not correspond to its own address, the packet is sent back out into
the network. This might happen for one of the following reasons:

1. During a unicast transmission, a net-input could not make a connection
to the desired net-output. The packet is forced into the local fifo-buffer,
so that the operator may resume the transmission at a later time, freeing
up the net-input and its upstream components.

12

2. A multicast transmission was aborted. The local fifo-buffer received a
copy of the packet with a complete target list, so that the packet could be
retransmitted in case of an abort.

A :local-end-of-packet terminator instructs the operator to accept the
packet, as in the case of :end-of-packet, but to ignore any non-local target
addresses. This indicates that a multicast was successful, and so does not have
to be retried.

The arrival of an :abort-packet terminator instructs the operator to discard
the packet. The operator then asserts ‘free on network-status-out, indicating
that another packet may be received, without setting network-buffer-status
to ‘new-that is, the packet data in the temporary buffer is never serviced.

4.4 Fifo-buffer
Each site has two fifo-buffers, which have identical behavior but perform slightly
different functions. One fifo-buffer is upstream with respect to the operator, and .
the other is downstream.

On its output side, the upstream fifebuffer is connected to the operator,
while the downstream flfo-buffer is connected to the local net-input. If the
queue is not empty, the fifebuffer responds to a ‘free or ‘open signal on the
status-in port by removing the oldest item from the queue and sending it
through the packet-out port. If a ‘wait signal is received, the transmission is
temporarily halted until a non-‘wait signal appears. * l

On its input side, the upstream fifo-buffer is connected to the local net-
output, and the downstream fife-buffer is connected to the operator. The fifo-
buffer needs to keep track of (1) whether the packet data and terminator have
been received and (2) whether they have been placed in the queue. The state
diagram of the input side is shown in Figure 7, and the states are described in
Table E.

I State 1 Meaning I
I ‘0Den I Readv for more data: terminator not received. I

‘wait Queue full; terminator not received.
‘done Terminator received, but not yet queued.
‘done-wait Terminator received, but queue full.
‘free Terminator aueued, ready for next racket.

Table E: Input states for fifo-buffer.

The fifebuffer begins in the ‘free state. Whenever data arrives on the
packet-in port, if the queue is not full, the ‘open state is entered and ‘open
is asserted on status-out. If the queue is full, the ‘wait state is entered and
‘wait is asserted; when space becomes available in the queue, the ‘open state

13

‘free
I

Condition Meaning
DF Data arxives, and queue full.

DNF Data arrives, and queue not full.
F Queue full.

NF Queue not full.
TF Terminator amives, Ad queue full. -

T N F Terminator arrives, and queue not full.
TQ Terminator queued.

Figure 7: Fife-buffer state diagram.

is entered and ‘open is asserted. If the queue becomes full at any point in
the transmission, the ‘wait state is entered and the ‘wait signal is asserted on
status-out, so that no more data will be sent from upstream. When space
becomes available, the ‘open state is re-entered, and ‘open is sent upstream to
resume the flow of data.

When a packet terminator arrives, if the queue is not full, the ‘done state
is entered and ‘free is asserted on status-out. If the queue is full, the ‘done-
wait state is entered first, which asserts ‘wait until space is available in the
queue. Then the ‘done state may be entered. When the terminator ii actually
in the queue, the ‘free state is entered, and the fife-buffer is ready to receive
another packet.

Not shown in the state diagram is the timeout procedure mentioned in Sub-
section 4.1. This is because the details of the timeout procedure are dependent
on the implementation. The intent of the timeout is to indicate when the fifo-
buffer has been waiting an unusually long time for the packet terminator. When

14

a timeout occurs, the ‘abort-request signal is sent upstream through status-
out. The fifo-buffer behavior then continues as described above.

4 . 5 Net-Input
The downstream component from a net-input is a router, but the values on the
status-in port are actually originated from a downstream net-output and are
passed through the router. If the net-input is local (connected to an operator),
its upstream component is a fifo-buffer; otherwise, its upstream component is
a net-output (on a logically neighboring site). The states of the net-input are
shown in Table F, and the transitions are illustrated in Figure 8. A state
variable, connection, is used to save the type of the current downstream con-
nection.

Table F: States for net-input.

The net-input begins in the ‘free state, with all its downstream connections
free. When the front end of a packet arrives on packet-in, it is sent directly to
the router, which attempts to make the proper connection based on the packet’s
target list. If the router is successful, it makes the appropriate connections, be-
gins transmission of the packet to the connected net-output(s), and returns one
of the following values on connection, which indicates the type of connection
that was made:

‘unicast All targets of the packet reside on a single site.

‘passthru The packet has multiple sites in its target list, but has only been
sent to a single net-output. This type of connection indicates that the
local fifebuffer was not available to accept a copy of the packet.

15

ARM

‘first

CPopen

DA/

\ I ARMPopen , ARMPopenl /

TR/

Zondition
DA
S
C
W
0

ARM
TR

WTR
NW

I Meaning I
Data arrives.
‘Seek returned (try again).
Connection obtained.
‘Wait rec’d on status-in.
‘Open rec’d on status-in.
‘Abort-request rec’d & this is a multicast
Terhinator received.
Terminator and ‘wait received.
Non-wai t sienal rec’d on status-in.

Figure 8: Net-input state diagram.

16

en

‘all-remote The packet has multiple sites in its target list, and the router
has made connections to multiple net-outputs. The packet’s target list
contained only non-local sites.

‘some-local The packet has multiple sites in its target list, and the router
has made connections to multiple net-outputs. The packet’s target list
included the local site.

If the connection attempt is unsuccessful, because of busy channels, for ex-
ample, the router returns ‘seek, which prompts the net-input to try again. If
the number of unsuccessful attempts exceeds a threshold, the router sends the
packet to the local net-output- the local operator will retransmit the packet if
any destination in the target list is not local.

A successful connection causes the net-input to enter the ‘open state and
to assert ‘open on status-out. At this point, several possible transitions can
occur. We will first consider the commit case, where no ‘abort-request is re-
ceived and the net-input successfully delivers the packet. Later, we will consider
the abort case.

4.5.1 Commit Mode

Ignoring ‘abort-request for the moment, two possible events can occur: (1) the
packet terminator arrives on the packet-in port, or (2) one or more downstream.
net-outputs send ‘wait over the status-in port. The ‘wait state is entered if
a ‘Gait signal is reieived; the ‘done state is entered if the packet terminator
is received; the ‘last state is entered if both are received. Figure 8 shows the
possible transitions among these states. Whenever a ‘wait is received from
downstream, ‘wait is asserted on status-out to halt the information flow from
upstream, as well. The wait condition is cleared when an ‘open signal appears
on status-in. This indicates that all the downstream net-outputs are ready to
receive the packet terminator and causes a transition from ‘wait to ‘open, or
from ‘last to ‘done.

If the net-input is in the ‘done state and ‘open is received from downstream,
the appropriate packet terminators are sent according to the type of connection:

‘unicast or ‘passt hru: An :end-of-packet
net-output (local or remote).

is sent to the single downstream

P ‘all-remote: An :end-of-packet is sent to all the non-local connected net-
outputs; :abort-packet is sent to the local net-output, because the oper-
ator should discard the packet rather than attempt to re-send it.

‘some-local: An :end-of-packet is sent to all non-local connected net-outputs;
:local-end-of-packet is sent to the local net-output, so that the operator
will ignore the remote addresses in the packet’s target list.

17

After the packet terminator has been sent out, all connections to net-outputs
are released, the ‘free state is entered, and the net-input is available to receive
the next packet.

4.5.2 Abort Mode

Abort mode is entered if an ‘abort-request is received from downstream be-
fore the packet terminator is sent downstream, and the current transmission is
a multicast (‘all-remote or ‘some-local). (‘Abort-request is ignored on a
non-multicast transmission. From this point, we will assume a multicast trans-
mission.)

If the ‘abort-request is received before the packet terminator (i.e., while
in ‘open or ‘wait), the ‘abort state is entered. When the packet terminator
arrives, the net-input enters the ‘fin-abort state. Alternatively, the ‘abort-
packet could arrive after the packet terminator, in which case ‘fin-abort is
entered directly from ‘done or ‘last.

Whenever abort mode is entered, the net-input sends an :abort-packet to .
all non-local connected net-outputs and disconnects them. They will, in turn,
pass the terminator downstream when possible. The only connection retained
is to the local net-output. When the local net-output is ready to receive the

_ packet terminator (i.e., ‘open is received on status-in), the net-input passes
on whichever type of terminator it received. The two cases are as follows:

:end-of-packet No upstream packets have been aborted, so it is the responsi-
bility of this site to abort the downstream transmissions and to re-transmit
the packet. Upon receiving the :end-of-packet, the operator will notice
some non-local addresses in the packet’s target list and will send it back
out into the network.

:abort-packet Some upstream site is aborting the multicast and will eventually
resend the packet. The operator on this site, then, is instructed to ignore
this packet.

The net-input then enters the ‘free state and releases the local connection,
ready to receive the next packet.

4.6 Router

The router is responsible for the following:

l Determining to which net-outputs a packet should be sent, based on its
list of target addresses, the system routing strategy, and the current avail-
ability of net-outputs; and

l Creating, maintaining, and deleting the connections between a net-input
and a set of net-outputs, including transmitting data and flow control
signals between them.

18

The router, unlike the other components, is not modelled as a finite state
machine-it is conceived as a priority network (implemented in combinational
logic, for example). Information about routing and active connections can be
thought of as residing in the tables shown in Table G.

Table Contents
preference- table For each logical output

direction, a sorted list of
net-outputs to be considered.

input-connection-table For each net-input, a list of
connected net-outputs.

output-connection-table For each net-output, its
connected net-input.

output-status-table For each net-output, its
transmission status. 4

Table G: Routing tables.

The first words of the packet are always the target list. As each target is
received, the router makes an appropriate connection to a net-output and sends
that address downstream. The routing (for’each target address) takes place in
a single communication cycle,g $0 there’is no additional delay introduced by the
router.

If there is only one target, the router makes the connection (see below) and
returns ‘unicast. If there is more than one target, the router checks the status
of the local net-output. If the status is ‘free, then the appropriate connections
are made and either ‘all-remote or ‘some-local is returned. If the local net-
output is not ‘free, then a single connection is made based on the first target
on the list (ignoring the other targets), and the returned connection value is
‘pass t hru.

Making a connection involves determining the logical “direction” (e.g., up
or down) of the target from the local site, then determining which net-output
should be used for that direction, and finally updating the connection tables
and starting the packet transmission.

Determining the logical direction depends on the network topology and is
usually straightforward. For example, a grid or torus requires only some arith-
metic comparisons between the target address and the local address to get Up,
Down, Right, Left, or some combination of these. A hypercube, on the other
hand, requires an exclusive-OR operation to see which bits in the destination
address are different than the local address. Equally simple operations can be
envisioned for most other network topologies, as well.

‘See Subset t ion 3.3.

19

Once the logical direction is determined, the router looks in the preference-
table for a list of net-outputs to consider. This table implements the system
routing strategy and is determined when the system is built. It lists, in de-
creasing order of preference, all the net-outputs that might be used to send a
packet in a given logical direction. The router checks all the status of each of
these, in turn, until an available net-output is found. If none is found, then the
connection fails, and ‘seek is returned to the net-input.‘O Examples of rout-
ing strategies which may be implemented by the routing table are (1) try all
net-outputs, starting with the closest to the target, (2) try only one net-output
(static routing), and so forth.

During the transmission, the router is responsible for passing flow control
information from the net-outputs to their connected net-inputs. If a net-output,
for example, asserts ‘wait on its status line, the router must relay that signal
to the net-input which is connected to it. Also, the router cannot pass the
net-input an ‘open signal until all of its downstream net-outputs are in a non-
wait state. The input-connection-table, output-connection-table, and
output-status-table are useful for these types of operations.

4.7 Net-Output

- The upstream component of a net-output is always a net-input. On the down-
stream side, the local net-output is connected to the fifebuffer which delivers
packets to the operator, while a non-local net-output is connected to a net-input
on a logically neighboring site. The net-output states are listed in Table H, and
the transitions are illustrated in Figure 9.

State Meaning
‘first Packet received, but not yet sent.
‘open Packet transmission in progress.
‘wait Downstream requested wait.
‘done Terminator received, but not sent.
’18s t Downstream requested wait after termi-

nator received, but before it was sent.
‘free Terminator sent, ready to receive next

packet.

Table H: States for net-output.

The net-output is initially in the ‘free state. When a packet arrives on
packet-in, it enters the ‘first state. If its downstream component (either a

loNote that, in the case of a multicast, partial finds (in which only a subset of the targets can
be assigned to net-outputs) muat be forced to fail (by sending an :abort-packet terminator
over the connections made thus far), or the operator would not know which parts of a multicsst
to retransmit in case of an abort.

20

AMabort-request NW I’Ji-se

ARfabort-request

Condition.L Meaning
DA Data arrives.
FW ‘Free or ‘wait rec’d on status-in.
W ‘Wait rec’d on status-in.
0 ‘Open rec’d on status-in.

AR
TR

‘Abort-request rec’d on status-in.
Terminator received.

WTR Terminator and ‘wait received.
AP
NW

:Abort-packet terminator received.
Non-wait signal rec’d on status-in.,

Figure 9: Net-output state diagram.

21

net-input or a fife-buffer) has placed ‘wait on the status-in port, the net-
output asserts ‘wait on status-out, which inhibits the upstream net-input
from sending anything else. When the downstream component becomes ready
to accept the packet, it will assert ‘free.

When a ‘free signal is received from downstream, the net-output transmits
the packet and enters the ‘wait state, asserting ‘wait on status-out. The
net-output remains in the ‘wait state until an ‘open signal is received from
downstream.

The net-output then enters the ‘open state, sending an ‘open signal to
the upstream net-input (via the router). Things then continue much the same
as in the net-input. ‘Wait is entered if the downstream component requests
a wait and the packet terminator has not arrived. ‘Done is entered when the
packet terminator arrives; ‘last is entered if a wait is requested from downstream
after the terminator arrives. If an ‘abort-request is received from downstream
before the packet terminator arrives, it is relayed to the upstream net-input.
If the packet terminator has already arrived, then the ‘abort-request was
premature and is ignored.

Then the net-output sends the packet terminator, when the downstream
component is ready to accept it, and enters the ‘free state. When the down-
stream net-input accepts the packet terminator and responds by asserting ‘free,

- the net-output asserts ‘free on its status line. The upstream net-input will then
release the connection, and the net-output becomes available to receive the next .
packet.

5 CARE Implementation
In this section, we provide an overview of the implementation of the proto-
col in the CARE simulation system. CARE is a library of functional modules
and intrumentation built on top of an event-driven simulator [7], which is used
to investigate parallel architectures. The typical CARE architecture is a set
of processor-memory pairs (sites) connected by some communications network,
though it can also be configured to represent a system of processors communicat-
ing through shared memory. The behavior and relative performance of CARE
modules can easily be changed, and the instrumentation is flexible and useful
in evaluating the performance of an architecture or in observing the execution
of a parallel program.

Flavors -an object-oriented extension of Zetal-CARE is implemented using
isp [8]. Roughly speaking, each component described in Section 2 is implemented
as an object (an instance of a flavor). (One notable exception is the router-its
functions and tables are assumed by the site object, rather than implemented
as a separate component. Also, the memory at a site is not explicitly repre-
sented as an object, but exists implicitly in the simulator.) Associated with
each object is a set of instance variables, used to hold state information, and

2 2

a set of mehxis, procedures used by the object to respond to messages from
other objects. l1 The instance variables loosely correspond to the ports and
state variables used to describe the protocol in Section 4. In particular, each of
the components which are described in terms of a state machine has a instance
variable, packet-status, which hold the current state of the component.

These objects communicate through shared structures called Gas, which
represent unidirectional data paths. These are the “wires” which connect the
components’ “ports.” Asserting a value on the sending end of the via imme-
diately (in simulated time) triggers an event for the object at the other end.
Therefore, a via can be considered a zero-delay wire which can transmit any
arbitrary value (not just single bits).

The simulation is functional,12 rather than circuit-level, and event-driven,
rather than clock-driven, because cycle-by-cycle simulation of a parallel machine
would be extremely time-consuming, especially when the number of processors
is large. For this same reason, we do not wish to model the transmission of
a packet one word at a time. Instead, a packet is represented by two distinct
parts, one representing the contents of the packet, and the other representing
the packet terminator. In the following discussion, packet will refer to the first
part (representing the front edge of a “real” packet), and packet terminafor will
refer to the terminator part.

In the simulation environment, expiicit packet terminators allow us to (1)
implement the deadlock avoidance mechanisms described earlier, and (2) model
the transmission of a packet through the network in terms of its front edge and
its back edge. In this way, if the time between the transmission of the packet
(front edge) and its terminator in the simulator is the same as the transmission
time of the packet in a real machine, we can accurately model the transmission
of the packet without explicitly representing every word.

In the following subsections, we describe how the protocol is implemented
in terms of objects, packets, and packet terminators.

5.1 Operator

The time required to transfer a packet from the operator to a fifebuffer (one
word at a time) would be proportional to the size of the packet. To model this,

l1 Objects and messages are only a software tool used by the simulator. Sending messages
between objects in the simulator has no particular correspondence to sending paeketr between
components in the target machine.

12The simulation is functional, in the sense that not every aspect of the hardware is sim-
ulated in detail. Some aspects are simulated by register transfer level behavior, while other
aspects have only a functional description. For example, the execution of application code by
the evaluator is not simulated at all-it is directly executed by the host machine. However,
timing information for the execution of application code, based on measurements and esti-
mates, is used to mure that the simulation is reasonably faithful to the execution of a “real”
machine.

2 3

the operator delays an appropriate time between sending a packet and sending
its terminator.

Because storage in the simulated fifo-buffer is in terms of packets, rather than
bytes13, there will be no wait signals received from the downstream fife-buffer.
Therefore, merely delaying for a time proportional to packet size is sufficient.

A CARE operator receives a packet as described in the protocol. Note that
the time between receiving the packet and its terminator is dependent on the
size of the packet plus any delays encountered on its transmission path.

5 . 2 Fifo-buffer
In the simulator, the amount of storage in the fifebuffer may be set at run
time I4 Each packet or packet terminator takes up one space in the buffer,.
no matter what its actual size. In particular, the buffer cannot fill up in the
middle of accepting a packet, so the ‘wait state will never be entered. Thus
the operator, which feeds data into a fife-buffer, does not have to deal with any
waiting time in the middle of transmitting a packet, as described above. This
simplifies the implementation of the protocol, at the expense of a slight loss of
fidelity in the simulation.

On the output side, however, the simulated fifo-buffer is more complex than
_ the protocol indicates. If a packet is being output from the queue, the fifo-

buffer must introduce a delay between the packet and its terminator to model
the packet transit time. However, the transit time is not merely proportional
to packet size, because downstream blocking could cause arbitrary delays in the
transmission.

The simulated fifo-buffer output transitions are shown in Figure 10. In this
case, the transitions are labelled with conditions and actions, rather than flow
control signals. Some additional instance variables for the fife-buffer are required
to implement the output,function. They are:

1. transmission-status: State of packet output.

2. delay: Accumulated time spent waiting.

3. last-wait: Event time when last ‘wait was received.

Initially, transmission-status is ‘free. If the downstream component re-
quests data (status-in goes to ‘free) and the queue is not empty, the top of the
queue, which must be a packet, is placed on the packet-out via, delay is set
to zero, and transmission-status goes to ‘busy. Also, transmission-status
is scheduled to go to ‘done at a time that is proportional to packet size.

13See subsection 5.2.
l4 By setting the care:***buffer-size*** variable to any positive integer, or to nil, which

means “unbounded.”

2 4

DONE/

WDlbusy

Condition Meaning
F ‘Free rec’d on status-in.
W ‘Wait rec’d on status-in.
0 ‘Open rec’d on status-in.

DONE ‘Done event.
WD ‘Wait rec’d and

[delay nonzero OR last-wait non-nil}.
OND ‘Open rec’d and

[delay = 0 AND last-wait = nil].

Action Meaning
send Send packet, schedule ‘done for

now + transmission-time.
lwnow Last-wait = now.
delay Delay = delay + (now - last-wait);

Last-wait = nil.
busy Schedule ‘done for now + delay;

Last-wait = nil.
term Send terminator.

Figure 10: Implemented fifo-buffer output state diagram.

25

“Viaa must connect two distinct objects; status-in may be connected to any group of
net-outputs at a given time, so using a via i8 not appropriate.

2 6

If no ‘wait signals are received from downstream while the transmission is
‘busy, then the transmission will be done after the packet transit time has
elapsed, and the packet terminator will be sent as soon as the downstream
component is ready to receive it.

However, if ‘wait is received during ‘busy, last-wait is set to the current
time and waiting is set to t. If ‘open is received during ‘busy, the time spent
waiting is added to delay and waiting is set to nil.

If ‘open is received when transmission-status is ‘done, and delay is
non-zero, then ‘busy is entered again, ‘done is scheduled for the current time
plus the accumulated delay, waiting is set to nil, and delay is set to zero.
Alternatively, if waiting is t and delay is zero, then ‘done has occurred in the
middle of a wait; ‘busy is entered, waiting is set to nil, and ‘done is scheduled
for the current time plus the difference between now and last-wait.

Finally, when ‘transmission-status is ‘done, delay is zero, and waiting
is nil, the top item of the queue (which must be a packet terminator) will be
sent. Then transmission-status becomes ‘free, and the fife-buffer is ready to
respond to the next data request.

All of this is to ensure that the time between the packet and its terminator is
dependent on the packet size plus any network delays along its path. The other
components, net-inputs and net-outputs, do not require this added complexity

. . on the output side. They will either maintain the current time separation or
add to it due to downstream blockages, so there is no chance of their sending
the packet terminator prematurely.

5.3 Net-Input
The main differences between the implementation and protocol concerning the
net-input stem from the fact that there is no explicit router in CARE. Each net-
input, then, communicates with the ~iic which owns it (see Section 2), rather
than with a downstream router. The communication is done by passing Flavors
messages, rather than asserting data on vias-thus, there is no packet-out
instance variable, and status-in is not a via.15

P

To connect to net-outputs, the net-input sends a :connect message to the
site. The site then performs the routing and makes the connections as described
in Subsection 4.6, returning either ‘seek or the type of connection made. Also,
the site relays flow control information from the connected net-outputs by set-
ting status-in.

Other site methods used by the net-input include :disconnect-remote,
which releases the connections to all net-outputs except the local one, and
:send-all, which transmits a packet or terminator to all connected net-
outputs. (Send-local and :send-remote transmit to a subset of connected

C Popen

TR/

Condition i Meaning
DA
S
c
W
0

ARM
TR

WTR
NW

Data arrives.
‘Seek returned (try again).
Connection obtained.
‘Wait rec’d on status-in.,Open rec’d on status-in.
‘Abort-request rec’d & this is a multicast
Terminator received.
Terminator and ‘wait received.
Non-wait signal rec’d on status-in.

Figure 11: Implemented net-input state diagram.

1

en

27

net-outputs.)
There is a potential software race in the simulator, which is avoided by

adding an additional state in the net-input state machine description. If the
net-input is in the ‘done state and notices that none of the downstream net-
outputs has asserted ‘wait, it sends the packet terminator. However, there
might be a simulation event scheduled for the same time slot in which one of
the net-outputs receives a ‘wait and propagates it upstream. In a real machine,
this means that the terminator would not have been sent, but there is no way
to “undo” the first action by the simulator.

Thus, instead of sending the terminator from the ‘done state, the net-input
schedules a transition to the ‘final state two event-times later. This allows time .
for all the possible ‘wait signals to be handled during the same event. When the
‘final state is entered, the state of the connected net-outputs is again examined.
If none of them are blocked, the packet terminators are sent immediately (in
simulation time), and the ‘free state is entered. Any ‘wait signal which could
arrive at that same instant would be too late to block the transmission in a real .
machine. The implemented version of the net-input state machine is illustrated
in Figure 11.

5.4 Router 0
As mentioned earlier, there is no explicit router object in the CARE implemen-
tation. There are, however, site functions and methods which perform routing
in response to a :connect message sent by a net-input.

The :find-direction method determines the logical direction of a target,
given its address. This is defined as a method, rather than a function, because
this operation is topology-dependent. In Flavors, we can define a specialized
siie object for a particular topology by changing this one method and inheriting
the remaining behavior from the generic site definition.

The setup-targets function examines the target list, makes the connections,
and copies the packet, as needed. Finally, the make-connections function is
resposible for actually setting up connections and sending the packet down-
stream.

5.5 Net-Output

P

In the CARE implementation of the net-output, there is no explicit status-
out instance variable for sending flow control information upstream. Instead,
messages are sent to the site, as above, which updates the status table for the
particular net-output and relays the information.to the connected net-input.
There are :wait, :open, :abort-request and :free methods defined for the
site for this purpose. Also, because packet input can come from any of the
net-inputs on the site, packet-in is not implemented as a via.

28

Finally, on the initial transition into the ‘wait state (from ‘first) the net-
output sends a :first-wait message, which updates the status table but does not
trigger an event for the upstream net-input. This prevents unnecessary simula-
tor events used to propagate the ‘wait signal upstream; they are unnecessary
because the net-input will not send anything else until the net-output sends an
‘open signal.

5.6 Results
Variants of this protocol have been used for many CARE simulations over the
course of several months. Though the performance has not been extensively
measured, the protocol appears to offer reasonable performance over a range of
network loads. Deadlocks and lost packets do not occur, even when the net-
work is extremely congested. Thus, our experience with the protocol indicates
that it offers efficient and robust one-to-one and one-to-many interprocessor
communication.

6 Conclusion
A protocol for high-performance interljrocessor communication has been pre-
sented. This protocol supports dynamic, cut-through routing with local flow
control, which allows high-throughput, low-latency transmission of packets. In
addition, multicast transmissions are allowed, in which a packet is sent to several
targets using common resources as much as possible.

The protocol also prescribes mechanisms for detecting and avoiding deadlock
conditions due to resource conflicts during multicast. In particular, .a copy of
the packet is saved before it is split, special packet terminators are used to
abort transmissions and trigger retransmissions, and random timeout intervals
are used to detect potential deadlock conditions.

Finally, the implementation of this protocol in the CARE simulation sys-
tem is described. Explicitly representing a packet as the front edge and the
terminator allows accurate modelling of word-by-word packet transmission in
a functional, event-driven simulator. Also, the success of the implementation
indicates that this is a reasonable protocol for interprocessor communication.

References
[l] Tse-yun Feng. A survey of interconnection networks. Computer, 12-27,

December 1981.

[2] V. Ahuja. Design and Analysis of Computer Communication Networks.
McGraw-Hill, 1982.

2 9

[3] P. Kernami and L. Kleinrock. Virtual cut-through: a new computer com-
munication switching technique. Computer Networks, 3:26’7, 1979.

[4] M. Arango, H. Badr, and D. Gelernter. Staged circuit switching. IEEE
Transactions on Computers, G-34(2):174-180, February 1985.

[5] P. Kermani and L. Kleinrock. A tradeoff study of switching systems in
computer communication networks. IEEE Transactions on Computers, C-
29:1052, December 1980.

[S] Richard W. Watson. Distributed system architecture model. In Dis-
tributed Systems-Architecture and Implementation, chapter 2, pages 10-43, . .
Springer-Verlag, 1981.

[7] Bruce A. Delagi, Nakul Saraiya, Sayuri Nishimura, and Greg Byrd. An
Instrumented Architectural Simulation System. Technical Report KSL-86-
36, Knowledge Systems Laboratory, Stanford University, January 1987.

[8] Sonya Keene and David Moon. Flavors: object-oriented programming on
Symbolics computers. In Common Lisp Conference, 1985.

30

