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Abstract

An intelligent system reasons about--controls, explains, Iearns about--its actions, thereby

improving its efforts to achieve goals and function in its environment In order to perform
effectively, a system must have knowledge of the actions it can perform, the events and states

that can occur, and the relationships among instances of those actions, events, and states. We

represent such knowledge in a hierarchy of knowledge abstractions and impose uniform
standards of knowledge content and representation on modules within each hierarchical level.

We refer to the evolving set of such modules as the BB* environment. To illustrate, we

describe selected elements of BB*: (a) the foundational BBl architecture: (b) the ACCORD
framework for solving arrangement problems by means of an assembly method: (c) two

applications of BBl-ACCORD, the PROTEAN system for modeling protein structures and the
SIGHTPLAN system for designing construction-site layouts: and (d) two hypothetical multi-
faceted systems that integrate ACCORD, PROTEAN, and SIGHTPLAN with other possible
BB* frameworks and applicatjons.



. 1. Overview:  Four Themes

wHuman intelligence depends essentially on the fact that we can represent
in language facts &bout our situation, our goals, and the effects of the
various actions we can perform.” John McCarthy [35]

“In the knowledge is the power? Edward A. Feigenbaum [14]

“The fact, then, that many complex systems have a nearly decomposable,
hierarchic structure is a major facilitating factor enabling us to
understand, to describe, and even to ‘see’ such systems and their parts.”
Herbert A. Simon [48] ’

We be&in with a premise: An intelligent system reasons about its actions. Of course, we do

not mean to suggest that a system should engage in extended contemplation of every one of its

computational and physical actions, but rather= (a) that it can reason about many of its actions:

’ (a) that it does reason about them much of the time; and (c) that its reasoning improves its
“efforts to achieve goals and otherwise function in its environment.

A system might reason about its actions in various ways and with various consequences (see
Figure la) . For example, a system might control its actions: decide which actions to perform

at particular points in time. Control reasoning can affect the resources the system consumes in
pursuing a goat. the side effects it produces, and the probability of achieving its goal
[8, 9, 13, 17, 23, 26, 271. As a second example, a system might explain’ its actions: describe

the ways in which the actions it intends to perform or has performed serve its goals.
Explanation typically serves social functions, such as teaching another individual how to ’
perform a task or persuading another individual that one is performing the tkk competently

15, 6, 21, 22). As a third example, a system might learn about its actions: modify its Tbility
or inclination to perform particular actions in appropriate circumstances. Learning enairles the

system to expand and improve its capabilities [24, 32, 33, 35, 38, 39, 451. While a system could
perform many other important types of reasoning about its actions, we focus on control,

explanation, and learning.
L
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Figure L Four Themes. (a) An intrlllgrnt  system reasons about Its actions. The BBl
architecture provides knowledge structures and a basic mechanism for control. explanation, and
laming (b) To pufom  effectively, a system must hare knowledge abour  irr actions.
Frameworks explicitly represent knowledge about task-specific actions, eventx, and stata and
the relationships among them. (c) Knowledge is reprcsenred  In an absrractlon  hierarchy. The
BB. environment comprises an evolving body of knowledge: the BBl architecture, task-specific
frameworks, such as ACCORD, and domain-specific applications, such as PROTEAN (see
Table 1). Conversely. an application system layen application-specific knowledge on a
framework, which iayen task-specific knowledge on the BBl architecture. (d) Knowledge
modules within a lcrcl  saris/y uniform rrandards of knowledge conrent  and representation. As
a consequence. BB” achieva  open systems integration: Independently constructed modules can
be fully integrated in implementation and reasoning.
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Given the premise above, we put forth a hypothesis: In order to perform effectively, an
intelligent system must have knowledge of its actions. It must have knowledge of the actions

it can perform, of the events and states that can occur, and of the relationships among

particular instances of these actions, events, and states. For example, it must know: the actions
that are relevant to its current task; the enabling conditions required by particular actions; the

cos& reliability, and side effects of particular actions; the internal and external events and

states whose occurrences contribute to or hinder performance of its task; the power of

particular actions to bring about particular events and states: and the power of external forces
to bringabout particular events and states.

In our work, we formulate explicit, interpretable representations of these and other kinds of

knowl,edge (see Figure lb) as a foundation for intelligent behavior. Thus, we define

“knowledge” broadly, as “that which is known.“* In fact, most computational objects in our

systems (all except the basic architectural cycle, low-level data-retrieval functions, and user
interface) appear as elements of a well-structured, modular, declarative knowledge base. As

such, they are amenable to knowledge-level operations, such as acquistion,  modification,

. verification, deduction, induction, instantiation, and comparison. Moreover, we can

incrementally improve almost any aslject of a system’s’ behavior by extending the depth or

extent of its knowledge. We have begun to construct an expanding edifice of such knowledge
for a variety of problem cIasses, problem-solving methods, and subject-matter domains.

In constructing this edifice, we emphasize a design principle: We represent knowledge in an
abstraction hierarchy. Although “true” knowledge abstractions probably lie on a continuum, we
currently focus on three particular levels--architecture, framework, and application.

At the most general level, we define an architecture to comprise: (a) the set of basic

knowledge structures used to represent all actions, events, states, and facts in a system; and (b)
a mechanism for instantiating, choosing, and executing actions. Architectural knowledge is

independent of problem class, problem-solving method, and subject-matter domain. For
eftample, the blackboard control architecture [23]. which is implemented as the BBl system

discussed below, supports applications as varied as protein-structure analysis [4, 25, 291, irocess
planning [413, and autonomous vehicle control [43]. In addition, BB.l provides specific

knowledge structures and a powerful mechanism t0 support intelligent. control, explanation,

learning.

%he American Heritage Dictionary of the English Language, 1981, “Knowledge,” definition # 3.
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At the intermediate level, we define a framework as the set of knowledge structures used to
represent actions, events, states, and facts involved in performing a particular task. That is, a
framework comprises the knowledge structures involved in solving a particular class of

problems with a particular method, but independent of subject-matter domain. For example,
the arrangement-assembly framework, which is implemented as the ACCORD knowledge base
discussed below, embodies the knowledge used to solve arrangement problems by means of an

assembly method. However, the knowledge in ACCORD applies to arrangement-assembly tasks
in such varied subject-matter domains as protein-structure analysis, construction-site layout,

and travel planning.

At the most specific level, we define an application as the set of knowledge structures that
instantiate particular actions, events, states, and facts to solve a particular class of problems by

means of a particular method in a particular subject-matter domain. For example, the

PROTEAN system [4, 25, 291 embodies the knowledge used to determine the three-dimensional
structures of proteins--that is, to solve arrangement problems in the domain of protein

chemistry by means of the assembly method.
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As iltustrated in Figure lc (see also Table l), BBl, ACCORD, and PROTEAN are elements
of a knowledge abstraction hierarchy. BBl can accommodate a variety of modular frameworks,
one of which is ACCORD. Similarly, ACCORD (and each other framework) can accommodate

a range of modular applications, one of which is PROTEAN. (As Figure lc shows, many
current applications are implemented directly in BBl.) We refer to the evolving set of such

modules as the BB* environment.
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Conversely, a given application system composes modules from the BB* environment in

several layers of implementation (see Figure lc). For example, PROTEAN’s knowledge about

constructing proteins instantiates and configures a number of ACCORD’s more general
knowledge structures for assembling arrangements. Similarly, ACCORD’s knowledge structures

instantiate and configure a number of BBl’s still more general knowledge structures about
problem-solving, control, explanation, and learning. When PROTEAN goes to work on a
problem, its actions are interpreted through these several layers of implementation.

In adapting this widely accepted software engineering principle-generally referred to as
modulai and layered design [18, 19, 50]--to  intelligent systems, we achieve several advantages.
Firs& each abstraction level offers certain representational and computational services to higher
levels, while shielding them from the details of implementation. Second, we can understand
complex systems in terms of their simpler modular components. Third, we can investigate and
test alternative implementations of modules at one level independently of the modules at other
levels. Fourth, we can eliminate levels from applications that do not require their services.

Fifth, we can achieve additive an.4, in some cases, multiplicative improvements in efficiency
across levels [44]. Finally, we can apply general knowledge modules in an appropriate variety.

. of contkxts  and configure selected lower-level knowledge modules for a variety of specific

purposes. *

We impose one additional constraint on our knowledge abstraction hierarchy: Modules
within a level must meet uniform standards of knowledge content and representation..
Accordingly, we adopt a single architecture, BBl. Although BBl accommodates multipie

frameworks, each of them must provide the same core categories of knowledge within a

specified representation scheme. Similarly, each application must provide another set of core

knowledge categories within another specified representation scheme.

This constraint offers several related advantages. First, we can define new application systems

by configuring and augmenting existing knowledge modules within a level. Second, we can

identify and eliminate redundancy in the contents of independently acquired modules within an

application system. Third, we can organize modules in any appropriate organizational-scheme.

In particular, we can organize them in a conventional “pipeline,” such that a succession of

modules receive, process, and pass on information. Alternatively, we can organize them to

operate more intimately: operating simultaneously, sharing intermediate results, and affecting
.

one another’s behavior. In fact, a system can reason about how to select and organize mod;l!es

to solve new problems. Fourth, we can superimpose generic capabilities for control,
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explanation, and learning upon the designated configurations of modules. In sum, uniformity

of content and representation within a level allows us to achieve the conventional capabilitiy
of open systems interconnection [53] and to strive toward a more ambitious capability that we

will call open systems integration. It raises the possibility of incrementally increasing the

quantity and variety of knowledge within an application system, while preserving a well-

structured foundation and a coherent face for the system as a whole (see Figure Id).

Our objectives in this work are two-fold, First, we wish to develop a rich and varied family

of reusable modules for building intelligent systems. System builders should be able to build
new systems by configuring appropriate subsets of these modules in appropriate organizational
schemes. Where new modules are needed, system builders should be able to introduce them into
the existing family and integrate them into new systems with ease. The resulting systems should
be well-structured, perspicuous, modifiable, and extensible. Second, we wish to develop a theory
of intelligent systems. The theory must provide: (a) a great range of problem-solving skills,
including the ability to solve a variety of problem classes with a variety of problem-solving
methods in a variety of subject-matter domains; (b) the ability to apply any available
knowledge to improve problem-solving performance: and (c) the ability to reason about-
control,  explain, and learn about--action. We believe that our approach to developing the BB*
environment enables us to progress toward both objectives.

The remainder of this paper develops and substantiates the four themes introduced above and

. displayed in Figure 1 as follows. Section 2 briefly reviews the BE1 blackboard control

architecture and its capabilities for control, explanation, and learning. Section 3 defines the

arrangement-assembly task, using PROTEAN as an illustration. Section 4 presents the

arrangement-assembly framework, “and its implementation as the ACCORD knowledge base.

Section 5 describes the BBl framework-interpreter,  which allows BBl to accommodate any

framework that meets the standards of knowledge content and representation illustrated by
ACCORD. Section 6 describes the layered architecture of PROTEAN and illustrates control,

_explanation,  and learning. within a BB* application system. Section 7 discusses knowledge

engineering within the BB* environment. It describes the design and implementation of another.
arrangement-assembly system (the SIGHTPLAN system [Sl J for designing construction-site

layouts) and examines the applicability of BBl-ACCORD to arrangement-assembly tasks in

other domains. Section 8 introduces a new class of multi-faceted  systems to illustrate BB*‘s

capability for open systems integration. Section 9 discusses the current state of the BB*

environment and our plans for extending it. Section 10 highlights the major results of the

paper.
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2. BBl: An Architecture for Control, Explanation, and Learning

2.1 Overview of BBl
BBl provides a uniform blackboard architecture for systems that reason about their own

actions as well as about particular problems and solutions. In a BBl system, functionally
independent knowledge sources cooperate to solve problems by recording and modifying

solution elements in a global data structure called the blackboard. A system may have three

classes of knowledge sources. Domain knowledge sources solve domain problems on a domain
blackboard and send and receive messages along input/output channels. Control knowledge
sources construct control plans for the system’s own behavior on a control blackboard.
Learning knowledge sources modify knowledge sources and facts in the system’s knokledg’e
base. All knowledge sources operate simultaneously and, when triggered; compete for scheduling

priority. BBl also provides an explanation capability by which a system shows how its actions
fit into its control plan. Figure 2 illustrates the BBl execution cycle.

Since we have discussed BBl’s knowledge structures and procedures in detail elsewhere [23],

we do not repeat that material here. Instead, we briefly characterize BBl’s capabilities for

‘control, explanation, and learning.
.
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c

Figure 2 The BBl Blackboard Conuol Archicccturc The  BBl execution cycle comprises
three steps (a) t%e tMe?prrrrr execute3 the action Of one knowledge source. Depending upon
whether the knowledge source b a domain. control. or learning knowledge source, its action
changes the contents of the domain or control blackboard or the knowledge base. (b) The
blackboard changes satisfy the conditions of other domain, control, and learning knowledge
sourcts.  The agenda-manager ad& corresponding KSARs  (knowledge source aerivarion

records) to the agenda. (c) The rcheduier  rates each KSAR on the agenda against the current
control plan and, using a scheduling rule that is recorded on the control blackboard. chooses
one KSAR to execute iu action. Unless it has been instructed to operate autonomously, the
scheduler also invites the user to request *an explanation for  the chosen action. lo rquest any
of several other kinds of informarion. or 10 overrIde the scheduler’s chosen action with another
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2.2 Control Reasoning in BBl
.

BBl provides a framework in which control knowledge sources incrementally construct an
explicit control plan, for the system’s own actions, on the control blackboard. Decisions at high
levels of abstraction prescribe general classes of actions to be performed during relatively long
problem-solving time intervals, while decisions at low levels prescribe more specific classes of
actions to be performed during relatively short time intervals. Thus, BBl supports a kind of
hierarchical planning [16, 15, 46, 371 with several important differences.

First, hierarchical planning systems typically refine selected plans to sequences of specific

actions to be performed on specified sequences of problem-solving cycles. By contrast, a BBl
wtem can refine selected plans to any desired level of specificity. For example, a system might

refine its plan to a sequence of action classes, where each class is characterized by a set of

desirable attribute-value relations. It would perform the “best” actions  in each class during an

open-ended problem-solving time interval that begins when a specified control state occurs and

terminates when a specified solution state is achieved

Second, hierarchical planning systems typically formulate complete plans prior to beginning

plan ezecution. By contrast, a BBl system can--and generally does--construct its plan
iircrementally  during plan execution, taking account of the results of previously executed

actions in its reasoning about subsequent plan elements. For example, a system ordinarily

would not generate its second planned action class until after it had achieved the goal of the
first action class. It might use solution elements established by actions in the first class to

determine some of the desirable attribute-value relations in the second class.

Third, hierarchical planning. systems typically formulate a single, integrated plan for the. .
problem at hand. By contrast, a BBl system can formulate multiple plans, of idiosyncratic

hierarchical depths, for overlapping aspects of the problem and pursue them simultaneously.
For example, a system might adopt and begin pursuing a comprehensive plan for the entire
problem at hand. At some point during its problem solving, the system might notice an

iifrequent, but significant intermediate solution state. It might formulate a local plan that
specifically addresses that solution state and pursue it concurrently with its larger plan. c

Fourth, since BBl generates its control plan incrementally and explicitly represents the
evolving control plan on the control blackboard, a system can interrupt, depart from, modify,
discard, or resume construction and execution of a plan in response to the dynamic situation.
For example, a system could begin implementing a comprehensive strategy for the problem at
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hand, but subsequently determine that it had chosen a suboptimal initial value for a key
strategic parameter. A control knowledge source triggered by this observation could “back up”
the system’s control reasoning, add a new heuristic to exclude’ the originally chosen value, and
then allow the system to resume its problem solving activities in accordance with the modified
control plan.

Fifth, in addition to the top-down inference method underlying skeletal planning, a BBl
system can incorporate a variety of other inference methods, such as= (a) bottom-up methods
that hypothesize the desirability of pending actions not explicitly favored by the current
control plan: (b) goal-directed methods that plan actions whose results would trigger actions
favored by the current control plan: and (c) opportunistic methods that plan actions. whose
resufts would improve a targetted aspect of the current solution.

Finally, a BBI system integrates reasoning about control of all domain and control actions
within a uniform blackboard architecture. Thus, for example, a system might record and
concurrently apply heuristics favoring control actions over domain actions along with its
strategic heuristics favoring particular kinds of domain actions.

. . 2.3 Explanation in BBl

23.1 Overview of Explanation

. BBl’s explicit representation of a system’s control plan provides a database for use in

explaining a system’s actions. Drawing upon this information, a system can explain what makes

particular actions feasible and how alternative actions serve its current control plan. It also can

explain the internal structure and rationale for its control plan.

BBl currently provides a graphics-based, menu-driven explanation capability. Different

menu options allow the user to request explanations that highlight different aspects of the

current control * plan. For example, the option focal context explains an action’s immediate

superordinate in the control plan and its preceding siblings. By contrast, the option complete

picture explains the entire control plan and all previously performed actions leading up *to the
decision to perform an action. These and other explanation options are described in more

detail in [47].
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2.4 Learning in BBl
BBl structures the data needed to learn new control strategies.  Learning knowledge sources

can observe relationships between KSARs, the events that trigger them, and the events that they

produce. They can observe similarities and differences among competing KSARs and determine

how those KSARs rate against the current control plan. They can exploit BBl data structures to
program new control knowledge sources.

For example, a generic learning knowledge source called MARCK [24] learns a new control

heuristic whenever a domain expert corrects an application system’s scheduling decision.
MARCK hypothesizes that the expert is using a control heuristic that distinguishes the action
he or she wishes to perform from the one the application system scheduled. MARCK compares
the two actions, identifies the key difference between them, and formulates a control heuristic
favoring the attribute preferred by the domain expert MARCK immediate posts the new
heuristic on the control blackboard, but also programs a new control knowledge to post that
heuristic in future problem-solving episodes.

We are working on another set of learning knowledge sources called WATCH [20]. These
knowledge sources observe a domain expert scheduling a system’s problem-solving actions and
recursively abstract a hierarchy of’ control heuristics that capture sequential regularities in the
expert’s scheduling decisions. Then they automatically program new control knowledge sources
that post and expand the hierarchy top-down during subsequent problem-solving episodes.
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3. The Arrangement-Assembly  Task

As discussed in section 1, a framework, such as ACCORD, is more specific than an
architecture, such as BBl, because it defines the actions, events, states, and facts involved in

solving a particular class of problems by means of a particular method. However, a framework

remains independent of subject-matter domain. In this section, we discuss an illustrative task-
the arrangement-assembly  task and illustrate it with PROTEAN’s protein-modeling task In

section 4, we discuss the framework we have developed for the arrangement-assembly task and

its implementation as the ACCORD knowledge base.

3.1 Arrangement Problems .
We define a problem class by its characteristic inputs and outputs. Aftangement problems

provide these  inputs: a set of symbolic objects, a context, and a set of constraints. They require
as output: one or more arrangement(s) of the objects in the context such that’ each arrangement
satisfies the constraints. Anangement problems arise in a variety of domains, such as furniture
arrangement, page layout, uavel planning, and task scheduling. For illustration purposes, we
focus on an arrangement problem attacked by the PROTEAN system.3

PROTEAN must identify the three-dimensional conformations of proteins. Its input data
specify a test protein’s primury and secondary structures (see Figure 3) and the atomic
architecture o’f each individual amino octd (see Figure 4). Its input data also specify a number

. .
of constraints (see Table 2). For example, there may be about SO-60 NOES (Nuclear
Ovcrhauser Effects), each of which indicates that two particular atoms in the protein are
within 3-10 angstroms of one another. There  may be evidence that certain atoms are accessible-.
to solvent, indicating that they lie near the molecular surface of the protein. There may be

information about the overall size, shape, and density of the protein molecule.

%he PROTEAN project is directed by Bruce Buchanan and Oleg Jardetzky.  The research team includes: Olivier

Lichtarge, Barbara Hayes-Roth. BNCC Duncan, Russ Altman, Jim Brinkley, Craig Cornelius. Alan Garvey,  and John

Bruggc



Figure 3. Primary and Secondary Structure of the &-Repressor Headpiece The 1st~
repressor’s  primury  sfrvcrurc ia a unique sequence of 51 amino acids, each of which is one of
the 20 unique amino acids. Ita sccondory at~ucfu~c includu  three ofpho-hafleer.  each of which
ia defined by a seria of repeated angular turns in the protein’s backbone. lntenpersed among
ita helica, the k-repressor headpiece has random coils. segments of the primary swcture that

show no identifiable regularity.

.*kir ‘plrak .

Figure 4. Two Amino Acidr  Alanine and Tyrosinc Aa these exampla  illustrate, each amino

acid has a common part, at which it bonds to neighboring amino acids t6 form the backbone
of a protein, and a unique sidechain that distinguirhea it from other amino acida.

Table 2. Some of the Constrainta Available to PROTEAN

Primary structure
Atomtc structure of individual amino acids
Van der Waals’ radii of indiwdual atoms
Peptide bond geometry
Secondary structure
Architectures of alpha-helices  and beta-sheets
Molecular size
Molecular shape
Molecular density
NOE measurements
Surface data
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Based on these input data, PROTEAN must identify the test protein’s tertiary sftucrure-the
folding of its primary and secondary structures in three-dimensional space (see Figure 5).
Because the problem is underconstrained, there may be many conformations that satisfy the
available constraints. PROTEAN must identify the entire family of such conformations.

Moreover, since proteins are known to be mobile in solution, PROTEAN must characterize
potential mobility in the conformations it identifies.

N-He!
.

C- Helix

Figure 5. The  Tertiary Structure of the SAC-Rcprersor Headpiac lho Iac-repressor’s lrrrforyc
afrvtrurr  defina the folding of its primary and secondary structures in three-dimensional
space to pack al1 component structure  into a globular molaulc
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3.2 The Assembly Method
We define a problem-solving method in terms of the knowledge a problem solver uses and

the operations it performs in order to solve a particular problem. In principle, a problem
solver could use any of several different methods to solve an arrangement problem (see Table

3). In practice, however, the problem solver may not have the knowledge necessary to apply a
given method. For example, PROTEAN cannot apply the selection, refinemenf,  modification,
or generation methods because it does not have knowledge of alternative protein structures, a
prototypical protein structure, almost-correct protein structures, or an algorithm for generating

complete protein structures. In the absence of such knowIedge, a problem solver must construct
hypothetical arrangements. The assembly method is one method for constructing arrangements.

Unlike the other methods in Table 3, the assembly method g be applied to any arrangement

problem.

Table 3. Methods for solving AmngeJment  Problems.

1. Select an arrangement that satlsfles the constraints from a pre-enumerated set
of alternatives.

Requires Knowledge ofz Alternative arrangements.
Example: A travel agent selects one of several tour “packages” that includes

all of the destinations requested by a client.

2 Refine a prototypical arrangement so as to satisfy the constraints.
Requires Knowledge of: A prototypical arrangement.
Example: An architect refines a prototypical U-shaped kitchen design to

include the special appliances requested by a client.

3. Modify  an almost-correct.  arrangement to satisfy the constraints.
Requires Knowledge of: Almost-correct arrangements.
Example: A tool desrgner modifies an existing tool to fit a new machine.

4. Generate a complete arrangement that satisfies the constraints.
Requires Knowledge ot: A procedure for generating complete arrangements.
Example: A psychologist uses a multi-dimensronal-scaling algorithm to generate

a spatlal model of subjects’ similarity ratings of related concepts.

5. Construct an arrangement that satisfies the constraints.
Requtres Knowledge of: A method for constructing arrangements.
Example: A person solves a jigsaw puzzle by placing pieces  one at a time.
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The basic assembly operation applies one or more constraints to determine where in the
specified context a particular object can lie given: (a) its current hypothesized position; (b) its
constraints with other objects or with contextual ‘features; and (c) the current hypothesized
position of those other objects or features. In performing this operation, the problem solver
must exploit some application-specific procedure for generating legal positions. For example,
PROTEAN currently uses a generate-and-test procedure [3], sampling space at some level of
resolution and identifying all locations in which a structure satisfies a given set of constraints.
Figure 6 illustrates PROTEAN’s application of constraints.

Figure 6. Constraint Application in PROTEAN. (a) PROTEAN assuma a fixed position for
helix1 and onchorr helix2. determining that helix2 can lie in any loc+on within the outlined
region and still satisfy its constraints with helixl.  (b) PROTEAN yokes helix2 and helix&
pruning the locations previously identified for these helicu  to include only those that satisfy
co.>strainu between them.
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The problem solver can perform its positioning operations in the context of one or more

partial arrangements (see Figure 7). Each partial arrangement includes a subset of the objects
and constraints specified in the problem. The problem solver designates one object in a partial

arrangement to occupy a fixed location and positions all other included objects relative to it.
Eventually, the problem solver combines two or more partial arrangements to form a complete
arrangement. . - ---

The problem solver may assemble partial arrangements at different levels of abstraction,
where objects at each level aggregate sets of constituent objects at the next lower level (see

Figure 8). The problem solver can use the positions of abstract objects to restrict the number
of possible locations for their constituent objects. Conversely, it can use the positions of
constituent objects to restrict the locations hypothesized for their superordinate objects.

PA1

Appends

Figure 7. A Partial Solution for the Lac-repressor Headpiece. Pal inefrrdc~ h&xl. helix2.
helix3.  and coil3. Helixl. which has been defined as the anchor of pal, onchorr helix2 and
helix3.  Helix2 upprnd~ coil3. which has no constraintx with the anchor. Helix2 and helix3 yoke
one another with the constraints between them.
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Because the assembly method searches a combinatoric space of possible arrangements, the
problem solver must control its search intelligently. It must reason about: how to group objects
in partial arrangements: which object should define the local coordinate space of each partial

arrangement; when to position particular objects with particular constraints; when to work at

particular levels of abstraction: and when to combine partiai arrangements. This reasoning

must incorporate general computationat principles, such as: defining the local coordinate space

about an object that has many constraints to many other objects; focusing on objects that

already have been restricted to relatively specific positions: and preferring constraints that

maximally restrict an object’s position. It must also incorporate domain-specific knowledge. For
example, PROTEAN’s reasoning incorporates biochemistry knowledge such as: defining the
space of potentially useful constraints: and characterizing the constraining power of different
constraints. .

Similarly, an intelligent problem solver should be able to explain its assembly actions and
learn new assembly strategies from experience. ’

Figure 8. PROTMN’s  Levels of Reasonins At the moltcufe level. PROTEAN reasons about

the size, shape, and density of the protein mokculc At the solid  level, it reasons  ahut  thy

relative positions of the test protein’s secondary suucture.  repr-ented u geometric soli& At
the ~uper~rom level, it reasons about the positions of each amino acid’s constituent peptide unit
an**  ..,,.,ahain. it he prom level, it reuons about the positions of individual atoms.
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4. ACCORD: Knowledge about Assembling Arrangements

.

.

The ACCORD knowledge base provides an explicit, interpretable representation of the
knowledge required, to assemble arrangements and to control, explain, and learn about

arrangement-assembly actions. The elements of ACCORD include: (a) a conceptual network

that organizes all arrangement-assembly knowledge; (b) a type hierarchy of domain entjties;  (c)
a type hierarchy of arrangement roles; (d) type hierarchies of assembly actions, events, and

states: (e) networks of characteristic relations among assembly actions, events, and states; (f)

linguistic templates for instantiating assembiy actions, events, and states: (g) the partial matches

among these templatw and (h) translations of arrangement-assembly templates into

corresponding templates in a lower-level language. The following sections describe these

elements and, where necessary, illustrate them with the domain knowledge of PROTEAN.

4.1 The Conceptual Network
We represent all of the knowledge in ACCORD within a conceptual’ network [49].

The network distinguishes three tinds of concepts (see Figure 9): types, individuals, and
instancti Concept types intensionally define the generic concepts of a task by means of is-a
links. These include domain entities (e.g., helix is-a secondary-structure), arrangement roles
(e.g., anchor is-a arrangement-role), and assembly actions, events, and states (e.g., position is-a
assembly-action). Concept individuals exemplify particular concept types (e.g., helix1 the first

. helix in the primary sequence of the lac-repressor headpiece. exemplifies helix). Concept
instances instantiate individuals in particular contexts (e.g., helixl-1, instantiates helix1 in the

context of partial arrangement pal). Concept instances also play particular roles in those.
contexts (e.g., helix14 plays anchor).
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. . .

pi- 9. Schematic Overview of ACCORD’s Conceptual Network. Concept types

intensionally define generic coucepU  by mane of Is-o links. These include natural typa (e.r
Mix,  rrwmbly-action)  and role typa (e.g., anchor). Concept indfriduofs (e.g. (helixl)
l xrmpl/fi puticulu concept types. Concept Instuners (e.& helix101) lnrronffurr particular
individuatr to play particular roles in particular context& Concepts attributes can hrve static or

procedura! vrlues. Both attributes and link relations are inheritable. Bracketed links in this and
other f!gures indicate legal links (e&a concept individual may exemplify a concept type), while
unbracketed Ii&s indicate actual links (e.g., the individua! helix1 actually does exemplify the
type helix). PROTEAN-specific concepts in this figure appear in bold type.
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.

.
Concepts may have other links. For example, one concept may include several constituents. In

addition, all links in the network have corresponding inverse links: can-be-a, is-exemplified-
by, is-instantiated-by, is-played-by, is-included-by. Finally, implicit $link relations hold
between concepts related by chains of specific component links. A $is-a relation holds between

any two concepts related by a chain of instantiates, exemplified, and is-a links. For example,
we may infer that: . -

Helixl-l SIs-a secondary-structure.
because:

Helix14 instantiates helixl.
Helix1 exemplifies helix.
Helix is-a Secondary-Structure.

A Sincludes relation holds between concepts related by a chain of instantiates, exemplifies, is-
a, and’ includes links. For example, we may infer that:

He1 ix14 dincludes Amino-Acid35.
because:

Helix13 instantiates helixl.
Helix1 includes' Amino-Acid35.

A dplays  link holds between concepts related by a chain of exemplified-by, instantiated-by,

and pIa* links. For example, we may infer that:
Helix Splays anchor..

because:
Helix is-exemplified-by helixl.
Helix1 is-instantiated-by helixl-1.1 He1 ix14 plays anchor.

These and all other S<Zink>  relations ‘have corresponding inverse relations that hold between
corresponding chains of inverse component relations. For example, we may infer that:

Anchor Sis-played-by"helix.

because:
Anchor is-played-by helixl-l
helix14 ins tant ia tes  hel ix l .
helix1 exemplifies helix.

Any concept in the network may specify particular attributes, along with static or procedural
values. For example, PROTEAN’s concept network includes the facts that: helix has an‘ittributz
called shape. whose value is cylinder: and secondary-structure has an attribute called length.

I - whose value is determined by a procedure called Number-of-AA that counts the number of

I amino-acids included by the secondary-structure. Like relations among concepts, these

attributes are inheritable. For example, helixl-l’s shape is cylinder and its length is

determined by the procedure Number-of-AA.
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One CUSS of attributes warrants special mention. Modifiers are attributes whose procedural
attachments evaluate the applicability of the named descriptors to any given concept
individuals or instances. For example, PROTEAN’s modifier tong is an attribute of the concept
type secondary-structure. Its value, which is computed by the procedure called How-Long-Is, is
a function of the number of amino-acids included by a particular secondary-structure (that is,
by. a particular alpha-helix, beta-sheet, or random-coil). All such procedures return numerical
values scaled O-100, where 0 signifies minimal applicability of the modifier and 100 signifies

.
1 maximal applicability. However, a framework can distinguish two different procedural

definitions for each modifier.

Threshold procedures evaluate concepts in an all-or-none fashion. For example, PROTEAN
might refer to a “long helix,” meaning “a helix that has at least 15 amino acids.” An individual

helix, say helixl, either matches this description or it does not Therefore, the threshold
procedure attached to the attribute long returns a value of 100 for any helix that includes more
than 15 amino acids and a value of 0 for any helix that includes fewer than 15 amino acids.

In general, threshold procedures return a value of 100 or 0, depending upon whether or not the

modified concept exceeds a designated threshold on a designated attribute.

. . . Scale procedures evaluate concepts in a graded fashion. For example, PROTEAN might refer
to a “long helix,” meaning “a helix that includes at least 15 amino acids is better than one that

includes lo-14 amino acids, which is better than one that includes fewer than 10 amino acids.”

,

. An individual helix, say helixl, matches this description to some degree. Therefore, the scale

procedure attached to the attribute long returns a value of 100 for any helix that includes more

than 15 amino acids, a value of 50 for any that includes lo-14 amino acids, and a value of 0

for any helix that includes fewer ihan 10 amino acids. In general, scale modifiers return values

somewhere in the range O-100, depending upon the degree to which the modified concept

exhibits a designated attribute.

Threshold or scale procedures may be specified within an expression by extending the

modifier name with “-T” or “-S.” However, as discussed below, BBl knows in which
circumstances each type of procedure typically applies. If no extension appears in a midifer.

,

it uses the appropriate procedure.

.,.  .L( i- :r .,
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4.2 Types of Domain Entities
A framework provides skeletal branches of the natural-type hierarchy in which to define

relevant domain entities.

For the arrangement-assembly task, ACCORD provides skeletal branches for. the objects to
be arranged, the context in which -the objects must be arranged, and the constraints that must- ---
be satisfied within the arrangement. Particular constraints may involve  particular objects and
constraints. Figure 10 illustrates how PROTEAN instantiates these skeletal branches with

biochemistry entities. In addition. PROTEAN specifies the characteristic attributes of and
relations among entities. For example, it specifies that alpha-helix, beta-sheet and random coil
have the attribute shape&M the values cylinder, prism, and sphere, respectively.

Object Constraint Context

f
b-a

t
Is-a

f
Is-a

Spatial-Coktraint Spatial-Context

p-a \ pa-al

Context-based Object-based
Constramt

MOll3ktJh9

Figure 10. ACCORD’S Skeletal Branches for Objects. Contexts. and Constrainu  PROTEAN-

specific entitia appear in bold type. Individual constrainu  can involve particular objecu or

conlcxu.
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. 4.3 Role Types
A framework defines the roles that problem entities can play in hypothetical solutions.

.

ACCORD defines the arrangement roles illustrated in Figure 11. An arrangement is a

potential complete solution to an arrangement problem, that comprises one or more partial-

arrangements that, together, comprise a criteria1 subset of its objects, constraints, and context. A
purtial-arrangement  k a-&Gal solution to a problem, that comprises a non-criteria1 subset of
its objects, constraints, and context An included-object is one of the objects from the problem

.

that has been selected for inclusion in a partial-arrangement Included-object has three
subordinate subtypes. An anchor is an included-object that has been assigned a fixed location
to define the local context of a partial arrangement An anchoree is an included-objects that
has at least one constraint with the anchor. An appendage is an included-objects that has at
least’ one constraint with at least one anchorea’

.

. Figure  11; ACCORDS Amnppmanr-Role  Typu  An urren~rmrnr  is a complete solution to
sn smngemcnt  problem and may include one or more partial smngemenu A pucisl-
smn@nmt is a PUtid solution that includes a subset of the objects. conrcrsinu.  and

contsxcusl rqions rwified in the problem. Puticulsr psrtisl-srrangemtnu  an fncorporufe,

mrge,  o r  d o c k  with one a n o t h e r . Included-objertr  a n  s e r v e  as a n c h o r s ,  anchorerr, o r

apprndager  within a partisl-srrsngemenL  An anchor an anchor an snchoree. An snchoree an
append  sn sppendsge. In sddition. included-objects an yolrr or conrolfdorr with ok mother.

‘we have not yet found it necusary to elaborste  similar role types for conrtninu and contexts.  but we may do SO

in the future.



Figure 11 also illustrates characteristic relations among solution elements that play particular

roles. An arrangement includes partial-arrangements, which, in turn, include Included-objects.

Anchors anchor anchorees. Anchorees may append appendages. Two included-objects may yoke
one another. Three or more included-objects may consolidate with one another. A partial-

arrangement may incorporate, merge, or dock another one.

Finally, ACCORD specifies a number of characteristic attributes and default values for

solution elements that play particular roles (not shown in Figure 11). For example, included-

object has a locations attribute, whose default value is Nil, that specifies its legal locations in

its partial-arrangement context, given the constraints that have been applied at any point in

time. Included-object also has an attribute named Secure whose value is a procedure for rating
(O-100) the degree to which an included-object’s current locations have been res3icted.

4.4 Types of Actions, Events, and States
A framework defines task-specific action, event, and state types as homologous variations on

an underlying network of root verbs.

.

?

L

Figure 12 ACCORD’s Type Hierarchy of Arrangement-Assembly .Root Verbs. Assemble hss
four subtypes. Defining a psrtial arrangement involves creating a partial arrangement, fncfuding
objects in it and orirntfng  the partial arrangement about a selected anchor. Posirloning  objects
within a psrtiai smngement may involve, for example, anchoring and object to the anchor or
yoking two previously positioned anchoreea. Coordfnaffng  partial arrangemenu may involve

refining their subordinates at lower levels of abstraction or adjusting  their superordinate at
higher levels of abstraction. fnregroring  partial srrangemenu  may involve merging those that
have a common anchor. incorporaring  one partial arrangement into another one that shares a
common object. or docking those that include objects that ConaWin  one another.



ACCORD defines the type hierarchy of root verbs shown in Figure 12. The top-level verb,

assemble, means: solve an arrangement problem by means of the assembly method. Assemble
has four subtypes. Define means: construct a partial arrangement that includes particular

objects in particular roles. Position means: identify the locations in which particular objects can
lie within a particular partial arrangement while satisfying particular constraints. Coordinate
means= identify the locations in which particular objects can lie within a partial arrangement

white satisfying their part-whole relations with previously positioned superordinate or

subordinate objects. Integrate means: combine two partial arrangements to form ‘a single, larger

partial arangement Each of the four verb subtypes-define, position, coordinate, and

integrate--has two or more subordinate subtypes, as described below.

Define has three sub-types. Create means: record a blackboard objects representing a new

partial arrangement. Include means= create instances of particular objects or constraints’within

a particular partial arrangement. Orient means: declare that a particular objects in a partial

arrangement is the anchor and assign the roles anchoree and appendage to other included

objects d<zpending  upon whether or not they have constraints with the anchor.

Position has five subtypes. Anchor means: identify the locations in which an anchoree .
satisfies particular constraints with the anchor. Append means: identify the locations in which
an appendage satisfies constraints with an anchoree or appendage that has already been
positioned. Yoke means= prune the locations for two included-objects that have already been
positioned so that they include only locations in which the two objects satisfy constraints with
one another. Restrict means: prune the locations identified for an anchoree or appendage to
include only those that satisfy additional constraints. Consolidate means: prune the locations
for three or more objects to include only those that satisfy all constraints among the objects
simultaneously.

Coordinate has two subtypes. Refine means: identify locations for a previously positioned
objects’s constituent objects so as to satisfy their part-whole relationship. Adjust means:

identify an objects’s

constituent objects.

‘locations to satisfy its part-whole relationship with previously positioned
.c

integrate has three subtypes. Merge means: combine two partial arrangements that have the

same anchor. incorporate means: combine two partial arrangements that include anchorees or

appendages. Dock means: combine two partial arrangements that have no common objects, but

include objects that constrain one another.
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ACCORD also specifies entailments of these root verbs (see Figure 13). For example, the
anchor verb entails the generate verb, which means: generate a family for an included-object.

Similarly, the position verb entails the apply verb, which means: apply a constraint to an
included-object within a partial arrangement. An implicit $entaiIs  relation holds between two
concepts related by any chain of is-a, exemplifies, instantiates, and entails links. For example,
w e  m a y  i n f e r  that: . _

Anchor Sentails apply.

because:
Anchor Is-a Position.

. Position entails apply.

ACCORD distinguishes homologous type hierarchies for actions, events, and states by
different verb tenses: Do-verb signifies an action. Did-verb signifies an event Is-verbed
signifies a state. As illustrated in Figure 13, all relations and attributes in the root verb

hierarchy reappear in the action, event, and state type hierarchies.

ACCORD also recognizes implicit states reflecting the existing properties of particular

concepts (e.g., Has helix2 shape cylinder) and the relationships between them (e.g., Exemplifies

helix1 helix). As a consequence, the number of recognizable state types in an application

system greatly exceeds the number of action and event types defined in ACCORD. For reasons

of efficiency, ACCORD does not explicitly enumerate all such states, but only those that have
important relationships (e.g., is-caused-by, is-entailed-by). to actions, events, or states in the

type hierarchy. Nonetheless, it supports verification and assessment of all explicit and implicit
states in the conceptual network.

Do-Apply< EnraiJs Qo-position

-.
T

b - a

Do-Generate< Enrai’s Do-Anchor

.-

.-

Apply< Entails Positlon Did-Apply< mm l)id-position

Is-.a > Is-a

Generate ( Entails T
Anchor Did-Generate < Enra”s

T
Did-Anchor

.*

Is-Applied ( Enra”s Is-PosItioned
4

I I s - a

Is-Generated ( Enra”s Is-Anchored

Figure 13. Homologous Action. Event. and State Subnetworks. The root verb hierarchy
underlies homologous action, event, and state type hierarchia.  distinguished by verb tense.
Do-<verb> signifier an action. Did-(verb>  signifier an evcnL fs-<verbed>  signifia a sutc.

Implicit Minks>  indicate. for example. that do-anchor actions knU do-apply action%
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. 4.5 Relations among Actions, Events, and States .
A framework specifies legal relations among different types of actions, events, and

states Cl. 361. Events of a particular type can trigger actions of a particular type, that is,
indicate that the actions are potentially feasible. States of a particular type can enable triggered
actions of a particular type, that is, render the triggered actions feasible. Actions of a

particular type can cause events of a particular type. Finally, events of a particular type can

promote states of a particular type. Figure 14 illustrates some of the legal relations specified in
the ACCORD knowledge base.

Figure 14. Some Legal Relations among Actions, Even& and Statu Did-position events
rr&er do-yoke actions. which must he l nubled by has-locations states. When executed. do-
yoke actions cause did-yoke even& which promote is-positioned states Implicit S<link>
relations indicate. for  eUmPlG that did-anchor eventa ttrigger do-yoke actions and that do-
yoke actions tcuuse did-apply events.
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An implicit %dinks>  form of each of these relations:
A [$<links>] 6

holds for any two concepts, a and b, whenever:
a $is-a A or a Sentails A.

and
B Us-a b or B $entails b.

.

. For example, we may infer from Figure 14 that:
Did-anchor [Striggers]  do-yoke.

because:
Did-anchor is-a did-position.
Did-position [triggers] do-yoke.

Similarly, we may infer that:
Do-yoke [Scauses) did-apply.

because:
Do-yoke [causes] did-yoke.
Did-yoke Sentails did-apply. .

Note that legal relations such as those specified in Figure 14 may not actually hold among all

individual actions, events, and states of the specified types. For example, a did-position event

can. trigger a do-yoke action. But an individual did-position event may require additional
attributes (discussed below) in order to trigger an individual do-yoke action.

4.6 Linguistic Templates for’ Actions, Events, and States
A framework provides linguistic templates for all root verbs and their entailments. Each

template comprises a verb keyword, followed by a specified sequence of formal parameters,
interspersed with optional conjunctions and prepositions (noise words). Particular actions,

events, or states are represented as’pat!etns  that instantiate the formal parameters of particular

templates with particular concept types, individuals, or instances. In addition, each keyword and

formal parameter value in a pattern may be preceded by any number of modifiers and

followed by a local variable. name in parentheses.
L

Table 4 shows ACCORD’s templates for the arrangement-assembly root verbs. (For brevity,

we omit ACCORD’s templates for entailed verbs.) For example, the anchor template is’:
Anchor anchoree to anchor in pa with constraint.

Here, the keyword, anchor, is followed by the sequence of formal parameters: anchoree,

anchor, pa, constraint, with some parameters preceded by the declared noise words: to, in, with.

A system instantiates these templates with domain-specific entities to form particular action,
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event, and state patterns. For example, PROTEAN might instantiate the anchor template as this .
action pattern:

Do-anchor helix2-1 to helfxi-i fn pal with NOEl.

. PROTEAN could represent a larger class of actions with this pattern:
Do-anchor helix to helixl-1 in pal with constraints.

It could represent a restricted class of actions by inserting modifiers before some parameter

values, as in this pattern:
Quickly do-anchor loncj helix to helix14 in pal with strong constraints.

PROTEAN could instantiate event and state patterns in a similar fashion by substituting the
appropriate did-verb or is-verbed forms of the root verbs,

.
Tablo 4. Tompkk8 for AnangmmlGAssembly Root  Verbs.

. .

0 Aamnble pa

l Dbflne pa

0 Creta~e pa at level

-.

.
l Include obiact in pa

.

. Orlent pa about included-object

. Position object in pa with constraints

. Anchor anchorso to anchor In pa with constraints

. Restrict included-object in pa with conrtfain~s

. Yoke included-object to Included:obiect in pa with constramts

l Append ‘appendage to included-object in pa with constraints

l Consolidate included-obiects in pa with constraints

. Integrate pa with pa

l Merge pa with pa

. Incorporate pa into pa via included-obiect

. Dock pa to pa with constraints

. Coordinate pa at level and level

. Refine  sulyoblect of object in pa from level to level

. .

. Adjust obiect for sub-ObleCt  in Pa
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4.7 Partial Matches Among Templates
A framework defines the potential  partial matches among action, event, and state patterns by

identifying corresponding parameters in their underlying templates. (These correspondences
need not be one-to-one.) Two patterns match to the degree that the values of their

corresponding parameters match. For example, Figure 15 identifies corresponding parameters in

the assemble, position, and anchor template.

Consider the position and anchor templates. By definition, the two keywords; position and

anchor, correspond. In this context, the formal parameters included-object and anchoree
correspond because they both represent objects that the actions position. The two formal

parameters called pa correspond because they both represent the partial arrangement in which
the, actions occur. The two formal parameters called constraints correspond because they both
represent constraints that the actions apply. The anchor template’s formal parameter called
anchor does not correspond to anything in the position template because the position template
does not specify an object that lies at the center of the designated local coordinate system.

- Given this knowledge, a system can assess the degree to which two patterns match by
assessing the matches between their formal parameter values. For example, PROTEAN can .
assess the degree to which the pattern:

Anchor helix201 to helixl-l in pal with NOEl.

matches the pattern:
Position long helix in pal with strong constraint.

by assessing the matches of:
anchor against position:
helix24 against long helix:
pal against pal: ..
NOEl against strong constraint.

AssejW3 a  pa- .

Posit/n 1 z?blr the lI,& pas= Czrxtra,ntS

Anchor

Figure 15. Partial Matcha  between Assemble. Position. and Anchor Templates. Partial

marcha  identify semantically corresponding formal Parameten in all pairs of templates.  In

theses exampI= Assemble, position. and anchor ai1 represent  verb keywords. Included-object

and anchoree represent objects being positioned. All Parameters called pa refer to the partial

anangemenL Parameters called constraints represent constraints to be applied.
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. 4.8 Template Translations
Since a framework such as ACCORD must be applied in the context of a computational

architecture, it provides the’knowledge necessary to translate certain framework templates into
semantically equivalent templates in the language of the chosen architecture. In our work, we
use the BBl blackboard control architecture (see section 2 above) and ACCORD provides

I

knowledge for translating arrangement-assembly templates into BBl templates. So far, we have

found it necessary to provide such knowledge for terminal action patterns and for all state
patterns. In both cases, translation knowledge comprises the parameteriied  framework templates

and the semantically equivalent parameterized BBl templates, with corresponding parameters of

the same names. Thus, BBl can translate patterns between representations by means of a.
variable-substitution proc&re  discussed below.

For example, Figure 16 shows the BBl template for the do-anchor action. As this example
illustrates, each BBl action template is a parameterized program of rules that evaluate lisp
expressions, set local variables, and modify objects on the blackboard or in the knowledge base.
(Note that alI application-specific routines for constraint satisfaction are inserted indirectly
through calls to ACCORD’s generic CSS-<extension> functions.) Both do-anchor templates
refer to the parameter: anchoree,  anchor, pa, and constraints. *

ACCORD Tafl#dc. Anchor Anchome to Anchor In PA with  cons-

. -w (7)
((EXECUTE (SSet Constraints (CONSTRAINTS-lN Constraints)))
(EXECUTE ($Set  CSS-Anchor-Results (CDR (CSS-ANCHO~$~chores

Anchor PA Constraints))))
(PROPOSE changetype MOOIFY ob{ect Anchors0 attributes

CSS-ANCHOR-RESULTS))))

PROTEAN CSS-ANCHOR hlction:
(PROG (AbTable PObiect PAnchor PConstraints Sample-Vector Oescriptlon

CalcLocAns OescribeAns)
(SET0 AbTable (CSS-GENERATE-TABLE-NAME Object Anchor

Constraints PA ‘Anchor)
(SET0  PObtect (QSHORT-NAME  (SOSJECT Obiect ‘Instantlater)))
(SET0 PAnchor (SSHORT-NAME (SOSJECT Anchor ‘Instantlater)))
(SET0 PConstraints (SSHORT-NAME  ConstraJnts))
(SElO Samale-Vector.  ‘(2 2 2 30 30 30))
(SET0  Oescnption (LIST ‘Anchor PObiect ‘to PAnchoW
(SET0 CalcLocAns (SS-CALCULATE-LOCATIONS AbTable NIL PAnchor

PObiect PConstrzunts NIL Description Sample-Vector NIL))
(IF (NULL (CAR CalcLocAns))

THEN (RETURN CalcLocAns))
(SST0 DescribeAns (GS-oESCRIBE-LOCATIONS AbTable PAnchor

PObiect PConstramts CS-CALCULTATE-LOCAnoNS
(DATE) Descnption))

(RETURN (CDR UescnbeAns)))

Figure 16. ACCORD and 881 Templates for the Do-Anchor Action. Both template  refer to

the same parameters, which can be instantisted to define specific action Patterns. The

ACCORD template is eaentioily  a macro for the more complex underlying BB1 program of

ruler Note that a11 application-specific routinu for constraint widaction are inserted

indirectly through calls to ACCORD’S generic CSS-(extension)  function&
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Figure 17 shows the BBl template for the is-anchored state. As this example illustrates, each
BBl state template is a parameterized  program of blackboard access functions. Both is-anchored

templates refer to the parameters: anchoree,  anchor, pa, constraints.

In addition to these explicitly stored state translations, BBl automatically translates any has-
attribute state pattern instantiating the prototypical framework template:

Has object attribute value
into the equivalent prototypical BBl template:

(Equal (SValue object attribute) value).

ACCORO  Template: Is-Anchored Anchoree to Anchor in PA with Constraints.

881 TemPleto:
((EO (SOBJECT Anchoree ‘Anchored-by) Anchor)
(FMEM8  Anchor (SORJECTS PA Includes))
($OWECT. Anchoree ‘Located-by)
(EO (SVALUE (SOWECT Anchoree ‘Located-by) ‘Constraint-Set-Used)

Constraints))

Figure 17. ACCORD and BBl Templates for the Is-Anchored State Both templates refer to
the same parameters, which can be instantiated to define specific state patterns The ACCORD

template is essentially a macro for the more complex underlying BBl program of access.
functionr
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5. The BBl Framework-Interpreter
.

TO support the application of frameworks, we have extended the BBl architecture with a
framework-interpreter: a collection of procedures for parsing patterns, matching patterns,
quantifying the match between two patterns, generating an ordered list of quantified
instantiations of a pattern, and translating framework patterns into BBl patterns. The BBl

framework-interpreter applies to any user-specified framework defined with the BBl knowledge

structures illustrated above for ACCORD. In addition, BBl can accommodate heterogeneous

systems, applying the new procedures to framework knowledge structures and its standard

procedures to BBl knowledge structures. Section 6 below shows how BBI uses the framework-

interpreter during problem solving.

l

5.0.1  Parsing Patterns
.

. .

The BBl parser converts patterns from their English form to a parsed form for use by the

matcher, quantifier, generator, and translator. The parser first removes noise words
(conjunctions and prepositions) from a pattern. It then works left to right, using recognized

verb keywords and the sequence of parameters in their associated templates to identify the

pattern’s constituent phrases. The parser produces a list of simple lists, each of which contains

a single parameter value and the modifiers that precede it in the pattern. For example, the
parser would parse the pattern:

. Quickly do-anchor long helix'to helix14  in pal
with strong constraint.

as the list:
d&anchor Quickly) '
helix long) . .
he1 ixl-1)
PW
constraint strong))

Other interpretation procedures access particular parameter phrases according to their sequential
positions in the templates and parsed lists.

5.0.2 Matching Patterns
The BB1 matcher assesses whether a test pnttern  matches a target pattern. For each

corresponding parameter in the two patteins, the matcher declares a match whenever the test
pattern value has a $is-a. $entails, or $plays relation with the target pattern value. A perfect
match is one in which the matcher declares a match for all parameters (verbs and nouns) in
the target pattern. However, the matcher uses the partial-match knowledge described above to

.

,
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assess the partial match between any two patterns, regardless of the number of corresponding e
parameters between them. Figure 18a illustrates a perfect match between two PROTEAN action

patterns.

5.03 Quantifing a Match

The BBl quantifier records a numerical assessment of the match between each parameter
value in a test pattern and: (a) its corresponding parameter value in a target pattern; and (b)
each modifier of the corresponding parameter value in the target pattern. It records 0 for each
non-matching parameter value and 100 for each matching parameter value. For non-matching

parameters, the quantifier also records 0 for each modifier of the parameter value in the target
pattern. For matching parameter values, it records for each modifier a number between 0 and
100, which it obtains from the attribute na,med by the modifier. A perfect quantified match is
one in which the test pattern receives a value of 100 for all parameters in the target pattern
and their associated modifiers. Again, however, the quantifier numerically assesses the degree of

match between any two patterns regardless of the. number of corresponding parameters. Figure
18b illustrates a quantified match between two PROTEAN action patterns.

T-t
Pattan

Relattal

Te!d
Pattern

PO-P osltlon Helix3 In PA1 witi. . a strong constraint

C-a 8~ 1 S\ Is-a .

Do-Anchor Hellx3- 1 to Helixl-1 In PA‘, with NOE27

Target *
Pattern

0))
Do-Position Helix3 in PA1 with a strong constraint

Pattern Do-Anchor Hetlx3-  1 t o  Helixl-1 in. PA1  w i th NOE27

I Match
Rating 95

Figure 18. Matching Two Action Patterns. (a) The tat pattern produces a pcrfcer march co
the target pattern because: Do-anchor is-a do-position action. Helix3-1 is helix3-1. Pal is pal.
NOEl is-a constraint (b) l’bc IFIU~C~  rorlng.  9% combines comwnem  ratings for each

puameter and modifier in the target pattern. proportionate 10 their weights. In this case, the
perfect match entaIls ratings of 100 for each parameter and NOE27 rata 80 against the
modifer. strong. .
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. As discussed above, modifiers may specify threshold or scale procedures with the extensions

“-T” or “4” to the modifier name. However, BBl knows in which circumstances threshold and

scare procedures typically apply and uses the appropriate one if no extension appears in the

*named modifier. For example, BBl uses threshold procedures to quantify matches underlying its
all-or-none triggering decisions and scale procedures to quantify matches underlying its graded

ratings of pending KSARs.

.
5.0.4  Generating am’ &tiered Lii of Quantified Matches

The BBl generator generates at1 (or a specified number of) values for a designaC parameter
that legally instantiate a set of patterns or phrases. The generator first follows links in the
concept networlc to find values that match parameter values and associated threshold modifiers
and relations specified in .the input patterns. It then rates each value ‘against associated scale
modifiers in the input patterns. It returns all values and their ratings, “best fir& For example,
Figure 19 illustrates gentkation of all long helices  that are positioned in some partial
arrangement

Generate xwchthat
b-r x Long Helix
Plays X Included-Obiects
b-Positioned  X

b-a X (Long) Helix
-> @ALL-OBJECTS Helix ‘Can-be-a)

s (Hellxl Helix2 Helix3
Hellxl-1 HelixZ-1 Hellx3-1)

Plays X In&ded-Obiect
-> (Hellxl-1 HellxZ-1 Hellx3-1)

b-Poritloned  X
-> (Helix 1 - 1 HelixZ- 1 Hellx3- 1)

b-a X. m Helix
-> ((Helix101 (90)) (Hellx3-1  (70)) (Helixl-1 (40)))

Figure 19. Generation of Parameter Valua This set of expressions gr~~rr.orrt all long helixes
that are positioned in some partial arrangement. bat first. First the generator generates all
legal values for X to instantiate the state, Is-a helix. Then it prunes this set to include oni/ .
legal valua of X to instantiate the state, Plays X included-object Then it prunes  the reduced
set to include only legal valua  of X to instantiate the state. Is-positioned X. Finally, it orders
the remuning ret according to the rating of each value in the phrpsc. bng X
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5.0.5 Translating Between Framework and BBl patterns

The BBl trandafor  uses a variable-substitution procedure to translate framework and BBl

patterns into one another. For example, Figure 20 illustrates the translation of an ACCORD

pattern for the do-anchor action into the semantically equivalent BBl action pattern.

ACCOftD Templeto: Anchor Anchoree to Anchor in PA with Constraints.

661 TemPlatc
-w m

((EXECm (SSet Constraints (CONSTRAINTS-IN Constraints*)))
(EXECUTE ($Set CSS-Anchor-Results (CDR (CSS-ANCHOR.Anchoree

Anchor PA Constraints))))

.
(PROPOSE changetype MOOIFY obiedt Anchoree attributes

CSS-ANCHOR-RESULTS))))

[CSS-ANCHOR . . . ]

ACCORD Pattern: Do-Anchor HellxZ-1  to Helix1 -1 In PA1 with CSetl.

B61 Patterns
((1 VI

((EXECLflE ($Set Constraints (CONSTRAINTS-IN CSetI)))
(EXECUTE ($Set CSS-Anchor-Results (CDR (CSS-ANCHOR /fe/ixZ-  1

HelixI- PA1 CSW))))))
(PROPOSE changetype MODIFY object HelixZ- 1 attributes

CSS-ANCHOR-RESULTS)

[CSS-ANCHOR . . . ]

Figure 20. Translation of Action Patterns. Tbe translator substitutes the parameter values in

the ACCORD pattern for the corresponding parameters in the BBl template.
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6. Reasoning within a BB* Application System

6.1 The Layered Architecture of a BBS System
Application systems built within the BB* environment have layered architectures: application-

specific knowledge is layered on the task-specific knowledge of an appropriate framework,

which’ is layered in turn on the architectural knowledge in BBl. For example, PROTEAN layers

PROTEAN-specific knowledge on the arrangement-assembly knowledge of ACCORD, which is

layered on the architectural knowledge of BBl.

Application-specific knowledge typically extends the task-specific framework knowledge in

four areas. First, the application instantiates skeletal branches of the concept network to define

domain entities. For example, PROTEAN extends ACCORD’s type hierarchy to define
biochemical objects (i.e., protein structures) and constraints (e.g., NOEs) and to identify the
individual objects and constraints involved in particular proteins (e.G helix1 in the lacrepressor
headpiece). Section 3 above illustrates these extensions to ACCORD’s concept network. Second,
the application specifies knowledge sources that instantiate the framework’s action templates as

feasible actions during problem solving. For example, PROTEAN’s knowledge sources, which
are -discussed below, instantiate ACCORD’s assembly action templates. Third, the application
provides special-purpose programs required to execute feasible actions. For example,
PROTEAN provides a geometric constraint-satisfaction system [3], which is implemented in C
and run remotely over a network, for use in executing instantiated assembly actions. Finally,
the application specifies control knowledge sources that instantiate the framework’s templates as
strategic plan: to guide the system’s actions during problem solving. For example, PROTEAN’s
control knowledge sources, which. are discussed below, instantiate ACCORD’s templates as

strategic plans for assembling proteins. -

’6.2 Domain Reasoning in a BB* System

a

6.2.1 Domain Knowledge Sources *
Like a standard BBl application system, a BB* system uses domain knowledge sources to solve

problems. These knowledge sources monitor the events and states that occur during problem
solving. When criteria1 events and states occur, they instantiate feasible problem-solving actions

(recorded as KSARs on BBl’s agenda), which compete for scheduling priority, Unlike a

standard BBl system, a BB* system can express actions. events, and states of interest as
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instantiated framework patterns. For example, Figure 21 shows how PROTEAN’s knowledge

source Yoke-Structures instantiates particular assembly actions, events, and states. As discussed
in the following sections, a BB* system can use the BBl framework-interpreter to perform all
associated computations.

‘YmS Trlgg, N Old-Restrict Included-Object (Yokee)

P

In Any-PA (The-PA)

Her Partner in: \
Triggers

KS: Yoke-Structufee

Did-Yoke Yokee with Partner in
Resu’t -lhe-PA with Constant.

Figure 2L A Domain Knowledge Source in BBl-ACCORD. Each attribute of the knowledge

source Yoke-Structures is represented as action. even& or state patterns. with appropriate links
unong them.
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. 6.2.2 Triggering
BBl triggers a knowledge source whenever it assesses a perfect quantified match of a new

blackboard event against the knowledge source trigger patterns. At the same time, it binds the
value of each parameter in the trigger patterns to the specified local variable name (or, if none
is specified, to an internally generated name). *

For example, Yoke-Structures’s trigger comprises one did-restrict event pattern:
Did-restrict included-object (yokee) in any-pa (the-pa).

BBl would trigger Yo&e-Structures  for this blackboard event
Did-anchyr helix201  to helixl-1 in pal with NOEl.

because:
Did-anchor Sentails did-restrict.
HelixP-1 Splays included-object.
Pal Sis-a pa.

In this case, BBl would bind two local variables: yoket to helix24 and the-pa to pal.

I 6.23 Context Generation
.A knowledge-source context comprises a nested set of expressions of the form:

'For <variable> In <state patterns>.

For each such expression, BBl generates and identifies as a c&text each unique combination of

variable-value pairs that match the pattern. If several such expressions are nested, BBl applies

this procedure recursively. It generates a KSAR for each identified context and places all
.

generated KSARs on the agenda

For example, Yoke-Structures’s context comprises two expressions:
For partner in:

Includes the-pa partner.
Not Is yokee partner.

l For constraint in:
Involves constraint yokee.
Involves constraint partner.

Let us continue the example begun above. Based on the first expression, BBl generates

alternative values of the context variable, partner: all objects that are included by pal (the-pa),
excluding helix24 (yokee). Supposing that pal includes one such object, BBl generates one
value of partner: helix301. Based on the second expression, BBl generates for each value of

partner alternative values cf the context variable, constraint: all constraints that involve

helix34 (partner) and helix201 (yokee). Supposing that two such constraints exist, BB1
generates two values for constraint: NOE6 and NOEg. Finally, BBl generates a unique context

representing  each combination of context-variable values and generates a separate KSAR for
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each context, for example KSAR 50 in Figure 22.

6.2.4 Precondition Checking

A knowledge-source precondition comprises any number of state patterns that must match
information on the blackboard or in the knowledge base before the KSAR can execute its
action. For each KSAR, .BBl translates and evaluates each precondition pattern, performing
specified variable bindings along the way. If all preconditions evaluate to true, BBl places the
ICSAR on the agenda of executable actions where it competes for scheduling priority. If any do
not evaluate to true, BBI places the KSAR on the agenda of triggered actions and rechecks.
unsatisfied preconditions on each cycle until alt are true.

fl
KS Yoke-Struotursrt

Trigg- Did-An&or  HelixO-1 to Helixl-1 in PA1 with NOEl

\
Includes PA1 HelixS-1

Context- Involves NOE6 Helix2- 1
Involves NOE6 H&x3- 1

Precondition -Has HelixB- 1 Locations

Do-Yoke HelixP-1 with Helix3-1  in PA1 with NOE6

3

Causes

esult.Aid-Yoke Helix201 with Helix3-1  in PA1 with NOE6

ExecutedCycle  M L

Status Triggered

4 R a t i n g -  .  * .

Figure 22 A Domain KSAR in BBl-ACCORD. Each attribute of this Yoke-Structures

KSAR is represented as action, event or state patterns, with appropriate links among them.

Each of these patterns instantiates the corresponding pattern in the Yoke-Structures knowledge

For example, KSARSO’s trigger event. Did-anchor h&x2-I lo helixI-  In pal with

NOEI matches Yoke-Structures’s trigger event, Did-restrict included-objecf  (yokrc) in any-pa

(the-pa) because did-anchor entails did-restrict, heiix2-1 plays included-object and pal plays

pa Similarly, KSARSO’s action, Do-yoke hellxf-I with hclixf-I in pal with NOE6 instantrates

Yoke-Structures’s action, Do-yoke yokcc  with parrncr  in the-pa with contrrainr  because helix2-1

is the bound value of yokee, helix51  is the bound value of partner. Pal is the bound value of

the-pa, and NOE6 is the bound value of constraint
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For example, Yoke-Structures’s precondition:
Has partner locations.

specifies that Yoke-Structures can execute its action only when the previously identified
partner has an attribute named locations whose value is not nil. For KSARSO above, BB1

.translates this pattern into the BBl pattern:
,

(EValue helix34 locations)

and evaluates i& If it evaluates to true, BBl determines that KSARl is executable.

6.2.5 Action Execution

A knowledge-source action is a terminal action pattern whose parameters are bound within a.
KSAR during the triggering, context-matching, and precondition-evaluation procedures

described above. When BBl decides to execute a particular KSAR, it translates the action
pattern into the equivalent BBl action and sends it to BBl’s low-level action interpreter.

For example, KSARSO specifies the action pattern:
Do-yoke helix24 with helix34 In pal with csetl.

BBl translates this pattern into the equivalent BBl action pattern (see in Figure 20) and sends
it to the low-level action interpreter for. execution. -

6.2.6 Event Generation

A knowledge source result is a terminal event pattern that corresponds to the knowledge

’ source action pattern. Within a KSAR, corresponding parameters in the action pattern and
result pattern have identical values. When BBl executes the action of the KSAR, it generates

the event pattern and records it on its internal event lrsr for use during knowledge source

. triggering,

For example, in executing KSARSO, BBl generates the event pattern:
Did-yoke helix24 with hellx3-1  In pal with csetl.

6.2.7 Advantages of Domain Reasoning in BB*

BB* offers three important advantages for domain reasoning. First, it provides a sup&ior--

concise, perspicuous, uniform, modular, interpretable--representation for knowledge sources,

events, and KSARs. Second, it pefmits provides powerful framework-interpreter procedures for

all operations performed on these knowledge structures. Third, its layered approach reveals the
distinctions among domain-specific, task-specific, and task-independent knowledge.
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. 6.3 Control Reasoning in a BB* System

63.1 Control Knowledge Sources

Like a standard BBl application system, a BB* system uses control knowledge sources to

generate strategic plans for its own actions in real time. These knowledge sources monitor the

events and states that occur during problem solving. When criteria1 events and states occur,
they instantiate feasible actions for extending or mddifying the -current control plan. These

actions (recorded as KSARs on BBl’s agenda) compete with one another and with instantiated

domain actions for scheduling priority. Unlike a standard BBl system, however, a BB* system
can express actions, events, and states of interest as instantiated framework templates. Similarly,
it can use the BBl framework-interpreter to perform all associated computations.

id-Restrict Anchoree (Secure-Anchoreel
In PA (The-PA)

C o n t e x t - L

WeconditIon nas Secure-Anchoree Few Locations

KS: Append-to-Secure-
Anchorem

- Not Has Secure-An

- .

.

d Appendage to Secure-Anchoree
In The-PA with Constraints

The-PA Status ‘Complete

Anchoree Few Locations
Has Do-Append Low Cost

Do-Append Appendage to Secure-Anchoree
in The-PA with Constraints

Until:
Exists: Has The-PA Status ‘Complete

Because: Ralronakes

Has Secure-Anchoree Few LocatIons
Has Do-Append Low Cost

Figure 23. A Control Knowledge Source in BBl-ACCORD. Each attribute of the knowledge
source Append-to-Secure-Anchoree is represented as action. event. or state patterns, with

appropriate links among them. Similarly. Append-to-Secure-Anchoree’s action and result are -
control actions and events (do-/ocur-on  and did-/ecus-on)  whose parameters (prarcriprion,

8001, and rorlonafc) are represented as action, event, and state patterns, with appiopiate  links

among them.
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. For example, Figure 23 shows the control knowledge source: Append-to-Secure-Anchorees.

BBl applies its framework-interpreter to control knowledge sources exactly as it does for
domain knowledge sources. For example, the event:

Did-anchor helix24 to helixl-1 in pal with NOEl.

in which helix24 was restricted to a criterially small number of locations would produce

. KSARjl, shown in Figure 24. When executed, the KSAR would record a decision with the

specified attributes at the focus level of the control blackboard.

Did4nchor HellxP-1  to Helixl-1 In PA1 with NOEl

T

- Has Hellx2-1 Few &ocatlons

Do-Focus on: . .
Perform: L

Do-Append Appendage to HelixP-1
In PA1 with Constrainta

Until:
Exiatsz Has PA1

Becausef
Has HellxP-1 Few Locatlons
Has TM-Focus  Low Cost

I

Did-Focus on:
Perform:

Do-Append Appendage to HelixP- 1
In PA1 with Constramts

Until:

Because:
Haa Helix2-1  Few Locations
Haa This-Focus Low Cost

m

ExecutedCycle  - NIL

*Status  /xecut*le

. Figure 24. A Control KSAR in BBI-ACCORD. This Append-to-Secure-Anchoree KSAR is

represented as action. even& or state patterns. with appropriate links among them. Each of

these  patterns matches or instantiate3 the corresponding pattern in the Append-to-Securc-

Anchoree knowledge source For example, KSARVs  trigger event, Did-unchor  hrlix2-I to

htlixf-I  in pal  wirh NOEI matches Append-to-Secure-Anchoree’s trigger event. Did-

rtsrrlcronchorrt  (recurt-onchortt)  in pu (Ihe-pa) because did-anchor entails did-restrict,

helixl-1  plays anchoree and pal plays pa. In addition,. KSAR37’s action and result are control

actions and eventa whose parameters instantiate the corresponding patterns in the Append-to-

Secure-Anchorees knowledge source (see Figure 23). For example, Du-append  uppenduge lo

htllxl-I  in pul  wirh eonslruinrr  instantiates Do-append  uppenduge IO secure-unchortt in rht-

po wirh conrrruinrr  because helix2-I is the value bound to secure-anchor-



6.3.2 Co&l Plans
.

.

Like a standard BBl application system, a BB* system constructs explicit control plans at

multiple levels of abstraction. High-level strategy decisions prescribe sequences of subordinate

decisions, each of which typically encompasses a shorter problem-solving time interval than its

superordinate. All branches of a control plan terminate in focus decisions, which the BBl

scheduler uses to rate pending KSARs. Unlike a standard BBl system, a BB* system can

represent control decisions as instantiated action, event, and state templates. I

Sbategy
Perform Oulckly Do-Position Long Constraining Secondary-Structure in Current-Best

PA with Strong Constraints . .
I -- a - - - - - -- ~ - - - - - - - - - - - - - - - - - - - - - - - - - >

Sub-Strategy
Perform Ouickly Do-Positlon  Long Constraining Secondary-Structure (Target-Object)

h PA1 with Strong Constraints
I - - -- - - - - - - - - e - - -4

Perform: Oufckly Do-Position Long Constrsining Secondary-Structure (Target-Object)
In PA2 wivI Strong Constraints

I-,-------,--,,,--,,,,,,,,,,,,,,,,___)

Perform: Ouickly Do-PositIon Helix3-1 in PA1 with Strong Constraints
Iw - u - - - l

Perform: Ouickly Do-Position Helix4-1 In PA1 with Strong Constraints
(--------,,,,,,,,,, I

Perform: Ouickly Do-Position Helix4-2  in PA2 with Strong Constraints
fw---------m----- l

Perform: Ouickly Do-Position Helix6-2 in PA2 with Strong Constraints
I----------w----->

Cycle I I
-.--a------- “‘“““““““““‘“‘---------------------~------------I f 1 I

0 S 10 15 20 2s 30

Figure 25. Excerpt from a PROTEAN Control Plan in BBl-ACCORD. ACCORD clearly

articulates the hierarchical relationships betweer control decisionr  each higher-level decision

summarizes and prescribes a sequence of subordinate decisions to obtain during its constituent

time intervals. In this example, the generic control knowledge source, Refine-Parameters,

generates the excerpted plan automatically. Starting with the top-level strategy, it substitutes the

values pal and then pa2 for the phrase, current-best pa. to generate the sequence of two sub-

strategies. For each sub-strategy, it similarly substttutu values best first for the phrase, long
constraining secondary-structure. to generate a sequence of focus decisions. ACCORD provides
concise and perspicuous representations of the goals and rationales of all control decisions.
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For example, Figure 25 shows an excerpt from a PROTEAN control plan. Each higher-level
decision in this plan clearly summarizes and prescribes its subordinate decisions. For example,
the first sub-strategy decision:

Perform:
Quickly do-position lonq constraining secondary-structure

(target-object) in pal with strong constraints.

summarizes and prescribes its subordinate focus decisions:
Perform:
Quickly do-position helix3-I in pal

with strong constraints.

Perform:
Quickly do-position helix401  in pal

yith strong constraints.

because helix301  is the longest, most constraining secondary-structure in partial arrangement
pal and helix4-1 is the runner-up. Similarly, although it does not appear in Figure 25, the goal

of the sub-strategy decision:
Has taraet-object few locations.

summarizes and prescribes the goal of its subordinate focus decisions:
Has helix301 few locations.

Has helix401 few locations.

Notice also that each control decision in Figure 25 captures the meaning of a set of

interacting control heuristics, while preserving their individual modularity. For example, the
first focus decision in Figure 25:.

Perform:
Quickly do-position helix301  in pal with strong constraint.

captures these heuristics:
Prefer KSARs that execute do-position actions.
Prefer KSARs that execute actions in this priority order:

do-anchor > do-yoke > do-restrict > do-consolidate > do-append.
Prefer KSARs that operate on helix301.
Prefer KSARs that operate in the context of pal.
Prefer KSARs that apply constraints.
Prefer KSARs that apply strong constraints.

Similarly, although the goal of this decision:
Has helix301 few locations.

represents a single BBl access function, the goals of other decisions can capture the meaning of

any program of access functions. .

Finally, the knowledge in a framework permits control decisions to specify desirable actions

in terms of the actions themselves, the events that trigger them, the states that enable them, the
events they cause, or the states they promote. Table 5 shows examples of these other kinds of
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prescriptions. Similarly, the goal of a control decision can specify desirable conditions in
WIIU of any state of the knowledge base or any blackboard. Table 6 shows examples of
different kinds of goals.

T&lo 5. Exmnples of ACCORD Rescriptions

1. Perform an action In a partfcular  class of actions.
Performs Do-Position Long Helix In PA1 with Strong Constraint.

2 Perform an action that was trlggered by a pmicular  class of events.
Respond-to-Events-thatz Did-Restrict Well-Restricted Anchoree in PA1

with Constraint.

3. Perform an action that was enabled by a pMlcular  class of states.
Respond-to-States-in-which: Has Anchoree Few Locations.

4. Perform an action that  causes a particular class of events.
*Cause: Old-Restrlct HelixP-1 in PA1 with Constraint.

5. Perform an actlon that promotes a particular class of itates.
Promote: Is-Positioned HelixZ-1  in PA1 with *Strong Constraint.

T&lo 6. Examples of ACCORD Goals.

1. Achieve  a state In which a pafticular class of events has occurred.
until:

Dld-Restrict HelixP-1 in PA1 with Constraint.

2. Achieve a state In which a particular class of actions is executable.
Until:

Can Perform:
Do-Append Helix2-3 to Helix in PA1 with Constraint.

c 3. Achieve a state In which a particular class of actions has been executed.
Did Pertorm:

Do-Append Helix2-3  to Helix In PA1 with Constraint.
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.
. 6.33 Constructing Control Plans

Like a standard BBl application system, a BB* system can combine various inference methods
(e.g., top-down refinement, goal-directed reasoning, opportunistic focus) in its efforts to
construct effective control plans. Unlike a standard application system, however, a BB* system
can exploit the knowledge and expressive power of frameworks. Let us briefly consider two
exampies  of generic control knowledge sources available within the BB* environment.

I
i

z i

Ont generic control knowledge source, Refine-Parameters, incrementally refines a strategy
decision as a sequence of subordinate decisions by replacing specified parameter phrases with
legal values, best first. The strategy decision must specify which parameters to replace. For
example, the strategy decision in Figure 25 might specify the parameters: pa and target-object.
Given this specification, Refine-Parameters generates the first sub-strategy by replacing the

phrase, current-best pa, with its highest-rated legal value, pal. It generates that sub-strategy’s
first subordinate focus decision by replacing the phrase, long constraining secondary-structure,
with its highest-rated legal value, helix301.  When PROTEAN has performed actions that satisfy

the focus decision’s goal. Refine-Parameters generates the sub-strategy’s second subordinate

focus decision by replacing the phrase, long constraining second&q+structure,  with its second

highest-rated legal value, helix4-1. It continues to generate the entire plan shown in Figure 25

in a similar fashion.

Depending on how many parameters a strategy specifies, Refine-Parameters can refine a
A strategy to an arbitrary level of detail. If a strategy specifies all of its parameters, each focus

decision will specify the currently most desirable individual action. However, if a strategy

specifies a subset of its parameters, as illustrated in the example above, each focus decision will
.

specify the currently most desirable class of actions.

A second generic control knowledge source, Enable-Priority-Action, posts focus decisions

favoring actions whose results would trigger strategically desirable actions. For example, suppose

that, at some point during the first focus interval in Figure 25, there are no feasible actionsL
that match the focus. That is, there are no feasible actions that match the prescription:

Perform: Quickly do-position helix34 in pal ,
with strong constraints.

Suppose also, however, that the focus goal has not yet been satified. In this kind of situation,

Enable-Priority-Action -examines the concept network to determine what types of actions would
match the focus (e.g., anchor, yoke, and restrict actions). It then posts focus decisions favoring.
actions that might trigger those action types or satisfy their preconditions. For example, in

this case it might post this focus decision:
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Promote: Did-position helix401 in pal with constraints.

to satisfy the precondition of an action for yoking helix301 with helix401.

6.3.4 Rating Feasible Actions

Like a standard BBl application system, a BB* system rates alternative feasible actions
(KSARs) against all operative focus decisions. However, given the expressive language of a

framework, a BB* system can rate KSARs with powerful pattern-matching operations. It rates
each parameter value in a KSAR against each corresponding parameter value and modifier in a

focus decision. It combines these component ratings according to some integration function
(either one specified in that particular focus or a default function) to produce a rating against
the entire focus decision. Figure 18 above shows an example in which the KSAR action:

Do-anchor helix301 to helixl-l in pal with NOE27. _

is rated against the focus decision:
Perform:
Do-position helix301 in pal with strong constraint.

63.5 Advantages of Control Reasoning in BB*

The BB* environment offers several important advantages for control reasoning. It provides

a superior--concise, perspicuous, uniform, modular, interpretable--representat’ion for control.
knowledge sources, KSARs, events, and decisions. It provides powerful framework-interpreter

procedures for all operations performed on these knowledge structures. It empowers a variety of
generic inference methods for control reasoning. Most importantly, it explicitly and

unambiguously articulates task-specific control parameters and the relationships among them.

Thus, it enforces a semantically correct mapping between the attributes of feasible actions and

.

the control plans against which they are rated.



52

6.4 Explanation in a BB* System .
Like a standard BBl application system, a BB* system constructs explanations out of

information in its evolving control plan. However, a BB* system’s explanations can exploit the

expressive framework language used to represent its feasible actions and its control plan. For

example, Figure 26 shows how PROTEAN explains its decision to execute KSAR55 based on
the tintrot plan in Figure 25. ’ ’

I moommmd KSARSS:

Anchor H&$-2 to Heiix3-2 In PA2 with NOE7.

>wlly? . ..
I recommend KSARSS:

h&or Helixd-2 to HelW-2 in PA2 with NOE7.

because I am brying  to: l

n: Ouickiy Do-Position Heiix6-2  in PA2 with Strong ConstraInta

> my Not73

WE7 I s  S t r o n g  (IWO).
NOEt  Is a Constraint (Rl 00).

>whyR?

I wn attempting to:

P7z Ouickiy Do-Position Helix6-2 In PA2 with Strong Constraints.

because I yn attempting to:

53-2: Oulckly Do-PoJtion Long Constraining Secondary-Structure
in PA2 with Strong Constrahw .

-> why iloiix6-23

Helix 6-2 la Long (80).
Heilx 8-2 is Constraining (75).
Helix 6-2 Is .t Secondary-Structure (100).

> W h y  53-23

I am trying to:

53-2: Ouickiy Do-Position Long Constraining Secondary-Structure
In PA2 with Strong Constrvnt.

because I am trying to:

S3: Ouickly Do-Position Long Constralntng  Secondary-Structure
In Current-Best PA with Strong Constraint.

Figure 26. Explanation of the Decision (0 Perform KSARSS  in BBI-AccoRD.
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As this example illustrates, the BB* environment offers several advantages for explanation. Its

framework-based language of explanation articulates task-specific control parameters, provides

a’structured account of the organization of individual heuristics within a control decision, and

communicates the mapping between control heuristics and the KSAR attributes to which they

are applied. In addition, a single representation of control decisions serves both as a machine-

interpretable object of control reasoning and as a human-interpretable object for use in
explaining that reasoning. As a result, we can argue that a BB* system explains its behavior in

terms of its own understanding of that behavior.

6.5 Learning in a BB* System
A system’s ability to team depends upon several factors, including the following: (a) the

power of the system’s learning procedures: (b) the quality of the data to which it applies those
procedures: and (c) the depth and organization of the system’s knowledge about relevant

concepts. Because BB* offers improvements on each of these factors, it can improve both the
efficiency and the accuracy of learning.

Let us consider efforts by the learning knowledge source MARCK to learn the PROTEAN
heuristic, Prefer-Anchoring-over-Yoking (see Figure 27). At this point, PROTEAN is operating

under the focus: .

Perform: Do-position long rigid constraining secondary-structure
in pal with strong constraint.

Given this focus, PROTEAN chooses to perform the action of KSAR56:
KSAR56: Do-yoke helix602 with helix402 in pa2 with NOE9.

However, the domain expert prefers the action of KSAR55:
KSAR55: Do-anchor helix602 to helix302 in pa2 with NOE8.

The domain expert’s action triggers MARCK, which tries to identify the key difference between

the two KSARs and automatically program a corresponding control heuristic.



BB* substantially limits the number of differences between the two KSARs that MARCK
must consider. Given the standard BB1 representation, MARCK must search for differences on
all KSAR attributes with the same name. Then it must ask the domain expert to choose the key

attribute from among all whose values differ. Given BB*‘s framework representation, MARCK

can focus on corresponding parameters in corresponding patterns in the two KSARs. In this
CW, there ate only four corresponding parameters in the two action patterns and only two of
them have different values: action-keyword and constraint.

KSAR56: Yoke Hellx6-2  wlth Helixl-2 In PA2 with NOE9.

> Override with KSARSS.

ImPefffming:
KSARSS: Anchor Helix6-2 to Heiix3-2 in PA2 with NOE8.

I wouid like to tierstand why you prefer KSARSS over KSARS6:

KSARSB Anchor HeiixS-2 to Helix3-2 in PA2 wlth NOES. .
KSARS6: Yoke Helix6-2  with Helix4-2 In PA2 with NOES.

b It because you prefe
(I) Actlon 8 Do-Anchor over Action s Do-Yoke?
(b) Constraint = NOE9 over Constraint 8 NOE83 r

.
>a .

Do you prefer Actlon * Do-Anchor over Action a Do-Yoke
because you wish to:
Quickly Do-Podtlon HellxS-2 h PA2 wlth Strong Constraint?

> Yes

h generai,  do you w-qfer to:
Quickly Oo-Position Long Constnining Secondary-Structure

in Current-Best PA with Strong Constraint?

> Ym

I 8m modlfying my current plan.
Shari I modify the knowledge source: Build-PAs?

> Ye8 ,

I am modifying the knowledgeVrource:  Build-PAS.

Figure 27. MARCK  Lurnr to Prefer Anchoring Actions over Yoking Actions in the Context

of BBl-ACCORD.
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BB* also prevents MARCK from making specious comparisons or overlooking valid
comparisons. Working with the standard BBl representation, different or undisciplined system
builders often give the same name to unrelated attributes in different knowledge sources or
different names to semantically equivalent attributes. In the first case, MARCK must pursue
differences in the values of unrelated attributes’ as though they were meaningful. In the second
case, it will fail to notice differences in the values of semantically equivalent attributes.
Finally, if several attributes happen to exhibit a common difference in values, MARCK must
ask the domain expert which is the key attribute. Since the domain expert is not a

programming expert and ordinarily would not appreciate the actual differences between two

attributes having the same values, he or she may choose the wrong one. By contrast, BB*‘s use
of frameworks focuses MARCK’s and the domain expert’s attention on key task-specific

control parameters by enforcing consistent and semantically valid. naming conventions and

explicitly identifying corresponding parameters. As a consequence, MARCK pursues all and

only meaningful differences.

BB* also enhances MARZK’s ability to identify the heuristic function underlying a domain

expert’s preference for one value of a parameter over another. MARCK can inspect the

knowledge base to determine whether any known modifiers favor the expert’s preferred value

over the system’s preferred value. For example, in PROTEAN quickly is a defined modifier for

position, which is the superordinate of anchor and yoke. In Figure 27, MARCK determines that

the modifier, quickly, favors anchor over yoke, hypothesizes that this is the key difference

between the two KSARs, and asks the domain expert for confirmation. If the modifier, quickly,

were not already defined, MARCK would search for the key attribute of the identified
parameter and for an appropriate. canonical function, automatically program a new heuristic
function, and record it in the knowledge base as the definition of a new modifier for the

concept, position.

BB* enables MARCK to introduce a new heuristic at the appropriate level of the control

* plan. Thus, once MARCK identifies quickly as the key modifier, it can search the control plan

for the highest superordinate of its current focus that specifies position or one of its
subordinates in as the action keyword. With confirmation from the domain expert, MARCK

inserts the new modifier at that level of the plan. If the expert objected, MARCK could work

down the plan searching for the appropriate level at which to insert the new modifier.

Finally, BB+ obviates MARCK’s use of its Lisp-English translator since all of the objects on
which it operates are already expressed in the stylized English of frameworks. Thus, MARCK



. completes its learning simply by inserting the new modifier before the corresponding parameter
in its focus decision on the blackboard and in the control knowledge sources that generate that
decision.

Quickly do-position long rigid constraining
secondary-structure in pal with
strong constraint.

These advantages apply to other learning procedures as well. For example, we have been
working on a set of knowledge sources called WATCH to form inductive generalizations of

sequences of executed actions. For example, suppose a domain expert executes the following
sequence of actions:

Anchor HelixZ-1 to Helix14 in PA1 with NOEIS.
Anchor Helix34 to Helix14 4n PA1 with NOE19.

The WATCH knowledge sources can consult the ACCORD conceptual network to determine

that: .
Helix24 Sis-a Helix.
Helix34 Sis-a Helix.
Long Helix24 - 90.
Long Helix34 - 70.
NOElS Sis-a NOE.

. NOEM Sis-a NOE.

. . Based on this information, they can hypothesize that the domain expert’s current focus is to:
. Perform:

Anchor Long Helix to Helix14 in PA1 with NOE.

In principle, any BBl system could provide the data required for inductive generalization. In

. practice, however, such learning ordinarily is not feasible for systems implemented directly in

BBl knowledge structures. Given the unrestricted number of KSAR attributes, the space of

possible generalizations is intractably large. Moreover, given an undisciplined approach to

attribute naming, the Iearning data are liable to be extremely noisy. They may support specious

generalizations, while entirely concealing valid generalizations. By contrast, a BB* system can

exploit a framework such as ACCORD, vastly reducing the space of possible inductions and
guaranteeing that generalizations are internally consistent, unambiguous, and semantically valid.
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7. Knowledge Engineering within the BB* Environment

The BB* environment facilitates the design and implementation of new applications by
providing a general architecture for problem solving and reusable task-specific frameworks. To

illustrate this potential, we discuss our experience in building a prototype of the SIGHTPLAN
system [Sl] for designing construction-site layouts within BBl-ACCORD. We then consider
the space of domains in which arrangement problems occur and BBl-ACCORD’s  applicability
in different regions of that space.

7.1 Building SIGHTPLAN: A New Application of BBl-ACCORD

7.1.1 SIGHTPLAN’s  Probiem

SIGHTPLAN must arrange pieces of construction equipment (e.g., cranes and trailers) and
construction areas (e.g., access roads and lay-down areas) in a two-dimensional construction site
to satisfy a variety of constraints. Part-whole relations exist among some of these objects (e.g.,
the employee-facilities include some trailors and a rest area). Part-whole relations also exi.;t

among sub-regions of the construction site (e.g., the building-zone includes the building-site
_ and all of its borders). Available constraints include object-based constraints (e.g., the rest

* area must be within a short distance of the- trailers) and context-based constraints (e.& the
access road must intersect the perimeter of the construction site on two sides). Since

construction projects proceed in identifiable stages, the layout design must include sub-layouts
for different stages. Further, there are transitional constraints between the stages (e.g., the

crane must move from the northwest corner of the building site to the southeast corner of the

building site between stages 1 and 2). (See C52] for a more detailed description of the
problem of designing construction-site layouts.)

Despite the obvious dissimilarities between proteins and construction sites, the problem of

designing a construction site closely resembles the problem of modeling the construction of a

- protein. In both cases, the problem-solver must arrange physical objects in a spatial context to

satisfy constraints. It must accommodate a variety of constraints, including part-whole
relations. objects-based constraints, and context-based constraints. It must design multiple-

component solutions for different time intervals and provide legal transitions from each

component solution to its successor. In short, both problems are arrangement problems.

On the other hand, SIGHTPLAN’s problem is substantially less complex than PROTEAN’s
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problem. STGHTPLAN must deal with tens or hundreds of objects, while PROTEAN must deal

with hundreds or thousands of objects. SIGHTPLAN must arrange objects in a two dimensional

space, while PROTEAN must arrange objects in a three-dimensional space. SIGHTPLAN must

design layouts that incorporate fewer than ten discrete states, while PROTEAN must construct

proteins that move through a continuous family of conformations. SIGHTPLAN knows in

advance how many stages it must consider and which objects and constraints belong in each
state, while PROTEAN must identify protein states and their constituent objects and

constraints as part of its reasoning process. SIGHTPLAN must design a small number of

satisfactory. site layouts, while PROTEAN must construct the entire family of legal protein
structurtsm

Because of the similarities between SIGHTPLAN’s  problem and PROTEAN’s problem, .
SIGHTPLAN’s  principal designers, Iris Tommelein and Ray Levi&. decided to develop it within
BBl-ACCORD and we collaborated with them on a prototype system. The following sections
discuss how the availability of BBl-ACCORD affected the design and implementation of
different aspects of the SIGHTPLAN prototype.

7.13 Choosing a Method
As discussed above, a problem-solving system could, in principle, solve an arrangement

problem by any of sevekl different methods. Enumerating and characterizing alternative

. methods and then choosing and operationalizing an appropriate method for a particular

application are time-consuming processes that can determine the success or failure of a system-

building effort. For example, it took approximately one person-year of effort to consider

alternative methods for PROTEAN and to operationalize a subset of the elements of the-. .
chosen assembly method. The PROTEAN staff readily implemented the chosen method within

BBl, which was, itself, the product of several person-years of effort.

The very existence of a relevant architecture or framework can facilitate this process by

suggesting a candidate method in a clearly operational form. If the architecture or framework

already has been applied in other domains, information about thdse applications can facilitate

evaluation of the method for the new application. Thus, Tommelein and Levitt quickly

recognized the appropriateness of BBl for SIGHTPLAN. They spent approximately one

additional person-month evaluating and deciding to use ACCORD.
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7.13 Basic Knowledge Acquisition
.

Knowledge acquisition requires a conceptual analysis of the knowledge required by an

application and a technical analysis of appropriate knowledge representation structures. For

example, knowledge acquisition for PROTEAN began with unstructured discussions with

domain experts to discover the important domain concepts. The initial PROTEAN knowledge

base was an unprincipled collection of Lisp functions and data structures, converted to its

current declarative form during a reimplementation phase. All stages of knowledge acquisition

required close collaboration between domain experts and knowledge engineers.

A framework can facilitate knowledge acquisition by capturing the conceptual analysis

common to a class of applications, identifying appropriate knowledge representation structures,

and providing a software environment in which to build the Few knowledge base. For example,
ACCORD requires domain-specific extensions of its conceptual network branches representing
objects, contexts, and constraints and specification of low-level functions for anchoring,
yoking, appending, etc. Thus, knowledge acquisition for SIGHTPLAN began directly with the
introduction of particular objects, contexts, and constraints into ACCORD’s skeletal concept

amounts of assistance from a knowledge engineer. Of course, since the framework provides
much of the actual code necessary to represent the knowledge, there is a substantial reduction
in the number of lines of new code generated during knowledge acquisition.

.

7.1.4 Domain Knowledge Sources
A framework’s action hierarchy guides. the design of domain knowledge sources. Basically,-.

the system builder should consider designing one or more knowledge sources to instantiate each
terminal action type. The hierarchical classification of action types provides a nice

organization of the knowledge sources and the sequence in which to develop them. Further, the
knowledge sources developed for previous applications can provide valuable prototypes for new
a

applications.

.
Without the benefit of ACCORD, the first version of PROTEAN had knowledge sources for

anchoring and yoking, which it used to position structures within one complete arrangement.

After studying the performance of this system, it becLme apparent that PROTEAN needed a

knowledge source for appending and only much later did it become apparent that PROTEAN

needed knowledge sources for defining partial arrangements. (PROTEAN still does not have
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knowledge sources for integrating partial arrangements and coordinating them at multiple levels
of abstraction.) Each knowledge source, especially the early ones, required a significant design

effort and each successive one had to be coordjnatcd  with those developed so far. Since we did
not anticipate all contexts in which knowledge sources might interact, we repeatedly modified

previously implemented knowledge sources to disambiguate the relationships among them.

By contrast, STGHTPCAN’s  current domain knowledge sources are close translations of
PROTEAN’s domain knowledge sources and were implemented in a matter of days. Although

we anticipate that STGHTPLAN and PROTEAN eventually will have many distinct knowtedge

sources, we expect the translated knowledge sources to endure as the core of the SIGHTPLAN

system. If these expectations are borne out, we will extend ACCORD and other frameworks to *

include, a repertoire of prototype domain knowledge sources and introduce capabilities for

automatically instantiating them in new domains.

7.1.5 Control Knowledge Sources
A framework facilitates the development of control knowledge sources in several ways. First,

its action, event, and state templates articulate a set of candidate control concepts. Thus,
PROTEAN’s system builders had to discover key control parameters, such as action class,
anchoree,  and constraint, and appropriate modifiers, such as quickly, restricted, and strong. By
contrast, SIGHTPLAN’s  sytem builders could begin by considering the formal parameters in
ACCORD’s action types as candidate control parameters and by considering the high-level
concept types and conceptual modifiers in ACCORD’s skeletal concept network. Second, as in
the case of domain knowledge sources, some control knowledge sources transfer almost directly
to applications in new domains. For example, the prototype SIGHTPLAN system uses the basic
strategy that PROTEAN uses for small proteins. Of course, SIGHTPLAN introduces some new

-modifiers and gives many of the common modifiers new procedural definitions. In addition,

we expect to develop more powerful strategies for the two systems that differ more
substantially. Again, however, the opportunity to transfer some of the control knowledge

per& rapid prototyping of a new application. After we have gained more experience with a

range of applications, we plan to develop skeletal control knowledge sources for different
subclasses and automatic methods for instantiating them in new domains. Finally, a

framework’s perspicuous representation makes it easy to articulate and program alternative

control strategies. We plan to comparativeiy evaluate a variety of control strategies for both

PROTEAN and SIGHTPLAN.
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7.2 The Scope of ACCORD.

7.2.1 Arranging Physical Objects in a Spatial Context
ACCORD naturally applies to tasks involving the arrangement of physical objects in a spatial

context. PROTEAN and SIGHTPLAN are esoteric examples of such domains. However,

I consider, for example, the mundane task of furniture arrangement: arrange a specified set of
furniture in a designated room. We can define each piece of furniture as a physical-object in.
the ACCORD knowledge base and the room as a’ context. We can identify part-whole

relationships among furniture groups (e.g., the table-and-chairs includes the table and each of

the chairs). We can identify part-whole relationships among areas of the room (e.g., the
northern exposure includes a window area and a fireplace area). We can define object-based

constraints on different pieces of furniture (e.g., each chair must be on a particular side of the

table). We can define context-based constraints on the positions of particular pieces of

furniture within the room (e.g., put the table near a window). Given this representation, we

could use the ACCORD actions to define partial furniture arrangements, to position pieces of

furniture within each partial arrangement, to refine the positions of furniture groups into the

positions of their constituent pieces, and to integrate different partial furniture arrangements

to form a complete room design..

7.2.2 Arranging Procedural obj&s in a Temporal context
We believe that ACCORD also applies to tasks involving the arrangement of procedural

objects in a temporal context, For example, consider the task of travel planning: arrange a set
of destinations in a designated time interval. We can define each destination as a temporal-
object in the ACCORD knowledge&se and the time interval as a context. We can define part-

whole relationships among sets of destinations (e.g., the India destination includes destinations:
Srinagar, Agra, Jaipur, Udaipur, Benares, and Darjeeling). We can define part-whole.
relationships among sub-intervals of the designated time interval (e.g., the spring interval

.

P includes May and June). We can define object-based constraints on the relative times targetted
for particular destinations (e.g., go to India after Japan). We can define context-based
constraints on the absolute times targeted for particular destinations (e.g., go to Japan in time
for the cherry blossoms). Given this representation of the knowledge, we probably could use

the ACCORD actions to develop partial itineraries, to order destinations within partial
itineraries, to refine high-level destinations into more detailed itineraries for their constituent
destinations, and to integrate different partial itineraries to form a complete itinerary. We plan



62

. to build at least one application of BBl-ACCORD involving procedural objects in temporal
contexts in order to gain empirical evidence of its applicability to this important subclass of
arrangement problems.

7.2.3 Arranging Symbolic Objects in a Symbolic Context
Expanding the potential scope of ACCORD even further, it may be possible to apply it to

tasks involving the arrangement of general symbolic objects in general symbolic contexts. In
particular, it may apply to objects and contexts that are not metric in character.

For example, consider a simplified project-management task assign a set .of project tasks
among a designated set of individuals. We can define each task as a task-object in the

ACCORD knowledge base and the set of individuals as a context We can define part-whole

. relationships among task groups (e.g., the task of designing knowledge sources includes tasks for

designing domain knowledge sources and designing control knowledge sources). We can define
part-whole relationships among subsets of the individuals (e.g., the expert C programmers are

John, Jim, Craig, and Bruce). We can define object-based constraints between different tasks

(e.g., the tasks of defining domain and control action languages must be performed by the same

individual). We can define context-based constraints on the assignments of particular tasks to

individuals (e.g., the geometry system must be implemented by expert C programmers). Given
this representation, we. might be able to use the ACCORD actions to develop partial project

. plans, to assign tasks to individuals within partial plans, to refine the assignment of high-level

tasks into assignments of their component tasks, and to integrate different partial plans to

form a complete project plan.

Of course, most project-planning tasks also have a temporal dimension with associated

constraints. Assuming that ACCORD applies to tasks involving the arrangement of procedural

objects in a temporal context, it might be possible to apply it to the complete project-planning
taslc assign a set of project tasks to a designated set of individuals for completion at particular

tim&



63

8. Open Systems Integration: Multi-Faceted Systems

.

As discussed in section 1, we require that all modules within a level of the BB* environment
satisfy uniform standards of knowledge content and representation. In adhering to this design

principle, we aim to achieve open systems integration of modules within a level. That is, we
aim to support the development of systems that: (a) configure and augment arbitrary sets of
existing modules; (b) eliminate redundancy in the contents of those modules: (c) organize the

actions enabled by those modules in any appropriate organizational scheme: and (d)
superimpose on their reasoning uniform capabilities for control, explanation, and learning.

To illustrate the capability for and utility of open systems integration, consider a new class
of multi-faceted systems. We define multi-faceted systems with reference to the ‘three-
dimensional space of knowledge identified in this paper: knowledge about different problem
classes, knowledge about different problem-solving methods, and knowledge about different

subject-matter domains. Most contemporary knowledge-based systems occupy a relatively small
region of this space: each one knows how to solve a single class of problems by means of a
single problem-solving method in a single subject-matter domain. In contrast, multi-facted

systems expand their knowledge along one or more dimensions of the space: .each one knows

how to solve more than one class of problems or how to apply more than one problem-solving

method or how to solve problems in more than one domain. Let us consider two hypothetical

multi-faceted systems. .
.

First, consider an expert arrangement assembler-a system that knows how to apply the
assembly method to arrangement problems in each of several subject-matter domains. Figure 25

shows how BB* permits integration of the knowledge in ACCORD, PROTEAN, and

SIGHTPLAN to form the arrangement assembler. We would add knowledge about refining

prototypes, identifying analogous problems, and measuring different aspects of problem-solving

performance. Given this knowledge and some problem-solving experience, the arrangement

assembler could, for example: (a) automatically program prototype systems for new applicationc
domains; (b) transfer control knowledge among related problem types; and (c) assess the

effectiveness of control knowledge for particular problem types. In general, the arrangement
assembler could develop increasingly sophisticated arrangement-assembly expertise and apply its

expertise to an expanding variety of arrangement problems.
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(b)

Figure 28. Open Systems Integration in BB”: An Expert Arrangement Assembler. 77~

urrongcmrnr usstmblrr  integrates PROTEAN’s biochemistry knowledge and SIGtiTPLAN’s

construction knowledge within a single conceptual network. Similarly, it integrates their

combined knowledge sources (not shown here) within the network without redundancy.

(PROTEAN and SIGHTPLAN share several knowledge source  that refer only to domain-

independent entities (tee Figures 21 and 23)). With additional knowledge about refining

prototypes, identifying similar problems, and assessing performance, the arrangement assembler

could automatically program new applications and transfer stratqic knowledge among similar

problems.



Now consider an expert project manager --that is, a system that knows both how to assemble

site plans and how to schedule individual contractors’ daily use of a site. Figure 29 shows how

BB* permits integration of the knowledge in: (a) ACCORD; (b) STGHTPLAN; (c) ADJUST--a

hypothetical framework for planning a sequence of temporally and spatially constrained tasks

by means of a prototype-refinement method; and (d) DAYPLAN-a hypothetical application

system that would apply ADJUST to the tasks performed on a daily basis by individual

contractors. We would give the project manager new knowledge about controlling the combined

actions of SIGHTPLAN and DAYPLAN for particular purposes, for example to: (a) design a

site plan and then schedule each contractor’s daily use of the site; or (b) schedule and evaluate

key contractors‘ daily use of hypothetical site plans during the design process and pursue only
hypothesized designs that permit efficient daily use by them. Similarly, the project manager

could explain and learn about its integrated actions in terms of the integrated strategy it had
adopted. In general, the project manager could combine different kinds of expertise to solve a
variety of more complex problems.
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. As these examples illustrate, BB*‘s capability for open systems integration introduces the
possibility of incrementally extending the depth and variety of knowledge within a single

system to encompass new problem classes, problem-solving methods, and subject-matter

domains. At the same time, the underlying knowledge base remains perspicuous, well-structured,

and non-redundant Finally, the system continues to employ uniform methods for control,

explanation, and learning, thereby presenting a coherent face for the system as a whole.

,.’

.

Figure 29. Open Systems Integration in BB? An Expert Project Manager. The proleer

munuger  in-rata  the following within a single conceptual network: ACCORD’s knowledge of

the arrangement-assembly task. ADJUST’s knowledge of the plan-refinement task, and

SIGHTPLAN’s  and DAYPLAN’s combined construction knowledge. Similarly, it incorporates

all of SIGHTPLAN’s and DAYPLAN’s knowledge sources (not shown here) within the network.

With additional knowledge about combining iu actions for particular purposes, the project

manager could solve a variety of more complex problems and explain its efforts to solve those

problems. For example, it could: (a) design a site plan and then schedule each contractor’s daily

use of the site: or (b) schedule and evaluate key cOn~aC~OrS’ daily use of hypothetical site plans

during the design procesx and pursue only hypothesized  designs that permit efficient daily usa

by them.
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9. The BB* Environment: Status and Plans

9.1 The BBl Architecture

.

.

9.1.1 Generality and Utility

We put forth the blackboard control architecture, which is implemented as BBI, as a general
architecture for intelligent systems. Table 1 (see section 1) briefly describes some of the

application systems currently implemented or being implemented in BBl. Most of these

applications are being developed by other scientists at Stanford and other research laboratories.

In addition, we have shown elsewhere [23] that BBl provides a natural architecture for the

knowledge and control strategies of the Hearsay-II [12] speech-understanding system. the

HASP [42] signal-interpretation system, and the OPM [26] task-planning system. The number,

variety, and significance of these applications suggest that BBl provides a generally useful

architecture. As we and other scientists develop and classify new applications, we will identify

empirical bounds on BBl’s generality-and utility.

9.1.2’Control,  Explanation, and Learning

.

In the area of control, BBl currently has three sets of generic control knowledge sources. One

set of knowledge sources refines an application-specific strategy by successively posting the

names of control knowledge sources that post its prescribed subordinates. Another set of
knowledge sources refines a strategy expressed in framework knowledge structures by
successively replacing its parameter phrases with alternative legal values (see in section 6). A
third set of knowledge sources posts goal-directed focus decisions that favor KSARs whose
actions would enable other high-priority actipns  [30] (see section 6). All of these generic
control knowledge sources can work together, along with application-specific control knowledge
sources, to construct fully integrated con.;01 plans.

In the area of explanation, BBl currently provides the graphics-based, menu-driven
.

explanation capabilities discussed in section 2 and illustrated in Figure 26 above. We are
investigating extensions of these capabilities to include knowledge-based reasoning about what
kinds of explanations might be useful or otherwise appropriate for particular users under

particular circumstances.

In the area of learning, BBl currently provides the MARCK knowledge sources for learning

new control heuristics from user intervention (see section 2 and Figure 27). We also have
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. developed the WATCH knowledge sources for drawing inductive generalizations from domain
experts’ problem-solving actions. We have not yet developed the WATCH knowledge sources
that automatically program new control knowledge sources to regenerate inductively acquired
strategies during subsequent problem solving episodes. We also are investigating prototype
instantiation and learning by analogy as methods for learning how to use general knowledge in
a new domain and for transferring control knowledge among related applications.

In add9 1.n to these new developments, we are conducting experiments to evaluate the ,

cost/benefit tradeoffs of exploiting BBl’s capabilities for control, explanation, and learning.

.

9.1.3 Framework-Interpreter and Related Functions

We have implemented all framework-interpreter procedures (parse, match, quantify, generate,
translate) and incorporated them into the BBl scheduler, interpreter, and agenda manager. As

mentioned above, the framework-interpreter is entirely independent of ACCORD and can be

applied to any user-specified framework specified with the appropriate BBl knowledge

structures. Moreover, all extensions to BBl are designed to accommodate systems that freely

integrate BBl and framework knowledge structures.

In more advanced work, we are investigating a number of strategies that exploit the

conceptual neTwork for efficiency within framework-interpretation procedures. For example, we

plan to exploit the natural discrimination networks entailed in root verb hierarchies for
. efficient triggering of knowledge sources that share related trigger patterns. As a second

example, we plan to exploit the known relations between previous events and the states they

promote to restrict the potentially explosive search required to instantiate arbitrary state

patterns. .

Finally, although the template grammar underlying our framework-interpretation procedures
satisfies the requirements of current applications, we anticipate that it will prove too restrictive
for later versions of these applications and for new applications. Therefore, we expect to
replace it with a more powerful grammar at some time in the future.

.C

9.2 Current and Phnned Frameworks
ACCORD is the first framework developed in BBY We have demonstrated ACCORD’s

applicability in PROTEAN’s biochemistry domain and in SIGHTPLAN’s  construction domain.
We also plan to investigate its applicability to problems involving procedural objects in
temporal contexts and, more generally, to problems involving symbolic objects in symbolic

*.
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~ contexts. We continue to extend and refine the knowledge in ACCORD as our understanding
of specific applications grows.

We plan to develop new frameworks for several tasks, including: BBl’s control, explanation,
and learning tas& and the several tasks--situation assessment, planning, plan monitoring,
situation simulation, and plan modification--involved in real-time applications.

.
In general, as we and other scientists attempt to design new frameworks within BBl and new

applications within particular frameworks, we will increase our understanding of empirical
‘bounds on: (a) the availability and utility of knowledge at this level; (b) the range of
applicability of individual framework, and (c) the range of frameworks BBl can accommodate.

9.3 A New Hierarchical LeveI: Shells
As discussed in section 1, architecture, framework, and application represent three discrete

levels on what is probably a continuum of knowledge abstractions. We plan to introduce a

fourth level, shells. Each shell will specialize a particular framework by augmenting its task-
specific language with prototypical domain and control knowledge sources that are appropriate

for a. particular subset of tasks.

.

Like Clancey’s Heracles system for heuristic classification [7] and Chandrasekaran’s “tools for
generic tasks” [5], these shells win articulate useful control strategies for solving particular

subclasses of problems. For example, given our experience with SIGHTPLAN, we are building

an ACCORD shell that captures a domain-independent form of the knowledge sources
PROTEAN uses for small proteins. We believe that they will prove useful in other domains

where problems involve a relatively small number of objects and constraints. Similarly, we

might develop shells for arrangement-assembly tasks in domains involving physical versus
temporal objects or for domains whose contexts involve nominal versus metric dimensions.

.

Shells will offer an incremental advantage over frameworks in the ease of developing new

applications. The system builder has only to instantiate the skeletal branches of the concepta
network and, perhaps, the prototypical knowledge sources that require domain-specificc
information. As mentioned above, we are investigating automatic prototype-instantiaticn
capabilities to relieve the system builder of the task of instantiating knowledge sources. Of

course, the system builder pays for this advantage in loss  of flexibility in the reasoning process.

Our shells will differ from systems such as Clancey’s and Chandrasekaran’s, however, in three

ways. First, they will articulate control knowledge. rather than control procedures. As a
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consequence, a shell may support applications that exploit any of BBl’s capabilities for control

reasoning, ranging from systems that apply systematic control procedures to those that r&on

extensively about problem-solving strategy. In addition, they can exploit this knowledge for

other purposes. Second, we do not presume that there is a single correct strategy for a given

task Thus, for example, there may exist several shells for arrangement-assembly tasks with
different characteristics. Third, our shells will exist in the context of the BB* environment. As
a consequence, they can be configured with any other modules from the environment to form

more complex, but fully integrated systems, with ‘BBl’s general capabilities for control,
explanation, and learning superimposed upon them.

.
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10. Major Results

Our major results reinforce and manifest the four themes of the paper (see Figure 1 in

section 1):

l that an intelligent system reasons about its actions;

l that a system must have knowledge of its actions

l that knowledge should be represented in an abstraction hierarchyl

l that knowledge modules within a level should satisfy uniform standards of CD.: :U
and representation.

We have developed the BBl architecture for systems that reason about their situations, their
goals, and their actions. BBl systems integrate strategic and opportunistic methods to decide
which goals to pursue and which actions to perform. They explain how their actions serve their
goals and they learn from experience which actions help them to achieve their goals. RBl
systems reason in these several ways by dynamicalLy constructing, modifying, executing,
explaining, and learning about explicit plans for their own actions in real time.

We have empowered these systems with the generic knowledge in BBl, the task-specific

. knowledge in frameworks such as ACCORD, and the more specific knowledge in applications
such as PROTEAN. As a consequence, these systems know what facts and states obtain in

particular contexts. They know what events and states they seek. They know what actions they
can perform, what events and states are necessary to enable their actions, and what events and

states their actions will produce. They use their knowledge to perform the control, explanation,

and learning functions required of them. Since they represent all of these different kinds of

knowledge explicitly, improving or extending their performance is a matter of improving or

c extending their knowledge.
‘

We have organized existing modules in the hierarchically layered BB* environment: The BBl

architecture supports multiple frameworks, each of which supports multiple applications. This

organization enables us to understand and describe BB’, but more importantly, to apply and
extend it. We apply BB* by building new systems that incorporate and augment existing

knowledge modules, possibly exhibiting synergistic effects of independently constructed

modules. We extend BB’ by constructing new knowledge modules, or expanding existing
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modules. Existing high-level modules guide and discipline the ‘construction of subordinate

modules. Low-level modules substantiate superordinate modules and suggest new opportunities
for abstracting superordinate modules. Some of these extensions can be made automatically.

Finally, we have adhered to uniform standards of knowledge content and representation in

constructing modules at a given BB* level. We offer a single architecture, BBl, and its
associated frame-based network of knowledge structures for representing actions, events, states,

and facts. Frameworks such as ACCORD must specify task-specific knowledge about actions,

events, states, and facts within a representation combining: a frame-based conceptual network,

linguistic templates, partial match tables, and template translations. Applications such as

PROTEAN must instantiate skeletal branches of the conceptual network and specify knowledge

sources that instantiate particular problem-solving actions, events, and states. As a consequence
of this within-level uniformity, BB* provides open systems integration. We can configure any

existing knowledge modules within any appropriate strategic paradigm to attack new problems.
Moreover, we can incrementally extend the knowledge within a given system to encompass
additional problem classes, problem-solving methods, or subject-matter domains. At any stage
in the system’s evolution, we can superimpose upon it higher-level generic knowledge ab;ttzt
control, explanation, and learning to produce a fully integrated and coherent face for the

system as a whole.

From an engineering perspective, BB’ may be viewed as a layered computing environment.
.BBl constitutes a general-purpose “virtual computer” for programs that articulate and reason

about their own actions. it offers a data representation and instruction set of considerable
generality. Frameworks such as ACCORD constitute higher-level programming languages. They
provide the more complex data representations and macro operators relevant in narrower, but
still significant, sets of programs. Applications such as PROTEAN constitute individual
programs developed within the environment They can be programmed in the “machine

language” of BBl or in the higher-level language of an appropriate framework. Like higher-
level,languages  in conventional computing environments, frameworks harness the power of BBl,

enabling applications . builders to write better programs more easily. BB* differs from

conventional computing environments in its orientation toward intelligent systems: programs

that perform knowledge-intensive reasoning about the problems they solve and about their own

problem-solving behavior.

From a scientific perspective, BB’ may be viewed as an elementary theory of intelligent
systems. Like all scientific theory, theories of intelligence carry an inevitable tension between
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generality and power. Efforts to design encompassing architectures strive for generality: to
formulate fundamental laws of artificial intelligence. Efforts to develop task-specific

frameworks (or still more specific shells) strive for power. to articulate more constraining laws
for a narrower range of intelligent behavior. In both cases, effective application systems
confirm predictions of the proposed theory. The BB* environment--in which the BBl

architecture supports multiple frameworks and each framework supports a range of specific

shells and applications--constitutes a theoretical paradigm in which we can realize both
generality and power.

I .
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