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Abstract

An intelligent system reasons about--controls, explains, learns about--its actions, thereby
improving its efforts to achieve goals and function in its environment In order to perform
effectively, a system must have knowledge of the actions it can perform, the events and states
that can occur, and the relationships among instances of those actions, events, and states. We
represent such knowledge in a hierarchy of knowledge abstractions and impose uniform
standards of knowledge content and representation on modules within each hierarchical level.
We refer to the evolving set of such modules as the BB* environment. To illustrate, we
describe selected elements of BB*: (a) the foundational BB1 architecture: (b) the ACCORD
framework for solving arrangement problems by means of an assembly method: (c) two
applications of BB1-ACCORD, the PROTEAN system for modeling protein structures and the
SIGHTPLAN system for designing construction-site layouts: and (d) two hypothetical multi-
faceted systems that integrate ACCORD, PROTEAN, and SIGHTPLAN with other possible
BB* frameworks and applications.



1. Overview: Four Themes

"Human intelligence depends essentially on the fact that we can represent
in language facts &bout our situation, our goals, and the effects of the
various actions we can perform.” John McCarthy [35]

"In the knowledge is the power.” Edward A. Feigenbaum [ 14 ]

“The fact, then, that many complex systems have a nearly decomposable,
hierarchic structure is a major facilitating factor enabling us to
understand, to describe, and even to See”such systems and their parts.”
Herbert A. Simon [48] '

We be&in with a premise: An intelligent system reasons about its actions. Of course, we do
not mean to suggest that a system should engage in extended contemplation of every one of its
computational and physical actions, but rather= (@) that it can reason about many of its actions:

" (b) that it does reason about them much of the time; and (c) that its reasoning improves its
“efforts to achieve goals and otherwise function in its environment.

A system might reason about its actions in various ways and with various consegquences (see
Figure |a) . For example, a system might control its actions: decide which actions to perform
at particular points in time. Control reasoning can affect the resources the system consumes in
pursuing a goat. the side effects it produces, and the probability of achieving its goal

8,9, 13, 17, 23, 26, 27]. As a second example, a system might explain' its actions.  describe
the ways in which the actions it intends to perform or has performed serve its goals.
Explanation typically serves social functions, such as teaching another individual how to
perform a task or persuading another individua that one is performing the task competently

[5, 6, 21, 22). As a third example, a system might learn about its actions: modify its bility
or inclination to perform particular actions in appropriate circumstances. Learning eranles the
system to expand and improve its capabilities [24, 32, 33, 35, 38, 39, 45]. While a system could
perform many other important types of reasoning about its actions, we focus on control,
explanation, and learning.



Entmie
. Control . ~\!m o Action tyoe  atY
Intelligence) Explanation 1) m‘ -
Learning ‘ Carses

(®)

(@)

Figure L Four Themes. (&) An imelligent system reasons about #ts actions. The BB1
architecture provides knowledge structures and a basic mechanism for control. explanation, and
laming (b) To perform effectively, a system must hare knowledge about its actions.
Frameworks explicitly represent knowledge about task-specific actions, events, and states and
the relationships among them. (c) Knowledge is represented In an abstraction hierarchy. The
BB* environment comprises an evolving body of knowledge: the BB1 architecture, task-specific
frameworks, such as ACCORD, and domain-specific applications, such as PROTEAN (see
Table 1). Conversely. an application system layers application-specific knowledge on a
framework, which layers task-specific knowledge on the BBl architecture. (d) Knowledge
modules within a level satisfy uniform rrandards of knowledge contemt and representation. As
a conseguence. BB® achieves open systems integration: Independently constructed modules can
be fully integrated in implementation and reasoning.



Given the premise above, we put forth a hypothesis: In order to perform effectively, an
intelligent system must have knowledge of its actions. It must have knowledge of the actions
it can perform, of the events and states that can occur, and of the relationships among
particular instances of these actions, events, and states. For example, it must know: the actions
that are relevant to its current task; the enabling conditions required by particular actions; the
cost, reliability, and side effects of particular actions; the internal and external events and
states whose occurrences contribute to or hinder performance of its task; the power of
particular actions to bring about particular events and states: and the power of external forces
to bringabout particular events and states.

In our work, we formulate explicit, interpretable representations of these and other kinds of
knowledge (see Figure Ib) as a foundation for intelligent behavior. Thus, we define
“knowledge” broadly, as “that which is known."? In fact, most computational objects in our
systems (all except the basic architectura cycle, low-level data-retrieval functions, and user
interface) appear as elements of a well-structured, modular, declarative knowledge base. As
such, they are amenable to knowledge-level operations, such as acquistion, modification,
* verification, deduction, induction, instantiation, and comparison. Moreover, we can
incrementally improve almost any aspect of a system’s behavior by extending the depth or
extent of its knowledge. We have begun to construct an expanding edifice of such knowledge
for avariety of problem classes, problem-solving methods, and subject-matter domains.

In constructing this edifice, we emphasize a design principle: We represent knowledge in an
abstraction hierarchy. Although “true” knowledge abstractions probably lie on a continuum, we
currently focus on three particular levels--architecture, framework, and application.

At the most genera level, we define an architecture to comprise: (a) the set of basic
knowledge structures used to represent all actions, events, states, and facts in a system; and (b)
a mechanism for instantiating, choosing, and executing actions. Architectural knowledge is
independent of problem class, problem-solving method, and subject-matter domain. For
example, the blackboard control architecture [23], which is implemented as the BB1 system
discussed below, supports applications as varied as protein-structure analysis [4, 25, 29], ;;rocess
planning [41], and autonomous Vvehicle control [43]. In addition, BBl provides specific
knowledge structures and a powerful mechanism to support intelligent. control, explanation,
learning.

Lrhe American Heritage Dictionary of the English Language, 1981, “Knowledge,” definition # 3.



At the intermediate level, we define a framework as the set of knowledge structures used to
represent actions, events, states, and facts involved in performing a particular task. That is, a
framework comprises the knowledge structures involved in solving a particular class of
problems with a particular method, but independent of subject-matter domain. For example,
the arrangement-assembly framework, which isimplemented as the ACCORD knowledge base
discussed below, embodies the knowledge used to solve arrangement problems by means of an
assembly method. However, the knowledge in ACCORD applies to arrangement-assembly tasks
in such varied subject-matter domains as protein-structure analysis, construction-site layout,
and travel planning.

At the most specific level, we define an application as the set of knowledge structures that
instantiate particular actions, events, states, and facts to solve a particular class of problems by
means of a particular method in a particular subject-matter domain. For example, the
PROTEAN system [4, 25, 29] embodies the knowledge used to determine the three-dimensional
structures of proteins--that is, to solve arrangement problems in the doman of protein
chemistry by means of the assembly method.



As illustrated in Figure Ic (see also Table 1), BB1, ACCORD, and PROTEAN are elements
of a knowledge abstraction hierarchy. BB1 can accommodate a variety of modular frameworks,
one of which is ACCORD. Similarly, ACCORD (and each other framework) can accommodate
a range of modular applications, one of which is PROTEAN. (As Figure Ic shows, many

current applications are implemented directly in BB1.) We refer to the evolving set of such
modules as the BB* environment.

Table 1. Some Current Elements of BB

Aschitecture Description

B81(23] Blackboard-based problem solving architecture

Ersmework iption

ACCORD Solves arrangement problems using the assembly method
Application tion

AVC[43] Plans missions for automomous vehicles

FEATURE[3] Explores protein structures for interesting features

IcP(34] Dynamically plans curricyfa for an Intelligent tutoring system
KRYPTO(28] Solves constraint-satisfaction problems

PHRED{41] Plans the construction process for aircraft components
PROCHEM{11] Madels protein structure based on theoreticai constraints
PROTEAN(4,25,29] Assembles protein structure based on empirical constraints
RAPS(30] Diagnoses electro-mechanical systems

SADVISOR(10] Advises on space station safety

SIGHTPLAN([50] Designs construction site layouts

SIMLAB( 40) Schedules personnel. hardware and software for flight simulation



Conversely, a given application system composes modules from the BB* environment in
several layers of implementation (see Figure Ic). For example, PROTEAN’s knowledge about
constructing proteins instantiates and configures a number of ACCORD’s more generd
knowledge structures for assembling arrangements. Similarly, ACCORD’ s knowledge structures
instantiate and configure a number of BB1's still more general knowledge structures about
problem-solving, control, explanation, and learning. When PROTEAN goes to work on a
problem, its actions are interpreted through these several layers of implementation.

In adapting this widely accepted software engineering principle-generaly referred to as
modular and layered design [18, 19, 50]--to intelligent systems, we achieve several advantages.
First, each abstraction level offers certain representational and computational services to higher
levels, while shielding them from the details of implementation. Second, we can understand
complex systems in terms of their simpler modular components. Third, we can investigate and
test alternative implementations of modules at one level independently of the modules at other
levels. Fourth, we can eliminate levels from applications that do not require their services.
Fifth, we can achieve additive and, in some cases, multiplicative improvements in efficiency
across levels [44]. Finaly, we can apply general knowledge modules in an appropriate variety

. of contexts and cohfigure selected lower-level knowledge modules for a variety of specific
purposes. ‘

We impose one additional constraint on our knowledge abstraction hierarchy: Modules
within a level must meet uniform standards of knowledge content and representation.
Accordingly, we adopt a single architecture, BB1. Although BB1 accommodates multiple
frameworks, each of them must provide the same core categories of knowledge within a
specified representation scheme. Similarly, each application must provide another set of core
knowledge categories within another specified representation scheme.

This constraint offers several related advantages. First, we can define new application systems
by configuring and augmenting existing knowledge modules within a level. Second, we can
identify and eliminate redundancy in the contents of independently acquired modules within an
application system. Third, we can organize modules in any appropriate organizational-scheme.
In particular, we Ccan organize them in a conventional “pipeline,” such that a succession of
modules receive, process, and pass on information. Alternatively, we can organize them :o
operate more intimately: operating simultaneously, sharing intermediate results, and affecting
one another’s behavior. In fact, a system can reason about how to select and organize medules
to solve new problems. Fourth, we can superimpose generic capabilities for control,



explanation, and learning upon the designated configurations of modules. In sum, uniformity
of content and representation within a level allows us to achieve the conventional capabilitiy
of open systems interconnection [53] and to strive toward a more ambitious capability that we
will call open systems integration. It raises the possibility of incrementally increasing the
quantity and variety of knowledge within an application system, while preserving a well-
structured foundation and a coherent face for the system as a whole (see Figure Id).

Our objectives in this work are two-fold, First, we wish to develop a rich and varied family
of reusable modules for building intelligent systems. System builders should be able to build
new systems by configuring appropriate subsets of these modules in appropriate organizational
schemes. Where new modules are needed, system builders should be able to introduce them into
the existing family and integrate them into new systems with ease. The resulting systems should
be well-structured, perspicuous, modifiable, and extensible. Second, we wish to develop a theory
of intelligent systems. The theory must provide: (a) a great range of problem-solving skills,
including the ability to solve a variety of problem classes with a variety of problem-solving
methods in a variety of subject-matter domains; (b) the ability to apply any available
knowledge to improve problem-solving performance: and (c) the ability to reason about--
control, explain, and learn about--action. We believe that our approach to developing the BB*
environment enables us to progress toward both objectives.

The remainder of this paper develops and substantiates the four themes introduced above and
displayed in Figure 1 as follows. Section 2 briefly reviews the BB1 blackboard control
architecture and its capabilities for control, explanation, and learning. Section 3 defines the
arrangement-assembly task, using PROTEAN as an illustration. Section 4 presents the
arrangement-assembly framework, “and its implementation as the ACCORD knowledge base.
Section 5 describes the BBl framework-interpreter, which alows BBl to accommodate any
framework that meets the standards of knowledge content and representation illustrated by
ACCORD. Section 6 describes the layered architecture of PROTEAN and illustrates control,
-explanation, and learning. within a BB* application system. Section 7 discusses knowledge
engineering within the BB* environment. It describes the design and implementation of another
arrangement-assembly system (the SIGHTPLAN system [51 ] for designing construction-site
layouts) and examines the applicability of BBI~-ACCORD to arrangement-assembly tasks in
other domains. Section 8 introduces a new class of multi-faceted systems to illustrate BB*'s
capability for open systems integration. Section 9 discusses the current state of the BB*
environment and our plans for extending it. Section 10 highlights the major results of the

paper.



2. BB1: An Architecture for Control, Explanation, and Learning

2.1 Overview of BB1

BB1 provides a uniform blackboard architecture for systems that reason about their own
actions as well as about particular problems and solutions. In a BBl system, functionally
independent knowledge sources cooperate to solve problems by recording and modifying
solution elements in a global data structure called the blackboard. A system may have three
classes Of knowledge sources. Domain knowledge sources solve domain problems on a domain
blackboard and send and receive messages aong input/output channels. Control knowledge
sources construct control plans for the system’'s own behavior on a control blackboard.
Learning knowledge sources modify knowledge sources and facts in the system’'s kno{vledg'e
base. All knowledge sources operate simultaneously and, when triggered; compete for scheduling
priority. BBl also provides an explanation capability by which a system shows how its actions
fit into its control plan. Figure 2 illustrates the BB1 execution cycle.

Since we have discussed BB1's knowledge structures and procedures in detail elsewhere [23],
we do not repeat that material here. Instead, we briefly characterize BB1's capabilities for
‘control, explanation, and learning. '
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Figure 2. The BBl Blackboard Control Architecture. The BB1 execution cycle comprises
three steps (8) The interpreter executes the action Of one knowledge source. Depending upon
whether the knowledge source is a domain. control. or learning knowledge source, its action
changes the contents of the domain or control blackboard or the knowledge base. (b) The
blackboard changes satisfy the conditions of other domain, control, and learning knowledge
sources. The agenda-manager ad& corresponding KSARs (knowledge source activation
records) to the agenda. (c) The seheduler rates each KSAR on the agenda against the current
control plan and, using a scheduling rule that is recorded on the control blackboard. chooses
one KSAR to execute its action. Unless it has been instructed to operate autonomously, the
scheduler also invites the user to request an explanation for the chosen action. to request any
of several other kinds of informarion. or to override the scheduler’s chosen action with another

one.
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2.2 Control Reasoning in BB1

BB1 provides a framework in which control knowledge sources incrementally construct an
explicit control plan, for the system’s own actions, on the control blackboard. Decisions at high
levels of abstraction prescribe general classes of actions to be performed during relatively long
problem-solving time intervals, while decisions at low levels prescribe more specific classes of
actions to be performed during relatively short time intervals. Thus, BB1 supports a kind of
hierarchical planning [16, 15, 46, 37] with severa important differences.

First, hierarchical planning systems typicaly refine selected plans to sequences of specific
actions to be performed on specified sequences of problem-solving cycles. By contrast, a BB1
system can refine selected plans to any desired level of specificity. For example, a system might
refine its plan to a sequence of action classes, where each class is characterized by a set of
desirable attribute-value relations. It would perform the “best” actions in each class during an
open-ended problem-solving time interval that begins when a specified control state occurs and
terminates when a specified solution state is achieved

Second, hierarchical planning systems typically formulate complete plans prior to beginning
plan execution. By contrast, a BB1 system can--and generally does--construct its plan
incrementally during plan execution, taking account of the results of previously executed
actions in its reasoning about subsequent plan elements. For example, a system ordinarily
would not generate its second planned action class until after it had achieved the goal of the
first action class. It might use solution elements established by actions in the first class to
determine some of the desirable attribute-value relations in the second class.

Third, hierarchical planning. systems typically formulate a single, integrated plan for the
problem at hand. By contrast, a BB1 system can formulate multiple plans, of idiosyncratic
hierarchical depths, for overlapping aspects of the problem and pursue them simultaneously.
For example, a system might adopt and begin pursuing a comprehensive plan for the entire
problem at hand. At some point during its problem solving, the system might notice an
infrequent, but significant intermediate solution state. It might formulate a local plan that
specifically addresses that solution state and pursue it concurrently with its larger plan. *

Fourth, since BB1 generates its control plan incrementally and explicitly represents the
evolving control plan on the control blackboard, a system can interrupt, depart from, modify,
discard, or resume construction and execution of a plan in response to the dynamic situation.
For example, a system could begin implementing a comprehensive strategy for the problem at
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hand, but subsequently determine that it had chosen a suboptimal initial value for a key
strategic parameter. A control knowledge source triggered by this observation could “back up”
the system’s control reasoning, add a new heuristic to exclude’ the originally chosen value, and
then allow the system to resume its problem solving activities in accordance with the modified
control plan.

Fifth, in addition to the top-down inference method underlying skeletal planning, a BB1
system can incorporate a variety of other inference methods, such as: (a) bottom-up methods
that hypothesize the desirability of pending actions not explicitly favored by the current
control plan: (b) goal-directed methods that plan actions whose results would trigger actions
favored by the current control plan: and (c) opportunistic methods that plan actions. whose
results would improve a targetted aspect of the current solution.

Finally, a BB1 system integrates reasoning about control of all domain and control actions
within a uniform blackboard architecture. Thus, for example, a system might record and
concurrently apply heuristics favoring control actions over domain actions aong with its
strategic heuristics favoring particular kinds of domain actions.

2.3 Explanation in BB1

23.1 Overview of Explanation

BBl's explicit representation of a system’'s control plan provides a database for use in
explaining a system’s actions. Drawing upon this information, a system can explain what makes
particular actions feasible and how alternative actions serve its current control plan. It aso can
explain the internal structure and rationale for its control plan.

BBl currently provides a graphics-based, menu-driven explanation capability. Different
menu options alow the user to request explanations that highlight different aspects of the
current control ~ plan. For example, the option focal context explains an action’s immediate
superordinate in the control plan and its preceding siblings. By contrast, the option complete
picture explains the entire control plan and all previously performed actions leading up “to the
decision to perform an action. These and other explanation options are described in more
detail in [47].
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2.4 Learning in BB1

BB1 structures the data needed to learn new control strategies. Learning knowledge sources
can observe relationships between KSARs, the events that trigger them, and the events that they
produce. They can observe similarities and differences among competing KSARs and determine
how those KSARs rate against the current control plan. They can exploit BB1 data structures to
program new control knowledge sources.

For example, a generic learning knowledge source called MARCK [24] learns a new control
heuristic whenever a domain expert corrects an application system’s scheduling decision.
MARCK hypothesizes that the expert is using a control heuristic that distinguishes the action
he or she wishes to perform from the one the application system scheduled. MARCK compares
the two actions, identifies the key difference between them, and formulates a control heuristic
favoring the attribute preferred by the domain expert MARCK immediate posts the new
heuristic on the control blackboard, but also programs a new control knowledge to post that
heuristic in future problem-solving episodes.

We are working on another set of learning knowledge sources called WATCH [20]. These
knowledge sources observe a domain expert scheduling a system’s problem-solving actions and
recursively abstract a hierarchy of’ control heuristics that capture sequential regularities in the
expert’s scheduling decisions. Then they automatically program new control knowledge sources
that post and expand the hierarchy top-down during subsequent problem-solving episodes.
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3. The Arrangement-Assembly Task

As discussed in section 1, a framework, such as ACCORD, is more specific than an
architecture, such as BB1, because it defines the actions, events, states, and facts involved in
solving a particular class of problems by means of a particular method. However, a framework
remains independent of subject-matter domain. In this section, we discuss an illustrative task==
the arrangement-assembly task and illustrate it with PROTEAN’s protein-modeling task In
section 4, we discuss the framework we have developed for the arrangement-assembly task and
its implementation as the ACCORD knowledge base.

3.1 Arrangement Problems .

We define a problem class by its characteristic inputs and outputs. Arrangement problems
provide these inputs: a set of symbolic objects, a context, and a set of constraints. They require
as output: one or more arrangement(s) of the objects in the context such that’ each arrangement
satisfies the constraints. Arrangement problems arise in a variety of domains, such as furniture
arrangement, page layout, travel planning, and task scheduling. For illustration purposes, we
focus on an arrangement problem attacked by the PROTEAN system.?

PROTEAN must identify the three-dimensional conformations of proteins. Its input data
specify a test protein’s primary and secondary structures (see Figure 3) and the atomic
architecture of each individual amino acid (see Figure 4). Its input data also specify a number
of constraints (see Table 2). For example, there may be about SO-60 NOEs (Nuclear
Ovcrhauser Effects), each of which indicates that two particular atoms in the protein are
within 3-10 angstroms of one another. There may be evidence that certain atoms are accessible
to solvent, indicating that they lie near the molecular surface of the protein. There may be
information about the overall size, shape, and density of the protein molecule.

3The PROTEAN project is directed by Bruce Buchanan and Oleg Jardetzky. The research team includes: Olivier

Lichtarge, Barbara Hayes-Roth. Bruce Duncan, Russ Altman, Jim Brinkley, Craig Cornelius. Alan Garvey, and John

Brugge.
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Figure 3. Primary and Secondary Structure of the Lac-Repressor Headpiece The lac-
repressor's primary structure is a unique sequence of 51 amino acids, each of which is one of
the 20 unique amino acids. Its secondary structure includes three alpha-helices, each of which
is defined by a series of repeated angular turns in the protein’s backbone. Interspersed among
its helices, the k-repressor headpiece has random coils. segments of the primary structure that
show no identifiable regularity.

Alwrirw Tyrosine
- H o H o
Backbone u—I——t‘:—!!-—o—u n—I—l—n—o—n
- " —— He—C—H
— !
- O=—-H

Figure 4. Two Amino Acids: Alanine and Tyrosine. AS these examples illustrate, each amino
acid has a common part, a which it bonds to neighboring amino acids to form the backbone
of aprotein, and a unique sidechain that distinguirhea it from other amino acids.

Table 2. Some of the Constraints Available to PROTEAN

Primary structure

Atomic structure of individual amino acids
Van der Waals' radii of individual atoms
Peptide bond geometry

Secondary structure

Architectures of alpha-helices and beta-sheets
Molecular size

Molecular shape

Molecular density

NOE measurements

Surface data
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Based on these input data, PROTEAN must identify the test protein’s tertiary structure--the
folding of its primary and secondary structures in three-dimensional space (see Figure 5).
Because the problem is underconstrained, there may be many conformations that satisfy the
available constraints. PROTEAN must identify the entire family of such conformations.
Moreover, since proteins are known to be mobile in solution, PROTEAN must characterize
potential mobility in the conformations it identifies.

Figure 5. The Tertiary Structure of the Lac-Repressor Headpiece. The lac-repressor's tertiary
structure defines the folding of its primary and secondary structures in three-dimensional
space to pack all component structures into a globular molecule
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3.2 The Assembly Method

We define a problem-solving method in terms of the knowledge a problem solver uses and
the operations it performs in order to solve a particular problem. In principle, a problem
solver could use any of severa different methods to solve an arrangement problem (see Table
3). In practice, however, the problem solver may not have the knowledge necessary to apply a
given method. For example, PROTEAN cannot apply the selection, refinement, modification,
or generation methods because it does not have knowledge of alternative protein structures, a
prototypical protein structure, almost-correct protein structures, or an agorithm for generating
complete protein structures. In the absence of such knowledge, a problem solver must construct
hypothetical arrangements. The assembly method is one method for constructing arrangements.
Unlike the other methods in Table 3, the assembly method can be applied to any arrangement
problem.

Table 3. Methods for solving Arrangement Problems.

1. Select an arrangement that satlsfles the constraints from a pre-enumerated set
of alternatives.
Requires Knowledge of: Alternative arrangements.
Example: A travel agent selects one of several tour “packages” that includes
all of the destinations requested by a client.

2 Refine a prototypical arrangement so as to satisfy the constraints.
Requires Knowledge of: A prototypical arrangement.
Example: An architect refines a prototypical U-shaped kitchen design to
include the special appliances requested by a client.

3. Modily an almost-correct arrangement to satisfy the constraints.
Requires Knowledge of: Almost-correct arrangements.
Example: A tool designer modifies an existing tool to fit a new machine.

4. Generate a complete arrangement that satisfies the constraints.
Requires Knowledge of: A procedure for generating complete arrangements.
Example: A psychologist uses a multi-dimensronal-scaling algorithm to generate
a spatlal model of subjects’ similarity ratings of related concepts.

5. Construct an arrangement that satisfies the constraints.
Requires Knowledge of: A method for constructing arrangements.
Example: A person solves ajigsaw puzzle by placing pteces one at atime.
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The basic assembly operation applies one or more constraints to determine where in the
specified context a particular object can lie given: (a) its current hypothesized position; (b) its
constraints with other objects or with contextual ‘features, and (c) the current hypothesized
position of those other objects or features. In performing this operation, the problem solver
must exploit some application-specific procedure for generating legal positions. For example,
PROTEAN currently uses a generate-and-test procedure [3], sampling space at some level of
resolution and identifying all locations in which a structure satisfies a given set of constraints.
Figure 6 illustrates PROTEAN’ s application of constraints.

Figure 6. Constraint Application in PROTEAN. (a8) PROTEAN assumes a fixed position for
helix1 and anchors helix2, determining that helix2 can lie in any location within the outlined
region and il satisfy its constraints with helixl. (b) PROTEAN yokes helix2 and helix3,
pruning the locations previously identified for these helices to include only those that satisfy
constraints between them.
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The problem solver can perform its positioning operations in the context of one or more
partial arrangements (see Figure 7). Each partial arrangement includes a subset of the objects
and constraints specified in the problem. The problem solver designates one object in a partial
arrangement to occupy a fixed location and positions al other included objects relative to it.
Eventually, the problem solver combines two or more partial arrangements to form a complete

arrangement. .

The problem solver may assemble partial arrangements at different levels of abstraction,
where objects at each level aggregate sets of constituent objects at the next lower level (see
Figure 8). The problem solver can use the positions of abstract objects to restrict the number
of possible locations for their constituent objects. Conversely, it can use the positions of
constituent objects to restrict the locations hypothesized for their superordinate objects.

PA1

includes

HELIX1

Anchors

HELIX2 < Yokes HELIX3

Appends

CoiL3

Figure 7. A Partial Solution for the Lac-repressor Headpiece. Pal includes helixl, helix2,
helix3, and coil3. Helixl, which has been defined as the anchor of pal, anchors helix2 and
helix3. Helix2 appends coil3, which has no constraints with the anchor. Helix2 and helix3 yoke
one another with the constraints between them.
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Because the assembly method searches a combinatoric space of possible arrangements, the
problem solver must control its search intelligently. It must reason about: how to group objects
in partial arrangements: which object should define the local coordinate space of each partial
arrangement; when to position particular objects with particular constraints; when to work at
particular levels of abstraction: and when to combine partial arrangements. This reasoning
must incorporate general computationat principles, such as: defining the local coordinate space
about an object that has many constraints to many other objects; focusing on objects that
aready have been restricted to relatively specific positions. and preferring constraints that
maximally restrict an object’s position. It must also incorporate domain-specific knowledge. For
example, PROTEAN’s reasoning incorporates biochemistry knowledge such as. defining the
space of potentially useful constraints: and characterizing the constraining power of different
constraints.

Similarly, an intelligent problem solver should be able to explain its assembly actions and
learn new assembly strategies from experience.

o=

\

JAl

Y

Figure 8. PROTEAN's Levels of Reasoning. Al the molecule level. PROTEAN reasons about
the size, shape, and density of the protein molecule. At the solid level, it reasons about the
relative positions of the test protein’s secondary structures, represented as geometric solids. At

the superatom level, it reasons about the positions of each amino acid’s constituent peptide unit
anv -i.echain. At the atom level, it reasons about the positions of individual atoms.
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4. ACCORD: Knowledge about Assembling Arrangements

The ACCORD knowledge base provides an explicit, interpretable representation of the
knowledge required, to assemble arrangements and to control, explain, and learn about
arrangement-assembly actions. The elements of ACCORD include: (a) a conceptual network
that organizes all arrangement-assembly knowledge; (b) atype hierarchy of domain entities; (C)
a type hierarchy of arrangement roles; (d) type hierarchies of assembly actions, events, and
states: (€) networks of characteristic relations among assembly actions, events, and states; (f)
linguistic templates for instantiating assembiy actions, events, and states: (g) the partial matches
among these templates; and (h) translations of arrangement-assembly templates into
corresponding templates in a lower-level language. The following sections describe these
elements and, where necessary, illustrate them with the domain knowledge of PROTEAN.

4.1 The Conceptual Network
We represent all of the knowledge in ACCORD within a conceptual’ network [49].

The network distinguishes three kinds of concepts (see Figure 9): types, individuals, and
instances. Concept types intensionally define the generic concepts of a task by means of is-a
links. These include domain entities (e.g., helix is-a secondary-structure), arrangement roles
(e.g., anchor is-a arrangement-role), and assembly actions, events, and states (e.g., position is-a
assembly-action). Concept individuals exemplify particular concept types (e.g., helix1 the first
helix in the primary sequence of the lac-repressor headpiece. exemplifies helix). Concept
instances instantiate individuals in particular contexts (e.g., helixl-1, instantiates helix1 in the
context of partial arrangement pal). Concept instances also play particular roles in those
contexts (e.g., helix1-1 plays anchor).
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./ . [Exemplifies] hidual Instantiareﬁanc.
is-a
Role-Type ' Naturai-Type
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Figure 9. Schematic Overview of ACCORD’s Conceptual Network.  Concept fypes
intensionally define generic concepts by means of is-a links. These include natural types (e.g-
belix, assembly-sction) and role typa (eg, anchor). Concept Individuals (e.g. (helixl|)
@ xrmpl/fi particular concept types. Concept instances (e.g. helixl-1) instantiate particular
individuals to play particular roles in particular contexts. Concepts attributes can have static or
procedural values. Both éttributes and link relations are inheritable. Bracketed links in this and
other figures indicate legal 1inks (eg.a concept individual may exemplify a concept type), while
unbracketed links indicate actual links (e.g., the individua! helix1 actualy does exemplify the
type helix). PROTEAN-specific concepts in this figure appear in bold type.
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Concepts may have other links. For example, one concept ma;} include severa constituents. In
addition, all links in the network have corresponding inverse links: can-be-a, is-exemplified-
by, is-instantiated-by, is-played-by, is-included-by. Finally, implicit $link relations hold
between concepts related by chains of specific component links. A $is-a relation holds between
any two concepts related by a chain of instantiates, exemplified, and is-a links. For example,
we may infer that:

Helix1-1 $is-a secondary-structure.

because:

Helix1l-1 instantiates helixl.
Helix1 exemplifies helix.
Helix is-a Secondary-Structure.

A Sincludes relation holds between concepts related by a chain of instantiates, exemplifies, is-
a, and’ includeslinks. For example, we may infer that:
Hel ix1-1 $includes Amino-Acid35.

because:

Helix1-1 instantiates helixl.
Helix1 includes Amino-Acid3s.

A $plays link holds between concepts related by a chain of exemplified-by, instantiated-by,

and plays links. For example, we may infer that:
Helix Splays anchor..

because:

Helix is-exemplified-by helix|.

Helix1l is-instantiated-by helix1-1.

Hel ix1-1plays anchor.
These and all other $<link> relations ‘have corresponding inverse relations that hold between
corresponding chains of inverse component relations. For example, we may infer that:

Anchor $is-played-by helix.

because:
Anchor is-played-by helix1-1
helix1l-1 instantiates helixl.
helixl exemplifies helix.

Any concept in the network may specify particular attributes, along with static or procedural
values. For example, PROTEAN’s concept network includes the facts that: helix hasan attributs
called shape. whose value is cylinder: and secondary-structure has an attribute called length.
whose value is determined by a procedure called Number-of-AA that counts the number of
amino-acids included by the secondary-structure.  Like relations among concepts, tese
attributes are inheritable.  For example, helixl-I's shape is cylinder and its length is

determined by the procedure Number-of-AA.
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One class of attributes warrants special mention. Modifiers are attributes whose procedural
attachments evaluate the applicability of the named descriptors to any given concept
individuals or instances. For example, PROTEAN’s modifier tong is an attribute of the concept
type secondary-structure. Its value, which is computed by the procedure called How-Long-Is, is
a function of the number of amino-acids included by a particular secondary-structure (that is,
by. a particular alpha-helix, beta-sheet, or random-coil). All such procedures return numerical
values scaled O-100, where 0 signifies minimal applicability of the modifier and 100 signifies
maximal applicability. However, a framework can distinguish two different procedural
definitions for each modifier.

Threshold procedures evaluate concepts in an al-or-none fashion. For example, PROTEAN
might refer to a “long helix,” meaning “a helix that has at least 15 amino acids.” An individual
helix, say helixl, either matches this description or it does not Therefore, the threshold
procedure attached to the attribute long returns a value of 100 for any helix that includes more
than 15 amino acids and a value of O for any helix that includes fewer than 1§ amino acids.
In general, threshold procedures return a value of 100 or 0, depending upon whether or not the
modified concept exceeds a designated threshold on a designated attribute.

. Scale procedures evaluate concepts in a graded fashion. For example, PROTEAN might refer
to a “long helix,” meaning “a helix that includes at least 15 amino acids is better than one that
includes 10-14 amino acids, which is better than one that includes fewer than 10 amino acids.”
An individual helix, say helixl, matches this description to some degree. Therefore, the scale
procedure attached to the attribute long returns a value of 100 for any helix that includes more
than 15 amino acids, a value of 50 for any that includes 10-14 amino acids, and a value of 0
for any helix that includes fewer than 10 amino acids. In general, scale modifiers return values
somewhere in the range O-100, depending upon the degree to which the modified concept
exhibits a designated attribute.

Threshold or scale procedures may be specified within an expression by extending the
modifier name with "-T" or "-S8." However, as discussed below, BB1 knows in which
circumstances each type of procedure typicaly applies. |f no extension appears in amc;difer.
it uses the appropriate procedure.
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4.2 Types of Domain Entities

A framework provides skeletal branches of the natura-type hierarchy in which to define
relevant domain entities.

For the arrangement-assembly task, ACCORD provides skeletal branches for. the objects to
be arranged, the context in which the objects must be arranged, and the constraints that must
be satisfied within the arrangerﬁent. Particular constraints may involve particular objects and
constraints. Figure 10 illustrates how PROTEAN instantiates these skeletal branches with
biochemistry entities. In addition. PROTEAN specifies the characteristic attributes of and
relations among entities. For example, it specifies that alpha-helix, beta-sheet and random coil
have the attribute shape, with the values cylinder, prism, and sphere, respectively.

[invoilves] [invoives]

Constraint Context

Is~a Is-a

Physical-~ Oblect Spatial-Coktraint Spatial-Context

Is-a T Is-a
Mo..oy Context-based Object-based Molecule
Constramt o Constraint
Is-a Tls-a
econdary- [Inciudes
Protein égmn'. [ ] Surface NOE

Constrant
Is-a

Beta-Sheet Random-Coi

Shap Shaoe Shaoe
c:m Priam Sehere

Figure 10. ACCORD's Skeletal Branches for Objects. Contexts. and Constraints. PROTEAN-
specific entitia appear in bold type. Individual constraints can involve particular objects or

contexts.
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4.3 Role Types
A framework defines the roles that problem entities can play in hypothetical solutions.

ACCORD defines the arrangement roles illustrated in Figure 11. An arrangement is a
potential complete solution to an arrangement problem, that comprises one or more partial -
arrangements that, together, comprise a criterial subset of its objects, constraints, and context. A
partial-arrangement is a partial solution to a problem, that comprises a non-criterial subset of
its objects, constraints, and context An included-object is one of the objects from the problem
that has been selected for inclusion in a partial-arrangement Included-object has three
subordinate subtypes. An anchor is an included-object that has been assigned a fixed location
to define the local context of a partial arrangement An anchoree is an included-objects that
has at |east one constraint with the anchor. An appendage is an included-objects that has at
least’” one constraint with at least one anchoree.*

7

Role-Type

is-a

Arrangement-Role

ls-a [Yokes
Consolidates]
[inci ' includes]
udes] lal-Arrangement == { inciuded-Object
Arrangement e —pP A Q 3 :
is-a
[incorporates
Merges
Docks
Appends
Anchor %ﬂdﬂoreo (Aep ppendage

Figure 11. ACCORD's Arrangement-Role Types. An arrangement is a complete solution to
an arrangement problem and may include one or more partial arrangements. A partial~
arrangement is a partial solution that includes a subset of the objects. constraints, and
contextual regions specified in the problem. Particular partial-arrangements an incorporate,
merge, or dock withone another. [Included-objects an serve asanchors, anchorees, o r
appendages within a partial-arrangement. An anchor an anehor an snchoree. An snchoree an
append an appendage. |n addition, included-objects an yoke or eonsolidate with one mother.

We have not yet found it necessary to elaborate similar role types for constraints and contexts, but we may do so

in the future.



27

Figure 11 also illustrates characteristic relations among solution elements that play particular
roles. An arrangement includes partial-arrangements, which, in turn, include Included-objects.
Anchors anchor anchorees. Anchorees may append appendages. Two included-objects may yoke
one another. Three or more included-objects may consolidate with one another. A partial-
arrangement may incorporate, merge, or dock another one.

Finally, ACCORD specifies a number of characteristic attributes and default values for
solution elements that play particular roles (not shown in Figure 11). For example, included-
object has a locations attribute, whose default value is Nil, that specifies its legal locations in
its partial-arrangement context, given the constraints that have been applied at any point in
time. Included-object also has an attribute named secure whose value is a procedure for rating
(O-100) the degree to which an included-object’ s current locations have been res’ricted.

4.4 Types of Actions, Events, and States

A framework defines task-specific action, event, and state types as homologous variations on
an underlying network of root verbs.

N AR B AL

Create - Include estrict  Yoke Append Consolidate Refine  Adjust erge Incorporate

Figure 12 ACCORD’s Type Hierarchy of Arrangement-Assembly .Root Verbs. Assemble has
four subtypes. Defining a partial arrangement involves creating a partial arrangement, including
objects in it and orienting the partial arrangement about a selected anchor. Positioning Objects
within a partial smngement may involve, for example, anchoring and object to the anchor or
yoking two previousy positioned anchorees. Coordinating partial arrangemenu may involve
refining their subordinates at lower levels of abstraction or adjusting their superordinate at
higher levels of abstraction. Integrating partid arrangements may jnvolve merging those that
have a common anchor. incorporating one partial arrangement into another one that shares a
common object. or docking those that include objects that constrain one another.
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ACCORD defines the type hierarchy of root verbs shown in Figure 12. The top-level verb,
assemble, means. solve an arrangement problem by means of the assembly method. Assemble
has four subtypes. Define means. construct a partial arrangement that includes particular
objectsin particular roles. Position means: identify the locations in which particular objects can
lie within a particular partial arrangement while satisfying particular constraints. Coordinate
means= identify the locations in which particular objects can lie within a partial arrangement
white satisfying their part-whole relations with previously positioned superordinate or
subordinate objects. Integrate means. combine two partial arrangements to form ‘asingle, larger
partial arangement Each of the four verb subtypes-define, position, coordinate, and
integrate--has two or more subordinate subtypes, as described below.

Define has three sub-types. Create means. record a blackboard objects representing a new
partial arrangement. Include means: create instances of particular objects or constraints within
a particular partial arrangement. Orient means. declare that a particular objects in a partial
arrangement is the anchor and assign the roles anchoree and appendage to other included
objects d2pending upon whether or not they have constraints with the anchor.

Position has five subtypes. Anchor means: identify the locations in which an anchoree .
satisfies particular constraints with the anchor. Append means: identify the locations in which
an appendage satisfies constraints with an anchoree or appendage that has already been
positioned. Yoke means: prune the locations for two included-objects that have already been
positioned so that they include only locations in which the two objects satisfy constraints with
one another. Restrict means: prune the locations identified for an anchoree or appendage to
include only those that satisfy additional constraints. Consolidate means: prune the locations
for three or more objects to include only those that satisfy all constraints among the objects
simultaneously.

Coordinate has two subtypes. Refine means: identify locations for a previously positioned
objects's constituent objects so as to satisfy their part-whole relationship. Adjust means:
identify an objects's ‘locations to satisfy its part-whole relationship with previoudy positioned
constituent objects.

integrate has three subtypes. Merge means. combine two partial arrangements that have the
same anchor. I'ncorporate means. combine two partial arrangements that include anchorees or
appendages. Dock means; combine two partial arrangements that have no common objects, but
include objects that constrain one another.
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ACCORD also specifies entailments of these root verbs (see Figure 13). For example, the
anchor verb entails the generate verb, which means generate a family for an included-object.
Similarly, the position verb entails the apply verb, which means. apply a constraint to an
included-object within a partial arrangement. An implicit $entails relation holds between two
concepts related by any chain of is-a, exemplifies, instantiates, and entails links. For example,

we may infer that .
Anchor $entails apply.

because:
Anchor Is-a Position.

Position entails apply.

ACCORD distinguishes homologous type hierarchies for actions, events, and states by
different verb tenses: Do-verb signifies an action. Did-verb signifies an event Is-verbed
signifies a state. As illustrated in Figure 13, all relations and attributes in the root verb
hierarchy reappear in the action, event, and state type hierarchies.

ACCORD also recognizes implicit states reflecting the existing properties of particular
concepts (e.g., Has helix2 shape cylinder) and the relationships between them (e.g., Exemplifies
helix1l helix). As a consequence, the number of recognizable state types in an application
system greatly exceeds the number of action and event types defined in ACCORD. For reasons
of efficiency, ACCORD does not explicitly enumerate all such states, but only those that have
important relationships (e.g., is-caused-by, is-entailed-by). to actions, events, or states in the
type hierarchy. Nonetheless, it supports verification and assessment of al explicit and implicit

states in the conceptual network. .
Do-Apply=—Entail's _pe-position

b-a

) T
Do-Generate< ENtails _ pg_Anchor

Apoly: Entails Positlon Did-Apply<—ENt3i!S__ 5ig-position

g g ———> lsa

N T
Generate& Anchor

Did-Generate <£EM'3/'S_ pig-Anchor
Is-Applied «—EN'1S 15 positioned
Is-a

Is-Generated EN*a!s js-Anchored

Figure 13. Homologous Action. Event. and State Subnetworks. The root verb hierarchy
underlies homologous action, event, and state type hierarchies, distinguished by verb tense.
Do-<verb> signifier an action. Did-<verb) signifies an event /s-Cverbed) signifia a state.
Implicit $<links> indicate. for example. that do-anchor actions $entail do-gpply actions.
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4.5 Relations among Actions, Events, and States

A framework specifies legal relations among different types of actions, events, and
states [1, 36]. Events of a particular type can trigger actions of a particular type, that is,
indicate that the actions are potentially feasible. States of a particular type can enable triggered
actions of a particular type, that is, render the triggered actions feasible. Actions of a
particular type can cause events of a particular type. Finally, events of a particular type can

promote states of a particular type. Figure 14 illustrates some of the legal relations specified in
the ACCORD knowledge base.

Did-Apply : Has-Locations
- Entails] NEM:M:J
. Did-Position Do-Position

ls-Positioned
riggers
is-a ogers] is-a Enables ]

Did-Anchor Did-Yoke Causes Do-Yoke

Figure 14. Some Legal Relations among Actions, Events, and States. Did-position events
trigger do-yoke actions. which must he ® nubled by has-locations states. When executed. do=
yoke actions cause did-yoke events, which promote is-positioned states Implicit $<link>

relations indicate. for example, that did-anchor events $trigger do-yoke actions and that do-
yoke actions $eause did-apply events.
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An implicit 8<links> form of each of these relations:
A [$<1inks>] B

holds for any two concepts, a and b, whenever:

a $is-a A or a $entails A.
and
B $is-a b or B $entails b.

. For example, we may infer from Figure 14 that:
Did-anchor [$triggers] do-yoke.
because:

Did-anchor is-a did-position.
Did-position [triggers] do-yoke.

Similarly, we may infer that:

Do-yoke [$causes] did-apply.
because:

Did yoke Santalls did-apply.

Note that legal relations such as those specified in Figure 14 may not actually hold among all
individual actions, events, and states of the specified types. For example, a did-position event
can. trigger a do-yoke action. But an individual did-position event may require additional
attributes (discussed below) in order to trigger an individual do-yoke action.

4.6 Linguistic Templates for’ Actions, Events, and States

A framework provides linguistic templates for all root verbs and their entailments. Each
template comprises a verb keyword, followed by a specified sequence of formal parameters,
interspersed with optional conjunctions and prepositions (noise words). Particular actions,
events, or states are represented as patterns that instantiate the formal parameters of particular
templates with particular concept types, individuals, or instances. In addition, each keyword and
formal parameter value in a pattern may be preceded by any number of modifiers and
followed by aloca variable. name in parentheses.

Table 4 shows ACCORD’s templates for the arrangement-assembly root verbs. (For brevity,

we omit ACCORD'’ s templates for entailed verbs.) For example, the anchor templateis':
Anchor anchoree to anchor in pa with constraint.

Here, the keyword, anchor, is followed by the sequence of formal parameters. anchoree,
anchor, pa, constraint, with some parameters preceded by the declared noise words: to, in, with.

A system instantiates these templates with domain-specific entities to form particular action,
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event, and state patterns. For example, PROTEAN might instantiate the anchor template as this .

action pattern:
Do-anchor helix2-1 to helix1-1 in pal with NOE1.

PROTEAN could represent a larger class of actions with this pattern:
Do-anchor helix to helixl-1 in pal with constraints.

It could represent a restricted class of actions by inserting modifiers before some parameter

values, asin this pattern:
Quickly do-anchor long helix to helixi-1in pal with strong constraints.

PROTEAN could instantiate event and state patterns in a similar fashion by substituting the
appropriate did-verb or is-verbed forms of the root verbs,

Table 4. Tempiates for Arrangement-Assembly Root Verbs.

« Assemble pa
. Define pa
« Create pa at level
« Include object in pa
. Ortent pa about included-object

. Position object in pa with constraints

. Anchor anchoree to anchor In pa with constraints
. Restrict included-object in pa with constraints
. Yoke included-object to Includec'!;obiect in pa with constraints
« Append ‘appendage to included-object in pawith constraints
« Consolidate included-obiects in pa with constraints
. Integrate pa with pa
« Merge pa with pa
. Incorporate pa into pa via included-object
. Dock pa to pa with constraints

. Coordinate pa at level and level

. Refine sub-object of object in pa from levet to level

. Adjust object for sub-object in Pg
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4.7 Partial Matches Among Templates

A framework defines the potential partial matches among action, event, and state patterns by
identifying corresponding parameters in their underlying templates. (These correspondences
need not be one-to-one.) Two patterns match to the degree that the values of their
corresponding parameters match. For example, Figure 15 identifies corresponding parametersin
the assemble, position, and anchor template.

Consider the position and anchor templates. By definition, the two keywords; position and
anchor, correspond. In this context, the formal parameters included-object and anchoree
correspond because they both represent objects that the actions position. The two formal
parameters called pa correspond because they both represent the partial arrangement in which
the actions occur. The two formal parameters called constraints correspond because they both
represent constraints that the actions apply. The anchor template’'s formal parameter called
anchor does not correspond to anything in the position template because the position template
does not specify an object that lies at the center of the designated local coordinate system.

- Given this knowledge, a system can assess the degree to which two patterns match by
assessing the matches between their formal parameter values. For example, PROTEAN can .
assess the degree to which the pattern:

Anchor helix2-1 to helixl-1 in pal with NOE1.
matches the pattern:

Position long helix in pa with strong constraint.

by assessing the matches of:

anchor against position:
helix2-1 against long helix:
pal against pal: -

NOE1 against strong constraint.

Assemble a Pa\ |
Position an Included-object In a pa with constraints

Anchor an anchoree to the anchor of a pa with constraints

Figure 15. Partial Matches between Assemble. Position, and Anchor Templates. Partial
matches identify semantically corresponding formal Parameters in all pairs of templates. In
theses examples: Assemble, position. and anchor ail represent verb keywords. Included-object
and anchoree represent objects being positioned. AWl parameters called pa refer to the partial

arrangement. Parameters called constraints represent constraints ' be applied.
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4.8 Template Trandations

Since a framework such as ACCORD must be applied in the context of a computational
architecture, it provides the' knowledge necessary to translate certain framework templatesinto
semantically equivalent templates in the language of the chosen architecture. In our work, we
use the BB1 blackboard control architecture (see section 2 above) and ACCORD provides
knowledge for trandating arrangement-assembly templates into BB1 templates. So far, we have
found it necessary to provide such knowledge for terminal action patterns and for all state
patterns. In both cases, translation knowledge comprises the parameterized framework templates
and the semantically equivalent parameterized BB1 templates, with corresponding parameters of
the same names. Thus, BB1 can trandlate patterns between representations by means of a
variable-substitutionprocedure di scussed below.

For example, Figure 16 shows the BB1 template for the do-anchor action. Asthis example
illustrates, each BB1 action template is a parameterized program of rules that evaluate lisp
expressions, set local variables, and modify objects on the blackboard or in the knowledge base.
(Note that atl application-specific routines for constraint satisfaction are inserted indirectly
through calls to ACCORD'’ s generic CSS-<extension> functions.) Both do-anchor templates
refer to the parameters: anchoree, anchor, pa, and constraints.

ACCORD Tempiate: Anchor Anchoree {0 ANChOr in PA with cons-

((EXECUTE ($Set Constraints (CONSTRAINTS-IN Constraints)))

(EXECUTE ($Set CSS-Anchor-Results (CDR (CSS-ANCHOR Anchoree
Anchor PA Constraints))))

(PROPOSE changetype MODIFY object Anchoree attributes
CSS-ANCHOR-RESULTS))))

PROTEAN €SS~-ANCHOR Function:
(PROG (AbTable PObiect PAnchor PConstraints Sample-Vector Oescription

CalcLocAns DescribeAns)

(SETQ AbTable (CSS-GENERATE-TABLE-NAME Object Anchor
Constraints PA ‘Anchor)

(SETQ PObiect ($SHORT-NAME (SOSJECT Object ‘Instantlater)))

(SETO PAnchor (SSHORT-NAME (SOSJECT Anchor ‘Instantlater)))

(SETQ PConstraints (SSHORT-NAME Constraints))

(SETQ Sample-Vector. ‘(2 2 2 30 30 30))

(SETQ Description (LIST ‘Anchor PObiect 'to PAnchar))

(SETO CalcLocAns (GS-CALCULATE-LOCATIONS AbTable NIL PAnchor
PObiect PConstraints NIL Description Sample-Vector NIL))

(IF (NULL (CAR CalcLocAns))
THEN (RETURN CalcLocAns))

(SETQ DescribeAns (GS-DESCRIBE-LOCATIONS AbTable PAnchor
PObiect PConstraints ‘GS-CALCULTATE-LOCATIONS
(DATE) Description))

(RETURN (CDR DescribeAns)))

Figure 16. ACCORD and BBl Templates for the Do-Anchor Action. Both templates refer to
the same parameters, which can be instantiated to define specific action patterns. The
ACCORD template is essentially a macro for the more complex underlying BB1 program of
rules. Note that all application-specific routines fOr constraint satisfaction are inserted

indirectly through calls to ACCORD’s generic CSS-<extension> functions.
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Figure 17 shows the BB1 template for the is-anchored state. As this example illustrates, each
BB1 state template is a parameterized program of blackboard access functions. Both is-anchored
templates refer to the parameters. anchoree, anchor, pa, constraints.

In addition to these explicitly stored state translations, BB1 automatically translates any has-
attribute state pattern instantiating the prototypical framework template:
Has object attribute value
into the equivalent prototypical BB1 template:
(Equal ($value object attribute) value).

ACCORD Template: Is-Anchored Anchoree to Anchor in PA with Constraints.

BB81 Template:
((EO ($OBJECT Anchoree ‘Anchored-by) Anchor)
(FMEMB Anchor (SOBJECTS PA Includes))
($SOBJECT- Anchoree ‘Located-by)
{EQ (SVALUE ($SOBJECT Anchoree ‘Located-by) ‘Constraint-Set-Used)
Constraints))

Figure 17. ACCORD and BBl Templates for the Is-Anchored State. Both templates refer to
the same parameters, which can be instantiated to define specific state patterns The ACCORD
template is essentially a macro for the more complex underlying BBl program of access

functions.



36

5. The BB1 Framework-Interpreter

To support the application of frameworks, we have extended the BB1 architecture with a
framework-interpreter: a collection of procedures for parsing patterns, matching patterns,
quantifying the match between two patterns, generating an ordered list of quantified
instantiations of a pattern, and translating framework patterns into BB1 patterns. The BBl
framework-interpreter applies to any user-specified framework defined with the BB1 knowledge
structures illustrated above for ACCORD. In addition, BB1 can accommodate heterogeneous
systems, applying the new procedures to framework knowledge structures and its standard
pr ocedur es to BB1 knowledge structures. Section 6 below shows how BB1 uses the framework-
interpreter during problem solving.

5.0.1 Parsing Patterns

The BB1 parser converts patterns from their English form to a parsed form for use by the
matcher, quantifier, generator, and translator. ~ The parser first removes noise words
(conjunctions and prepositions) from a pattern. It then works left to right, using recognized
verb keywords and the sequence of parameters in their associated templates to identify the
pattern’s constituent phrases. The parser produces a list of simple lists, each of which contains
a single parameter value and the modifiers that precede it in the pattern. For example, the

parser would parse the pattern:

Quickly dog-anchor long helix ‘to helixi-1in pal
with strong constraint.

as the list:

((d&anchor Quickly)
helix long)
hel ixl-1)
pal)
constraint strong))

Other interpretation procedures access particular parameter phrases according to their sequential
positions in the templates and parsed lists.

5.0.2 MatchingPatterns

The BB1 matcher assesses whether a test pattern maiches a target pattern. For each
corresponding parameter in the two patteins, the matcher declares a match whenever the test
pattern value has a $Sis-a, $entails, or $plays relation with the target pattern value. A perfect
match is one in which the matcher declares a match for all parameters (verbs and nouns) in
the target pattern. However, the matcher uses the partial-match knowledge described above to
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assess the patia match between any two patterns, regardless of the number of corresponding -
parameters between them. Figure 18aillustrates a perfect match between two PROTEAN action
patterns.

5.03 Quantifing a Match

The BB1 quantifier records a numerical assessment of the match between each parameter
value in a test pattern and: (@) its corresponding parameter value in a target pattern; and (b)
each modifier of the corresponding parameter value in the target pattern. It records O for each
non-matching parameter value and 100 for each matching parameter value. For non-matching
parameters, the quantifier also records O for each modifier of the parameter value in the target
pattern. For matching parameter values, it records for each modifier a number between 0 and
100, which it obtains from the attribute named by the modifier. A perfect quantified match is
one in which the test pattern receives a value of 100 for al parameters in the target pattern
and their associated modifiers. Again, however, the quantifier numerically assesses the degree of
match between any two patterns regardless of the number of corresponding parameters. Figure
18b illustrates a quantified match between two PROTEAN action patterns.

(a)

;;tg.m“ PO-Position Helix3 In PA1 with . a strong constraint

Relation C-a sz zs Is-a .
Test Do-Anchor  Helix3-1 to HelixI-1 In  PA‘, with  NOE27

Pattem s

T (b)

Paa‘r‘g:t Do—Positi.o.n Helix3 in PAl with a strong  constraint

Relation Is-a ™ P Fn Strong Is-a

Rating 100 100 100 80 100

Test Do-Anchor Helix3-1 to Hefix1-1in PA1 with NOE27

Pattern

Match

Rating %

Figure 18. Matching Two Action Patterns. (a) The tat pattern produces a perfect march to
the target pattern because: Do-anchor is-a do-position action. Helix3-1 is hetix3-1. Pa is pal.
NOEL1 is-a constraint (b) The match rating, 95, combines component ratings for each
puameter and modifier in the target pattern. proportionate to their weights. In this case, the
perfect match enwils ratings of 100 for each parameter gnd NOE27T rates 80 against the
modifer. strong. '



38

As discussed above, modifiers may specify threshold or scale procedures with the extensions
"=T" or "-8" to the modifier name. However, BB1 knows in which circumstances threshold and
scale procedures typically apply and uses the appropriate one if no extension appears in the
‘named modifier. For example, BB1 uses threshold procedures to quantify matches underlying its
all-or-none triggering decisions and scale procedures to quantify matches underlying its graded
ratings of pending KSARs.

5.0.4 Generating an Ordered Lii of Quantified Matches

The BB1 generator generates all (or a specified number of) values for a designat.. parameter
that legaly instantiate a set of patterns or phrases. The generator first follows links in the
concept networlc to find values that match parameter values and associated threshold modifiers
and relations specified in the input patterns. It then rates each value ‘ against associated scale
modifiers in the input patterns. It returns all values and their ratings, “best first™ For example,
Figure 19 illustrates generation Of all long helices that are positioned in some partial
arrangement

Generate X such that
b-r x Long Helix
Plays X Included-Objects
Is-Positioned X

b-a X (Long) Helix )
=) (SALL-OBJECTS Helix ‘ Can-be-a)

s (Helixt Helix2 Helix3
Helix1-1 Helix2-1 Helix3-1)

Plays X Included-Obiject
<> (HellxI-1 Helix2-1 Helix3=1)

Is-Positioned X
=) (Helix 1= tHelix2- 1 Helix3- 1)

b-a X- Long Helix
=> ((Helix1-1 (90)) (Helix3-1 (70)) {Helix2-1 (40)))

Figure 19. Generation of Parameter Values. This set of expressions generates all long helixes
that are positioned in some partial arrangement. bat first. First the generator generates all
legal vaues for X to instantiate the state, Is-a helix. Then it prunes this set to include only .
legal valua of X to instantiate the state, Plays X included-object Then it prunes the reduced
set to include only legal values of X to instantiate the state. 1s-positioned X Findly, it orders
the remaining set according to the rating of each value in the phrase, Long X
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5.0.5 Trandating Between Framework and BB1 patterns

The BB1 translator uses a variable-substitution procedure to translate framework and BB1
patterns into one another. For example, Figure 20 illustrates the tranglation of an ACCORD
pattern for the do-anchor action into the semantically equivalent BB1 action pattern.

ACCORD Template: Anchor Anchoree to Anchor in PA with Constraints.

B81 Template:
wm
((EXECUTE ($Set Constraints (CONSTRAINTS-IN Constraints*)))
(EXECUTE ($Set CSS-Anchor-Resuits (COR (CSS-ANCHOR Anchoree
Anchor PA Constraints)))) :

(PROPOSE changetype MODIFY object Anchoree attributes
CSS-ANCHOR-RESULTS))))

[CSSANCHOR.. . .]
ACCORD Pattern: Do-Anchor Helix2-1to Helixt-1 In PA1 with CSet1.

BB1 Pattem:
(1 (1)
((EXECUTE ($Set Constraints (CONSTRAINTS-IN CSet1)))

(EXECUTE ($Set CSS-Anchor-Results (COR (CSS-ANCHOR Helix2- 1
Helix1-1 PA1 CSet1))))))

(PROPOSE changetype MODIFY object Helix2- 1 attributes
CSS-ANCHOR-RESULTS)

[CSS-ANCHOR . . . ]

Figure 20. Trandation of Action Patterns. The trandator substitutes the parameter values in
the ACCORD pattern for the corresponding parameters in the BB1 template.
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6. Reasoning within a BB* Application System

6.1 The Layered Architecture of a BB* System

Application systems built within the BB* environment have layered architectures: application-
specific knowledge is layered on the task-specific knowledge of an appropriate framework,
which’ islayered in turn on the architectural knowledge in BB1. For example, PROTEAN layers
PROTEAN-specific knowledge on the arrangement-assembly knowledge of ACCORD, whichis
layered on the architectural knowledge of BBI.

Application-specific knowledge typically extends the task-specific framework knowledge in
four areas. First, the application instantiates skeletal branches of the concept network to define
domain entities. For example, PROTEAN extends ACCORD’s type hierarchy to define
biochemical objects (i.e., protein structures) and constraints (e.g., NOEs) and to identify the
individual objects and constraints involved in particular proteins (e.g., helix1 in the lacrepressor
headpiece). Section 3 above illustrates these extensions to ACCORD’s concept network. Second,
the application specifies knowledge sources that instantiate the framework’ s action templates as
feasible actions during problem solving. For example, PROTEAN’s knowledge sources, which
are "discussed below, instantiate ACCORD’s assembly action templates. Third, the application
provides specia-purpose programs required to execute feasible actions. For example,
PROTEAN provides a geometric constraint-satisfaction system [3], which is implemented in C
and run remotely over a network, for use in executing instantiated assembly actions. Finaly,
the application specifies control knowledge sources that instantiate the framework’s templates as
strategic plans to guide the system’s actions during problem solving. For example, PROTEAN's
control knowledge sources, which. are discussed below, instantiate ACCORD’s templates as
strategic plans for assembling proteins.

6.2 Domain Reasoning in a BB* System

6.2.‘1 Domain K nowledge Sour ces )

Like astandard BB1 application system, a BB* system uses domain knowledge sources to solve
problems. These knowledge sources monitor the events and states that occur during problem
solving. When criterial events and states occur, they instantiate feasible problem-solving actions
(recorded as KSARs on BBl's agenda), which compete for scheduling priority, Unlike a
standard BB1 system, a BB* system can express actions. events, and states of interest as
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instantiated framework patterns. For example, Figure 21 shows how PROTEAN’s knowledge
source Yoke-Structures instantiates particular assembly actions, events, and states. As discussed
in the following sections, a BB* system can use the BB1 framework-interpreter to perform all
associated computations.

| Old-Redtrict Included-Object (Y okee)
Y-S Trigger = 0 GVPA (The-PA) _ )

Triggers

or Partner in:
Includes The-PA Partner

or Constraint in:
involves Constraint Yokee
Invoives Constraint Partner

Y-S Context

includes Y-S Precondition

-Partner Locations

: - ctures o-Yoke Yokee with Partner in
KS: Yoke-Stru Y-S Action /ghe-PA with Constraint. Causes

Did-Yoke Yokee with Partner in
Y-S Result —Tpq.pa with Constant.

Figure 2L A Domain Knowledge Source in BB1-ACCORD. Each attribute of the knowledge
source Yoke-Structures is represented as action. event, or state patterns. with appropriate links

among them.
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6.2.2 Triggering

BB1 triggers a knowledge source whenever it assesses a perfect quantified match of a new
blackboard event against the knowledge source trigger patterns. At the same time, it binds the
value of each parameter in the trigger patterns to the specified local variable name (or, if none
is specified, to an internally generated name). -

For example, Y oke-Structures s trigger comprises one did-restrict event pattern:
Did-restrict included-object (yokee) in any-pa (the-pa).
BB1 would trigger Yoge-Structures for this blackboard event:
Did-anchor helix2-1 to helix1l-1 in pal with NOEL.

because:

Did-anchor $entails did-restrict.
Hel1x2-1 Splays included-object.
Pal Sis-a pa.

In this case, BB1 would bind two local variables: yoket to helix24 and the-pa to pal.

6.2.3 Context Generation

A knowledge-source context comprises a nested set of expressions of the form:
"For <variable> In <state patterns>.

For each such expression, BB1 generates and identifies as a context each unique combination of
variable-value pairs that match the pattern. If several such expressions are nested, BB1 applies
this procedure recursively. It generates a KSAR for each identified context and places all
generated KSARs on the agenda

For example, Y oke-Structures's context comprises two expressions:

For partner in:
Includes the-pa partner.
Not |S yokee partner.
For constraint in:
Involves constraint yokee.
Involves constraint partner.

Let us continue the example begun above. Based on the first expression, BB1 generates
aternative values of the context variable, partner: all objects that are included by pal (the-pa),
excluding helix24 (yokee). Supposing that pal includes one such object, BB1 generates one
value of partner: helix3-1. Based on the second expression, BB1 generates for each value of
partner aternative values cf the context variable, constraint: al constraints that involve
helix3-1 (partner) and helix2-1 (yokee). Supposing that two such constraints exist, BB1
generates two values for constraint: NOE6 and NOES. Finaly, BB1 generates a unique context
representing €ach combination of context-variable values and generates a separate KSAR for
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each context, for example KSAR 50 in Figure 22.

6.2.4 Precondition Checking

A knowledge-source precondition comprises any number of state patterns that must match
information on the blackboard or in the knowledge base before the KSAR can execute its
action. For each KSAR, BB1 trandates and evaluates each precondition pattern, performing
specified variable bindings along the way. If al preconditions evaluate to true, BB1 places the
KSAR on the agenda of executable actions where it competes for scheduling priority. If any do
not evaluate to true, BB1 places the KSAR on the agenda of triggered actions and rechecks
unsatisfied preconditions on each cycle until alt are true. |

KS——  Yoke-Structures

Triggee— . Did~Anchor Helix2-1to Helix1~1in PA1 with NOE1

\
Includes PA1Helix3-1
Context——————— Involves NOE6 Helix2- 1
Involves NOE6 Helix3- 1

Enables Triggers

Precondition Has Helix3- 1 Locations

KSARS ction—_______ Do-Yoke Hefix2-1with Helix3-1in PA1 with NOE6

Causes
esult - Did-Yoke Helix2-1 with Helix3=1in PAL with NOES
t-

ExecutedCycle M L
StatuS m——Triggered

NRating—

Figure 22 A Domain KSAR in BB1-ACCORD. Each attribute of this Yoke-Structures
KSAR is represented as action, event or state patterns, with appropriate links among them.
Each of these patterns instantiates the corresponding pattern in the Yoke-Structures knowledge
source. For example, KSARSO's trigger event. Did-anchor helix2=1 to helixl-! in pal with
NOE! matches Yoke-Structures’s trigger event, Did-restrict included-object (yokee) in any-pa
(the-pa) because did-anchor entails did-restrict, helix2-1 plays included-object and pal plays
pa Similarly, KSARS0's action, Do-yoke helix2-/ with helix3=1 in pal with NOE6 instantiates
Yoke-Structures’s action, Do-yoke yokee with partner in the-pa with constraiat because helix2-1
is the bound value of yokee, hetix3-1is the bound value of partner. pal is the bound value of

the-pa, and NOES® is the bound value of constraint
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For example, Y oke-Structures's precondition:
Has partner locations.

specifies that Yoke-Structures can execute its action only when the previously identified
partner has an attribute named locations whose value is not nil. For KSARSO above, BBl

tranglates this pattern into the BB1 pattern:
($Value helix34 locations)

and evaluates it. If it evaluates to true, BB1 determines that KSAR1 is executable.

6.2.5 Action Execution

A knowledge-source action is a terminal action pattern whose parameters are bound within a
KSAR during the triggering, context-matching, and precondition-eval uation procedures
described above. When BB1 decides to execute a particular KSAR, it translates the action
pattern into the equivalent BB1 action and sends it to BB1's low-level action interpreter.

For example, KSARSO specifies the action pattern:
Do-yoke helix2-1 with helix3-1 In pal with csetl.

BBI1 translates this pattern into the equivalent BB1 action pattern (see in Figure 20) and sends
it tothelow-level action interpreter for. execution. -

6.2.6 Event Generation
A knowledge source result is a terminal event pattern that corresponds to the knowledge
* source action pattern. Within a KSAR, corresponding parameters in the action pattern and
result pattern have identical values. When BB1 executes the action of the KSAR, it generates
the event pattern and records it on its internal event list for use during knowledge source
triggering,

For example, in executing KSARSO, BB1 generates the event pattern:
Did-yoke helix2-1 with helix3-1 In pal with csetl.

6.2.7 Advantages of Domain Reasoning in BB*

BB* offers three important advantages for domain reasoning. First, it provides a superior--
concise, perspicuous, uniform, modular, interpretable--representation for knowledge sources,
events, and KSARs. Second, it permits provides powerful framework-interpreter procedures for
all operations performed on these knowledge structures. Third, its layered approach reveals the
distinctions among domain-specific, task-specific, and task-independent knowledge.
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6.3 Control Reasoning in a BB* System

63.1 Control Knowledge Sources

Like a standard BB1 application system, a BB* system uses control knowledge sources to
generate strategic plans for its own actions in real time. These knowledge sources monitor the
events and states that occur during problem solving. When criterial events and states occur,
they instantiate feasible actions for extending or mddifying the -current control plan. These
actions (recorded as KSARs on BB1's agenda) compete with one another and with instantiated
domain actions for scheduling priority. Unlike a standard BB1 system, however, a BB* system
can express actions, events, and states of interest as instantiated framework templates. Similarly,
it can use the BB1 framework-interpreter to perform all associated computations.

“—_Dlid—Restrict Anchoree (Secure-Anchoree)
Trigg in PA (The-PA)

Context-L Triggers

Precondition —Has Secure-Anchoree Few Locations

Obviation Not Has Secure-Anichoree Few Locations
KS: Append-to-Secure-
Anchoree . - Obviates Enables
Action_..._..._..j?)o-Focus on:
Pertorm:

Do-Append Appendage to Secure-Anchoree

In The-PA with Constraints
Until: Promotes,
Exists: Has The-PA Status ‘Complete
Because: Rationalizes
Has Secure-Anchoree Few Locations

Has Do-Append Low Cost

.

\ .. Causes

. | Did-Focus on:
Pertorm:
Do-Append Appendage to Secure-Anchoree

in The-PA with Constraints
Until: Promotes
Exists: Has The-PA Status ‘Complete
Because: Rationanzes
Has Secure-Anchoree Few Locations

Has Do-Append Low Cost

Resuit

Figure 23. A Control Knowledge Source in BB1-ACCORD. Each attribute of the knowledge
source Append-to-Secure-Anchoree is represented as action. event. or state patterns, with

appropriate links among them. Similarly. Append-to-Secure-Anchoree’s action and result are
control actions and events (do-focus-on and did-focus-on) whose parameters (prescription,

goal, and rationale) are represented as action, event, and state patterns, with app}opiale links

among them.
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For example, Figure 23 shows the control knowledge source: Append-to-Secure-Anchorees.
BB1 applies its framework-interpreter to control knowledge sources exactly as it does for

domain knowledge sources. For example, the event:
Did-anchor helix2-1 to helixl-1 in pa with NOE1.

in which helix2-1 was restricted to a criterially small number of locations would produce
. KSARS1, shown in Figure 24. When executed, the KSAR would record a decision with the
specified attributes at the focus level of the control blackboard.

Trigg Did-Anchor Helix2-1to Helixt-1In PA1 with NOE1

Triggers

Precondition ————— Has Helix2-1Few Locations

Enables

cuon—TDo—Focus on: . .
KSAR37, Perform:
Do-Append Appendage to Helix2-1

In PA1 with Constrainta
Until: ) "0"”'3?
Exists: Has PA1 Status 'Complete

Because: Rationalizes
Causes Has Helix2-1 Few Locations
Has This-Focus Low Cost

Resuit — [ Did-Focus on:
Perform:
Do-Append Appendage to Helix2-1

In PA1 with Constraints
Until: Promote:?
ations

Exists: Has Helix2-1 Few L

Because: Rationalizes
Has Helix2-1Few Locations
Has This-Focus Low Cost

ExecutedCyCle e NIL

Status ———eeeeee——E xecutabIe

- Figure 24. A Control KSAR in BB1-ACCORD. This Append-to-Secure-Anchoree KSAR is
represented as action. event, or state patterns. with appropriate links among them. Each of
these patterns matches or instantiates the corresponding pattern in the Append-to-Secure=
Anchoree knowledge source. For example, KSAR3T's trigger event, Did-anchor helix2-1 to
helixl-1 in pal wirh NOEI matches Append-to-Secure-Anchoree’s trigger event. Did=-
restrictanchoree (secure-anchoree) in pa (the-pa) because did-anchor entails did-restrict,
helix2-1 plays anchoree and pal plays pa. In addition,. KSAR37's action and result are control
actions and events whose parameters instantiate the corresponding patterns in the Append-to-
Secure-Anchorees knowledge source (see Figure 23). For example, Do-append uppenduge to
helix2-1 in pal wirh constraints instantiates Do-append uppenduge fo secure-unchortt in the=-

pawith constraints because helix2-1is the value bound to secure-anchoree.
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6.3.2 Control Plans

Like a standard BB1 application system, a BB* system constructs explicit control plans at
multiple levels of abstraction. High-level strategy decisions prescribe sequences of subordinate
decisions, each of which typically encompasses a shorter problem-solving time interval than its
superordinate.  All branches of a control plan terminate in focus decisions, which the BB1
scheduler uses to rate pending KSARs. Unlike a standard BBl system, a BB* system can
represent control decisions as instantiated action, event, and state templates. .

Strategy
Perform: Quickly Do-Position Long Constraining Secondary-Structure in Current-Best

PA with Strong Constraints .
I - B e I >

Sub-Strategy
Perform Ouickly Do-Pesitlon Long Constraining Secondary-Structure (Target-Object)
h PA1 with Strong Constraints

Perform: Quickly Do-Position Long Constraining Secondary-Structure (Target-Object)
in PA2 with Strong Constraints

I >

Focus
Perform: Ouickly Do-Position Helix3-1in PA1 with Strong Constraints
(W-U---|

Perform: Ouickly Do-Position Helix4=1In PA1 with Strong Constraints

L) 1
Perform: Ouickly Do-Position Helix4-2 in PA2 with Strong Constraints

|
Perform: Ouickly Do-Position Helix6-2 in PA2 with Strong Constraints

Cycle | [ - i ; ; |
0 S 10 15 20 2s 30

Figure 25. Excerpt from a PROTEAN Control Plan in BB1-ACCORD. ACCORD clearly
articulates the hierarchical relationships betweer control decisions: each higher-level decision
summarizes and prescribes a sequence of subordinate decisions tO obtain during its constituent
time intervals. In this example, the generic control knowledge source, Refine-Parameters,
generates the excerpted plan automatically. Starting with the top-level strategy, it substitutes the
values pal and then pa2 for the phrase, current-best pa. to generate the sequence of two sub-
strategies. For each sub-strategy, it similarly substitutes values best first for the phrase, long
constraining secondary-structure. to generate a sequence of focus decisions. ACCORD provides

concise and perspicuous representations of the goals and rationales of all control decisions.



48

For example, Figure 25 shows an excerpt from a PROTEAN control plan. Each higher-level
decision in this plan clearly summarizes and prescribes its subordinate decisions. For example,

the first sub-strategy decision:
Perform:

Quickly do-position _long constraining secondary-structure
(target-object) in pal with strong constraints.

summarizes and prescribes its subordinate focus decisions:

Perform:
Quickly do-position helix3-1 in pal
with strong constraints.

Perform:
Quickly do-position helix4-1in pal
with strong constraints.

because helix3-1 is the longest, most constraining secondary-structure in partia arrangement
pal and helix4-1 is the runner-up. Similarly, athough it does not appear in Figure 25, the goal
of the sub-strategy decision:

Has taraet-object few locations.
summarizes and prescribes the goal of its subordinate focus decisions:

Has helix3-1few locations.

Has helix4-1 few locations.

Notice also that each control decision in Figure 25 captures the meaning of a set of

interacting control heuristics, while preserving their individua modularity. For example, the
first focus decision in Figure 25:

Perform:
Quickly do-position helix3-1in palwith strong constraint.

captures these heuristics:

Prefer KSARs that execute do-position actions.

Prefer KSARs that execute actions in this priority order:
do-anchor > do-yoke > do-restrict > do-consolidate > do-append.

Prefer KSARs that operate on helix3-1.

Prefer KSARs that operate in the context of pal.

Prefer KSARs that apply constraints.

Prefer KSARs that apply strong constraints.

Similarly, although the goal of this decision:
Has hel11x3-1 few locations.

represents a single BB1 access function, the goals of other decisions can capture the meaning of
any program of access functions.

Finaly, the knowledge in a framework permits control decisions to specify desirable actions
in terms of the actions themselves, the events that trigger them, the states that enable them, the
events they cause, or the states they promote. Table 5 shows examples of these other kinds of
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prescriptions.  Similarly, the goal of a control decision can specify desirable conditions in
terms of any state of the knowledge base or any blackboard. Table 6 shows examples of

different kinds of goals.

Table 5. Examples of ACCORD Prescriptions

1. Perform an action In a particular class of actions.
Pertorm: Do-Position Long Helix In PA1 with Strong Constraint.

2. Perform an action that was triggered by a particular class of events.
Respond-to-Events-thatz Did-Restrict Well-Restricted Anchoree in PA1
with Constraint.

3. Perform an action that was enabled by a particular class of states.
Respond-to-States-in-which: Has Anchoree Few Locations.

4. Perform an action that causes a particular class of events.
Cause: Did-Restrict Helix2-1in PA1 with Constraint.

8. Perform an actlon that promotes a particular class of itates.
Promote: Is-Positioned Helix2=1in PA1 with Strong Constraint.

Table 6. Examples of ACCORD Goals.

1. Achieve a state In which a particular class of events has occurred.

Untik:
Dld-Restrict Helix2=1in PA1 with Constraint.

2. Achieve a state in which a particular class of actions is executable.

Until:
Can Perform:
Do-Append Helix2-3 to Helix in PA1 with Constraint.

3. Achieve a state In which a particular class of actions has been executed.

Did Pertorm:
Do-Append Helix2-3 to Helix In PA1 with Constraint.



6.33 Constructing Control Plans

Like a standard BB1 application system, a BB* system can combine various inference methods
(e.g., top-down refinement, goal-directed reasoning, opportunistic focus) in its efforts to
construct effective control plans. Unlike a standard application system, however, a BB* system
can exploit the knowledge and expressive power of frameworks. Let us briefly consider two
examples of generic control knowledge sources available within the BB* environment.

One generic control knowledge source, Refine-Parameters, incrementally refines a strategy
decision as a sequence of subordinate decisions by replacing specified parameter phrases with
legal values, best first. The strategy decision must specify which parameters to replace. For
example, the strategy decision in Figure 25 might specify the parameters. pa and target-object.
Given this specification, Refine-Parameters generates the first sub-strategy by replacing the
phrase, current-best pa, with its highest-rated legal value, pal. It generates that sub-strategy’s
first subordinate focus decision by replacing the phrase, long constraining secondary-structure,
with its highest-rated legal value, helix3-1. When PROTEAN has performed actions that satisfy
the focus decision’s goal. Refine-Parameters generates the sub-strategy’s second subordinate
focus decision by replacing the phrase, long constraining secondary-structure, with its second
highest-rated legal value, helix4-1. It continues to generate the entire plan shown in Figure 25
in a similar fashion.

Depending on how many parameters a strategy specifies, Refine-Parameters can refine a
* strategy to an arbitrary level of detall. If a strategy specifies all of its parameters, each focus
decision will specify the currently most desirable individual action. However, if a strategy
specifies a subset of its parameters, asillustrated in the example above, each focus decision will
specify the currently most desirable class of actions. '

A second generic control knowledge source, Enable-Priority-Action, posts focus decisions
favoring actions whose results would trigger strategically desirable actions. For example, suppose
that, at some point during the first focus interval in Figure 25, there are no feasible actions

that‘ match the focus. That is, there are no feasible actions that match the prescription:

Perform: Quickly do-position helix3-1 in pa ,
with strong constraints.

Suppose aso, however, that the focus goa has not yet been satified. In this kind of situation,
Enable-Priority-Action -examines the concept network to determine what types of actions would
match the focus (e.g., anchor, yoke, and restrict actions). It then posts focus decisions favoring
actions that might frigger those action types or satisfy their preconditions. For example, in
this case it might post this focus decision:
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Promote: Did-position helix4-1 in pa with constraints.
to satisfy the precondition of an action for yoking helix3-1 with helix4-1.

6.3.4 Rating Feasible Actions

Like a standard BBl application system, a BB* system rates alternative feasible actions
(KSARs) against all operative focus decisions. However, given the expressive language of a
framework, a BB* system can rate KSARs with powerful pattern-matching operations. It rates
each parameter value in a KSAR against each corresponding parameter value and modifier in a
focus decision. It combines these component ratings according to some integration function
(either one specified in that particular focus or a default function) to produce a rating against

the entire focus decision. Figure 18 above shows an example in which the KSAR action:
Do-anchor helix3-1 to helixl-1 in pal with NOE27. .

is rated against the focus decision:

Perform:
Do-position helix3-1 in pa with strong constraint.

63.5 Advantages of Control Reasoning in BB*

The BB* environment offers several important advantages for control reasoning. It provides
a superior--concise, perspicuous, uniform, modular, interp;etable--representaiion for control
knowledge sources, KSARs, events, and decisions. It provides powerful framework-interpreter
procedures for all operations performed on these knowledge structures. It empowers avariety of
generic inference methods for control reasoning. Most importantly, it explicitly and
unambiguously articulates task-specific control parameters and the relationships among them.
Thus, it enforces a semantically correct mapping between the attributes of feasible actions and
the control plans against which they are rated.
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6.4 Explanation in a BB* System _
Like a standard BBl application system, & BB* system constructs explanations out of

information in its evolving control plan. However, a BB* system’s explanations can exploit the
expressive framework language used to represent its feasible actions and its control plan. For
example, Figure 26 shows how PROTEAN explains its decision to execute KSARSS based on
the control plan in Figure 25. "

| recommend KSARSS:

Anchor Helix8-2 to Helix3-2 In PA2 with NOET.
> wny? ‘

| recommend KSARSS:

Anchor Helix8-2 to Helix3-2 in PA2 with NOE?.

because | am trying to:

F7: Ouickiy Do-Position Helix6-2 in PA2 with Strong Constraints.
> Why Not73

NOE7 Is Strong (R60).
NOE? Is a Constraint (Rl 00).

> Why F7?
| am attempting to:
F7: Ouickiy Do-Position Helix8-2 in PA2 with Strong Constraints.
because | am attempting to:

83-2: Quickly Do-Position Long Constraining Secondary-Structure
in PA2 with Strong Constraints. :

> why Helix6-27?
Helix 8=2la Long (80).
Heilx 8=2 is Constraining (75).
Helix 6-2 is a Secondary-Structure (100).
dWhy 83-2?
| am trying to:

83-2: Ouickiy Do-Position Long Constraining Secondary-Structure
In PA2 with Strong Constrvnt.

because | am trying to:

83: Quickly Do-Position Long Constraining Secondary-Structure
In Current-Best PA with Strong Constraint.

Figure 26. Explanation of the Decision o Perform KSARSS in BB1-ACCORD.
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As this example illustrates, the BB* environment offers several advantages for explanation. Its
framework-based language of explanation articulates task-specific control parameters, provides
a structured account of the organization of individual heuristics within a control decision, and
communicates the mapping between control heuristics and the KSAR attributes to which they
are applied. In addition, a single representation of control decisions serves both as a machine-
interpretable object of control reasoning and as a human-interpretable object for use in
explaining that reasoning. As a result, we can argue that a BB* system explains its behavior in
terms of its own understanding of that behavior.

6.5 Learning in a BB* System

A sysiem's ability to team depends upon severa factors, including the following: (a) the
power of the system’s learning procedures: (b) the quality of the data to which it applies those
procedures. and (c) the depth and organization of the system’s knowledge about relevant
concepts. Because BB* offers improvements on each of these factors, it can improve both the
efficiency and the accuracy of learning.

Let us consider efforts by the learning knowledge source MARCK to learn the PROTEAN
heuristic, Prefer-Anchoring-over-Y oking (see Figure 27). At this point, PROTEAN is operating

under the focus:

Perform: Do-position long rigid constraining secondary-structure
in pa with strong constraint.

Given this focus, PROTEAN chooses to perform the action of KSARS56:
KSAR56: Do-yokehelix6-2 with helix4-2 in pa2 with NOE9.

However, the domain expert prefers the action of KSARSS:
KSAR55: Do-anchor helix6-2 to helix3-2 in pa2 with NOES8.

The domain expert’s action triggers MARCK, which tries to identify the key difference between
the two KSARs and automatically program a corresponding control heuristic.
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BB* substantially limits the number of differences between the two KSARs that MARCK
must consider. Given the standard BB1 representation, MARCK must search for differences on
all KSAR attributes with the same name. Then it must ask the domain expert to choose the key
attribute from among all whose values differ. Given BB*'s framework representation, MARCK
can focus on corresponding parameters in corresponding patterns in the two KSARs. In this

case, there are only four corresponding parameters in the two action patterns and only two of
them have different values: action-keyword and constraint.

t 2 :
KSARS8: Yoke Helix8-2 with Helix4-2 In PA2 with NOES.

Y Override with KSARSS.

1 am performing:
KSARSS: Anchor Helix8-2 to Helix3-2 in PA2 with NOES.

I wouid like to understand why you prefer KSARSS over KSARS6:

KSARSS: Anchor Helix8-2 to Helix3-2 in PA2 with NOES.
KSARS6: Yoke Helix8-2 with Helix4-2 In PA2 with NOES.

b It because you prefer:
(1) Action = Do-Anchor over Action s Do-Yoke?
(b) Constraint s NOE9 over Constraint s NOES?

Ja

Do you prefer Action s Do-Anchor over Action =2 Do-Yoke
because you wish to:
Quickly Do-Position Helix6-z in PA2 with Strong Constraint?

> Yes

h general, do you p-efer to:
Quickly Do-Position Long Constraining Secondary-Structure
In Current-Best PA with Strong Constraint?

> Yes

| am modIfying my current plan.
Shall | modify the knowledge source: Build-PAs?

> Yes

| am modifying the knowledqe'source: Build-PAs.

Figure 27. MARCK Learns to Prefer Anchoring Actions over Yoking Actions in the Context
of BB1-ACCORD.
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BB* also prevents MARCK from making specious comparisons or overlooking valid
comparisons. Working with the standard BB1 representation, different or undisciplined system
builders often give the same name to unrelated attributes in different knowledge sources or
different names to semantically equivalent attributes. In the first case, MARCK must pursue
differences in the values of unrelated attributes' as though they were meaningful. In the second
case, it will fail to notice differences in the values of semantically equivalent attributes.
Finally, if several attributes happen to exhibit a common difference in values, MARCK must
ask the domain expert which is the key attribute. Since the domain expert is not a
progranming expert and ordinarily would not appreciate the actual differences between two
attributes having the same values, he or she may choose the wrong one. By contrast, BB*'s use
of frameworks focuses MARCK's and the domain expert's attention on key task-specific
control parameters by enforcing consistent and semantically valid. naming conventions and
explicitly identifying corresponding parameters. As a consequence, MARCK pursues all and
only meaningful differences.

BB* also enhances MARCK's ability to identify the heuristic function underlying a domain
expert’s preference for one value of a parameter over another. MARCK can inspect the
knowledge base to determine whether any known modifiers favor the expert’s preferred value
over the system’s preferred value. For example, in PROTEAN quickly is a defined modifier for
position, which is the superordinate of anchor and yoke. In Figure 27, MARCK determines that
the modifier, quickly, favors anchor over yoke, hypothesizes that this is the key difference
between the two KSARs, and asks the domain expert for confirmation. If the modifier, quickly,
were not aready defined, MARCK would search for the key attribute of the identified
parameter and for an appropriate. canonical function, automatically program a new heuristic
function, and record it in the knowledge base as the definition of a new modifier for the
concept, position.

BB* enables MARCK to introduce a new heuristic at the appropriate level of the control
. plan. Thus, once MARCK identifies quickly as the key modifier, it can search the control pian
for the highest superordinate of its current focus that specifies position or one of its
subordinates in as the action keyword. With confirmation from the domain expert, MARCK
inserts the new modifier at that level of the plan. |f the expert objected, MARCK could work
down the plan searching for the appropriate level at which to insert the new modifier.

Finally, BB* obviates MARCK's use of its Lisp-English trandator since all of the objects on
which it operates are already expressed in the stylized English of frameworks. Thus, MARCK
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completes its learning simply by inserting the new modifier before the corresponding parameter
in its focus decision on the blackboard and in the control knowledge sources that generate that
decision.
Quickly do-position long rigid constraining
secondary-structure in pal with
strong constraint.
These advantages apply to other learning procedures as well. For example, we have been

working on a set of knowledge sources called WATCH to form inductive generalizations of
sequences of executed actions. For example, suppose a domain expert executes the following

sequence Of actions.

Anchor Helix2-1 to Helix1-1 in PAlwith NOE15.
Anchor Helix3-1 to Helix1l-11m PA1 with NOE19.

The WATCH knowledge sources can consult the ACCORD conceptua network to determine

that:

Helix24 Sis-a Helix.
Helix3~1Sis-a Helix.
Long Helix24 = 90.
Long Helix3-1 = 70.
NOE15 Sis-a NOE.
NOE16 Sis-a NOE.

Based on this information, they can hypothesize that the domain expert’s current focus is to:

Perform:
Anchor Long Helix to Helix1-1 in PAl1 with NOE.

In principle, any BB1 system could provide the data required for inductive generalization. In
. practice, however, such learning ordinarily is not feasible for systems implemented directly in
BB1 knowledge structures. Given the unrestricted number of KSAR attributes, the space of
possible generalizations is intractably large. Moreover, given an undisciplined approach to
attribute naming, the learning data are liable to be extremely noisy. They may support specious
generalizations, while entirely concealing valid generalizations. By contrast, a BB* system can
exploit a framework such as ACCORD, vastly reducing the space of possible inductions and
guaranteeing that generalizations are internally consistent, unambiguous, and semantically valid.
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7. Knowledge Engineering within the BB* Environment

The BB* environment facilitates the design and implementation of new applications by
providing a genera architecture for problem solving and reusable task-specific frameworks. To
illustrate this potential, we discuss our experience in building a prototype of the SIGHTPLAN
system [51] for designing construction-site layouts within BB1~ACCORD. We then consider
the space of domains in which arrangement problems occur and BB1-ACCORD's applicability
in different regions of that space.

7.1 Building SIGHTPLAN: A New Application of BBI-ACCORD

7.1.1 SIGHTPLAN's Problem

SIGHTPLAN must arrange pieces of construction equipment (e.g., cranes and trailers) and
construction areas (e.g., access roads and lay-down areas) in atwo-dimensional construction site
to satisfy a variety of constraints. Part-whole relations exist among some of these objects (e.g.,
the employee-facilities include some trailors and a rest area). Part-whole relations also exist
among sub-regions of the construction site (e.g., the building-zone includes the building-site
-and al of its borders). Available constraints include object-based constraints (e.g., the rest
~area must be within a short distance of the- trailers) and context-based constraints (e.g., the
access road must intersect the perimeter of the construction site on two sides). Since
construction projects proceed in identifiable stages, the layout design must include sub-layouts
for different stages. Further, there are transitional constraints between the stages (e.g., the
crane must move from the northwest corner of the building site to the southeast corner of the
building site between stages 1 and 2). (See [52] for a more detailed description of the
problem of designing construction-site layouts.)

Despite the obvious dissimilarities between proteins and construction sites, the problem of
designing a construction site closely resembles the problem of modeling the construction of a
- protein. In both cases, the problem-solver must arrange physical objects in a spatial context to
satisfy constraints. It must accommodate a variety of constraints, including part-whole
relations. objects-based constraints, and context-based constraints. It must design multiple-
component solutions for different time intervals and provide legal transitions from each
component solution to its successor. In short, both problems are arrangement problems.

On the other hand, SIGHTPLAN's problem is substantially less complex than PROTEAN’s
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problem. STGHTPLAN must deal with tens or hundreds of objects, while PROTEAN must dedl
with hundreds or thousands of objects. SIGHTPLAN must arrange objects in a two dimensional
space, while PROTEAN must arrange objects in a three-dimensional space. SSIGHTPLAN must
design layouts that incorporate fewer than ten discrete states, while PROTEAN must construct
proteins that move through a continuous family of conformations. SIGHTPLAN knows in
advance how many stages it must consider and which objects and constraints belong in each
state, while PROTEAN must identify protein states and their constituent objects and
constraints as part of its reasoning process. SIGHTPLAN must design a smal number of
satisfactory. site layouts, while PROTEAN must construct the entire family of legal protein
structures.

Because of the similarities between SIGHTPLAN's problem and PROTEAN’s problem, .
SIGHTPLAN's principal designers, Iris Tommelein and Ray Levitt, decided to develop it within
BB1-ACCORD and we collaborated with them on a prototype system. The following sections
discuss how the availability of BB1-ACCORD affected the design and implementation of
different aspects of the SIGHTPLAN prototype.

7.13 Choosing a Method

As discussed above, a problem-solving system could, in principle, solve an arrangement
problem by any of several different methods. Enumerating and characterizing alternative
. methods and then choosing and operationalizing an appropriate method for a particular
application are time-consuming processes that can determine the success or failure of a system=-
building effort. For example, it took approximately one person-year of effort to consider
alternative methods for PROTEAN and to operationalize a subset of the elements of the
chosen assembly method. The PROTEAN staff readily implemented the chosen method within
BB1, which was, itself, the product of several person-years of effort.

The very existence of a relevant architecture or framework can facilitate this process by
suggesting a candidate method in a clearly operational form. If the architecture or framework
already has been applied in other domains, information about thdse applications can facilitate
evaluation of the method for the new application. Thus, Tommelein and Levitt quickly
recognized the appropriateness of BBl for SIGHTPLAN. They spent approximately one
additional person-month evaluating and deciding to use ACCORD.
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7.13 Basic Knowledge Acquisition

Knowledge acquisition requires a conceptua analysis of the knowledge required by an
application and a technical analysis of appropriate knowledge representation structures. For
example, knowledge acquisition for PROTEAN began with unstructured discussions with
domain experts to discover the important domain concepts. The initial PROTEAN knowledge
base was an unprincipled collection of Lisp functions and data structures, converted to its
current declarative form during a reimplementation phase. All stages of knowledge acquisition
required close collaboration between domain experts and knowledge engineers.

A framework can facilitate knowledge acquisition by capturing the conceptual analysis
common to a class of applications, identifying appropriate knowledge representation structures,
and providing a software environment in which to build the ~ew knowledge base. For example,
ACCORD requires domain-specific extensions of its conceptual network branches representing
objects, contexts, and constraints and specification of low-level functions for anchoring,
yoking, appending, etc. Thus, knowledge acquisition for SSGHTPLAN began directly with the
introductiox of particular objects, contexts, and constraints into ACCORD’s skeletal concept
network and investigation of alternative approaches to building low-level functions. In

. addit:ion. domain experts were able to do much of the knowledge acquisition, with modest
amounts of assistance from a knowledge engineer. Of course, since the framework provides
much of the actual code necessary to represent the knowledge, there is a substantial reduction
in the number of lines of new code generated during knowledge acquisition.

7.1.4 Domain Knowledge Sour ces
A framework’s action hierarchy guides. the design of domain knowledge sources. Basicdly,
the system builder should consider desi gning one or more knowledge sources to instantiate each
terminal action type. The hierarchical classification of action types provides a nice
organization of the knowledge sources and the sequence in which to develop them. Further, the
knowledge sources developed for previous applications can provide valuable prototypes for new
" applications.

Without the benefit of ACCORD, the first version of PROTEAN had knowledge sources for
anchoring and yoking, which it used to position structures within one complete arrangement.
After studying the performance of this system, it beccme apparent that PROTEAN needed a
knowledge source for appending and only much later did it become apparent that PROTEAN
needed knowledge sources for defining partial arrangements. (PROTEAN still does not have
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knowledge sources for integrating partial arrangements and coordinating them at multiple levels
of abstraction.) Each knowledge source, especially the early ones, required a significant design
effort and each successive one had to be coordinated with those developed so far. Since we did
not anticipate al contexts in which knowledge sources might interact, we repeatedly modified
previously implemented knowledge sources to disambiguate the relationships among them.

By contrast, SIGHTPLAN's current domain knowledge sources are close trandlations of
PROTEAN’s domain knowledge sources and were implemented in a matter of days. Although
we anticipate that STGHTPLAN and PROTEAN eventualy will have many distinct knowledge
sources, we expect the translated knowledge sources to endure as the core of the SIGHTPLAN
system. If these expectations are borne out, we will extend ACCORD and other frameworks to
include, a repertoire of prototype domain knowledge sources and introduce capabilities for
automatically instantiating them in new domains.

7.1.5 Control Knowledge Sour ces

A framework facilitates the development of control knowledge sources in severa ways. First,
its action, event, and state templates articulate a set of candidate control concepts. Thus,
PROTEAN'’s system builders had to discover key control parameters, such as action class,
anchoree, and constraint, and appropriate modifiers, such as quickly, restricted, and strong. By
contrast, SIGHTPLAN's sytem builders could begin by considering the formal parameters in
ACCORD’s action types as candidate control parameters and by considering the high-level
concept types and conceptual modifiersin ACCORD’s skeletal concept network. Second, asin
the case of domain knowledge sources, some control knowledge sources transfer almost directly
to applications in new domains. For example, the prototype SIGHTPLAN system uses the basic
strategy that PROTEAN uses for small proteins. Of course, SIGHTPLAN introduces some new
-modifiers and gives many of the common modifiers new procedural definitions. In addition,
we expect to develop more powerful strategies for the two systems that differ more
substantially. Again, however, the opportunity to transfer some of the control knowledge
permits rapid prototyping of a new application. After we have gained more experience with a
range of applications, we plan to develop skeletal control knowledge sources for different
subclasses and automatic methods for instantiating them in new domains. Finaly, a
framework’s perspicuous representation makes it easy to articulate and program aternative
control strategies. We plan to comparatively evaluate a variety of control strategies for both
PROTEAN and SIGHTPLAN.
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7.2 The Scope of ACCORD

7.2.1 Arranging Physical Objectsin a Spatial Context
ACCORD naturally applies to tasks involving the arrangement of physical objectsin a spatia
context. PROTEAN and SIGHTPLAN are esoteric examples of such domains. However,
consider, for example, the mundane task of furniture arrangement: arrange a specified set of
furniture in a designated room. We can define each piece of furniture as a physical-object in
the ACCORD knowledge base and the room as a context. We can identify part-whole
relationships among furniture groups (e.g., the table-and-chairs includes the table and each of
the chairs). We can identify part-whole relationships among areas of the room (e.g., the
northern exposure includes a window area and a fireplace area). We can define object-based
constraints on different pieces of furniture (e.g., each chair must be on a particular side of the
table). We can define context-based constraints on the positions of particular pieces of
furniture within the room (e.g., put the table near a window). Given this representation, we
could use the ACCORD actions to define partial furniture arrangements, to position pieces of
furniture within each partial arrangement, to refine the positions of furniture groups into the
positions of their constituent pieces, and to integrate different partial furniture arrangements
“to form a complete room design.

7.2.2 Arranging Procedural ebjects in a Temporal context

We believe that ACCORD also applies to tasks involving the arrangement of procedural
objects in a temporal context, For example, consider the task of travel planning: arrange a set
of destinations in a designated time interval. We can define each destination as a temporal-
object in the ACCORD knowledge& se and the time interval as a context. We can define part-
whole relationships among sets of destinations (e.g., the India destination includes destinations:
Srinagar, Agra, Jaipur, Udaipur, Benares, and Darjeeling). = We can define part-whole
relationships among sub-intervals of the designated time interval (e.g.; the spring interval
- includes May and June). We can define object-based constraints on the relative times targetted
for particular destinations (e.g., go to India after Japan). We can define context-based
constraints on the absolute times targeted for particular destinations (e.g., go to Japan in time
for the cherry blossoms). Given this representation of the knowledge, we probably could use
the ACCORD actions to develop partial itineraries, to order destinations within partial
itineraries, to refine high-level destinations into more detailed itineraries for their constituent
destinations, and to integrate different partial itineraries to form a complete itinerary. We plan
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to build at least one application of BB1~-ACCORD involving procedural objects in temporal
contexts in order to gain empirical evidence of its applicability to this important subclass of
arrangement problems.

7.23 Arranging Symbolic Objects in a Symbolic Context

Expanding the potential scope of ACCORD even further, it may be possible to apply it to
tasks involving the arrangement of general symbolic objects in general symbolic contexts. In
particular, it may apply to objects and contexts that are not metric in character.

For example, consider a simplified project-management task: assign a set of project tasks
among a designated set of individuals. We can define each task as a task-object in the
ACCORD knowledge base and the set of individuals as a context We can define part-whole
. relationships among task groups (e.g., the task of designing knowledge sources includes tasks for
designing domain knowledge sources and designing control knowledge sources). We can define
part-whole relationships among subsets of the individuals (e.g., the expert C programmers are
John, Jim, Craig, and Bruce). We can define object-based constraints between different tasks
(e.g.. the tasks of defining domain and control action languages must be performed by the same
individual). We can define context-based constraints on the assignments of particular tasks to
individuals (e.g., the geometry system must be implemented by expert C programmers). Given
this representation, we. might be able to use the ACCORD actions to develop partial project
. plans, to assign tasks to individuals within partial plans, to refine the assignment of high-level
tasks into assignments of their component tasks, and to integrate different partial plans to
form a complete project plan.

Of course, most project-planning tasks also have a temporal dimension with associated
constraints. Assuming that ACCORD applies to tasks involving the arrangement of procedural
objectsin a temporal context, it might be possible to apply it to the complete project-planning
task: assign a set of project tasks to a designated set of individuals for completion at particular
times.
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8. Open Systems Integration: Multi-Faceted Systems

As discussed in section 1, we require that all modules within a level of the BB* environment
satisfy uniform standards of knowledge content and representation. In adhering to this design
principle, we aim to achieve open systems integration of modules within a level. That is, we
aim to support the development of systems that: (a) configure and augment arbitrary sets of
existing modules; (b) eliminate redundancy in the contents of those modules: (c) organize the
actions enabled by those modules in any appropriate organizational scheme: and (d)
superimpose on their reasoning uniform capabilities for control, explanation, and learning.

To illustrate the capability for and utility of open systems integration, consider a new class
of multi-faceted systems. We define multi-faceted systems with reference to the three-
dimensiona space of knowledge identified in this paper: knowledge about different problem
classes, knowledge about different problem-solving methods, and knowledge about different
subject-matter domains. Most contemporary knowledge-based systems occupy arelatively small
region of this space: each one knows how to solve a single class of problems by means of a
single problem-solving method in a single subject-matter domain. In contrast, multi-facted
systems expand their knowledge along one or more dimensions of the space: -each one knows
how to solve more than one class of problems or how to apply more than one problem-solving
method or how to solve problems in more than one domain. Let us consider two hypothetical
multi-faceted systems.

First, consider an expert arrangement assembler-a system that knows how to apply the
assembly method to arrangement problems in each of several subject-matter domains. Figure 28
shows how BB* permits integration of the knowledge in ACCORD, PROTEAN, and
SIGHTPLAN to form the arrangement assembler. We would add knowledge about refining
prototypes, identifying analogous problems, and measuring different aspects of problem-solving
performance. Given this knowledge and some problem-solving experience, the arrangement
assembler could, for example: (a) automatically program prototype systems for new application

‘domains; (b) transfer control knowledge among related problem types; and (c) assess the
effectiveness of control knowledge for particular problem types. In general, the arrangement
assembler could develop increasingly sophisticated arrangement-assembly expertise and apply its
expertise to an expanding variety of arrangement problems.
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Figure 28. Open Systems Integration in BB*: An Expert Arrangement Assembler. The
arrangement assembler integrates PROTEAN's biochemistry knowledge and SIGHTPLAN's
construction knowledge within a single conceptual network.  Similarly, it integrates their

combined knowledge sources (not shown here) within the network without redundancy.
(PROTEAN and SIGHTPLAN share several knowledge sources that refer only to domain-
independent entities (see Figures 21 and 23)). With additional knowledge about refining
prototypes, identifying similar problems, and assessing performance, the arrangement assembler

could automatically program new applications and transfer strategic knowledge among similar

problems.
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Now consider an expert project manager --that is, a system that knows both how to assemble
site plans and how to schedule individual contractors daily use of a site. Figure 29 shows how
BB* permits integration of the knowledge in: (8) ACCORD; (b) STGHTPLAN; (c) ADJUST--a
hypothetical framework for planning a sequence of temporally and spatially constrained tasks
by means of a prototype-refinement method; and (d) DAYPLAN-a hypothetical application
system that would apply ADJUST to the tasks performed on a daily basis by individua
contractors. We would give the project manager new knowledge about controlling the combined
actions of SIGHTPLAN and DAYPLAN for particular purposes, for example to: (a) design a
site plan and then schedule each contractor’s daily use of the site; or (b) schedule and evaluate
key contractors' daily use of hypothetical site plans during the design process and pursue only
hypothesized designs that permit efficient daily use by them. Similarly, the project manager
could explain and learn about its integrated actions in terms of the integrated strategy it had
adopted. In general, the project manager could combine different kinds of expertise to solve a
variety of more complex problems.
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As these examples illustrate, BB*'s capability for open systems integration introduces the
possibility of incrementally extending the depth and variety of knowledge within a single
system to encompass new problem classes, problem-solving methods, and subject-matter
domains. At the same time, the underlying knowledge base remains perspicuous, well-structured,
and non-redundant Finally, the system continues to employ uniform methods for control,
explanation, and learning, thereby presenting a coherent face for the system as awhole.

/\ | | (a)

®)

Figure 29. Open Systems Integration in BB®: An Expert Project Manager. The project
manager integrates the following within a single conceptual network: ACCORD’s knowledge of
the arrangement-assembly task. ADJUST's knowledge of the plan-refinement task, and
SIGHTPLAN's and DAYPLAN's combined construction knowledge. Similarly, it incorporates
all of SIGHTPLAN's and DAYPLAN's knowledge sources (not shown here) within the network.
With additional knowledge about combining iu actions for particular purposes, the project
manager could solve a variety of more complex problems and explain its efforts to solve those
problems. For example, it could: (a) design a site plan and then schedule each contractor’s daily
use Of the site: or (b) schedule and evaluate key contractors’ daily use of hypothetical site plans
during the design process and pursue only hypothesized designs that permit efficient daily use
by them.
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9. The BB* Environment: Status and Plans
9.1 The BB1 Architecture

9.1.1 Generality and Utility

We put forth the blackboard control architecture, which is implemented as BB1, as a genera
architecture for intelligent systems. Table 1 (see section 1) briefly describes some of the
application systems currently implemented or being implemented in BBl. Most of these
applications are being developed by other scientists at Stanford and other research laboratories.
In addition, we have shown elsewhere [23] that BB1 provides a natural architecture for the
knowledge and control strategies of the Hearsay-11 [12] speech-understanding system, the
HASP [42] signal-interpretation system, and the OPM [26] task-planning system. The number,
variety, and significance of these applications suggest that BB1 provides a generally useful
architecture. As we and other scientists develop and classify new applications, we will identify
empirical bounds on BB1's generality-and utility.

9.1.2" Control, Explanation, and Learning

In the area of control, BB1 currently has three sets of generic control knowledge sources. One
set of knowledge sources refines an application-specific strategy by successively posting the
names of control knowledge sources that post its prescribed subordinates. Another set of
knowledge sources refines a strategy expressed in framework knowledge structures by
successively replacing its parameter phrases with alternative legal values (see in section 6). A
third set of knowledge sources posts goal-directed focus decisions that favor KSARs whose
actions would enable other high-priority actions [30] (see section 6). All of these generic
control knowledge sources can work together, along with application-specific control knowledge
sources, to construct fully integrated con.:ol plans.

In the area of explanation, BBl currently provides the graphics-based, menu-driven
‘ explanation capabilities discussed in section 2 and illustrated in Figure 26 above. We are
investigating extensions of these capabilities to include knowledge-based reasoning about what
kinds of explanations might be useful or otherwise appropriate for particular users under
particular circumstances.

In the area of learning, BB1 currently provides the MARCK knowledge sources for learning
new control heuristics from user intervention (see section 2 and Figure 27). We aso have
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developed the WATCH knowledge sources for drawing inductive generalizations from domain
experts problem-solving actions. We have not yet developed the WATCH knowledge sources
that automatically program new control knowledge sources to regenerate inductively acquired
strategies during subsequent problem solving episodes. We also are investigating prototype
instantiation and learning by analogy as methods for learning how to use general knowledge in
a new domain and for transferring control knowledge among related applications.

In add’ -n to these new developments, we are conducting experiments to evaluate the ,
cost/benefit tradeoffs of exploiting BB1's capabilities for control, explanation, and learning.

9.1.3 Framework-Interpreter and Related Functions

We have implemented all framework-interpreter procedures (parse, match, quantify, generate,
translate) and incorporated them into the BB1 scheduler, interpreter, and agenda manager. As
mentioned above, the framework-interpreter is entirely independent of ACCORD and can be
applied to any user-specified framework specified with the appropriate BB1 knowledge
structures. Moreover, all extensions to BB1 are designed to accommodate systems that freely
integrate BB1 and framework knowledge structures.

In more advanced work, we are investigating a number of strategies that exploit the
conceptual ne*work for efficiency within framework-interpretation procedures. For example, we
plan to exploit the natura discrimination networks entailed in root verb hierarchies for
efficient triggering of knowledge sources that share related trigger patterns. As a second
example, we plan to exploit the known relations between previous events and the states they
promote to restrict the potentially explosive search required to instantiate arbitrary state
patterns.

Finally, although the template grammar underlying our framework-interpretation procedures
satisfies the requirements of current applications, we anticipate that it will prove too restrictive
for later versions of these applications and for new applications. Therefore, we expect to
replace it with a more powerful grammar at some time in the future.

9.2 Current and Planned Frameworks

ACCORD is the first framework developed in BB*. We have demonstrated ACCORD’s
applicability in PROTEAN'’s biochemistry domain and in SIGHTPLAN's construction domain.
We dso plan to investigate its applicability to problems involving procedural objects in
temporal contexts and, more generaly, to problems involving symbolic objects in symbolic



69

contexts. We continue to extend and refine the knowledge in ACCORD as our understanding
of specific applications grows.

We plan to develop new frameworks for several tasks, including: BB1's control, explanation,
and learning tasks; and the several tasks--situation assessment, planning, plan monitoring,
situation simulation, and plan modification--involved in real-time applications.

In general, as we and other scientists attempt to design new frameworks within BB1 and new
applications within particular frameworks, we will increase our understanding of empirical
‘bounds on: (a) the availability and utility of knowledge at this level; (b) the range of
applicability of individual framework, and (c) the range of frameworks BB1 can accommodate.

9.3 A New Hierarchical Level: Shells

As discussed in section 1, architecture, framework, and application represent three discrete
levels on what is probably a continuum of knowledge abstractions. We plan to introduce a
fourth level, shells. Each shell will specialize a particular framework by augmenting its task-
specific language with prototypical domain and control knowledge sources that are appropriate
for a_particular subset of tasks.

Like Clancey’s Heracles system for heuristic classification [7] and Chandrasekaran’s “ tools for
generic tasks’ [5], these shells will articulate useful control strategies for solving particular
subclasses of problems. For example, given our experience with SIGHTPLAN, we are building
an ACCORD shell that captures a domain-independent form of the knowledge sources
PROTEAN uses for small proteins. We believe that they will prove useful in other domains
where problems involve a relatively small number of objects and constraints. Similarly, we
might develop shells for arrangement-assembly tasks in domains involving physical versus
temporal objects or for domains whose contexts involve nominal versus metric dimensions.

Shells will offer an incremental advantage over frameworks in the ease of developing new
applications. The system builder has only to instantiate the skeletal branches of the concept
‘ network and, perhaps, the prototypical knowledge sources that require domain-specific
information. As mentioned above, we are investigating automatic prototypeinst}antiaticn
capabilities to relieve the system builder of the task of instantiating knowledge sources. Of
course, the system builder pays for this advantage in loss of flexibility in the reasoning process.

Our shells will differ from systems such as Clancey’ s and Chandrasekaran’s, however, in thre
ways. First, they will articulate control knowledge. rather than control procedures. As a
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consequence, a shell may support applications that exploit any of BB1's capabilities for control
reasoning, ranging from systems that apply systematic control procedures to those that reason
extensively about problem-solving strategy. In addition, they can exploit this knowledge for
other purposes. Second, we do not presume that there is a single correct strategy for a given
task. Thus, for example, there may exist several shells for arrangement-assembly tasks with
different characteristics. Third, our shells will exist in the context of the BB* environment. As
a consequence, they can be configured with any other modules from the environment to form
more complex, but fully integrated systems, with BB1's general capabilities for control,
explanation, and learning superimposed upon them.
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10. Magjor Results

Our magjor results reinforce and manifest the four themes of the paper (see Figure 1 in
section 1):

« that an intelligent system reasons about its actions,
« that a system must have knowledge of its actions
« that knowledge should be represented in an abstraction hierarchy;

« that knowledge modules within a level should satisfy uniform standards of ¢a.: :c.::
and representation.

We have developed the BB1 architecture for systems that reason about their situations, their
godls, and their actions. BB1 systems integrate strategic and opportunistic methods to decide
which goals to pursue and which actions to perform. They explain how their actions serve their
goas and they learn from experience which actions help them to achieve their goals. BB1
systems reason in these several ways by dynamically constructing, modifying, executing,
explaining, and learning about explicit plans for their own actions in real time.

We have empowered these systems with the generic knowledge in BB1, the task-specific
knowledge in frameworks such as ACCORD, and the more specific knowledge in applications
such as PROTEAN. As a consequence, these systems know what facts and states obtain in
particular contexts. They know what events and states they seek. They know what actions they
can perform, what events and states are necessary to enable their actions, and what events and
states their actions will produce. They use their knowledge to perform the control, explanation,
and learning functions required of them. Since they represent all of these different kinds of
knowledge explicitly, improving or extending their performance is a matter of improving or

_ extending their knowledge.

We have organized existing modules in the hierarchically layered BB* environment: The BB1
architecture supports multiple frameworks, each of which supports multiple applications. This
organization enables us to understand and describe BB*, but more importantly, to apply and
extend it. We apply BB* by building new systems that incorporate and augment existing
knowledge modules, possibly exhibiting synergistic effects of independently constructed
modules. We extend BB* by constructing new knowledge modules, or expanding existing
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modules. Existing high-level modules guide and discipline the ‘construction of subordinate
modules. Low-level modules substantiate superordinate modules and suggest new opportunities
for abstracting superordinate modules. Some of these extensions can be made automatically.

Finally, we have adhered to uniform standards of knowledge content and representation in
constructing modules at a given BB* level. We offer a single architecture, BB1, and its
associated frame-based network of knowledge structures for representing actions, events, states,
and facts. Frameworks such as ACCORD must specify task-specific knowledge about actions,
events, states, and facts within a representation combining: a frame-based conceptual network,
linguistic templates, partial match tables, and template translations. Applications such as
PROTEAN must instantiate skeletal branches of the conceptual network and specify knowledge
sources that instantiate particular problem-solving actions, events, and states. As a consequence
of this within-level uniformity, BB* provides open systems integration. We can configure any
existing knowledge modules within any appropriate strategic paradigm to attack new problems.
Moreover, we can incrementally extend the knowledge within a given system to encompass
additional problem classes, problem-solving methods, or subject-matter domains. At any stage
in the system’s evolution, we can superimpose upon it higher-level generic knowledge abort
control, explanation, and learning to produce a fully integrated and coherent face for the
system as awhole.

From an engineering perspective, BB* may be viewed as a layered computing environment.
.BB1 constitutes a general-purpose “virtual computer” for programs that articulate and reason
about their own actions. it offers a data representation and instruction set of considerable
generality. Frameworks such as ACCORD constitute higher-level programming languages. They
provide the more complex data representations and macro operators relevant in narrower, but
still significant, sets of programs. Applications such as PROTEAN constitute individual
programs developed within the environment They can be programmed in the “machine
language” of BB1 or in the higher-level language of an appropriate framework. Like higher-
level .languages in conventional computing environments, frameworks harness the power of BB1,
enabling applications . builders to write better programs more easily. BB* differs from
conventional computing environments in its orientation toward intelligent systems: programs
that perform knowledge-intensive reasoning about the problems they solve and about their own
problem-solving behavior.

From a scientific perspective, BB* may be viewed as an elementary theory of intelligent
systems. Like al scientific theory, theories of intelligence carry an inevitable tension between
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generadity and power. Efforts to design encompassing architectures strive for generality: to
formulate fundamental laws of artificial intelligence. Efforts to develop task-specific
frameworks (or still more specific shells) strive for power. to articulate more constraining laws
for a narrower range of intelligent behavior. In both cases, effective application systems
confirm predictions of the proposed theory. The BB* environment--in which the BB1
architecture supports multiple frameworks and each framework supports a range of specific
shells and applications--constitutes a theoretical paradigm in which we can realize both
generality and power.
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