
Hcport No. STAN-(‘S-87-1 148
niso rrumtwfd Ksl.-xt5-36

An Instrumented Architectural Simulation System

bY

Bruce A. Delagi, Nakul Saraiya, Sayuri Nishimura, and Greg Byrd

Department of Computer Science

Stanford University
Stanford, CA 94305

Knowledge Systems Laboratory
Report No. KSL 86-36

January 1987

An Instrumented Architectural Simulation System

bY
Bruce A. Delagi, Nakul Saraiya, Sayuri Nishimura, and Greg Byrd

KNOWLEDGE SYSTEMS LABORATORY
Computer Science Department .

Stanford University
Stanford, California 94305

WORKSYSTEMS ENGINEERING GROUP
Low End Systems and Technology

Digital Equipment Corporation
Maynard, Massachusetts 01754

This work was supported by DARPA Contract F30602-85-C-0012, NASA Ames
Contract NCC 2-220-SI, and Boeing Contract W266875. Greg Byrd was
supported by an NSF Graduate Fellowship and by the Stanford University
Department of Electrical Engineering.

SIMPLE/CARE 29 January 1987

Table of Contents

1 INTRODUCTION
1.1 Design Time lnteractiol~ And Run Time Operation

2 STRUCTURE AND COMPOSITION
2.1 CARE Base Con~ponetl ts
2.2 CARE Composite Components
2.3 Automatic Composi tiotl in CARE

3 SPECIFYING BEHAVIOR
3.1 Behavioral Rules
3.2 Using Methods

4 INSTRUMENTATION
4.1 Con7 ponen t Probes
4.2 Instrument Specificatiow

5 EXAMPLE PANELS
5.1 Point Plot Panels
5.2 Scrolling Line Plot Panels
5.3 Self Scaling Line Plot Panels
5.4 Boxes and Lines Panels
5.5 Scrolling Text Panels
5.6 Noting Simulation Parameters
5.7 A 11 Instrumeti t Screeti

6 USING PROGRAM DEVELOPMENT TOOLS
7 CONCLUSIONS
8 ACKNOWLEDGEMENTS

.

Figure I:
Figure 2:
Figure 3:

. Figure 4:
Figure S:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure IO:
Figure I I:
Figure 12:
Figure 13:
Figure 14:
Figure IS:
Figure 16:

* Figure 17:
Figure 18:
Figure 19:
Figure 20:

List of Figures

Design Time Interactiow and Rut1 Tim Representatiow
Hierarchical Composi tiorl
Graphic Structure Specification
Example Condition/Action Behavior Rule
Iristruriient System Organization
Instrument Probe and P:~rlel Relatiorlshlps
Poitlt Plot and Scrolling Line Plot Panels
Site Correlation Panel Specification
System I-Iistory Panel Specification
Self Scaling Liw Plot Panel
Operator-Network Panel Specification
Boxes and Li ties Panel and Scrolling Text Pmel
Mapping Panel Specificatiori
Producer Limited Process Panel Specificatiorl
Parameter Menu
Atitiotatioti Panel
Overseer Iristrimieri t
Inspectitlg Simulated Components
Debuggmg A S~mulatlotl
Changing Application Code

3
-I
5

9
10
11
12
12
13
13
14
14
14
15
15
16
17
18
19

SIMPLE/CARE 29 Jmtary 1987

A RS’I’RACI

AN INS’I’RUMEN’I’ED ARCHI’I’lK’I’URAI, SIMUI,A’I’ION SYSTEM
Simulation of systems at an architectural level cm offer an effective way to study critical

design choices if (1) the performance of the simulator is adequate to examine designs executing
significant code bodies -- not just toy problems or small application fragments, (2) the details
of the simulation include the critical details of the design, (3) the view of the design presented
by the simulator instrumentation leads to useful insights on the problems with the design, and
(4) there is enough flexibility in the simulation system so that the asking of unplanned
questions is not suppressed by the weight of the mechanics involved in making changes either
in the design or its measurement. A simulation system with these goals is described together
with the approach to its implementation. Its application to the study of a particular class of
multiprocessor hardware system architectures is illustrated.

SIMPLE/CARE 29 January 1987

1 IN’I’RODUC’I’ION

Simulation systems are quite often developed in the context of a particular problem. To a
degree, this is true for SIMPLE, an event based simulation system, and CARE, the computer
array emulator that runs on SIMPLE. ’ The problem motivating the development of both
SIMPLE and CARE was the performance study of 100 to lOOO-element multiprocessor systems
executing a set of signal interpretation applications implemented as “1000 rule equivalent
expert systems” [2 3.

A set of constraints pertinent to this problem governed the design of SIMPLE/CARE. The
ap’plications represented significant bodies of code and so simulation run times were expected
to be an important consideration. Moreover, the issues involved with the interactions of
multiprocessor system elements were sufficiently unexplored prior to simulation that
simplifications in the CARE system model, specifically with respect to element interactions,
were suspect. This need for detail was, of course, in tension with the need for simulation
performance. The ways that simulated system components would be composed into complete
systems was initially difficult to bound. Further, it was clear that the models of these
components would be elaborated over time and would undergo substantial change as design
concepts evolved. It was also clear that the ways of examining the operation of these
components would change independently (and at a great rate) as early experience indicated
what alternative aspect of system operation shwld have been monitored in any given
completed run.

The design goals that emerged then were (1) that the simulation system should support the
management of substantial flexibility with regard to simulated system structure, function, and
instrumentation and (2) that, in order to accomplish runs in acceptable elapsed times, the detail
of simulation should be particularly focused on the communications, process scheduling, and
context switching support facilities of the simulated system -- that is, or1 just those aspects of
system execution critical to multiprocessor Iac opposed to uniprocessor) operation.

I.1 Design ‘Ihe Interaction And Run The Operation

Encapsulation of the state of design components with the procedures that manipulate that
state is one clear way to manage design evolution.
along well defi necl boundaries.

Such encapsulation partitions the design
Components (by and large) interact with other components

only through definecl por(s. Connections between components terminate at such ports. When
a system simulation is initializecl, connections are traced so that for every port, the simulator
knows the connected (terminating) ports together with their containing components. Once such
initialization is complete, that is, throughout the simulation run, assertions about the state of a
port of one component can be directly translated to assertions about the state of connected
ports of other components.

Partitioning issues of system structure, component I)ellavior, and instrumentiltion into separate
domains of consideration helps in managing a design that is both fluid and conlplex. .System
structure, that is, the relationship between components, can be specified through use of an
interactive, graphics structure editor and is largely independent of component function per se.
Component belli~vior is encapsulated in a set of definitions pertinent to the given class of
corn pollen t. Each component in a SIMPLE simulated system is a member of a class defined
for that component type. lnstrunlentation is automatically and invisibly made part of the
definition of each simulated component that is to be monitored during a run. This is done by
arranging that the class of every component to be *nonitored is a specialization of the general
instrumented-box class. The basic data structures and procedures for monitoring simulated
components and maintaining the organizational relationships between each component and its
related instrumentation are inherited through this general, ancestral class and are thus made a
separate, substantially independent constderation in the design.

1 SIMP1.F and C’ARF were dtseloprd lx the ;ltithorj at the K~~owledgr S\stttms l.nb of Stanford Uniwrsit!. S1MPI.F
is iI desc,elldent of PAl.l..4Dl0 [l] uptimeixd tor the >tIbxt ut’ PI41 I.ADltj’
CilpLLlrt2 illld ~illllllilli0ll.

3 ~i~pi~bilities relewlt to hierarchical design
I1 13 writtell III Zetali>p [4] itlId ctrrrr~ltl! ru113 011 S)mbolics 3600 rmchillrs :111d TI E\plurers.

2

SIMPLE/CARE 29 Januarq 1987

A f u r t h e r parti tionirlg o f COIICCI’IIS is employed to separate out the definition of the
application programming language interface and its support (as provided by CARE) from the
underlying information flow control governing component behavior. The behavioral
descriptions of components (which are expressed as sets of condition/:lction rules) deal
generically with gating information, independently of the structure of the information, between
ports of the component and its internal state variables. This is separated in t h e component
model definitions from the functions performed to create and manipulate the information so
gated. The simulated implementation of the application programming language support
facilities, on the other hand, relies only on the specifics of the information and its structure
and’plays no part in gating it between the components of the system. Changing the definition
of the application language is thus done independently of changing component flow control
behavior. The application programmer and the implementer of the application language
interface may use whatever data structures seem suitable to them, be they numbers and
keywords or procedure bodies and execution environments. The simulation system doesn’t care.

The component probe definitions, that is, the specifications of what information should be
captured for each component type, are separated from the descriptions of the behavior of such
corn ponen ts. In designing for flexibility in the instrumentation system, it turned out to be
important to further divide the information presentation from the information collection
issues. The mapping from particular component probes to particular instrument panels and the
transformations to be applied to the information as it passed from a given kind of probe to a
given panel (and between panels) is captured in the instrument specificution. This is a

o f what k inds 6f pa&Is a re inc luded in an instruvzeht, how they f i t on a11

screen, how they are labeled and scaled, and what information from which kinds of
displayed 011 each panel, The instrument specification also indicates what kinds ol
to be connected to which kinds (that is, which classes) of components in the system.

definition
instrument
probes are
probes are

applicatlo_m code

desigoa umuune mrraueraeumorros SbIVWlMDUiOQ run

Figure I: Design Tittle Interactions and Run Time Representations

Putting together all the definitions of components, component probes, panels, instruments.
applications interfaces, and inter-component relationships is done in a set of design time
interactions by a system nrchi tect. These interactions are used by the simulation system to
generate efficient run time representations so that simulation performance goals can be met.
Figure 1 illustrates the partition between design time interactions and simulation run time
operation. Structure editing pulls together cornponen ts from the comporten t Ii brary to produce
a circuit. Associated with some components in the library, there are definitions for the syntax
and underlying mechanisms of a multiprocessor applications language. These specify the

SIMPLE/CARE 29 January 1957

interface used to provide the program input to the multiprocessor system being sin~ulated.2
The definitions used to generate component probes are associated with each library component.
to be monitored. There may be several such definitions, each appropriate to measuring a
different aspect of the associated component’s operation. An instrument specification selects
from these definitions, elaborates them with selections from a set of probe operation mdules
to include any pre-processing (for example, a moving average) to be calculated by the probe,
and indicates under what conditions what information from the probe is to be sent to which
panels of the instrument and how it is to be transformed and displayed there. Instrument
specifications also partition the screen among the panels of the instrument. The end product
of these design time interactions is an instrumented circuit and an instrument. The instrument
comprises a set of instrument panels and a set of constraints relating them to the instrument
screen. The instrumented circuit ties together instances of components, probes, and panels for
a simulation run.

For each defined class of component and its associated probes, the design time interactions
produce code bodies that accomplish simulation operations during a run. It is an attribute ot‘
the underlying Lisp base of the simulation system that changes in these definitions have
immediate effect even during a simulation run -- an important capability during debugging.

2 S’I’RUC’I’URF: AND COMYOSI’I’ION

Design time interactions to specify CL system include the establishment of component
relationships. Such specifications can be said to accomplish the composition of the system
from its components and so define its structure. SIMPLE supports hierarchical composition:
components may be described in terms of a fixed set of relationships among their sub-
com ponen Is. Additionally, such composite components may have function beyond what can be
inferred strictly from their composition. All this can then be included a higher level
composite (as shown in figure 2) and so 011 indefinitely until the top level “circuit”, the system
structure, is reached.

.

Figure 2: Hierarchical Composition

The behavior induced on a composite component from its parts changes according to the
behavior of its parts. Thus, for example in figure 2, if at any time during a simulation the
function of CARE upercrtor components is changed by redefining their operation, the behavior

‘The lunguagr prillli~ive~ supplied C;LII be used LO define cllulliprocruor lunguagt: illkrfuces for either shard-vilriitbltr
o r VilIlK-PilSSillg pillXdl~lllS. As supplied, the language interface built on theset primilives supporis value-pussillg OH
,Lreilnl> betweet object) hut i\llrrll:tLive inkrt’acc~ cat1 be (;~nd have bectl) ttasily d e f i n e d itI krrns o f the giver1
primilives.

4

I

SIMPLE/CARE 29 January 1987

of the nine-site grid is in inltnedi:~te correspondence.3
Composi tiorl is described 3oraphic;tllq ;tnd inter:ictivelq in SIMPLE by p ick ing a previous14

specified component type from ;I r~~enu, placing it iri rel~ttiorlship to o ther corn~~onef~ts wi th
“m 0 use” movements, and, through the same n~eans, specifying the connections between its
selected ports and those of other components (as indicated in figure 3).

Add Ltnes ,
Add Ports

Odd Contact; .
1 I,:, . 5 I--0mDooents

Clals-fc ComDonento
‘ashace Boundlnq Box

Ed!? Behavior
Modlf J FittrIbutes

SITE I Le,.,eI

Figure 3: Graphic Structure Specification

Through another menu selection, ports can be defined for the new composite component so
that it, in turn, can be fitted into yet higher level structures. Such external ports can be

. connected directly to ports of sub-components “within” the composite. I f this is done,
information appearing on that external port will be the responsibility of the connected sub-
component. By this same means, a component previously described as a base level component,
can be redefined as a composite of yet lower level elements as its design is elaborated with
further details.

Components and (internal) connections can also be deleted from a library component and
replaced with substitute components. After all sub-components and connections have been

added, deleted, elaborated, and replaced as required, the completed structure can then be entered
into a library of components and used in turn to compose higher or equivalent level
com ponen ts.

t.*l CARE Base Components

CARE supplies a small library of system level base component types. Currently these are the
net-input, the net-output, the fifo-Duffer, the operdur, and the evaluator. The net-input, net-

3 However, for reasc)ns c’onc’crnIrlg sirtiulalrurt perfornimc~ and because of their r&lively low frequcnc!~, l*hiIllges in
t h e n u m b e r and n;~nles o f the illlerni~l bli\lr variables o f cu~l~po~~etlls ilnd the struclurc?l relalion,hips bel\vttrtl s u b -
componenls o f il cuniposile are nul ret*le~*lcd Ill;III alread! ~nslanliuted circuil. C’hiInges in the Inlrrnnl struclure of iI
CARF srle library con~ponenl. f o r et\iInlple. WIII he reflecletl OIII~ i n clrcuils itlsLiInLi:~Ltrd after the chiillge I(>ok effect.
For [his rt!;lsoI1 and 10 reduce lwg lrrnl storage rcquiremenl~ ;111ci load lime for the fu~ldarnenl~~ll~ ileralive circuits [hut
w e prirmiril! sliidj, w e d o 1101 keep filtx o f 1nsk111~1nkd circulls. The> are illsl:lnLlilled ;IS Ileeded from iI high level
library conlponrlll with Ihe \iIIIlc prololyplc*al slruclure.

SIMPLE/CARE 29 January 1987

output and fifo-buffer accept (or block), route, and buffer transmissions. They do so in
accordance with a dynamic, flow-controlled, multicast, cut-through communications protocol as
described in L-33. The evaluator does the real work of the application: evaluating the
application of functions to their parameters. The operator does the overhead work associated
with such evaluations: for example, scheduling processes and sending and receiving (but not
routing) messages.

In keeping with the objective of focusing simulation cycles on the aspects of the simulation
particularly relevant to multiprocessor operation, the behaviors of the net-input, net-output,
and fifo-buffer component classes are defined in fair detail, that is, at the register transfer
level. Routing operations are described procedurally and assumed to occur within a time set by
a parameter to the simulation. As indicated previously, the simulation of the operator and
evaluator is broken into two aspects: the control of the flow of information and the functions
performed on that information. The former is described in terms of SIMPLE behavior rules
(as documented in section 3), register transfer by register transfer. The latter is describeci
directly in terms of procedures and the simulated time taken by such procedures is modeled.
In the case of the operator, this is done as a function of the number of storage cells
manipulated during an operator procedure. In the case of the evaluator, this is done as a
function of the execution time used by the machine executing the simulation, that is, the
simulation vehicle.

2.2 CARE Composite Cornponen ts

The prototypical composite co1tIponent supplied with CARE is the sire. As supplied, it
includes net-inputs and net-outputs for up to eight “neighboring” components (generally other
sites), a net-input and a net-output with associated fife-buffers for local receptions and
transmissions, and, finally, an operator and evaluator as described above. Specializations of the
site, for example, the torus-situ, exist in the library to fit the site into alternative topologies by
supplementing the site routing and wiring procedures as appropriate to the topology.

2.3 Autonwtic Composition in CARE

Although any connection of components can be created by the means noted previously, fat
some repetitive, well patterned systems of connections, composition can be automated. The
CARE library includes a component, the ifercrtcd-cell. which represents a template for the
creation of composite coml~c)nents by iteration of a unit cell. The unit ceils (for example, the
torus-site) are specializations of other components (for example, the site) as just discussed.
The specializations include a method for respondin,0 to a request to provide a wiring list. Such
a list associates each source port of a cell with the correspondin,(1 destination port (in terms of
port names) and the position of the destination cell relative to the source cell in the iterated
structure. The iterated cell con~ponent uses this information to make the required connections
between each of its constituent cells.

3 SYECIFYING BEHAVIOR
SIMPLE is an event based simulator. The behavior of a simulated component is described in

terms of responses to the events pertinent to that component. A component’s response ma)
include consequent events to be handled by the simulator as well as direct operations 011
component state. Assertion of consequent events and the responses to them (involving further
consequences) drives the simulatiori. When there are no more events to handle, the simulation
is complete.

To maintain modularit> in a s imulat ion systtfm, responses to simulation events should be
local to the affected component and its defined ports, that is, its connection to the remainder
of the simulateci sysrutt. The composition system of the simulator maintains the relationship
between ports of one component and those of other components connected to them. Assertions

.

S I M P L E / C A R E 29 January 1987

re la t ive to a por t o f a component are thus systemat ica l ly t ranslated to events per t inent to
corn ponen ts con net ted to i t. Th is is the genera l mechanism for event propagat ion between
coIl1polleIl ts. In a l imited number of cases, a direct operation on a related component may be
appropriate. W i t h f a i r w a r n i n g a b o u t i t s p o s s i b i l i t y o f a b u s e , a f a c i l i t y i s p r o v i d e d t o
accomplish this.

3. I Belrdori~l Rules
The behavior o f a component is descr ibed in terms of i ts responses to per t inent events .

E a c h e v e n t stipulares t h e c o m p o n e n t a f f e c t e d , its p o r t o r s t a t e v a r i a b l e s i g n a l l e d w i t h a n
assertion, the asserted value, and the simulated “time” of the event. The time of an event may
be thought of as the “current” s imulat ion t ime. Di f ferences in event t imes represent the
temporal relationship between events. Event limes in SIMPLE s imulat ions are monotonical ly
increasing.

For each type of component, [here IS a procedure to handle pertinent events. The arguments
to the procedure are those stipulated by the event (as just described). The procedure tests for
conditions and, as satisfied, asserts or directly effects consequent actions. The conditions may
include arbitrary predicates 011 the event parameters and rhe state variables of the componenr.

Event based s imulators are based on the assumpt ion that s ta te and por t var iab les remain
unchanged unt i l expl ic i t ly modi f ied . Synchronous designs, that is, those in which the
opportuni t ies for s ta te change are tempora l ly quant ized to a c lock , can be modeled in such
implicitly asynchronous, event based simulators by asserting the clock signal on a port of each
and every clocked component of the simulated system. I f on ly some of the components in a
system need take action on each clock signal, there is an obvious inefficiency in this approach
that is crippling for systems with even a modest number of components.

If , however, event times in an event based simulator are restricted to integers, the clock can
be assumed. All that is needed is a way to detect the event for which a boolean combination
of conditions as strobed by an assumed clock is first met. Primitive condition predicates are
suppl ied for detect ing an “edge” (a va lue changed by the current event) wi th a coinciclent
“level” (a value set before the current even&) of two ports or state variables of a component in
e i t h e r o f the t w o p o s s i b l e event s e q u e n c e s . T h e p r e d i c a t e b o t h - s t a t e s i n t h e e x a m p l e

. evaluator behavior rule shown in figure 4 has these semantics.

; ; If’ the evaluator is ready and there is at least one runnable process...
((o r (b o t h - s t a t e s E v a l u a t o r - S t a t u s 4 ‘r e a d y E v a l u a t o r - Q u e u e - S t a t u s ‘s o m e)

(b o t h - s t a t e s E v a l u a t o r - S t a t u s ‘r e a d y E v a l u a t o r - Q u e u e - S t a t u s ‘f u l l))
. .
1 9 l ** make it current, start evaluation, and adjust status as per removal.

(s e t q E v a l u a t o r - S t a t u s ‘b u s y) ; block rule
(a s s e r t - s t a t e E v a l u a t o r - S t a t u s ‘b u s y n o w) ; next et)ent
(s e t q C u r r e n t - E v a l u a t i o n (q u e u e - t a k e E v a l u a t o r - Q u e u e)) ;note p r o c e s s
(u s e r - e v a l u a t e C u r r e n t - E v a l u a t i o n n o w) ; execufe it
(s e n d s e l f : e v a l u a t o r - q u e u e - d e c r e a s e d n o w)) ; note churtge

Figure 4: Example Condi t ion/Act ion Behavior Rule

Figure 4 illusrrates the generality of SIMPLE behavioral descriptions. The underlying object-
o r i e n t e d p r o g r a m m i n g system, F l a v o r s [4], i n w h i c h S I M P L E i s i m p l e m e n t e d p r o v i d e s f o r
direct reference of component state variables. The conditions and actions of behavior rules for
a component then need only name the component’s port or state variable (as stipulated in the
def in i t ion of that component type) to get or change the appropr ia te va lue in the component
i n s t a n c e f o r w h i c h rhe e v e n t i s p e r t i n e n t . Act ions may inc lude arb i t rary procedures: for
example, the procedures user-eval uate and queue- take in the given example.

I 7

SIMPLE/CARE 29 January 1987

3.2 Using Methods

The environment for the execution of the procedures defining responses to events includes
the state variables and ports of the component instance for which the event is pertinent.
These procedures are Flavor rnerirods [4] (in this case corresponding to the :ApplyRules
message) of the component type and, as just noted, refer implicitly to the state variables of the
component instance handling the event. Other methods may be defined for simulated
components: for example, the : evaluator-queue-decreased method invoked in figure 4.
Such methods have proved to be a natural way to realize the functional operations of
components not described by behavior rules.

The composition system leaves informatiotl about the enclosing and contained component
instances for each simulated component in system defined state variables of that component.
With this information, methods directly referencing the ports and state variables of such
related components may be invoked as needed. This is a useful but sharp-edged facility. The
warning about loss of modularity given previously applies here.

4 INSTRUM ENrI~A’IION
The results of a simulation are pritnarily the insights it provides into the operation of the

simulated system. The “insight” we frequently experienced using an early version of the
simulation system was that tnore interesting results could have been produced by the run just
completed if only the instrumentation had been different. With this in mind, the design fol
the current version of the simulation instrumentation system was aimed at flexibility. This
was attained without significant performance impact by building efficient run-time system
structures before each run, as outlined in section 1.1, from the declarations defining the
instrumentation.

The organization of the instrumentation system is pictured in figure 5. T h e simulator
interacts with component instances through assertions, that is, calls on an assert function, in
behavior rules (the methods associated with : ApplyRul es messages). All instrumented
components are specializations of an instrumented-box (as well as other classes). After each
invocation of :ApplyRules for such components, the :ApplyRules method for a generic
instrumented-box is appt ied. This causes invocation of the : trigger method for each
component-probe associated with that component. Since this flow of measurements is1
accomplished by means invisible to the the writer of behavior methods for a component, the
concerns surrounding component design are effectively partitioned from c o r n po11er11
instrumentation. The remainder of this section details these “invisible” means used to
accomplish measurement flow during a simulation run as the measurements are staged from
components through component probes to instrument panels.

4. I Component Probes

The first filtering of events is done by component probes. Some events cause no further
measurement activity since, as it turns out, not all events merit action on the part of the
iUstrumen tation system. The parameters of the event and the ports and state variables of the
instrumented component dealing with the event are available to the component probe as are
the state variables of the probe itself. Each piece of the selected information is tagged with an
identifying keyword and passed along as the parameters of the : trigger method along with a
keyword identifying the type of component probe, a number representing the current event
time, and a pointer to the component with which the information is to be associated in the
display. This pointer might be to some component related to the one actually handling the
event, for example, the component enclosing it.

Component probes may he composed of predefined probe operation modules to do standard
calculations (for example, movin,0 averages) and then to forward the results to selectecl panels.
In order to automate the composition of probes to accomplish such operations, each of these
operations is chainecl together by invoking the method for that probe that is associated with

S I M P L E / C A R E 29 January 1987

:create

:create

:ApplyRules

Figure 5: Instrument System Organization

the system-def ined message name of the gener ic next operat ion. Thus, the : t r igger method
cal ls the : calcul a te method of the probe which, in turn , ca l ls i ts : se lect method which,

1 finally, calls the : update method of the selected panels associated with the probe. Probes are
composed by naming them as specia l iza t ions of appropr ia te probe operat ion modules (for
e x a m p l e a : ca l cu l a te module for moving averages) as des i red . T h e d e f a u l t , i f n o
specializations are stipulated, is to pass through information without change to all the panels
associated with a probe.

Information flow between components and panels is accomplished by the component probes
associated with each instrumented component. The creat ion o f such component probes and

t h e i r a s s o c i a t i o n w i t h a p p r o p r i a t e c o m p o n e n t s (by e x e c u t i o n o f : add methods) accomplishes
the inst rumentat ion of a c i rcui t . T h i s i s d o n e w h e n a n i n s t r u m e n t i s c r e a t e d . During
simulat ion in i t ia l izat ion, t h e c o m p o n e n t s o f t h e c i r c u i t (a n d t h e i r s u b - c o m p o n e n t s) t o b e
instrumented are (recursively) examined by each ternplccte yro6e defined for the instrument to
see i f t h e y a r e t o b e m o n i t o r e d . I f so , the : copy method for the g iven template probe is
invoked to create a new instance of the appropriate component probe and add it to the probes
con net ted to the com ponen t. Each template probe previously received the identifiers for the
nanels to which its clones should send information. These will be the panels identified when a
bomponent probe invokes the : update method.

4.2 Instrument Specifictltions

The operations performed by an instrument panel are to:

l FirId information previously stored according to the component pointer suppl
the : update method:

ied b y

9

SIMPLE/CARE 29 January 1987

. Link new data structures as needed (to save such information) to other SUCII
structures of the panel;

0 Stio)e in these data structures the results of expressions that reference indicated
keyed information from the : update parameters and the prior contents of the
structures:

. Send the results of periodic ana1hses on the information associated with a panel for
display by the same panel or by some other; and

. l Show processed information in the manner specified for the panel.

The defaults for the panel operations supply the most commonly required specifications
implicitly, so simple operations are simply specified. These defaults can be overridden as
needed and either predefirled or user specified alternatives for the panel operation’s can be
selected in their place. Arbitrarily, complex (Lisp) expressions can be used to specify the
transformations between the information provided by a probe and that saved and displayed by
the panel.

These transformations and all the default overrides for the panel operations that are
stipulated in the instrument declaration are scanned when a new instrument is created for a
simulation session. They are compiled at that time into code bodies referenced by run time
control blocks associated with each panel. A simulated system is instrumented by examining
aI1 of its components and attachin,0 to each comporlent the copies of template probes specified
by the instrument definition that are appropriate for the component (by means of calls on the
: copy and : add methods for the probe). This can be a many to many relationship as shown
in figure 6.

panels probes components

1 producer-limited m k---L

1 consumer-limited II.?’

evaluator-load

Figure 6: Instrument Probe and Pane1 Relationships

Component probes to measure “load” and “latency” are specified in the given example fol
each operator and evaluator in the circuit. The “load” and current “connection” for each net-
output is also to be monitored. Some panels, for example the one showing “consumer-limited”
processes, receive inputs I‘rom only one type of component probe, those measuring evaluator
latency. Others, such as the one measuring “process-latency” receive inputs from more than
one kind of probe (in this cast!, from probes measuring operator latency as well as those
measuring evaluator latency). A waq must thus be provided to distinguish the type of probe
sending information to a panel: this is described in the next section.

S I M P L E / C A R E 29 January 1987

Some probes send information to 01114 OIW pmel, for example, the net-output connection
probes. Others monitor information which is needed by several panels, for example, the
operator latency probe. ~T‘ratlsfornl~ltion of the raw information provided by a probe will need
to be specialized to the information expected by each panel receiving it. A general way to
stipulate these transformations is stipulated in the next section.

5 EXAMYLE PANELS
Some example panels are described in this section to give a feel for the instrumentation

possibilities available in CARE and elaborate on how the requirements described in the
previous section for probe type identification at a panel and per panel specialization of the
information providecl by a probe are handled.

5.1 Point Plot Panels

The first panel (shown in the left half of figure 7) is an example of a point plot pcrtrel ustxl
to geiIerate a scatter plot. As an option, only points representing simulated activity over a
limited past history from the most recent event time are kept for display. In this example,
resource load5 information is provided by the operator-load and evaluator-load component
probes attached respectively to the operators and evaluators of the system.

.

.

SITE CORRELATION
Site Availability Correlation
-1.p ..* .

E 8.8 -

f 0.6 -

; 8.4 -
.“...

.mm.... . . .
a.r” 0. 2 - ‘:=‘:I::; ; : :. : : ; I

0.0 I I 1
0 . 0 8 0.38 0 . 6 0 1.00

Operator

SYSTEMHISTORY
Network & Operator -Eva kator Load

16 16
P

; 12 12 ii
t
1: 8 8:

L 4 4 z

0 0:
650 700 753
Simulated Time [FS]

Figure 7: Point Plot and Scrolling Line Plot Panels

-The balance between the “availability” of the evaluator and operator of each site, that is, the
complements of their respective loads, is displayed during the simulation as events are
processed that change this measure. In order to avoid capturing information at too fine :I
temporal granularity, previously gathered information for a given site is overwritten if it is
within a given sampling interval of the new information. Information that is beyond a given
history range is dropped. The scale of avaiiabilities displayed is fixed between 0 and 1.0. The
panel specification to declare all this and to also stipulate the axis labels is shown in figure 8.

11

SIMPLE/CARE 29 January 1987

.
‘(((“O p e r a t o r ”) (0 1 . 0) (- 1 (: o p e r a t o r - l o a d :busy))) ; Bottom usis

((“Evaluator”) (0 1.0) ((- 1 (:evaluator-load :busy)))) ;Leji uxis
:find (f i n d - s a m p l e - d i s t i n c t (:simulator :time) ,sampling-interval)
: show (recent-history (: s imulator :time) ,point-panel-history-range 0))

Figure 8: Site Correlation Panel Specificarioii

5.2 Scrolling Line Plot YiInelS

An example of a scrolling line plot panel is shown in the right half of figure 7. This panel
sums the loads seen by the resources in the simulated system and displays this as a strip chart,
the “system history”. Some of the same probe load information used by the previous panel is
used in this panel as well, but with different transformations defined in the panel specification
as shown in figure 9.

'((("Simulated Time [us]") (,history-range) (:simulator :time)) ; Bottom
(("Network") (0 ,sites) (:net-output-load :busy save-sum)) ; Left
(("Processing") (0 ,sites) : Right

(average (:evaluator-load :busy save-sum)
(:operator-load :busy save-sum)))

:find (update-history (:simulator :time) ,sampling-interval)
:show (recent-history (:simulator :time) ,history-range 0))

Figure 9: System History Panel Specification

Line plot panels may have Iwo independently scaled vertical axes. For the syslem history
panel shown, the sum of network loads as indicated by the net-output componen[s of the
system is plotted against the left axis and the sum of the processing loads provided by the
current-average of the ~LIIII~ of the operator and evaluator loads is plotted against the right
axis. Event time is plotted on the horizontal axis. The update-his tory function uses the
component pointer to find the information previously saved for that component and records
the current event time as the (: simulator : time) so that it may be used to display
information correctly or1 the horizontal axis. The current sums of the evaluator loads and the
operator loads measured by the system are stored in a record for the given event time (or a
prior event time within the specified samplin g interval) by the calls to the save-sum function
specified as part of the suve operation.

5.3 Self Scaling Line Plot PillIds

Figure 10 illustrates both the self scaling of displays and the use of a display analysis
operation. For this self scaling line plot panel, two pieces of data are collected for each

- operator in the system: the load on the operator. shown on the right axis, and the latency 01‘
the information it has most recen[ly received. This last itern is providecl by the operato
latency probe in two parts: (1) the interval between the creation of the infornlation md its
receipt by the net-input feedin g the operator and (2) the interval between such receipt and the
operator taking action or1 it. There are thus two curves plotted on the left axis. The
sfiecification stipulates a list for the left axis display. The elements of this list are the “net
delay" and the sum of this treasure and the "operator delay” monitored by the operator latency
probe. Since both delays are non-negative, their sm must be at least as large as either one
taken alone: the two curves may be superimposed but can not cross. The difference between
the two curves is the incremental delay added by the operator.

The panel specification for the operator-network panel is shown in figure 11. In addition to
transformations shown previously, an analysis function is stipulated for the send operation of
the panel. The information saved from each of the probes sending : update messages to the
panel is to be sorted from the greatest to the least values of the associated sum of delays
described above. This information is to be saved as the operator latency rank and usecl as such
to determine the position OII the horizontal axis that the delay and load information will be
displayed.

SIMPLE/CARE 29 January 1987

Figure IO: Self Scaling Line Plot Panel

’ (((“Operators”) (1 s i t e s) (: o p e r a t o r - l a t e n c y :rank))
(((“Latency” “us”))‘(O n i l) ;Second string: 90 degree baseline shift

- ((: o p e r a t o r - l a t e n c y (: n e t - d e l a y (+ : n e t - d e l a y : o p e r a t o r - d e l a y)))))
((“L o a d ”) (0 1 . 0) (: o p e r a t o r - l o a d :busy))
:send (s o r t - a r r a y s

((,#I> (: o p e r a t o r - l a t e n c y (+ : n e t - d e l a y : o p e r a t o r - d e l a y))))
((: o p e r a t o r - l a t e n c y :rank))))

Figure I I: Operator-Network Panel Specification

S.4 Boxes ilIld I,ines I’illlClS

Perhaps the IWSC intuitively satisfying of the types of panels available is the boxes arrd lines
panel, a graphic representation of a circuit showing its components and their interconnections.
An example of such a panel is shown the left part of figure 12. This class of panels uses
information left behind by the structure editor when the circuit was defined. Its form is thus
automatically generated. The position of the components (“boxes”) and the connections
between them (“lines”) in the display are used to animate system operation. III the example
shown, the shading (or color) of the boxes is used to indicate the availability of the cw1uutor.s
in the simulated system as the simulation proceeds. Darkest shades indicate highest availability,
that is, empty queues for utilization of the resource; lighter shades indicate lower availability,
that is, longer queues. The lines between boxes indicate communication .paths that are in use,
that is, not “: free” at the time of the most recent shuw operation for the panel.

The panel specification for the rnupping panel, an instance of a boxes and lines panel, is
shown in figure 13. There are two specifications for the panel: one for the boxes and one for
the lines. The specification for boxes in the panel stipulates that the availability of evaluators
in the sites corresponding to the boxes displayed controls the shading of those boxes. The
scale is defined to run from 0 to 1.0. The specification for lines in the panel uses the
connection information reported for the net-output to determine line placement on the display.
When the status is reported as :free. the connection information is dropped from the panel
and the corresponding lines are removed.

13

SIMPLE/CARE 29 January 1987

ARE OVERSEER
Evaluator Awl labs [rty & Network Connections

cl
0 2

PRODUCER LIMITED
P recess Posting

Figure 12: Boxes and Lines Panel and Scrolling Text Panel

'((("Evaluator Available") (0 1.0) (- 1 (:evaluator-load :busy))))
'((("Packet Trace") nil (:net-output-connection :points))
(("Packet Status") nil (:net-output-connection :status))
:find (find-and-remove ,#'eq (:net-output-connection :status) :free)))

Figure 13: Mapping Panel Specification

5.5 Scrolling Text ViltWlS

Sonietimes, the IIIOS~ ilppropriate way LO display infornlation is to show it as text. Based 011
a similar facility provided by the underlyirl,0 Lisp syslern, the scrolling /exf punel provides il
scrollable window into lines of text. In the right part of figure 12, the delay in each process
execution while waitin,(1 for something to do, that is. the evttrl~ tirne interval spenl wailinp I'OI
an appropriate task to appear on a certain stream of tasks, is shown together with the process
that finally produced the awaited work. This irlfortnatiorl is sorted so that the text lines
appear froni the greatest stream waiting interval to the least.

_a ’ ((() (“-40 -A")
((fix (:stream-waiting :interval)) ;first field
(let* ((origins (packet-origin (:stream-waiting :packet)))

(origin (if (listp origins) (first origins) origins)))
(remote-address-local origin)))) ;second field

:send (sort-arrays ((,#'> (:stream-waiting :interval))) nil))
Figs re I 4: Producer Limited Process Panel Specification

The values ancl formats used for display irl a scrollin,0 text panel are defined much as in
previously defined panels. Fortnat control strings take the place of scale information. As
usual, values are described by a list of forms, each one of which specifies the transformations
to per form 011 irlformation received from probes. The example specification in figure
14 shows the generality with which probe information can be incorporated in Lisp expressions

1-l

S I M P L E / C A R E 29 January 1987

to produce transformation specifications. The information used to generate the value for the
second field of the text display is based on the origin of the task packet that arrived on the
stream the process was waiting for.

5.6 Noting Sirnulution Yi~riluleters

T h e C A R E c o m p o n e n t m o d e l s a r e parameterized t h r o u g h m e n u i n t e r a c t i o n a s s h o w n i n
f igure 15 to a l low easy var ia t ion of the i r per formance character is t ics re la t ive to each other .
Addi t ional ly , the s i te model parameterizes a l ternat ive rout ing st ra tegies: directed, that is ,
blocking when progress can not be made toward the goal; spiraling around the goal if progress
toward it is blocked; and dithering, that is, routing away from the goal even if only the last
link towards it remains to be acquired. The rate at which each site accepts application data is
also a parameter, t h e &(I rale a n d can b e u s e d b y a n a p p l i c a t i o n t o c o n t r o l ho\\ I~NxI i t
drives the simulated system.

D a t a l?at.e [JlS] : 2 5 . 8

Fi::ure 15: P;1rameter M e n u

Many of the CARE pilrameters are specified as overrides. If not specified, the corresponding
performance is taken as measured WI the simulation machine. Thus, the evaluation override,

1 that is, the time to perform a11 evaluation can be specified as non-nil in order to fix the time
that each user evaluation will take. (This is useful in making runs repeatable for debugging).
The time that it takes to switch context can he specified as the slack group swifch override.
Similarly, the time 10 create a process control block iltld a stack context for that process cat1 be
taken as g iven ra ther than measured by spec i fy ing respect ive ly the process block creutiolr
override and the stuck grorlp creaiiorl override.

The t ime requi red for operator execut ion is modeled in terms of the number of words the
operator must manipulate in hand1 i ng a given message, T h e m a n i p u l a t i o n t i m e p e r w o r d i s
s p e c i f i e d b y t h e V~WUIOI WOI’~ touch time. Last ly , the per formance of the comrnullicatiorl
subsystem is specified a s cclt?rtnrlnic*crticrir c.vclcs. This i s d o n e i n t e r m s o f t h e m i n i m u m
number of evaluator data path clock times (that is, event times) requireci for a 32-bit word to
p a s s a g i v e n p o i n t i n t h e n e t w o r k . Thus the parametr ic speci f icat ion, “4 communicat ion
cycles”, dictates that 8 bits may cross such a boundary each time the evaluator passes through
one event time. If the communications path were narrower or the base communication clock
rate were lower, a higher number would be specified.

‘NOTES
b/PS*@d 8a:s4:40 3 2 DIALC~ED cyc’es,Acc~leratlon 2, Great Ion 280O~S, <ultCh 250rS, E,JOlUatlW ZSLL, DOta 15~8

Figure lb: Annotation Panel

The last example of SlfUPLE panels is the annotation panel as i l lustrated in figure 16. This

15

SIMPLE/CARE 29 January 1987

is used to (automatically) record the date, time, and parameters of the simulation run as well as
any other information the user chooses to keyboard into it.

5.7 An Instrument Sicrccn

All these panels are put together in an rnstrument screen according to a set of layout
constraints manipulated by the underlying window system. The finished screen might look like
figure 17. The instrument screen is redrawn at a rate set by the user. By experience, it is
often better to update the screen at a frequency low enough to let the user interpret each
screen comfortably than at the maximum rate possible. This approach also restricts the
computing resources consumed by the instrumentation system. More focused approaches to
controlling instrunlentatiotl load on the system include the ability to freeze selected panels and
disconnect selected probes during a simulation run.

:ONSUMER LIMITED
Prwxss gleucu

RODUCER LIMITED
Process Posting

El 3 0 :!

, .,. .

E l
;‘f;,zi”; 40 ”

90 ‘:
‘.‘J .

tl:::O F>n~rlwd pr*,rt,nr) DcfrJlt 3crrrn " *
[I:::1 F*n*shed prtnttnp Defnult Screen the

ROCESS LATENCY (OPERATOR - NETWORK SYSTEM HISTORY . .i.Il
2X or P roduccr -C’onsumer L rmitd I I Nttwork 6 Operotx-Evaiurltar Lou: fELAl I

Figure 17: Overseer Instrument

6 USING YROGRAM DEVELOYMENT TOOLS
The SIMPLE/CARE simulat ion systetn is integrated into the underlying Lisp machine

program development environment. The objects and data structures at both the component
model and application language interface have abstraction interfaces that provide summary

16

I

SIMPLE/CARE 2 9 Jatluarq 1987

state information when they are displayed iti test forni. These text abstractions are “mouse
sensi Give” in the development machine envirotlnxrlt and so can be inspected at successively
finer levels of detail as desired.

In figure 18, the net-output conlponents of the site :\t grid coordinates (3 2), the particulars
of the net-output 011 the east side of the site ((hat is, n e t - o u t p u t - 3) , and ;I sunmw~ o f all
the sub-components of the site at (3 2) are being inspected. This same kind of view into the
progress of a simulation is provided in the debu,,uuing process and may, as shown in figure 19,
refer to the conceptual entities of the application that is driving the simulated system.

SPAWNING (#<DTP-CL0
FlJnC t 101~ 15 II

E!jRLlJHTC)E i’3 2 I : EIJS’I U l]fEPHTOP I 3 2): RI”,
U \IIET-l:tlJTPlJT s 2 i’ , 113: F F E E EtlD-OF-PWCt.ET
#<IlET-ItIFlJT 1 ’ 3 2’1 113: F F E E F P E E EIID-OF-FWt,ET
II HET-OUTPUT I 2 ; 0 7: F F E E EIID-OF-PHCtaET
tl NET-1 HFUT (3 2 1 7 : FP.EE F F E E EIID-OF-FACtnET
R .IIET-OlJTPtIT 6, 3 ;’ 1 13: F R E E EIID-OF-PHChET
#,llET-ItiFlJT (3 2 t 0: FREE FREE EIID-OF-FkCt.ET
R~~IFt34lJElJE EVF~LUATI~P f~c) WEPRTlOP: I< lb?lJ~ 0: tIIL .

JOTES:

Figure 18: Inspecting Simulated Components

fn the example shown in f igure 19 , a d is t r ibuter process running on the eva luator a t s i te
(1 1) h a s m a d e a n i m p r o p e r c a l l o n t h e u p d a t e - l o c a l e f u n c t i o n d u r i n g e x e c u t i o n o f i t s
:start method. It might have been appropriate to investigate this situation in terms of the
modeled components. That could be done, for example , us ing the debugger to inspect the
evaluator component, its enclosing site, related net-output components, or whatever else at the
component model level seemed relevant. In this case, what was done was to use a few mouse
c l i c k s t o i n d i c a t e i n t e r e s t i n t h e s o u r c e f i l e f o r t h e d i s t r i b u t e r : s tar t method generat ing
the problem. It was brought up for review and control was then transferred to an editor using
the underlying program development environment as shown in figure 20.

Because of the implementat ion system chosen for the rea l izat ion of S IMPLE/CARE, a t any
point in the simulation, procedures either in the application or in the component models can
be modi f ied , incrementa l ly recompi led (wi th in a few seconds) , and be made ef fect ive for a l l

17

SIMPLE/CARE 29 January 1957

calls on them -- even those in tht3 interrupted stack t’ranw. Thus simulation execution can be
backed up to sorntt previous point in tht3 stack I‘r;trntt anti retried (givw that intermediate side:
effecting code, if any, is safely re-executable).

:ONSUMER LIMITED CARE OVERSEER
P?QcCSS Queued fvuluator Avarhbttrty d Nemo.+ Connectrons

LISP LISTENER

‘RODUCER LIMITEl
Procw; PO.:

JOTES:
,/2?/86 lQ:J3:1Q I2

I I
~<DlSTRIBUTER -4 1776256>

Tap of Object

311 obJect o f f l a v o r DISTPIBUTER. F u n c t i o n is d<EU-HHSH4RRHY (Funcal lable! 3500637,

~CKtlOULEDGEtIEtITS : (. il.
tEQUEST-STREHM:

1.) !=> D I S T R I B U T E R RCr,tlGWLEDGEREfITS 1573. 0 0))
(‘ (I. 1.) (=, D I S T R I B U T E R DISTRIBUTER-REQUESTS 1 5 7 3 . Q 0))

Bottom of Object
Top of Argr for Crrrcnt Franc

It-g Q !.OPERRTION.!: :STRRT
Top of Loc~Is/Specl~Is for Current Frame

Irg 1 (S E R V I C E) : #‘SIN
L o c a l 0 (C O U N T) : I
Local 1 :

Ifg 2 (S E R V E R S j : 28.
tf<DTP-LOCRTIUE 2?166536?

Locnl 2 : MIL
try 3 (FUTURE!: I. (2. t. ! i= REOUE3TOP EEOUESTS-F?I Loral 3 (TYE-SI T E S i : flIL
r g 4 (LUCHLEI: ‘tl!L L o c a l 4 (O B J E C T ,: ttIL

L o c a l 5 , THE-CLOCK-tl0l.l , : N I L
Bottom of Args More Locals Below

Top of Stack
(EH: I ttUOkE-DEBUGGER RcEH:HRG-T’I’PE-ERROR :COttDI TIOtI-NHPIES !EH:REG-TYPE-ERROR ERROR CrJtlDI T11jt1 SySTEtf:l.]R
(SIGNRL-CONDI TIOH UcEH:ARG-TYPE-ERROR :CGtIDIT IOtI-tMlES (EH:RPtj-TYPE-ERRi]R E R R O R l:(it(DIT [1jt1 S’;STEM:IJRI~~I
(EH:FH-RPPLIER-HO-RESTART SIGNHL-CONDITION (RcEH:ARG-TYPE-ERROR :CONDITIGN-NRtlES (EH:RRG-T’I’PE-ERROR E
(EH:FOOTHOLD)
(IJPDATE-LOCALE ‘ N I L)

-(t+<DISTRIBUTER -41775256, :STHRT #‘SItI 2 0 . (’ (2 . 2 . ,I !=‘
((:ItITERlML F L R V O R Q .) 4 :STHRT #‘SItc XI. (‘ (2.

REGUESTOR REUIJESTS-FUTURE 273. Q 0 1). . .
2 .) (=, R E O U E S T O R R E Q U E S T S - F U T U R E 273. 0 O))...)

(FUHCRLL #;DTP-CLOSURE - 3 6 2 6 4 7 3 0 : (:STHRT R’SIH 20. I- (2.
(CHRE:USER-EWHLURTE (= R(DTP-CLOSURE

2 . I i=, R E Q U E S T O R REQUESTS-FIJTURE 2 7 3 . Q Q
-36264730) R~DISTRIBUTER -41775256 1383.1 1 3 1 3 . j

((:llETHOD CARE:EUALUATOR : HPPL’I’RULES) : APPL’I’RULES (: T R U E t 13: CR-UALLIE t<E!!HLLlATijR ! I . I . \ : BIJS;“ CRRE:
I#~.EVALUATOR 11, I . i: B U S ’, “ :RPPLYRIJLES ! : TRClE !B:BR-VALUE #~EVFILUHTOR (1 . I . ! : RIJS’; ~ IWIRE: I t+STRTlJ:5

More Stack Below
xamine Seat?% R e p o r t Rwum Bk Next
E r r o r Hrg l i s t Evlt R e t r y Bk E x i t

Top of HLstory
#<Stack-Frane UPDATE-LOCRLE P C = 5 5 y

xuec t Ou1t Edit ReSune 8k Hl 1 R <Stack-Frane (flETHGD D I S T R I B U T E R S T A R T) FC=lZ3
Help FlavIns IiodInrp R e t u r n s t e p W\DISTRIBUTEF - 4 1 7 7 5 2 5 6
bg SO rmllf y ‘St&l Bottom of History,
TP he irst argunent to ILL : I , f :L

e
TI I;e f u n c t i o n e:qxcted .an a r r a y ,
?

-TI4Ue or m u s e a f u n c t i o n tG adit ! NIL a b o r t s , T to erJlt n~t.hlng~:
,1 I’,rpe o r nouse d n e s s a g e n a n e f o r a ~ D I S T R I B U T E R -41775256 \ :

I

I

Figure 19: Debugg~~ig A Simulation

SIMPLE/CARE 29 January 1987

“Flequest creatbn of servers and continue on to :request to wait”

(let ((the-sites (loop for count from 1 to servers conect
(locale-site (update-b&e bcale)))))

(let ((obJect (reference seff)))
(without-clock
(format *output-stream* “-&“A [dhtributer] “A”

(send (remote-site object) :location)
(mapcar #‘(lambda (site) (send site :locatkn)) the-sltes)))

(posthg request-stream to future as :requests-stream)
(spawning ((fbw ‘server) :start servke acknowledgements) on the-sites

as servka)
(rppfy&y (:request) on obJect as :&tributer-requesting) ;for contlnuatbn
object)))

MFMETHOD (DfSTRWTER :tW?UEST) ()
“If there’s an available server and a request, pass out request; loop”
(loop

for response’ m (accept (first-postlng acknowledgements))
for (value clients tag) = (accept (next-posting request-stream))
do (posting vakm to (posting-clients response)

for (cons acknowledgements clients) as tag)
(next-posting acknowMgements))) ;done with this acknowledgement

compile-flavor-methods distrRWter)

DEFFLAVOFI 8ERvEp ((service (new-stream :server-r-quests))) 0)

DEFhdETMXl (SERVEFI :QTART) (operation acknowMgements)
“Send back notke of availabitky”
(let’ ((object (reference self))

(the-&e (remote-&e object))
(the-location (send the-site :location)))

(without-cklck
(format *output-stream* “-&-A -A” the-bcatbn operation))

(posting ‘initlallzed to acknowledgements for (list service) as the-location)
4applykrll

(:request operation the-location) on obJect as :server-contfnuatbn)
W=t))

RRAV (Funcallaele) 3S0Q637x

flENTS 1 5 7 3 . 0 B))
-REQUESTS 1573. 8 0))

ect
Top of Lu~ls/SpocI~Is for Current Irene

1 U (COUNT 1: I
1 1 : #:DTP-LOCATIVE 2 2 1 6 6 5 3 6 ,

Ll 2 : N I L
1 3 (T H E - S I T E S) : N I L
1 4 (O B J E C T) : N I L
1 5 (THE-CLOCK-NOW: NIL

More Locals Below

P ;*s tEH:HRG-TYPE-ERROR E R R O R COIIDI T ION ‘5YSTEM:W
(EH:RRG-TYPE-ERROR E R R O R CONDITIOtI S’iSTEfl:GlRO11

‘I’PE-ERROR :CONDITION-NAHES fEH:Rt?G-T;‘PE-ERPOP E

R E Q U E S T O R R E Q U E S T S - F U T U R E 2 7 3 . ‘J O!,...
REQUESTOR R E Q U E S T S - F U T U R E 2 7 3 . 0 U))...)

(2. 2. 1 (=> R E Q U E S T O R R E Q U E S T S - F U T U R E 2 7 3 . 0 0

lt<EVALUATOR (1. 1.): BUS’I C A R E : I N - S T A T U S

top of History
U P D A T E - L O C A L E PC=%%
(M E T H O D DISTRIBUTEI? START) PC=123’
- 4 1 7 7 5 2 5 6 8

Bottom of Hlstrrv

I .oth ing j :

ht%s (Zeta1 isp Font-lock I OBJtCT IHES LI* Ntks 4) k t A HLIT-c) fl
e a d l n g ?:rcare,eKwDlesrOgJECT-,j~~ES.LiSP:J’(Instail;d &iOn is :3j -- 5h I
characters.
c) In t p u s h e d

Figure SO: Changit~g Application Code

19

SIMPLE/CARE 29 January 1957

7 CONCLUSIONS
The goals of simulation flexibility and simulation environment completeness have been dealt

with in the ways described throughout this paper. In summary, the system is flexible in that it
supports:

. Arbitrary data types and lengths in simulation. The information whose flow and
creation is controlled by simulated components may be of arbitrary complexity
-- from numbers and keywords to procedure bodies and execution environments.

. Instantaneous effect of definition change at both the application and component
modeling level (even during a simulation run).

. A broad range of instrumentation customization. Customizations may involve
arbitrary expressions for probe data transformations, many to many probe to panel
mappings, information from summary analyses on one panel’s data included in
another, and control of what state is saved and for how long.

e Separation of
modification.

probe and com ponen t definitions to facilitate their independent

o An application language interface that is easily extended or changed without
recasting the information flow control described by the component behaviors.

While there is always room for additional capability G, SIMPLE/CARE is a usefully complete
system. I1 now includes:

0 Supplied components for a network multiprocessor simulation with many of their
parameters customizable by menu interactions.

0 A- hierarchical structure editor that currently provides automatic grid and torus
coniposi [ion operators. (Automated composition of richer topologies, such as
hypercubes, has been provided for in the basic design).

. A rule language that supports a synchronous design style without incurring the
overhead of (naive) synchronous simulation.

. . Method invocation for functional simulation that is integrated into the behavioral
simulation rule system and which provides for operations by and on both local and
hierarchically related components.

0 Method specification design aids provided by the underlying program development
environment (for example, method dictionaries and quick access to method sources
from the debugging system).

. An evolved set of panel templates providing sorted, scrollable text lines as well as
self ancl fixed scaling, “two and a half” dimensioned, history sensitive clisplays
which may be scatter plots, strip charts, line graphs, intensity maps, and signal
animations.

-We set off to build a multiprocessor simulation system with performance adequate for the
understanding of in u I t i p rocesso 1 systtms executing signif ican t applications. The
SIMPLE/CARE simulation system has been used to study [he operation of “expert systems” of
respectable size [21. Depending on instrumentation load, these studies have involved
simulation runs from 20 minutes to several hours each. While faster would surely be better,
performance has proven adequate to these needs.

2 0

S I M P L E / C A R E 29 Jnrwrq 1987

8 ACKNOWLEDGEMENTS
T h i s w o r k s t a n d s o n the s h o u l d e r s of i t s predemsor, the Palladia system, designed and

inlplermetl t e d b y H a r o l d Brown and Ciorciot1 Foqster. O u r futi~liofial g o a l s were rim-e r e s t r i c t i v e
than the i rs so we had the luxury of des ign by s impl i f icat ion. Without their implementat ion
base, it would have been hard to know even where to begin.

M a n y h a n d s a n d m i n d s h a v e c o n t r i b u t e d t o t h e d e v e l o p m e n t o f S I M P L E / C A R E . W e a r e
par t icu lar ly indebted to the work of Russ Nakano who star ted of f to do a s imple learn ing
exercise and ended up doing a particularly careful modeling of a intricate signalling protocol.

References

I. B r o w n , H a r o l d , C h r i s t o p h e r T o n g , a n d G o r d o n Foyster. “ P A L L A D I O : A n Exploratory
Design Environment for Integrated Circuits.” IEEE Contpurer 16 (December 1983) .

2 . H a r o l d D . Browll. Eric Schoen, ;\nd B r u c e A . Deiagi. An Experiment in Knowledge-Based
Signal U ticlerstaiicli tIg Using Parallel Architectures. T e c h . R e p t . S T A N - C S - 8 6 - 1 1 3 6 OI
KSL-86-69, StanI‘ord University, October, 1986.

3. Greg Byrd, Russell Nakano, and Bruce Delagi. A Point - to-Point Mul t icast Communicat ions
Protocol. Tech. Rept. KSL-87-02, Knowledge Systems Laboratory, Stanford University, January,
1987. -

4 . D a n i e l Weinreb and D a v i d M o o n . Lisp Mcrciritw ~Munut.~l. Sym bolics, Cam bridge, MA,
1981.

21

