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OPTIMUM GRIP OF A POLYGON

Xanthippi Markeuscoff  and Christos H. Papadimitriout

ABSTRACT: It has been shown by Baker, Fortune, and Grosse that any
two-dimensional polvgonal object can be prehended stably with three fingers, so
that its weight (along the third dimension) is balanced. Besides, in this paper
we show that form closure of a polyvgonal object can be achieved by four fingers
(previous proofs were not complete). We formulate and solve the problem of”
finding the optimum s table grip or form closure of”any given polygon. For sta ble
grip it is most natural to minimize the forces needed to balance through friction
the object s weight along the third dimension. For form closure, we minimize
the worst-case forces needed to balance any unit force acting on the center of
gravity of the object. The mathematical techniques used in the two instances
are an interest mix of Optimiza tion and Euclidean geometry. Our results lead to
algorithins for the efficient computation of the optimum grip in each case.

1. INTRODUCTION

Suppose that a. robot hand with three fingers must prehend the two-dimensional
object shown in Figure 1. By “prehending”” we mean that the fingers should apply
compressional forces on three points at the perimeter of the object in directions
normal to the perimeter so that (a) the three forces should be in equilibrium on
the plane of the object, and (b) friction forces along the third dimension should
balance the weight ofthe ob jec t . In other words, the object to be grasped is a
thin plaque with the indicated cross-section: its weight, applied to the center of
gravity G, is assumed to he also along the third dimension. It has been shown
[BFG] that, for polygonal objects, such a grip always exists that is stable in
terms of the potential energy of the fingers (considered as springs); in Figure
1( a) through ( e) we show several dis tinc t possibilities.

It. is perhaps intuitively clear to the reader that the grip in Figure 1(a)
is somehow better than that of Figure I(e). But which of these five grips is
“the best”? And what does this mean exactly? In this paper we formalize this
intuition by defining a. measure of the quality of a grip. Our notion of quality
is related to the compressional forces required in order to balance the weight
of” the object. The smaller the forces the robot hand must exert on the object,
the better the grip. Minimizing the necessary forces seems the natural cri terion,
and was first. suggested by [BFG]. Large forces would mean unnecessary stress
and deformation of both the object and the robot, hand, and higher deformation
energy; minimum force prehension seems to coincide with our intuitive idea of a.
“firm” or “good” grip of an object.

i Department of Mechanical and Environmental Engineering, University of
California. Santa. Barbara.
i Depts. of Computer Science and Operations Research, Stanford University.
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Figure 1. Which grip is the best?

In the first part of this paper we present an analytical method for calculating
the quality of a. grip of a. polygonal object. by three fingers. Our method leads to a
realistic algori t hm, whereby we can analyze any reasonably complex object from
this point of view rather rapidly and compute the optimum grip by examining a
finite number of cases (growing as the cube of the number of sides of the polygon).

In the second part we attack the more difficult problem of optimizing the
form closure of an object [La, SR]. A grip is said to be a form closure if compres-
sional forces along the fingers can balance any wrench acting anywhere on the
object,. It is claimed in [La] that form closure of any polygon can be achieved
with four fingers, but it is not shown in that paper how to actually realize this
by compressional forces normal to the perimeter. We show that, indeed, four
fingers can achieve form closure of any polygon (in a separate paper [MNP] we
actually show that form closure by four fingers is possible for any compact object
in two dimensions except for the circle, and that a similar result holds for seven
fingers in three dimensions). We also define form semiclosure to be a grip that
can balance any force through the center of gravity of the object. Four fingers
are necessary and sufficient for form closure and semiclosure of polygons; the
polygons for which three fingers are enough have a. unique form semiclosure, and
thus optimizing the grip is not meaningful. Thus, we concentrate on finding the
optimum form semiclosure of any polygon using four fingers. This is an involved
optimization problem, which we solve by an interesting sequence of reductions
using linear programming duality and some intricate plane geometry.

The rest of this paper is organized as follows: In Section 2 we analyse the



problem of optimum grip by three fingers in the special case in which the object
is a triangle; since we assume that three fingers are available, this is the basic case
to be resolved. We derive a formula for the quality of a given grip, discuss the
problem of optimizing the grip, and illustrate the process by examples. Optimum
grip of any convex polygon can be reduced to the triangle case. We also study
certain subproblems that arise when the object has concave angles and parallel
sides, and give a complete procedure for computing the optimum grip of a polygon
by three fingers; we illustrate this algorithm by analysing the example of Figure
1. In Section 3 we discuss the notions of form closure and semiclosure of polygons,
and state and solve the corresponding optimization problem.

Figure 2: Grasping a triangle.

2. OPTIMUM GRIP OF A POLYGON
2.1 Prehending a Triangle

Prehending a triangle (or any convex polygon) by three fingers entails choosing
three points in the interiors of the edges of the triangle. and applying normal
compressional forces on the points of contact so that the forces are in equilibrium.
. Suppose that we choose any single point H on the plane of the triangle (see Figure
2) and project it on the edges: If the projections lie in the interiors of the edges,
they constitute a stable grip. As the authors of [BFG] observed, such a choice
is always possible, by taking H to be the center of the inscribed circle of the
polygon (we shall see that this is in genera.l not optimum). We shall identify a
grip with the corresponding point H. For a triangle, the space of all possible
grips H is defined as the intersection of three open strips, each perpendicular to
an edge of the triangle (Figure 3).

Now fix such a grip (which we shall identify with the point H). The condition
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Figure 3: The domain of H.

for equilibrium of the three forces on the plane is the following:

F F F
kB LI (1)
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where f is the constant of proportionality.

We assume that the weight of the triangle (applied to the center G of gravity,
which a given point in the interior of the triangle, in general not necessarily its
geometric center) is a force along the third dimension. This weight must be
balanced by frictional forces along the third dimension. Such forces are modeled
as usual as being of magnitude bounded by the applied force times a. friction
coefficient .. Thus, we can always achieve equilibrium in the third dimension by
appropriately scaling the forces.

pFL 4+ p2 By +p3Fy =1 (2)

lp1l- |2l p3l S 1 (3)

Notice that we have taken, without loss of generality, the weight to be one. The
equilibrium of moments in the third direction yields the final equation:

Bl paeFsly p3F3ly (4)
sin,  sinf,  sinf;
Notice that the forces are completely determined by (1) when f is; thus
our task is to minimize the absolute value of f subject to these equations and
inequalities. By minimizing f we actually minimize the largest force, the sum



of all three, and in fact any nondecreasing function of the F3. Substituting (4)
into (2) we obtain

1
m = Sn 9, sinf, + sinéjy ’
I3 P P la
and hence .

1 sin 6;
. I; sin oy .
f=—- i i =1,2,3. (5)
E . sin 6 sin 6 sin 03’ [

P P+,

One brief parenthesis on the possibility of the denominator of (5) being zero:
This cannot happen if all projections are in the interior of the edges, as required
by our definition of a. grip. This can be shown as follows: Suppose that, indeed,
the denominator is zero. This means that one of the sines, say that of 6, is
negative (see Figure 4). If we define z to be the part of {; up to the point that
GH,; meets HyH,, it is well-known that siné, /l; + sinfy/ly = sin(f; + 65)/x.
Comparing this equation with the denominator of (5) we conclude that I; = u,
or Hy must lie on the line H3 H,. We claim however that this cannot happen if a.11
H;’s are in the interiors of the edges of the triangle (our claim finally establishes
that the denominator is never zero). To prove our claim, consider any such grip
H. If two of the projections H,, Ho, H3 coincide, then H coincides with them and
a. vertex of the triangle, so we can assume the projections are distinct. Suppose
that the order in which the projections occur on the line is Hy, H,, H3, and
consider the angle HH, H, (Figure 4). If this angle is obtuse then H3 is outside
the triangle; if it is acute, then H, is outside; and if it is a right angle, then H,
and H; coincide with vertices. Hence the denominator of (5) is always nonzero
(and thus is alwavs positive. bv continuity).

H

Hl
Figure 4. The denominator of (5) is positive.

To minimize f in equation (5) with respect to the p;’s and subject to in-
equali ties ( 3) -assuming the grip H fixed- we take |p; | to be equal to p, where
1 is the index for which ,

sin 8;
l; §n o

sin 8; sin 6, sin 63
I + 2 + I3



is maximum. Hence we define the quality of” the grip H to be the following
quantity:

sin 8, sin fo sin 83
[ + [ + I3

¢(H) = min sing; ETXA

1=1,2,3
l;

Notice that f = #H—), and thus a good grip is indeed one with a large g. Our
nest. task is to find the point H in the region of Figure 3 such that q(H) is
maximized.

Example 1. Consider the isosceles triangle in Figure 5. The optimum three-
finger grip of this triangle consists of placing a finger at the middle of the basis,
and two other fingers on the two sides, at the same height y; but how large should
y be? The answer is, 1 + sin a times the height g of the center of gravity.

T

y=(I+sin a)g

. A

Figure 5: Isosceles triangle example.

To see this, we calculate q(H) from its definition for this triangle and any
H on the axis of symmetry:
2gsin 6 [sin 20

).cosa(2 + —
cos @ gsinf

h

¢(H) = min{sin 2a(1 +

andthus ] . lcosG}
A+ .
lcos6 g

¢(H) = 2cos amin{sina(1+

Thus the optimum is attained when ! cos 8 = ¢ sin a, or y = (1 + sin a)g.m

For a general triangle, ¢(H) is differentiable except for the boundaries of the
areas in which the minimum of (5) is attained by the same term. The partial
derivatives of q(H) with respect to the position & and y of H can be calculated
from the following formula (refer to Figure 6):

0 sinfyly 29 sin 3, sin 6, wysindy  wy sin ) ly cos 03 sin 6,
Orvsinyly — Iilysinb, 13 13 [, siné,



I [y sin .3;sin 6, w3 sin 33 Wy sin B2\ lycos 6,
I3sin 6, + 13 12 lisin8; °

Here 3, is the angle formed by the ith side of the triangle with the x axis. For
the partial derivative with respect to y we only substitute cos #; for sin 3; in the
above formula. Unfortunately, for a. general triangle there is little hope that we
can find a. closed form solution for the optimum H. However, on the basis of an
extensive number of experiments, ¢( H) empirically seems to always be a smooth,
convex function on the domain (Figure 3) of H. Hence, q(H) can be optimized
by any conves programming algorithm. Computational results using a simple
hill-climbing method show that we can find the optimum grip of any triangle
within about .05 seconds of CPU time on a. DEC 20.

Figure G: Calculation of the partial derivatives.

2.2 Concave Vertices and Parallel Edges.

Ouce the three sides of contact have been fixed, prehending a conves polygon
with no parallel sides by three fingers is no harder than grasping a triangle (only
it has to he repeated for a.11 possible choices of the three sides of contact, and for
cach choice H is restricted so that its projection on each of the three sides is in
t heint eror tf t he side). Thus, the opt imun prehension of a. conves polygon with
no parallel sides can be determined by fewer than n?® repetitions of the procedure
of t he previous section. For general polygons, however, we must take care of two
special issues: Concave vertices and parallel sides.

Inn a non-convex polygon, we can place a finger in a concave vertex, and exert
on it any force. as long as its direction forms obtuse angles with both sides of”
the vertex (i.e.. the force mus t lie within the shaded area in Figure 7(a) ). Thus,
with t hiree fingers we may choose any three sides or concave vertices, and a. point.
H such that. (a) It projects in the interior of all sides chosen, and (b) It forms
obtuse angles wit h all sides of all concave vertices chosen (an example with two




concave vertices and one side is shown in Figure 7(b); the shaded area is the
set of a.11 feasible H%). The challenge is again to determine the best choices of
sides and concave vertices, and point H, such that the necessary forces are the
smallest possible.

Figure 7. Concave Vertices.

Since there are at most n® choices of sides and concave vertices, it remains
to see how to optimize the grip for each choice. It turns out that the equations
are precisely the same as in the case of a. triangle (equations ( 1) through (5) in
Section 2), with one crucial difference: The angles « ; are no longer fixed, and
can vary with H. Accorclingly, it does not suffice to minimize f as before, and
we must, fis precisely which nondecreasing function of the forces F; we wish to
optimize ( their sum, their maximum, or whatever). Let us, for concreteness,
choose the sum. The quantity to be maximized is therefore

sind; + _ sinf, + fa

min sin & ! L 3
i=1,2,3sin oy + sin ay + sin a3 Lsin 6: |

li

Thus, a slight modification of the procedure for optimizing the grip of a triangle
can be used to optimize over all points H with a fisecl set of three sides and
concave vertices.

In general, however, two sides of a polygon may be parallel. In this case,
it is possible to prehend the polygon by applying three fingers on the two sides
(see Figure 8). If the situation is such that the center of gravity projects in the
interiors of both sides, then, by symmetry, the optimum such grip is obtained
by applying one force to the projection of the center of gravity on one of the
sides, and two opposing forces at the same distance & on either direction from
the projection of the center of gravity on the other side (see Figure 8). How large
should .« be? The answer is that it does not matter.
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Figure 8: Parallel sides.

Equations (2) through (4) in this situation are the the same, only equation
( 1) becomes the following:

"_Iz—l—_—F‘g:F:;—'——f (18.)

Thus equation (5j becomes
ab
H) =24+ 2min{-, -
q(H) + mm{b a}

independent of x.

For the case in which G does not project on one of the two parallel sides, we
have a more complicated situation (see Figure 9). Equations (2) through (4) are
the same, only equation (1) becomes

A —§—§=j (1b)

T2 + T3 T3 T2

and thus we must find the X, z,, 3 and ¥, = 29 + 3 which maximize

sin 8 emo =m0
T3 ” + 2 + R

min
i=1,2,3 ) + X2 + 23 I*llll 6i]
This task is similar (in fact, a. bit easier) than that of optimizing the grip of a
t riangle, examined in Section 2.

Example 2: Let us return to the polygon of Figure 1 (shown in detail in Figure
10). For the grip of Figure 10( a), our analysis of parallel sides yields sum of forces
equal to 1.67, independent of x (where the unit of force is j«=!). For Figure 10(b),



Figure 9: Parallel sides, G does not project on one.

our isosceles triangle example yields a. sum of forces of 1 with y = .629. The grip
of Figure 10(c) has exactly the same equations as that of Figure 10(b), and thus
a sum of 1 for the same y . Finally, the grip of Figure 10(d) is optimized (using
the program of Section 2) when z = .471 y = .631 and y' = .5, with sum of forces
1.365. Thus, the grips of Figures 10(b) and 10(c) are the best with respect to the
sum of forces. In fact, the situation does not change if we adopt the maximum
force-used as our criterion. The corresponding numbers are .833, .393, .393 and
.602. =

3. OPTIMUM FORM SEMICLOSURE
3.1 Basic Concepts

Consider a. set of fingers (not necessarily three of them) acting on the perimeter of
a polygon along the normal at each point of contact. We say that these fingers are
a form closure of the object [La] if the following is true: Any wrench (force with
its application point fixed) acting on the object can be balanced by adjusting the
forces on the fingers accordingly, always keeping them compressive, i.e. positive.
Notice immediately that form closure cannot be achieved by three fingers. In
proof, recall that the equilibrium of the object is described by three equations
_(one for the forces along each of the two dimensions, and one for the moments).
Since there are three variables (magnitudes of the forces along the fingers) there
is a unique solution for each input wrench. If this solution happens to be positive,
then there is an opposite wrench for which the solution is negative, and therefore
that wrench cannot be balanced by positive forces. So, four fingers are necessary
to achieve form closure (this was first pointed out in [La]). A similar argument
establishes that three fingers are not sufficient for form semiclosure, unless the
center of gravity projects in the interior of three sides of the polygon (which is
not in genera.l the case).
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Figure 10: The example of Figure 1 resolved.

Furthermore, four fingers are enough.i In proof, consider the largest circle
inscribed in the polygon [BFG]. It either touches the perimeter at three sides (or
concave vertices, the argument remains the same), or at two parallel sides. In
the first case, we place two fingers on two points of contact, and two more on
- the third side of contact, close to the point of contact and in the same distance
d from it in either direction (Figure 11). The matrix of the three equations of

i Lakshminarayana [La] also argues that four fingers are enough, but does not
describe how they can be placed so that they are normal to the perimeter. In
another paper [MNP] we show that four fingers are enough for any planar object
with piecewise smooth boundaries except for the circle, and extend this to three
dimensions.



equilibrium is therefore of the form

a h c
a’ b c ¢
0 0 d —d

We claim that positive combinations of the columns of this matrix can achieve
any 3-dimensional vector. To show this, suppose that we replace the last two
columns with their sum, and consider the first two rows (the third row is zero).
It is easy to see that any 2-dimensional vector can be achieved as a positive
combination of these three vectors, since they form three angles none of which is
greater than = (recall that they are normals at the three points of contact of the
inscribed circle). Thus, to form any given 3-dimensional vector (i.e., to balance
any wrench) by the four vectors, we first take care of the third coordinate by a
positive multiple of the third or fourth column (clepencling on whether the third
coordinate of the wrench is positive or negative), and then balance the remaining
wrench by the first two rows as described in the previous sentence. If the circle
touches the perimeter on two parallel sides, then a similar argument is possible
[MNP].

Figure 11: Achieving form closure.

So, four fingers are necessary and sufficient for form closure of a polygon.
We next define an interesting variant of form closure. We say that a set of fingers
achieves form semiclosure of a polygon [MNP] if any wrench through the center
of” gravity of the polygon can be balanced by compressive forces normal to the
perimeter at the points of contact. 0 bviously, this is a weaker condition when
compared to form closure, and is of interest when we anticipate to balance only
wrenches due to the weight of the object or to translational acceleration. Four
fingers are still sufficient, of course, and there are polygons for which four are



necessary (for example, an obtuse triangle whose center of gravity projects in the
interior of only two sides, and outside the other one).

3.2 The Optimization Problem

There are usually many possible form semiclosure grips with four fingers, and
they may vary drastically in terms of their ““quality’’. One reasonable measure of
the quality of a grip is how small forces are necessary in order to counter any unit
. wrench applied to the center of gravity of the object. In other words, we wish
to find the grip which performs best in the worst case against an intelligent and
malevolent opponent who tries to make us use large forces but can only apply a
unit force on the object. In this subsection we shall formulate this optimization
problem, and reduce it to a. problem in plane geometry. Our analysis applies only
to convex polvgons. as concave angles become much harder to treat in this case.}

C min

G max

X3

Figure 173: Optimum form semiclosure.

Consider a polygon such as t hat of Figure 12, and fix the sides of the four
contact points (two of these sides may coincide). For any selection of contact
points and any unit force through the center of gravity, the equations of equilib-
riwan (with the center of gravity as the origin) are the following:

a1+ a2re+azr3+ayry = «
b]l’l"l—b'z;l?2+b3fl'3+b4él'4 = ,3 (6)
11+ oo+ czrztcary = 0

Here the x;'s are the magnitudes of the forces applied to the fingers, the a;’s are
the sines of the directions of the normals, the b;’s the cosines, and the ¢;’s are the

i Notice that, for the polygons for which form semiclosure is achievable by
three fingers, there is a finite number of form semiclosure grips, and thus opti-
mizing form semiclosure by three fingers is not. interesting.



distances of the normals from G, with a sign reflecting the sign of the generated
torque (see Figure 12). The unit wrench to be balanced is (a, 3), applied on G.
We wish to minimize the sum of the z;’s subject to (6).

Once the sides of the four fingers are fixed, the a;’s and the b;’s are also fixed,
but the ¢;’s must vary. What are the constraints on the ¢;’s? The requirement is
that the points of contact must be within the sides of the polygon. This means
that

¢i min < ¢ < € max (7)7

where ¢;min and ¢; max are the coordinates of the vertices of the zth side, where
the projection of G on that side is taken to be zero. It follows that optimizing
the semiform closure of the quardilateral can be formulated as the following
optimization problem:

niin jmax min {1 + 29 + 23 + T4} (8)
¢ satisfies (7) o’+8*=l1 z>0 satisfies (6)

Notice that this optimization has the structure of a game: We choose the finger
positions ¢, our opponent picks the wrench (e, 3), after which we move again to
fix the magni tudes 2 of the forces on the fingers; we pay our opponent an amount
equal to the sum of the forces.

The innermost minimization in (8) is a linear program. Taking its dual [Da,
PS] we have the following equivalent problem (equivalent in the sense that the
- optimal values are the same).

max{au + (v}

subject to a;u + bjv <1 —cw,t=1,. ..,4.

Here u, v, and w are the dual variables. Now that the two innermost optimiza-
tions in (8) are both maximizations, their order may be reversed; with u and v
fisecl, it is clear that the maximum of au + Bv is achieved when («, #) is the unit
vector along the direction of (u, v). Thus the innermost two maximizations of (8)
(after we have replaced the innermost minimization by its dual maximization)

are equivalent to
max{v/u? + v?}

subject to aq;u + bjv <1 —cw, 1=1,...,4 (9)

Call this maximum F(c) (it could be infinity); our task is to choose ¢ within the
bounds (9) so that F(c) is minimized.

This problem has a simple interpretation in plane geometry. For w = 0, the
constraints in (9) describe a. convex quadrilateral with the same slopes of sides as
the four sides of contact, and circumscribed around the unit circle (recall that the
vector (a;, b;) is a. unit vector, as it represents the sine and cosine of the zth side
of contact). Now let w vary; the result is that the «th side of the quadrilateral



moves, remaining parallel to itself, with a velocity (positive or negative) equal to
c;. The question is, what is the maximum distance from the origin of any vertex
of any quadrilateral thus formed? Hopefully, the quadrilaterals will vanish after
some ‘““‘gliding” of this sort, and thus the answer will be finite, but this may not
necessarily be the case (for example, if all ¢;’s are positive). This maximum
distance is in fact F(c). Our task is to choose the ¢;’s in such a way that this
distance is minimized.

3.3 The Case of a Triangle

This problem has a surprisingly simple answer when the polygon to be grasped
is a triangle. In particular, let o be the smallest angle of the triangle. Then the
value F of (8) equals W In proof, suppose that Fy is this value when w
is bound to be zero; obviously, £y > F. However, it is easy to see that, when
w = 0 the equations in (9) describe the triangle with scaled so that the radius
of the inscribed circle is one? and drawn so that the center of the inscribed circle
is the origin. Fp is the distance of the furthest vertex of the triangle from the
center of the inscribed circle, again measured in radii of the inscribed circle. This
distance, however, is exactly 71—(-;/—2)

It remains to see that, for some feasible choice of the ¢;’s, F(c) = Fy. If all
projections of the center of gravity on the sides are in the interiors of the sides
(i.e., ¢;min < 0 and ¢; max > 0 for each ¢) this is easy to show: Take ¢; = ¢; = 0,
and .cg3 = —c4 = ¢, for some appropriately small ¢ > 0 (recall that fingers 3 and

- 4 are on the same side). It follows that, for each value of w, the feasible region
in (9) is a subset of this with w = 0, hence the result.

Figure 13. Obtuse triangle.

For the remaining case, suppose that the center of gravity projects outside
a side (say, side 1, see Figure 13), that is, ¢ min > 0. We take ¢1 = ¢1min,
Cy =0, 3= €3 min and ¢4 = 3 max . It can be argued by an involved case analysis



that either (a) the maximum distance from the center of the inscribed circle is
the vertex opposite side 1 for all values of w, or (b) for positive values of w the
vertex opposite of side 2 writes a straight line segment which brings it closer to
the center of the inscribed circle (Figure 13). The result follows. Hence we have:

For any triangle there is a way of grasping it with four fingers such that for
any unit force through the center of gravity the sum of the forces needed to
balance the unit force equals the inverse of the sine of half the smallest angle

. of the triangle. Furthermore, this worst-case sum is the best possible.

If we are interested in minimizing the worst-case maximum of the forces
needed to balance a unit excitation (as opposed to their sum) a similar result
holds. Equation (S) becomes

min max min max{zy,22,23,24},
. satisfies (7) «*+B*=1 £>0 satisfies (6)

apparently adding another move to the game. The innermost two optimizations,
however, are equivalent to minimizing y subject to, in addition to equations (6),
the inequalities x; <y, 2z = 1,. . .,4. A similar analysis to the one in the previous
paragraph yields that the optimum value is the following geometric parameter of
the triangle: Consider, for each point p of the triangle, the distance from p of the
furthest vertex of the triangle, divided by the sum of the distances from p of the
sides- of the triangle, with the largest such distance added twice. Take now the
- maximum of this quotient over a.11 points p. This is the value of the optimum!

3.4 The General Case.

To solve the genera.l problem, we must treat the case of a quadrilateral with ar-
bitrary upper and lower bounds on the ¢;’s. It turns out that the plane geometry
becomes quite a. bit more complicated, since the optimum is not determined by
the w = 0 case, and so we must actually study the ““gliding” of the sides of the
quadrilateral. No closed form answer is possible here, but finding the optimum
of (S) can be reduced to the examination of a small number of cases. The details
are rather complicated, so we only sketch the argument below. We shall assume
that the four chosen sides on which the fingers are to be applied are distinct: the
ideas are similar (in fact, a bit simpler) when two of them coincide.

Recall from the last paragraph of Section 3.2 that, for w = 0, the inequalities
_(9) describe a. convex quadrilateral with the same slopes of sides as the four sides
of contact, and circumscribed around the unit circle. If w varies, the ith side of
the quadrilateral moves, remaining parallel to itself, with a. velocity (positive or
negative) equal to ¢;. For each set of ¢;’s within the bounds (7) the vertices of
the quadrilateral move along straight lines, depending on the ratios of the ¢;’s.
Any point on such a line uniquely determines a value of w (positive or negative),
and thus a. quadrilateral which is the result of gliding of the original quadrilateral
for w units of time. However, such a point may define a quadrilateral that has
vanished, because the inequalities ( i) are no longer satisfied for this value of w.



Figure 14. A quadrilateral and an arrangement of gliding lines.

For example, in Figure 14 the shaded areas close to the vertices represent
the allowable values of the c¢;’s, by (7) -they show all possible motions of the
vertices within a unit of “time” w. The gliding lines corresponding to a particular
choice of the ¢;’s form the arrangement shown, but only the bold parts represent
actual feasible wu, v, and w3; the rest represent “vanished” quadrilaterals. We
must choose the ¢;’s in such a way that the maximun distance from the origin of



any vertex of a non-vanished quadrilateral (that is, any bold point) is minimized.

Let us first resolve the simpler problem of determining whether the optimum
is finite (that is, the bold part is finite). To put it in other words, we wish to
determine whether form semiclosure can be achieved by applying four fingers at
the selected sides. It is easy to see that this is possible if and only if there is a
selection of ¢;’s within the bounds (7) so that the equations (6) with & = 8 =0
have a positive solution z;, =2, 3,4 > 0. This condition, however, is equivalent
to saying that the four 3 x 3 subdeterminants of the matrix of (6) have the same
sign. These subdeterminants of are linear forms in the ¢;’s (with coefficients the
sines and cosines of the angles formed between the sides). Thus, the question
of feasibility can be reduced to determining whether the intersection of the cone
of these linear forms with the hyperrectangle of (7) is non-empty, which is a
four-dimensional linear program.

Example 4. In a quadrilateral with the same angles as that in Figure 14 (where
all angles are the obvious multiples of 7/4) the equations (6) are:

ry, +22 -3 = O
—29 —a3+T4=0
c1T1+cT2+c3z3+csTy = 0

where for simplicity we denote by x2, x3 the corresponding magnitudes divided
by \/§ The four subdeterminants are: —¢9 — €3, —C; — €3 — €4, €1 + Co + cC4,
and —2c¢; + ¢2 — ¢3. Form semiclosure can be achieved only if all these linear
forms are positive, or all negative. This defines a. four-dimensional affine cone
with center the origin. Its intersection with the box (7) can be determined very
easily, either by linear programming, or by the examination of a small number
of possible basic feasible solutions. =

We can restate this algebraic feasibility condition in purely geometric terms.
The ¢;’s (in fact, their ratios) completely determine an arrangement of lines on
which the vertices of the quadrilateral ““glide,” and the bold part of the arrange-
ment represents all possible positions of vertices of a non-vanishing quadrilateral
[Figure 14). The question is, which of the many possible arrangements have a
bounded bold part? Consider an arrangement «; C(«) denotes the convex hull of
the six vertices of a (without loss of generality, bounded). It is easy to see that
« has a finite bold part if and only if the following two conditions hold: (a) The
vertices a, b, ¢, d are in the interior of C'(«), and (b) The vertices a b and ad (the
intersections of pairs of lines representire ad jacent vertices with sum of angles
greater than =, of which there are two in any convex quadrilateral) must also be
in the interior. The intuitive reason is that ab and ad are the only vertices of «
which correspond to a non-vanishing quadrilateral. It follows that there are two
kinds of feasible arrangements, that is, arrangements with finite bold part: The
ones in which the order of the points are exactly as in Figure 14, and another
similar class, in which dc is between bc and ac.

Our optimization problem can be restated as that of choosing @ among
the two classes of feasible arrangements so as to minimize the distance from 0



of the furthest point among bd, dc, and ac --the vertices of C(a). We shall
show that this optimization can be reduced to a small number of easy geometric
constructions; we shall do this for the class of arrangements in Figure 14, the
task for the other class being very similar.

Suppose that dc is the furthest point from 0 among { bd, dc, uc}. Since
its distance from 0 would be improved if line ¢ were to rotate clockwise, or d
counterclockwise, we must conclude that neither motion is possible. There are
two reasons why ¢ cannot move: Either the ratio of ¢3 and ¢4 is at an extreme
value (line c intersects the shaded parallelogram of feasible ¢;’s at a vertex) or
the distance of ac from 0 equals that of dc, and thus a rotation would deteriorate
the optimum. Similarly for cl. Continuing like this we arrive at the conclusion
that at the optimum one of the following situations must hold:

(1) The optimum is determined by the intersection of two fixed lines (such as
the most clockwise feasible direction of ¢ and the most counterclockwise of

d in the case discussed above).

(2) Two lines are fisecl (say, a and d), and the optimum is determined by two

points ac and dc , one on each of these lines, having equal distance from 0,

and such that the line defined by the two points passes through c.

(3) The distances of ac, dc, and bd from 0 are equal and determine the optimum.

In each of these cases the optimum can be computed in any desired accuracy
in constant time, essentially by binary search. For example, in (2) we perform
binary search on the value of the optimum. For any such value R we draw the
circle with center 0 and radius R thus determining ac and dc, and we then check
whether ¢ is on the largest of the two parts in which chord uc, dc divides the
circle; if so, R is too high; otherwise it is too low. Repeating, we can determine
the optimum value R within any desired accuracy.

From all of the above, the algorithm for achieving optimum semiclosure grip
on a convex polygonal object is the following: We repeat the following process
for all quadruples of sides, two of which may coincide: We first determine quickly
by the algebraic test whether there is a feasible grip, and if not we abandon
the quadruple. In the case that a feasible grip exists, we find the optimum one
by resolving be binary search a finite set of cases. The answer is the optimum
optimorum among all quadruples. The ¢;’s of choice and the corresponding worst-
case value are readily available.



4. DISCUSSION

In this paper we have demonstrated the applicability of elementary optimization
techniques to the problem of optimizing the grip of an object; to our knowledge,
this is the first such effort.

There is considerable progress to be made in several fronts, if the devel-
opment started here is to lead to a comprehensive methodology and powerful
practical tools. First, there are some technical problems left open in our method.
For example, we would like to have a less heuristic procedure for optimizing q(H)
in Section 2.1, but the non-convex nature of this criterion leaves little hope. In
the problem of optimum form semiclosure, we would like to extend our method
to objects with concave angles, and if possible to derive a. direct linear program-
ming approach to the problem of optimizing line arrangements. Also, it would
be interesting to consider the case of general form closure, in which the adver-
sarys force can be applied anywhere on the object, and not only at the center of
gravity. Our results seem to be extensible in this direction, since the application
point of choice for the adversary will be a vertex of the object, and thus most of
our methodology would still apply.

However, much more must be done in the direction of incorporating in our
model some basic aspects of the mechanics and pragmatics of prehension, which
we are ignoring at present. A most important such issue is, of course, friction.
Friction is known to have a profound beneficial effect on the problem of prehen-
sion, making the solution space significantly richer, but at the same time more
interesting and intricate. For example, optimum semiform closure in three di-
mensions requires seven fingers [MNP], although friction is empirically known to
reduce this number substantially. It would be rather premature to embark on a
formulation of the problem of optimizing three-dimensional frictionless prehen-
sion, if the very number of fingers involved depends so crucially on the absence
of friction.

Another interesting issue is that of taking into account the structural con-
straints of robot hands, Here we have assumed that any triple or quadruple of
points on the perimeter of the object is a possible grip. In fact, the geometry
and structure of the hand may restrict substantially the possible grips. It would
be interesting to study the interaction of these constraints with those handled
in our optimization methods. Finally, our results simply suggest a desired final
grip, but not how to reach it. Typically, an object must be picked up from rest,
turned and toppled carefully, so that the desired grip is finally achieved. All in-
termediate grips may not be form closures, but must still satisfy some minimum
requirements (for example, the object must not fall by its own weight). How to
achieve this is an interesting problem.
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