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OPTIMUM GRIP OF A POLYGON

Xanthippi Markeuscoff i and Christos H. Papadimitriou$

ABSTRACT: It has beers shown b-y Baker, Fortune, and Grosse that any
two-climensional  pol,vgonal  ob.ject can be prehended sta.bly with three fingers, so
tha.t its weight (aJong the third dimension) is balanced. Besides, in this pa.per
we show that fbrm closure of a po1,vgona.l  object can be achieved by four fingers
(prek-ions  proofs were not complete). We fbrmuiate and solve the problem of’
finding the optimum s ta.hle grip or fbrm closure of’ an.y given pal.ygon. For sta Me
grip it is most natural to minimize the f’orces needed to balance through friction
the ob.ject ‘s weight a.long* the third dimension. For fbrm closure, we minimize
the worst-case forces needed to balance a.ny unit force acting on the center of
gravity of the ob.ject. The mat12ema.tica.l  techniques used in the two instances
are an interest mix of Optin2iza tion ad Euclidean geometry. Our results lead to
a.lgorithms  f’or the efficient computation of the optimum grip in each case.

1. INTRODUCTION

Suppose that a. robot ha.nd nrith three fingers must prehend the two-dirnensio1la.l
object shown in Figure 1. By “prehending” \\-e mean tha.t  the fingers should apply
con1pressiona.l  forces on three points a.t the perimeter of the object in directions
normal to the perimeter so that (a,) the three forces should be in equilibrium MI

- the plane of the object, and (1)) friction forces a.long the third dimension should
ba.lance  the lueiglit9  of the: 01) jcc t . In other \vords,  the object to be grasped is a
t,hin plaque \vit,h  the indicated cross-section: its weight, applied to the center of
gra.vit.y  G’, is assumed to be also along the third dimension. It has been shown
[BFG] that, for polvgona.1  objects, such a grip. a.lwa?;s  exists that is stable in
terms of t.he pot,entia.l  energy of the fingers (considered as springs); in Figure
1( a) t.hrougli ( e) we slio~ several clis tint t possibilities.

It. is perhaps intuitively c1ea.r  to the rea.der  tha.t  the grip in Figure l(a)
is sonleho\v better than tha.t, of Figure l(e). But which of these fi\:e grips is
“the hestY*? And \Vhat. does this mean e?tn.ctl_v ? In this pa.per  \ve formalize this
intuition 13~ defining a. measure of the qualit;  of a grip. Our notion of qua.litJ;
is related to the compressiona fkces reqG*ed in order to balance  the wei@
of’ the ol,.ject. The smaller the forces t.he robot hand must exert on the chject,

. . the better the grip. klininlizing  the necessary forces seems the natural cri teric  )n7
and 1va.s  first. suggested 11y [BFG]. L arge forces \lrould  mean unnecessaxy stress
and clefornlatic.)n  of bot8h  the chject, and the robot, hand, and higher cleforn~ation
energy; nlininlum force prehension seems to coincicle  lvith our int,uitive  iclea. of a.
%m” or ‘bgc-~otl“  grip of a.n ol,jectS.
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Figure 1: Which grip is the best?

In the first pa.rt  of this pa-per we present an analytical method for calculaking
the quality  of a. grip of a. polygonal object. by three fingers. Our method lea.ds to a
realistic a.lgori t hm, whereby we can analyze any reasona,bly  comples  object from
this point of view rather rapidly and compute the optimum grip by exa.mining  a
finite number of cases (growing as the cube of the number of sides of the polygon).

. In the second paxt we attack the more difficult problem of optimizing the
form closure of an object [La, SRI. A grip is said to be a form closure if compres-
siona.1 forces a.long the fingers can balance arly  wrench acting anywhere on the
object,. It, is claimed in [La] that form closure of any polygon can be achieved
with four fingers, but it is not shown in that paper how to actua.lly  realize this
by con1pressiona.l  forces normal to the perimeter. We show thak, indeed, four
fingers ca.n achieve form closure of any polygon (in a# separake  paper [MNP] we
actually show that form closure by four fingers is possible for a,ny compa.ct  object
in two dimensions escept for the circle, and that a similar result l~olcls  for seven
fingers in three dimensions). We a.lso define form semiclosure  to be a grip that
can lIa.la.nce any force through the center of gravity of the object. Four fingers
are necessary and sufficient for form closure and semiclosure of polygons; the
polygons for which three fingers are enough have a. unique form semiclosure, and
thus optimizing the grip is not meaningful. Thus, we concentrake on fincling the
optimum form semiclosure of any polygon using four fingers. This is an involved
optimizakion problem, which we solve by an interesting sequence of reductions
using linear programming duality and some intricake plane geometry.

The rest of this paper is organized as follows: In Section 2 we aalalyse  the



problem of optimum grip by three fingers in the special case in which the object
is a triangle; since we assume that three fingers are available, this is the basic case
to be resolved. We derive a formula for the quality of a given grip, discuss the
problem of optimizing the grip, and illustrate the process by examples. Optimum
grip of any convex polygon can be reduced to the triangle case. We also study
certain subproblems that arise when the object has concave angles and parallel
sides, and give a complete procedure for computing the optimum grip of a polygon
by three fingers; we illustrate this algorithm by analysing the esa.mple  of Figure
1. In Section 3 we discuss the notions of form closure and semiclosure of polygons,
and state and solve the corresponding optimizakion  problem.

Figure 2: Grasping a t.ria.ngle.

2. OPTIMUM GRIP OF A POLYGON

2.1 Prehending a Triangle

Prehending a triangle (or any convex polygon) by three fingers entails choosing
three points in the interiors of the edges of the triangle. and a.pplying normal.
compressiona.  forces on the points of contact so that the forces are in equilibrium.

c Suppose that we choose any single point H on the plane of the triangle (see Figure
2) and project it on the edges: If the projections lie in the interiors of the edges,
they constitute a stable grip. As the authors of [BFG] observed, such a choice
is alwa.ys possible, by t.aking  H to be the center of the inscribed circle of the
polygon (we shall see that this is in genera.1 not optimum). We sha.ll identify a
grip with the corresponding point H. For a t,ria.ngle,  the space of all possible
grips H is defined any  the intersection of three open strips, each perpendiculax  to
an edge of the triangle (Figure 3).

Now fis such a grip (which we shall identify with the point H). The condition



Figure 3: The domain of H.

for equilibrium of the three forces on the plane is the following:

FI F, F3-=-=
sin01 sin a’2

- = f,
sin C-V~ (1)

where f is the constant of proportiona.lity.
We a;;sume  that the weight of the triangle (a.pplied to the center G of gravity,

which a given point in the interior of the triangle, in general not necessarily its
1 geometric center) is a force along  the third dimension. This weight must be

balanced by frictional forces a.long the third dimension. Such forces are modelecl
a.s usua.l as being of ma.gnitude  bounded by the applied force times a. friction
coefficient r(l. Thus, we casl a.lwa#ys achieve equilibrium in the third dimension by
appropriakely  scaling the forces.

(‘3)

gotice thak we ha.ve  taken, without loss of generality, the weight to be one. The
eq~lilil)rium of moments in the third direction yields the final equation:

/JVl /I2 F&---------z-z
sin 81 sin 62

f& = 172
sin 93 (4)

Notice that the forces are complet4ely  cleterminecl  by (1) when f is; thus
our ta.4 is to minimize the absolute value  of ,f‘ subject to these equations and
inequalities. By minimizing ,f we ;Ictua.lly nlininlize the la.rgest force, the stun



of all three, and in fact any nondecreasing function of the F’s. Substituting (4)
into (2) we obtain

1
712 = s i n  81

11 +

sil;202  + siy3&3 ’

and hence ,
.f = ~ sin 8~ +~a~~~~~it  sin e3 ) ’ = 1,2,3. (5)-

11 12 13

One brief parenthesis on the possibility of the denominator of (5) being zero:
This cannot ha.ppen if all projections are in the interior of the edges, as required
bv our definition of a. grip. This can be shown as follows: Suppose that, indeed,I
the denoniina.t80r  is zero. This means that one of the sines, say tha.t of 81, is
nega.tive  (see Figure 4). If we define J: to be the part of 21 up to the point that
G HI inee t. s I& H2 , it is well-known that sin&/Z1 + sin&/l2 = sin@ + 02)/t.
Comparing this equation with the denominator of (5) we conclude that II = .r,
or HI must, lie on the line Hz Hz. We claim however that this cannot ha.ppen if a.11
Hi’s are in the interiors of the edges of the triangle (our claim finally esta.blishes
that the denominator is never zero). To prove our claim, consider any such grip
H. If two of the projections HI, Hz, H3 coincide, then H coincides with them and
a. vert,es  of the triangle, so we can assume the projections are distinct. Suppose
that the order in which the projections occur on the line is HI, Hz, H3, and
consider t.he a.ngle HHZHI  (Figure 4). If this angle is obtuse then H:j is outside
t.he triangle; if it is acute, then HI is outside; and if it is a# right angle, then HI

- and H3 cGncitle  with vertices.  Hence the denominator of (5) is a.1wa.y~ nonzero
(and thlls is alwa.vs uositi\-e.  bv continuity). .

H

H
H3

Figure 4: The denominakor of (5) is positive.

To minimize ,f in equakion  (5) with respect to the pi’s and subject to in-
grip H fixed- we take 1p.i I to be equal to /l., whereequali ties ( 3) -assuming the

1. is t.he index for which
sin 8;

1; sin CYi



.

is masimum. Hence we define the quality of’ the glip H to be the following
cluanti  t*y:

Sotice that f = A, and thus a good grip is indeed one with a large q. Our
nest. task is to find the point H in the region of Figure 3 such that q(H) is
masimized.

Eiample 1: Consider the isosceles triangle in Figure 5. The optimum three-
finger grip of this triangle consists of placin g a finger at the middle of the basis,
and two other fingers on the two sides, at the same height 9; but how large should
y lx’? The answer is, 1 + sin CL ti

Figure 5: Isosceles triangle esample.

. To see this, we calculate q(H) from its clefinition  for this triangle and any
H on the axis of symmetry:

29 sin 8 I sin 28
cl(H) = min( sin %2( 1 + cos e ).COSQ(f!  + -)Igsin8 ’

i\ ntl t 11~1s

q(H) = 2 cos ct niin{ sin o( 1 + &)A + y.

Thus t.he optimum is attained when I cos 8 = q sin o, or y = (1 + sin a)g.l
s For a general triangle, q(H) is differentiable escept for the boundaries of t.he
wws in which the minimum of (5) is attained by the same t.erm. The partial
dcriMives of q(H) with respect to the position x and v of H can be calculated
from the following formula (refer to Figure 6):



:I l2 sin A, sin e1 w:j sin & 102 sin p2 z2 ~0~ e1-
1; sin 02 + ( 12 - 123 2 > II sin e2 ’

Here .jl is the angle formed  by the ith side of the triangle with the x axis. For
the partial cleri\-ati\-c with respect to v we only substitute cospi for sir@; in the
above formula. Unfortunately, for a. general triangle there is little hope that we
can find a. clost~l form st-)lut.ion for the optimum H. However, on the basis of a.n
extensive nunh~r of experiments, q(H) empirically seems to always be a smooth,
conves  function on the domain (Figure 3) of H. Hence, q(H) can be optimized
by any conves pr0graniniing  algorithm. Computational results using a simple
hill-climlkg method show that we can find the optimum grip of any triangle
wit.hin  ahut. .03 secontls  of CPU time on a. DEC 20.

*2

Fi,qure G: Calculation of the partial derivakives.

2.2 Concave Vertices and Parallel Edges.

Once the t.hrct~  sides  of contact have been fked, prehending a conves polygon
lvitli no p;ualltl  sides  1)~. t.hree fingers is no hxcler than grasping a triangle (only
it 1~s to l>e rq)t\at.etl  for a.11 possible choices of the three sides of contact, ancl for
cac*li (*hoice N is restricted so that its projection on each of the three sides is in
t h-1 in t tll.it jr t )f t lit\ side). Thus, the opt imum prehension of a. conves polygon with
no p~;rll~l  sitl(*s  can 1~ tloterrninecl  by fewer than 11.~ repetitions of the procedure
of t lit> prtt1-iolis  st-ct.it:)n. For general polygons, however, we must take ca.re  of two
sl)tkl issues: Conca.ve vertices and parallel sides.

In a non-conves  p01ygon. we can l)lace a finger in a. concave vertex, ancl esert
t.m it ;\iiJ- forcc~. iis loug as its dil*ection  f’or*ms obtrrse  aq$es with both sides of’
the ~-c~~~fcs  ( i.e.. the force nnts t lie within the shaded axea  in Figure 5(a) ). Thus,
lvitli t hrce fingers we may choose any three sides 01’ concave vertices, and a. point.
H such that. (;l) It projects  in the interior of all sides chosen, and (b) It forms
tht11sc ;~n$~s \vit 11. all titles of all conca.~ \-ertices  chosen (an esa.mple  with two



concave vertices  and one side is shown in Figure 7(b); the shaded area is the
set of a.11 feasible H’s). The challenge is again to determine the best choices of
sides and concave vertices, and point H, such that the necessaxy forces are the
smallest possible.

Figure 7: Concave Vertices.

Since there are a.t most n3 choices of sides and concave vertices, it remains
t.o see how to optimize the grip for each choice. It turns out that the equations
axe pr&isely the same as in the case of a. triangle (equa.tic.)ns ( 1) through (5) in
Section 2), with one crucial difference: The angles (1 i we no longer fisecl,  and
cau va.ry with H. Accorclingly, it does not suffice to minimize .f as before, and
we must, fis precisely which nondecreasing function of t,he forces Fi we wish to
optimize ( their sum, their maximum, or whatever). Let us, for concreteness,1
choose the sum. The quantity to be maximized is therefore

min
sin cr; “‘1; 8%sinlt9L +  sit;,“” +

3
i=l .2,3  sin ct’l + sin cy2 + sin ck3 jsin 8i 1

Ii

Thus, a slight modification of the procedure for optimizing the grip of a. triangle
ca.n be used to optimize over all points H with a fisecl set of three sides and
concave vertices.
c In general, however, two sides of a polygon ma,y be parallel. In this case,
it is possible to prehend the polygon by applying three fingers on the two sides
(see Figure 8). If the situation is such that the center of graxity  projects in the
interioA of both sides, then, by symmetry, the optimum such grip is obtained
by qplying one force to the projection of the center of gravity on one of the
sicles, and two opposing forces a.t the same distance .I: on either direction from
the projection of the center of gravity on the other side (see Figure 8). HOW large
should .r be? The answer is tha.t  it does not ma.tter.



a
c,G

b

l i--.l⌧
Figure 8: Parallel sides.

Equations (2) through (4) in this situation are the the same, only equation
( 1) becomes the following:

Fx
-y= F-2 =F3=f

Thus equation (5 j becomes

(1 >a

elm =
a b2+2min{- -}
b’ a

independent of x.
For the case in which G does not project on one of the two parallel sides, we

have a more complicated situation (see Figure 9). Equations (2) through (4) are
the same, only equation (1) becomes

Fx Fj F3=-=-=
x2 + 23

.f
x3 x2 (lb)

(711~1  ~JXUS we must find the x, x2,23 and x1 = 23 + 23 which maximize

This task is similar (in fact, a. bit easier) than that of optimizing the grip of a
t ria.ngle, esamined in Section 2.

Exanlple 2: Let us return to the polygon of Figure 1 (shown in detail in Figure
10). For the grip of Figure lO( a), our analysis of parallel sides yields sum of forces
equal to 1.67, independent of x (where the unit of force is I/.-~). For Figure 10(b),



Figure 9: Pa.ra.llel  sides, G does not project on one.

our isosceles triangle example yields a. sum of forces of 1 with y = .629. The grip
of Figure 10(c) has exactly the same equakions  as that of Figure 10(b),  and thus
a sum of 1 for the same y . Fina.lly,  the grip of Figure 10(d) is optimized (using
the program of Section 2) when z- = .4X y = .631  and y’ = .5, with sum of forces
1.365. Thus, the grips of Figures 10(b) and 10(c) are the best with respect to the
sum of forces. In fact, the situation does not change if we adopt the maximum
force-used as our criterion. The corresponding numbers are .833,  .393,  .393 and
,602. n

3.  OPTIMUM FORM SEMICLOSURE

3.1 Basic Concepts

Consider a. set of fingers (not necessarily three of them) acting on the perimeter of
a polygon along the norma.l at each point of contact. We say that these fingers are
a form closure of the object [La] if the following is true: Any wrench (force with
its application point fised) acting on the object can be balanced by a.djusting  the
forces on the fingers accordingly, a.lrva,vs  keeping them compressive, i.e. positive.
Notice immediakely that form closure cannot be achieved by three fingers. In
proof, recall that the equilibrium of the object is described by three equations
(one for the forces along each of the two dimensions, and one for the moments).

3’mce there are three variables (magnitucles  of the forces along the fingers) there
is a unique solution for each input,  wrench. If this solution happens to be positive,
then there is an opposite wrench for which the solution is negative, and therefore
that wrench cannot be balanced by positive forces. So, four fingers are necessaxy
to achieve form closure (this was first pointed out in [La]). A similar argument
establishes thak three fingers are not sufficient for form semiclosure, unless the
center of gravity projects in the interior of three sicles of the polygon (which is
not in genera.1 the case).



Figure 10: The example of Figure 1 resolved.

Furthermore, four fingers are en0ugh.t In proof, consider the largest circle
inscribed in t.he polygon [BFG]. It either touches the perimeter a.t three sides (or
concave vert,ices,  the argument remains the same), or at two pa.ra.llel sides. In
the first case, we place two fingers on two points of contact, and two more on

a the third side of contact, close to the point of contact and in t.he same distance
d from it in either direction (Figure 11). The makris of the three equations of

t Lakshminaxayana  [La] also argues that four fingers are enough, but does not
describe how they can be placed so thak  they are norma.  to the perimeter. In
another pa.per  [MNP] we show that,  four fingers axe enough for any planax object
with piecewise smoot,h boundaries escept for the circle, and estend this to three
dimensions.



equilibrium is therefore of the form

a b C

a’ bt ,“I I
0 0 d -Cd

We claim that positive combinations of the columns of this matrix can achieve
any 3-dimensional vector. To show this, suppose tha.t  we replace the last two
columns with their sum, and consider the first two rows (the third row is zero).
It is easy to see that any 2-dimensional vector can be achieved as a positive
combination of these three vectors, since they form three angles none of which is
grea.ter than 7r (recall that they are normak at the three points of contact of the
inscribed circle). Thus, to form any given 3-dimensional vector (i.e., to balance
any wrench) by the four vectors, we first take care of the third coordinate by a
ljositive  multiple of the third or fourth column (clepencling on whether the third
coordinate of the wrench is positive or negative), a.nd then balance the remaining
wrench by the first two rows as described in the previous sentence. If the circle
t.ouches  the perimeter on two parallel sicles,  then a similar a.rgument  is possible
[UNP].

Figure 11: Achieving form closure.

So, four fingers are necessary ancl sufficient for form closure of a polygon.-
We next define an interesting variant of form closure. We say that a set of fingers
achieves form semiclosure of a polygon [RINP] if any wrench though  the center

of’ gravity of the polygon can be balanced by compressive forces normal to the
perimeter at the points of contact. 0 bviously, this is a weaker condition when
compared to form closure, and is of interest when we anticipate to balance only
wrenches due to the weight of the object or to translational acceleration. Four
fingers are still sufficient, of course, and there are polygons for which four are



necessary (for example, an obtuse triangle whose center of gravity projects in the
interior of only two sides, and outside the other one).

3.2 The Optimization Problem

There are usually many possible form semiclosure grips with four fingers, and
they may vary drastically in terms of their “quality”. One reasonable measure of
the quality of a grip is how small forces are necessary in order to counter any unit

. wrench applied to the center of gravity of the object. In other words, we wish
to find the grip which perfbrms  best in the worst case against an intelligent and
nx4evolent  opponent who tries to make us use large forces but can only a.pply  a
unit force on the object. In this subsection we shall formulate this optimization
problem, and reduce it to a. problem in plane geometry. Our analysis applies only
to convex polygons, as concave angles  become much harder to treat in this case.t

Figure 1’3: Optimum form semiclosure.

Consicler  a polygon such as t ha-t of Figure 12, and fix the sides of the four
contact points (two of these sides ma.y coincide). For any selection of contact
points ant1 any unit force through the center of gravity, the equations of equilib-
rile (with the center of gravity as the origin) are the following:

Here the .r,‘s are t,he magnitudes of the forces appliecl to the fingers, the c$s are
t.1~ sines of the directions of the norma.ls,  the hi’s the cosines, and the ci’s are the

i Notice that, for the polygons for which form semiclosure is achievable by
three fingers, there is a finite number of form semiclosure grips, and thus opti-
nlizing  form semiclosure  by three fingers is not. intmesting.



distances of the normals from G, with a sign reflecting the sign of the generated
torque (see Figure 12). T he unit wrench to be balanced is (a, p), a.ppliecl on G.
We wish to minimize the sum of the xi’s subject to (6).

Once the sides of the four fingers are fixed, the ai’s and the hi’s are also fixed,
but the ci’s must vary. What itre the constraints on the ci’s? The requirement is
that the points of contact must be within the sides of the polygon. This means
that

C; m i n  I Ci L Ci m a x ( >7,

where c;mill  and Cin,ax are the coordinates of the vertices of the ith side, where
the projection of G on that side is taken to be zero. It follows that optimizing
the semiform closure of the quardilateral can be formulated as the following
optimization problem:

niin niax
c sa#tisfies  (7) cv2+f12=1

min
z>o satisfies (6)

{Xl + 52 + 23 + X4) (8)

Notice that this optimization has the structure of a ga.me: We choose the finger
positions c, our opponent picks the wrench (cu, ,B), a.fter  which we move a.ga.in to
fix the ma.gni  tudes :r of the forces on the fingers; we pay our opponent a.11 amount
equal to the sum of the forces.

The innermost minimiza*tion  in (8) is a linear program. Taking its dual [Da,
PS] we have the following equivalent problem (equivalent in the sense that the

- optimal  va.lues a.re the same).

niax(cyz1  + /?2’}

sllbject  to aill + biv 5 1 - CiZu,  i = 1,. . . ,4.

Here U, v, and U! are the dual variables. Now that the two innermost optimiza.-
tions in (8) a.re both maximiza.tions, their order many be reversed; with ‘t/. and 21
fisecl, it is c1ea.r  that the ma*ximum of azh + /?v is achieved when (a, /3) is the unit
vector along the direction of (u, v). Thus the innermost two maximizations of (8)
(a.fter we have replaced the innermost minimization by its clua.1 maximiza.tion)
are equivalent to

c subject tc> a;‘ll + biv 5 1 - cites, i = 1,. . . ,4. (9)

Call this maximum F(c) (it could be infinity); our task is to choose c wit.hin the
bounds (‘i) so that,  F(c) is minimized.

This problem has a simple interpretation in plane geometry. For ‘117  = 0, the
constraints in (9) describe a. convex quadrilateral with the same slopes of sides as
the four sides of contact, and circumscribed around the unit circle (recall that the
vector (ai, bi) is a. unit vector, a.s it represents the sine and cosine of the ith side
of contact). Now let ‘11’ va.ry;  the result is that the ith side of the qua.drila.teral



moves, remaining parallel to itself, with a velocity (positive or negative) equal to
c;. The question is, what is the maximum distance from the origin of any vertex
of any quadrilateral thus formed ? Hopefully, the quadrilaterals will vanish after
some “gliding” of this sort, and thus the answer will be finite, but this may not
necessarily be the case (for example, if all c;‘s are positive). This maximum
distance is in fact F(c). Our task is to choose the c;‘s in such a way that this
distance is minimized.

.3.3 The Case of a Triangle

This problem has a surprisingly simple answer when the polygon to be grasped
is a triangle. In particular, let o be the smallest angle of the triangle. Then the
value F of (8) equals h. In proof, suppose that Fo is this value when w
is bound to be zero; obviously, Fo 2 F. However, it is easy to see that, when
20 = 0 the equations in (9) describe the triangle with scaled so that the radius
of the inscribed circle is one? and drawn so that the center of the inscribed circle
is the origin. FO is the distance of the furthest vertex of the triangle from the
center of the inscribed circle, again measured in radii of the inscribed circle. This
distance, however, is exactly &.

It remains to see that, for some feasible choice of the ci’s, F(c) = Fo. If all
projections of the center of gravity on the sides are in the interiors of the sides
( i.e., c;min < 0 and G mas > 0 for each 2) t,his is easy to show: Take cl = c2 = 0,
and .cg = -cd = E, for some appropriately small E > 0 (recall that fingers 3 and

- 4 are on the same side). It follows that, for each value of W, the feasible region
in (9) is a subset of this with 2~ = 0, hence the result.

1

Figure 13: Obtuse triangle.

For the remaining ca.se, suppose that the center of gravity projects outside
a side (say, side 1, see Figure 13), that is, ci,min > 0. We take ~1 = clmin,

C2 = 0, C3 = CQ mill and CJ = C.) Illil.s  . It, can be argued by an involved case analysis



.

that either (a) the maximum distance from the center of the inscribed circle is
the vertex opposite side 1 for all values of UJ, or (b) for positive values of 10 the
vertex opposite of side 2 writes a straight line segment which brings it closer to
the center of the inscribed circle (Figure 13). The result follows. Hence we have:

For any triangle there is a way of grasping it with four fingers such that for
any unit force through the center of gravity the sum of the forces needed to
balance the unit force equals the inverse of the sine of haJf the smallest angle

. of the triangle. Furthermore, this worst-case sum is the best possible.
If we are interested in minimizing the worst-case maximum of the forces

needed to balance a unit excitation (as opposed to their sum) a similax result
holds. Equation (S) becomes

min max
c  satisfies (7) 02+/32=1

min
Z>O satisfies (6)

max(x~,a:;1,53,x4),

apparently adding another move to the game. The innermost two optimizations,
however, are equivalent to minimizing y subject to, in addition to equations (6),
the inequalities C-C; 5 y, i = 1,. . . ,4. A similar analysis to the one in the previous
paragraph yields that the optimum value is the following geometric parameter of
the triangle: Consider, for each point p of the triangle, the distance from p of the
furthest vertex of the triangle, divided by t*he sum of the distances from p of the
sides- of the triangle, with the la.rgest such distance added twice. Take now the

- maximum of this quotient over a.11 points p. This is the value  of the optimum!

3.4 The General Case.

To solve the genera.1 problem, we must trea.t the case of a quadrilateral with ar-
bitrary upper and lower bounds on the ci’s. It turns out that the plane geometry
becomes quite a. bit more complica.ted, since the optimum is not determined by
the 21) = 0 case, and so we must actually study the “gliding” of the sides of the
c~uadri1at~era.1.  No c.losed form answer is possible here, but finding the optimum
of (S) can be reduced to the examination of a small number of cases. The details
are ra.ther complica.tecl,  so we only sketch the argument below. We shall assume
that the four chosen sides on which the fingers a*IIe to be a.ppliecl are distinct: the
ideas are similar (in fact, a bit simpler) when two of them coincide.

Recall from the last paragraph of Section 3.2 tha.t, for ~7 = 0, the inequalities
* (9) describe a. convex quadrilateral with t.he same slopes of sides a.s the four sides

of contact, and circumscribed a.round  the unit circle. If UY varies, the &h side of
the quadrilateral moves, remaining parallel to itself, with a. velocity (positive or
negat,ive)  equal to c;. For each set of c;‘s within the bounds (7) the vertices of
the qua.drila,teral  move along straight lines, depending on the ratios of the ci’s.
Any point on such a line uniquely cletermines a0 va.lue  of zu (positive or negative),
and thus a. qua.drilatera,l  which is the result of gliding of the original quadrilateral
for 20 units of t,ime. However, such a# point maOy define a quadrilateral that has
vanished, because the inequalities ( i) are no longer sa.tisficzcl  for this value of 2~.



Figure 14: A quadrilateral and an arrangement of gliding lines.

For example, in Figure 14 the shaded areas close to the vertices represent
the allowable values of the ci’s, by (7) -they show all possible motions of the
vertices within a unit of “time” w. The gliding lines corresponding to a particular
choice of the ci’s form the arrangement shown, but only the bold parts represent
a.ctua.l  feasible 11,  V, and W’S; the rest represent “vanished” qua.clrilakera+ls.  We
mustV choose the c;‘s in such a. wa.y that the ma.ximum  distance from the origin of



any vertex of a non-vanished quadrilateral (that is, any bold point) is minimized.
Let us first resolve the simpler problem of determining whether the optimum

is finite (that is, the bold part is finite). To put it in other words, we wish to
determine whether form semiclosure can be achieved by applying four fingers at
the selected sides. It is easy to see that this is possible if and only if there is a
selection of ci’s within the bounds (7) so that the equations (6) with a! = /? = 0
have a positive solution x1, x2, 23,x4 > 0. This condition, however, is equivalent
to saying that the four 3 x 3 subdeterminants of the matrix of (6) have the same
sign. These subdeterminants of are linear forms in the c;‘s (with coefficients the
sines and cosines of the angles formed between the sides). Thus, the question
of feasibility can be reduced to determining whether the intersection of the cone
of these linear forms with the hyperrectangle of (7) is non-empty, which is a
four-dimensional linear program.

Example 4. In a quadrilateral with the same angles as that in Figure 14 (where
all angles are the obvious multiples of 7r/4) the equations (6) are:

x1 +x2 -x3 = 0
-x2 -x3 +24  = 0

clxl+c2~2+c3~3+c4~~  = 0

where for simplicity we denote by ~2, ~3 the corresponding magnitudes divided
by d. The four subdeterminants are: -Q - ~3, -cl - c3 - c4, cl + c2 + cq,
and -2q + c2 - c3. Form semiclosure can be achieved only if all these linear

- forms are positive, or all negakive. This defines a. four-dimensional affine cone
with center the origin. Its intersection with the box (7) can be determined very
easily, either by linear programming, or by the examination of a small number
of possible basic feasible solutions. n

We can restate this algebraic feasibility condition in purely geometric terms.
The ci’s (in fact, their ratios) completely determine an arrangement of lines on
which the vertices of the quadrilateral “glide,” and the bold part of the arrange-
ment represents all possible positions of vertices of a non-vanishing quadrilateral
[Figure 14). The question is, which of the many possible arrangements have a0
bounded bold part? Consider an arrangement CV; G’(cu)  denotes the convex hull of
the six vertices of a! (without loss of generality, bounded). It is easy to see tha.t
cy has a finite bold part if and only if the following two conditions hold: (a) The
vertices n, b, c, d are in the interior of C(o), a.nd (1~) The vertices a. b and ad (the

A intersections of pairs of lines representin,0’ acl jacent. vertices with sum of angles
greater than K, of which there are two in any convex qua.dri1atera.l)  must also  be
in the interior. The intuitive reason is thak  nb and ncl are the only vertices of cu
which correspond to a non-vanishing quadri1a.tera.l.  It follows that there are two
kinds of feasible arrangements, that is, arrangements with finite bold part: The
ones in which the order of the points are exactly as in Figure 14, and another
similar class, in which dc is between bc and UC.

Our optimization problem can be restaked as tha.t  of choosing CL among
the two classes of feasible a.rra.ngements  so as to minimize the distance from 0



of the furthest point among bd, dc, and CIC --the vertices of C(CY). We shall
show that this optimization can be reduced to a small number of easy geometric
constructions; we shall do this for the class of arrangements in Figure 14, the
task for the other class being very similar.

Suppose that dc is the furthest point from 0 among { bd, dc, UC}. Since
its distance from 0 would be improved if line c were to rotate clockwise, or cl
counterclockwise, we must conclude that neither motion is possible. There are
two reasons why c cannot move: Either the ratio of c3 and c4 is at an extreme
value (line c intersects the sha.ded  parallelogram of feasible ci’s at a vertex) or
the distance of c1c from 0 equals tha.t  of dc, and thus a rotation would deteriorate
the optimum. Simila.rly  for cl. Continuing like this we arrive at the conclusion
that at the optimum one of the following situations must hold:
(1) The optimum is determined by the intersection of two fixed lines (such as

the most clockwise feasible direction of c and the most counterclockwise of
d in the case discussed a.bove).

(2) Two lines are fisecl (sa#y, a and d), and the optimum is determined by two
points CIC and dc , one on each of these lines, having equal distance from 0,
and such that the line defined by the two points passes through c.

(3) The distances of UC, dc, and bd from 0 are equal and determine the optimum.
In each of these cases the optimum ca,n be computed in any desired accuracy

in constant time, essentially by binary search. For example, in (2) we perform
binary sea.rch  on the va.lue  of the optimum. For any such value R we draw the
circle with center 0 and ra.clius  R thus determining UC and dc, and we then check
whether c is on the la.rgest of the two parts in which chord UC, dc divides the
circle; if so, R is too high; otherwise it is too low. Repeating, we can determine
the optimum value R wit#hin  any desired accuracy.

From all of the above, the algorithm for achieving optimum semiclosure grip
on a, convex polygonal object is the following: We repeat the following process
for all quadruples of sides, two of which may coincide: We first determine quickly
by the algebraic test whether there is a feasible grip, and if not we abandon
the quadruple. In the case that a feasible grip exists, we find the optimum one
by resolving be bina.ry search a finite set of cases. The answer is the optimum
optimorum  among all qua.druples.  The ci)s of choice and the corresponding worst-
case value are readily available.



4 .  DISCUSSION

In this paper we have demonstrated the applicability of elementary optimization
techniques to the problem of optimizing the grip of an object; to our knowledge,
this is the first such effort.

There is considerable progress to be made in several fronts, if the devel-
opment started here is to lead to a comprehensive methodology and powerful
practical tools. First, there are some technical problems left open in our method.

. For example, we would like to have a less heuristic procedure for optimizing q(H)
in Section 2.1, but the non-convex nature of this criterion leaves  little hope. In
the problem of optimum form semiclosure, we would like to extend our method
to objects with concave angles, and if possible to derive a. direct linear program-
ming a.pproach to the problem of optimizing line arrangements. Also, it would
be interesting to consider the case of genera.l  form closure, in which the adver-
sary’s force can be applied anywhere on the object, and not only at the center of
gravity. Our results seem to be extensible in this direction, since the a.pplication
point of choice for the adversary will be a vertex of the object, and thus most of
our methodology would still apply.

However, much more must be done in the direction of incorporating in our
moclel some basic aspects of the mechanics and pra.gma.tics of prehension, which
we are ignoring at present. A most important such issue is, of course, friction.
Friction is known to have a profound beneficial effect on the problem of prehen-
sion, masking the solution space significantly richer, but at the same time more
interesting and intricate. For example, optimum semiform closure in three di-
mensions requires seven fingers [MNP], although friction is empirica.lly  known to
reduce this number substantially. It would be ra.ther  premature to embark on a
formula,tion  of the problem of optimizing three-dimensional frictionless prehen-
sion, if the very number of fingers involved depends so cruc.ially  on the absence
of friction.

Another interesting issue is that of taking into account the structural con-
straints of robot hands, Here we have assumed tha.t any triple or quadruple of
points on the perimeter of the object is a possible grip. In fact, the geometry
and structure of the hand may restrict substantially the possible grips. It would
be interesting to study the interaction of these constraints with those handled
in our optimization methods. Finally, our results simply suggest a desired final
grip, but not how to reach it. Typically, an object must be picked up from rest,a turned and toppled carefully, so that the desired grip is finally a.chieved. All in-
termediate grips may not be form closures, but must still satisfy some minimum
requirements (for example, the object must not fall by its OWII  weight). How to
achieve this is an interesting problem.
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