
lkhy 1987 Report No. WAN-CS-$7-1157

Network Implementations of the DTEP Algorithm

by ’

Ernst W. Mayr and C. Greg Plaxton

Department 01’ Computer Science

St;wford University
St:mfd, CA 94305

Network Implementations of the DTEP Algorithm*
Ernst IV. Mayr C. Greg Plaxtod

May 15, 1987

Abstract

The dynamic tree expression problem (DTEP) was defined in [Ma87]. In this paper,
efficient implementations of the DTEP algorithm are developed for the hypercube,
butterfly, perfect shuffle and multi-dimensional mesh of trees families of networks.

*This work was supported in pa.rt by a. grant, from the A’I’kT Founclat~ion, ONR contract NO001485-G
O’i31, and NSF gra.nt lXR435175i.

+Primarilv supp0rt.d bv a 1967 Science and Kngineerings Scholamllip from the Natma. Sciences ancl
Engineering Reseaxch Cbullcil of Chnada.

1 Introduction

The dynamic tree expression problem (DTEP) was introduced by Mayr [Ma871 and is
based upon previous work by Ruzzo [Ru80], Miller & Reif [MR85] and Ullman & Van
Gelder [UVSS]. This paper develops efficient implementations of the DTEP algorithm for
the hypercube, butterfly, perfect shuffle and multi-dimensional mesh of trees families of
networks.

In Section 2 we give the formal definition of DTEP and an algorithm for solving it,
which will be referred to as the DTEP algorithm. Section 3 provides the details of the
computational model of the networks we are considering, along with implementations
for two useful primitive operations. In Section 4 these primitives are used to produce
implementations of the DTEP algorithm and an analysis of their time and communication
requirements is performed. We will be primarily concerned with implementations for single
instruction stream, multiple data stream (SIMD) parallel computers, a well-known class
first defined by Flynn [F166].

There is a list of symbols in the appendix which should serve to clarify the programming
notation.

2 The DTEP Algorithm
A DTEP instance is a, triple (P, I, 2) where

1. P is a set of 12 Boolean variables po, . . . , p,-1 ,

2. I is a set of inference rules of the form pi t pj or p; + pjpk, and

3. z c_ P.

The task is t’o compute the minimal model for (P, I, Z), ie. the minimal ;u 2 P satisfying

d3* (l’j,pk E JM) A (Pi +---P.iPk E I)==+-$'; E Jtl.

The Boolean vasia,bles belonging to Z n1a.y be thought of as axioms. ‘The inference rllles
are applied t,o these asionis to prove as many of the remaining variables true as possible.
-4 der2,l!ation, tyec for p E P is a. lal~ellecl bina,ry tree with node labels taken from P such
that: (i) labels of t,he lea.ves belong t’o Z; (ii) if an internal node has label p; and a single
child lalnc~lled 1j.i tlhen 21; t j1.i E I; (iii) if an internal 1lOde has label 11; c?.lld chiltlren labelled
pJ, pr; then pi t]~.Tl~k E I; (iv) the root is la.belled 11. The size of a. cleriva.t.ion t,i.c.\e T is the
numl~er of nodes that it, cont,ains a.iicl is written ITI.

Clearly, y E itt if and only if there is a clerivn.t.ion trc\e for p. The follc)wing algori t,hm
makes use of this fact, t’o const,ruct the minimal model ;ti for a. given DTEP instjance
(P, I, Z). We will c*onsider a, pa.rallcl iniplement~a t,ion using ~2~ processors, each iclent,ified

1

by a unique triple (i, j, k), 0 < i,j, k < n. There are n + n2 + n3 variables, which are
initialized as follows

1. Pi E (pi E Z), 0 ,< i < 72,

2. Pij S (i = j) V (pi t pj E I), 0 5 i, j < n., and

3. Pijk E (Pi * pjpk E I) V (pi + pkpj E I) , 0 5 i,j, k < n.

procedure DTEP
(1) loop
(>2 Pi L (Pj A Pk A Pijk) V (Pj A Pij)

13) Pij Z- Pk A Pijk
(4) exit when no new Pi has been derived

[pij] - lpij] 2

end loop
end DTEP

Line 5 of DTEP computes the square of the Boolean matrix [Pij]. The problem of im-
plementing general matrix multiplication on the hypercube and perfect shuffle was studied
extensively by Dekel, Nassimi and Sahni [DNSSl]. For the special case of Boolean matrix

* multiplication, -4gerwala and Lint have given a, parallel implementation of the four Rus-
sians’ algorithm which runs in U(log n) time using n3/(log n log log n) processors [AL78].

Since the diagonal entries of the matrix [Pij] are always true, any variable which
becomes true ak any time during the course of t’he computation will remain so. Using the
method of Miller & Reif it can be proven thak if pi E M has a derivation tree T in (P, I, 2)
tIllen P; becomes true within at most (log,,, 2) log (TI ti erations of the loop [MR85]. The
correctness of the terminating condition used above is easy to establish using a proof bJ
contra#diction.

The pa.ra.llel rumzing t.ime for a, single iteration depends upon the model of computation.
On a C’RCW PRAkI, each iteration can be performed in 0(1) t’ime even when concurrent
wri t,es must agree; the trick is to write only true values. On a0 CREW PRAn/I, each
iteration can be implemented to run in O(log 12) time by using a. tree computn.tion whenevel
it is necessary to OR. t~og&er many Boo1ea.n values. The EREW PRAM remains powerful
eno~+ to achieve O(log II) but the constant of proportionality is higher than for CREIq:
since there are instances where a8 tree computa.tion mllst be used to make copies of a. valuc~

nwclecl by many processors.
T1111s, DTEP is guaranteed to run in NC whenever each p; E J4 has a derivation tree

of “espolylog” size, that is, bounded by 2”‘g’ ” for some constant c 2 0. An important
consequence of this is tha,t say problem which can be transformetl, within JtrC, to aa cleriva#-
tion system with espolylog bounded derivation trees is itself in J~C. The planar monotone
circuit. k-alu(x problem [GoSO], 131owii to be in h/c, is a.n cxaniple of a problem which admits
slich a. t’rc?.iisf(>rI11~.tioli.

3 Network Primitives: Replicate and Collect

Our first goal is to develop, in a systematic manner, “efficient” implement ations of the
DTEP algorithm for several well-known networks. Assume without loss of generality tha,t
the given DTEP instance (P, I, 2) has IPI equal to a, power of two and define n, m, N and
2M by the equations

12 = IPI, nz = logn, N = n3, M = log N.

We adopt the usual abstract view of a network as a graph in which nodes represent pro-
cessors and edges represent bidirectional communication links. Each processor has a local
memory with words of length O(log 12) and we ma,ke the uniform cost model assumption
that the standard set of ALU operations can be performed in constant time on operands of
this size. Every processor is assigned a unique O(log n) bit number which will be referred
to as its id.

We will initia.lly restrict our a,ttention to SIMD parallel computers. One wa.y to under-
stand the SIMD model is to ima.gine many processors synchronously executing duplicate
copies of a program with no conditional branch instructions and in which every statement
5’; is accompa,nied by a Boolean condition Ci. The statements of the program operate on
local va,ria*bles and data, receivecl through messages from adjacent processors. Each pro-
cessor has the same set of local variables as any other, but they may have different initial
values. There is no global memory. We will not be concerned with the question of how
the inetwork communicates with the outside world; the input (output) is simply given by
the initial (final) values of some subset of the variables.

Program execution ta,kes place in t,he following manner. When all of the processors
a.rrive simulta,neously (as must be the case) at some statement Si, they first evaluate Ci.
Those for which C’i is true a,re said to be enabled ancl proceed to execute S;. The remaining
processors a.re disabled for the period of Gme that it takes to execute 5’;. This process is
then repeated a,t the statement following Si. In our programs, the condition C; will be
a, function of the processor id which can be computed in consta.nt time. For esanlple, if’
the processor id is : a,ncl C; is given by the expression ~5 = 1 A z[~,~) = z[~,~J it could be
eva.lua.tecl in constant time 1)~ the ‘5iiacliiiie” expression

(Z AND ?R.~) # 0 A (z .4ND m,) = ((z DIV 1773) -4ND 17~)

where 177 7 = 1000002, 772 2 = 1112 and 7773 = 1000000~ are masks obta.inecl in constant tinict
by indexing into tables which cali l->c, precoinp”tec1 in O(log 11) ti1ne.l

Algorithmic complexity will be mcasurecl in terms of communication overhead a,s well
a.s time. WV will consider the escclltion of a$ program to consist, of a3 sequence of stepcs. Each
step is alloyed only O(1) time and is ma.&: up of a comp~rstntion phase a.nd a, con?,7~?,~l,n,~c[l,t~o~~,

pk.Qs e. During the comput a.t,ion l)hase no messa.ges are passed bet8ween processors. During
the c~)nlmunica.tic)l1 phase each processor can &tl (a.nd/or rcceivc) an 0(log n) length

lTahle lookup is not, necessary if w are given a.11 inat.rnct.ion capable of shifting a regist,er O(log 77) hif.
positiom in constant. time (cg. M IJL); rlntler t,llis asaumpt~ion tdle masks cm be coinprltmed on the fly.

3

message to (from) each of its neighbors. Define the communication coat of an algorithm
to be the total number of messages which it uses. We will sometimes refer to the total
number of steps used by an algorithm as its step count. In this paper, “exact” step counts
should be interpreted as being accurate to within an additive constant, eg. 5 log n means
510g n + O(1). Note that a step count of f()n implies a running time which is O(f(n)).

For each network family we will describe two implementations of the DTEP inner loop
which attempt to minimize: (i) step count; (ii) communication cost under the constraint
that the step count lie within a constant factor of optimal, ie. it must be O(logn). For a
synchronous, fixed interconnection network there is little motivation for minimizing com-
munication cost since a communication phase will use the same amount of time regardless
of how many links are actually used to send messages. However, the amount of message
traffic may be of critical importance in a time-shared asynchronous environment or when
the network for which the algorithm has been designed is being simulated on another
type of network. We will also indicate how much improvement in the running time can
be obtained by modifying our implementations slightly to take advantage of a multiple
instruction stream, multiple data stream (MIMD) environment.

The motivation for counting steps is to allow the constant multiplicative factors on
the lea*ding term of the running time of two programs to be compared with reasonable
accuracy without resorting to the tedious approach of counting up CPU cycles. If it is true
that the running times of individual steps tend to be clustered around a single value then

- this approximation will be a useful one. Unfortunately, our definition of a step allows Ic
independent calculations to be “interleaved” in such a wa#y that the step count goes down
by a8 factor of Ic while the actual running time remains more or less unchanged. This is
accomplished by passing all local data which is relevant to any of the k ca.lculations to
all neighbors which require any data and merging the computa,tion phases. In order to
preserve the desired correlation between running time and step count, we do not allow
interleaving in our minimum step count implementations.

The observa,tions made in Section 2 regarding ER.EW PRAMS indica,te tha.t any net-
work which admits an efficient implementation of the DTEP algorithm must be able to
rapidly: (i) distribute copies of a pa.rticu1a.r value to many processors, and (ii) OR. together
ma,ny values stored at different processors. This motiva,tes the definit,ion of t,wo primitive
opera,tions which we refer to as Replicate and Collect. The Replicate primitive takes four
arguments: a, pointer p, non-nega.tive integers sturt and -width sa.tisfying Start + width 5 A/r
a,nd an integer select which sl~oulcl be tOhought of as a *width-bit, mask. The &ect of’ the
operation may be written

where 3 denotes the processor id. For exa.mple, if 11 points to some ya.ria,ble :I’, A4 = G?
start = 3, ~width = 2 and select = 012 then x a.t processor (25 * *(zzsl z(j)2 would be assigned
the va.lue of x a.t processor (z~Olz2.z12&. -411 inipc~rt~ant~ observa.t8ion to make at this point
is that by passing a field of t’he processor id to select ra.tjh(-~r than a. c*onst3a.nt? it is possible
tc) pcrfc)rm transposi tic)n. There are several emmples of this usage of Replicate in Section 4.
The Collect primit,ivc requires only the first three of t.he above parameters and performs

Network Processors Degree Diameter High Flux Layout Area
hypercube N = n” = 2”” log N log N Yes O(N2)
but terAy NlogN 4 log N Yes O(N2)
perfect shuffle N 3 21og N Yes O(N2/log2 n)
kD mesh of trees (k + 1)N - kn”-’ 2,3, k 210g N no O(N 2-2/k), k > 2

Table 1: Some important network properties.

the operation

*p at 2 k vO<i<pJidth *p at qstart+width,M) O i[0,width) O qo,start) if ~[slart,slart+width) = 0,
undefined otherwise.

Usually a call of the form Collect(p, start, width) will be followed by Replicate(p, start,
width, 0) to obtain the combined effect

patz v * P at Z[start+width,M) O i[O,width) O XIO,stari)- (1)
o<i<2width

We now consider the problem of implementing these two primitive operations on the
hypercube, butterfly, perfect shuffle and multi-dimensional mesh of trees networks.

3.1 Hypercube
A degree d hypercube has .2d processors with ids ranging from 0 to 2” - 1. Processor i
is adjacent to processor j if and only if the binary representations of i and j differ in
a single bit position. Some important properties of the hypercube as well as the other
networks which we will study are given in Table 1. The hypercube has high flux2 but
unbounded degree. Our programs contain if staOtements but could easily be cast into the
forma,t described in the previous section.-

The hypercube implementa.tions of Replicate and Collect a,re gil-cn below. Both use width
steps. Note that Replicate would perform exactly the same function with t’lle condition in
line 2 siinplifiecl to ~,2nri+i = cselecti, but this would increase the colllnlunica.tion cost, from
O(-?r) to O(N log N). Tlle exa,ct# communicat,ion cost, of both Replicate as well as Collect is
jy L gM-widih niessa3ges, which is a.pprosillia.tely N for a,ny non- trivia.1 value of width. Wit,11
rqa,rcl to Collect, it is possible to achieve the effect of equation 1 directly by removing
lines 7 and 9. This sa.ves width time by elimina.t8ing the need for a. call t,o Replicate, but
increases the coiiiiii~inica.tion cost to O(N log N). 13‘e will t&? nclva.nta.ge of this tra,cle-off
in Sect,ion 4.1 in order to minimize the step count, of our DTEP illlplenlellt,a,tion.

It is int8eresting to note tha.t, unlike the other net.\\Forks listed in Ta.ble 1, the hypercub~
could handle replica,ting over a\. non-contiguous set, of a,clclress bitIs just, as ea,sily; however,
this fca t,llre is not, needed for implementing DTEP.

procedure Replicate(p, start, width, select)
(1) for i c-- 0 to width - 1
(2) if Z[slari+i,siar~+widdh) = $eltXt[;,,;dth) then
(3) *p (“2”‘~Si) + *p

0 end if
(5) end for

end Replicate

procedure Collect(p, start, width)
(6) for i + 0 to width - 1
0 if qstart,start+i] = 0 then
(8) *p & *p(start+i)

(9) end if
(10) end for

end Collect

3.2 Butterfly
The “standard” butterfly network of degree d has (d+ 1)2d processors arranged in d+ 1 rows
of 2&. Each of these rows is called a rank, and the ranks are numbered consecutively from

- 0 to d. The processor aclja.cencies are defined as follows: processor z of rank T is connected
to processors z a,nd z @ 2’ of rank r + 1 for all r, z such that T E [0, d) and z E [0, 2d).3 This
means that processors in ranks 0 and d have degree two while the remaining processors
have degree four. There is an obvious variation of the standard butterfly network in which
the dth rank is eliminated by mapping its processors onto those of rank 0. We will adopt
this variation as our definition of a butterfly network, which explains the butterfly entries
in Ta.ble 1 for number of processors and node degree.

It should be a.ppa.rent, that the hypercube is nothing more than a butterfly in which
all of the ranks have been iclentified; alternatively, the butterfly may be viewed as an

- expanded version of the hypercube. As such, the butterfly can perform replica.tion and
collection just as fast as the hypercube as long as: (i) the address bits in question form
a contiguous interval, and (ii) the data, is initially located in a rank corresponding to one
of- the two endpoints of this interval. The first condition is always satisfied for us since
Replicate and Collect ham-e been defined to operate over the interval [start, start + width).
If the second condition is not sa,t.isfiecl then the butterfly loses ground to the hypercube
beca,use it must perform an Adjust to copy the da.ta to one of the two a.ppropria.te ra,nks.
The rank chosen will clepencl upon which rank(s) currently hold the da,ta and where t’he
results will be needed 13~ subsequent ca.lcula.tions.

The Replicate and Collect proceclurcs written below assume that the da.ta, resides in
rank 0 and also pllt the result in ra.nk 0. This implementation is sound but obviousl)
wa,st,eful; in Section 4.2 we will see tha,t it is possible to do without most of the calls to
Adjust which are implied by a naive translation of the hypcrcube ilnplelllentat,iol1 of t’he

3Note that our convention for numbering the ranks is the opposite of that chosen in [Ul84].

6

DTEP algorithm. The complexity of Adjust is shift steps and Nshift messa,ges, where we
refer to the value of shift after line 13 has been executed. The communication cost could
be decreased in those cases where not all values need to be preserved (eg. preceding a call
to Replicate). This potential optimization has been omitted since we were unable to take
advanta.ge of it in our DTEP implementation. The routines Replicate’, Replicate”, Collect’
and Collect” all execute in width steps using O(N) messages.

procedure Replicate(p, start, width, select)
(1) Adjust(p, 0, start)
(2) Replicate’(p, start, width, select)
(3) Adjust(p, start + width, M - start - width)

or
(4) Adjust(p, 0, start + width)
0 Replicate”(p, start + width, width, select)
(6) Adjust(p, start, M - start)

end Replicate

procedure Collect(p, start, width)
(71 Adjust(p, 0, start)
(8) Collect’(p, start, width)

- (9) Adjust(p, start + width, M - start - width)

(10) Adjuzt:p, 0, start + width)
(11) Collect”(p, start + width, width)
(12) Adjust(p, start, M - start)

end Collect

procedure Adjust(p, r, shift)

(13) 0, shifl +---- (;\I > 2shift) ? +l, shifi : -1, .!kf - shifi
- (14) for i +---- 0 to shift - 1

(15) r + ai: *:p, -+= *p
(16) end for

I elld Adjust

procedure Replicate’(p, start, width, select)
(17) for I’ +-- start to start + width - 1
W if q?-,sfn?3+widlh) = seZectI,_,2nll,~idlh) then
(19) I‘1 *P+l, *p’+, +== *P
(20) end if
(21) end for

end Replicate’

procedure Replicate”(p, start, width, sekct)
(22) for ‘I’ +---- start + width, - 1 downto start

(23)
(24)
(25)
(26)

(32)
(33)
(34)
(35)
(36)

3.3
Like
first

if qsiart,r] = seZect[O,r-start] then
r: *p,*p’ C- *p+,

end if
end for

end Replicate”

procedure Collect’(p, start, width)
for r +- start to start + width - 1

if x[,~,,~,~I = 0 then
r: *p+l * *p V *p’

end if
end for

end Collect’

procedure Collect”(p, start, width)
for r +-- start + width - 1 downto start

if X[r,start+widlh) = 0 then
r: *p t- *p+, v *p;,

end if
end for

end Collect”

Perfect Shuffle .
the butterfly, the perfect shuffle is a high flux network with bounded degree. It was
introduced by Stone [St71]. A base b, degree cl perfect shuffle has b* processors with

ids [0, bd). Each processor is linked to three others via+ the exchange, shuffle and unshuffle
connections which allow processor i to communicate with processors (i mod b = b - 1) ?
i-b+ 1 : i+l, G--J i and L-) i, respectively. From this point on we will be concerned only with

- the case b = 2, so processor i communicates via the exchange connection with processor
i $ 1. One may view the perfect shuffle as a stripped-clown version of the hypercube with
only those edges corresponding to bit 0 adjacencies remaining (the exchange connection)
and augmented by some connections (shuffle, unshuffle) which have the effect of cycling
the ma.pping of va.ria.bles to processors in such a. way tha.t a. bit 2: dependency can be
transformed into a bit 0 dependency.

In order to perform a Replicate OL‘ Collect the appropriate range of bits has to be cycled
through the low order position so that exchange operations ca.n be used. The complexity
of Cycle is shift steps and Nshift messages, where we refer to the value of shift after line
13 has been executed. Like the butterfly Adjust procctlureY t,he coiiiiiiuiiic.a,tion cost of
Cycle could be decreased in certain ca.ses. The routines Replicate’, Replicate”, Collect’ a.nd
Collect” all execute in 2*width steps 11sing O(X) mc~a.ges.

procedure Replicate(p, start, width, select)
(1) Cycle(p? ilSll - start - width)

S

(2)
(3)

(4)
(5)
(6)

(7)
(8)
(9)

Replicate’(p, width, select)
Cycle(p, start)

Or
Cycle(p, M - start)
Replicate”(p, width, select)
Cycle(p, start + width)

end Replicate

procedure Collect(p, start, width)
Cycle(p, M - start - width)
Collect’(p, width)
Cycle(p, start)

or
(10) Cycle(p, M - start)
(1 1) Collect”(p, width)
(12) Cycle(p, start + width)

end Collect

procedure Cycle(p, shift)
(13) 0, shift +---- (M > 2shift) ? +l, shij? : -1, M - shij?

- (14) for i +-- 0 to shij? - 1
(15) *P shufle" + +p

(16) end for
end Cycle

procedure Replicate’(p, width, select)
(17) for i t width - 1 downto 0
(18) if 20 0 z[h~-i,~) = selectp;] then
(19) *p b ,pshdP -1

- (20) *P exchange - *P
(21) end if
(>2;2 end for

I end Replicate’

procedure Replicate"(p, width, select)
(23) for i t- 0 to width - 1
(4)2 if q. ,toidih-i) = select(;,,idljkj then
(2 >5 if x0 = select; then
(6)2 *P exchange + *p

(127 end if
(3)2 *:p

shcrfle-’ ti *p
(9)2 end if
(30) end for

end Replicate"

procedure Collect’(p, width)
(31) for i + 0 to width - 1
(32) if z[O,i) = 0 then
(33) * p * *pshufle

-1

(34) if 20 = 0 then
(35) *p & *pexchange

(36) end if
(37) end if
(38) end for

end Collect’

procedure Collect”(p, width)
(39) for i t- 0 to width - 1
(40) if z. o z[M-i,M) = 0 then
(41) .+p & .+pexchange

(42) *P shu.@e-’
+ *P

(43) end if
(44) end for

end Collect”

3.4 Multi-Dimensional Mesh of Trees
The k-dimensional mesh of trees of side n, where n is a power of two, may be constructed
in the following manner:

1. First assign a. unique Ic-tuple of integers from [0, n) to each of nk processors. We think
of these as being arranged at the corresponding points in k-space. These processors
will be referred to as leaf processors.

2. For each dimension d, d E [0, k),

(a) Partition the leaf processors into nk-’ sets of 12 such tha,t the Ltuples of the
processors within a set differ only in the dth component.

(13) For each sllch set of n processors
i. Arrange t,he set in increasing order of the clth component.

ii. Connect the set together by forming a bina.ry tree of height log n using n - 1
new processors to form the internal nodes of the tree.

Thus, t,hc k-dime1lsiona.l mesh of trees contains X:n”-’ trees and a. total of

nk + h2”-’(1 2 - 1) = (1,: + 1)~2~ - kn”-1

processors. An interesting aside is tha,t a X:-dimensional mesh of trees of side two is the
same as a degree 1,. hypercube with every edge replaced by a path of length two.

10

As indicated in Table 1, the mesh of trees is not a high flux network. However, it
is powerful enough to achieve an O(log nj time implementation of the DTEP inner loop
because it is (not surprisingly) good at performing tree computations. Our DTEP imple-
mentation uses a three-dimensional mesh of trees, but the routines given below are valid for
the general case. Note that width, and start must be multiples of m. The step complexity
of both Replicate and Collect is 2width since information needs to be passed up and down
the trees. The communication cost of Replicate is dominated by the last iteration and is
N + 0(n2 log nj. T he message complexity of Collect is dominated by the first iteration and
yields the same result.

When a call to Collect spans more than one dimension, it is possible to achieve the
result of equation 1 more rapidly by employing a larger number of messages in the obvious
fashion. There is an example of this in Section 4.4.

procedure Replicate(p, start, width, select)
(1) assert (start mod m = 0) A (width mod m = 0)
(2) for i +-- width downto m step m
(3) PassUp(p, (start + i)fm, start, select)
(4) Replicate’(p, (start + i)fm, start, select)
(5) end for

end Replicate

procedure Collect(p, start, width)
(6) assert (start mod m = 0) A (width mod m = 0)
(>7 for i +-- 0 to width - n2 step m
0 Collect’(p, (start + i>/m, start)
(9) PassDown(p, (start + i>/m, start j
(10) end for

end Collect

procedure Replicate’(p, d, start, select)
(1 1) for12+----Oton2-1
(1 j2 if qstarl,ntd) = Sezect[O.~nd-slarf.) t lien

(13). d, 12: .+p leflchiltl , .+prighichiId + .+p

(14) end if
W) end for

end Replicate’

procedure Collect’(p, d, start)
(1G) for h +-- 472 dowuto 1
(1 17 if X[s2art,md) = 0 then
(9 d, I?,: +pParenf + .+p v *y~~i~~~kI

W cud if
(0)2 cud for

elld Collect’

11

procedure PassUp(p, d, start, select)
(21) for h +-- m downto 1
(22) if qstart,d+h) = 9s &ct [O,md+h-start) then
(23) d, h: *pparent =+= *p

(24) end if .
(25) end for

end PassUp

procedure PassDown(p, d, start)
(26) for h t- 1 to m
(27) if Z[dart,md+h) = 0 then
(28) d, h: *p + *pparent

(29) end if
(30) end for

end PassDown

4 Network Implementations of DTEP
In this section we will present several implementations of the DTEP algorithm. In every

. case each processor maintains a set of nine local variables: pi, Pi, Pk, Pij , Pik, Pkj , Pijk,
previous, change. The subscripts which appear on the first seven variables do not denote
indexing in the usual sense; they are intended to indicate what value the variable is ex-
pected to contain at a particular processor. Every processor has an M bit z field in its id
which can be split into three m bit fields corresponding to i, j and k. Formally, we have

-q2m,M) = i, +2,2m) = j, q0,T-n) = k

or equivalently, x = i[o,m) 0 j~o,~) 0 k[o,m).J It will be convenient to refer to a processor with
_ z = iojo k as processor (i?j, k). Tllis notation is unambiguous for the hypercube, a single

rank of the butterfly, the perfect shuffle and the leaf processors of the three-dimensional
mesh of trees since there is exactly one processor corresponding to each possible triple.
For example, at processor (*, j, k) tlie variable Pk; will “normally” contain the value of the
element Ukj in the k row and jth column of the n. x KL direct implication matrix maintained
bythe DTEP 1a gorithm. Although not explicitly subscripted, change and prewiolhs depend
on i alone.

In order to assist the rea.der in following our programs, every line which a.ffects the
values of one or more local variables is labelled with a corresponding number of triples in
the right margin. The triple indicates how the values of a particular va.ria.ble are distributed
amongst the processors. For instance, line 5 of Section 4.1 assigns a va.lue to Pj and is
labelled with (*, j, *). This mea,ns that all processors with the same j field, z[~,~~), also
have the same value for l’i, ie. Pj does not currently depend on the i or X: fields. As

JSometimes we will write such an equation ~a.9 simply 2 = 1. o j o k when the intended “width” of the
integers on the right hand side of the equat’ion is clear; leading zeros should be preserved accordingly.

another example, consider line 18 in the same program. It assigns a value to Pkj and
the corresponding triple is (k, j, *). This says that the value of akj (as defined above) is
currently stored in local variable Pkj at those processors with z[~~,M) = k and z[,,Q~) = j,
regardless of the value of the k field.

The input to DTEP consists of n Pi values, n2 Pij values and n3 Pijk values. Unless
otherwise specified, these will be assumed to reside in processors (i,O, 0)) (i,j,O) and
(i, j, k) respectively, at the start of execution. The output is given by the final values of P;
in processors (i, 0,O). We have assumed that any processor can terminate the execution
of the entire machine, which eliminates the need to broadcast a termination flag in every
iteration of the loop. Even if all processors must halt independently, the cost of this
broadcast can be hidden from the inner loop analysis by employing a termination bit in
every message. The idea is that every time a processor receives a message it will check
the termination bit. If it is set, that processor broadcasts termination to its neighbors and
then halts.

4.1 Hypercube
The program below implements the DTEP algorithm and performs inter-processor com-
munication solely through calls to Replicate and Collect. By’simply plugging in the routines
developed in the previous section, one obtains O(log n) time implementations of the DTEP

* inner loop for all four of the networks we are studying. The program works as follows.
Lines 1 and 2 copy the input Pi and Pij values to processors (i, *, *) and (i, j, *) respec-
tively. Line 4 initializes P-j, Pk and saves the current set of Pi values in previous. Lines 5
and 6 redistribute Pj and Pk so that they depend upon the appropriate fields of bits in the
processor id. Lines 7 and 8 attempt to derive more Pi, Pij values. Lines 9 and 10 collect
and distribute the updated set of Pi values. Lines 11 to 15 check to see whether any new
Pi has been derived. Lines 16 and 17 collect and distribute the new set of Pij values. Lines
18 to 20 produce appropriately transposed versions of [Pij] in the PiI, and Pkj variables.
Lines 21 to 23 complete the matrix multiplication; line 21 performs the “multiplications”

- while lines 22 and 23 perform the “additions”.
Ru&ing on a hypercubc the complexity of this program is given by the entries in the

la,st two columns of Table 2. We can reduce the step count to 9 log 12 by using the version
of Collect with O(iV log N) communication cost described in Section 3.1, which allows lines
10; 17 and 23 to be eliminated.

In a MIMD environment and with a la.rger hypercube, there is another level of pa.ral-
lelism which can be exploited: independent, computations can be performed at the sa,me
time on separa,te subcubes of size N. The loop can be restructured so tl1a.t it runs in 3 log 12
steps on a. hypercube with 4117 processors, ie. four subcubes of size iV. Assuming tl1a.t lines
7 and 8 a,re moved to the top, t,he first log 12 steps make use of two subcubes to perform the
first ha.lf of the computa.tion of line 9 and t’lie entire coinputa.tion of line 16 siinulta.neously.
The other two subcubes are idle during t,his period of time. During the second log ~1~ steps,
three subcubes a.re used to complete the computa.tion of line 9 while performing lines 19
and 20. All four sd~d~ct- RI*C used cluring the t,hircl aad final set of log 72 steps in order to

Network Processors Minimum Steps Communication
hypercube N = n3 = z3” 9logn 13 log n 12N + O(n2)
butterfly NlogN 12 log n 16 log n 2N log N + O(N)
perfect shuffle N 13 log n 2310gn Nlog N + O(N)
3D mesh of trees 4N - 3n2 17 log n 19 log n 10N + O(n2 log n)

Table 2: Analysis of DTEP inner loop implementations.

execute lines 5, 6, 13 and 22 simultaneously. Notice that this MIMD algorithm would be
easy to implement since each of the four subcubes operates in a SIMD manner.

procedure DTEP

(1) Replicate(&P;, 0, 2m, 0)
(>2 Replicate(&P;j, 0, m, 0)
(3) loop
(4) previous, Pj, Pk t-- Pi
(5) Replicate(&Pj , 2m, m, z[m,2m,)
(6) Replicate(&Pk, 2m, m, Z[o,m))

(7) Pi Z- (Pj A Pk A Pij,) V (Pj A Pij)
(fo Pij z Pk A Pijk

* (9) COllKt(&P;, 0, 2m)
(10) Replicate(&P;, 0, 2m, 0)
(11) if z[0,2m) = 0 t h e n ’
(1)2 change t- Pi f previous
(13) Collect(&change, 2m, m)
(14) exit when lchange at (O,O, 0)
(15) end if
(16) COllfXt(&P;i , 0, 971)
(17) Replicate(&P;j , 0, m, 0)

- OS) T)Ik , P1.j + P;j
(19) Replicate(tip;,,, m, ~71, z[o,m))
(20) Replicate(&Pkj , 2711, m, z[o,m))
(1)2 _ Pii t- Pix, A Pkj
(‘)22. COllKt(SZP;j, 0, 172)

(3)‘3. Replicate(&P;j , 0, m? 0)
(4)2 end loop

end DTEP

4.2 Butterfly

(4 *:, *>, (A *, *>, (k, *:, *>
(*Li, *)
(*, *:, k)
(4 A k>
(6 A k>
(i, 070)
(4 *c, *>

(i, i 0)

(4 i *>

(4 x-7 *I, k .L *)
(i, *, k)
(*, .i, k>
(i,j, k)
(4 j, 0)
(i,.i, *)

As slm~-11 ill Table 2, t,he butterfly implementation rises IV log N processors. For conve-
nience, we bar-e assurn~tl that t,he input Pi values arc to be found in rank 2m and the input

14

Pij values are in rank m. The output Pi values are in rank 0. In order to minimize com-
munication complexity it is necessary to eliminate as many calls to Adjust as possible since
it uses N log N messages. We were able to get rid of all but two, so the communication
cost is as shown in Table 2. As it stands the algorithm has step complexity 1710g n. This
can be reduced to 1610gn by concatenating Pj and Pk in order to perform lines 7 and 8
with a single call to Replicate’.

For the minimum step count version, the idea that we used for the hypercube applies
once again. In this case lines 12, 19 and 27 can be eliminated at the expense of a constant
factor increase in communication cost. However, this cannot be done without further
restructuring since the rank in which the sets of values in question are left is affected. It is
not difficult to perform this restructuring in order to obtain a step count of 1210g n. This
is 3 log n higher than for the hypercube because three adjustments are performed.

Under a limited MIMD model in which individual ranks still operate in a SIMD fashion,
the butterfly with N log N processors can achieve a step count of 510g n, as stated in
Table 3. Calls to Replicate and Collect which make use of disjoint rank intervals may be
performed simultaneously, while those for which the intervals overlap can be pipelined.

(1)

(2)

. (3)

(4)

(5)

(6)

(>7

(8)

(9)

(10)

(11)

- (12)

(13).

(14)

(15)

(163

(1V

(1s)

(19)
(20)

(21)
(>22
(23)
(4)2
(25)
(6)2

procedure DTEP
Replicate”(&P;, 0, 2m, 0)
Replicate”(&Pij, 0, m, 0)
loop

0: previous, Pj, Pk t-- Pi
Replicate”(&Pj, 2m, m, z[~,~,J)
Replicate”(&Pk, 2172, 772, z[~,~))
Replicate’(&Pj, 2m, m, 0)
Replicate/(&Pk, 2na, m., 0)
0: Pi +!!- (Pj A Pk A Pijk) V (Pj A Pij)
0: Pij z Pk A Piji;
Collect’(&Pi, 0, 372)

Replicate”(&P;, 0, 2m, 0)
if q0,2n4 = 0 then

0: chans~e +--- Pi $ previous
Collect”(&ch,~.rLge, Pm, m)
exit when -l(;lLn.7m at. 2y-n: (0, 0, 0)

end if
Collect’(&Pi.,) 0, n7)
Replicate”(kP~I~ 0. 112, 0)
Adjust(SzP;j, 0, %I-))
2177.1 Pii* 7 P& c- Pij
Replicate”(kP;k ? n)? m, z[~,~))
Adjust(&P;L? KT,, 2~7)
Replicate/(S.d$., , 2177) m, z[~,-,~))
O : Pii t-- Ppi- A Pk.7
COlleit’(&Pi.j, 0, 17))

0: (i,*, *)
0: (i, j, *)

0: (4 *:, *>, (i *:, *>, (k *, *>
2m: (*, j, *>
2m: (*, *:, k)
0: (*,.i, *>
0: (*, *:, k)
0: (i, j, k)
0: (i, j, k)
2172: (i, 0,O)
0: (i,*, *)

0: (i, 0,O)
2m: (0, 0,O)

m: (i, j, 0)
0: (i, j, *>
2m: (ii, j, *>
2m: (i, k, *), (k, j, *)
m: (i, *:, k)
0: (i,*, kj
0: (*,.L kl
0: (ii& k)
m: (i, j, 0)

Network Processors Minimum
hypercube 4 N 310gn
butterfly NlogN 510gn
3D mesh of trees 4N - 3n2 810gn

Table 3: Minimum step counts for MIMD implementations.

(27) Replicate”(&P;j, 0, m, 0) 0: (i,j, *j
(28) end loop

end DTEP

4.3 Perfect Shuffle
For the perfect shuffle implementation it is convenient to assume that Pi is given in (0, 0, i)
and Pij in (0, i, j). The output value of Pi is still to be found in processor (i, O,O), however.
We were able to eliminate all but one of the calls to Cycle so the communication cost
is as shown in Table 2. There is an interesting trick which can be used to decrease the
number of steps per iteration by 2logn. As observed by Dekel et al., the perfect shuffle
can compute the transpose of the product of two matrices more rapidly than the actual
product [DNS81]. This fact may be used to essentially get rid of the calls to Replicate on
lines 20 and 21. In order to make use of the transpose of [Pij]’ it is necessary to unroll the
loop body by a factor of two and maintain some extra local variables: Unfortunately, there
is now a data alignment problem between consecutive iterations. This could be solved with
a call to Cycle or by unrolling the loop body by a further factor of three. Of course, the
results in Table 2 reflect the latter choice.

procedure DTEP

(1)
_ (2)

(3)
(4)
(5)
(6).
(7)
(8)
(9)
(10)
(11).(12)
(13).
(14)
(15)
(16)

Replicate’(&P;, 3nz, 0)
Replicate’(&P;i, m? 0)
loop

previous, -Pi t- Pi
Replicate”(Sd’i, m, z[oTrn))
Pk t- Pj
Replicate”(kPk, nz, 0)

Pi A (Pj A Pk A Pijk) V (ci A Pij)
Pij 2 Pk A Pjh
cOlleCt”(&Pi, 2172)

Replicate’(SL-P;, 2172, 0)
if q0,2nz) = 0 then

ckange +-- Pi $ previou?:
Collect’(Sxhnnge, 111)
exit when 4~m~ge at (0, 0, 0)

cud if

(4 f, *>, (.i, *, *>
(*, .i, *>
(*, k *>
(*, *, k)
(i,.i, X:)
(i,.i, k)
(0, 0, i)
(4 *:, *)

(4 O? 0)
(0,&O)

(17) Collect”(&P;j , m) (0, id
(16) Replicate/(&Pij, m, 0) (4 i *>
09) Pkj + Pij (k,i *>
(0)2 Replicate’(&Pkj, m, z[o,~)) (.i, k *>
(21) Replicate”(&Pkj, m, 0) (*,A k)
(22) pik - pkj (*, k, i)

(23) CyCle(& Pik , 2m) 6, *, k>
(24) Pij e Pik A Pkj (4 j, k)
(25) COlleCt”(& Pij , m) (O&i>
(26) Replicate’(&P;j, m, 0) (6 j, *>
(27) end loop

end DTEP

Since there are quite a few minor differences between it and the preceding program,
the minimum step count version is presented in its entirety. The input/output variables
are the same except that Pi begins in processor (i, 0,O). As above, it is possible to save
210g n steps by loop unrolling and computing the transpose of the square; in this case it
is the work performed by lines 44 and 49 which becomes unnecessary.

At this point, one might hope to obtain a MIMD version with an even lower step count,
as we did for the hypercube. Unfortunately, the perfect shuffle organization does not lend

. itself well to partitioning schemes; a significant amount of overhead seems to be necessary
to maintain the partition. In the present case, it appears that the extra steps required to
handle this overhead would entirely *offset any potential decrease, so this strategy is not
worthwhile.

procedure DTEP

(28)

(29)

(30)

- (31)

(3 >.2

(33). .

(34).

(3.1.5

(36).

(3).7

(39.

(39)
(40)
(41)
(4 1J2
(43).
(44)
(45)

Replicate”(&P;, 2m, 0)
Replicate’(&P;j, m, 0)
loop

previous, Pj, Pk t- Pi
Cycle(&Pi, %a)
CyCle(c!hci) 772)
Pi 2 (ci A Pk A Pijk) V (Pj A Pij)
Pij 2 Pk A Pijk
COlleCt”(SL. Pi, 2m)
if z[,,~,A~) = 0 then

ch,ange +---- P; f previous
Collect”(Ssch,nnge, 772)
exit when -d~ange at (0, 0,O)

cud if
Collect”(kP;j, n2)
Pk.; * Pi i
Replicate”(L.zPhj, m, z[zm,h,,)
pik + pk,j

(*, 5 i>
(4 .i, *)

(*, *:, i>? (*, *A (*, *, k)
(,i, *(, *)
(*,i 4
(i, j, k)
(2, j, 1~)

(*, *,:I)

uM,i)
(O?O,O)

(46)
(47)
(48)
(49)
(50) end

CyCle(&Pik, 2m)
P;i f-- Pik A Pkj
COlleCt”(&Pij , m)
CyCle(&P;j, m)
loop

end DTEP

4.4 Multi-Dimensional Mesh of Trees
Our multi-dimensional mesh of trees implementation is only a slightly modified version of
the program given in Section 4.1. By eliminating three redundant PassU p, PassDown pairs
we obtain the step count and communication cost stated in Table 2. For example, lines 9
and 10 from Section 4.1 get translated into the block of code given below.

(1) COlleCt’(&P;, 0, 0)
(2) PassDown(&P;, 0, 0)
(3) COlleCt’(&P;, 1, 0)
(4) Replicate’(&P;, 1, 0, 0)
(5) PassUp(&P;, 0, 0, 0)

. (6) RepliCate’(SsP;, 0, 0, 0)

The minimum step count version can be achieved by using more messages in lines 2
to 4 so that 5 and 6 can be eliminated. This does not result in an asymptotic increase in
message complexity; it just increases the coefficient on the leading term from 10 to 12.

Using the techniques we have discussed for the other networks, it is easy to derive
a MIMD implementation of the DTEP inner loop which runs in Slog n steps without
increasing the number of processors.

5 Conclusions
Tables 2 and 3 summarize the results of our analysis. The communication cost of our im-
plementations could be further reduced by only &tempting to derive P; a.t those processors
where it is false. Note tha,t this requires da.ta. dependent, conditions for enabling/disa,bling
processors.

It is possible to use bit compression techniques to reduce the processor requirements of
every one of our implementations by a. factor of log n [P187]. For all of the networks we have
considered except the perfect shuffle, this c.an he done without increasing the coefficient
on the leading term of the running time. For the same set of networks, an extension of an
idea, clue to Dekel SL Sahni [DS83] .ll:a ows the processor requirements to be lowered by an
additional factor of log 12. However, this reduction increases the running time by a constant
factor and requires a MIMD model for the butterfly a&ml multi-dimensionaJ mesh of trees
[P187].

1s

A List of Symbols

QL: address operator
*

x&y
(>c ?x:y
[bla,
[b)Q,
(bl7
ca b)a,
Xi
X{a,a+1,...,b}
0

<
>>
83
x at z
[1aij
log x
w(4)

indirection operator; also used as wildcard
logical OR operator
logical AND operator
logical negakion operator
logical equivalence operator
equality operator
local assignment operator
x+-----xopy
inter-processor assignment operator
x~xopy
conditional expression: if c then x else y
(a 5 b) ? (a,a + 1,. . . , b) : ()
(a<b)? (a,a+l,...,b-1): ()
(a < b) ? (a + 1,a + 2,. . . , b) : (>
(a+l<b)? (al,a2,...,b-1): (>
ith bit of x (low order bit is x0)
(a < b) ? (x~x~-~ . - - x,)2 : 0
bit string concatenation, eg. 1[0,2) o 12~~,~) = 012 o 1102 = 011102
shift left operator, eg. 1012 << 3 = 1010002
shift right operator, eg. 1012 >> 1 = 102
bitwise XOR operator
x at processor 2
the niakris Of &j's
log, X

For ea,ch network family we require some aclditional notakion for specifying process(
ids and adjacencies. For the hypercube we have

4" -

.dl)
iW bit processor id
n: at z tf\ 2l

Each processor in a, lmtterfly network has a processor id consisting of two components:
rank aaicl z. The following nota t,ion is used

[log; n/r1 high bits of id; specifies rank
n/r low bits of icl; specifics position within rank
x at (rank + 1, z)
:c at (rank - 1, z)
x at (rank + 1, 2 $ 21’a7Lk)

19

st, 2 at (rank - 1,~ $ 2rank-1)

Also, if a statement is labelled with a number r followed by a colon then it is executed only
at those processors with rank: = r. A butterfly with N processors per rank has log N ranks;
we identify the top and bottom ranks. All arithmetic involving ranks should be assumed
to be performed modulo log N (eg. x-1 at (0, z) is the same as x at (log N - 1,~)).

For the perfect shuffle we specify ids and adjacencies in the following manner

2 M bit processor id
X ezchang e xatx$l
w unary rotate left operator, eg. t-) 101112 = 011112
w unary rotate right operator, eg. c-) 010112 = 101012
xsht4tpe . xat+x
xshu.@e-’ xat+2

For the multi-dimensional mesh of trees family, we assign each processor an id which
is most conveniently thought of as a triple (dim, height, z). The height of a processor is its
distance from the nearest root. Assume N, n, k are as defined in Table 1 and M = log N,
m = logn. The dim field is irrelevant for the 72k leaf processors (those with height = m)

. since they each belong to every dimension. We use the following notation

dim
height
.z
zd
subst(z, x, d)
xpfwent

x left child

_ xrightchild

xsilling

[log kl high bits of id; belongs to [0, k)
[log(m + l)l middle bits of id; belongs to [0, m]
M low bits of processor id
+rz.d,md+m) 7 d E P, k)

Z[md+m,M) o x[O,m) o Z[O,md), d E P, k)
x at (dim, height - 1, subst(z,zdim >> 1, dim))
x at (dim, height + 1, subst(z, zdim << 1, dim))
x at (dim, height + l,subst(z,(zdim << 1) + 1, dim))
x at (dim, height, subst(a, zBil” @ 1, dim))

Note tha,t a reference to the parent of a leaf processor is not well defined unless it is
accompanied by a dimension. In our progra,ms the intended dimension of the parent of a
leaf will not be given explicitly but should be obvious. If a stJatement is la.belled with a
pair d, h followed by a colon then it is only executed a,t those processors with dim = d and
height = h.

References

[*4L78] T. ,i2gerwala. a,nd B. Lint,. Communica Con in parallel algorithms for Boolean
matrix nlultiplica,tion. In Prcjc. 1978 IEEE International Conference on Parallel
Processin+ paqw 146-153, 197S.

20

[DNS81] E. Dekel, D. Nassimi and S. Sahni. Parallel matrix and graph algorithms. SIAM
J. Corny., 10:657-675, 1981.

[DSS3] E. Dekel, S. Sahni. Binary trees and parallel scheduling algorithms. IEEE Trans-
actions on Computers, 32(3):307-315, 1983.

[F166] M. Flynn. Very high speed computing systems. PTOC. IEEE, 54:1901-1909, 1966.

[GMU87] L. Goldschlager, E. Mayr and J. Ullman. Theory of Parallel Computation. To
appear.

[Go801 L. Goldschla,ger. A space efficient algorithm for the monotone planar circuit
value problem. Information Processing Letters, 10:25-27, 1980.

[Ma871 E. Mayr. The dynamic tree expression problem. Stanford University Depart-
ment of Computer Science Technical Report No. STAN-CS-87-1156.

[MR85] G. Miller and J. R.eif. Parallel tree contraction and its applications. In Proc. 26th
Annual IEEE Symposium on Foundations of Computer Science, pages 478-489,
1985.

[P187] G. Plaxton. Research notes.

[Ru80] W. Ruzzo. Tree-size bounded alternation. In PTOC. 1 lth Annual ACM Sympo-
sium on Theory of Computing, pa,ges 352-359, 1979.

[St711 H. Stone. Parallel processing with the perfect shuffle. IEEE Transactions on
Computing, C-20:153-161, 1971.

[U184] J. Ullman. Computational Aspects of VLSI, Computer Science Press, Rockville,
1984.

- [UVSS] J. Ullman and A. Van Gelder. Pa.ra.llel complexity of logical query progra,ms.
Stanford University Department of Computer Science Technical Report No.
ST-4N-CS-85-lOS9.

