Report No. STAN-CS-87-1159

May 1987
Also numbered CSL1-87-81

Muir: A Tool for Language Design

by

Ttrry A. Winograd

Department of Computer Science

Stanford University
Stanford, CA 94305

//
& ~n

/s QA

g1 a-

< i rl

= ,f;%j' s

=Y PRy .
-'::_‘C;;"_'__,'/'QQ .
g GANIZED

Muir: A Tool for Language Design

Terry Winograd*

Abstract

Muir is a language design environment, intended for use in creating and
experimenting with languages such as programming languages, specification
languages, grammar formalisms, and logical notations. It provides facilities
for a language designer to create a language specification, which controls
the behavior of generic language manipulating tools typically found in a
language-specific environment, such as structure editors? interactive inter-
faces, storage management and attribute anaysis. It is oriented towards use
with evolving languages, providing for mixed structures (combining differ-
ent languages or different versions), semi-automated updating of structures
from one language version to another, and incremental language specifica-
tion. A new hierarchical grammar formalism serves as the framework for
language specification, with multiple presentation formalisms and a unified
interactive environment based on an extended notion of edit operations. A
prototype version is operating and has been tested on a. small number of
languages.

1 Introduction

In the past few years it has been widely recognized that programming can
be greatly facilitated by a ‘programming environment’ designed specifically

*Muir has been developed at the Center for the Study of Language and Information
under a grant from the System Development Foundation. Contributors to the research
have included Raul Duran, Bradley Hartfield, Olaf Henjum, Mary Holstege, Birgit Land-
grebe, Ole Lehrmann Madsen, Iiurt Nermark, Greg Nuyvens, Liam Peyton, and Terry
Winograd. More details are provided in a series of CSLI informal notes, and in particular
in the dissertation by Ngrmark [1987].

2 Terry Winograd

for a given language. Such environments provide specialized tools for creat-
ing, modifying and presenting programs, and for analyzing, compiling and
running them.

The earliest examples, such as the Interlisp environment [Teitelman,
1969] and the Cornell Program Synthesizer [Teitelbaum and Reps, 1980],
were built for use with a particular language. This continues to be the case
for many commercial systems, in which considerations of the target lan-
guage have guided design al the way down to the hardware level. There
has adso been interest in providing a more general framework for automated
development of language-specific environments. Systems such as Mentor
[Donzeau-Gouge et al., 1980, 1984], Gandalf [Notkin, 1985], and POPART
[Wile, 1982} alow an environment-designer to specify the language in a
principled way, so that the specification can be used to semi-automatically
generate the environment. These more genera tools are applicable to more
than programming languages. Any suitably structured language can be the
basis for an environment. In particular, each of these systems has been
used to creste an environment for working with its own language-describing
language (‘meta-language’).

Our own work takes place in Stanford’s Center for the Study of Language
and Information. Work at that center includes research on programming
languages and specification languages; the development of formal languages
(and correlated theories) for representing meanings of natural language; the
development of grammar formalisms (in conjunction with syntactic theories
of natural language); and frameworks for providing language-composition
tools, such as text editors and formatters. Much of the work is done using a
common software base provided by Xerox 1100-series workstations, running
Interlisp-D.

This wide range of enterprises offers an opportunity to develop tools that
apply genera principles to the common problems of language creation and
use that come up in diverse areas. The research described here was moti-
vated by work on one particular language (a system specification language
caled Aleph [Winograd, forthcoming]) but has a long-term goal of being
applied to many of the different kinds of languages relevant to CSLI and
more generally to the broad cross-section of research it represents.

In our situation? the primary users are actively engaged in the design and
development of formalisms (languages). This is not the ordinary situation
in which a designer builds an environment for a fixed language (e.g., Pascd)
which is then used by many people. Our use of language-based tools (editors,
file systems, etc.) includes experiments which lead to continuing revisions

Muir: A Tool for Language Design 3

and redesigns of the language. It is therefore important to support the
process of language design and modification, dlanting the implementation of
the environment to make this as productive as possible, rather than focussing
on the efficiency provided to ultimate end users of a stable language. We
cal such an environment a language development environment (LDE).

In a LDE, language designers can make incremental changes to a lan-
guage (both its surface syntax and underlying structure and semantics) and
have the environment change accordingly. For example, the structure ed-
itor will always produce structures corresponding to the currently defined
grammar, and tools are available to trandate older structures into the cor-
responding updated versions. At any moment in the development process,
the environment must provide a reasonable base for working with the lan-
guage in order to test it. That is, it must provide a redistic language-user
environment within the larger context of language development. For widely
used languages, we would expect the LDE-based environment to be replaced
with a production-quality language-specific environment once the language
was stabilized. The price paid for the generality and incrementality of a
LDE might not be appropriate for someone simply concerned with using the
language in a fixed state, although it might often be a better alternative
than exerting the effort needed to make a speciaized efficient environment.
We could imagine tools for ‘compiling’ the language specification into a
language-tuned environment, but we are not currently dealing with this is
sue. We are more concerned with providing a tool that makes sense for
language designers and developers.

We have assumed that the users of a LDE will be relatively experienced
in its use, but not necessarily experienced in LISP programming. The god is
to provide a framework and a set of linguisticaly-oriented formalisms which
enable the language designer to specify a language at an appropriately high
level, with escapes into implementation code only in specia cases. We are
aso assuming that the environment will be a tool, not an intelligent agent.
We are not concerned with trying to develop ‘intelligent’ algorithms, but
with automating the frequently occurring routine tasks, leaving more spe-
cidized and intellectual tasks for the person in interaction with the system.

Our choice of implementation vehicles was determined largely by the
pool of existing equipment and interest, and has both its benefits and its
costs. The benefits lie in the rich set of resources available in Interlisp-
D, both in the system itself and in a wide selection of user and library
‘packages’. It has been possible to develop a system that makes full use of
an interactive high-resolution graphic workstation, with windows, menus,

4 Terry Winograd

multiple fonts and type sizes, graph and text editors, remote file servers,
etc. without having to do the underlying systems work ourselves. This has
made it possible to reach a significant level of performance with a relatively
smal amount of programming. The disadvantages include the difficulties of
achieving adequate performance on the smaller 1100-series machines, and
the lack of transportability. Something done in C on UNIX™ clearly has
much wider use. This limitation is not critical given our overall research
strategy-that is, to explore the possibilities for a LDE in a highly fluid
research prototype system. We expect this work to be the basis for later,
more widely accessible systems.

We will first summarize the basic design problems facing Muir and de-
scribe the design directions that we are pursuing. A more detailed account
appears in the following sections.

1.1 Problems

1. Create a basic language definition framework that is powerful
enough to handle a broad range of formal languages. We want
to be able to include existing and evolving programming and Speci-
fication languages, logical notations (such as predicate calculus and
situation semantics), and linguistic formalisms. A user of the system
should be able to write alanguage specification that is principled and
high level, and which can be used in table-driven way to provide a
wide range of facilities.

2. Provide a collection of generic tools that take advantage of
the interactive LISP environment. Working from a language spec-
ification, the system should provide interactive means of creating,
viewing (in multiple ways), storing, modifying and analyzing struc-
tures in the language. To the greatest degree possible it should be
incremental (allowing local changes to take effect without a high-
overhead compilation cycle) and WYSIWYG” (operations on structures
appearing on the screen are directly linked to changes to underlying
structures, without needing to think about intermediate translation).

3. Provide for changes in the languages being specified. This
means, for example, that a structure built using one version of a lan-
guage specification should be easily modified to satisfy a. later version.
As much as possible, changes should be isolated so that theyv do not
require major restructuring or analysis

Muir: A Tool for Language Design 5

4. Make it possible for structures in the target 1anguages to be
integrated with other texts. It should be possible to use the Muir
environment to produce a structure (e.g., a program in a programming
language) and then to include it in a paper being written using some
text formatter. Conversdly, it should be possible to take a text from
some other context and to integrate it into the structures.

5. Provide for the sharing of language structures (including lan-
guage specifications) among several researchers, dealing with issues of
access control and version control.

1.2 Basic Design Decisions

1. Uniform abstract syntactic structure model based on a hier-
archical grammar with properties and attributes. The system is
based on the manipulation of abstract syntax trees. The ‘real source
of a structure in a language is not a text but a tree-organized data
structure. This is like Mentor and Gandalf, and unlike traditional
environments that are text-based, or environments such as OMEGA
[Linton, 1984] and POPART [Wile, 1982], which build on an object-
oriented or data-base representation. The formalism alows for mixed
structures, in which a tree can include elements from more than one
language.

2. Separation of abstract structure and presentation. The un-
derlying structure for objects (texts, documents, programs, etc.) in a
language does not include any information about how it will appear
(including key words, punctuation, ordering etc.). These are speci-
fied separately and there can be more than one for a given abstract
grammar. Presentations include formatted text and graph-structure
diagrams.

3. Interaction via generic structure editors that can be used to
present and modify structures on the basis of a variety of
visual presentations (formatted text, graph diagrams, etc.). These
editors use a uniform structure in which a variety of edit operations
are avalable for each type of structure, providing both environmental
operations (e.g., opening new display windows) and structure mod-
ifications. Some of these operations call on other generic tools for
transformation, at tribute evaluation and storage management. Along

6 Terry Winograd

with the separation of structure from presentation, this makes it pos
sible to unify activities treated separately in many environments, such
as editing and browsing.

2 The Language Specification

First we will give a summary paragraph, introducing terms that will be
defined below.

In Muir, a person manipulates structures that are in a formalism defined
by a language specification (LS). These structures are organized around ab-
stract syntax trees (AST) which conform to a core grammar which is a part of
the LS and to imported languages declared in the LS. Associated with nodes
of these AST trees are properties, some of which are declared in property
declarations, and some of whose values are derived according to attribute
equations provided in the LS. Structures are mapped onto visua represen-
tations (on a screen or paper) according to presentation schemes given in the
LS. A language may include any number of different presentation schemes,
which are textual, tree, or graphic. A textua present ation scheme of ap-
propriate form can be associated in the LS with a parsing scheme, which
includes a token recognizer.

For example, given a language specification for a programming language,
a user would manipulate structures (programs and program fragments) that
are dlowable according to the language definition. Note that we define the
formalism as a set of structures, not the set of strings that can be peeled
from the leaves of those structures (as in the usual definition of languages).
Since everything in Muir operates with these structures, they are taken as
primary.

2.1 The Core Grammar

The core grammar for a language corresponds in power to a context-free
grammar. However it is based on a hierarchical formalism, which extends
previous phylum-operator models [Donzeau-Gouge et al., 1980; Reps and
Teitelbaum, 1984; Medina-Mora, 1982] through a mechanism of inheritance
as found in object-oriented languages with subclasses, such as Simula and
Smalltalk. Non-terminal symbols of a CFG correspond to phyla, which in
turn have associated operators. The formalism is defined in the appendix.
We will describe less formally several basic aspects:

Muir: A Tool for Language Design 7

Assignment
ProcedureCall
Simple
GoTo
If..then
Unlabelled Fmpty If<
Statement <Labelled Condltlonal If..then..else
Structured Begin._.End Case
Repetitive While For..to
With or < For..down.to
Repeat

Figure 1. Partial phylum hierarchy for a Pascad Grammar.

1. Phyla are organized into a directed acyclic graph (a hierarchy
allowing multiple parents). Each terminal phylum (having no descen-
dants) in this graph has an associated operator, which is comparable
to the right hand side of a rule (it uses names rather than ordering to
distinguish the constituents). The non-terminal elements of the graph
are called categorial phyla. A phylum A is a subphylum of B if there
is a path through the directed graph from A to B (including the zero-
length path). Language definition information (attribute equations,
edit operations, etc.) can be associated with categorial phyla and are
inherited by all of their subphyla.. There is a |-I mapping of terminal
phyla to operators. Figure 1 illustrates part of the phylum hierarchy
for the Pascal language.

There is a simple mapping from this onto a weakly equivalent CFG:
Each terminal phylum corresponds to a rule whose left hand side is
the the phylum name, and whose right hand side is its operator. Each
categorial phylum corresponds to a set of rules each having as its left-
hand-side the categorial phylum name, with a right hand side consist-
ing of a single symbol naming one of its immediate subphyla.

8 Terry Winograd

The motivation for this mechanism lies in our interest in the structures,
rather than the generated strings. The phylum/operator structure is
not strongly equivalent to the corresponding CFG structure, as illus-
trated in Figure 2.

The CFG version includes layers of single-constituent phrases, in order
to reflect the subclass structure. Of course someone using a standard
BNF would be unlikely to include such a fully articulated hierarchy. We
make constant use of it as the conceptual organization for associating
operations and other information with grammatical categories. The
phylum/operator formalism makes this possible without introducing
superfluous nodes in the trees. There are also special facilities for
dealing with list structures (e.g., for displaying and editing them) even
though they are represented in the underlying trees in standard binary
list fashion.

2. Phyla can be imported from other languages. An operator can
include symbols corresponding to phyla in its own language, and also
gateways, which specify an imported language and a phylum in that
language. Categorial phyla can include imported phyla among their
aternatives. This makes it possible to have mixed structures in which
one part of the structure is in a separately defined formalism. This
is used in severa ways. First, it alows modularity in designing lan-
guages. For example, the language-specification-language (metalan-
guage) used in Muir includes parts for specifying the core grammar,
for specifying attribute equations, for specifying edit operations, pre-
sentation rules, etc. Each of these is defined as a separate language,
al of which are declared as imported languages in the metalanguage.
The benefits are the same as in any modularization of what would
otherwise be a large flat heterogeneous structure. Also, mixed struc-
tures are a key element in using the system for transformations from
one language to another and from one language version to an updated
version, as described in [Ngrmark, 1986).

3. An AST can include unexpanded nodes which specify a phylum
and have no further structure. In structure-directed editing, this is an
obvious necessity, as we need to work with structures in progress. In
Muir, this is supported at all levels. That is, ASTs with unexpanded
nodes can be edited, stored, printed, etc. equaly with fully expanded
trees. Of course language-specific tools (e.g., compilers) would have

Muir: 4 Tool for Language Design
if . ..then

EqualExp Begif...End

arg 2
Variable Constant
X 743

Statet'ents
StatementList

1 2
ProcedureCall STATEMENT

Procame ———~a1g\is
Nafme ExpressionList

AddElement 1 2
Variable Variable
x items
if-then
IF Expression THEN Statement
StructuredExp Unlagelled
OpI xp Struc#ured
EqudlExp Begin...End
ExprTssion = ExprTssion BEGIN StatementList END
SimpieExp SimpieExp
Variable Constant Statement ; StatementList
X 74'13 Un(atlelled Statement
Simlple
ProcedureCall
Name ExpressionList)
AddElement
Expression ; ExpréssionList
Simlp|eExp Expréssion
Variable SimpieExp
X Vari|able
Items

Figure ‘2: Structures produced by a phylum-operator grammar and the

weakly equivalent CFG

10 Terry Winograd

to rgect them or provide for specia interactions to gather the missing
information.

4. The structure as embodied in an AST is not a homomorphic
image of some text. An AST specifies the types of nodes and the set
of children of each node, without giving any textual information, in-
cluding order. The operator is a set of pairs, each consisting of a unique
(with respect to that operator) constituent name (or ‘tag’), and a phy-
lum name. An AST node based on this operator must have exactly
one child for each pair, and the child must be a node whose phylum is
a termina phylum that is a subphylum of the second €lement in the
pair, or an unexpanded node corresponding to that element. We call
the phylum specified in the operator the choice phylum and the termi-
nal phylum used in the expansion of the child node the identification
phylum.

This last property goes along with a radical separation throughout the
system between structure and present&ion. The core grammar defines the
sat of structures, but does not describe any mapping of these onto sequences
of characters, graphical representations, or the like. There is a separate part
of the language specification (the presentation schemes and rules) which do
this, and they can do it in a variety of ways, as discussed below.

2.2 Properties and Attributes

AST structures are used as the fundamental organization of data for all
purposes related to structures in a formalism. This includes data that is
being used for temporary purposes (e.g., mappings between tree structures
and corresponding display €lements), data that has been reorganized for ef-
ficiency reasons (e.g., collecting al uses of a given variable into a list) data
used by particular tools (e.g., a compiler or program anayzer), and perma
nently associated data that does not fit naturally into the language structure
(e.g., comments). In order to do this, Muir alows property-value pairs to be
associated with any AST node. These are similar to the ‘annotations used
in MENTOR.

Property declarations can be associated with phyla in a language specifi-
cation. The hierarchy makes it possible to associate them at different levels.
For example, a property relevant to al phyla (such as ‘Comment’) can be
declared at the root node of the phylum hierarchy (called ‘Any’). There are
some important differences between properties and AST constituents:

Muir: A Tool for Language Design 11

1. Properties can have values not in the language. Every child of
an AST node must be a proper AST node in the language (as extended
by the imported languages). A property value may be an AST, or
may be an arbitrary data structure in the implementation language
(Interlisp-D).

2. No checking is done of value types for properties. The struc-
ture manipulating facilities make it impossible to put a wrongly typed
constituent into an AST. For properties, no checking is done. Dec-
larations are for documentation and to determine what editor should
be used when editing a property (the AST editor, the LISP structure
editor or other specialized data-structure editor (eg., a bitmap editor),
or a text editor).

3. Undeclared properties are allowed. The facilities for setting and
changing property values alow undeclared property names, operating
on the vaues according to whatever type information can be inferred
from them directly.

4. The mechanisms for presenting properties on the screen and
editing them are distinct from those for constituents (typicaly,
but not always, involving opening up a new separate window for the

property).

Property declarations are used to determine how property values should
be treated in presentation, and when structures are copied (either in core or
to secondary storage). A property can be ephemeral (never copy it), tempo-
rary (copy it in core, but don't write it to secondary storage), derived (with
associated rules for rederivation) or permanent (always copy it). Undeclared
properties are treated as temporary. Permanent properties are further de-
clared according to whether the values are written into the same storage as
the underlying tree, or into a separate module (so the tree could be reloaded
without them, or with a different one).

Many analyses of a structure are best organized according to phyla (e.g,
type checking, variable usage anaysis, conversion to canonical forms, com-
pilations of various kinds, etc.). That is, we can associate with each phylum
a procedure (or equation) that determines the appropriate value based on
values for adjacent (parent and child) nodes’ This kind of modularity is
especiadly important in a LDE, where frequent changes to the grammar are
being made. In order to reflect the changes to the corresponding analysis

12 Terry Winograd

one generally needs only to change the procedures or equations correspond-
ing to the modified phylum and to those operators that call it. Attribute
grammars [Knuth, 1968] can be applied to organize this kind of node-local
computation.

A Muir language specification can include attribute sets, each declaring a
set of property names and a collection of eguations used in caculating values
for those properties. These are used as in ordinary attribute grammars,
with additions for our extended grammar form. In particular, an equation
can be associated with a categorial phylum. A termina phylum without an
equation for one of its attributes will inherit the nearest one up the hierarchy
(as is usua in inheritance systems). It is an error to have equations inherited
from two distinct ancestors. This and other errors in the equation set (e.qg.,
circularities) can be checked for with an attribute-equation-checking tool
[Landgrebe, 1987].

2.3 Presentation Schemes and Rules

One of the major consequences of a structure-based (rather than text based)
environment is that the mapping from structures to visible representations
can be ‘decoupled.” This was recoghized in the initial work on syntax-
directored editors [Hansen, 1971}, but can be much more usefully exploited in
a high-resolution graphics envrionments where presentations with different
graphical structures and formatting can be appropriately used.

A core grammar includes no information on the ‘language’ as a set of
strings or graphical entities. These are given as presentation schemes (as-
sociated with the language as a whole) and presentation rules (associated
with individual phyla and inherited through the hierarchical structure). In
developing a language, this makes it possible to experiment with changes to
the surface syntax without changing the underlying trees and the analyz-
ers and tools associated with them. In a fixed language, it makes it easy
to provide multiple views, presentations specialy suited to a medium (eqg.,
display screen vs. paper) or a use (eg., specid forms for inclusion in for-
matted documents) and presentations with associated interactive properties
(e.g., graph displays in which items can be ‘buttoned’ to produce actions).
It alows us to unify aspects of an environment normally treated separately,
such as editing and browsing.

Muir currently supports two basic presentation forms, formatted test
and tree diagrams (we have adso begun developing more genera graphica
presentations). Formatted text is based on sequences of characters with as-

Muir: A Tool for Language Design 13

sociated looks, such as font, size, face, and vertica offset. These are laid out
in a structure that controls indentation, line-wrapping, and other such issues
normally dealt with under the heading of ‘prettyprinting’. Tree diagrams
present a homomorphic image of the structure tree (with nodes potentialy
omitted, merged, etc.) with labels (which in turn use a textual presenta-
tion). This is especially useful for larger-scale structures, such as the overall
(module-level) organization of a program or specification. However there is
no built-in distinction. A language specification for any language can in-
clude presentation schemes for showing its elements as trees, as texts, or
both, in any number of different ways.

A presentation scheme associates a presentation rule with each terminal
phylum (allowing inheritance from categorial phyla). We have approached
the design of this scheme at three levels of sophistication:

1. The simple level. At this level, there is a straightforward mapping
from sequences of elements in an operator to sequences of tokens (in the
text presentation) or nodes (in the tree diagrams). A text presentation
rule specifies ordering, presence of key words, punctuation, and line
breaking. This produces results equivalent to the simple formatting
done in most structure editors. A tree presentation rule can control
collapsing (showing descendants as though they were children) and
labelling.

2. The general level. At this level (See Peyton, 1987) the rule-writer
has much finer-grained control over the presentation. There is a ‘vir-
tual machine’ and a ‘presentation language’ that make it possible to
control looks (fonts, etc.), indentation (under several standard con-
ventions) and conditional line-breaking in the text schemes. This will
produce ‘prettyprinting’ of the quality done in published algorithms.
It also has special facilities for holophrasting and for ‘comment’ prop-
erties, alowing them to appear off to the side, or to be indicated with
a simple mark and expanded on demand, etc. For the tree schemes,
it will make it possible to present a tree that is computed from the
underlying structure but is not a homomorphic image of it.

3. The theoretical level. Notations in computer-based languages have
been extremely impoverished relative to the languages developed over
the centuries for hand-writing or hand-typesetting (as in mathemat-
ics, music, and various notations used in linguistics). We tend to
think of syntax as specifying linear character sequences, since that has

14 Terry Winograd

been the easiest way to get things in and out of computers. With
the greatly increased availability of high-resolution graphical output
devices (hardcopy and screen) and 2-d input devices (mice, tablets,
etc.) this is no longer the case. A language design environment should
make it possible to use nonlinear notations. Formatters like TEX and
SCRIBE give a. user direct access to the layout of items, but these lead
to focus on the page itself, not the underlying structure. In order
to integrate these with the rest of the structure-based environment
(the editor, storage, language-specific tools, etc) we need to provide
for principled mapping between the underlying structures and the ap-
pearance. This should not be ad hoc, but should be based on a careful
analysis and rational construction of the ways in which positioning is
used to reflect structure. One student is developing a dissertation in
this area.

2.4 Parsing

Because Muir is a structure-based environment, the parser plays quite a dif-
ferent role than it does in convent ional environments , where the conversion of
structure to text and text to structure play a mgor role in the ongoing work.
In a typical programming environment, a program is kept as a sequence of
characters (e.g., in a file system) and is edited using character-based edi-
tors. When something needs to be done that depends on its structure (e.g.,
compiling, checking, or doing structure-dependent edit operations) it must
be parsed into structure. Since these typically involve large amounts of text
(as in compiling) or immediate response demands (as in doing structure-
dependent edit operations), the speed of parsing is essential. There is a so-
phisticated grammar technology for designing languages for which parsing
time is linear. The only use of ‘unparsing’ (presentation) is in ‘prettyprint-
es which start from a structure and produce a text form that is intended
to be more readable (for people) than the one that was parsed to produce
the structure.

In a structure-based environment, the structure itself is the ‘real’ source.
Unparsing (using the presentation schemes) takes place whenever a structure
is presented (on a screen or paper), and parsing never needs to be done at al!
In a ‘pure’ form of a structure editor, the only thing not done through struc-
ture operations is the entering of tokens corresponding to termina nodes in
the tree (e.g., identifiers). This simply needs a tokenizing algorithm, not
a parser. When writing structures to secondary stable storage, there is no

Muir: A Tool for Language Design 15

need to produce human-readable forms, and an efficient direct encoding of
the structure can be used.
There are several problems with this idea of never parsing:

1. Awkward editing. Anyone who has tried to produce arithmetic ex-
pressions with a structure editor is painfully aware that the sequence
of operations needed to produce ‘(3*a+x)/2’ involves many more ac-
tions (keystrokes, button pushes, etc.) than typing the nine characters.
Languages often include particular subparts like this, where the linear
presentation form is more effective. These are typicaly very short-an
expression longer than a few dozen characters is amost impossible to
type without error, and is easier to build with structure editing.

2. Interchange compatibility. A system that cannot parse cannot be
used effectively in conjunction with other systems that are text based.
For example, it is convenient to be able to produce a language text
(e.g., on a home terminal) and be able to enter it into the environment.

3. Structure transformation. For the great majority of typical lan-
guage changes, the modifications to the surface text are at least as
complex as those to the underlying tree. For many changes, only the
appearance changes. But in some cases the reverse is true. As an
extreme example, imagine a language change which leaves the surface
form untouched, but turns some previously left-branching binary list
structure into the corresponding right-branching one. All the struc-
tures need to be changed, but this would be trivially done by simply
writing out an unparsed version, then reading it back in with a parser
using the new grammar.

Therefore, we need to include a parser in Muir. However, the fact that
its use is limited allows us to add generality:

1. The parser need not be highly efficient. When used in editing,
the parser is always deding with very short texts (tens of characters).
When used for structure transformation and interchange, it is typically
done in an ‘off-lin€ mode where fast turnaround is not critical.

2. Languages need not support efficient parsing techniques. Be-
cause of item 1, we can develop languages with full contest-free gen-
erality. This may be useful in experimenting with language designs,

16 Terry Winograd

or even as a fina outcome for languages whose applications are not
parsing-intensive.

The information contained in the core grammar is not sufficient for pars-
ing (it does not correspond to any particular surface form). The presentation
rules provide the basic information needed to produce corresponding parsing
rules, dthough they allow a generality that makes fully automatic inversion
impossible. Therefore, a textual presentation scheme (we have not consid-
ered parsing from graphics) can be used to derive corresponding parsing
rules under two conditions:

1. The presentation rules clearly identify all the constituents.
This means that the presentation specification language is used in a
particular fashion in which the sequence and identity of substructures
is clearly marked. Features such as conditional presentation can be
used in only limited ways (i.e., the conditions must be evaluable at
parse time, without the full structure available).

2. There are no formatting-resolved ambiguities. In deding purely
with presentation rules, we may use formatting to convey syntactic dis-
tinctions. For example, 1234~ might be the presentation of a number,
while ‘1234’ is the presentation of a character string. Or indentation
might be used to indicate scoping without explicit markers, as in dis-
tinguishing the two forms:

If something If something

then if other then if other
then this then this

else that else that

For a presentation scheme to support parsing, such differences cannot
have structural significance. Note that we may have severa presen-
tation schemes for a grammar, one of which makes structural use of
formatting (e.g., for hardcopy publication) while another doesn't (e.g.,
for use in the editor).

3. A tokenizing scheme is provided that allows the parser to deter-
mine the sequence of tokens corresponding to a sequence of characters.

4. Reserved words are declared in the presentation rules. In typ-
ical languages, certain tokens are reserved for marking the syntactic
structure, and cannot be used as identifiers. For example, in PASCAL
one cannot have variable named ‘if' or a procedure named ‘begin'.

Muir: A Tool for Language Design 17

3 The Interactive Environment

As outlined in the introduction, Muir provides an interactive environment on
a personal workstation (Xerox 1100 series) with a high resolution bitmapped
screen and pointing device (mouse). To a large extent, the environment
derives its characteristics from the underlying Interlisp-D environment, in-
cluding its ways of alocating screen space (overlapping windows), selecting
commands (pop-up menus) and displaying trees (a ssimple layout agorithm
and editor for directed acyclic graphs). The structure editor is not based on
the Interlisp-D structure editor (DEDIT), which is hand crafted for the struc-
ture of Interlisp-D. Instead it was built using the programmable features of
the text editor (TEDIT), which serves as a base ‘virtual editing machine.’

Figure 3 shows the basic components of the system (See Ngrmark, 1987b
for a tutorial and overview).

The core provides basic facilities for building and manipulating struc-
tures, aong with the language specification facilities needed to organize the
language-specific information used by the other levels. Around this core
there are a collection of generic tools, which make use of the language speci-
fication to provide structured editing, storage, parsing, etc. Finaly, around
these one can build language-specific tools, which take advantage of generic
tools to perform their work.

3.1 The Core

At the core are the primitives for building, modifying, and accessing AST
structures [Duran et al., 1987]. This core is built following conventions of
data abstraction (though not using an object-oriented language) so that
changes to the underlying implementations can be made without affecting
other code. It includes specidlized handling of AST structures used to rep-
resent lists.

The representations are designed with incremental change and mixed
structures in mind. The label associated with a tree node encodes three
pieces of information: a language name, a phylum name, and a version
identifier. Therefore each piece of the structure carries within it sufficient
information to update it appropriately in the face of language changes. This
can be done incrementally (as the piece of structure is needed for some
operation) or through transformations operating on a whole tree. In the
current implementation, language versions operate as a whole. In the one
being developed, version identifiers will be associated with individua phyla.

I8 Terry Winograd

compilers and interpreters

structure

r
translators presenter and

editor
systems

attribute

structure
generating

derivation

and manipulating
primitives

secondary

type

storage

checkers

manage- transform-

formatters.

ations

ment metagrammar

parsers
and
parser-generators

user AGE-SPECIFIC
environments

language specifications

Figure 3: Components of the Muir environment.

Muir: A Tool for Language Design 19

That is, when a change is made, it updates the version of the phylum, and
therefore any part of a structure not using that phylum will remain up-to-
date and not need changing.

The language specification information includes the core grammar and
presentation rules, attribute declarations, and facilities for associating other
kinds of information with the phyla in a language (e.g., procedures designed
to perform some special analysis or transformation). At the moment, our
facilities for deriving this information from the structure representing the
language specification (in the metalanguage) are batch-mode, operating on
the whole tree. In a number of special cases, we derive information from
(or ‘install’) a single phylum incrementally. We are working towards more
incrementalism, so that the language designer can make small changes and
continue working without a long compilation cycle.

3.2 Structure Editors

The largest and most important of the generic tools are the structure ed-
itors. The bulk of a user's interaction with the environment is through
windows on the screen that display an AST structure (in any of the forms
provided in presentation schemes) and alow the user to operate on it by
selecting substructures and activating edit operations sdlected from a menu
(which contains only those operations appropriate to the sdlected structure)
or through keyboard commands. Any number of presentation windows can
be active on the screen at once. The window placement, activation and
management (eg., scrolling, resizing and moving windows, shrinking a win-
dow to a small icon and re-expanding it on demand) are all handled by
Interlisp-D.

We have adopted a very general notion of edit, operation which includes
the following:

1. Generic environment manipulating operations. Any structure
is appropriate for selecting an operation that changes the environment
state. These include opening a new window with a presentation of that
structure (or a copy of it) in a specified presentation scheme, writing
it to a file or replacing it with one read from a file, etc. Some cross-
linguistic operations are primarily useful in developing (debugging)
language specifications. For example there is a generic operator that
when applied to any AST node will open a new window displaying the
specification (in the metalanguage) of the identification phylum for
the node.

20 Terry Winograd

2. Generic structure changing operations. Some structure opera
tions are generic, not depending on the phylum of the selected node.
Some of these have standard effects (e.g., ‘Copy,” and the ‘Reduce
operator which replaces a node with an unexpanded node of the ap-
propriate type), others make use of language-specification information
(e.g., the ‘Template’ operator, which replaces an unexpanded node
with a template that has been declared as the standard form for nodes
of that phylum), and others are applicable only to a subclass of nodes
(e.g. the list operators which apply only to list-element nodes).

3. Simple (automatically derived) structure changing operations.
These make use of the information in the language specification to
provide basic operations. For example, when an unexpanded node is
selected, the menu includes al of the operators associated with termi-
nal phyla that are descendants of the choice phylum in the hierarchy.
Selecting one of these replaces the unexpanded node with one based
on the operator.

4. Programmed operations. For a given phylum, the language de-
signer may want to specify specialized edit operations suited to the
language. For example, a Pascal language specification may include
an ‘Embed statement’ operation which will replace a statement with
a'begin. . .end’ block containing that statement. An inverse ‘Unem-
bed block’ operator might replace a block containing just a single
statement with the statement. Muir provides a generalized pattern
match/replace formalism that, can be used specify such operations
without explicit manipulation of the Interlisp-D data structures (see
[Ngrmark, 1987a]). Some programmed operators affect the environ-
ment rather than the structure. For example, there could be an oper-
ator associated with a procedure-cal node that displayed the definition
of the procedure named in it, or one associated with a procedure dec-
laration node that displayed a list of al the modules in which that
procedure is used. At the moment these need to be done on a one-
by-one basis, but there are obviously some standard patterns (e.g.,
cross-indexing of declarations and uses) which could be generalized
and driven by declarations in the language specification rather than
by specialized code.

Edit operations are used at all levels, including structure editing in the
smal and things that would normally be thought of as directory operations

Muir: A Tool for Language Design 21

(e.g., adding, removing and deleting modules or whole language specifica-
tions from a globa environment tree). In general, selection of the operand
structure is done with the mouse, but there are also keyboard commands
for common cases where operations are mixed with typing (e.g., select the
next unexpanded node). Currently the facilities for editing tree diagram
presentations are much more limited than those for text presentations.

Incremental updating algorithms are used to minimize the amount of
re-presentation that needs to be done on the screen when a change is made.
This is complicated by the fact that a given structure may appear simultane-
oudy in several windows, possibly under different presentation schemes. We
are letting experience determine where the efficiency problems come up, and
what needs to be done to maximize visbility and accuracy of the displays,
while minimizing delays.

3.3 Parsers

As mentioned above, athough the parser does not play as maor a role in
this system as it does in a conventional environment, it is still an important
component. We have developed two different parsers (neither of which is
yet fully integrated into the system). The first is an LALR(1) parser based
on the BOBS system [Ericksen €t a., 1982]. This system checks a context-
free grammar (written in a special form which includes error productions)
and determines whether it is LALR(1). If so, it produces tables that can
be used in an eficient parsing algorithm. If not, it indicates the problems
and the user can modify the grammar accordingly. The table-generator is
written in PASCAL and does not run on the workstation. There is a parser
written in Interlisp-D that uses the generated tables. The current meta-
grammar cannot directly produce the forms for input to the table generator,
so they must be edited by hand. Also, it has not been modified for the
hierarchical phylum/operator formalism (it was built during an earlier phase
of development). Since we are not focussing on applications that demand
efficient parsing, we have not yet brought this facility into line with the
rest of the environment. If we encounter applications where mass parsing is
important, we may further develop and integrate it.

The other parser is a general context-free parser, based on Kaplan's Gen-
eral Syntactic Processor [Kaplan, 1973]. In its existing form, GSP takes a
recursive transition net grammar (weakly equivalent to a CFG) and parses
in polynomia time (proportional to n2 if the grammar is unambiguous). We
have integrated it into our system by adding a component that translates

22 Terry Winograd

from our hierarchical form into the corresponding networks, and a compo-

nent that trandates the LISP forms produced by GSP into AST structures

consistent with our grammar (see Figure 2 above for the differences).
When the parser is fully integrated it will have severa properties:

1. It will be called by a standard edit operation on any AST
node. That is, the selected node will be presented (if already ex-
panded) in a text window, and the user will edit the text (or enter it
from scratch for an unexpanded node). The parser will then parse un-
der the appropriate category (not necessarily the distinguished symbol
of the grammar) and replace the AST node with the resulting struc-
ture. If the parse fails, the user will be returned to the text editor
with the faulty text and an indication of the problem.

2. It will be able to accept special markers for unexpanded
nodes. For example, the parser working with a Pascal language spec-
ification might accept a string like 1f x=3+(QExpression/2*units)
then y := x-6', in which the character sequence ‘' @Expression’ will
produce an unexpanded node in the AST with choice phylum ‘Expres-
son.

3. It will be able to translate from the generalized presentation
rule formalism into appropriate rules and reserved word list.
Currently it only works with the simplified presentation rule formal-
ism, which does not alow for font changes, conditional presentation,
etc.

3.4 Storage Management

If the environment needed only to deal with a single user operating in a
continuously available core image (in Interlisp terms, a ‘sysout’) on a large
enough machine, there would be no need for storage management. Interlisp-
D provides a virtual 24-bit address space with automatic memory alocation
and paging. This is more than adeguate for our envisioned uses. But of
course the real world differs from this. We need to provide for sharing
of dtructures between users on different machines in a networked environ-
ment. Also, there need to be ways to create well-modularized stable storage
structures that can encode subsets of the AST structures produced in an
environment, to be read back later into other instantiations (‘loadups’) of
MUIR.

Muir: A Tool for Language Design 23

Our initid plans called for a quite general system that would make it
possible to operate in a heterogeneous environment with a variety of file
servers, shared among a community of workers, robust in the face of rela
tively frequent and unpredictable system failures. In particular, it needs to
deal with coordinating shared files and loca files (on the individua work-
stations), alowing individual work to continue when the shared resource
is unavailable. After a fairly comprehensive initial design was developed,
work was postponed in the interests of developing other aspects of the en-
vironment . At the moment, the underlying Interlisp-D file system is used
in a fairly direct way. There is an operation that writes an AST structure
into a file (specified by server, directory and file name), and one that reads
the corresponding structure back in. All redundancy, inter-server copying,
access control, etc. are simply inherited from the Interlisp-D environment
(e.g., the COPYFILE function which does some format conversion) and the
servers themselves (each of which, for example, has its own access control
scheme). Since we have not yet attempted large shared applications, this
has been sufficient.

3.5 Attribute Evaluation

Attribute manipulation (See Landgrebe, 1987) is one of the generic tools, not
a part of the core. An AST need not have a consistent solution to its attribute
equations in order to be treated as well formed. Satisfaction of an attribute
set may be required by various language-specific tools. Solution is done
for an entire AST a one time, not incrementaly as structural changes are
made. This means that in generic tools (e.g, the structure editor) attribute
constraints are not considered. This is a limitation, and a possible direction
for further research (as in [Reps, 19841).

Computation of attributes is currently done in a demand fashion which
alows the value of a given attribute at a particular AST node to depend both
on values of its descendants and of its parent. A list is kept of attributes
whose value depends on a not-yet-available value, and whenever an attribute
is computed, this list is checked for values that have become computable.
This very general approach does not lead to the most efficient attribute
computations, but was selected in line with our genera strategy of providing
a maximally flexible prototype. A language designer might well design a
particular grammar with a more limited version of attribute caculation (e.g.,
using only synthesized attributes, or using both synthesized and inherited
atributes but not alowing values of one to depend on the other), with the

24 Terry Winograd

expectation that after the language stabilized, an environment could be built
that took advantage of this restriction to do things more efficiently.

3.6 Transformations

As mentioned in Section 3.2, the edit operations provided by the struc-
ture editor are implemented using a general transformation formalism. This
formalism was designed for extended uses of transformations, such as the
trandation of a program from one language to another, or from an earlier
to a later version of the same language, or the further refinement of pro-
grams through transformation. This is particularly important in working
with an evolving language. As the language changes, structures that were
previously created are no longer well-formed with respect to the later ver-
sion. On the other hand, one should not have to recreate them from scratch.
Facilities are being provided to ‘update’ structures from one language ver-
sion to another, with as much automation as possible. Many changes (eg.,
adding new phyla) require no transformations to existing structures. Others
(e.g., renamings, or the addition of elements to an operator) require trans-
formations that can be automated. Others (e.g., replacing a phylum with
two distinct new ones) will require manual updating, but the system can
locate the appropriate places and give the user interactive choices of what
to do. These same possibilitiesapply to other trandation activities, such as
trandating a program from one language to another.

The basic transformation primitives use a pattern-match and replace
form, and automate a number of simple transformations. The transforma-
tion component and some experimental uses of it are described in [Ngrmark,
1987a].

4 Applications

In the process of developing Muir we have been motivated and guided by
specific languages we wanted to work with. We are ill in a stage of active
development and do not have any fully-developed language-specific environ-
ments. The following are the major implementations to date:

4. 1 Aleph

The Muir system was initiated as part of developing the Aleph system spec-
ification language [Winograd, forthcoming]. After developing a series of
prototype environments specialized for Aleph, it became clear that it was

Muir: A Tool for Language Design 25

worth the effort to do a more general environment, for which Aleph would
be just one application. Many of the Muir facilities were initially designed to
handle the features of Aleph, and were tested on various versions of it. The
BOBS parser was applied to versions of Aleph and it was the major example
for the first prototype of the structure editor. No language specification has
been written yet for a full version of Aleph, awaiting the documentation of
a stable working version of that language.

4.2 Pascal/Modula

As an extended example for developing theoretical work in program transfor-
mation, language specifications for Pasca and Modula were written, struc-
tures (programs) were created and transformations (translations from one
language to the other) have been done. This work is described more fully
in [Ngrmark, 1987a] .

4.3 MetaGrammar: The Muir
Language Specification Language

The most heavily used language specification developed so far is the specifi-
cation of the specification language itself. This was done in a bootstrapping
fashion, in which a handcrafted version was produced, which could in turn
be used to bring the language, development tools to bear on the specifica
tion language itself. Currently we are operating with a fully bootstrapped
MetaGrammar [Holstege, 1987], in which the language-designer can use the
structure editor, storage mechanisms, attribute computations, etc. in defin-
ing a language. It has severa interesting features:

1. The standard presentation rules use a combination of tree
diagrams and textual forms. The higher level dructure (eg., the
phylum hierarchy) appears as trees, while the detailled structure (eg.,
the operators and presentation rules) are represented by formatted
text.

2. It provides special mechanisms for defining list and tree struc-
t ures. The basic AST format does not handle lists as specia data
structures, but represents them as right-branching trees. The set of
relevant phyla and operators (e.g., for lists, empty lists, etc.) are
generated from a higher level ‘List-phylum’ specification provided for
in the MetaGrammar. Similarly, trees with labelled nodes (e.g., as
used in a directory structure) have specialized specification forms, but
create AST nodes with standard structure.

26 Terry Winograd

3. It provides for tompiling” the language specification for effi-
ciency. The form that is most convenient for a language designer is
often not the most efficient for use by generic tools like the structure
editor. For example, the set of terminal phyla associated with a cate-
gorial phylum needs to be known every time a menu of edit operations
is created for that phylum, and must be computed by a search in the
phylum hierarchy. This search is done once and the result stored (as
a property) for use by the editor. Currently these compilations are
done by speciadly written Interlisp-D code, but in the near future we
hope to use the attribute equation and evaluation facility to do most
of them in a structured way.

5 Status and Conclusions

Muir is in an active state of development, not yet ready for general use.
Many of the facilities were described above as currently being implemented
or scheduled for future work. Our plans involve developing specifications for
a number of sample languages (including some from logic and mathematics,
as well as programming and specification) in order to revea the shortcomings
and point to the best directions for development. In addition, a number of
obvious efficiency issues must be addressed before the performance will be
acceptable to any but highly-motivated users.

It is too early to state confidently that Muir will be a practical tool
for language designers, but our experience so far (including our own use
of it as a tool for writing and modifying language specifications) confirms
our belief that it has great promise, both as a concept and as a particular
implement ation.

Muir: A Tool for Language Design 27

Appendix: The Muir Grammar Formalism

This is intended as an explanatory introduction. For a more thorough and
precise definition, including multi-formalism grammars and issues of trans
formation between grammars, see [Ngrmark, 1987a].

We are concerned with a grammar that is used to define a set of possible
AST structures:

e An AST structure is a tree structure made up of AST Nodes. It differs
from a standard tree structure in that the ordering of branches within
a node is not considered, and the labd of a node is made up of two
symbols, called the Identification phylum label, and Child identifier.

¢ In addition there is a function from nodes of an AST structure to
Property lists, described further below.

A grammar is represented as a graph structure whose elements are
Phyla, linked by a relation of Subphylum (which is reflexive-a phylum is a
subphylum of itself). It is a directed acyclic graph (which can be thought of
as a partial ordering, or as a tree in which a node can have multiple parents).

o There is |-l function mapping every phylum in the grammar onto a
token caled its name (no two phyla share a name).

o There is a function whose domain is the set of termina phyla (a phylum
whose only subphylum is itself), and whose range is a set of Structural

descriptions.!

o A dtructural description consists of an unordered set of ordered pairs
of names (the Child name and the Choice phylum name). No two pairs
in a structural description have the same child name.?

An AST is well-formed with respect to a grammar, if and only if:

1. For every node, the identification phylum label names a phylum in the
grammar (which we can cal the ‘identification phylum’ for the node.

T have used the term Structural description” in place of ‘perator” in order to avoid
debates with regard to previous versions of this and other systems.

2Note: If we were to use initial segments of the natural numbers as sets of child names,
the structure would be equivalent to using ordered- trees with no child names. We have
not done this in order to emphasize the fact that ordering of elements belongs to the
presentation rules, not the abstract grammar.

28 Terry Winograd

2. For every node that has children, there is a one-one correspondence
between the node's children and the elements of the structural descrip-
tion associated with the node's identification phylum, such that:

(@ The child name of the SD pair is equal to the child identifier of
the child

(b) The identification phylum name of the child names a subphylum
of the phylum named by the choice phylum name of the SD pair.2

3. The root node of the tree has the distinguished token ROOT' as its
child name*

3Childless nodes include those corresponding to CFG terminal symbols, or to other
nodes that are unexpanded but belong to phyla that could include expansions with chil-
dren. Note that a well-formed AST may include unexpanded nodes

*Note that this does not specify the phyla of the root, except to the degree they are
constrained by the above. A legal AST structure can have any phylum at its root.

Muir: A Tool for Language Design 29

References

SESPDE stands for Proceedings of the ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software Development Environments,
issued as Software Engineering Notes 9:3 and SIGPLAN Notices 19:5, May
1984

Donzeau-Gouge, Veronique, Gerard Huet, Gilles Kahn, Bernard Lang. 1980.
Programming Environments Based on Structured Editors. The Mentor
Experience. Inria, Rapport de Récherches, no. 26. July.

Donzeau-Gouge, Veronique, Gilles Kahn, Bernard Lang, B. Melese. 1984.
Document Structure and Modulariy in Mentor. SESPDE, 141-148.

Duran, Raul, Mary Holstege, Kurt Ngrmark and Liam Peyton. 1987. Muir
Tree Documentation. CSLI1 Informal Note #87-6.

Eriksen, S.H., B.B. Jensen, B.B. Kristensen, and O.L. Madsen. 1982. The
BOBS-System. Aarhus University, Computer Science Department PB-71,
3rd Ed.

Hansen, Wilfred J. 1971. Creation of Hierarchic Text with a Computer
Display. Ph.D. dissertation; Stanford University.

Holstege, Mary. 1987. The Muir MetaGrammar. CSLI Informal Note
#87-7.

Kaplan, Ronad. 1973. A Multi-processing Approach to Natural Language.
Proc. National Computer Conference. Montvale, New Jersey: AFIPS
Press.

Knuth, Donald. 1968. Semantics of Context-free Languages. Mathematical
System Theory Journal, 127-145.

Landgrebe, Birgit. 1987. The Work with Attributes in the Muir Environ-
ment. CSLI Informal Note #87-8.

Linton, Mark. 1984. Implementing Relational Views of Programs. SESPDE,
132-140.

Medina-Mora, Radl. 1982. Syntax-directed Editing: Towards Integrated
Programming Environments. Ph.D. thesis, Department of Computer
Science, Carnegie-Mdlon University, March.

30 Terry Winograd

Ngrmark, Kurt. 1987. Transformations and Abstract Presentations in a
Structure-oriented Editing Environment. Dissertation Aarhus Univer-
sity, CSLI Informal Note #87-9.

Notkin, David. 1985. The Gandalf Project. The Journal of Systems and
Software, 5:2 (May).

Peyton, Liam. 1987. Presentation in a Language Design Environment. CSLI
Informal Note #87-10.

Reps, Thomas. 1984. Generating Language-based Environments. MIT Press.

Reps, Thomas and Tim Teitelbaum. 1984. The Synthesizer Generator.
SESPSDE, 42-48.

Teitelbaum, Tim and Thomas Reps. 1981. The Cornell Program Syn-
thesizer: A Syntax-directed Programming Environment. CA CM 24:9
(September) 563-573.

Teitelman, Warren. 1969. Toward a Programming Laboratory. Interna-
tional Joint Conference on Artificial Intelligence, Washington, May, |-8.

Wile, David. 1982. POPART: Producer of Parsers and Related Tools, Sys
tem Builder's Manual. USC/ISI TM-82-21.

Winograd, Terry. forthcoming. Aleph: A System Specification Language.
CSLI report.

