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Abstract

Production systems (or rule-based systems) are widely used for the development of expert
systems. To speed-up the execution of production systems, a number of different approaches
are being taken, a majority of them being based on the use of parallelism. In -this paper, we
explore the issues involved in the parallel implementation of OPS5 (a widely used production-
system language) in QLISP (a parallel dialect of Lisp proposed by John McCarthy and Richard
Gabriel). This paper shows that QLISP can easily encode most sources of parallelism in OPS5
that have been previously discussed in literature. This is significant because the OPS5
interpreter is the first large program to be encoded in QLISP, and as a result, this is the first
practical demonstration of the expressive power of QLISP. The paper also lists the most
commonly used QLISP constructs in the parallel implementation (and the contexts in which
they are used), which serve as a hint to the QLISP implementor about what to optimize. We
also discuss the exploitation of speculative parallelism in RHS-evaluation for OP’S5. This has

not been previously discussed in the literature.
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Parallel Execution of OPSSin QLISP

Abstract

Production systems (or rule-based systems) are widely used for the development of expert systems. To speed-up
the execution of production systems, anumber of different approaches are being taken, a majority of them being
based on the use of paralelism In this paper, we explore the issues involved in the parallel implementation of
OPSS5 (awidely used production-system language) in QLISP (a parallel dialect of Lisp proposed by John McCarthy
and Richard Gabriel). This paper shows that QLJSP can easily encode most sources of parallelism in OPSS that
have been previoudly discussed in literature. This is significant because the OPSS interpreter is the first large
program to be encoded in QLISP, and as a result, thisis the first practical demonstration of the expressive power of
QLISP. The paper aso lists the most commonly used QLISP constructs in the parallel implementation (and the
contexts in which they are used), which serve as a hint to the QL JSP implementor about what to optimize. We aso
discuss the exploitation of speculative parallelism in RHS-evaluation for OPSS. This has not been previously
discussed in the literature.

1. Introduction

There are several different programming paradigms that are currently popular in Artificial Intelligence, examples
being production systems (or rule-based systems), frame-based systems, semantic-network systems, |ogic-based
systems, blackboard systems. Of the above, production systems have been widely used to build large expert systems
[10, 14]. Unfortunately, production systems run quite slowly, and this has especially been a problem for
applications in the real-time domain. Production systems must be speeded-up significantly if they areto be used in
new increasingly complex and time-critical domains. In this paper, we focus our attention on a specific production-
system language, OPSS, that has been widely used to build expert systems and whose performance characteristics
have been extensively studied. We also focus on parallelism asa means to speed-up the execution of OPS5.

The parallel execution of the OPSS production-system language has been studied by several groups [4, 8, 11, 13].
Their general approach consisted of two steps: (i) the design of a dedicated parallel machine suitable for execution
of OPSS; and (ii) the mapping of the OPS5 compiler and run-time eavironment on to the parallel hardware. In these
implementations, the second step (the mapping step) involves parallel encoding of OPS5 using hardware specific
and operating-system specific structures. In this paper, we explore how this mapping step may be done in a
high-level parallel dialect of Lisp, called QLISP. The main advantages of encoding using a high-level programming
language are: (i) Increase in portability, since the code does not depend on machine specific features; (ii) Greater
flexibility and expressive power of the high-level language resultsin faster turn-around time, fewer errors, and more
readable and modifiable code. The main disadvantage, of course, is that the encoding may not be as effiiient as
h& ad-coded hardware-specific encodings. We normally do not wary about such issues for uniprocessors --
language compilers for uniprocessors are good enough - but the disadvantage is significant for parallel
implementations where the technology is not as far advanced. There is one more strong motivation for doing a
paralel implementation of OPS5 while remaining within Lisp (unlike most previous paralel implementations).
Thisis that OPSS is often used as an embedded system within larger Al systems, and the fact that the rest of these
systems are encoded in Lisp, If OPSS isalso encoded in Lisp, then it makes the task of interfacing much simpler.

There are several parallel Lisp languages, for example, Multilisp {8, 6, 71 and QLISP {3], that are available for
speeding up Lisp programs by using multiple processors. Since QLISP is based on the Common Lisp [12}, it
provides very powerful facilities to the user. Multilisp is based on a functional programming subset of Lisp.
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Another distinguishing features of QLISP is that control mechanisms to access shared data or global data are
embedded in Lisp primitives. Other parallel Lisp languages use some data structures for locking, such as
semaphores. QL ISP enables the user to write parallel programs without paying much attention to the consistency of
shared or global data One of the main purposes of this research is to explare the expressive power of QLISP by
implementing a large program in it. Ours is the first large (“red”) program implemented in QLISP, so this
constitutes the first practical demonstration of the expressive power of QLJSP. We also list the most commonly
used QLISP constructs and the contexts in which they are used, which can serve as a guide for optimizing the
implementation of the QLISP language. A language whereit is easy to express parallel constructs, but which does
not offer better performance i snotof muchuse.

The approach we take for parallelizing OPSS is based on that of the Production System Machine (PSM) project at
Carnegie-Mellon University [4]. The PSM project studied how the speed-up from parallelism increases as one goes
from coarse-granularity (rule-level) to fine-granularity (intra-node) parallelism. We impkment each of their
schemes and show that it is relatively easy to encode these parallel schemes within QLISP. We also show some
interesting ways in which to exploit conflict-resolution parallelism and speculative parallelism! in RHS evaluation
using QLISP.

‘Ibis paper is organized as follows. Section 2 presents some background information about the OPSS language,
the Rete algorithm used to implement OPS5, and about QLISP. Section 3 describes how we do a pardlé
implementation of OPSS using QL ISP and the various issues involved. Finally, Section 4 is devoted to a discussion
and conclusions.

2. Background

2.1. TheOPSS Production-System L anguage

An OPSS [1} production system is composed of & set of if-then rules called productions that make up the
production memory, and adatabase of assertions called theworking memory. The assertionsin the working memory
are called working memory elements. Each production consists of a conjunction of condition elements
corresponding to the if part of the rule (also caled the left-hand side of the production), and a set of actions
corresponding to the then part of the rule (also called the right-hand side of the production). The left-hand side and
the right-hand side are separated by the "-->" symbol. The dons associated with a production can add, remove or
modify working memory elements, or perform input-output. Figure 2-1 shows two simple productions named p!
(with three condition elements)and p2 (with two condition elements).

(p p! (ClI “ color <x> “size 12) (p p2 (C2 “price 38 Acolor <y>)

(C2“price 38 “color <x>) (C4 color <y>)
" (C3 “color <x>) ->
-> (modify 1 “price 50) )
(remove 2) )

Figure 2-1: Example of productions

The production system interpreter is the underlying mechanism that determines the set of satisfied productions

"lbep.lllelmmdammuﬁﬁummmmm:me@mm mn;.mmionm. The
fonnermeam!haullwmwmwdmm,mmmmmummemmwamym
be necessary.
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and controls the execution of the production system program. The interpreter executes a production system program
by performing the following recognize-act cycle:

o Match: In thisfirst phase, the left-hand sides of al productions are matched against the contents of
working memory. As a result a conflict set is obtained, which consists of instantiations of all satisfied
productions. An instantiation of a production is an ordered list of working memory elements that
satisfies the left-hand side of the production.

. Conflict-Resolution: In this second phase, one of the production instantiations in the conflict set is
chosen for execution. |f no productions are satisfied, the interpreter halts,

.Act: Inthisthird phase, the actions of the production selected in the conflict-resolution phase are
executed. These actions may change the contents of working memory. At the end of this phase, the
first phase is executed again.

Each working memory element is a parenthesized list consisting of a constant symbol called the class of the
element and zero or more attribute-value pairs. The attributes are symbols that are preceded by tbe operator A. The
values are symbolic or numeric constants. Each conditional element in the LHS consists of a class name and one or
more terms. Each term consists of an attribute prefixed by *, an operator, and a value. An operator is optiona and
its default value is=. other operators are «, <=, >, >=, <> and <=>. A value is either a constant or a variable. A
variable is represented by an identifier enclosed by < and ». A variable can match any value, but al occurrences of
the same variable in the LHS of a rule should match the same value. Conditional elements may not contain all pairs
of attribute-value present in a warking memory element. If a conditional element is preceded by -, it iscalled a
negated condition element. The match for arule succeeds only if there is no working memory element matching its
negated condition element.

The RHS of a production can contain any number of actions. Actions can be classified into:
« Working memory operations. These are make, remove, and modify.

« VO operations: These are openfile, closefile, and write.
« Binding operations. These are hind and cbind.

o Miscellaneous operations: These are default, call, halt, and build.
The above action types often take functions as arguments. Some such functions are // (quote), substr, genatom,
compute, litval, accept and acceptline.

_2.2. The Rete Match Algorithm
Empirical study of various OPS5 programs shows two interesting characteristics; temporal redundancy and
structural similarity [2). Temporal redundancy refers to the fact that a rule-firing makes only a few modifications to
the working memory and most working-memory elements remain unchanged. Structural similarity refers to the fact
that all productions are not totally distinct, and that there are many similarities between the condition elements of
different productions. The Rete match algorithm exploits these two features to speed up the match phase of the
interpreter.

The Rete algorithm uses a specia kind of data-flow network compiled from the | eft-hand sides of productions to
perform match. The network is generated at compile time, befare the production systems is actually run. Figure 2-2
shows such a network for the two productions shown in Figure 2-1. In this figure, lines have been drawn between
nodes to indicate the paths along which information flows. Information flows from the top-node down along these
paths. The nodes with a single predecessor (near the top of the figure) are the ones that are concerned with
individual condition elements. The nodes with two predecessors arc the ones that check for consistency of variable
bindings between condition elements. The terminal nodes are at the bottom of the figure. Note that when two
left-hand sides require identical nodes, the algorithm shares part of the network rather than building duplicate nodes.
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Figure 2-2: The Rete network

To avoid performing the same tests repeatedly, the Rete agorithm stores the result of the match with working
memory as state within the nodes. This way, only changes made to the working memory by the most recent
production firing have to be processed every cycle. Thus, the input to the Rete network consists of the changes to
the working memory. These changes filter through the network updating the state stored within the network. The
output of the network consists of a specification of changes to the conflict set.

The objects that are passed between nodes are called tokens, which consist of atag and an ordered fist of
working-memoryelements. The tag can be either a +, indicating that something has been added to the working
_memory, or a —, indicating that something has been removed from it. The list of working-memory elements
associated with a token corresponds to asequence of those elements that the system is trying to match or has already
matched against a subsequence of condition elements in the |eft-hand side.

The data-flow network produced by the Rete algorithm consists of four different types of nodes. These are:

-1. Constant-test nodes. These nodes are used to test if the attributes in the condition eement which

have a constant value are satisfied. These nodes always appear in the top part of the network. They
have only one input, and as aresult, they are sometimes called one-input nodes.

2. Memory nodes. These nodes store the results of the match phase from previous cycles as state within
them The state stored in a memary node consists of a list of the tokens that match a part of the
left-hand side of the associated production. For example, the right-most memory node in Figure 2-2
stores al| tokens matching the second condition-element of production p2.

At amore detailed level, there are two types of memory nodes -- the a-mem nodes and the B-mem
nodes. The a-mem nodes store tokens that match individual condition elements. Thus all memory
nodes immediately below constant-test nodes are a-mem nodes. The -mem nodes store tokens that
match a sequence of condition elements in the |eft-hand side of a production. Thus all memory nodes
immediately below two-input nodes arep-mem nodes.
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3. Two-input nodes: These nodes test for joint satisfaction of condition elements in the left-hand side of
a production. Both inputs of a two-input node come from memory nodes. When a token arrives on the
left input of a two-input node, it is compared to each token stored in the memory node connected to the
right input. All token pairs that have consistent variable bindings are sent to the successors of the
two-input node. Similar action istaken when a token arrives on the right input of a two-input node.

There are also two types of two-input nodes -- the and-nodes and the not-nod&. While the and-nodes
are responsible for the positive condition elements and behave in the way described above, the not-
nodes are responsible for the negated condition elements and behave in an opposite manner. The
not-nodes generate a successor token only if there are no matching tokens in the memory node
corresponding to the negated condition element.

4. Terminal nodes: There is one such node associated with each production in the program, as can be
seen at bottom of Figure 2-2. Whenever a token flows into a termina node, the corresponding
production is either inserted into or deleted from the conflict set.

23. QLISP - Parallel Lisp Language

QLISPisaqueue-based parallel Lisp proposed by Dick Gabriel and John McCarthy [3] and is being implemented
on an Alliant FX/8 shared-memory multiprocessor by Stanford Univer sity and Lucid Inc. QLISP is similar to
Multilisp [S, 6, 7], but language constructs incorporate important mechanisms for parallel computation such as
spawning and locking. The spawned processes are put in the system queue and given to a processor by the
scheduler to evaluate it The key ideas in QLISP were derived by reexamining Common Lisp [12] from the
perspective of parallel processing, and by striving to make the minimal number of extensions to Common Lisp.
Some QL ISP primitives aresummarized in the following subsections.

. 23.1. QLET
The gqlet form executesitslocal binding in parallel.

(glet predicate ({ (var value) }*) (form}*)

The qlet form is a construct to evaluate all values in parallel2, However, its computational semantic depends on the
result of predicate which is evaluated first in theqlet form.
o If the result of predicate is nil, the (let form acts exactly asthe let farm.
o If theresult of predicate is neither nil nor eager, a process far each value is spawned and the process
evaluating a glet form is suspended. When all the results of value are available, each result is bound to

each var and the process evauating a glet form resumes its computation; that is, the body of a glet form
is evaluated.

o If theresult of predicate is eager, a special value, futwre, is bound to each var and the body of a qlet
form is evaluated immediately. » future is associated with a process which evaluates a value
eventually. Inthe execution of the body, if the value is not supplied yet, the process executing the body
is suspended till the value is available.

Two kinds of parallel fibonacci functions are shown in Fig. 2-3.

The first one caculates a fibonacci number by spawning a process to calculate every fibonacci number of a
smaller number. There may occur a combinatorial explosion of processes if n is alarge number. For example, the
number of spawned processes is 176.21890 and 242784 for n = 10.20 and 25, respectively. The second fibonacci
function spawns a process only if the depth of the nesting is less than the value of *cutt-off*. The glet predicate

2Since the peall farm in MultiLisp evaluates srguments dla functioa in parallel, it will be easily implement by gkt in QLISP
*The mechanism of eager is an implicit implemeatation of the future form in MultiLisp, or the lazy evaluation.
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(defun fib (n)
(cond((<n2)1)
(t (glett ((fl (fib (- n 1)))
(2 (fib (-n2))))
(+f112) )))

(defun fib-c (n)
(I abel s ((fib-cutoff (n depth)
(declare (specia *cutoff-number+))
(cond((<n2) 1)
(t (glet (< depth *cutoff-number*)
((f1 (fib-cutoff (- n 1)) (1+ depth))
(f2 (fib-cutoff (- n 2)) (1+ depth)) )

 (+1112) )
(fib-cutoff n Q) ))

Figure2-3: Two parallel Fibonacci functions- Exampk of gkt

enables the user to control the spawning of processes. Needless to say, an appropriate value for *cut-off* should be
determined by thetradeoff between the cost and benifit of spawning.

23.2. QLAMBDA
Thelambda form in the Common Lisp creates a closure which is used to share variables among several functions
or as an anonymous function. The glambda form creates a process closure.

(glambda predicate lambda-list {form} *)

A process closure is used not only to share variabks among several process closures but also to control an
exclusive invocation of thesame process closure. That is, only one application of a process closure is evaluated and
other applications of the same process closure are suspended The evaluation of a process closure depends on the
value of predicate which is evaluated at the time of evaluation of the qlambda form, that is, creation of a process
closure.

o If theresult of predicate is nil, the glambda form acts exactly as the lambda farm That is, a lexical
closureis created

« If theresult of predicate is neither mil nor eager, a process closure is created. \When it is applied with
arguments, a separate process is spawned for evaluation. If more than one applications occur, only one
applications are evaluated and others are blocked. This is an implicit locking mechanism

« If theresult of predicate is eager, a process closure is created and spawned immediately without
waiting for any arguments.

A process closure may be used as an anonymous process, of which application is evaluated as a separated process.
The spawn form is a shorthand form to do it; that is,

(spawn {form}*) is the same as ((qlambda t () {form}") .

I'n a sequential construct such as block, all forms may be evaluated in parallel by spawn. A set of functionsto
updat e of the conflict-set is shown i n Fig. 2-4. The gl obal variable*confli ct-set-1ock* holdsa glambda
closure to control the exclusiveaccess to the variable*conflict-set* which holdsthelist of production

“This curious mechanism can be used to write a parallel Y operator, that is, for all f, Y(D)=f(Y(f)), in QLISP. However, other useful
applications are not yet known.
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i nst ances. Theideato provide an exclusive access to *conflict-set® isto execute an update operation by using the
same glambda closure. The locki S released when register-cs returns avalue immediately or when
sort-conf |ict-set updates t he *conflict-set+ or executes asorting by spawning asubprocess by qlet with the
predicate eager.

(proclaim (special *conflict-aet-lock* *conflict-set*))

(defun ops-init ()
(setq *conflict-set-|ock*
(gl anbda t (body) (apply (car body) (cdr body))) ))

(defun inaertca (nanme data rating)
(funcall *conflict-set-|ock*
(list 'register-ca
name data (cons (sort-time-tag data) rating) t )))

(defun renoveca (name data rating)
(funcall *conflict-set-|ock*
(list '"register-ca
name data (cons (sort-time-tag data) rating) nil )))

(defun register-ca (nane data key flag)
(cond ((null *conflict-set*)
(aetq *conflict-set*
(carete-new-cs-element key ni|l nane daaflag) ))
(t (sort-conflict-aet nane data key flag *conflict-set*)) ))

Figure 2-4: Locking for Conflict-set

233. CATCH and THROW
A pair of catch and throw provides away to do a non-local exit in the Common Lisp.
(catch tag form) and (throw tag walue)
In QLISP, it provides not only ameans of non-local exit but also a mechanism to control subprocesses spawned
during the evaluation of form in the catch form. If the catch gets a value by the normal termination of form or a
throwing, the catch kills all processed spawned during the execution of the form. If the value contains afuture, the

associated processes are not killed Note that the execution of a process spawned at a value-ignoring position of a
sequential construct isaborted.

23.4. QCATCH

The gcatch form is similar to the catch form, but the control of spawned processes is different.

- (gcatch tag form)
If the evaluation of the form terminates normally and the qcatch gets a value, the gcatch waitsfor all the processes
spawned during the execution of the form to terminate. Therefore, processed spawned at a value-ignoring position

will be evaluated before terminating the gcatch form. If the execution of the form is aborted by a throwing, the
gcatch kills all spawned processes benezth it.

23.5. UNWIND-PROTECT

The unwind-protect form is useful to do some cleanup jobs no matter what the unwind-protect formis
terminated

(unwind-protect protected-form { cleanup-form} *)
The unwind-protect form is very important in QLISP warld in order to make the data consistent, because processes
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can be killed by the catch even if no throwing occurs.

23.6. Others

The suspend-process and resume-process forms are used for the user to control the scheduling of processes.
THe wait and no-wait are used to control the termination of a process spawned at a value-ignoring position of
sequential constructs.

3. Parallel execution of OPSS programs

As stated in Section 2.1, the OPSS interpreter repeatedly executes a match -- conflict-resolution -- act cycle. In
this section, we discuss how parallelism may be exploited in executing each of the three phases. Most of the
discussion focuses on the match phase, as the match phase takes 90% of the time in the interpreter.

3.1. Parallelism in Match Phase

In this section, we explore how parallelism may be exploited to speed up the match phase. We present several
different algarithms. \We start with a coarse-granularity algorithm and dowly move towards finer granularity. In
particular, we explore parallelism at three levels of granularity — rule-level parallelism, no& -kvel paralklism, and
intra-node parallelism All of the above algorithms are based on the Rete algorithm described in Section 22. What
changes from one parallel agorithm to the other is the kinds of node activations that are allowed to be processed ir
parallel. The granularities we choose to discuss here correspond to those discussed in [4].

Before exploring the above schemes further, a word about the different kinds of node activations in the Rete

network. Activations of constant-test nodes (shown in top-part of network in Figure 2-2) require just asimple test

“and are fairly cheap to execute. We call these ctest activations. It is usually not worth it to spawn a process to
execute an individual ctest activation, because the overhead of spawning islarger than the work saved.

The second kind of node activations are the memory-no& activations. These require that a token be added or
deleted from the memory node, and can be expensive because a del ete request may require searching through all the
tokens stored in that memory node. The third kind are the two-input node activation& that require searching through
the opposite memory-node to find all matching tokens (tokens with consistent variable bindings). These are also
fairly expensive. We normally lump the processing required by the two-input node and the associated memory
nodes together into a single task/process, because the two are closely interrelated (the two-input activation examines

.the memory node) and separating them incurs a large synchronization overhead. One also has to be careful about
the sequence in which the above node activations are executed. For example, the Rete algorithm sometimes
generates conjugate tokens, where exactly the same token is first scheduled to be added to the memory node and
laterdeleted- The final result should be that the state of the memory node remains unchanged. However, in parallel
implementationsit is easily possible that the scheduler decidesto pick the delete request before the add request, and
if not handled properly, the final state of the memory node may have an extra token. To process conjugate pairs
correctly, each memory node has an extra-deletes-list to store a deleted token whose target token has not arrived yet.

Finally, there are terminal-no& activations that insert or delete instantiations/tokens into the conflict-set. Here
also the problem of conjugate tokens can occur. ‘The details for terminal-node activations are discussed later in
Section 3.2.

For all the parallel implementation discussed in this paper, we use a common strategy for handling the ctest
activations. (We present this strategy here, before discussing the differing strategies for the remaining types of
activations.) This strategy is that multiple activations of the root node are processed using separate processes (i.e.,
activations corresponding to different changes to working memory are processed in paralld). However, al
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successors of the root node or the ctest nodes are evaluated using the following rule. If the successor node is also a
ctest node then evaluate it sequentially within the same process, otherwise fork a separate process to do the
evaluation. The code far such an evaluation policy is shown in Figure 3-I.
(defun nmatch (token root-node)
(qlet 'eager
((foo (doliat (node (successor root-node))
(cond ((c-teat? node) (c-teat token node))
(t (glet 'eager
((foo (eval -node token node))) ))))))))

(defun c-teat (t oken node)
(cond ((do-c-teat token node)
(eval -node-1ist token (successor node)) )))

(defun eval -node-1ist (token node-list)
(cond ((null node-list)
(t (let ( (node (pop nodelist) ))
(gl et (cond ((lock-node-p node) 'eager)
(t t))
((foo (eval -node token node))
(bar (eval -node-list token node-list)) )))))))))

(defun eval -node (token node)
(cond ((funcall (function node) token (argunents node))
(eval -node-list token (successor node)) )))

Figure3-1: QLISP code to evaluate Rete nodesin parallel.

3.11 Rulelevel Parallelism

Rule-level parallelism is a very natural farm of parallelism in production systems. Here the march for each
individual ruleis. performed in parallel. In the context of our Rete-based implementation, this requires that we
introduce lock nodes at points where a ctest node leads into a memory-node. All lock nodes before memory-nodes
of the same rule use an identical lock, and those before memory-nodes of distinct rules use distinct locks. Figure 3-3
shows how the original Rete network of Figure 2-2 ismodified to exploit rule-level parallelism. (Identical locksare
shown grouped together in figure.) The locks are implemented using glamhda closures, and the code for one such
lock node is shown in Figure 3-2. As discussed earlier, a QLISP closure ensures that only one process can be
actively executing inside the closure. The proposed |ocks then ensure that all activations corresponding to a single
rule are executed in sequence, which isthe desired semantics far rule-level parallelism.

(gl anbda-cl osure successor-node) ;. Structure of |ock node
(gl anmbda t (token node) (funcall (eva-nodetoken node))) ,}= glanmbda closure

Figure 3-2: Code for the lock node.

Fiially, we need to provide locks before the tokens enter the conflict-set, since the conflict-set is a global data
structure and multiple processes should not bemodifying it at the sametime,

Using rule-level parallelism, previous studies [4) show that only about S-fold speed-up can be obtained. This is
(i) because the number of rulesthat require significant processing is small and (ii) because even amongst these
affected rules there is a large variation in the processing requirements. To reduce this variation in the processing
times, We now discuss exploiting parallelism at afiner granularity where the processing for asingle rule can be done
in pardlel.



PARALLEL EXECUTION OFOPSS IN QLISP 10

root
constant- class=Cl class=C2 class=C4
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nodes \
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mem~-node mem-node L ockP i OD
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mem-node
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Figure 3-3: Modified Rete Network for Rule-level parallelism

3.12. Node-level Parallelism

When using node-level parallelism {4], any distinct two-input nodes can be evaluated in parallel®. To implement
node-level parallelism, lock nodes are placed before each two-input no& and its associated memory nodes as shown
in Figure 34. The structure of alock node is the same for node-level and rule-level parallelism. However, the
value of the glet predicate are different for evaluating different types of node activations. The predicate is « for
evaluating a memory-node and a tow-input node, but it is ‘eager for evaluating successor nodes below a two-
input node. That is, the execution of atwo-input node is terminated by a future and the lock isreleased.

Note that if some two-input no& generates multiple tokens, the next two-input node becomes a bottleneck This
is because only one activation of a given two-input node can be processed at the same time.

3.13. Intra-node Parallelism

The intra-node parallelism [4] exploits maximal parallelism present in the Rete algorithm  If multiple tokens
arrive at atwo-input node, then these multiple activations of the two-input node are processed in parallel. However,
we have to be very careful about how we access the memory nodes: (i) it is not desirable to have multiple processes
modifying the same memory node; and (ii) the correct operation of the Rete algorithm requires that the opposite
memory-node should not be modified while processing a two-input node activation. To ensure the correct
operation, we adopt the solution proposed by Guptain [4]. We use a common hash-table for al tokens stored in the
memory nodes of the Rete network. Tokens are put into hash-table buckets based on the node-id of the associated

5Acw'dingtomerenmo{theﬁmuhﬁomd?SM.tthlpofnodo—pcﬂhﬁmilMS-fold.
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Figure 3-4: Modified Rete Network for Node-level parallelism

1

two-input node and some values that are tested from the token. The buckets in this hash-table are controlled by
locks that are implemented as glambda closures. Figure 3-5 shows the structure of this hash table. This scheme
works because the probability that multiple t& ens would hash to the same bucket is considered small. If they do

hash to the same bucket then they have to be processed sequentially.

In the above scheme, the Rete network reverts back to its original structure as shown in Figure 2-2 (except that
locks are needed for executing the terminal nodes). All the remaining locks that were earlier associated with the

Rete network are no longer present. Locking has now moved to hash-table buckets.

lock left-hash-table right-hash-table
extra- ) extra-
token-list deletes- token-list deletes-
list list

Figure3-5: Hash tablefor memory nodes
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3.2.Conflict-Resolution Parallelism

During the conflict-resolution phase one of the several production instantiations in the conflict-set is selected for
execution. The method by which this production instantiation is selected is called the tit-resolution strategy.
OPSS provides for two conflict-resolution strategies -- LEX (lexical) and MEA (means-ends-analysis). The two
differ in the way akey is constructed for sorting various instantiations. The key for LEX consists of the sorted
time-tag values of the working-memory elements in the instantiation. The key for MEA consists of the time-tag of
the first warking-memory element in the instantiation, followed by the sorted time-tag values of the remaining
working-memory elements in the instantiation.

To perform conflict resolution, normally, the conflict-set is maintained as a sorted list of production instantiations.
Executing conflict-resolution in parallel imposes the following requirements:
o Wemust allow multiple instantiations to be inserted into a deleted from the conflict-set in parallel.

o Wemust allow for conjugate pairs of instantiation& that is, where the delete request fa an instantiation
isreceived before the add request.

o We would like to have the highest priority instantitation available to the RHS evaluation process as
soon as possible, although the rest of the conflict-set datastructure is not completely sorted.

To handle the first requirement, we build an asynchronous systolic priority queue structure in software [9] using
QLISP. In this structure, inserts and deletes are input at the head of the priority queue. These then asynchronously
filter down until they find the right position in the sarted queue. A delete may annihilate an already present element
if it is already present. If adelete does not find acorresponding element already there (conjugate token problem), it
locates itself at the right location in the queue with a special flag, and waits fa the corresponding add request to
come by later. An insert behaves similarly. The key point is that the highest priority instantiation is always

. available at the head of the queue, even if elements are till percolating down in the lower priority regions of the
queue. The data structure that we use for a single instantiation in the priority queue is shown in Figure 3-6 and some
related code is shown in Figure 24,

conflict-set-element =
(key next-element positive-instance-list negative-instance-list)

where next-element = (glambda-closure . conflict-set-element)
key = (sorted-time-tagof-Instance-clement . rating-of-production)
positive-instance-list = (positive-ingtance . ..)
extra-deletes-list = (extra-deletes-instance . ..)
positive-instance = ((flag . simplified-form) production . instanceclement-list)
extra-del etes-instance = (production. instance-element-list)

Figure3-6: Representation of a production instance

The time to caiculate the maximum element in the above scheme is O(k), where k is the number of changesto the
conflict-set per recognize-act cycle. Since & is around 5 for most systems this is not a problem The time to finish
sorting, however, can be much larger. This time is O(N x k], where N is the total number of elementsin the
conflict-set, which can be much larger. Thisis not optimal fa sorting, but it is good for getting the highest priority
element. The highest priority element is used in the speculative execution of the RHS.



PARALLEL EXECUTION OF OPSS IN QLISP 13

33. Speculative Execution of RHS

In the narmal execution of a rule-based system, one would wait until conflict-resolution finishes completely
before starting to execute the RHS of the highest priority rule. However, in a parallel implementation, this may
imply too sequential abehavia. Even if RHS execution takes only 10% of the time, this limits the maximum
speed-up to 10-fold. As a solution, we propose the specul ative evaluatioa of RHS in this paper. By speculative
evaluation of RHS we mean the following. While the match and conflict-resolution are still going on, we make a
guessaboutthehighestprioritynlle. (This in our case is simply the rule currently at the head of the conflict-set.)
We start evaluating the RHS of this rule, i.e., gathering up the changes it would make to working memory in a list
(without actually changing the waking memory). If our guess is proved wrung, that is whenever there is a change
in the rule at the head of the conflict-set, we simply create a new process to evaluate the RHS of this new rule. \\/e
currently do not abort the previously evaluating RHS because aborting is not easy to implement in QLISP.
Furthermore, it is possible that the evaluated RHS of the non-highest rule may come inuseful ona later cycle.

The OPSS/QLISP system provides a new action command sfcall, side-effect-free call which execute a user-
defined routines written in QLISP or in Lisp. These user-defined routines should not refer any global data which
may be modified by other routines, because the system assumes that simplification should be valid at any time and
independent from any global context. The algorithm of simplification is sketched below:

1. Check the type of operations.

2. If aworking memory operation, calculateall arguments and make atoken.
« If make, make atoken of add and replace the original action with it.

¢ If remove, make a token of delete and replace the original action with it.
o If modify, make a token of delete and a token of add and replace the ariginal action with them.

However, if an action contains a fun&n such as accept, acceptline, these functions are not executed.
Only omitted attribute-value pairs are supplied and the ariginal action is replaced with a new action
which has al attribute-value pairs.

3. If aside-effect-free call sfeall, do it
4. Otherwise, process next action.

This simplification is quite similar to the argument evaluation for a Lisp function with keyword arguments of the
Common Lisp. The simplification routine is invoked whea the maximum production instance of conflict-set is
changed and stores a simplified form to the simplified form slot of the instance. Note that this simplified form is
valid for any time, because it is calculated with using only local values which is specified in an instance. Conjugate
pairs may create unnecessary processes, but the current implementation does not abort them, because such an
aborting mechanism is not easy to implement and the number of conjugate pairs are not expected to be large.

4. Discussion
In this paper, we present the details of an implementation of the OPSS production-system language using QLISP,
aparald dialect of Lisp. Wewould liketo makethefollowing observations:

« The number of modifications needed to the original lisp code for OPSS were minimal to exploit the
different kinds of parallelism. Fa example, to exploit the three kinds of paralldism described for
match, less than 100 lines of code (out of a total of about 3000 lines in the original code) had to be
modified a added. We believe that such a high-level programming approach provides very powerful
and flexibletoolsfor research in parallel programming.

o The QLISP constructs that we used most frequently in our parallel implementation are “(glet ‘eager . ..)"
to spawn new processes and “(glambdat . ..)" process closures fa locks. The code sections that are
locked and the processes that are spawned consist of afew lines of lisp code with some but not much
recursion or iteration. On average, we expect the individual tasks to take about 1 millisecond of
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computation time on a 1 MIPS machine. This requires that the process creation overhead. the locking
overhead, and the scheduling overhead for the spawned tasks be significantly less than 1 millisecond, if
the suggested implementations are to be useful If the overheads are much larger, then dl the
advantages of parallel execution will be subsumed by the overhead.

« Wearecurrently using a QLISP simulator to obtain some performance numbers. Our implementation is
running, and we have just started getting some performance numbers. Unfortunately, the simulator does
not model the underlying hardware very accurately, so we still do not have a good idea about the true
overheads involved. However, fa reasons mentioned in the next point, this may not be a big problem
in practice.

o The paralld constructs provided by QLISP (qlet, qlambda, . ..) take a predicate that controls whether a
parallel process is actually spawned a mot.  This convenient run-time method of controlling the
granularity at which parallelism is exploited is a very powerful mechanism. |t makes it extremely easy
to modify code to adjust to different implementations with differing overheads. It is also convenient to

adjust the granularity depending on the load present on the parallel machine.

« Asstated in the beginning of this paper, another advantage of implementing OPSS in QL ISP, instead of
in Pascal or C, is that it is easy to embed the OPSS system within other Al systems (which normally use
Lisp). Furthermore, if there are complex functions in the RHS of rules, then these functions can also
use the parallel constructs available in QLISP, which is not possible in previously proposed paraliel
implementations of OPSS,

e As a final means for improving performance fa existing OPSS systems we are planning to directly
compile OPSSinto QLISP code, instead of using an interpreter aswe currently do.
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