
June 1987 Report No. STAN-CS-87- 1166
Also twnbered KS’L 87-43

Parallel Execution of OPS5 in QLiSP

bY

Hiroshi G. Okuna and Anoop Gupta

Department of Computer Science

Stanford University
Stanford, CA 94305

E

Knowledge Systems Laboratory
Report No. KSL 87-43

J?arallel Execution of OPS5 in QMSF

bY

Hiroshi G. Okuno’and Anoop Gupta”

*

KNOWLEDGE SYSTEMS LABORATORY
Computer Science Department

Stanford University
Stanford, California 94305

an d

Electrical Communications Laboratories
Nippon Telegraph and Telephone Corporation

3-9- 1 I Midori-cho, Musashino
Tokyo 180 Japan

CENTER FOR INT&RATED SYSTEMS
Computer Science Department

Stanford University
Stanford, California 94305

June 1987

submitted to 21.~1 Annual Hawaii International
Conference on System Sciences (HICSS-21).

Abstract

Production systems (or rule-based systems) are widely used for the development of expert

systems. To speed-up the execution of production systems, a number of different approaches

are being taken, a majority of them being based on the use of parallelism. In -this paper, we

explore the issues involved in the parallel implementation of OPS5 (a widely used production-

system language) in QLISP (a parallel dialect of Lisp proposed by John McCarthy and Richard

Gabriel). This paper shows that QLISP can easily encode most sources of parallelism in OPS5

that have been previously discussed in literature. This is significant because the OPS5

interpreter is the first large program to be encoded in QLISP, and as a result, this is the first

practical demonstration of the expressive power of QLISP. The paper also lists the most

commonly used QLISP constructs in the parallel implementation (and the contexts in which

they are used), which serve as a hunt to the QLlSP implementor about what to optimize. We

also discuss the exploitation of speculative parallelism in RHS-evaluation for O!‘S5. This has

not been previously discussed in the literature.

PARALL& EXECUTION OF OPSS IN QLISP i

Table of Contents
1. Introduction
2. Background

2.1. The OPSS Production-System Lzmguage
2.2. The Rete Match Algorithm
23. QLISP - Pan&l Lisp Language

23.1. QLET
23.2. QLAMBDA
23.3. CATCH and THROW
23.4. QCATCH
23.5. UNWIND-PROTECT
23.6. Others

3. Parallel execution of OPS5 programs
3.1. Parallelism in Match Phase

3.1.1. Rule-level Parallelism
3.1.2. Node-level Parallelism
3.13, Intra-node Parallelism

3.2. Conflict-Resolution Parallelism
33. Speculative Execution of RI-IS

4. Discussion
Acknowledgments
References

1
2
2
3
5
5
6
7
7
7
8
8
8
9

10
10
12
13
13
14
14

PARALLEL EXECUTION OF OPSS IN QLISP

Parallel Execution of OPSS in QLISP

Abstract

Production systems (or rule-based systems) are widely used for the development of expert systems. To speed-up
the execution of production systems, a number of different rip-hes axe being taken, a n@ority of them being
based on the use of parallelism In this paper, we explore the issues involved in the parallel implementation of
OPSS (a widely used production-system language) in QLISP (a parallel dialect of Lisp pcopo& by John McCarthy
and Richard Gabriel). This paper shows that QLJSP can easily encode most sources of parallelism in OPSS that
have been previously discussed in literatum. This is significant because the OPSS interpreter is the first large
program to be encoded in QLISP, and as a result, this is the firrt pr&cal demonstration of the expressive power of
QLISP. The paper also lists the most commonly used QLISP constructs in the parallel implementation (and the
contexts in which they are used), which serve as a hint to the QLJSP implementor about what to optimize. We also
discuss the exploitation of speculative parallelism in RHS+valuation for OPSS. ‘Ihis has not been previously
discussed in the literature.

1. In t reduction
There are several different progtamming paradigms that arc currently popular in Artificial Intelligence, examples

being production systems (or rule-based systems), frame-based systems, semantic-network systems, logic-based
systems, blackboard systems. of the above, production systems have been widely used to build large expert systems
[lo, 141. Unfmtely, production systems run quite slowly, and this has espe&lly been a problem for

. applications in the real-time domain. Reduction systems must be speeded-up sig&cantly if they are to be used in
new increasingly complex and time-critical domains. in this papa, we focus our attention on a specific production-
system language, OPS5, that has been widely used to build expert systems and whose performance characteristics
have been extensively studied. We also focus on parallelism as a means to speed-up ttrC execution of OPS5.

The parallel execution of the OPSS production-system language has been studied by several groups [4,8,11,13].
Their general approach consisted of two steps: (i) the design of a dedicated parallel machine suitable for execution
of OPS5; and (ii) the mapping of the OPS5 compiler and run-time environment on to the parallel hardware. In these
implemntations, the second step (the mapping step) involvea parallel encoding of OPS5 using hardware specific
and operating-system specifz structures. In this paper, we explore how this mapping step may be done in a
high-level parallel dialect of Lisp, called QLISP. The main advantages of encoding using a high-level programming
language are: (i) Increase in portability, since the c&e does not depend on machine specific features; (ii) Greater
flexibility and expressive power of the high-level language results in fister turn-around time, fewer errors, and more
readable and modifiable code. The main disadvantage, of course, is that the encoding may not be as effiiient as
h&ad-coded hardware-specific encodings. We ruxmally do not wary about such issues for uniprocessors -
language compilers for uniprocessors are good enough - but the disadvantage is significant fcr parallel
implementations where the technology is not as far advanced. There is one nrrre strong motivation for doing a
parallel implementation of OPS5 while remaining within I&p (unlike most previous parallel implementations).
This is that OPSS is often used as an embedded system within larger AI systems, and the fact that the rest of these
~ysttms are encoded in Lisp, IfOPS is also encoded in Lisp, then it makes the task of interfacing much simpler.

There are several parallel Lisp languages, for example, Multilisp [S, 6,7] and QLISP [3], that are available for
speeding up Lisp programs by using multiple processors. Since QLISP is based on the Common Lisp [12], it
provides very powerful facilities to the user. Multilisp is based on a functional programming subset of Lisp.

PAMLLEL EXECUIION OF OPSS IN QLISP 2

Another distinguishing features of QLISP is that control n&ranisrns to access shared data or global data are
embedded in Lisp @nitives. other piirallel Lisp languages use some data s- for locking, such as
semaphores. QLISP enables the usa to write parallel m without paying much attention to the consistency of
shared or global data One of the main puqoses of this nsePch is to explore the expensive power of QLISP by
implementing a large program in it. Oura is the first large (“real”) program implemented in QLJSP, so this
constitutes the first practical demonstration of the expressive power of QLJSP. We also list the most commonly
usedQLISP~tnrcts~dthecotltwrtrinwhichdrey~~whichcrrn~errrrrgui&foroptimizingthe
implementation of the QLISP language. A language where it is easy to exv parallel constructs, but which does
not offer better performarrce isnotofmuchuse.

Theapproachwe~fotpclrpllelizingOPSSLb~onthrrtofthePiaQlcti~SysQemMachineO?SM)projectat
Carnegie-Mellon University [4]. The PSM project stied how the speed-up from parallelism imeases 8sonegoes
from coarse-granularity (rule-level) to fine-granularity (inn-a-node) parallelism. We impkment each of their
schemes and show that it is relatively easy to encode these parallel schuner within QLISP. We also show some
interesting ways in which to exploit confl&resolutiar parallelism and speculative pamlklisml in RHS evaluation
using QLISP.

‘Ibis paper is organized as follows. Section 2 paesen& son b&ground informntion about the OPSS language,
the Rete algorithm used to implement OPS5, and about QLISP. Section 3 describes how we do a parallel
implementation of OPSS using QLISP and the various issm involved. Finally, Section 4 is devoted to a discussion
and conclusions.

2. Background

2.1. The OPSS Production-System Language
An OPSS [l] production system is compo& of 8 set of #then rules called pcxiucdons that make up the

production memory, and a database of assertions called the wor&ing memory. The assertions in the wo&ng memory
are called working memory clemen!s. Each production consists of a conjurrction of conditin efements
corresponding to the if part of the rule (also called the I@-ircmd s&r of the production), and a set of actions
corresponding to the then part of the rule (also called the right-hand side of the production). ‘Ihe left-hand side and
the right-hand side are separated by the “-9 symbol. The dons associated with a production can a&& remove or
modify working memory ekments, or perfmn input-outpu& Figure 2-l shows two simple productiaw named pf
(with three condition elements)andp2 (with two condition elements).

(p pl (Cl “color <x> %ze 12) (ppZ(C2w38 %lor<y>)
(C-2 “price 38 ‘blot <x>) (C4 b&x q>)

I (C3 hcolor <x>) ->
--> (modify1price~~)

(-ve 2) 1

Figure Zl: Example of productions

‘The production system interprefer is the underlying mechanism that determines the set of satisfied productions

PARALLEL EXECUIlONOFOP!SSlNQLlSP 3

and controls the execution of the production system progrva The in- executes a production system program
by performing the following recognize-act cycle:

l Match: In this first phase, the left-hand sides of all pobctiojrs are matched against the contents of
working memory. As a result a co@ct set is obtained, which ca~ists of instantiations of all satisfied
productions. An instantiati~ of a production is an ordered list of working mory elements that
satisfies the left-hand side of the production.

. Conflict-Resolution: In this secand phase, one of the production instant&ions in the conflict set is
chosen for execution. If no productia~ are satisfi&, tk indupreder halts.

. Act: In this third phase, the dons of the productian scktd in tk conflict-resolution phase are
executed. These actions may change the contents of working me3nofy. At the end of this phase, the
first phase is executed again.

Each working memory element is a parenthesized list consisting of a carstant symbol called the class of the
element and zeta or more utrribufe-v&e pairs. The attributes are symbols that are prece&d by tbe operator *. The
values are symbolic or numeric constants. Each conditiaral element in the LHS consists of a class name and one or
more terms. Each term consists of an attribute prefixed by A, an operator, and a value. An operator is optional and
its default value is =. other operators are <, <=, >, >=, oand~=>. Avalueiseitheraumstantcxavariable. A
variable is represented by an identifier enclosed by < and >. A variable can match any value, but all occurrent of
thesamevariableintheIlISofaruleshouldmuchtheslmev~ue. Conditionalelementsmaynotcontainallpairs
of attribute-value present in a working tnemory element. If a conditional element is preceded by -, it is called a
negated condition element. The match for a rule succeeds only if there is no working memory element matching its
negated c&&ion element.

The RHS of a production can contain any number of actions. Actions can be classified into:
l Working memory operations: These are make, remove, and modif).

l l/O operations: These are openfile, clwSiYi and write.

l Binding operations: These are bind and cbind.

l Miscellaneous operations: These are default, call, halt, and build.
The above action types often take functions as arguments. So= such functions are I/ (quote), subs& genatom,
compute, litval, accept and acceptline.

_ 2.2. The Rete Match Algorithm .
Empirical study of various OPS5 progrvns shows two interesting characteristics; tenporui redimduuy and

stmctwd similarity [2]. Temporal redunbncy~~tothcf~tthrrtarula-firingmakesonlyafewmodificationooo
the working memay and most waking-nmmry elemnts remain unchanged. Structural similarity refers to the fact
~?UproduEtionsruenottotallydistinctsndthst~mmnnysimilruieieskrwearthecarditionelemntsof
different productions. The Rete match algorithm exploits these two fm to speed up the match phase of the
interpreter.

The Rete algorithm uses a special kind of data-flow network compiled from the left-hand sides of productions to
perform match. The network is generated at compile time, before the production systems is actually run. Figure 2-2
shows such a network for the two productions shown in Figure 2-l. In this figure, lines have been drawn between
nodes to indicate the paths along which information flows. Information flows from the topnode down along these
paths. The nodes with a single predecessor (near the top of the figure) are the ones that are concerned with
individual condition elements. The nodes with two predecessors arc the ones that check for consistency of variable
bindings between condition elements. The terminal nodes are at the bottom of the figure. Note that when two

left-hand sides require identical nodes, the algorithm shares part of tire network rather than building duplicate nodes.

PNULLEL EXECUTION OF OPSS IN QLISP 4

constant-
test
nodes

1 terminal-node

Pl

Figure 22: TbeRete network

To avoid performing the same tests repeatedly, the Rete algorithm stores the result of the match with working
memory as state within the nodes. This way, only changes made to the working mem~sy by the most recent
production king have to be processed every cycle. ‘Ihus, the input to the Rete network consists of the changes to
the working memory. These changes filter through the network updating the state stored within the network. The
output of the network consists of a specification of changeS to the conflict set

The objects that are passed between nodes axe called tokens, which consist of a tag and m ordered fist of
workng-memory elements. nKtagc~beeitbera+,indicPtingtharsomedringhasbeensddedao~working

_mtrrory,ota-, indicating that something has been removed from it. The list of working-memory elements
associated with a token corresponds to a sequence of those elem#ltt that the system is trying to match or has already
matched against a subsequence of condition el~ts in the left-hand side.

Thedata-flownetworkproducedbytheReterlgorithmconsis~offrw~~ttypcsofnodes. Tkeare:
.l. Constant-test nodes: These W are used to test if the attributes in the conditia~ element which

haveaconstantvaluearesatisfiui Tkseno&a~wayaappearinthetoppartofthenetwork They
have only w input, and as a result, they are somet~~~~ called one-inprct nodes.

2. Memory nodes: These nodes store the results of the match phase from pvious cycles as state within
them Thestatestaredinamenwrynodeconsistsofalistofthetdrensthat~hapartafthe
left-hand side of the associated @uction. For example, the right-most memory node in Figure 2-2
stoxes all tokens matching the second conditiar-element of prod&on p2.

At a more detailed level, there are two types of memory nodes -- the a-ment nodes and the fkern
nodes. The a-mem nodes store tokens that match individual u3ndition elements. Thus all memory
nodes immediately below constant-test nodes are a-mm nodes. The p-mem nodes store tokens that
match a sequence of condition elements in the left-hand side of a production. Thus all memory nodes
immediately below two-input nodes are bmcm nodes.

PARALLEL EXECUIION OF OPSS IN QLISP 5

3, Two-input nodes: These no&s test for joint satisfaction of condition elements in the left-hand side of
aproduction Bothinputsofatwo-inputnoclecomefiommemaynodes. Whenatokenarrivesonthe
left~utofatwo-inputnode,itiscompPndtoePlch~storadinthenvmynodecannecoedtothe
right input. All token pairs that have consistent variable bindings are sent to the tuccesso rs of the
twoinput node. Similar action is taken when a token arrives on the right input of a hvo-input node.

Therearealsotwotypesoftwo-inputnodes- the and-no&s and the not-nod&. While the and-nodes
arc responsible for the positive conditiar eknwrts and behave in the way described above, the not-
nodes are responsible for the negated conditiar elements and behave in a oppoeite manner. The
not-nodes generate a successor tokenonlyifdreFealenomatchingtokensinttrememorynode
corresponding to the negated condition element.

4.Terminalnodes: lhereis~suchnode~~~witheachproductiotlinthe~ascprbe
seen at bottom of Figure 2-2. Wheneva a token flows into a terminal node, the -ding
production is either inserted into or deleted from the conflict m

23. QLISP - Parallel Lisp Language
QLISP is a queue-based parallel Lisp proposed by Dick Gabriel and John McCarthy [3] and is being implemented

on an Alliant FX/8 shared-mem#y multi~so~ by Stanfkxd University and L&d Inc. QLISP is similar to
Multilisp [5,6,7], but language constructs kapxate impomnt me&&m for paralkl computation such as
spawning and locking. The spawned processes are put in the system queue and given to a processor by the
scheduler to evaluate it The key ideas in QLISP were derived by reexamining Comnxxr Lisp [12] from the
perspective of parallel processing, and by striving to make the minimal number of extensions to Common Lisp.
Some QLISP primitives are summa&cl in the following subsections.

. 23 .1 . QLET
‘Ihe qlet form executes its local binding in parallet

(qlet predicate (((vu v&e))‘) Vomt)*)

The qlet form is a construct to evaluate all v&es in paralle12. However, its computatiaral semantic depends on the
result of predicufe which is evaluated fitst in the qlet fmn.

l If the result ofpredicufe is n& the qlet fom acts exactly as the Jet farm.

l If the result of predicate is neither nil nor eager, a process far exh v&e is spawned and the process
evaluating a qlet form is suspended. When all the results of v&e are available, each result is bound to
each VW and the process evaluating a qlet form resume its computation; that is, the body of a qlet form
is evaluated.

l If the result of preh’cute is eager, a special value,@w& is bound to each VW and the body of a qkt
form is evaluated immediately. A ficauc is associated with a process which evaluates a value
eventually. In the execution of the body, if the value is not supplied yet the process executing the body
is suspended till the value is available.

Two kinds of parallel fibonti functions are shown in Fig. 2-3.

The first one calculates a fibonacci number by spawning a process to calculate every fibonacci number of a
smaller number. There may occur a combinatorial explosion of processes if a is a large number. For example, the
number of spawned processes is 176.21890 and 242784 fat n - 10.20 and 25, respectively. The second fibonacci
function spawns a process only if the depth of the nesting is less than the value of *cut&off? The qlet predicate

2Since the pall farm in MultiIisp evaluatea rgumppr da fumtioo in pmlld, it will be Emily iapknmt by qkt in QLISP

PARALLEL EX?XUTION OF OPS5 IN QLISP

(defun fib (n)
(cond ((x n 2) 1)

(t (qlet t ((fl (fib (- n 1)))
(a (fib (- n 2))))

(+ fl m))))

(defun fib-c (n)
(labels ((fib-cutoff (n depth)

(declare (special *cutoff-number+))
(cond ((< n 2) 1)

(t (qlet (< depth *cutoff-numb&)
((fl (fib-cutoff (- n 1)) (l+ depth))
(f2 (fib-cutoff (- n 2)) (l+ depth)))

(+ fl f-3 N)))
(fib-cutoff n 0)))

Figure 2-3: Two parallel Pibcnacci functions - Exampk of qkt

enables the user to control the spawning of process. Needlm m say, an apjxopiate value for *cut-off should be
determined by the tradeMbetween the cost and beMtof spaw&g.

23.2. QLAMBDA
The lambda form in the Common Lisp creates a cloture which is used to share variables among several functions

or as an anonymous function. The qlambda fm cmtes a process closure.

(qlambda predicate lambda-list (jbm} *)

A process closure is used not only UI share variabks among several pocess closures but also to control an
exclusive invocation of the satne process closure. That is, only one application of a process &sure is evaluated and
other applications of the same process closure are suspended The evaluation of a process clo6ure ckpends on the
value of predicate which is evaluated at the time of evaluation of the qlamhda form, that is, creaGon of a process
closure.

l If the result of predicate is nil, the qlambda form acts exactly as the lamlxla farm That is, a lexical
closure is created

l If the result of predicate is neither nil tuX eager, a pocess clo6urc is -ted. When it is applied with
- arguments, a separate process is spawned for evaluation. If mcxe than one applications occur, only one

applications are evaluated and others are blocked. ‘Tics is an implicit locking mechanism

l If the result of predicate is eager, a process closure is created and spawned immediately without
waiting for any arguments4

A process closure may be used as an anonymous PNXXM, of which application is evaluated as a separated process.
The spawn form is a shorthand form to do it; that is,

(s p a w n cfonn)*) i s t h e aaxm 81 ((qlambda t () wnn)*) l

In a sequential construct such as block, all forms may be evaluated in parallel by spawn. A set of functions to
update of the conflict-set is shown in Fig. 24. The global variable *conflict-set-lock* holds a qlambda
closure to control the exclusive mss to the variable *conflict-set* which holds the list of production

%ir ariau nmhaniaxn cm be wed to write a pdld Y opmtcq &at ir, & df f, Y(f)-f(Y(f)), in QLISP. Howeva, other usefuI
applicatimr arc not yet known.

PARALLEL EXECUTIONOFOPS5INQLISP 1

instances. The idea to provide an exclusive IKXXS to *conflict-set* is to execute an update operation by using the
same qlambda closure. The lock is rckased when register-ca returns a value immediately or when
sort-co& lict-set upda&s the *conflict-set+ or executes a sofling by spawning a sub- by qkt with the
predicate eager.

(proclaim (special *conflict-aet-lock* *conflict-set*))

(defun opa-init 0
(setq *conflict-set-lock*

(qlambda t (body) (apply (car body) (cdr body))) 1)

(defun inaertca (name data rating)
(funcall *conflict-set-lock*

(list 'register-ca
name d a t a (c o n s (s o r t - t i m e - t a g d a t a) r a t i n g) t 1))

(defun removeca (name data rating)
(funcall *conflict-set-lock*

(list 'register-ca
name data (cons (sort-time-tag data) rating) nil)))

(defun register-ca (name data key flag)
(cond ((null *conflict-aetf)

(aetq *conflict-set*
(carete-new-ca-element key nil name data flag)))

(t (sort-conflict-aet name data key flag *conflict-set*))))

Figure= Lockingfor-set

233. CATCH and THROW
A pair of catch and throw provides a way to do a nar-local exit in the Common Lisp.

(catch fug form) and (throw tag v&e)

In QLISP, it mvides not only a means of non-local exit but also a mechanism to control subprocesses spawned
during the evaluation of form in the catch fotm. If the catch gets a value by the normal termination of form or a

throwing, the catch kills all processed spawned during tht execution of the fem. If the value contains a future, the
associated processes are not killed Note th;rt the execution of a process spawned at a value-ignoring position of a
sequential construct is aborted.

23.4. QCATCH
The qcatch form is similar to the catch form, but the control of spawned processes is diRerent.

- (qcatch tag form)

Ifthe evaluation of theform termin- nmnally and the qcatcb gets a value, the qcatch waits for all the processes
spawned during the execution of the form t0 terminate. The&m pmcesed spawned at a value-ignoring position
will be evaluated before terminating the qcatch form. If the execution of the form is aborted by a throwing, the
qcatch kills all spawned processes beneath it.

23.5. UNWIND-PROTECT
The unwind-protect form is useful to do some cleanup jobs no matter what the unwind-protect form is

terminated

(unwind-protect protected-form { c&-form} ‘)

The unwind-protect form is very wrtant in QLJSP world in order to make the data consistent, because processes

PARALLEL EXECUTION OF OpS5 IN QLISP 8

can be killed by the catch even if no throwing occurs.

23.6. Others
The suspend-process and resume-process forms are used for the usez 00 control the scheduling of processes.

THe wait and no-wait are used to colntrol the termination of a process spawned at a value-ignoring position of
sequential constructs.

3. Parallel execution of OPSS programs
As stated in Section 2.1, the OFSS in@preter repeatedly exeoutes a match - conflict-resolution -- act cycle. In

this section, we discuss how parallelism may be exploited in executing ti of the three phases. Most of the
discussionfocusesonthema~hphase,asdrermtchph~~904bdttretimeinthcintapreta.

3.1. Parallelism in Match Phase
In this section, we explore how parallelism may be exploited to speed up the eh phase. We present several

different aigorithms. We start with a coarse-gran&rity algorithm and slowly move towards finer g~~~larity. In
particular, we explore parallelism at three levels of granularity - ruk-level paralklism, no&-kvel paralklism, and
intra-node parallelism All of the above algorithms are based on the Rete algaithm described in Section 22. What
changes from one parallel algorithm to the other is the kinds of node ~tivatkms that are allowed to be processed in
parallel. The granularities we choose to discuss here comspmd to tho8e discussed in [4].

Before exploring the above schemes further, a word about the different kinds of node Ictivatia in the Rete
network. Activations of constant-test nodes (shown in Qp-part of netwak in Figure 2-2) require just a simple test

’ and are fairly cheap to execute. We call these cfes? activations. It is usually not worth it to spawn a process to
execute an individual ctest activation, because the overhead of spawning is larger than the work saved.

The second kind of node activations are the memory-no& acthtiom. Them require that a @ken be added or
deleted from the memory node, and can be expensive because a delete request may recjuire searching through all the
tokens stored in that memory node. The third kind are the wdw nu& activation& that require searching through
the opposite memory-node to find all matching tokens (tokens with consistent variable bindings). These are also
fairly expensive. Wenormallylumptheprocesoing~~bythe~~inputaodt~thePssoci?bedmemKy
nodes together into a single task/process, because the two are closely inteAated (the tw*input tivation examines

-thememosynode)andseparatingthemincursalPges~ov~ Onealsohastobecarefulabout
the sequence in which the above node activations are executed. For example, the Rete algorithm sometimes
generates conjugate tokens, where exactly the sam t&n is frost scheduled to be added to the memory node and
lauz deleted- The foal result should be that the state of the memory node remains unchanged. However, in parallel
implementations it is easily possible that the schedukr decides 00 pick the delete request before the add request, and
if n& handled properly, the final state of the menxxy node may have an extra token. To process mnjugate pairs
cone&y, each mmry node has an eztradcletes-list to store a deleted token whose target token has not arrived yet.

Finally, the= are terminal-no& activations that insert at ckkte h~tadations/t~k~~ into the inflict-set. Here
also the problem of conjugate tokens can occur. The details for terminal-node activations are discussed later in
Section 3.2.

For all the parallel implementation discussed in this paper, we use a conumn strategy for handling the ctest
activations. (We present this strategy here, befm discussing the Mering strategies for the xem&ing types of
activations.) Ibis strategy is that multiple activations of the root ruxk are processad using separa@ vs (i.e.,
activatims corresponding to different changes to working memory are processed in parallel). However, all

PARALLEL EXECUTlONOFOPS5lNQLISP 9

successora;oftherooraodearthectest~tnevJu~usitlgthefO~owingrule. IftheSucceWxnodeisalsoa
ctest node then evaluate it sequentially within the same process o&&se fork a sepyate pn>cess to do the
evaluation. ‘The code far such an evaluatia~ policy is shown in Figure 3-l.
(defun match (token root-node)

(qlet 'eager
((foo (doliat (node (successor root-node))

(cond ((c-teat? node) (c-teat token node))
(t (qlet 'eager

((foo (eval-node token node)))))I)))))

(defun c-teat (token node)
(cond ((do-c-teat token node)

(eval-node-list token (successor node)))))

(defun eval-node-list (token node-list)
(cond ((null node-list)

(t (let ((node (pop node-list)))
(qlet (cond ((lock-node-p node) 'eager)

(t t))
((foo (eval-node token node))
(bar (eval-node-list token node-list)))))I)))))

(defun eval-node (token node)
(cond ((funcall (function node) token (arguments node))

(eval-node-list token (successor node))))I
Figure 3-l: QLISPcode to evaluateRetc nodes in parallel.

3.1.1. Rule-level Parallelism
Rule-level parallelism is a very natural farm of parallelism in productian systems. Here the march for each

individual rule is. performed in paralleL In the context of our R&e-has& implen~~tation, this requires that we
inrroducelocCnodes2tpOintswhenactestnodekPdsintoamemryaode. Alllocknodesbeforememory-nodes
of the same rule use an identical lock, and those before memory-nodes of distinct rules use distinct locks. Figure 3-3
shows how the original Rete netwo& of Fiim 2-2 is modifkd to exploit rule-level parallelism. (Identical locks are
shown grouped together in figure.) The locks are implemented using qlamhda closures, and tht code f<x one such
locknodeisshowninFigure3-2. Asdiscusscdeulia,aQLISPcbs~ens~thatonIyoneprocesscanbe
actively executing inside the closure. The pqo6ed locks then ensure that all &vatia~~ c<xrespondiq to a single

- rule are executed in sequence, which is the desired senutntk far rule-level parall&m

(qlambda-closure successor-node) ;;; structure of lock node
(qlambda t (token node) (funcall (eval-node token node))) l *= qlambda closure# I #

Figure&2: Codefarthelocknode.

Fiially, we need to provide locks befm the tokens enta the conflict-set, since the conflict-set is a global data
structure and multiple processes should not be modifying it at the same time.

Using rule-level parallelism, previous studies [4] show that only about S-fold speed-up can be obtained. This is
(i) because the number of rules that require significant processing is small and (ii) because even amongst these
q@cfed rules there is a large variation in the processing requirements. To reduce this variation in the processing
times, we now discuss exploiting parallelism at a finer granularity wheze the processing for a single rule can be done
in parallel.

3

PARALLEL EXECUTlON OF OpS5 IN QLISP 10

constant-
test
nodes

terminal-node

Figure 3-3: Modified Rete Network for Rule-level parallelism

3.12. Node-kvel Parallelism
When using node-level parallelism [4], any distinct twdnput nodes m be evaluated in paralle15. To implement

node-level parallelism, lock nodes are placed before each two-input no& and its a~tiated memory nodes as shown
in Figure 34. The structure of a lock node is the szmc for node-level and ruk-kvd pdklism However, the
value of the qlet predicate are different for evaluating different types of de activations. The predicate is t for
evaluating a memory-node and a tow-input tlodc, but it is ‘eager for evahmting successor nodes below a two-
input node. That is, the execution of a tweinput no& is termmaM by a futm and the lock is released.-

Note that if some two-input no& genera&s multiple tdmrs, the next two-input node becomes a bottleneck This
is because only one activation of a given two-input node can be pmcescd at the same time.

3.13. Intra-node Parallelism
The intra-node parallelism [4] exploits maximal parallelism present in the Rete algorithm If multiple tokens

arrive at a twhtput node, then these multiple activations of the tw&nput ruxk are pocessed in paralleL However,
we have to be very careful about how we access the s nodes: (i) it is not desirabk to have multiple processes
modifying the same memory node; and (ii) the correct operation of the Rete algorithm requires that the opposite
memory-node should not be modified while processing a tw&nput node activation. To ensure the correct
operation, we adopt the solution proposed by Gupta in [4]. We use a common hash-table for all tokens stored in the
memory nodes of the Rete network. Tokens 11t put into hash-table buckets based on the node-id of the associated

PARALLEL EXECU’I’ION OF OPS5 IN QLJSP 11

constant-
tert
node8

terminal-node

Figure 34: Modifkd Rete Network for Node-level parallelism

twchput node and some values that arc tested from the token. The buckets in this hash-table TIC cattrolled by
locks that are implemented as qlambda clogures. Figure 3-5 shows the shucture of this hash table. This scheme
works because the probability that multiple t&ens would hash to the sang bucket is considesed small. If they do
hash to the same bucket then they have to be processed sequentially.

In the above scheme, the Rete netwtxk reverts back to its o@inal structum as shown in Figure 2-2 (except that
locks are needed for executing the term&l no&s). All the remGning bcks that wae earlier associated with the
Rete network are no longer present. Locking has now need to hash-table buckets.

\
l o c k left-hash-table right-hash-table

,

extra- cxtra-
token-list deletes- token-list deletes-

li8t li8t

Figure 3-S: Hash table for memory nodes

PARALLEL EXECUTION OF OPSS IN QLXSP 12

32. Conflict-Resolution Parallelism
During the conflict-resolution phase one of the several production instantiations in the conflict-set is selected for

execution. The method by which this productial instantiation is selected is called the tit-resolution strategy.
OPSS provides for two conflict-resolution strategies -- LEX (hid) and MEA (means-ends-analysis). The two
differ in the way a key is constructed for sorting various instant&ions. The key for LEX consists of the sorted
time-tag values of the working-memory elemts in the instantiation. The key for MEA consists of the time-w of
the frost waking-memory element in the instantiation, followed by the sorted &~-tag values of the remaining
working-memory elements in the instantiation.

To perform conflict resolution, normally, the conflict-set is maintained as a sorted list of production instantiations.
Executing conflict-resolution in parallel imposes the following requirements:

l We must allow multiple instantiatiars to be inser&d into a deleted from the conflict-set in parallel.

l We must allow for conjugate pairs of instantiation& that is, where the delete request fa an instantiation
is received before the add request.

l We would like to have the highest priority instantitation available to the RHS evaluation process as
soon as possible, although the rest of the conflict-set data structum is not completely sorted

To handle the fitst requirement, we build an asynchronous systolic priority queue structure in software [9] using
QLISP. In this structure, inserts and deletes are input at the head of the priority queue. These then asynchronously
filter down until they find the right position in the sarted queue. A &Me may annihilate an already present element
if it is already present. If a delete does not find a carrcsponding element already there (conjugate token problem), it
locates itself at the right location in the queue with a special flag, and waits fa the corresponding add request to
come by later. An insert behaves similarly. ‘Ihe key point is that the highest priority instantiation is always

. available at the head of the queue, even if elements are still percolating down in the lower priority regions of the
queue. The data structure that we use for a single instantiation in the priority queue is shown in Figure 3-6 and some
related code is shown in Figure 24.

conflict-set-element =
(key next-element positive-instance-list negativeAnstance4ist)

where next-element = (qlambdaclosure . conflict-set-element)
key - (sorted-time-tagof-Instance-clement . rating-of-p)
positive-instance-list = (positive-instance . ..)
extra-deletes-list = (extradeletes-inst . ..)
positive-instance = ((flag . simplified-form) production . instanceclement-list)
extra-deletes-instance = (production. instance4emeMist)

Figure 34: Representation of a production instance

Thetimetocalculatethemaximum element in the above scheme is O(k), where A is the number of changes to the
conflict-set per recognize-act cycle. Since A is around 5 for most systems this is not a problem The time to finish
sorting, however, can be much larger. This timt is O[N x A], where N is the total number of elements in the
conflict-set, which can be much larger. This is not optimal fa sorting, but it is good for getting the highest priority
element. The highest priority element is used in the speculative execution of the RHS.

PAR,ULELEXECUT~ONOFOPSS INQLJSP 13

33. Speculative Execution of RHS
In the namal execution of a rule-based system, one would wait until carflict-resolution finishes completely

before starting to execute t)re RHS of the highest @xity rule. Howeva, in a parallel implementation, this may
imply too sequential a behavia. EvenifRHSernvtion~anly104bofthetime,thislimitsthemaximum
speed-up to IO-fold. As a solution, we propose the speculative evahration of FUIS in this paper. By speculative
evaluation of RHS we mean the following. While the match and coMict-reaolutiar are still going on, we make a
guessaboutthehighestprioritynlle. (Thirinourcrrscirs~lydreNkcumntlystdrehudofdreconflict-sa)
WestarrevatuatingdreRHSofthirnr)e,is,g~gupdw~gesitwouldmPtteoworkingmemKyinalist
(without rrctually changing the waking memory). If our guess is provsd wrung, that ia wheneva them is a change
intheNbBttheheadofthe~t-oet,wesinrplycrwteanewprocesrtoevPluPrcdwRHSd~newNTe. We
currently do not abort the previously evaluating RHS because abortiq is not easy to implement in QLISP.
F- it is possible that the evaluated RHS of the non-highest rule may co= in usefuI on a later cycle.

The OPSS/QLISP system provides a new actiar cornmad sfcaIl, si&4ect&ee call which execute a user-
def~ro&eswritteninQUSPainLisp. Theseusa~~nnrtinesdKnrtdnot~farrmygloblldatawhich
maybemodifiedbyo~~~,~dresysremPsoumesthotrinrplificotion~kvllidptrrnytimeand
independent from any global context. The algorithm of simpUcation is sketched m

1. Check the type of operations.

2. If a working memory operation, calculate ail arguments and make a token.
l If make, make a token of add and replace the original action with it.

However, if an action contains a fun&n such as accept, acceptline, these functioas are not executed.
only omitted attribute-value pairs a supplied and the aiginal ~tion is replaced with a new action
which has all attribute-value pairs.

3. If a side-effect-free call sfcaI& do it

4. othemvise, process next action.

‘Ilk simplification is quite similar to the argument evaluation for a Lisp functia~ with keyword arguments of the
Common Lisp. The simplification routine is invoked wb the maximum production instance of uxlflict-set is
changed and stores a simplified form to the simplif%d form slot of the instance. Note that this simplifiexi form is

- valid for any time, because it is calculated with using only local values which is speci&d in an instance. Conjugate
pairs may create unnecessary processes, but the current implementation does not abort them, because such an
aborting mechanism is not easy to implement and the number of carjugate pairs are not expected to be large.

4. Discussion
In this paper, we present the details of an implementation of the OPSS production-system language using QLISP,

a parallel dialect of Lisp. We would like to make the following observations:
l The number of modifications needed to the original lisp code fm OPS5 were minimal to exploit the

different kinds of paraIlelism Fa example to exploit the three kinds of parallelism described for
match,lessthan100linesofcode(outofatot;rloflbout3000linesintheoriginillcode)hadtobe
modified a added. We believe that such a high-level pmgmmmhg approach provides very powerful
and flexible tools for research in parallel progrynming.

l The QLISP constructs that we used most frequently in our parallel implemmtation are “(qlet ‘eager . ..)”
to spawn new processes and “(qlambda t . ..)” process cbsures fa locks. The code s&ions that art
locked and the processes that are spawned consist of a few lines of lisp code with some but not much
recursion or iteration. On average, we expect the individual tasks to take about 1 millisecond of

PARALLELEXECUTDNOPOPSSll+JQLISP 14

computation time on a 1 MIPS machine. This requires that the process creation overhead. the locking
overhead, and the scheduling overhead for the spawned tasks be significantly less than 1 millisecond, if
the suggeskd implementations are to be useful If the overheads am much larger, then all the
advantages of parallel executiar will be subsumed by the ovahead.

l We are currently using a QLISP simulator to obtain some performance numbers. Our implementation is
running, and we have just started getting some performar~~ numbers. Unfortuna&ly, the simulator does
notm>deltheunderlyinghardw~vrlVsCC~y,~WCstiUdOtlOt~ve8g004idCll~tthetnre
overheads involved. However, fa reasons mcntiocledinthenextpoint,~maynotbeabigproblem
in practice.

l The parallel constructs provided by QLlSP (qkt, qlambda, . ..) take a @icate dur controls whether a
parallel process is actually spawned a not This convenient run-time method of cartrolling the
granularity at which parallelism is exploited is a very powerful tianism. It makes it extremely easy
to modify code to adjust to di&rent implementations with wering overheads. It is ako convenient to
~ustthegranrrlarity~anthelord~artonthe~lmrrchine.

l As stated in the beginning af this paper, another advantage of implementing OPSS in QLISP, instead of
inPascalcwC,isthatitiseasytoembedtheOPSSsystemwithinotherAIsysbems(whichnorm;rllyuse
Lisp). F~~o~,if~rrrecosnplexfunctioslsintheRHSofnrles,thenthesc~ti~cw~
use the pdkI constructs available in QLISP, which is not poeaibk in pm&&y propo& paralld
implementations of OPSS.

l Asafinalmeansforim~xovingpafofmance fa existing OPSS systems we are phning to directly
compile OPSS into QLISP code, instead of using an interpreter as we cutrently do.

Acknowledgments
The authors would like to thank Prof. Edward Feigenbaum fa support@ this work ti Knowledge Systems

&aboratory at Stanford University. We would also like to thank membas of the QLISP group at Stanford We
would especially like to thank Joe Weening fa help with the QLISP simulator.

‘Ihe computing f&lit& used in doing this work and writing this paper am supported by DARPA Contract
F30602-85-CXKl12, NASA Ames Contract NCC 2-22&Sl, and Boeing Contract W266g75. Anmp Gupta is also
supported by a faculty grant from Digital Equipment &pora&~.

References
1. Lee Brownston, Robert Farrell, Elaine Kant, and Nllncy Martin. Programming Expert Systenw in OPSS: An
Introduction to Rule-Based Programming. Ad&n-Wesley, 1985.

2. Forgy, C. L. On the Efficient Impkmentations of m Syskms. PhD thesis, Tech&al Report CMU-
CS-79, Department of Computer Scim Carnegie-Mellon University, Pittsburgh, February, 1979.

3. Gabriel, R.P. and McCarthy, J. Queue-based multiprocessor Lisp. Conference Record of the 1984 ACM
Symposium on Lisp and Functional programming, ACM, Austin, Texas, August, 1984.

4. Gupta, A. Parallelism in production Systems. PhD thesis, Technical Report CMU-CS-86122. Department of
Compukr Science, Carnegie-Mellon University, Pittsburgh, March, 1986

5. Halskd, R MultiLisp. Conference Record of the 1984 ACM Symposium on Lisp and Functid
Programming, ACM, Austin, Texas, August, 1984.

6. Halstead, R. “Multilisp: A Language fa Cmurrent Symbolic Computation”. ACM Tmnsaction on
PrOgW?Wtbg b?igUageS d syStt???U 7,4 &kmber 1985).

7. Halstead, R “Parallel Symbolic Computing”. IEEE Compurct 19,8 (August 1986), 35-43.

PAULLELI ExEcmoN OF OPSS IN QLISP 1s

8. Hillyer, B. IL and Shaw D. E. “Execution of OPS5 production Systems on a Massively Parallel Machine”.
Journal of Parallel and Distributed Computing 3, (1986),236268.
9. Leiserson, C. E. Systoric Rio&y Queues. ConfaWIfX ar VW L4Wge Scale Integratiti ArchiteCtWe, Design,
Fabrication, January, 1979. Also Available as a CMU Cornput~~ Science Depmt technica report CMU-
CS-79-ll5,Apti41979.
10. John McDemxxt.
39-88.

“Rl: A Rule-Based Qmfiguru of Computer Systems”.

11. Raja Ramnarayan, Gcrhard Zimmerman, and Stanley K.dikdi. PESA-1: A PspJlel Architschve fm OPSS
Production Systems. Hawaii International Co&&exe on System Sciences, January, 1986.

12. Steele, GL. COMMONLJSP : The Language. Di@tal Press, Burlington Massrrchusetts, 1984.

13. Stolfo S. J. and Mimnker D. P. “The DAD0 Pmductioi~ System Ma&i&. J~nal qfPamlle1 and Distributed
Computing 3, (1986). 269-296.

14. Gregg T. Vesonder, Salvatore J. Stolfo, John E. Zielinski, Frederick D. Miller, and David H. Copp. ACE: An
Expert System for Telephone Cable Maintenance. In&ma&& Joint CO&IWW on Artif&l Intelligence, 1983.

P

