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Using and Evaluating Differential Modeling in

Intelligent Tutoring and Apprentice Learning Systems

David C. Wilkins, William J. Clancey and Bruce G. Buchanan

Knowledge Systems Laboratory
Department of Computer Science

Stanford University
Stanford, CA 94305

Abstract

A powerful approach to debugging and refining the knowledge structures of a
problem-solving agent is to differentially model the actions of the agent against

- a gold standard. This paper proposes a framework for exploring the inherent limi-
tations of such an approach when a problem solver is differentially modeled against
an expert system. A procedure is described for determining a performance upper
bound for debugging via differential modeling, called the synthetic agent method.
The synthetic agent method systematically explores the space of near miss training
instances and expresses the limits of debugging in terms of the knowledge represen-
tation and control language constructs of the expert system.

1 Introduction

Artificial Intelligence has long been interested in methods to automatically refine
and debug an intelligent agent. This is a central concern in machine learning and
automatic programming, where the agent to be improved is a program. It is also
a central concern in intelligent tutoring, where the agent to be improved is a hu-
man problem solver. Many AI systems for improving an intelligent agent involve
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differential modeling of the agent against the observable problem-solving behavior
of another agent. We focus on the situation where one of the agents is a knowledge-
based expert system and the knowledge structures to be improved encode factual
information that is declaratively represented’.

. This paper describes the synthetic agent method, which allows calculation of
a performance upper bound on improvement to an intelligent agent attainable by
differential modeling of the agent against an expert system. A performance up-
per bound identifies missing or erroneous knowledge in an intelligent agent that a
particular differential modeling system is inherently incapable of identifying. By
contrast, most performance evaluation procedures aim to determine a performance
lower bound; they experimentally demonstrate that a particular differential model-
ing system can successfully identify some missing or erroneous knowledge.

The synthetic agent method involves replacing the human problem solver in a
differential modeling scenario with a synthetic agent that is another expert system.
The knowledge in the synthetic agent expert system is systematically modified to be
slightly different than the knowledge in the original expert system. The knowledge
in the synthetic agent is modified to be slightly ‘better’ in an apprenticeship learning
scenario and slightly ‘worse’ in an intelligent tutoring scenario.

This paper is organized as follows. Section 2 surveys previous and current
work on improving an intelligent agent via differential modeling. Section 3 identi-
fies important performance evaluation issues related to evaluation of a differential
modeler. Section 4 presents and discusses the synthetic agent method. Finally,
Section 5 describes an application of the synthetic a.gent  method that is currently
underway.

A This paper presents our framework for evaluating a differential modeling sys-
tern. No experimental results are given. A future paper will describe the use of the
framework to evaluate the ODYSSEUS modeling program (described in Section 5) in
the context of intelligent tutoring and apprenticeship learning.

1 As much domain-sp ecific knowledge as possible is declaratively represented in a well designed
knowledge-intensive expert system. Domain-specific procedural knowledge is contained in an expert
system shell for the generic problem class (Clancey, 1984).
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2 The Process of Differential Modeling

Many AI systems that debug and refine an intelligent agent employ a method called
differential modeling; this is the process of identifying differences between the ob-
served behavior of a problem-solving agent and the behavior that would be expected

’ in accordance with an explicit model of problem solving.

Statement of Problem

Aniwer
+

Knowledge Differences
Between PS and ES

t
Answer

Figure 1: A general model of the differential modeling process.
PS solves a problem, and DM finds differences between knowledge
structures of PS and ES. In this paper, equal attention is given to
the situation of apprenticeship learning where PS is a human ex-
pert and the goal is to improve ES; and the situation of intelligent
tutoring where PS is a student and the goal is to improve PS.

The differential modeling process is illustrated in Figure 1. The three major
L elements are a problem solver (PS), a differential modeler (DM), and a knowledge-

based expert system (ES). The task of the DM is to identify differences between the
knowledge structures of PS and ES in the course of watching PS solve a problem, for
example a medical diagnosis problem. In the figure, Answer consists of all observable
behavior of the respective problem solver. The DM can be quite complex and can
easily exceed the complexity of the ES.
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Two major tasks that confront a DM are global and local credit assignment,
which are performed by a global and local learning critic, respectively. The global
critic determines when the observable behavior of PS suggests a difference between
the knowledge structures of ES and PS. In such a situation, the local critic is
summoned to identify possible knowledge differences between ES and PS that are
suggested by the actions of PS. A complete learning system consists of a global critic,
local critic and a repair component (Dietterich and Buchanan, 1981); discussion of
the repair stage is beyond the scope of this paper.

2.1 Previous work in differential modeling

AI systems that employ a differential modeling approach to debugging and refining
a problem-solving agent are found in the areas of machine learning, automatic
programming, and intelligent tutoring. We first describe systems that do not employ
a knowledge-based expert system as the explicit model of problem solving and then
describe systems that do.

The earliest such systems were in the area of machine learning, notably,
Samuel’s checker player and Waterman’s poker player (Samuel, 1963; Waterman,

1 1970). The PS used by Samuel’s DM program was a book of championship checker
games. The DM global critic task was accomplished by comparing the move of PS
to the move that Samuel’s program made in the same situation. The local critic task
was accomplished by adjusting the coefficients of a polynomial evaluation function
for selecting moves so that the action of the program equaled the action of PS. A
recent example of machine learning research that uses a differential modeling ap-
proach is the PRE system for theory-directed data interpretation (Dietterich, 1984).
PRE learns programs for Unix commands from examples of the use of the commands.
The DM employs constraint propagation to identify differences between the PS and
the programs for commands.

In automatic programming, the synthesis of LISP and PROLOG functions from
example traces falls under the rubric of debugging via differential modeling (Bier-
mann, 1978; Shapiro, 1983). The PS consists of the input/output behavior of a
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correct program. The DM modifies the program being synthesized whenever it
does not give the same output as PS when given the same input.

In intelligent tutoring the goal is to ‘debug’ a human problem solver. Many
intelligent tutoring systems contain an expert system and use a differential model-
ing technique, including the WEST program in the domain of games (Burton and
Brown, 1982)) SOPHIE III and GUIDON in the domain of diagnosis (Brown et al.,
1982; Glancey, 1979))  and the MACSYMA-ADVISOR in the domain of symbolic inte-
gration (Genesereth, 1982). SOPHIE III uses an expert system for circuit diagnosis
as an aid in isolating hypothesis errors in the behavior of students who are perform-
ing electronic troubleshooting. GUIDON is built over the MYCIN expert system for
medical diagnosis (Buchanan and Shortliffe, 1984); student hypothesis errors are
discovered in the process of conducting a Socratic dialogue.

Recent research within machine learning also uses an expert system as the
explicit model of problem solving, especially within the subarea of apprenticeship
learning. Apprenticeship learning is defined as a form of learning that occurs in
the context of normal problem solving and uses underlying theories of the problem
solving domain to accomplish learning. Examples of apprenticeship learning systems
are LEAP and ODYSSEUS. The LEAP program refines knowledge bases for the VEXED

expert system for VLSI circuit design (Mitchell et al., 1985). PS is a circuit designer
who is using the VEXED circuit design aid and the underlying theory used by the DM
is circuit theory. ODYSSEUS refines and debugs knowledge bases for the HERACLES

expert system shell, which solves problems using the heuristic classification method
(Wilkins, 1986). When the ODYSSEUS problem domain is medical diagnosis, PS
is a physician diagnosing a patient. The DM uses two underlying theories, the
principal one being a strategy theory of the problem-solving method. ODYSSEUS is
also applicable to intelligent tutoring; it functions as a student modeling program
for the GUIDON2 intelligent tutoring system (Glancey, 1986a).
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2.2 Assumptions and issues in differential modeling

Much of the power of an expert system derives from the quantity and quality of its
domain-specific knowledge. For the purposes of this paper, the principal function
of the differential modeler is to find factual domain knowledge differences between
the problem solver and the expert system. Our work assumes that the expert sys-
tem represents domain knowledge declaratively, including domain-specific control
knowledge. Further, as much as possible, the knowledge is represented indepen-
dently of how it will be used by problem-solving programs. This practice facilitates
use of the same domain knowledge for different purposes, such as problem solving,
explanation, tutoring and learning.

The framework provided by this paper for understanding the limits of de-
bugging via differential modeling has been fashioned with the following assump-
tions in mind. First, we assume that an agent is differentially modeled against a
knowledge-based expert system that is capable of solving the problems presented
to the human PS. Second, we assume that the observed actions of the agent consist
of normal problem-solving behavior in a domain. And third, we assume that the
goal of the differential modeling system is to discover factual domain knowledge
differences between the agent and the expert system’s knowledge base, as opposed

. to the discovery of procedural control knowledge differences; procedural knowledge
involves sequencing constructs such as looping and recursion.

There are many open questions regarding debugging via differential modeling
against an expert system. For instance, what are the types of knowledge in the PS

- that can and cannot be debugged using a differential modeling approach? What
characteristics and organization of an ES facilitate differential modeling? What
characteristics and organization impose inherent limitations? How can the strengths
and weaknesses of a particular DM be best described? The evaluation methodology
proposed in this paper, called the synthetic agent method, provides a framework
for the exploration of these questions.



3 Performance Evaluation  Issues

DM performance evaluation is intimately related to ES performance evaluation. The
function of a DM is to improve the performance of an ES and so DM performance
evaluation requires ES performance evaluation. Although ES evaluation is a difficult

‘and time consuming task, there is agreement on the general approach that should be
taken when ES is an expert system program. Examples of performance evaluation
studies based on a sound methodology are the evaluations of the MYCIN, INTERNIST

and RL expert systems (Yu et al., 1979; Miller et al., 1984; Fu and Buchanan, 1985).

Two major functions of a DM are global and local credit assignment2.  The
general problem of assessing the limits of a DM consists of finding performance
upper bounds on a DM’s global and local critics. The difficulty of these functions
is very domain dependent. In the domain used to develop repair theory, the global
critic merely has to determine whether a student’s answer to a subtraction problem
is correct (Brown and VanLehn, 1980). S ometimes a DM has a person perform
the-global credit assignment, for example in LEAP and MACSYMA-ADVISOR. In very
difficult domains a DM might have a person perform both global and local credit
assignment; TEIRESIAS takes this approach when debugging MYCIN (Davis, 1982).
TEIRESIAS can be viewed as an intelligent editor that allows an expert to perform
global and local credit assignment while watching MYCIN solve problems.

In domains where expertise involves heuristic problem solving, having a pro-
gram perform global credit assignment is often very difficult. In a medical appren-
ticeship, a student may recognize that his or her knowledge is deficient when he or
she can no longer make sense of the sequence of questions that the physician asks
the patient. Since a weakly plausible explanation for any sequence of questions of-
ten exists, this can be very difficult to implement in a computer program. A similar
situation exists in complex games such as chess or checkers. There is usually no way
to know that a given move is necessarily bad; it depends on what follows. Samuel’s
checker player solved the global critic problem by declaring a discrepancy to exist

2Recall  from section 2 that the global critic notices that something is wrong and the local critic
determines which part of the knowledge base is responsible for the error. A learning program consists
of a global and local critic and a repair component.
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whenever the expert (e.g., the book move) and the checker program recommended
different moves at a particular board configuration.

There are often many different changes the local critic can make to effect an
improvement in the performance element. The selection process is usually based
on. which modification leads to the best improvement in the performance element.
Selection is very much affected by how ‘improvement’ in defined. This is further
discussed in Section 3.2.

3.1 Performance evaluation and the synthetic agent
method

The synthetic agent method proposed in this paper is considerably different from
standard performance evaluation methods in two fundamental ways. The purpose
of the remainder of Section 3 is to explain and justify these aspects of the synthetic
agent method. In Section 3.2 we argue that a fruitful evaluation criteria for a
knowledge-based system should be quality of the individual knowledge elements,
not the quality of the problem solving performance of a particular problem-solving
program. These metrics only partially overlap and certainly conflict in the short

1 term. In section 3.3, we describe how the focus of the proposed synthetic agent
method is to delineate a performance upper bound. A performance upper bound
describes where and under what conditions a debugging system for a problem solver
must fail. By contrast, a standard evaluation approach aims at showing the extent
to which a debugging system can succeed. Further, instead of characterizing the
limits of debugging in terms of a percentage of problems that cannot be solved, the
synthetic agent method characterizes the performance upper bound in terms of the
knowledge representation language and the inference constructs used in the expert
system.



3.2 Knowledge-oriented vs. performance-oriented valida-
tion

The ultimate goal of a DM is to improve the performance of a PS or ES. The
architecture of knowledge-based systems requires a shift in our concept of improved
performance. We refer to the type of validation technique we advocate as knowledge-
oriented validation and distinguish it from the traditional practice of performance-
oriented validation.

Performance-oriented validation requires that modifications to a particular
problem-solving program improve problem-solving performance. Because this type
of validation has traditionally focused on improved performance with respect to a
single problem-solving program, the veracity of the underlying knowledge has not
been of overriding concern. A system designed exclusively to maximize problem-
solving performance of a particular problem-solving program may use a method of
knowledge representation in which the semantics of the domain knowledge cannot
be represented easily, if at all. A polynomial evaluation function for rating checker

. positions, for example, captures none of the meaning of its terms.

Knowledge-oriented validation might be defined as performance-oriented vali-
dation that prohibits lessening the truth of individual knowledge elements solely for
the sake of problem-solving performance. The advent of large declarative knowledge
bases used by multiple problem solving programs makes this perspective important.
Examples of multiple problem-solving programs that might use the same medical
knowledge base are programs to accomplish medical diagnosis, knowledge acquisi-
tion, intelligent tutoring, and explanation. When multiple programs use the same
declaratively-specified factual knowledge base, it is helpful to specify knowledge
in a manner that is independent, so far as possible, of its use. Knowledge-based

* validation accomplishes this by requiring that changes to the knowledge base be
semantically meaningful.

Suppose we wish to be faithful to the traditional performance-oriented vali-
dation paradigm when using multiple-purpose knowledge bases. This requires that
every time a learning program finds a change to the knowledge base that will improve
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one problem-solving program, before that change can be recorded, the validation
method must insure that the aggregate performance of all programs is improved.
This policy will be expensive and computationally overwhelming. Further, pro-
grams for all the intended uses of a knowledge base are not necessarily in existence
at the time learning is taking place.

Another rationale for knowledge-oriented validation is our belief that perfor-
mance in the long term will be more correct and robust if the knowledge structures
are carefully developed. Moreover, when PS is a person, it is unrealistic, proba-
bly even unwise, to attempt to replace semantically-rich knowledge structures with
others that deviate radically from them merely to improve short-term performance.

It should be noted that to some extent all programs for improving an in-
telligent agent aim at both good performance and good knowledge; nevertheless,
almost all past research in machine learning, intelligent tutoring and automatic
programming has adopted a pure performance-oriented validation approach. This
is especially true in automatic programming, where any mutation to the program
to be debugged is judged to be acceptable if it causes the program to produce the
correct output when given a correct input/output training instance (Shapiro, 1983).

In machine learning, one of the best systems for refining an expert system
1 knowledge base is the SEEK2 program for the EXPERT expert system shell (Gins-

berg et al., 1985). Th’is 1earning system takes a performance-oriented validation
approach. One possible input to SEEK2 is a representative set of past solved cases
and an initial knowledge base of rules. Given this input, SEEK2 attempts to modify
elements of the knowledge base so as to maximize the problem-solving performance
of the EXPERT expert system on the given representative set of solved problem cases.
In EXPERT, the strengths of inexact rules in the knowledge base are represented us-
ing certainty factors (CFs).  Examples of modification operators used by SEEK2 to
improve performance are LOWER-CF and RAISE-CF (Ginsberg, 1986). When a repre-
sentative set of past cases is present, the strengths of inexact rules are determined,
since certainty factors can be given a strict probabilistic interpretation (Heckerman,
1986). We strongly believe that an arbitrary change to the strength of a rule just
to improve performance is unjustifiable and unnecessary (Wilkins and Buchanan,
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1986). The cost of this improved performance is a knowledge base that may con-
tain incorrect knowledge. The SEEK2 refinement approach is not an instance of
knowledge-oriented learning; it does not use knowledge-oriented validation.

A good example of knowledge-oriented learning is repair theory in the domain
of subtraction problems (Brown and VanLehn, 1980). Repair theory is concerned
with detecting underlying bugs, given the observable problem solving behavior of
students. Repair theory has a procedural model of problem solving that claims to be
a plausible model of the associated human skill; bugs of students are correlated with
possible bugs in the problem-solving procedure for subtraction. Repair theory is
similar in spirit to the synthetic agent method we propose for assessing a differential
modeling system. Repair theory generates most of the significant possible bugs by
deleting parts of the procedural knowledge; likewise we expect our approach to
generate most of the significant possible types of bugs in the declarative domain
knowledge base, mainly by deleting parts of the knowledge base, as we shall describe
in Section 4. The main difference is that in the repair theory model of subtraction
the PS and ES knowledge is almost completely procedural, whereas we are interested
in factual knowledge is declaratively represented.

3.3 Capability-oriented vs. limitation-oriented validation

A typical way of validating that a DM improves an ES involves using a disjoint set
of validation and training problem sets. The ES solves the validation problem set
and its performance is recorded. Then the DM improves the ES while watching
a human expert PS solve a training problem set. Finally ES solves the validation
problems again; the amount of improvement in performance provides a measure of
the quality of the DM.

This scenario establishes a lower bound on the quality of a DM. By increasing
the size of the training problem set, DM might improve ES even more. We refer to
validation methods that establish a lower bound on the quality of a DM as capadility-
oriented. For a given set of training and validation problems, capability-oriented
validation shows that the DM is responsible for a more capable ES.
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Another method of validating a DM is to have the DM watch a student solve a
training problem set. Let us assume that the student exhibits a representative set of
the types of domain knowledge errors that could be made in the problem domain.
A domain expert can manually identify the domain knowledge errors connected
with each training problem. This manual analysis provides a performance upper
bound with respect to this training set for the DM, and the DM modeling program
is measured against this standard. The goals of this type of manual analysis and
our proposed automated analysis using the synthetic agent method are identical, in
the case where the student and the problem set have been both constructed so as
to allow all possible types of domain knowledge errors to be made.

We desire to know those types of differences in an expert system knowledge
base that cannot be detected or corrected via differential modeling. In contrast
to the capability-oriented approach, our validation approach aims at determining
when the differential modeler must fail - we are limitation-oriented. For example,
a limit of a program for inducing LISP functions from examples might be that the
program can’t induce cases that require certain types of loop constructs. In our
work, we have focused on showing certain conditions that force the differential
modeling approach to fail under the most favorable of conditions, the single fault
assumption. The multiple fault assumption would allow determination of a broader
performance upper bound.

4 Synthetic Agent Method of Validation

The apprenticeship learning and tutoring scenarios shown in Figures 2 and 3 involve
two agents: a person and an expert system. The person serves as an expert and stu-
dent, in the context of apprenticeship learning and intelligent tutoring, respectively.
The synthetic agent method consists of replacing the person with a synthetic agent,
which is another expert system, in order to experiment with and validate the dif-
ferential modeling system objectively. The knowledge in the synthetic agent expert
system is modified to be slightly different from the knowledge in the original ex-
pert system. The knowledge is modified to be slightly ‘better’ in an apprenticeship
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learning scenario and slightly ‘worse’ in an intelligent tutoring scenario.

Problem Statement

. - I t
DM

Differential
Modeler

t
r

ES

-1 I Apprentice
Expert System

Answer Differences Between
Knowledge Structures

of PS and ES

Answer

Figure 3: Apprentice learning scenario: Apprentice expert system
watches human expert through the differential modeling program,
with the goal of improving the apprentice program’s knowledge.

An advantage of the synthetic agent method is control over interpersonal vari-
ables involved in differential modeling. An example of an interpersonal variable is
the problem-solving style of a PS, as exemplified by the set of strategic diagnostic op-
erators used by the PS. Diagnostic operators specify the permissible task procedures
that can be applied to a problem as well as the allowable methods for achieving the
task procedures. Examples of problem-solving operators in the domain of diagnosis
include: ask general questions, ask clarifying questions, refine hypotheses, differen-
tiate between hypotheses, and test hypothesis. Another interpersonal variable is
the quantity of domain-specific knowledge that the PS possesses.

c

While control of interpersonal variables almost always leads to an incorrect
DM performance lower bound, conclusions reached concerning a performance upper
bound are sound when interpersonal variables are controlled. If a system is inher-
ently limited under the most optimal assumptions possible for differential modeling,
it will still be inherently limited in those settings that involve a less optimal differ-
ential modeling setting.

14



Problem Statement

t--
Answer Differences Between

Knowledge Structures
of PS and ES

Answer

Figure 4: Intelligent tutoring scenario: Expert system watches
student through the differential modeling program, with the goal
of improving the student’s knowledge.

In the learning and tutoring scenarios, the synthetic agent method treats the
original expert system knowledge base as a “gold standard”. The apprentice ES
and the student PS always have a deficiency with respect to this gold standard. In
this paper we restrict our analysis to the situation where the apprentice’s knowledge
differs from the gold standard by a single element of knowledge; hence we have a
single fault assumption. Two types of knowledge base discrepancies are possible:
missing knowledge and erroneous knowledge. The synthetic agent method proce-
dure described in section 4.1 shows how deletion of knowledge can represent the
space of missing and erroneous knowledge. Other methods for creating erroneous
knowledge are described in section 4.3.

L For a given problem statement, a distinction is made between referenced, ob-
servable, and essential knowledge in the ES’s knowledge base. The relation between
these categories is illustrated in Figure 4. Referenced knowledge is simply knowledge
that is accessed during a problem solving case. Observable knowledge is knowledge
whose removal leads to different external observable behavior of a PS, either in the
sequence of actions that the PS exhibits or the final answer. Essential knowledge is
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Domain Knowledge Base

Referenced Knowledge

Observable Knowledge

Figure 5: The relation between different categories of knowledge,
with respect to a particular problem case.

knowledge whose removal leads to a significantly different final answer.

Of most concern is the apprentice’s ability to acquire the essential knowledge
elements connected with a problem statement. These are the relations most im-
portant for solving a given case. For plausible reasoning systems, what comprises a
significantly different answer needs to be specified. For instance, if there are multi-
ple diagnoses, the significance of the order in which the hypotheses are ranked needs
to be determined. Acquisition of elements that are observable but not essential are
also of interest, since they can be essential elements with respect to another problem
statement.

The procedure for calculating a performance upper bound on a differential
modeling system is now presented.
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4.1 The synthetic agent method

Step 1. Create synthetic agent. Replace PS with a synthetic agent: a copy of ES
with initially the same domain knowledge.

Step 2. Solve problem case. Solve a problem using PS and save the solution trace,
i.e., the observable actions of PS and the final answer.

Step 3. Identify observable knowledge. For a particular problem case, collect all
elements in the knowledge base that were referenced by PS during problem
solving. Identify the observable knowledge: the subset of the referenced knowl-
edge whose removal would lead to a different solution trace or a different final

a n s w e r .

Step 4. For each observable knowledge element:

Step 4a. Remove the element from ES. In an apprenticeship learning sce-
nario this creates an apprentice expert ES with missing knowledge. In
an intelligent tutoring scenario the element removed from the ES is de-
clared to be erroneous3. Since the element is still present in PS, the
synthetic student PS has erroneous knowledge.

Step 4b. Detect and localize knowledge discrepancy. Have the PS solve the
problem case. See if DM can detect (the global critic problem) and
localize (the local critic problem) the knowledge difference.

Step 5. For each observable knowledge element:

Step 5a. Remove the element from PS. In an intelligent tutoring scenario
this creates a synthetic student PS with missing knowledge. In an appren-
ticeship learning scenario the element removed from the PS is declared
to be erroneous3. Since the element is still present in ES, the apprentice
expert ES has erroneous knowledge.

Step 5b. Detect and localize knowledge discrepancy. Have the PS solve the
problem case. See if DM can detect (the global critic problem) and
localize (the local critic problem) the knowledge difference.

3N B This element of knowledge is treated as erroneous for purposes of validation. In reality,. .
the element is true knowledge.
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4.2 Discussion of synthetic agent method

An expert system’s explanation facility can be helpful in locating the observable
knowledge with respect to a given problem case. One of the hallmarks of a good
expert system is its ability to explain its own reasoning. So it is not too much to
.ask for those pieces of knowledge used on a problem case, and a good explanation
system might even be able to identify the essential knowledge. At worst, given‘,
the pieces of knowledge that were used to solve a particular problem, the essential
pieces of knowledge can be determined by experimentation. Usually, only a small
amount of an expert system’s domain knowledge is observable with respect to a
given problem, and our experiences in the medical diagnosis domain have shown us
that only a small amount of the observable knowledge is essential knowledge.

Some knowledge that is referenced by the expert system may not have ob-
servable consequences, even if it is used by the problem solver, since the removal
of knowledge does not always effect the external
instance, in MYCIN and NEOMYCIN, terms that

_ measurements, such as patient weight, have an
system uses the value of this property to decide

behavior of a problem solver. For
represent medical symptoms and
ASKFIRST property. The expert
whether the value of a variable is

first determined by asking the user or first determined by derivation by some other
method, such as from first principles. However, if the system does not possess tech-
niques for deriving the information from other principles, then the external behavior
of the system is the same regardless of the value of the ASKFIRST  property.

When testing the global critic in steps 4b and 5b of the synthetic agent
method, part of the assessment must relate to whether the apprentice detects
knowledge base differences close to the point in the problem-solving session where
the different knowledge was used. This temporal proximity is important, since the

* problem-solving context at this point in the problem-solving session strongly focuses
the search for missing or erroneous knowledge.
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4.3 Categories of errors

The knowledge organization that we focus upon specifies all factual domain knowl-
edge in a declarative fashion. In such a knowledge base, there are two main cat-
egories of errors: missing and erroneous knowledge. Missing knowledge is absent
from the knowledge base, and erroneous knowledge is factually incorrect knowledge
that is present in the knowledge base.

The space of missing knowledge is easy to generate, especially with the single
fault assumption. Recall that the original expert system serves as our gold stan-
dard and the domain knowledge in the expert system is declaratively represented.
Hence, the number of single faults from missing knowledge is equal to the number
of elements in the declarative knowledge base.

The space of erroneous knowledge is much more difficult to describe. The
synthetic agent method takes a novel approach to the problem in steps 5a and
6a. An erroneous element is created by declaring a correct knowledge element to
be erroneous for purposes of validation. We are also considering other approaches.
Much of the knowledge is represented declaratively and typed. Therefore, erroneous
knowledge can be generated by substituting different values for the knowledge in
the range of the type, as long as the assumption can be made that the erroneous1
knowledge is at least correctly typed by the problem solver. The space of possible
variations of declarative associational rule knowledge is significantly reduced by the
practice used in the HERACLES’ expert system shell of factoring different types of
knowledge from the domain knowledge, such as causal, definitional, and control
knowledge (Clancey, 1986b).

S Application of Synthetic Expert Method

Our investigations of a performance upper bound for a differential modeler are be-
ing performed in the context of the HERACLES and ODYSSEUS systems. HERACLES

is an expert system shell that solves classification-type problems using the heuris-
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tic classification method (Clancey, 1985). The ODYSSEUS program differentially
models a PS against any ES implemented using the HERACLES expert system shell
(Wilkins, 1986). When PS is a human expert, ODYSSEUS functions as a knowledge
acquisition program for the HERACLES expert system shell. When PS is a student,
ODYSSEUS functions as a student modeling program for the GUIDON2 intelligent
tutoring system, which is built over HERACLES.

Problem Statement

PS

“Expert”
Expert System

I
Answer

DM

Line-of-Reasoning
Generator

+
Global Critic

Expert System

1
Local Critic

Expert System

ES

Apprentice
Expert System

+

T

Answer

I
Differences Between

Knowledge Structures
of PS and ES

Figure 6: Synthetic agent validation situation for apprenticeship
learning in which the role of the PS has been filled by a synthetic
expert system. In apprenticeship learning, the DM watches PS to
improve ES’s knowledge structures.

In HERACLES, domain knowledge is encoded using a relational language and
MYCIN-type rules (Clancey, 198613). T he knowledge relations of the relational lan-
guage are predicate calculus representations of the domain knowledge, written using
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the logic programming language MRS. For example, an instantiation of the propo-
sition (SUGGESTS $PARh4 $HYP) represents the fact that if a particular parameter
is true then this suggests that a particular hypothesis is true. An instantiation of
the template (ASKFIRST $FINDING $FLAG-VALUE)  specifies whether the system
should first ask the user for the value of a finding, or derive the information from
existing information. The major domain knowledge base for HERACLES at this time
is the NEOMYCIN knowledge base for diagnosing meningitis and neurological prob-
lems (Clancey, 1984). A second effort in the sand casting domain is called CASTER

(Thompson and Clancey, 1986).

Three aspects of the HERACLES expert system shell facilitate the task of
differential modeling faced by ODYSSEUS. First, distinctions are made between the
different types of knowledge in HERACLES’ knowledge base, such as heuristic, def-
initional, causal, and control knowledge. Second, the method of reasoning, called
hypothesis-directed reasoning, approximates that used by human experts (Clancey,
1984). Hence, HERACLES can be viewed as a simulation of an expert’s process of
diagnosis. Third, the control knowledge is explicitly represented as a procedural
network of subroutines and metarules that are both free of domain knowledge; the
subroutines and metarules use variables rather than specific domain terms (Clancey,
1986b). By contrast, the heuristic rules in MYCIN have a great deal of control knowl-
edge imbedded in the premises of the rules (Clancey, 1983; Buchanan and Shortliffe,1
1984).

Figure 5 shows the place of the ODYSSEUS DM in the context of debugging an
apprentice expert system. The DM tracks the problem-solving actions of the PS step
by step. For each observable step of the problem solver, ODYSSEUS generates and
scores the alternative lines of reasoning that can explain the reasoning step. If the
global critic does not find any plausible reasoning path, or all found paths have a low
plausibility, ODYSSEUS assumes that there is a difference in knowledge between the
human problem solver and the expert system. The local critic attempts to locate the
knowledge difference either automatically or by asking the expert specific questions.
ODYSSEUS) analysis of problem-solving steps uses two underlying domain theories: a
strategy theory of the problem-solving method called hypothesis-directed reasoning
using the heuristic classification method, and an inductive predictive theory for
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heuristic rules that uses a library of previously solved problem cases.

The ODYSSEUS global and local critics are themselves being implemented
as two HERACLES-based expert systems. There are three reasons why we choose to
implement the critics as expert systems. First, the task that confronts the learning
critics is a knowledge-intensive task (Dietterich and Buchanan, 1981)) and expert
system techniques are useful for representing large amounts of knowledge. Second,
with an expert system architecture, the reasoning method used by the critics can
be made explicit and easily evaluated, since the domain knowledge is declaratively
encoded using HERACLES’ knowledge relations and simple heuristic rules. Third,
since ODYSSEUS is designed to improve any HERACLES-based expert system, it can
theoretically improve itself in an apprenticeship learning setting.

Approximately sixty different knowledge relations in HERACLES specify the
declarative domain knowledge. It would be useful to know how successful the global
and local critics are at detecting discrepancies in the different knowledge relations
of the knowledge representation language. Are there certain types of knowledge re-
lations whose absence is always noticeable? Are there particular types of knowledge
whose absence is very hard to recognize ? For example, HERACLES represents final
diagnoses in a hierarchical tree structure; determining that a problem is caused by
a missing link in this structure may be very difficult for the apprentice to discover.
By contrast, it may be very easy to discover whether a trigger property of a rule is
missing. A trigger property causes the conclusion of a rule to treated as an active
hypothesis if particular clauses of the rule premise are satisfied. Clearly global and
local credit assignment are greatly affected by the complexity of the procedural
control knowledge used in the expert system shell.

6 Summary

With the proliferation of expert systems, methods of intelligent tutoring and ap-
prenticeship learning that are based on differential modeling of the normal problem-
solving behavior of a student or expert against a knowledge-intensive expert system
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should become increasingly common. The synthetic agent method is proposed as
an objective means of assessing the limits of a particular differential modeling pro-
gram in the context of intelligent tutoring and apprenticeship learning. The power
of a differential modeler is crucially dependent upon the expert system’s method
of knowledge representation and control. The synthetic agent method provides a
means of expressing the limitations of a differential modeler in terms of the knowl-
edge representation and control vocabulary.

The synthetic agent method involves a systematic perturbation of a program
that takes the place of the student or expert. Traditionally, methods of evaluating
a differential modeler have focused on a performance lower bound. The described
synthetic agent method focuses on establishing a performance upper bound. It
provides a means of exploring the extent that a differential modeling system is able
to detect and isolate an arbitrary difference between a knowledge base of an expert
system and the problem-solving knowledge of a student or expert. Our work to
date confirms our belief that the task of differential modeling is easier the more an
expert system represents factual domain knowledge in a declarative fashion.

The validation framework described in this paper is being used to assess
the limits of the ODYSSEUS modeling program in the context of intelligent tutoring
and apprenticeship learning. Students and experts are being differentially modeled

1 against knowledge bases for the HERACLES’ expert system shell. This should lead
to a better understanding of the synthetic agent method, the ODYSSEUS modeling
program, and the extent to which HERACLES’ method of knowledge representation
and control facilitates differential modeling.
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