
May 1987 Hcport No. STAN-CS-87-1181
Also mntbered KS L-86-30

On Debugging Rule Sets
When Reasoning Under Uncertahty

David C. Wilkins and Bruce G. Buchanan

Department of Computer Science

Stanford Uliivcrsity
Stanford, CA 94305

Knowledge Systems Laboratory
KSL Report No. KSL-86-30

April 1986
Rev. 1, July 1986
Rev. 2, May 1987

On Debugging Rule Sets When
Reasoning Under Uncertainty

David C. Wilkins and Bruce G. Buchanan

Knowledge Systems Laboratory
Department of Computer Science

Stanford University
Stanford, CA 94305

An earlier version appeared in:

Proceedings of the Fifth National Conference on Artificial Intelligence
Philadelphia, August 1986

On Debugging Rule Sets When Reasoning Under Uncertainty

David C. Wilkins and Bruce G. Buchanan

Knowledge Systems Laboratory
Department of Computer Science

St anford University
Stanford, CA 94305

Abstract

Heuristic inference rules with a measure of strength less than certainty have an un-
usual property: better individual rules do not necessarily lead to a better overall rule
set. All less-than-certain rules contribute evidence towards erroneous conclusions
for some problem instances, and the distribution of these erroneous conclusions over
the instances is not necessarily related to individual rule quality. This has impor-
tant consequences for automatic machine learning of rules, since rule selection is
usually based on measures of quality of individual rules.

In this paper, we explain why the most obvious and intuitively reasonable
solution to this problem, incremental modification and deletion of rules responsible
for wrong conclusions a la Teiresias, is not always appropriate. In our experience, it
usually fails to converge to an optimal set of rules. Given a set of heuristic rules, we
explain why the the best rule set should be considered to be the element of the power

- set of rules that yields a global minimum error with respect to generating erroneous
positive and negative conclusions. This selection process is modeled as a bipartite
graph minimization problem and shown to be NP-complete. A solution method is

described, the Antidote Algorithm, that performs a model-directed search of the rule
I space. On an example from medical diagnosis, the Antidote Algorithm significantly
reduced the number of misdiagnoses when applied to a rule set generated from 104
training instances.

1

1 Introduction

Reasoning under uncertainty has been widely investigated in artificial intelligence.

Probabilistic approaches are of particular relevance to rule-based expert systems,

where one is interested in modeling the heuristic and evidential reasoning of experts.

Methods developed to represent and draw inferences under uncertainty include the

certainty factors used in Mycin [BS84], fuzzy set theory [Zad79], and the belief

functions of Dempster-Shafer theory [Sha76] [GS85]. In many expert system frame-

works, such as Emycin, Expert, MRS, S.l, and Kee, the rule structure permits

a conclusion to be drawn with varying degrees of certainty or belief. This paper

addresses a concern common to all these methods and systems.

In refining and debugging a probabilistic rule set, there are three major causes

of errors: missing rules, vlrong rules, and deleterious interactions between good

rules. The purpose of this paper is to explicate a type of deleterious interaction

and to show that it (a) is indigenous to rule sets for reasoning under uncertainty,

(b) is of a fundamentally different nature from missing and wrong rules, (c) cannot

be handled by traditional methods for correcting wrong and missing rules, and (d)

can be handled by the method described in this paper.

In section 2, we describe the type of deleterious rule interactions that we

have encountered in connection with automatic induction of rule sets, and explain

why the use of most rule modification methods fails to grasp the nature of the

problem. In section 3, we discuss approaches to debugging and refining rule sets

and explain why traditional rule set debugging methods axe inadequate for handling

global interactions. In section 4, we formulate the problem of reducing deleterious

interactions as a bipartite graph minimization problem and show that it is NP-

complete. In section 5, we present a heuristic solution method called the Antidote

Algorithm. Finally, our experiences in using the Antidote Algorithm are described.

A brief description of terminology will be helpful to the reader. Assume there

exists a collection of training instances, each represented as a set of feature-value

pairs of evidence and a set of hypotheses. Rules have the form LHS + RHS (CF) ,
where LHS is a conjunction of evidence, RHS is a hypothesis, and CF is a certainty

2

factor or its equivalent. A rule that correctly confirms a hypothesis generates true
positive evidence; one that correctly disconfirms a hypothesis generates true nega-
tive evidence. A rule that incorrectly confirms a hypothesis generates false positive
evidence; one that incorrectly disconfirms a hypothesis generates false negative evi-

dence. False positive and false negative evidence can lead to misdiagnoses of training

instances.

2 Inexact Reasoning and Rule Interactions

When operating as an evidence-gathering system [BS84], an expert system accumu-

lates evidence for and against competing hypotheses. Each rule whose preconditions

match the gathered data contributes either positively or negatively toward one or

more hypotheses. Unavoidably, the preconditions of probabilistic rules succeed on

instances where the rule will be contributing false positive or false negative evidence

for conclusions. For example, consider the following rule:’

f indingcsurgery # yes) A

f inding(gra.rn,neg-inf ect ion, yes) +

conclude(klebsiella, yes , 0 . 7 7)

(W

The frequency with which Rl generates false positive evidence has a major
- influence on its CF of 0.77, where -1 5 CF < 1. Indeed, given a set of train-

ing instances, such as a library of medical cases, the certainty factor of a rule

can be given a probabilistic interpretation’ as a function @(;cr, 32, ~a), where zr is

- the fraction of the positive instances of a hypothesis where the rule premise suc-

ceeds, thus contributing true positive or false negative evidence; ~2 is the fraction

of the negative instances of a hypothesis where the rule premise succeeds, thus con-

tributing false positive or true negative evidence; and Q is the ratio of positive

‘This is a simplified form of (@And (Same Cntxt Surgery)) +
(Conclude Cntxt Gram-Negative-1 Klebsiella Tally 770)).

2See Appendix 1 for a description of the function QT. This statistical interpretation of CFs
deemphasizes incorporating orthogonal utility measures as discussed in [BS84].

3

instances of a hypothesis to all instances in the training set. For Rl in our do-

main, @(.43, .lO, .22) = 0.77, because statistics on 104 training instances yield the

following values:

x1: LHS true among positive instances = lo/23

x2: LHS true among negative instances = 8/81

x3: RHS true among all instances = 23/104

Hence, Rl generates false positive evidence on eight instances, some of which

may lead to false negative diagnoses. But whether they do or not depends on the

other rules in the system; hence our emphasis on taking a global perspective. The

usual method of dealing with situations such as this is to make the rule fail less

often by specializing its premise [Mic84]. For example, surgery could be specialized

to neurosurgery, and we could replace Rl with:

finding(neurosurgery, yes) A

finding (gram-neg-inf ect ion, yes) +

conclude(klebsiella, Yes, 0.92)

CR21

On our case library of training instances for the R2 rule, @(.26, .02, .22) = 0.92,

so R2 makes erroneous inferences in two instances instead of eight. Nevertheless,

modifying Rl to be R2 on the grounds that Rl contributes to a misdiagnosis is

not always appropriate; we offer three objections to this frequent practice. First,

I both rules are inexact rules that offer advice in the face of limited information, and

their relative accuracy and correctness is explicitly represented by their respective

CFs. We expect them to fail, hence failure should not necessarily lead to their

modification. Second, all probabilistic rules reflect a trade-off between generality

and specificity. An overly general rule provides too little discriminatory power,

and a overly specific rule contributes too infrequently to problem solving. A policy

on proper grain size is explicitly or implicitly built into rule induction programs;

4

this policy should be followed as much as possible. Specialization produces a rule

that usually violates such a policy. Third, if the underlying problem for an incorrect

diagnosis is rule interactions, a more specialized rule, such as the specialization of Rl

to R2, can be viewed as creating a potentially more dangerous rule. Although it only

makes an incorrect inference in two instead of eight instances, these two instances

will be now harder to counteract when they contribute to misdiagnoses because R2

is stronger. Note that a rule with a large CF is more likely to have its erroneous

conclusions lead to misdiagnoses. This perspective motivates the prevention of

misdiagnoses in ways other than the use of rule specialization or generalization.

Besides rule modification, another way of nullifying the incorrect inference of

a rule in an evidence-gathering system is to introduce a counteracting rules. In our

example, this would be rules with a negative CF that concludes Klebsiella on the

false positive training instances that lead to misdiagnoses. But since these new rules

are probabilistic, they introduce false negatives on some other training instances,

and these may lead to misdiagnoses. We could add yet more counteracting rules

with a positive CF to nullify any problems caused by the original counteracting

rules, but these rules introduce false positives on yet other training instances, and

these may lead to other misdiagnoses. Also, a counteracting rule is often of less

quality in comparison to rules in the original rule set; if it were otherwise the

induction program would have included the counteracting rule in the original rule

set. Clearly, adding counteracting rules may not be necessarily the best way of

dealing with misdiagnoses made by probabilistic rules.

3 Debugging Rule Sets and Rule Interactions

- Assume we are given a set of probabilistic rules that were either automatically

induced from a set of training cases or created manually by an expert and knowledge

engineer. In refining and debugging this probabilistic rule set, there are three major

causes of errors: missing rules, wrong rules, and unexpected interactions among

good rules. We first describe types of rule interactions, and then show how the

traditional approach to debugging is inadequate.

5

3.1 Types of rule interactions

In a rule-based system, there are many types of rule interactions. Rules interact

by chaining together, by using the same evidence for different conclusions, and by

drawing the same conclusions from different collections of evidence. Thus one of

the lessons learned from research on MYCIN [BS84] was that complete modularity

of rules is not possible to achieve when rules are written manually. An expert uses

other rules in a set of closely interacting rules in order to define a new rule, in

particular to set a CF value relative to the CFs of interacting rules.

Automatic rule induction systems encounter the same problems. Moreover,

automatic systems lack an understanding of the strong semantic relationships

among concepts to allow judgements about the relative strengths of evidential

support. Instead, induction systems use biases to guide the rule search [Mic84]

[WCB86]. Examples of some biases used by the induction subsystem of the Odysseus

apprenticeship learning program are rule generality, whereby a rule must cover a

certain percentage of instances; rule specificity, whereby a rule must be above a

minimum discrimination threshold; rule colinearity, whereby rules must not be too

similar in classification of the instances in the training set; and rule simplicity,

whereby a maximum bound is placed on the number of conjunctions and disjunc-

tions [WCBSS].

3.2 Traditional methods of debugging a rule set

The standard approach to debugging a rule set consists of iteratively performing

the following steps:

l Step 1. Run the system on cases until a false diagnosis is made.

l Step 2. Track down the error and correct it, using one of five methods pio-

neered by Teiresias [DL82] and used by knowledge engineers generally:

6

- Method 1: Make the preconditions of the offending rules more specific

or sometimes more general.3

- Method 2: Make the conclusions of offending rules more general-or some-

times more specific.

- Method 3: Delete offending rules.

- Method 4: Add new rules that counteract the effects of offending rules.

- Method 5: Modify the strengths or CFs of offending rules.

This approach may be sufficient for correcting wrong and missing rules. How-

ever, it is flawed from a theoretical point of view, with respect to its sufficiency for

correcting problems resulting from the global behavior of rules over a set of cases. It

possesses two serious methodological problems. First, using all five of these meth-

ods is not necessarily appropriate for dealing with global deleterious interactions.

In section 2 we explained why in some situations modifying the offending rule or

adding counteracting rules leads to problems, and misses the point of having prob-

abilistic rules, and this eliminates methods 1, 2 and 4. If rules are being induced

from a training set of cases, modifying the strength of the rule is illegal, since the

strength of the rule has a probabilistic interpretation, being derived from frequency

information derived from the training instances, and this eliminates method 5. Only

method 3 is left to cope with deleterious interactions. The second methodological

problem is that the traditional method picks an arbitrary case to run in its search

for misdiagnoses. Such a procedure will often not converge to a good rule set, even

if modifications are restricted to rule deletion. Example 2 in section 5.1 illustrates

this situation.

Our perspective on this topic evolved in the course of experiments in induction

:and refinement of knowledge bases. Using “better” induction biases did not always

produce rule sets with better performance, and this prompted investigating the

possibility of global probabilistic interactions. Our original approach to debugging

was similar to the Teiresias approach. Often, correcting a problem led to other

3Ways of generalizing and specializing rules are nicely described in [Mic84]. They include drop-
ping conditions, changing constants to variables, generalizing by internal disjunction, tree climbing,
interval closing, exception introduction, etc.

7

cases being misdiagnosed, and in fact this type of automated incremental debugging

seldom converged to an acceptable set of rules. It might have if we we engaged in

the common practice of “tweaking” the CF strengths of rules. However t-his was not

permissible, since our CF values have a precise probabilistic interpretation.

4 Problem Formalization

,

Assume there exists a large set of training instances, and a rule set for solving

these instances has been induced that is fairly complete and contains rules that

are individually judged to be good. By good, we mean that they individually

meet some predefined quality standards such as the biases described in section 3.1.

Further, assume that the rule set misdiagnoses some of the instances in the training

set. Given such an initial rule set, the problem is to find a rule set that meets

some optimality criteria, such as to minimize the number of misdiagnoses without

violating the goodness constraints on individual rules.4 Now modifications to rules,

except for rule deletion, generally break the predefined goodness constraints. And

adding other rules is not desirable, for if they satisfied the goodness constraints they

would have been in the original rule set produced by the induction program. Hence,

if we are to find a solution that meets the described constraints, the solution must

be a subset of the original rule set.5

The best rule set is viewed as the element of the power set of rules in the initial

rule set that yields a global minimum weighted error. A straightforward approach

is to examine and compare all subsets of the rule set. However, the power set is

almost always to large to work with, especially when the initial set has deliberately

been generously generated. The selection process can be modeled as a bipartite

: graph minimization problem as follows.

41n Meta-Dendral, a large initial rule set was created by the RULEGEN program, which produced
plausible individual rules without regard to how the rules worked together. The RULEMOD program
selected and refined a subset of the rules. See [BM78] for details.

51f we discover that this solution is inadequate for our needs, then introducing rules that violate
the induction biases is justifiable.

4.1 Bipartite graph minimization formulation

For each hypothesis in the set of training instances, define a directed graph G(V, A),
with its vertices V partitioned into two sets I and R, as shown in Figure 1. Elements

of R represent rules, and the evidential strength of Rj is denoted by <pj. Each

vertex in I represents a training instance; for positive instances Q!; is 1, and for

negative instances \ki is -1. Arcs [Rj, 1;3 connect a rule in R with the training

inst antes in I for which its preconditions are satisfied; the weight of arc [Rj, I;] is

@j. The weighted arcs terminating in a vertex in I are combined using an evidence

combination function 6, which is defined by the user. The combined evidence

classifies an instance as a positive instance if the combined evidence is above a user

specified threshold CF,. In the example in section 5.1, CF, is 0, while for Mycin,

CF, is 0.2.

More formally, assume that 11,. . . , I, = training set of instances, and

RI, .-.y Ra= rules of an initial rule set. Then we want to minimize:

n

z =
c bjrj
j=l

subject to the constraints

i;c (a’ aj1rI,...
i=l

7 ainrn) 8; CFt)
n

c rj 2 &rain
j=l

where

rj = if Rj is in solution rule set then 1 else 0;

bj = bias constant to preferentially favor rules;

9

aij = if ~XC [Rj,Ii] exists then @j else 0;

CFt = the CF threshold for positive classification;

a’ = nary function for combining CFs, where

the time to evaluate is polynomial in n;

Knin = minimum number of rules in solution set;

8; = if Q; is 1 then “ > ” else “ 5 “.

The solution formulation solves for rj ; if rj = 1 then rule Rj is In the SIXA

rule set. The main task of the user is setting up the aij matrix, which associates

rules and instances and indicates the strength of the the associations. Note that

the value of aij is zero if the preconditions of Rj are not satisfied in instance &

Preference can be given to particular rules via the bias bj in the objective function

x. For instance, the user may wish to favor the selection of strong rules. The &in

constraint forces the solution rule set to be above a minimum size. This prevents

finding a solution that is too specialized for the training set, giving good accuracy

on the training set but having a high variance on other sets, which would lead to

poor performance.

Theorem 1. The bipartite graph minimization problem for heuristic rule set

optimization is NP-complete.

Proof. To show that the bipartite graph minimization problem is NP-

1 complete, we use reduction from Satisfiability. Satisfiability clauses are mapped

into graph instance nodes and the atoms of the clauses are mapped into rule nodes.

Arcs connect rule nodes to instance nodes when the respective literals appear in

the respective clauses. The evidence combination function ensures that at least one

arc goes into each clause node from a rule node representing a true literal. The

evidence combination function also performs bookkeeping functions. 0

10

Rule SetInstance Set

.. :. .

IIn l

Figure 1: Bipartite Graph Formulation

. Rn (en)

5 Solution Method

In this section, a solution method called the Antidote Algorithm is described, and an

example is provided based on the graph shown in figure 2. An alternative solution

method that uses zero-one integer programming is described in [WBSS]. It is more

robust, but places a restriction on the evidence combination function, namely that

- the evidence be additively combined. It is not adequate when using the certainty

factor model, but may be suitable for connectionist approaches.

’ 5.1 The Antidote Algorithm

The following model-directed search method, the Antidote Algorithm, is one that

we have developed and used in our experiments:

11

l Step 1. Assign values to penalty constants. Let p1 be the penalty assigned

to a poison rule. A poison rule is a strong rule giving erroneous evidence for

a case that cannot be counteracted by the combined weight of all the rules

that give correct evidence. Let p2 be the penalty for contributing false posi-

tive evidence to a misdiagnosed case, p3 be the penalty for contributing false

negative evidence to a misdiagnosed case, p4 be the penalty for contributing

false positive evidence to a correctly diagnosed case, p5 be the penalty for

contributing false negative evidence to a correctly diagnosed case, and p6 be

the penalty for using weak rules. Let h be the maximum number of rules that

are removed at each iteration. Let &in be the minimum size of the solution

rule set.

0 Step 2. Optional step for very large rule sets: given an initial rule set, create

a new rule set containing the n strongest rules for each case.

l Step 3. Find all misdiagnosed cases for the rule set. Then collect and rank the

rules that contribute evidence toward these erroneous diagnoses. The rank of

Rj is c&r p;n;j, where:

mi = 1 if Rj is a poison rule or its deletion leads to the creation of

another poison rule and 0 otherwise.

n2j = the number of misdiagnoses for which Rj gives false positive evi-

dence;

n3j = the number of misdiagnoses for which Rj gives false negative evi-

dence;

n4 j = the number of correct diagnoses for which Rj gives false positive

evidence;

n5j = the number of correct diagnoses for which Rj gives false negative

evidence;

n6j = the absolute value of the CF of Rj;

l Step 4. Eliminate the h highest ranking rules.

l Step 5. If the number of misdiagnoses begins to increase and h # 1, then
h + h - 1. Repeat steps 3-4 until either

12

- there are no misdiagnoses

- Gin is reached

- h = 1 and the number of misdiagnoses begins to increase. 0

Each iteration of the algorithm produces a new rule set, and each rule set must

be rerun on all training instances to locate the new set of misdiagnosed instances.

If this is particularly difficult to do, the h parameter in step 4 can be increased,

but there is the potential risk of converging to a suboptimal solution. For each

misdiagnosed instance, the automated reasoning system that uses the rule set must

be able to explain which rules contributed to a misdiagnosis. Hence, we require an

system with good explanation capabilities.

The nature of an optimal rule set differs between domains. Penalty constants,

pi, are the means by which the user can define an optimal policy. For instance, via

p2 and p3, the user can favor false positive over false negative misdiagnoses, or visa

versa. For medical expert systems, a false negative is often more damaging than a

false positive, as false positives generated by a medical program can often be caught

by a physician upon further testing. False negatives, however, may be sent home,

never to be seen again.

In our experiments, the value of the six penalty constants was pi = 10% The

h constant determines how many rules are removed on each iteration, with lower

values, especially h 5 3, giving better performance. R&i,, is the minimum size of
- the solution rule set; its usefulness was described in section 5.1.

- Example 1.

In this example, which is illustrated in Figure 2, there are six training instances,

classified as positive or rzgative instances of the hypothesis. There are five rules

shown with their CF strength. The arcs indicate the instances to which the rules

apply. To simplify the example, define the combined evidence for an instance as

the sum of the evidence contributed by all applicable rules, and let CF, = 0. Rules

13

with a CF of one sign that are connected to an instance of the other sign con-

tribute erroneous evidence. Two cases in the example are misdiagnosed: 14 and

15. The objective is to find a subset of the rule set that minimizes the-number of

misdiagnoses.

Classified Example
Instances Rule

13 (+I)

15 (-1)

Rr

R2

R3

R5

Set

(+a

(+*5)

c-4

(+*5)

c-4

Figure 2: Optimizing Rules for One Hypothesis

Assume that the final ruleset must have at least three rules, hence R,,,;,, = 3.

Since all rules have identical magnitude and out degree, it is reasonable to set the

bias to the same value for all n rules, hence bj = 1, for 1 5 j < n. Let p; = 106-‘, for

0 5 i 5 5, thus choosing rules in the highest category, and using lower categories

to break ties.

On the first iteration, two misdiagnosed instances are found, 14 and

15, and four rules contribute erroneous evidence toward these misdiagnoses,

R2, R3, R4, and R5. Rules are ranked and R4 is chosen for deletion. On the sec-

ond iteration, one misdiagnosis is found, I4, and two erroneous rules contribute

14

erroneous evidence, R3 and R5. Rules are ranked and R5 is deleted. This reduces

the number of misdiagnoses to zero and the algorithm successfully terminates.

The same example can be used to illustrate the problem of the traditional

method of rule set debugging, where the order in which cases are checked for misdi-

agnoses influences which rules are deleted. Consider a Teiresias style program that

looks at training instances and discovers I4 is misdiagnosed. There are two rules

that contribute erroneous evidence to this misdiagnosis, rules R3 and R5. It wisely

notices that deleting R5 causes 13 to become misdiagnosed, hence increasing the

number of misdiagnoses; so it chooses to delete R 3. However, no matter which rule

it now deletes, there will always be at least one misdiagnosed case. To its credit, it

reduced the number of misdiagnoses from two to one; however, it fails to converge

to an rule set that minimizes the number of misdiagnoses.

5.2 Experience with the Antidote Algorithm

Experiments with the Antidote Algorithm were performed using the Mycin case

library [BS84]. 0 ur experiments involved using 119 evidential findings, 26 inter-

mediate hypotheses, and 21 final hypotheses. The training set had 104 training

instances and each instance was classified as a member of four hypothesis classes

on the average. The generated rules had one to three LHS conjuncts.

In our experiments, we generated approximately forty rule sets containing

between 200 and 20000 rules. Large rule sets were generated because we our in-

vestigating the construction of knowledge bases that allow an expert system to

automatically follow the line of reasoning of an expert; understanding a community

I of problem solvers requires more knowledge than that needed to just solve diagnosis

problems. Typically, 85% of the training instances were diagnosed correctly, and

seven out of ten cases used to validate the original Mycin system were evaluated

correctly. While ten cases is a small number for a validation set, it is a carefully

constructed set and has been found adequate in accurately classifying human di-

agnosticians at all levels [LMea79]. Further, since there are an average of four

hypotheses in the diagnosis per instance, we can view our training set as having

15

416 instances and our validation set as having 40 instances. After, the Antidote

Algorithm was applied, 95% of the training instances was diagnosed correctly, and

80% of the validation set was diagnosed correctly.

Besides almost always converging to a solution in which all members of the

training set are diagnosed correctly, the Antidote Algorithm is very efficient: only

eight iterations were required, for a rule set containing between 1450 rules. It was

surprising to see how greatly performance is improved by deleting a small percentage

of the rules in the rule set. As our results show, the improved performance on the

training set carried over to the validation set.

6 Summary and Conclusion

Traditional methods of debugging a probabilistic rule set are suited to handling

missing or wrong rules, but not to handling deleterious interactions between good

rules. This paper describes the underlying reason for this phenomenon. We formu-

lated the problem of minimizing deleterious rule interactions as a bipartite graph

minimization problem and proved that it is NP-Complete. A heuristic method was

described for solving the graph problem, called the Antidote Algorithm. In our

experiments, the Antidote Algorithm gave good results. It reduced the number of

misdiagnoses on the training set from 15% to 5%, and the number of misdiagnoses

on the validation set from 30% to 20%.

We believe that the rule set refinement method described in this paper, or

its equivalent, is an important component of any learning system for automatic

creation of probabilistic rule sets for automated reasoning systems. All such learning

* systems will confront the problem of deleterious interactions among good rules, and

the problem will require a global solution method, such as we have described here.

16

7 Acknowledgements

We thank Marianne Winslett for suggesting the bipartite graph formulation and

for detailed comments. We also express our gratitude for the helpful discussions

and critiques provided by Bill Clancey, Ramsey Haddad, David Heckerman, Eric

Horovitz, Curt Langlotz, Peter Rathmann and Devika Subramanian.

This work was supported in part by NSF grant MCS-83-12148, ONR/ARI

contract N00014-79C-0302, Advanced Research Project Agency Contract DARPA

N00039-83-C-0136, the National Institute of Health Grant NIH RR-00785-11, Na-

tional Aeronautics and Space Administration Grant NAG-5-261, and Boeing Grant

W266875. We are grateful for the computer time provided by the Intelligent Sys-

tems Lab of Xerox PARC and SUMEX-AIM.

Appendix 1: Calculating @.

Consider rules of the form E -% H. Then CF = Q = @(xi, 22,~) = empirical

predictive power of rule R, where:

@ 31 = P(E+lH+) = fraction of the positive instances in which R correctly

succeeds (true positives or true negatives)

o x2 = P(E+IH-) = fraction of the negative instances in which R incorrectly

succeeds false positives or negatives

l x3=P(H+)= fratt ion of all instances that are positive instances

Given xi, x2, x3, let

17

If x4 > x3 then ih = z$l~?$ else Q = x4 -x3
23(1-x4) l

This probabilistic interpretation reflects to the modifications to the certainly

factor model proposed by [Hec86].

References

PI

PI

PI

PI

PI

- PI

VI

PI

PI

B. G. Buchanan and T. M. Mitchell. Model-directed learning of production

rules. In Pattern-Directed Inference Systems, pages 297-312, New York: Aca-

demic Press, 1978.

B.G. Buchanan and E.H. Shortliffe. Rule-Based Expert Systems: The MYCIN
Experiments of the Stanford Heuris& Programmang Project. Addison-Wesley,

Reading, Mass., 1984.

R. Davis and D. B. Lenat. Knowledge-Based Systems in Artificial Intelligence.

method for managing evidential reasoning

Artificial htelligence, 26(3):323-358, July

McGraw-Hill, New York, 1982.

J. Gordon and E. H, Shortliffe. A

in a hierarchical hypothesis space.

1985.

D. Heckerman. Probabilistic interpretations for Mycin’s certainty factors. In

Uncertainty in Artijkial Intelligence, North Holland, 1986.

Yu V. L., Fagan L. M., and et al. Evaluating the performance of a computer-

based consultant. J. Amer. Med. ASSOC., 242(12):1279-1282, 1979.

R. S. Michalski. A theory and methodology of inductive inference. In .Machine
Learning, chapter 4, pages 83-134, Palo Alto: Tioga, 1984.

6. A. Shafer. Mathematical Theory of Evidence. Princeton University Press,

Princeton, 1976.

D. C. Wilkins and B. G. Buchanan. On debugging rule sets when reasoning un-
der uncertainty. Technical Report KSL 86-30, Stanford University, Computer

Science Dept., 1986.

18

[lo] D. C. W’lk1 ins, W. J. Clancey, and B. G. Buchanan. An overview of the
Odysseus learning apprentice. In Machine Learning: A Guide to Current Re-
search, pages 332-340, New York: Kluwer Academic Press, 1986.

[ll] L. A. Zadeh. Approximate reasoning based on fuzzy logic. In IJCAI-6,
pages 1004-1010, 1979.

19

