

Knowledge Systems Laboratory
KSL Report No. KSL-87-01

January 1987
Rev. 1: August 1987

Knowledge Base Refinement by Monitoring

Abstract Control Knowledge

David C. Wilkins, William J. Clancey and Bruce G. Buchanan

Department of Computer Science
Stanford University
Stanford, CA 94305

To appear in:

Knowledge Acquisition for Knowledge Based Systems, J. Boose
and B. Gaines, editors, Academic Press, 1987

and

International Journal of Man-Machine Studies, 1987

Knowledge Base Refinement by
Monitoring Abstract Control Knowledge

David C. Wilkins, William J. Clancey, and Bruce G. Buchanan

Knowledge Systems Laboratory
Department of Computer Science

Stanford University
Stanford, CA 94305

Abstract

An explicit representation of the problem solving method of an expert system shell
as abstract control knowledge provides a powerful foundation for learning. This
paper describes the abstract control knowledge of the HERACLES expert system
shell for heuristic classification problems, and describes how the ODYSSEUS appren-
ticeship learning program uses this representation to semi-automate “end-game”
knowledge acquisition. The problem solving method of HERACLES is represented
explicitly as domain-independent tasks and metarules. Metarules locate and apply
domain knowledge to achieve problem solving subgoals, such as testing, refining, or
differentiating between hypothesis; and asking general or clarifying questions.

We show how monitoring abstract control knowledge for metarule premise-
failures provides a means of detecting gaps in the knowledge base. A knowledge
base gap will almost always cause a metarule premise failure. We also show how
abstract control knowledge plays a crucial role in using underlying domain theories
for learning, especially weak domain theories. The construction of abstract control

- knowledge requires that the different types of knowledge that enter into problem
solving be represented in different knowledge relations. This provides a foundation
for the integration of underlying domain theories into a learning system, because
justification of different types of new knowledge usually requires different ways of
using an underlying domain theory. We advocate the construction of a definitional
constraint for each knowledge relation that specifies how the relation is defined and
justified in terms of underlying domain theories.

1

1 Introduction

An apprenticeship period is the most effective means that human problem solvers

use to refine domain-specific problem solving knowledge in expert domains. This

provides motivation to give apprenticeship learning abilities to knowledge-based

expert systems, since they derive their power from the quality and quantity of their

domain-specific knowledge. By definition, apprentice learning programs improve an

expert system in the course of normal problem solving and derive their power from

the use of underlying domain theories (Mitchell et al., 1985).

There are two principal apprenticeship learning scenarios used by human prob-

lem solvers in knowledge-intensive domains such as medicine and engineering. In

the first scenario, an apprentice problem solver learns in the course of observing the

problem solving behavior of another problem solver. A learning opportunity occurs

when the apprentice fails to explain an observed problem solving action. At this

point, the apprentice can often use the problem solving context and underlying do-

- main theories to identify missing or wrong problem solving knowledge, or at worse

be able to ask a pointed question that will isolate the knowledge discrepancy. Our

past research focused on this type of scenario: the ODYSSEUS learning program im-

proves a HERACLES-based expert system in the course of watching a human expert

solve problems (Wilkins et al., 1986; Clancey, 1986a).

In the second apprenticeship learning scenario, an apprentice problem solver

learns in the course of solving problems and monitoring his or her own problem solv-

ing failures. This paper describes how the ODYSSEUS learning apprentice can per-

form this type of learning; the ODYSSEUS learning apprentice improves a HERACLES-

based apprentice expert system by having ODYSSEUS monitor the expert system’s

normal problem solving.

This paper is organized as follows. Section 2 briefly describes the problem

solving architecture of the HERACLES expert system shell. The key aspects of HER-

ACLES that are crucial for learning are a separation of the domain knowledge from

control knowledge and an explicit representation of the control knowledge using

tasks and metarules. Section 3 describes the learning method used by ODYSSEUS,

2

provides two learning examples, and discusses the generality and limitations of the

learning approach. Section 4 covers related research, and Section 5 summarizes the

contributions of this paper.

2 Heracles’ Problem Solving Architecture

HERACLES is an expert system shell for solving problems using the heuristic classi-

fication method; it provides the user with a vocabulary of knowledge relations for

encoding domain knowledge, and a domain-independent body of control knowledge

that solves problems using this domain knowledge. In HERACLES, control knowl-

edge is represented as task procedures and metarules, which are invoked by a task

interpreter (Clancey, 1986b).

A task is a procedure for accomplishing some well-defined problem-solving

subgoal. Examples of tasks are to test a hypothesis, group and differentiate hy-

potheses, refine a hypothesis, forward reason, ask general questions, and process

hard data. Each action within a task procedure for achieving the task procedure

subgoal is called a metarule. Metarules, which might more precisely be called “in-

ference procedure rules”, do not contain domain knowledge; they index the domain

knowledge using a relational language.

The domain knowledge in HERACLES consists of MYCIN-like rules and facts

and is encoded using the MRS relational language (Russell, 1985). This knowl-

edge is accessed when metarules premises are unified with domain knowledge rela-

tions. There are approximately 120 knowledge relations, such as subsumes ($parmI ,

$parrO, trigger($rule), and evidence.for($parm, $hypothesis, $rule,

$cf)2. Tasks and metarules can be viewed as orchestrating the domain knowl-

edge: they piece the domain knowledge together in order to achieve a problem

solving goal. Examples of metarules are shown in Section 3. Currently HERACLES

‘Throughout this paper, all variables start with a “$“.
2This last relation means that $parrn contributes evidence for $hypothesis in $rule and the

certainty factor or strength of this rule is $cf. If a rule has several parameters in the premise, an
evidence. f or tuple is constructed for each of them.

3

contains approximately thirty task procedures and eighty metarules.

Task
Interpreter

Met alevel Control Knowledge
(Tasks and Metarules)

Factual Database
of Ground Liter&

Figure 1: Heracles Problem Solving Architecture. The meta-level
(middle layer) is declaratively specified and encodes knowledge
of the problem solving method. The object-level (bottom layer)
is also declaratively specified and encodes domain-specific knowl-
edge.

The three main levels of organization in HERACLES are shown in Figure 1. The

bottom level of organization includes all domain-specific knowledge of the expert-
domain, such as medical or engineering knowledge. The middle layer contains meta-

level control knowledge, which encodes a problem-solving method such as heuristic

classification or constraint propagation. Earlier shells such as EMYCIN did not have

the middle layer of abstract control knowledge; rather, this knowledge was imbedded

in the interpreter and the domain rules.

In the examples in this paper, the domain knowledge base to be refined is the

NEOMYCIN knowledge base for diagnosing meningitis and neurological problems

(Clancey, 1984). The NEOMYCIN knowledge base is a reorganization and extension

of the MYCIN knowledge base, in which distinctions are made between different types

4

of problem solving knowledge, and the control knowledge is more completely sepa-

rated from the domain knowledge. The described HERACLES system was actually

created by removing the domain knowledge from NEOMYCIN. Patient cases created

for the NEOMYCIN domain are used as input (Glancey, 1984). The ODYSSEUS induc-

tion theory uses the MYCIN library of solved patient cases (Buchanan and Shortliffe,

1984).

HERACLES metarules have the responsibility for locating and applying all do-

main knowledge. The form of the metarule provides a way to determine whether

the premise of the rule is true by accessing dynamic state information and refer-

encing (and retrieving information from) the domain knowledge base. ODYSSEUS

monitors HERACLES metarule premises for failures. If the cause of the failure is

missing domain knowledge, ODYSSEUS attempts to create this knowledge using un-

derlying theories of the domain. If ODYSSEUS succeeds in finding the desired domain

knowledge, the domain knowledge base in the expert system shell is automatically

refined. The metarule for achieving a problem solving subgoal can now be success-

fully applied.

3 Odysseus’ Learning Method

An overview of the learning method to be described is shown in Figure 2. The first

major task facing the learning system is global credit assignment, which is the de-

termination of whether there is a potential gap in the knowledge base. The gap can

be either a lack of factual or rule knowledge. The use of a relational language for all

knowledge, including rules, provides a uniform approach to discovering both types

of deficiencies. A gap in the knowledge base is suspected whenever the premise of a

metarule fails. Given a failed metarule premise, the learning program checks to see

which conjuncts of the premise failed. If the failed conjunct indexes dynamic state

information or is used to control the meta-level reasoning, then there is no learning

opportunity, as there is no corresponding underlying domain theory. However, if

the failed conjunct is the type that accesses the domain knowledge base, then this

could be a learning opportunity.

5

Global
Credit

Assignment

No

Local
Credit

Assignment
Confirmation

Theory

Figure 2: Overview of Odysseus’ learning methodology when ob-
serving problem solving behavior of an expert system

After detecting the existence of a gap in the knowledge base, the next task is

: to pinpoint the gap; this is the local credit assignment problem. In our approach,

there are two major parts to local credit assignment: generation of potential repairs

and the testing of these repairs for validity.

The input to the ODYSSEUS candidate repair generator is the metarule that

failed, the known bindings for variables in the clauses of the metarule premise that

have been determined outside of the scope of the metarule, and a knowledge of

6

the range of values that each variable in a metarule clause is allowed to assume.

For example, the value of the variable $f inding can be any finding in the domain

vocabulary. The candidate repair generator focuses on the knowledge relations in

the metarule and generates all allowable variable bindings for these relations. These

instantiated relations are then passed on to the ODYSSEUS candidate tester.

HERACLES ODYSSEUS

mlRule
Meta-Level Control KN Fails
(Tasks and Metarules)

(-)

Modify

Figure 3: Odysseus monitors Heracles’ metarule failures

The input to the ODYSSEUS candidate tester is a knowledge relation instance,

such as subsumes(visual-problems, double-vision). In order to test this can-

didate, two things are necessary. First, ODYSSEUS must have in hand a definition

’ of all the constraints (empirical or otherwise) that determine whether an arbitrary

instance of this knowledge relation is valid. Second, the learning program must

have underlying theories of the domain that are capable of determining whether

the constraints are satisfied, and hence whether the knowledge relation instance

is valid. ODYSSEUS tests contains two underlying domain theories for testing of

new knowledge: a strategy theory of heuristic classification problem solving and an

induction theory based on analysis of past cases.

7

In the remainder of this section, two learning examples will be described in

detail to demonstrate the approach we are advocating. The first example, given in

Section 3.1, illustrates the learning of factual knowledge for the knowledge relation

clarifying.questions, using the ODYSSEUS strategy theory as the underlying

domain theory. The second example, given in Section 3.2, illustrates the learning

of rule knowledge for the knowledge relation evidence .f or, using an induction

theory based on analysis of past cases as the underlying domain theory. These

examples are based on the NEOMYCIN knowledge base, the MYCIN case library, and

an actual medical case. Both sections assume that a metarule failure has occurred

and that candidate repairs have been generated; they concentrate on the third stage

of learning, wherein candidate repairs are tested.

3.1 Learning Factual Knowledge

The focus of this example is the clarifying . quest ions knowledge relation in the

clarify.questions metarule presented below. As an example of its use, suppose
the doctor discovers that the patient has a headache. The headache finding is asso-

ciated with many diagnostic hypotheses, so many that it is generally wise to narrow

down this set of hypotheses by determining the severity and duration of the headache

before pursuing a specific hypothesis. This is the process of clarifying the finding,

and the questions about various subtypes of this finding (e.g., headache-duration,

headache-severity) are called clarifying questions. In the HERACLES system, this

is implemented by invoking the clarify. f inding task whenever a new finding is

derived by the system or provided by the user. In turn, the clarify . f inding task

invokes the clarify. questions metarule.

MetaRule 1: Clarify.questions

IF: goal(clarify.finding $findingl) A
clarifying.questions($findingl $finding2) A
not(value-known $finding2)

8

THEN:

ENGLISH:

goal(findout $finding2)

If the current goal is to clarify finding1
and finding1 can be clarified by finding2
and finding2 is currently unknown
then try to find out the value of finding2.

Only one of the premise conjuncts of Rule 1 accesses domain knowledge,

namely clarifying.questions($findingl $finding2). The first conjunct is for

control purposes and the third conjunct checks the value of dynamic state knowl-

edge.

The situation when learning may occur is when Rule 1 is passed a value for the

variable $f indingl, say ‘headache’, but Rule l’s premise fails because no bindings

can be found for $f indingl. In this situation, $f inding is a free variable at the

time of failure. ODYSSEUS begins the learning process by invoking the candidate

repair generator, which generates every possible candidate binding for $f inding2.

Using information regarding the domain of $f inding2, the learning critic is able to

generate about 300 candidate relations.

In order to be able to validate candidate new domain knowledge for a particu-

lar knowledge relation, two steps must be taken beforehand. First, a justijication for

the knowledge relation must be constructed that specifies all the constraints that an

instance of the knowledge relation must satisfy in order to be valid. In our example,

this requires constructing a precise definition that captures the constraints on an in-

stance of the clarifying. quest ions relation. Second, a way must be found to test

these constraints using underlying theories of the domain. This two-step method

contrasts with the current manual method of refining the NEOMYCIN knowledge

base, which consists of asking physicians what clarifying questions to use.

Let us begin by giving an informal justification of clarifying. questions.

One reasonable justification for asking clarifying questions is cognitive economy

with respect to efficient diagnosis. Much of diagnosis involves the testing of spe-

cific hypotheses; however, sometimes a new piece of information is discovered that

9

suggests a very large number of hypotheses. To reduce the number of relevant hy-

potheses, it is helpful to ask several clarifying questions that will add confirming

or disconfirming evidence to many of the hypotheses associated with the new piece

of information. After asking these questions, only a few of the numerous potential

hypotheses will now be consistent with what is known.

We can now give a precise description of the constraints operating on clar-

ifying.questions. This first-principles interpretation of a clarifying question is as

follows: if a question is associated with many hypotheses, say more than six, and

there exists a question that provides positive or negative evidence to many of these

hypotheses, say between one-third and two-thirds, then always ask this question as

a clarifying question. This can be formalized as follows.

Definition 1.

For any finding f, let Hf be the set of all hypotheses h such that relatesTo(f,

h) is true. Let fi and f2 be distinct findings, such that subsumes(fr, f2) is in

the knowledge base. Let n be an empirically determined threshold indicating the

minimum number of hypotheses that a finding must relate to in order to require

the use of clarifying questions. Then

2
clarifying.questions(fi, fi) - [(IIQl 11 2 n) A ($ L llHjl n &II 5 ,n)].

The relatesTo relation is not part of the domain knowledge base; it is com-

puted on the fly when a new piece of knowledge is validated, using a method which

- we will now describe. ODYSSEUS has two underlying domain theories that together

can be used to check whether a new piece of knowledge satisfies all aspects of Def-

inition 1. One underlying theory is a strategy theory for heuristic classification

problem solving. A component of this theory is a line of reasoning explanation

generator. Given a finding, all paths from that finding to reasonable possible di-

agnostic hypotheses via metarule applications can be determined. The generator

can enumerate all the reasons that a question could possibly be asked, given the

strategy and domain knowledge in HERACLES. The line of reasoning generator al-

10

lows determination of all the hypotheses that are associated with any one question

either directly or indirectly; it is used to compute relatesTo(f, h).

We now describe the results of encoding Definition 1 and implementing our

approach for the NEOMYCIN knowledge base. Currently, there are two clarifying

questions for headache in the NEOMYCIN knowledge base: headache duration and

headache severity. Our implemented metarule critic for the clarify . questions

metarule considered the effect of all headache-related questions on the set of hy-

potheses associated with headache, and determined that one more clarifying ques-

tion met the above described constraints: headache progression (i.e., is the headache

getting better or worse). ODYSSEUS automatically modified a slot value under

headache in the knowledge base to include this clarifying question; in the future,

this question will always be asked when the patient complains of a headache.

3.2 Learning Rule Knowledge

All rule knowledge is represented within HERACLES using knowledge relations. This

means that rules can be learned much as factual knowledge is learned. The example

in this section involves learning an instance of the evidence .f or relation in the

Split .Active .Hypotheses metarule. This rule is one of three invoked by the task

Group.And.Differentiate.Hypotheses. This metarule is useful during diagnosis

when there are currently a large number of strong diagnostic hypotheses. The

Split. Active. Hypotheses metarule searches for a finding to ask about that will

simultaneously provide strong positive evidence for some active hypotheses and

strong negative evidence against other active hypotheses.

* MetaRule 2: Split.Active.Hypotheses

IF: goal(group.and.differentiate.hyps $active.hypotheses) A

member($hypothesisl $active.hypotheses) A

member($hypothesis2 $active.hypotheses) A

not(equal($hypothesisl $hypothesis2)) A

11

evidence.for($finding $hypothesisl $rulel $cfl) A
evidence.for($finding $hypothesis2 $rule2 $cf2) A
greater($cfl .2) A
less($cf:! -.2)

THEN: goal(findout $finding)

ENGLISH: If the current goal is to group and differentiate a
list of active hypotheses and a single finding provides
positive evidence for one of the hypotheses and
negative evidence for another of the hypotheses
then try to find out the value of this finding.

The metarule is passed a value for the variable $active.hypotheses. The

interpreter attempts to find a unifier for all the clauses such that $hypothesisl is

bound to one member in $active .hypotheses, $hypothesis2 is bound to a dif-

ferent member of $active. hypotheses, and there is a single finding in the premise

of a metarule that concludes that $hypothesisl is probably present and is also in

the premise of a rule that concludes that $hypothesis2 is probably absent. That

is, a finding is asked that simultaneously provides evidence against some of the hy-

potheses and evidence for other hypotheses. Even though the NEOMYCIN knowledge

base has been under development for several years, the Split .Hypothesis .List

metarule is rarely invoked on any of the patient cases in the NEOMYCIN case library.

Therefore implementing a learning critic for this mctarule is useful.

In

the example in which our learning critic was called into play, $act ive . hypotheses

- consistedofsevenhypotheses: AV malformation,mycobacterium TB meningitis,
viral meningitis, acute bacterial meningitis, brain aneurysm, partially
treated bacterial meningitis and fungal meningitis. The metarule fails
because a binding for $finding cannot be found in the two relations

positive. evidence. f or and negative . evidence. f or. Other clauses establish

bindings for $hypothesisl and $hypothesis2. Using information regarding the

domain of $finding, the learning critic conjectures many potential missing rules.

12

The number of conjectures can be quite large. For 300 findings and seven active

hypotheses, this number is 7 x 6 x 300.

Given these conjectures, a confirmation theory determines whether any of

them is true. This requires the use of a formal definition for each relation. In this

case we need a formal definition of $evidence. f or.

Definition 2.

Let r be a justifiable domain rule. Let f be a finding that appears in the

premise of r, and let h be a hypothesis that appears in the conclusion of r. Let s

be the certainty factor strength of r, normalized to lie between H. Then

evidence.f or(f, h, r, s).

To actually determine whether a domain rule is justifiable requires the use

of an underlying domain theory. ODYSSEUS uses induction over a case library to

determine whether the conjectured rule is valid. That is, ODYSSEUS does a statistical

analysis of the cases and determines whether the rule has good generality, specificity,

and economy, and satisfies other measures of rule fitness3.

The confirmation theory using the ODYSSEUS induction system found five rules

that divide the list of active hypotheses, including:

Object-Level Rule 1.

IF: duration.of . symptoms 5 1 day A
evidence.for(meningitis) > .6

3The library of test cases that we used to generate rules is the MYCIN case library (Buchanan and
Shortliffe, 1984). Because diseases are defined in the Neomycin knowledge base that are not defined
in the Mycin system (in this case, AV malformation, partially treated bacterial meningitis, and brain
aneurysm), the values of the certainty factors CFS) for some rules will be slightly inaccurate.

13

THEN: suggests fungal.meningitis (cf = -.8) A
suggests mycobacterium.tb.meningitis (cf = -.8) A
suggests acute.bacterial.meningitis (cf = .7)

Upon being accepted, this rule is added to the object-level rule set; it is also

re-represented as knowledge relations and these are added to the factual database

3.3 Comparing Apprentice Scenarios

Table 1 contrasts the two different ODYSSEUS apprenticeship learning scenarios of

watching another problem solver and watching one’s own problem solving. Table 1

compares the way the two scenarios accomplish the three major learning tasks faced

by an apprenticeship learning system: the realization that knowledge is missing, the

generation of candidate repairs, and the testing of those repairs. Note that the latter

two tasks, i.e., the local credit assignment process that involves the use of underlying

domain theories and the construction of definitional constraints, are identical in the

two scenarios. On the other hand, the global credit assignment process is easier

when watching oneself, because there is none of the uncertainty connected with

inferring another agent’s line of reasoning. Generating repairs is also easier when

watching oneself, as there is no uncertainty as to exactly which metarule and hence

which knowledge relation is responsible for the failure.

Compared to watching another problem solver, one can learn from watching

one’s own problem solving earlier in the knowledge acquisition “end-game”. When

watching another problem solver, a relatively large knowledge base is required;

-otherwise it is impossible to follow the line of reasoning of an expert most of the

’ time, which is a requirement of this scenario.

A disadvantage of watching oneself is a large number of false alarms.

Metarules fail most of the time, and it is not clear what the failure rate would

be for a really good knowledge base. Perhaps it would only be a little lower than

with a fairly incomplete knowledge base. More experimentation is required to an-

swer these questions.

14

i I

Scenario 1: Watching Scenario 2: Watching

Other Problem Solving Own Problem Solving

Global Credit Assign- Attempt to construct an Meta-level control rule

ment explanation of observed fails

action fails

Local Credit Assign- Generate domain KN el- Generate domain KN el-

ment : Generate Repairs ement that completes an ement that allows rule

explanation to succeed

Local Credit Assign- Check constraints on KN Check constraints on KN
ment: Test Repairs relation using underly- relation using underly-

ing domain theories ing domain theories

Table 1: Comparing Apprenticeship Scenarios

4 Discussion

Monitoring abstract control knowledge appears to be a very promising lever for

aiding apprenticeship learning. In showing two examples of the leverage obtained

by this approach, we have only scratched the surface of the topic. This section

discusses some of the remaining open issues.

As described in Sections 3.1 and 3.2, we have begun to implement constraint

definitions to link knowledge relations to underlying theories. A key question that

. needs investigation is the reusability of these constraint definitions: are there sets

of knowledge relations that can use the same or similar constraint definitions? As

there are scores of different knowledge relations in the NEOMYCIN system, reuse of

definitions could significantly reduce the amount of effort needed to create metarule

critics for all metarules in the expert system shell. Further, it is not yet known

whether all types of knowledge relations will be amenable to formal constraint

definitions.

15

The best method of gauging the improvement produced by the addition of new

knowledge is another open question. The heuristic knowledge that the examples of

Section 3 added to the knowledge base is clearly helpful for the example cases,
because it allows several hypotheses to be confirmed or disconfirmed with a single

question. However, a complete validation should show improvement in performance

on a validation set of cases. The measure of performance should be diagnostic

accuracy and efficiency.

Another issue involves the control of the learning process. When should this

type of learning be invoked? Not every metarule failure signals missing knowledge;

how can learning opportunities be distinguished from routine failures?

Another open problem relates to the quantity of new knowledge introduced

into the system. For example, in Section 3.2 five new rules were found that would

divide the current hypothesis list. More generally, an open problem in the induction

of rule bases is how to adequately bias the selection of rules (Fu and Buchanan,

1985; Michalski et al., 1983). There may be very many good candidate rules, but

having too many rules is injurious to an expert system-efficiency is decreased,

debugging is complicated, and explanations of actions become harder to follow. Of

course, learning knowledge in the context of normal problem solving increases the

likelihood that the rules produced by the induction system are going to be useful

for problem solving. Only adding rules that are needed by the metarules of the

inference procedure is a good step towards introducing a sufficient bias on rule

selection.

5 Related Work

Two major apprenticeship learning systems are LEAP and DIPMETER ADVISOR
(Mitchell et al., 1985; Smith et al., 1985). In both of these systems there is a

single type of knowledge. In LEAP, all knowledge is implementation rules. In DIP-
METER ADVISOR all knowledge is heuristic rules. In contrast, there are dozens of

types of knowledge in HERACLES-each knowledge relation corresponds to a differ-

16

ent type of knowledge. The key to automatic learning seems to be the definition of

constraints to tie each knowledge relation individually to one or more underlying

domain theories.

There has been a great deal of research on failure driven learning that monitors

control and planning knowledge (Mitchell et al., 1983; Korf, 1985; Minton, 1985).

The goal of these research efforts is to create better control knowledge so as to speed

up problem solving, rather than to learn domain-specific factual knowledge. This

compliments our approach, as we do not address the learning of abstract control

knowledge for a problem-solving method; in other words, we do not learn tasks and

metarules.

ODYSSEUS has a separate definitional constraint for each knowledge relation.

This allows it to determine whether the candidate new knowledge relation instance

is valid. This is reminiscent of the approach taken in AM (Lenat, 1976), where each

slot of a concept has a a set of associated heuristic rules that can be used to validate

the contents of the slot.

6 S u m m a r y

It is well known that expert systems derive much of their power from the quality

and quantity of their domain specific knowledge. The method described in this

paper provides a method of partially automating the acquisition of some of this

knowledge.

The construction of expert system shells for generic tasks has become a com-

mon practice. There is a growing awareness that the power of a knowledge acquisi-

tion system for an expert system shell is bounded by the complexity and explicitness

of the inference procedure (Eshelman and McDermott, 1986; Kahn et al., 1985).

There is also a growing awareness that automated knowledge acquisition must be

grounded in underlying domain theories (Mitchell et al., 1985; Smith et al., 1985).

Using the HERACLES expert system shell and the ODYSSEUS apprenticeship learn-

ing program, we have demonstrated how underlying theories of a problem solving

17

domain can be effectively used by a learning method centered around an explicit

representation (i.e., tasks and metarules) of the problem solving method.

The learning method described in this paper has three stages. The first stage

is global credit assignment, the process of determining that there is a gap in the

knowledge base. This is accomplished by monitoring metarule premise failures in

the expert system shell, since all knowledge base gaps cause these. The second

stage of learning is generating candidate repairs. Candidate repairs are generated

by locating the knowledge relation in the failed metarule premise, and generating all

values of the relation for the free variables in the relation. The last stage of learning

is evaluation of candidate repairs. The ODYSSEUS method involves constructing

a constraint definition for each different type of knowledge, to describe how an

underlying domain theory can be used to validate the repair. In the described

experiments, we used the NEOMYCIN knowledge base for the HERACLES expert

system shell. The underlying domain theories are a strategy theory and an induction

theory based on analysis of past cases.

A major open question is to determine how many of the knowledge relations

in the expert system shell can be grounded in underlying theories of the domain. In

particular, we are investigating the extent to which the different knowledge relations

can be grounded in the two underlying theories that are part of ODYSSEUS. However,

for certain types of domain knowledge used in the metarules, such as definitional

and causal knowledge, we currently have no underlying theory; construction of such

theories to allow automated knowledge acquisition will be difficult and perhaps
- impossible.

The type of learning demonstrated in this paper is more powerful than most

- forms of failure-driven learning, because the definition of failure is weaker. Failure

to solve the overall problem is not necessary; rather, failure to satisfy a metarule

premise for achieving a problem solving subgoal is sufficient for learning to take

place.

18

7 Acknowledgments

We express our gratitude for helpful comments provided by Haym Hirsh and Mari-

anne Winslett for several draft versions of this paper.

This work was supported in part by NSF grant MCS-83-12148, ONR/ARI

contract N00014-79C-0302, Advanced Research Projects Agency (Contract DARPA

N00039-83-C-0136), the Na ionalt Institute of Health (Grant NIH RR-00785-ll),

National Aeronautics and Space Administration (Grant NAG-5-261), and Boeing

(Grant W266875). We are grateful for the computer time provided by the Intelligent

Systems Lab of Xerox PARC and SUMEX-AIM.

8 References

Buchanan, B. G. and Shortliffe, E. H. (1984). Rule-Based Expert Systems: The
MYCIN Experiments of the Stanford Heuristic Programming Project. Reading,
Mass.: Addison- Wesley.

Clancey, W. J. (1984). NEOMYCIN: reconfiguring a rule-based system with appli-
cation to teaching. In Clancey, W. J. and Shortliffe, E. H., editors, Readings
in Medical Artificial Intelligence, chapter 15, pages 361-381, Reading, Mass.:
Addison- Wesley.

Clancey, W. J. (1986a). From GUIDON to NEOMYCIN to HERACLES in twenty

a short lessons. AI Magazine, 7:40-60.

Clancey, W. J. (1986b). Representing control knowledge as abstract tasks and
metarules. In Coombs, M. and Bolt, L., editors, Computer Expert Systems,
Springer Verlag. Also, Knowledge Systems Lab Report KSL-85-16, Stanford
University, April 1985.

Eshelman, L. and McDermott, J. (1986). MOLE: a knowledge acquisition tool that
uses its head. In Proceedings of the 1986 National Conference on Artificial
Intelligence.

Fu, L. and Buchanan, B. G. (1985). Inductive knowledge acquisition for rule based
expert systems. Technical Report KSL 85-42, Stanford University, Computer

19

Science Dept.

Kahn, G., Nowlan, S., and McDermott, J. (1985). MORE: an intelligent knowledge
acquisition tool. In Proceedings of the 1985 IJCAI, pages 573-580.

Korf, R. (1985). Learning to solve problems by searching for macro-operators.
Marshfield, Mass: Pitman.

Lenat, D. B. (1976). AM.- An artificial intelligence approach to discovery in math-
ematics as heuristic search. PhD thesis, Stanford University.

Michalski, R. S., Carbonell, J. G., and Mitchell, T. M., editors (1983). Machine
Learning: An Artificial Intelligence Approach. Tioga Press.

Minton, S. (1985). Selectively generalizing plans for problem solving. In Proceedings
of the 1985 IJCAI, pages 596-599.

Mitchell, T., Utgoff, P. E., and Banerji, R. S. (1983). Learning by experimenta-
tion: acquiring and refining problem-solving heuristics. In Michalski, T. M.,
Carbonell, J. G., and Mitchell, T. M., editors, Machine Learning: An Artificial
Intelligence Approach, pages 163-190, Palo Alto: Tioga Press.

Mitchell, T. M., Mahadevan, S., and Steinberg, L. I. (1985). LEAP: a learning
apprentice for VLSI design. In Proceedings of the 1985 IJCAI, pages 573-580.

Russell, S. (1985). The Compleat Guide to MRS. Technical Report KSL-85-108,
St anford University.

Smith, R. G., Winston, H. A., Mitchell, T. M., and Buchanan, B. G. (1985). Rep-
resentation and use of explicit justifications for knowledge base refinement. In
Proceedings of the 1985 IJCAI, pages 673-680.

Wilkins, D. C., Clancey, W. J., and Buchanan, B. G. (1986). An overview of
the ODYSSEUS learning apprentice. In Mitchell, T. M., Michalski, R. S., and
Carbonell, J. G., editors, Machine Learning: A Guide to Current Research,
pages 332-340, New York: Kluwer Academic Press.

20

